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Abstract

The more recent philosophical literature concerned with foundational questions about
normativity often appeals to the notion of normative reasons, or considerations that
count in favor or against actions, and their interaction. The interaction between rea-
sons is standardly conceived of in terms of weighing reasons on (normative) weight
scales. Knoks and van der Torre [8] have recently proposed a formal framework that
allows one to think about the interaction between reasons as a kind of inference pat-
tern. This paper extends that framework by introducing and exploring what we call
numerical balancing operators. These operators represent the weights or magnitudes
of reasons by means of numbers, and they are particularly well-suited for capturing
the intuition of aggregating and weighing reasons. We define a number of concrete
classes of balancing operators and explore them using a principle-based analysis.

Keywords: reasons, weighing, detachment, principle-based analysis.

1 Introduction

The notion of normative reasons has been playing an increasingly important
role in the philosophical literature tackling foundational questions about nor-
mativity. In the practical domain, normative reasons are standardly understood
to be facts that speak in favor of or against actions. 1 Thus, the fact that you
have made a promise to a friend is a reason that speaks in favor of your keeping
the promise, and the fact that throwing this punch would result in harming

1 The locus classicus is Scanlon [13, p. 17]. See also [11], [12], [19], among many others.
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someone is a reason that speaks against throwing the punch. The interaction
between normative reasons is standardly taken to determine the deontic sta-
tuses of actions—whether they are permissible, obligatory, or forbidden—and
this interaction itself is usually made sense of by analogy with weight scales. 2

On the simplest construction, these weight scales work roughly as follows. The
reasons that speak in favor of some action ϕ (positive reasons) go in one pan of
the scales, while those that speak against ϕ (negative reasons) go in the other.
If the overall weight (or magnitude) of reasons in the first pan is greater than
the overall weight of reasons in the second, ϕ is obligatory. If the overall weight
of reasons in the second pan is greater, ϕ is forbidden. If the pans are equally
balanced, ϕ is optional, that is, both ϕ and not-ϕ are permissible. 3

While most of the work theorizing about the interaction between normative
reasons and their relation to the overall deontic statuses of actions has been
carried out informally, there are some exceptions. One such is a recent paper
of Knoks and van der Torre [8]. 4 Our main goal in this paper is to adjust the
approach of Knoks and van der Torre and apply it to (richer) structures in
which reasons are associated with numerical weights and deontic statuses are
assigned to actions on the basis of these weights—with this, the approach is
steered closer to the way the interaction between reasons is conceived of in the
informal (philosophical) literature. To reach our goal, we introduce the formal
notion of numerical balancing operators, formulate some concrete classes of
such operators, and carry out a principle-based analysis of them. The results
we present in this paper show that adding numerical weights to the picture
makes a huge difference: some of the core principles formulated in [8] no longer
hold in general, and new principles need to be formulated to distinguish the
operators.

The rest of this paper is structured as follows. In Section 2, we recall some
basic notions from Knoks and van der Torre [8]. In Section 3, we extend the
framework with numerical weights and introduce the core notion of numerical
balancing operators. In Section 4, we introduce six concrete classes of balancing
operators, and in Section 5, we present our principle-based analysis. Section
6 clarifies the relationship between the results we present here and the more
general framework of Knoks and van der Torre [8]. Finally, Section 7 concludes
and hints at some ideas for future research.

2 Preliminaries

In this section, we recall some definitions from [8]. The two basic building blocks
in that paper are an infinite set A and an abstract set of values V. Given that
we will be interested in what Knoks and van der Torre call balancing operations,

2 See, for instance, [1], [2], [9], [15], [17], [18].
3 For the most careful (informal) analysis of the weight scales metaphor, see [18], for a good
introduction, see [9].
4 Other notable exceptions include Horty’s [5], [6] default logic-based framework and the
recent approaches that draw on decision and probabily theory [3], [10], [14].
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we will work with a concrete set of values, namely, {+,−, 0}. Our formal notion
of a reason is then defined thus:

Definition 2.1 [Reasons] Let A be an infinite set, called the universe of dis-
course and let V be the set {+,−, 0}, called values. A reason r is a triple of
the from (x, y, v) where x and y are elements of A and v ∈ {+,−} is the value
associated with a reason, also called the polarity of r. 5

The next important notion is that of a context :

Definition 2.2 [Contexts] A context c is a pair of the form (R, y) where R is
a finite set of reasons, and y is an element of A, called the issue.

