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A B S T R A C T

We introduce a meshfree collocation framework to model the phase change from liquid to vapor at or above
the boiling point. While typical vaporization or boiling simulations focus on the vaporization from the bulk
of the fluid, here we include the possibility of vaporization from the free surface, when a moving fluid comes
into contact with a superheated surface. We present a continuum, one-fluid approach in which the liquid
and vapor phases are modeled with the same constitutive equations, with different material properties. The
novelty here is a monolithic approach without explicit modeling of the interface between the phases, neither in
a sharp nor diffuse sense. Furthermore, no interface boundary conditions or source terms are needed between
the liquid and vapor phases. Instead, the phase transition is modeled only using material properties varying
with temperature. Towards this end, we also present an enrichment of strong form meshfree generalized finite
difference methods (GFDM) to accurately capture derivatives in the presence of jumps in density, viscosity,
and other physical properties. The numerical results show a good agreement with experimental results, and
highlight the ability of our proposed framework to model phase changes with large jumps.
1. Introduction

The process of phase transition or phase change occurs everywhere
around us, both in nature and in industrial processes. They have been
widely studied both theoretically and experimentally. While computer
simulations of phase transitions have become increasingly popular in
the last few decades, there remain many challenges in modeling and
simulating these processes accurately.

In the present work, we restrict our discussion to so-called first-order
phase transitions that involve latent heat. Several different approaches
have been considered for simulating such phase change processes. On
one hand, microscopic simulations have been widely considered [1],
which simulate the process at a molecular or atomic level. These
methods can be classified into one of two approaches: (i) molecular
dynamics (MD) simulations which integrate equations of motions on
interacting particles, see, for example, [2–5], and (ii) Monte Carlo (MC)
methods which rely on stochastic processes, see, for example, [6–9].
While these microscopic phase change models can be very physically
accurate, they are only suitable for simulations over very small length
scales, typically smaller than millimeters.

On the other hand, continuum approaches are used to model the
phase change process on a macroscopic level. These models are more
appropriate for large length scale simulations of phase transitions. The
primary difficulties in these models arise due to the volume expansion
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or contraction, and the evolving phase boundaries that undergo large
deformations and possibly even topological changes. Based on similar
notions in classical multiphase flow problems [10], continuum phase
change simulations are usually classified into two categories based
on how the interface between the phases is treated: (i) The classical
approach is a sharp interface method, which assumes a clear and
distinct interface of zero thickness between the two phases. The phase
transition is modeled as interface boundary conditions for heat and
mass transfer, see for example, [11–13]. (ii) An alternative approach
that has become very popular is the diffusive interface approach, that
postulates an interface of a small non-zero thickness [14]. Here, the
interface conditions are modeled as source terms in the governing
equations across the entire thickness of the diffuse interface, see for
example, [15–18].

Bridging the gap between the aforementioned microscopic and con-
tinuum approaches are mesoscopic approaches that use the Lattice
Boltzmann Method (LBM). While a variety of LBM approaches have
been proposed for phase change modeling (see [19]), one of the most
popular approaches is based on the pseudo-potential approach for LBM
multi-phase flows [20]. Here, a phase change interface is not modeled
directly, rather the interface ‘‘emerges’’ via coarse-grained representa-
tions of inter-molecular attraction forces [21]. Similar methods have
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also been successfully used in modeling phase change during additive
manufacturing [22–24].

However, for many practical applications of phase transitions, none
of the above methods are suitable. The motivation behind the present
work is the vaporization of cutting fluid during metalworking pro-
cesses. In these processes, chips are removed from a metal workpiece,
using a cutting tool, to obtain the desired shape of the workpiece. These
processes generate a large amount of heat due to friction and metal
deformation [25]. Thus, a cutting fluid, also referred to as coolant or
lubricant, is used to rapidly remove heat without needing to pause the
production process, while also lubricating and preventing unwanted
thermal expansion [26,27]. The temperatures at the cutting region can
often be much higher than the boiling temperature of the cutting fluid.
As a result, as the fluid comes into contact with the workpiece or
the tool in the cutting zone, it instantly vaporizes. Thus, to accurately
simulate such cutting processes, the liquid–vapor transition must be
modeled. However, existing phase change models are unable to rep-
resent this complex process. Firstly, microscopic models are infeasible
for such large scale simulations. Due to the high Reynolds number
turbulent flows, mesoscopic LBM approaches are not suitable either.
A macroscopic sharp interface method is not applicable due to the
complicated 3D interface with changing topology between the liquid
and vapor phases. Moreover, unlike typical macroscopic phase change
simulations where the only free boundary is the interface between the
phases, here both the liquid and the gas themselves have their own
external free surfaces too. In fact, rapid boiling of the liquid occurs at
and near a free surface. On the other hand, diffuse interface methods
are currently unable to capture the region where multiple interfaces
intersect: the liquid–vapor interface, external free surfaces for both
liquid and vapor phases, and solid–liquid and solid–vapor interfaces
where the cutting fluid hits the workpiece and tool.

Meshfree methods have become a popular alternative to conven-
tional mesh-based simulation methods, especially for fluid flow appli-
cations. Their advantages become the most relevant for applications
with complex geometries, moving interfaces, and free boundaries, each
of which holds true for our vaporization of cutting fluid application.
Another advantage of a meshfree method is the ease of incorporat-
ing moving Lagrangian frameworks. While Lagrangian frameworks are
considered to be very accurate in representing moving boundaries and
interfaces, their use with mesh-based methods is limited to applications
with small deformations [10]. This is primarily because mesh deforma-
tion as a result of moving the mesh requires an expensive remeshing
step. In contrast, in meshfree methods point cloud deformation can
be fixed locally and is thus much cheaper. As a result, meshfree
Lagrangian methods are especially suited for applications with large
deformations and topology changes of interfaces. We thus choose a
meshfree approach to model the application at hand.

In this paper, we introduce a novel meshfree Lagrangian framework
to simulate phase change processes. Motivated by similar ideas in cav-
itation modeling [28], we use a one-fluid or homogeneous approach,
in which both phases of the phase transition process are represented
by a single fluid, with one set of conservation equations and vary-
ing material properties representing the different phases. We note
that the so-called front tracking method for phase change [29] also
uses a one-fluid or a ‘‘one-field’’ approach. However, they explicitly
track the interface and use two different grids for the flow equations
and the interface. In contrast, here, we do not track the interface at
all, and thus only one grid (more appropriately, one point cloud) is
needed. Mass and energy transfer between the phases are represented
directly by the particle-based Lagrangian nature of the discretization.
This has the advantage of not needing to explicitly track or capture
the interface, nor needing to determine and impose any interfacial
conditions, which could have been cumbersome for interfaces with
very complex topology. Using such an approach in a fully meshfree
setting raises several challenges, which are highlighted and addressed
2

in the present work. We introduce modifications to collocation-based
meshfree derivative computation to enable accurate capturing of the
sudden changes in the material properties. Furthermore, we introduce
a framework for modeling the varying material properties that helps in
attaining numerical stability while maintaining physical consistency.

Given the aforementioned motivation, we focus on liquid-to-vapor
phase change throughout the present work. However, the methods
introduced here could be directly used to model any first-order phase
transition.

This paper is organized as follows. We first introduce the constitu-
tive equations underlying the one-fluid model in Section 2, followed
by explaining how the phase change is modeled by varying material
properties in Section 3. The meshfree discretization procedure and
enrichment process are then explained in Section 4. Section 5 describes
some details of the numerical scheme, and a short comparison with
other phase change models is presented in Section 6. Numerical ap-
plications of the method are explained in Section 7, followed by brief
concluding remarks in Section 8.

2. Constitutive equations

The underlying constitutive equations used to model both the liquid
and the vapor phase as a single one-fluid model are the standard
conservation equations of mass, momentum, and energy, written in a
Lagrangian formulation
𝐷𝜌
𝐷𝑡

= −𝜌∇ ⋅ 𝑣, (1a)

𝐷𝑣
𝐷𝑡

= 1
𝜌
∇ ⋅ 𝐒 − 1

𝜌
∇𝑝 + 𝑔, (1b)

𝜌𝐷𝐸
𝐷𝑡

= ∇ ⋅ (𝐒𝑣) − ∇ ⋅ (𝑝𝑣) + 𝜌𝑔 ⋅ 𝑣 + ∇ ⋅
(

𝜆eff∇𝑇
)

+ 𝑞, (1c)

here the energy is given by 𝐸 = 𝑐𝑣𝑇 + 1
2𝑣 ⋅ 𝑣. Furthermore, 𝜌 is

the density, 𝑣 is the velocity, 𝑝 is the pressure, 𝑇 is the temperature,
while 𝑡 is the time, 𝑔 is composed of both gravity and body forces, 𝑐𝑣
is the specific heat capacity, 𝜆eff is the effective heat conductivity (see
Section 3.3), and 𝑞 models the heat sources. The material or Lagrangian
derivative is denoted by 𝐷

𝐷𝑡 . The stress tensor 𝐒 can be composed of both
viscous and non-viscous terms

𝐒 = 𝐒(𝑣) = 𝐒visc(𝑣) + 𝐒solid(𝑣). (2)

The viscous stress tensor is given by

𝐒visc(𝑣) = 𝜂eff

(

(

∇𝑣
)

+
(

∇𝑣
)𝑇 − 2

3
∇ ⋅ 𝑣 𝐈

)

, (3)

where 𝜂eff denotes the effective viscosity (see Section 3.3). The non-
viscous parts of the stress tensor are grouped into the 𝐒solid term
governed by the appropriate material model. Since we are focusing on
Newtonian liquid-to-vapor phase transition, we have 𝐒solid = 𝟎 in the
applications considered.

The governing Eqs. (1) require a closure relation, which is given, de-
pending on the application, either by an equation of state or by discrete
curves determined by experiments. In each case, we have a relation
𝜌 = 𝜌(𝑇 , 𝑝), with the temperature and pressure both being functions
of space �⃗� and time 𝑡. In many boiling simulations in literature, an
assumption of the incompressibility of the vapor phase is often imposed
(example, [13,17,30]), to focus on the modeling of the phase transition
process itself. Here, we allow the possibility of both incompressible
and compressible vapor phases by using different closure relations. For
actual applications, the choice of the appropriate closure model is a big
challenge, as is also the case for phase change models which track the
interface.

The phase change from liquid to vapor is inherently a turbulent
process. We thus incorporate a standard 𝑘-𝜀 turbulence model [31,32]
with fluctuating dilatation and source terms omitted. For more details
on the turbulence model used, the parameters, and the numerical
interpretation and integration of the turbulence model, we refer to our

earlier work [33]. LES based turbulence approaches have been known
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to be more reliable and more accurate than 𝑘-𝜀 type RANS models.
However, an LES approach would be too computationally intensive for
the materials processing target applications of the present method, as
has also been noted for various other applications [34]. Thus, a RANS
𝑘-𝜀 model is preferred here.

3. Material properties

Within the one-fluid model used here (see Section 2), the different
phases are only distinguished by different material properties. This
could lead to large jumps, or at minimum large gradients, in material
properties where the phase transition occurs. We now introduce the
numerical handling of these changing material properties such that
both numerical stability and physical consistency are ensured.

Here, the term interface refers to the interface in the physical
event of phase transition from liquid to vapor. We emphasize that this
interface is not tracked explicitly in the numerical setting, neither in
the sharp sense nor in a diffuse sense. Similarly, ‘‘two phases’’ refers
only to the physical liquid and vapor phases, while in the numerical
setting, they are treated as a single phase computationally.

3.1. Boiling point

An important question that arises in the one-fluid modeling of
phase change concerns when the latent heat of the phase change must
be taken into account. For complete physical accuracy, this should
occur at a constant temperature. This would entail the latent heat of
vaporization being modeled only at the normal boiling temperature or
boiling point of the liquid. However, numerically, this can prove to be
quite challenging, as it could mean reducing the simulation time step
when a liquid nears the boiling point. To overcome this, we assume
the phase change occurs over a small temperature range rather than
modeling it at a single temperature.

For a given pressure, the boiling point of the liquid phase is rep-
resented by 𝑇 ∗

𝑝 . Numerically, we spread this boiling point across a
small interval of size 2𝛥𝑇 ∗. Thus, the vaporization process in our model
occurs in the boiling temperature range [𝑇 ∗

𝑝 − 𝛥𝑇 ∗, 𝑇 ∗
𝑝 + 𝛥𝑇 ∗]. The incor-

poration of the latent heat of vaporization is spread over this interval
(more details in the next subsection). This provides a straightforward
approach to modeling the phase change process without reducing the
time step as the temperature approaches the phase change temperature.
The use of a boiling temperature range here is similar in essence to the
use of ‘‘mushy zones’’ in solidification modeling [35].

The introduced notion of a boiling temperature range implies that
the physical interface between the liquid and vapor phases is treated in
a diffuse sense. This makes the present the approach an implied diffuse
interface approach. However, it is important to note that unlike actual
diffuse interface approaches, no special numerical treatment is done for
the interface since the interface is not tracked. This difference has been
explained in further detail in Section 6.

3.2. Effective specific heat capacity

In the boiling temperature range, specifically, in the semi-open
intervals [𝑇 ∗

𝑝 − 𝛥𝑇 ∗, 𝑇 ∗
𝑝 ) and (𝑇 ∗

𝑝 , 𝑇
∗
𝑝 + 𝛥𝑇 ∗], our model must account

for both the heat capacity of the material, as well as the latent heat of
vaporization. For this, we introduce a numerical notion of heat capacity
of vaporization, referred to by 𝑐vaporization

𝑣 . This will combine both the
specific latent heat for the phase change process and the specific heat
capacity to raise the temperature without phase change, into a single
entity. As a result, the isochoric structure of the specific heat capacity
is taken as

𝑐𝑣 =

⎧

⎪

⎨

⎪

𝑐liquid
𝑣 , if 𝑇 − 𝑇 ∗

𝑝 < −𝛥𝑇 ∗,
𝑐vaporization
𝑣 , if |𝑇 − 𝑇 ∗

𝑝 | < 𝛥𝑇 ∗,
vapor ∗ ∗

(4)
3

⎩

𝑐𝑣 , if 𝑇 − 𝑇𝑝 > 𝛥𝑇 ,
where 𝑐liquid
𝑣 and 𝑐vapor

𝑣 are the specific heat capacities of the liquid and
apor phases, respectively. Both of these can be either constant or given
y temperature-dependent curves.