Contexts are meant to represent particular scenarios or situations. Each con-
text can be thought of as asking a question about some action—this is why
we call y an issue: is it the case that y ought to be taken, that y ought not
to be taken, or that it is permissible to take y and also not to take it (that
is, y is optional)? The set of reasons R of a context, in turn, is comprised of
the considerations that are relevant for answering this question. We use U to
denote the set of all possible contexts, that is, the set of contexts that can be
constructed by Definitions 2.1–2.2.

Formally, balancing operations are functional relations between contexts
and values. Intuitively, they can be thought of as answers to questions posed
by contexts. If the context (R, y) is assigned a +, then y ought to be taken. If
it is assigned a −, then y ought not to be taken. And if it is assigned a 0, then
y is optional.

Definition 2.3 [Balancing operations] A balancing operation, denoted by B,
is a functional relation between contexts and values, that is, B ⊆ U × V such
that, for any (c, v), (c′, v′) ∈ B, if c = c′, then v = v′.

With Definition 2.3 on the table, we are in a position to formulate princi-
ples that balancing operations might satisfy. Before we recall some important
principles from [8], however, let us introduce some useful notation:

• Where v ∈ {+, 0,−}, we let v stand for the value that is opposite to v, that
is: v = − if v = +; v = + if v = −; and v = 0 if v = 0.

• Where r = (x, y, v) is a reason, let action(r) = y and polarity(r) = v.

• Where R is a set of reasons and y ∈ A, the set of reasons from R that
speak in favor of y is the set pos(R, y) = {r ∈ R : r = (x, y,+)}; the set
of reasons from R that speak against y is the set neg(R, y) = {r ∈ R : r =
(x, y,−)}; and the set of reasons from R that are relevant to y is the set
Ry = pos(R, y) ∪ neg(R, y).

• When talking about sets of contexts, we can distinguish between the set of all
possible contexts, denoted by U , and the set of contexts under consideration,

5 The reader familiar with the philosophical literature on reasons may notice that our tech-
nical concept corresponds to what is often called the reason relation.
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denoted by C. The latter is the set of contexts for which the balancing
operation that we are discussing at a given point is defined.

While Knoks and van der Torre formulate a handful of principles, here we
recall the two that, they claim, are particularly basic, intuitive, and important
because they formalize properties that seem to be inherent in the metaphor
of weighing reasons on scales. These principles are Relevance and Neutrality.
The intuitive idea behind Relevance is that the values assigned to an issue y
within a context must be based only on the reasons that are directly related to
y, and, thus, that reasons that are not related to y can be removed from the
context without affecting the result.

Principle 2.4 (Relevance) A balancing operation B satisfies Relevance just
in case if ((R, y), v) ∈ B and ((Ry, y), v′) ∈ B, then v = v′. 6

Turning to Neutrality, it is meant to capture the intuition that the values
+ and − should be treated equally: if we switch the polarities of all reasons
in a given context, then the value that is assigned to the context should also
switch.

Principle 2.5 (Neutrality) Given a set of reasons R, let R′ = {(x, y, v) :
(x, y, v) ∈ R}. A balancing operation B satisfies Neutrality just in case if
((R, y), v) ∈ B and ((R′, y), v′) ∈ B, then v′ = v.

3 Numerical balancing operators

An important part of the intuitive picture of weighing reasons on scales is that
one reason can have more weight than another, and that the weights of multiple
reasons can add up. The formal notion of balancing operations does not allow
us to represent this idea explicitly. The main goal of this section then is to
formulate an analogous notion—that of (numerical) balancing operators—that
will allow us to do that.

As a first step, we introduce the notion of a weight system.

Definition 3.1 [Weight systems] Let C be a set of contexts. The set of reason-
context pairs of C, written as XC , is the set {(r, (R, y)) : r ∈ R, (R, y) ∈ C}.
Then a weight system for C, written as wC , is a pair (W, fw) where W ⊆ R+ is
a set of weights and fw : XC →W is a total function.