The value of 𝑐vaporization
𝑣 is given by ensuring physical consistency in

he sense that the amount of heat required to take a unit mass of fluid
rom 𝑇 − 𝑇 ∗

𝑝 to 𝑇 + 𝑇 ∗
𝑝 should include the effects of both the specific

atent heat and the specific heat capacity. Integrating the specific heat
apacity over the phase transition region, we get
𝑇 ∗
𝑝 +𝛥𝑇

∗

𝑇 ∗
𝑝 −𝛥𝑇 ∗

𝑐𝑣 𝑑𝑇 = ∫

𝑇 ∗
𝑝 +𝛥𝑇

∗

𝑇 ∗
𝑝 −𝛥𝑇 ∗

𝑐vaporization
𝑣 𝑑𝑇 (5a)

= 𝑐liquid
𝑣 𝛥𝑇 ∗ + 𝑐vapor

𝑣 𝛥𝑇 ∗ + 𝛥𝐻vap
𝑝 , (5b)

here 𝛥𝐻vap
𝑝 is the (specific) heat of vaporization. If 𝑐liquid

𝑣 or 𝑐vapor
𝑣 are

ot constant in this region, Eq. (5b) can be changed accordingly with,
or example, the term 𝑐liquid

𝑣 𝛥𝑇 ∗ replaced with ∫
𝑇 ∗
𝑝

𝑇 ∗
𝑝 −𝛥𝑇 ∗ 𝑐

liquid
𝑣 𝑑𝑇 . For

otational brevity, henceforth, we only consider the case of constant
liquid
𝑣 and 𝑐vapor

𝑣 .
Furthermore, we consider the numerical term 𝑐vaporization

𝑣 to also be
onstant, which leads to ∫

𝑇 ∗
𝑝 +𝛥𝑇

∗

𝑇 ∗
𝑝 −𝛥𝑇 ∗ 𝑐vaporization

𝑣 𝑑𝑇 = 𝑐vaporization
𝑣 2𝛥𝑇 ∗ and

hus, the numerical notion of heat capacity of vaporization is given by

vaporization
𝑣 = 1

2
(𝑐liquid
𝑣 + 𝑐vapor

𝑣 ) +
𝛥𝐻vap

𝑝

2𝛥𝑇 ∗ . (6)

3.3. Conductivity, viscosity, surface tension

The heat conductivity 𝜆 is given by a heat conductivity for the liquid
phase 𝜆liquid at 𝑇 < 𝑇 ∗

𝑝 − 𝛥𝑇 ∗, and a heat conductivity for the vapor
phase 𝜆vapor used at 𝑇 > 𝑇 ∗

𝑝 +𝛥𝑇 ∗. The heat conductivity in the boiling
temperature region is taken to be a linear interpolation between these
two values. The effective heat conductivity is taken as a sum of the
laminar part 𝜆 and the turbulent part, given by

𝜆turbulent =
(

𝑐𝜇
𝑘2

𝜀

)

𝜌𝑐𝑣. (7)

Similarly, the viscosity is given by the liquid phase viscosity 𝜂liquid

and a vapor phase viscosity 𝜂vapor, with a linear interpolation between
the two in the boiling temperature zone. The effective viscosity is taken
as a sum of the laminar part 𝜂 and the turbulent part, given by

𝜂turbulent =
(

𝑐𝜇
𝑘2

𝜀

)

𝜌. (8)

Similarly, the surface tension at the free surface is also given by a
liquid phase and vapor phase surface tension with a linear interpolation
in the boiling temperature zone, without any turbulent surface tension
model.

Each of the conductivity, viscosity and surface tension can either
be constant within the liquid and vapor phases respectively, or can be
given by temperature dependent curves.

3.4. Density

As mentioned above, the density for both the liquid and vapor
phase is given by the closure relation, depending on both pressure and
temperature 𝜌 = 𝜌(𝑇 , 𝑝), where 𝑇 and 𝑝 are a function of both time 𝑡
and space �⃗�. At a fixed pressure 𝑝, we use the notation 𝜌(𝑇 , 𝑝) = 𝜌𝑝(𝑇 ).

The choice of the density in the phase change temperature re-
gion can have a significant impact on the numerical stability of the
complete simulation, and thus plays a much larger role than that of
the materials in Section 3.3. The simplest option is a linearly varying
density in the phase transition range, as done in Section 3.3. Another
option is a trigonometric ‘‘smearing out’’, as is employed by many
phase field methods for diffuse interface capturing [15]. Instead, we
choose a weighted harmonic interpolation. For this, we first define the
evaporation state variable

𝑥vapor =
𝑇 − (𝑇 ∗

𝑝 − 𝛥𝑇 ∗)
. (9)
2𝛥𝑇 ∗
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Fig. 1. A proximity-based neighborhood on a meshfree point cloud. For the point
marked with the black cross, the black circle encloses the neighboring points over
which all derivative approximations are carried out.

Using this, and for a density 𝜌liquid at 𝑇 = 𝑇 ∗
𝑝 − 𝛥𝑇 ∗, and 𝜌vapor

𝑝 (could
e pressure dependent) at 𝑇 = 𝑇 ∗

𝑝 + 𝛥𝑇 ∗, the density is determined by

(𝑇 , 𝑝) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌liquid, if 𝑇 − 𝑇 ∗
𝑝 < −𝛥𝑇 ∗,

(

𝜌liquid𝜌vapor
𝑝

)

∕
(

𝑥vapor𝜌liquid + (1 − 𝑥vapor)𝜌vapor
𝑝

)

, if |𝑇 − 𝑇 ∗
𝑝 | < 𝛥𝑇 ∗,

𝜌vapor
𝑝 , if 𝑇 − 𝑇 ∗

𝑝 > 𝛥𝑇 ∗.

(10)

Note that 𝜌liquid and 𝜌vapor
𝑝 can be temperature dependent.

4. Meshfree discretization

In this section, we describe the meshfree point cloud based domain
discretization, and the meshfree collocation approach to derivative
computation. We then go on to introduce an enrichment procedure for
derivative computation that is necessary to handle the large jumps and
large gradients in the material properties.

4.1. Meshfree point cloud based discretization

The discretized computational domain 𝛺, consisting of both the
fluid and the vapor phases modeled as a single fluid, is composed of
a cloud of 𝑁 = 𝑁(𝑡) points. This includes points both in the interior of
the domain and on all boundaries. The initial point cloud to discretize
the domain is generated using a meshfree advancing front method [36].
These points are approximation locations or collocation nodes, and not
mass-carrying particles. Each point carries all physical and material
properties of the fluid system. For every point 𝑖 = 1, 2,… , 𝑁 , at location
�⃗�𝑖, numerical approximations are done on a set of neighboring points,
referred to as its support or neighborhood

𝑆𝑖 = {𝑗 ∈ {1, 2,… , 𝑁}| ‖�⃗�𝑗 − �⃗�𝑖‖ ≤ ℎ𝑖}, (11)

where ℎ𝑖 = ℎ(�⃗�𝑖, 𝑡) is the smoothing length or interaction radius. Note
that we have 𝑖 ∈ 𝑆𝑖. An example of proximity-based neighborhoods is
illustrated in Fig. 1.