It is natural to wonder about the effects of context shifts on the weights
of reasons, or to ask whether any given reason has to have the same weight
in every context. The positions that have been explored in the philosophical
literature here range from extreme atomist views, on which any given reason’s

6 Notice that, in general, a balancing operation B can be such that ((R, y), v) ∈ B, while
((Ry , y), v′) /∈ B. It’s not difficult to define a constraint that rules out this possibility. We
can think of it as a variation on Relevance. Principle (Relevance′): A balancing operation
B satisfies Relevance′ just in case if ((R, y), v) ∈ B, then there exists some value v′ such that
((Ry , y), v′) ∈ B. It shouldn’t be difficult to see that Relevance and Relevance′ entail the
following stronger principle. Principle (Relevance′′): A balancing operation B satisfies
Relevance′′, Re′′, just in case if ((R, y), v) ∈ B, then ((Ry , y), v) ∈ B.
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weight and polarity are context-independent, to extreme holist views, on which
a reason’s weight and its polarity can both change from context to context.
Since ours is a general and formal exploration, we do not want to commit to
any particular view here. However, we also want to be able to express any view
lying on the atomism-holism spectrum formally. While the above definition
allows reasons to be associated with different weights in different contexts—
naturally inviting a holist picture—we can impose further constraints on weight
systems to express views that are closer to the atomist side of the spectrum.
Thus, our next definition captures one of the core tenets of atomism: that the
weights of reasons are context-independent.

Definition 3.2 [Fixed weight systems] Let C be a set of contexts and wC =
(W, fw) a weight system for C. Then wC is called a fixed weight system just in
case, for any reason r and any pair of contexts c, c′ ∈ C, we have fw(r, c) =
fw(r, c′).

The scales metaphor has it that the weights of individual reasons with the
same polarity get aggregated into a collective weight, and that the collective
weights of positive and negative reasons determine the final position of scales.
Since in our framework this final position corresponds to the value associated
with a context, we need a bridge from contexts supplemented with weight
systems to values. This bridge is provided by what we call procedures:

Definition 3.3 [Procedures] Let U be the set of all contexts and W the of
set of all weight systems for U . A procedure is a function P : U × W → V
associating contexts and weight systems with values.

Notice that procedures are independent of weight systems: we can apply the
same procedure to contexts with different weight systems, or different proce-
dures to contexts with the same weight system.

Now we have all the ingredients we need to define balancing operators (our
substitute for balancing operations from [8]). These, in effect, combine weight
systems and procedures:

Definition 3.4 [Balancing operators] A balancing operator, denoted by Bo, is
a triple (C, wC , P) where C is a set of contexts, wC a weight system for C, and
P a procedure.

In the next section, we introduce several concrete (classes of) balancing
operators. Before we turn to them, however, let’s formulate some general prin-
ciples that balancing operators can satisfy, and we start by restating Relevance
and Neutrality from Section 2 as principles for balancing operators:

Principle 3.5 (Relevance) A balancing operator Bo = (C, wC, P) satisfies
Relevance, Re, just in case if there are v and v′ such that P((R, y), wC) = v
and P((Ry, y), wC) = v′, then v = v′. 7

7 The counterpart of the stronger version of Relevance discussed in footnote 6 would run
as follows. Principle (Relevance′′): A balancing operator Bo = (C, wC , P) satisfies
Relevance′′, Re′′, just in case if P((R, y), wC) = v, then P((Ry , y), wC) = v.
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Principle 3.6 (Neutrality) Given a set of reasons R, let R′ = {(x, y, v) :
(x, y, v) ∈ R}. A balancing operator (C, wC, P) satisfies Neutrality, Ne, just
in case if P((R, y), wC) = v and P((R′, y), wC) = v′, then v′ = v.

Recall our definition of fixed weight systems. We can use it to formulate
another principle or constraint on balancing operators:

Principle 3.7 (Fixed Weight) A balancing operator Bo = (C, wC, P) satis-
fies Fixed Weight, FiWe, just in case wC is a fixed weight system.

According to atomism, not only the weights of reasons are fixed, but also
their polarity. This idea can, again, be expressed in the form of a principle:

Principle 3.8 (Fixed Polarity) A balancing operator Bo = (C, wC, P) sat-
isfies Fixed Polarity, FiPo, just in case, for any reason r = (x, y, v), if there
is a context (R, y) ∈ C such that r ∈ R, then there is no (R′, y) ∈ C such that
(x, y, v) ∈ R′.
With these two principles, we can formulate extreme atomism as a class of
balancing operators.

Definition 3.9 [Atomist balancing operators] Let Bo be a balancing operator.
We call Bo atomist just in case Bo satisfies both Fixed Polarity and Fixed
Weight.

And given that holism is defined in opposition to atomism, it is also straight-
forward to formulate.

Definition 3.10 [Holist balancing operators] Let Bo be a balancing operator.
We call Bo holist just in case it is not atomist.

It’s worth noting that Fixed Weight and Fixed Polarity illustrate the flexi-
bility of the formal notion of a balancing operator: we can formulate different
principles some of which have to do with weight systems, others with the struc-
ture of contexts, and yet others with procedures.

4 Some concrete balancing operators

In this section, we introduce six classes of balancing operators. The unifying
element of each class is the procedure. The first three classes correspond to
three simple and intuitive operations on numbers: addition, multiplication and
maximum. The forth class supplements the first of these with a threshold.
Finally, the ideas behind our last two operators come from the discussion of
(possible) views one might have about the workings of weight scales in Tucker
[16].

The first class of operators is based on simple addition. The context (R, y)
gets assigned the value + if the sum weight of reasons for y is strictly greater
than the sum weight of reasons against y; it gets assigned − if the sum weight
of reasons against y is strictly greater than the sum weight of reasons for y;
and it gets assigned 0 otherwise.

Definition 4.1 [Additive Balancing Operators] Let Bo = (C, wC ,P+) be a
balancing operator. Then it is called an Additive Balancing Operator, Add, just
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in case:

P+((R, y), wC) =





+ if
∑
r∈pos(R,y) fw(r, (R, y)) >

∑
r∈neg(R,y) fw(r, (R, y))

− if
∑
r∈pos(R,y) fw(r, (R, y)) <

∑
r∈neg(R,y) fw(r, (R, y))

0 otherwise

The second class of balancing operators is based on multiplication. A con-
text gets assigned + in case the product of weights of positive reasons (for y)
is greater than that of negative reasons; it gets assigned − in case the product
of weights of negative reasons is greater than that of positive reasons; and it
gets assigned 0 otherwise.

Definition 4.2 [Multiplicative Balancing Operators] Let Bo = (C, wC ,P×) be
a balancing operator. Then it is called a Multiplicative Balancing Operator,
Mul, just in case :

P×((R, y), wC) =





+ if
∏
r∈pos(R,y) fw(r, (R, y)) >

∏
r∈neg(R,y) fw(r, (R, y))

− if
∏
r∈pos(R,y) fw(r, (R, y)) <

∏
r∈neg(R,y) fw(r, (R, y))

0 otherwise

The balancing operators belonging to the third class we discuss determine
the value of context by comparing the maximal weights of positive and negative
reasons. A context gets assigned + if the maximal weight of positive reasons is
greater than that of negative reasons; it gets assigned − if the maximal weight
of negative reasons is greater than that of positive reasons; and it gets assigned
0 if the weights are equal.

Definition 4.3 [Maximizing Balancing Operators] Let Bo = (C, wC ,Pm) be a
balancing operator. Then it is called a Maximizing Balancing Operator, Max,
just in case:

Pm((R, y), wC) =





+ if Max({fw(r, (R, y)) : r ∈ pos(R, y)}) >
Max({fw(r, (R, y)) : r ∈ neg(R, y)})

− if Max({fw(r, (R, y)) : r ∈ pos(R, y)}) <
Max({fw(r, (R, y)) : r ∈ neg(R, y)})

0 otherwise

The balancing operators that belong to the fourth class work with a thresh-
old on the weights of reasons. The basic idea here is that a reason can make
a difference for which value gets assigned to a context only in case its weight
is above a certain threshold. In the following definition, this idea is combined
with the familiar operation of addition:
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Definition 4.4 [(Additive) Threshold Balancing Operators] Let Bo =
(C, wC ,Pt) be a balancing operator. Then it is called an (Additive) Thresh-
old Balancing Operator, (Add)Thr, just in case:

Pt((R, y), wC) =





+ if
∑
r∈pos(R,y)∧fw(r,(R,y))>t fw(r, (R, y)) >∑

r∈neg(R,y)∧fw(r,(R,y))>t fw(r, (R, y))