4.2. Adaptivity

Since points are moving with the fluid velocity in a Lagrangian
sense, the point cloud could become distorted. This would manifest in
either points coming too close to each other, or hole formations in the
point cloud where no points are present. In contrast to mesh distortion
in mesh-based Lagrangian methods, this point cloud distortion can
be easily fixed locally. This is done in two parts: (i) points that are
closer than 𝑟 ℎ apart are merged into a single point at the center
4

min
location, and (ii) holes of size 𝑟maxℎ in which no points are present
are identified and filled with a point at the center of the hole. In both
cases, all physical properties are interpolated at a new point location.
Here, 𝑟min and 𝑟max are fixed application-independent constants that
determine the number of points in the support domain. For more details
about the procedures of identification of holes, the interpolation, and
the thinning/filling procedures in general, we refer to [37–39]. The
same distortion fixing algorithms are also used for spatial adaptivity
of the discretization. For example, if large material property gradients
are detected, ℎ can be reduced, which would automatically trigger the
hole-filling algorithm to refine the point cloud in that region.

4.3. Spatial derivatives

Here, we compute numerical derivatives with the strong form mesh-
free generalized finite different method (GFDM) [40–43]. GFDM is
a robust method and has been used for a variety of applications,
especially in modeling fluid flow, see for example [33,44–46]. The
meshfree GFDM is a collocation approach [47] based on differential
quadrature [48,49], and as the name suggests, they generalize classical
finite differences to arbitrarily distributed points [42]. In meshfree
GFDMs, derivatives of a function 𝑢 are approximated by a linear com-
bination of discrete function values, 𝑢𝑖 for each 𝑖 = 1,… , 𝑁 , of each
neighboring point

𝜕∗𝑢(�⃗�𝑖) ≈ 𝜕∗𝑖 𝑢 =
∑

𝑗∈𝑆𝑖

𝑐∗𝑖𝑗𝑢𝑗 , (12)

where ∗ = 𝑥, 𝑦, 𝑧, 𝛥 represents the differential operator being approxi-
mated, 𝜕∗ represents the continuous ∗-derivative, and 𝜕∗𝑖 represents the
discrete derivative at point 𝑖. For each point 𝑖, the stencil coefficients
𝑐∗𝑖𝑗 are found using a weighted least squares approach. The numerical
differential operators can be found locally at each point by solving a
small linear system, independently of the operators at the rest of the
point cloud.

For a point 𝑖, consider Taylor expansions around �⃗�𝑖 up to order 2
terms for each neighboring point 𝑗 ∈ 𝑆𝑖

𝑒𝑖𝑗 + 𝑢(�⃗�𝑗 ) = 𝑢(�⃗�𝑖) + ∇𝑢 ⋅ (�⃗�𝑗 − �⃗�𝑖) +
1
2
(�⃗�𝑗 − �⃗�𝑖)𝑇𝐷(�⃗�𝑗 − �⃗�𝑖). (13)

he unknown coefficients of ∇𝑢 and 𝐷 are computed by a weighted
east squares method by minimizing

in 𝐽𝑖 =
∑

𝑗∈𝑆𝑖

𝑊 2
𝑖𝑗 𝑒

2
𝑖𝑗 , (14)

here 𝑊 is a weighting function used to make sure that the points
loser to the central point 𝑖 have a larger impact than the points farther
way. We note that the square of the weighting function is used only
or notational convenience. The weighting function is usually taken as
Gaussian distribution

𝑖𝑗 = exp

(

−𝛼𝑊
‖�⃗�𝑗 − �⃗�𝑖‖2

ℎ2𝑖 + ℎ2𝑗

)

, (15)

here 𝛼𝑊 is a positive constant usually taken in the range of (2, 8).
ote that the weighting function is only defined on the local support
𝑖 consisting of 𝑛(𝑖) points. For the sake of brevity, we present only the
ase of one spatial dimension. Eq. (13) leads to the following system
hich is solved at each point 𝑖 = 1,… , 𝑁

⎛

⎜

⎜

⎝

𝑒𝑖1
⋮
𝑒𝑖𝑛

⎞

⎟

⎟

⎠

⏟⏟⏟
�⃗�

=

⎛

⎜

⎜

⎜

⎝

1 𝛿𝑥𝑖1
1
2 𝛿𝑥

2
𝑖1

⋮ ⋮ ⋮
1 𝛿𝑥𝑖𝑛

1
2 𝛿𝑥

2
𝑖𝑛

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀

⎛

⎜

⎜

⎝

(𝑢0)𝑖
(𝑢𝑥)𝑖
(𝑢𝑥𝑥)𝑖

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑎𝑖

−
⎛

⎜

⎜

⎝

𝑢1
⋮
𝑢𝑛

⎞

⎟

⎟

⎠

⏟⏟⏟
�⃗�

, (16)
𝑖 𝑖 𝑖
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where 𝛿𝑥𝑖𝑗 = 𝑥𝑗 −𝑥𝑖. Or, in short form �⃗�𝑖 = 𝑀𝑖𝑎𝑖− �⃗�𝑖. The minimization
Eq. (14) can be rewritten as

min 𝐽𝑖 = �⃗� 𝑇
𝑖 𝑊 2

𝑖 �⃗�𝑖 (17a)

= (𝑀𝑖𝑎𝑖 − �⃗�𝑖)𝑇𝑊 2
𝑖 (𝑀𝑖𝑎𝑖 − �⃗�𝑖), (17b)

where 𝑊𝑖 is a diagonal matrix with entries 𝑊𝑖1,… ,𝑊𝑖𝑛. A formal
minimization leads to

𝑎𝑖 = [(𝑀𝑇
𝑖 𝑊

2
𝑖 𝑀𝑖)−1𝑀𝑇

𝑖 𝑊
2
𝑖 ]�⃗�𝑖. (18)

This leads to the differential operator stencils as in Eq. (12)

(𝑢𝑥)𝑖 =
∑

𝑗∈𝑆𝑖

𝑐𝑥𝑖𝑗𝑢𝑗 , (19a)

(𝑢𝑥𝑥)𝑖 =
∑

𝑗∈𝑆𝑖

𝑐𝑥𝑥𝑖𝑗 𝑢𝑗 , (19b)

where 𝑐𝑥𝑖𝑗 and 𝑐𝑥𝑥𝑖𝑗 represent the values in the second and third row
respectively of the matrix [(𝑀𝑇

𝑖 𝑊
2
𝑖 𝑀𝑖)−1𝑀𝑇

𝑖 𝑊
2
𝑖 ] in Eq. (18).

Remark. Since the point cloud moves in time, the derivative stencils
need to be recomputed for each point at every time step.

We note that similar GFDM approaches have already been used to
simulate phase change processes [50–52]. They model solidification at
low velocities, while the present work models a lot more turbulent
phase change process in vaporization. Furthermore, [50–52] do not
take the latent heat into account directly, as done in the presented
model.

4.3.1. Polynomial formulation
We now rewrite the Taylor expansion-based derivation to a poly-

nomial formulation that can be easily extended for our purpose. An
alternative, but equivalent, way to obtain the stencil coefficients in
Eq. (19a) – Eq. (19b) is to ensure that the derivatives of monomials
𝑚 ∈  up to the order of accuracy desired are exactly reproduced,
leading to the optimization problem
∑

𝑗∈𝑆𝑖

𝑐∗𝑖𝑗𝑚𝑗 = 𝜕∗𝑚(�⃗�𝑖), ∀𝑚 ∈ , (20a)

min 𝐽𝑖 =
∑

𝑗∈𝑆𝑖

(

𝑐∗𝑖𝑗
𝑊𝑖𝑗

)2

. (20b)

here ∗ ∈ {𝑥, 𝑦, 𝑥𝑥, 𝛥,…}.
In our earlier work [53], we have proven the equivalence of these

ormulations. An efficient method to compute the differential operator
tencils in this formulation using a QR decomposition can also be found
n [53].

.4. Enrichment

Due to the smooth shape functions and the strong form nature of
he GFDM, representing discontinuities is not straightforward. Using
he polynomial formulation of Section 4.3.1, we now introduce an
nrichment mechanism that is needed to accurately capture the sharp
hanges in the material properties, which is especially necessary for
andling jumps and discontinuities. Motivated by our earlier work for
wo-dimensional manifolds [54], we extend the polynomial space of the
est functions to include test functions with discontinuities.

We note that the differential operator for which discontinuities play
he largest role is the ∇ ⋅ (𝛼∇𝜙) for some material property 𝛼 and
ome primary variable 𝜙. For example, the term ∇ ⋅ ( 1𝜌∇𝑝) arises in

the pressure Poisson equation, and ∇ ⋅ (𝜆eff∇𝑇 ) in the energy con-
servation equation. Similarly, the momentum conservation equation
contains the divergence of the stress tensor which includes the term
∇ ⋅

(

𝜂 ∇
(

(

∇𝑣
)

+
(

∇𝑣
)𝑇

))

. Each of these contains a diffusion operator
5

eff
of the form ∇ ⋅ (𝛼∇𝜙). Here, we introduce an enrichment of this nu-
merical differential operator to handle jump discontinuities in material
properties.

Using the shorthand 𝐷𝛼𝜙 = ∇ ⋅ (𝛼∇𝜙), the diffusion operator is
omputed as
∑

∈𝑆𝑖

𝑐𝐷
𝛼

𝑖𝑗 𝑚𝑗 = 𝐷𝛼𝑚(�⃗�𝑖), ∀𝑚 ∈ , (21a)

min 𝐽𝑖 =
∑

𝑗∈𝑆𝑖

(

𝑐𝐷𝛼
𝑖𝑗

𝑊𝑖𝑗

)2

, (21b)

in the polynomial formulation. The space  of consistency conditions
in Eq. (21a) is enhanced with discontinuous functions, in a manner
similar to that done in [55,56] in the context of crack propagation.
For 𝑠 = ∇𝛼

‖∇𝛼‖ denoting the normalized gradient of the material property
being considered, the extra conditions added are given by

∑

𝑗∈𝑆𝑖

𝑐𝐷
𝛼

𝑖𝑗
1
𝛼𝑗

= −𝛥 log 𝛼, (22a)

∑

𝑗∈𝑆𝑖

𝑐𝐷
𝛼

𝑖𝑗

𝛿𝑠𝑖𝑗
𝛼𝑗

= − 𝜕
𝜕𝑠

log 𝛼, (22b)

∑

𝑗∈𝑆𝑖

𝑐𝐷
𝛼

𝑖𝑗

(

𝛿𝑠𝑖𝑗
)2

𝛼𝑗
= 2, (22c)

where 𝛿𝑠𝑖𝑗 = 𝑠 ⋅ 𝛿�⃗�𝑖𝑗 , and 𝜕
𝜕𝑠 = 𝑠 ⋅ ∇.

. Numerical scheme

The discretization of all spatial derivatives is done as explained in
ection 4.3. The time integration of the constitutive equations in Sec-
ion 2 is done using a segregated approach which forms a Chorin-type
rojection method [57,58]. The integration begins with the Lagrangian
ovement of the point cloud, done with a second-order method [59].
hen an intermediate velocity is computed by a first-order implicit
iscretization of the momentum equation. This is then projected to the
pace of the desired velocity divergence with the help of a pressure
oisson equation, followed by a pressure update. After this, a Crank–
icolson time-integration scheme is used for the energy conservation

ollowed by an implicit integration of the turbulence equations [33].
or details on the entire time-integration scheme, we refer to our earlier
ork [33,37,44,60].

.1. Temperature smoothing

The strong form nature of the derivative computation can lead
o numerical instabilities while trying to capture jumps. Since the
emperature field can have jump discontinuities due to the phase
hange process, we numerically smooth the temperature with a Gaus-
ian smoothing kernel [39]. The smoothed temperature field at a point
is given by

�̃� =

∑

𝑗∈𝑆𝑖
𝐾𝑖𝑗𝑇𝑗

∑

𝑗∈𝑆𝑖
𝐾𝑖𝑗

, (23)

here the smoothing kernel is given by

𝑖𝑗 = exp

(

−2
‖�⃗�𝑗 − �⃗�𝑖‖2

ℎ2𝑖 + ℎ2𝑗

)

. (24)

All material properties in Section 3 dependent on temperature are
taken to be dependent on 𝑇 numerically. As a result, this smoothed
temperature field automatically has a smoothing effect on, for example,
the numerical density field. Empirically, we observe that this helps
ensure numerical stability.
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Fig. 2. Vaporization around a heated sphere: Formation of unsteady vapor films, bubble growth and rising under gravity. The figures show a clip of the three-dimensional domain
at increasing times. The color indicates the value of 𝑥vapor, with the red points representing higher values and the blue points representing lower ones. The arrows show the
direction of the velocity. A zoomed-in version of the bubble formation is shown in Fig. 3.
Fig. 3. Vaporization around a heated sphere: Bubble growth around an unsteady vapor film layer. The color shows the density. A zoomed-out version of this can be found in
Fig. 2.
5.2. Volume expansion

An important challenge in this macroscopic phase change modeling
is to accurately capture the volume expansion (or contraction) as a
result of the phase change. If a numerical point is in the liquid state
at a certain time step, and subsequently in the vapor state in the next
time step, this could result in a large time gradient in the density, which
could lead to numerical instabilities when using the strong form GFDM.
To overcome this issue, we rewrite the mass conservation in logarithmic
form

∇ ⋅ 𝑣 |(𝑛+1) = − 𝑑
𝑑𝑡

(

log(𝜌(𝑛+1))
)

, (25a)

≈ − 1
𝛥𝑡

(

log(𝜌(𝑛+1)) − log(𝜌(𝑛))
)

, (25b)

which is used as the desired divergence of velocity in the projection
step and the pressure Poisson equation.

6. Comparison with interface methods

Verification of the present one-fluid phase change model used here
cannot be done using standard numerical benchmark cases used in
interface capturing or tracking methods. This holds for the benchmarks
used by both two-fluid methods, and one-fluid methods with explicit
interface capturing or tracking, which we club together under the
term interface methods. There are several modeling choices made by
these interface methods (see, for example, [61–64]) that do not have a
one-to-one correspondence in the one-fluid model considered here.

1. Interface methods typically require boundary conditions at the
interface. For the temperature field, this could be a Dirichlet
boundary condition or a prescribed heat flux. Other boundary
conditions used include velocity boundary conditions and mass
transfer conditions across the interface. In sharp interface meth-
ods, these constraints are imposed as true boundary conditions,
while in diffuse interface approaches, they can be imposed as
a source term across a small volumetric region. Neither of these
6

approaches is possible in the present one-fluid model since there
is no explicit boundary between the phases.

2. The interface methods often use verification cases that distin-
guish between liquid and vapor phases at saturation tempera-
ture. Whereas, in the present model, we only have a fluid at
saturation temperature that cannot be distinguished between
liquid and vapor. Furthermore, many verification tests in the
literature assume an initial condition of a ‘‘super-saturated’’
liquid in which a liquid phase is present above the boiling point.
This, once again, is not directly possible in the present approach.
We note here that since the aim of this work is to model phase
change in highly dynamic fluid flow, the topic of modeling
metastable super-heated liquid states is not relevant.