− if
∑
r∈pos(R,y)∧fw(r,(R,y))>t fw(r, (R, y)) <∑

r∈neg(R,y)∧fw(r,(R,y))>t fw(r, (R, y))

0 otherwise

It’s worth emphasizing that a threshold is not an operation, but, rather, a
gatekeeping device that precludes reasons with (relatively) low weights from
having any effect on the value assigned to a context. Definition 4.4 adds a
threshold to addition. It should be clear that the operations of multiplication
and taking the maximum that we used to define balancing operators above can
also be supplemented with a threshold.

Now we turn to the final two classes of balancing operators. Both of these
are inspired by the discussion in Tucker [16], who works in an informal setting
and formulates the counterparts of our balancing operators in terms of permis-
sion. Since we have been working with obligations above, we re-state Tucker’s
ideas in terms of obligations.

The first of these two classes formalizes what Tucker calls relative weight
satisficing : ϕ is permissible just in case the reasons against ϕ are no more
than twice as weighty as the reasons for ϕ. 8 Restating this idea in terms
of obligations, we get the following: ϕ is obligatory just in case the reasons
against ϕ are at most twice as weighty as the reasons for ϕ and the reasons for
ϕ are (strictly) more than twice as weighty as the reasons against ϕ. Since the
second conjunct entails the first, we can simplify: ϕ is obligatory just in case
the reasons for ϕ are more than twice as weighty as the reasons against ϕ. The
formal definition, then, runs as follows:

Definition 4.5 [Relative Weight Satisficing Operators] Let Bo = (C, wC ,PR)
be a balancing operator. Then it is called a Relative Weight Satisficing Oper-
ator, RelSat, just in case:

PR((R, y), wC) =





+ if
∑
r∈pos(R,y) fw(r, (R, y)) > 2

∑
r∈neg(R,y) fw(r, (R, y))

− if 2
∑
r∈pos(R,y) fw(r, (R, y)) <

∑
r∈neg(R,y) fw(r, (R, y))

0 otherwise

Our final class of balancing operators corresponds to what Tucker calls
absolute weight satisficing. (This view is meant to be in tension with the idea

8 See [16, p. 373ff].
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of weighing reasons on weight scales.) According to absolute weight satisficing,
ϕ is permissible if the reasons for ϕ have a weight of at least 100 (no matter how
much weight the reasons against ϕ have), and it is not permissible otherwise. 9

Notice that it is straightforward to define a similar sort of operator—that is, an
operator that is sensitive to positive reasons only—in terms of obligations: ϕ is
obligatory if the reasons for ϕ have a weight of at least 100, and it is forbidden
(impermissible) otherwise. The formal definition then runs thus:

Definition 4.6 [Absolute Weight Satisficing Operators] Let Bo = (C, wC ,PA)
be a balancing operator. Then it is called an Absolute Weight Satisficing Op-
erator, AbsSat, just in case:

PA((R, y), wC) =

{
+ if

∑
r∈pos(R,y) fw(r, (R, y)) > 100

− otherwise

Perhaps, one note about the final two class of operators is in order before
we leave this section: we followed Tucker in setting the threshold at 100 in PA,
as well as in requiring that the reasons against ϕ cannot be more than two
times as weighty as the reasons for ϕ to be permissible in PR. We could define
versions of these operators using other numbers.

5 Principle-based analysis

In this section, we formulate four principles and use them to compare the
balancing operators defined in Section 4. We start with the formulation of the
principles—the first comes from Knoks and van der Torre [8]; the latter three
are new. Then we turn to a discussion, of our results and some complications.

The first principle is Polarity Monotony. It says that, if a balancing operator
assigns + to a context and a positive reason is added, then the operator will still
assign + to the context; and similarly, if the operator assigns − to a context
and a negative reason is added, then it will still assign − to the context.

Principle 5.1 (Polarity Monotony) A balancing operator Bo = (C, wC ,P)
satisfies Polarity Monotony, PoMn, just in case, for all P((R, y), wC) = v where
v 6= 0, if (R ∪ {(x, y, v)}, y) ∈ C, then P((R ∪ {(x, y, v)}, y), wC) = v.