3. A significant advantage of the present one-fluid model is that
it can be used to simulate scenarios where initially only a liquid
phase is present without any vapor phase. To achieve this, inter-
face methods assume a very small vapor phase at the initial state
of the simulation. However, in applications where the boiling
process occurs at a fluid free surface (see the jet impinging on
a hot plate test case in Section 7.4), assuming the presence of a
vapor phase near an evolving free surface is not feasible.

7. Numerical simulations

All the numerical methods mentioned above have been incorporated
into the in-house software suite MESHFREE [65]. The verification of the
basic numerical schemes and the validation of the underlying numerical
framework for fluid flow can be found in our earlier work [37,38,66].
In all the test cases considered below, radiative heat transfer is ne-
glected. We further note that all simulations are full three-dimensional
simulations. However, pseudo-two-dimensional clips of the results are
shown for ease of visualization.

In all the simulations considered here, the boiling temperature
and corresponding latent heat of vaporization are fixed, with pressure
dependence neglected. Pressure dependence can be incorporated in the

presented model with the inclusion of closure relations that prescribe
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how the boiling point and latent heat of vaporization change with
varying pressure.

7.1. Vapor film growth around a heated sphere

We start by considering the growth of a vapor film around a heated
solid sphere, shown in Fig. 2, as also considered by [61]. A heated
sphere is immersed in the middle of a fluid in a tank with an open
top. The fluid tank has a square base area with a side length of 4 cm.
The tank is filled with a resting liquid of initial temperature 89 °C up to
a height of 4 cm. A solid sphere with a diameter of 1.5 cm is submerged
in the middle of the tank.

Simulation parameters: The liquid and vapor densities are taken to
be constant at 𝜌liquid = 1000 kgm−3 and 𝜌vapor = 10 kgm−3 respec-
tively. The phase change takes place within the vaporization interval of
𝛥𝑇 ∗ = 10 ◦C around the boiling point of 𝑇 ∗

𝑝 = 100 ◦C, while neglecting
pressure dependence of the boiling point. The specific heat capacities
are 𝑐liquid

𝑣 = 4184 J kg−1 K−1 and 𝑐vapor
𝑣 = 2030 J kg−1 K−1 for the liquid

and vapor, respectively. The latent heat of vaporization is 𝛥𝐻vap
𝑝 =

2501 kJ kg−1 K−1. The heat conductivities are 𝜆liquid = 0.6Wm−1 K−1

and 𝜆vapor = 0.05Wm−1 K−1 for the liquid and vapor respectively.
The liquid has a surface tension of 𝜎 = 0.072 86Nm−1 and a viscosity
of 𝜂liquid = 0.001 Pa s, while the vapor has a viscosity of 𝜂vapor =
0.000 13 Pa s, with no surface tension. The domain is resolved with a
coarse resolution of ℎ0 and a fine resolution of ℎmin = 0.1ℎ0 near the
sphere surface. The resolution of the point cloud is gradually increased
radially at a rate of 𝑑ℎ∕𝑑𝑟 = 0.15. At the walls and the free surface
at the top, we apply a zero heat flux boundary condition. The heat
transfer between the solid sphere and the fluid is governed by a heat
transfer coefficient of 𝑈𝑠 = 12 500Wm−2 K−1. The temperature on the
sphere surface 𝑇𝑆 is growing linearly in time from 𝑇𝑆 (0 s) = 𝑇 ∗ + 𝛥𝑇 ∗

to 𝑇𝑆 (6 s) = 400 ◦C.
A thin vaporization area forms initially with relatively small values

of 𝑥vapor. The lower density of the vapor causes it to rise under gravity.
As temperature 𝑇𝑆 increases, the values of 𝑥vapor rise, which results
in the formation of vapor bubbles around the film, which leave the
film as they rise and break at the free surface of the fluid. The vapor
bubble formation and breaking are shown in Fig. 2, with Fig. 3 showing
a detailed sketch of a particular bubble formation. With rising 𝑇𝑆 , the
fluid in the vicinity of the sphere tends to 𝑥vapor = 1, which provides
an isolation layer around the sphere, illustrated in Fig. 4. The lower
heat conductivity of the vapor phase results in a rapid drop in the heat
flux from the hot sphere to the fluid. These effects are also observed in
experiments and are often referred to as the Leidenfrost-effect which
prevents the liquid beyond the vapor film from boiling. This effect
is quantified in Fig. 5 which shows the integrated heat transfer over
the surface of the sphere for different resolutions. As the temperature
rises, the heat transfer is rising for all resolutions. However, for each
resolution, we observe the aforementioned rapid Leidenfrost-drop of
the heat transfer at different temperatures. For finer resolutions, the
temperatures of the drop come closer to each other, however, it seems
that the numerical resolution still does not meet the thickness of the
real vapor layer as it would arise in reality. The temperature at which
the Leidenfrost-effect occurs is dominated by the choice of 𝑈𝑠, so
experiments around the Leidenfrost state could, in the future, be used
for calibrating the heat transfer coefficient.

As a verification, we also run this same test case in the absence
of gravity. As also observed in [61], without gravity, the vapor film
formed is of a uniform thickness and is symmetric, see Fig. 6. Unlike
the case with gravity, the vapor film formed here is stable through-
out the simulation without the formation of bubbles, even at lower
temperatures of the sphere.

As a further validation of the present case, we modify this test
case to match the parameters used in literature. A smaller sphere is
considered with a diameter of 0.5 cm, as done in [61]. The resolution is
7

scaled down appropriately to accurately capture the region around the
Fig. 4. Vaporization around a heated sphere: Formation of thin, but steady overheated
vapor layer and rising flow under gravity. This is the Leidenfrost-state, where 𝑥vapor

tends to 1 around the sphere surface.

Fig. 5. Vaporization around a heated sphere: Heat flux across the sphere surface to
the liquid.

Fig. 6. Vaporization around a heated sphere without gravity: Formation of a uniform
thickness vapor film, which grows slowly in time. Only a clip of the three-dimensional
domain is shown. The color shows the value of 𝑥vapor.

smaller sphere. We note here that the exact test case considered in [61]
cannot be reproduced here. The mass transfer conditions prescribed
across the interface in [61] cannot be used here since the interface
is not modeled explicitly. In the present work, the location of the
physical interface is computed numerically in a post-processing step by
considering all points in the boiling temperature range to be a part of
the interface. The average distance of this determined interface from
the center of the sphere is plotted in Fig. 7, which shows the same trend
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Fig. 8. Vaporization around a heated sphere without gravity: Percentage deviation of
otal mass in the computational domain from the analytical expectation. This figure
llustrates that the mass conservation error during the phase change is minimal.

s that noted in [61]. However, the exact results from [61] cannot be
eproduced due to the absence of the interface mass transfer conditions
n the present work, as mentioned earlier.

An important issue in meshfree finite difference type methods like
he one considered here is the lack of mass conservation. It is thus
ssential to check the mass conservative behavior of the proposed
cheme. Fig. 8 shows the error in mass conservation in the computa-
ional domain. The total mass is computed as ∫𝛺 𝜌𝑑𝑉 =

∑

𝑖 𝜌𝑖𝑉𝑖 where
𝑉𝑖 is an approximation of the volume taken by a numerical point. This
is compared to the analytical mass in the domain at the initial time.
The figure shows that as the liquid vaporizes around the heated sphere,
mass is not conserved. However, the error in mass conservation is not
significant, with the maximum deviation from the analytical expecta-
tion being approximately 0.2%. This shows that the volume expansion
condition enforced (see Section 5.2) forms a good approximation to the
mass conservation equation. Methods used to alleviate the issue of mass
non-conservation in other parts of the scheme, including the velocity-
pressure solver and the Lagrangian motion, can be directly carried over
to the present work [67]. We note that a certain amount of mass non-
conservation, as shown in Fig. 8, is expected in meshfree methods due
the definition of discrete volumes 𝑉𝑖. We refer the reader to [67] for
more information.

7.2. Cooking pot

We now simulate nucleate boiling in a cooking pot of diameter 0.1m
filled with a liquid of initial temperature of 85 °C to a height of 𝐻 =
0.15m. An inner circle with diameter 0.05m in the middle of the bottom
surface of the pot is heated by linear ramping to 𝑇 = 400 ◦C in 1 s. The
eat transfer coefficient at the hot wall is 𝑈𝑠 = 12 500Wm−2 K−1. On
ther surfaces, a zero heat flux boundary condition is imposed. The
aterial properties of the liquid are as described in the previous test
8

case. We simulate this case with a constant smoothing length over the
liquid domain. Three simulations of ℎ = 0.002m, 0.004m, and 0.008m
espectively are considered. The resulting evolution of the boiling in
he cooking pot is shown in Fig. 9.

To quantify the results, we study the energy flux as a result of the
ixed heat transfer coefficient. For all resolutions considered, the heat
ransfer is rising up to approximately 9000W within the first second
nd then remains roughly constant. We observe temporary breakdowns
f the heat transfer, especially for finer resolutions, see Fig. 10. They
ight be explained by temporary vapor films covering the heating zone

t the bottom and thus acting as an insulating barrier, see Fig. 9. The
apor film is metastable (Rayleigh–Taylor-like behavior) and quickly
isappears. With progress in time, the breakdowns disappear even
or the simulation with the finest resolution, which is due to the
ncreasingly chaotic nature of the flow. The energy balance shown in
ig. 11 compares the internal heat of the fluid to the energy that enters
he fluid through the walls. This energy conservation is important to
erify in meshfree simulations since most meshfree methods often have
ssues with global conservative behavior [68]. The figure shows that
hanges in internal energy and the energy transferred through the walls
re almost the same for finer resolutions. The measured internal energy
ontains fluctuations, which come from the measurement of internal
nergy as 𝐸internal = ∫𝛺 𝜌ℎ𝑑𝑉 ≈

∑

𝑖 ℎ𝑖𝜌𝑖𝑉𝑖, where 𝑉𝑖 is an approximation
f the volume taken up by a numerical point, which inherently has
luctuations.

.3. Effect of vaporization interval

For the example of the cooking pot presented in Section 7.2, we
ow study the influence of the vaporization temperature interval 𝛥𝑇 ∗.

Fig. 12 shows the wall heat flux in the cooking bowl for different
vaporization intervals. Since the general behavior of these curves is
similar, a smaller time range than that considered for the convergence
study in Fig. 10 is shown. This emphasizes the differences between the
considered vaporization intervals. The main difference observed is the
instantaneous drops in heat flux. For a very high vaporization interval
of 𝛥𝑇 ∗ = 15 ◦C no such drops are present. The drops of heat flux,
ccurring at approximately 0.8, 1.3 and 1.7 s, become larger for smaller
aporization interval. The time instants of these drops in heat flux also
lightly vary between cases.

In order to understand the difference in the heat flux for varying
aporization intervals, we now take a look at the density profiles in the
luid. Fig. 13 shows instantaneous density fields in a fictitious cutting
lane in the center of the bowl, at times 0.931, 1.268, 1.317, and
.350 s (from left to right). The figure compares the results for two
aporization intervals of 𝛥𝑇 ∗ = 15 ◦C (top row) and 𝛥𝑇 ∗ = 5 ◦C (bottom

row). In the first time instant after 0.931 s (first column in Fig. 13)
only very small regions of lower density close to vapor density are

observed for both vaporization intervals shown. For the time instant
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Fig. 9. Boiling in a cooking pot: Snapshots of instantaneous density distribution at 1.2444 (left side), 1.3269 (middle), and 1.4177 s (right side) in the cooking bowl. (Top: bottom
surface view, bottom: side view.)
Fig. 10. Convergence study for heat flux in a cooking pot.

after 1.268 s (second column in Fig. 13), the formation of larger vapor
regions is visible for 𝛥𝑇 ∗ = 5 ◦C. For 𝛥𝑇 ∗ = 15 ◦C the region of lower
density at the bottom of the bowl remains nearly unchanged. Instead for
𝛥𝑇 ∗ = 15 ◦C a thin, meandering region of reduced density (but still far
from vapor density) is visible from the bottom of the bowl up to the free
surface. For the other two time instants shown in Fig. 13, the density
profile remains similar for 𝛥𝑇 ∗ = 15 ◦C. In the case of 𝛥𝑇 ∗ = 5 ◦C the
region that formed at the bottom of the bowl starts to spread towards
to the upper part of the bowl (after 1.317 s, third column in Fig. 13)
and then mostly to detach from the bottom of the bowl (after 1.35 s
in the last column in Fig. 13). This process between 1.268 and 1.317 s
could be described as vapor bubble detachment and corresponds to the
second drop of heat flux in Fig. 12.

The results of vaporization intervals 𝛥𝑇 ∗ = 10 ◦C and 𝛥𝑇 ∗ = 2.5 ◦C
are not displayed here for the sake of brevity. The density profiles
for 𝛥𝑇 ∗ = 2.5 ◦C show a very similar picture as that for 𝛥𝑇 ∗ =
5 ◦C. For the case of 𝛥𝑇 ∗ = 10 ◦C, the snapshots also show a similar
picture. However, for 𝛥𝑇 ∗ = 10 ◦C the affected domains of vaporization
are smaller or sometimes the density is only in a range of transition
between liquid and vapor state. This explains the smaller heat flux
drops for 𝛥𝑇 ∗ = 10 ◦C compared to the intervals 𝛥𝑇 ∗ = 5 ◦C and
𝛥𝑇 ∗ = 2.5 ◦C in Fig. 12.

These numerical results confirm the expectation that smaller vapor-
ization intervals are more physically accurate, while larger vaporization
intervals tend to smooth out of the physics of phase change. However,
as the vaporization interval is reduced below the range considered here,
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we observe unphysical results due to the latent heat of vaporization
being neglected for some numerical points. This occurs when a point
completely skips the vaporization interval [𝑇 ∗

𝑝 − 𝛥𝑇 ∗, 𝑇 ∗
𝑝 + 𝛥𝑇 ∗], going

from below the lower bound in one time step to above the upper bound
in the next time step. To address this without reducing the time-step
size, an energy correction mechanism would need to be introduced to
use smaller vaporization intervals, which will be the subject of our
future work. For the present work, we use a vaporization interval
between 5 ◦C and 10 ◦C as that produces the most accurate results.

7.4. Fluid jet on a hot plate

As our third test case, we consider an example where boiling
occurs at the free surface of the fluid, and compare simulations with
experimental results. This example is motivated by the boiling of metal-
working fluid introduced in Section 1. The solid phase is a large circular
plate made of Inconel 718 of diameter 0.14m and thickness of 0.005m,
which is also discretized with a meshfree method, considering only
energy conservation with zero velocity. A fluid jet is simulated with an
impact angle of 60◦ on the solid plate. The inlet is considered very close
to the plate (at a distance of 0.005m above) to save simulation time. The
jet inlet has a diameter 0.003m and velocity 7.0m s−1. The fluid imping-
ing on a hot metal plate at an angle is very similar to typical conditions
for simulating cooling jets in metal cutting applications [26]. These
parameters are selected to match the experimental setup described
by [69], except for the distance between the nozzle exit and the plate.
The nozzle exit is placed closer to the plate to reduce the number of
points in the simulation and thus, save computational costs. However,
since all other parameters match the experimental setup, we expect
no significant change in the global jet and especially the vaporization
zones and cooling areas. For a visualization of this scenario being
simulated, Fig. 14 shows the situation without the consideration of the
vaporization model.

Simulation parameters: The vaporization interval is 𝛥𝑇 ∗ = 10 ◦C
around the boiling point at 𝑇 ∗

𝑝 = 100 ◦C. The latent heat of vaporization
is 𝛥𝐻𝑝,𝑣𝑎𝑝 = 2501 kJ kg−1 K−1. Initially, the temperature of the plate is
𝑇0 = 400 ◦C. At the top face between the plate and the fluid, the heat
transfer coefficient is 𝑈𝑠 = 50 000Wm−2 K−1. The ambient air is taken
at 𝑇 = 20 ◦C. On all other walls of the solid, and at the inflow of the
fluid phase we apply a zero heat flux boundary condition. A constant
smoothing length is set at ℎ𝑙 = 0.000 75m for the liquid/vapor and at
ℎ𝑠 = 0.0009m for the solid. The material properties are described in
Table 1. In contrast to the experiment, the vapor density is much larger.
This is to avoid abrupt changes in the simulation. Hence, the vapor
layer will be thinner. However, we do not expect a generally altered
distribution and flow of the liquid. For this, we presume that the time

scales of the expansion due to vaporization is much smaller than the
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Fig. 11. Energy balance in the cooking pot. The figure on the right shows a zoomed in part of the figure on the left.
Table 1
Material properties for the fluid jet on a hot plate test case.
Phase Density Surface Dynamic Specific Heat

tension viscosity heat capacity conductivity
kgm−3 mNm−1 mPa s J kg−1 K−1 Wm−1 K−1

Liquid 998 72.86 1 4185 0.59801
Vapor 100 – 0.13 2059 0.00012405
Solid 8118 – – 479 13.0
Fig. 12. Heat flux in a cooking pot for different vaporization intervals with smoothing
length ℎ = 0.004m.

time scales of convection. For the heat transfer by heat conduction, this
means a different extent of the vapor layer. To counteract this effect we
apply a decreased value of the heat conductivity, based on the ratio of
simulated vapor density to real vapor density (0.504 89 kgm−3).

The resultant vaporization process is shown in Fig. 15. As the fluid
jet impinges on the hot plate, it forms thin liquid layers on the solid
surface. These are slowly heated by heat transferred from the solid.
Since the inflow of the jet has a constant temperature, the thinnest
regions of the fluid film which are further away from the jet impinging
location reach boiling point and vaporize. As the vaporization starts
and the hot plate is cooled down, the impinging jet pushes the initial
vaporization regions further away. Fig. 15 also shows the vapor phase
rising as a result of gravity. These observations qualitatively match
experimental observations.

Fig. 16(a) shows a comparison between experimental and numerical
results for the time history of the temperature at the center point of
the rear solid surface. In the experiments [69], there is an oscilla-
tion initially when the temperature drop begins. This oscillation then
stabilizes and both curves follow the same trend. In Fig. 16(b) the
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temperature distribution on the rear surface is displayed for two time
instants in comparison between simulation and experiment. Compared
to the experiment the wetting area is qualitatively the same. However,
in the experiment, there is an asymmetry and the growth of the wetting
area is more pronounced. This shows some differences in the local
distribution, which indicate the potential for improvement for example
by more detailed modeling of the heat transfer coefficient.

8. Conclusion

We presented a novel one-fluid approach to simulating phase
change processes, with a focus on fluid-to-vapor phase change at the
boiling point. While conventional approaches to this problem explicitly
model the interface between the fluid and vapor phases, either by a
sharp interface or a smooth interface approach, our proposed method
does not model the interface at all. The phase change process is
modeled only through varying material properties, with the latent
heat of phase change smeared out over a small temperature range
around the boiling point. This enables us to simulate phase changes in
complex flow domains, such as vaporization at free boundaries, which
is extremely challenging with conventional interface-based methods.
Our numerical results show the applicability of the method to such
scenarios.

Simulations were done using a Lagrangian meshfree approach using
a strong form generalized finite difference method to approximate
spatial derivatives. To capture the large gradients in the material
properties, which is often challenging using a strong form approach,
we enrich the test functions space to include discontinuous functions.

While the numerical results suggest that one-fluid phase change
modeling is very promising, they also raise several questions which
need to be investigated. One such question is the optimal choice of
the pressure interpolation in the phase change region. Another open
question concerns the appropriate modeling of the very thin vapor
layers and using an adaptive refinement based on the thickness of the
vapor layers. Several possible improvements of the model proposed
could be considered. This includes a more detailed modeling for the
heat transfer coefficient by data-driven or multi-scale modeling [70–
72], the incorporation of a turbulent thermal conductivity, as well as
a modeling of local time scales for vaporization rates which could, for
example, describe a pressure dependency.
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Fig. 13. Impact of vaporization interval on boiling in a cooking pot: Snapshots of instantaneous density distribution at times 0.917 (left), 1.268 (left center), 1.317 (right center),
and 1.350 s (right) in the cooking bowl. (Top row: 𝛥𝑇 ∗ = 5 ◦C, bottom row: 𝛥𝑇 ∗ = 15 ◦C).
Fig. 14. Fluid jet impinging on a hot plate: Visualization of the scenario being simulated without the consideration of the phase change model. Side view (top row), and top
view (bottom row) at different times. The solid plate is shown in gray, while the fluid (purely liquid) is shown in blue.
Fig. 15. Fluid jet impinging on a hot plate: Top view of the evolution of the boiling process at different time steps (see Fig. 14 for a side view). The color indicates the density.
Top row: initial impingement and formation of the thin fluid layer. Middle row: Start of vaporization, and the jet pushing away the vaporization regions further. Bottom row:
Formation of a temporally stable ring of vaporization around the main impingement location.
Numerical results for the vaporization when a jet with free bound-
aries impinges on a hot surface, including comparisons with exper-
iments, suggest suitability for the present method to model the va-
porization of cutting fluid in metal cutting applications. Our future
work is directed towards the application of the newly developed model
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to vaporization during metal cutting, with more detailed validations
against experiments. First simulations have also shown the ability to
simulate the Leidenfrost effect. A planned extension of this work is to
thoroughly examine and validate the modeling of the Leidenfrost effect
using the presented one-fluid phase transition model.
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Fig. 16. (a) Time history of the temperature in the center of the bottom solid surface. (b) Comparison of temperature at the bottom solid surface between experiment (top row)
and simulation (bottom row) for two time instants.
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