Our second principle is called Commensurate Removal. It says that for
every context, if we remove a pair of opposite reasons with the same weight,
then the value assigned to the context doesn’t change.

Principle 5.2 (Commensurate Removal) A balancing operator Bo =
(C, wC ,P) satisfies Commensurate Removal, CoRe, just in case, if
P((R, y), wC) = v, then for each pair of reasons r, r′ ∈ R such that
polarity(r) = polarity(r′) and fw(r, (R, y)) = fw(r′, (R, y)), we have
P((R\{r, r′}, y), wC) = v.

Our next principle is called Sensitivity. It says that, for every equally-
balanced context—that is, every context to which 0 is assigned—adding a new

9 See [16, p. 378ff].
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reason will cause the new context to be assigned a value that equals the polarity
of that reason.

Principle 5.3 (Sensitivity) A balancing operator Bo = (C, wC ,P) satisfies
Sensitivity, Se, just in case, if P((R, y), wC) = 0 and there is a v such that
P((R ∪ {r}, y), wC) = v, then v = polarity(r).

Finally, our final principle is Union Monotony. It says that if a balancing
operator assigns the value v to two contexts, then it will also assign v to the
union of these contexts.

Principle 5.4 (Union Monotony) A balancing operator Bo = (C, wC ,P)
satisfies Union Monotony, UnMn, just in case, if P((R1, y), wC) = v,
P((R2, y), wC) = v, and (R1 ∪R2, y) ∈ C, then P((R1 ∪R2, y), wC) = v.

Now that we have the principles, they can be used to analyze and compare
the operators. However, there is a complication: the framework that we have
set up is so unconstrained that, in the general case, (almost) none of the prin-
ciples are satisfied by any of the operators. 10 This has to do, in particular,
with the fact that our formal notion of a weight system (Definition 3.1) allows
for unconstrained change of reasons’ weights from one context to another. But
let’s recall our (brief) discussion of atomism and holism from Section 3 here.
Atomists say that reasons weights and polarities are the same in all contexts,
whereas extreme holists say that the weights of the same reason in two contexts
can be wildly different. We wanted to be in a position to express all sorts of
views lying on the atomism-holism spectrum in our framework, and, without
imposing further constraints, it effectively imposes an extreme holist picture.
On reflection, it should be no surprise that the balancing operators from Sec-
tion 4 do not satisfy any of the principles if extreme holism is at work in the
background.

What we present below then is a principle-based analysis of those balancing
operators from Section 4 which also satisfy Fixed Weight, that is, we restrict
attention to balancing operators with fixed weight systems.

Proving that a given operator does (or does not) satisfy some principle is
more tedious than difficult. Here are two sample proofs:

Proposition 5.5 Relative weight satisficing (Definition 4.5) with Fixed
Weight (Principle 3.7) does not satisfy Sensitivity (Principle 5.3).

Proof. Consider a relative weight satisficing operator (C, wC , PR) where
C = {c1, c2}; c1 = ({r1, r2}, y1), c2 = ({r1, r2, r3}, y1); r1 = (x1, y1,+),
r2 = (x2, y1,−), r3 = (x3, y1,+); fw(r1, c1) = fw(r2, c1) = 5, and fw(r3, c2) =
0.5. Notice that

∑
r∈pos({r1,r2},y) fw(r, c1) = fw(r1, c1) = 5, and that∑

r∈neg({r1,r2},y) fw(r, c1) = fw(r2, c1) = 5. From this and Definition 4.5, we

get PR(c1, wC) = 0. For Sensitivity to be satisfied, we would have to have
PR(c1 ∪ {r}, wC) = + for every context c1 ∪ {r} where r = (x, y,+). Notice
that

∑
r∈pos({r1,r2,r3},y) fw(r, c2) = fw(r1, c2) + f2(r3, c2) = 5 + 0.5 = 5.5, and

10The only exception is Absolute Weight Satisficing which (vacuously) satisfies Sensitivity.
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Add Mul Max (Add)Thr RelSat AbsSat

3.5 Re X X X X X X
3.6 Ne - - - - - -

5.1 PoMn X - X X X X
5.2 CoRe X X - X - -
5.3 Se X - - - - X

5.4 UnMn - - X - - -

Table 1
Summary of the principle-based analysis, assuming Fixed Weight

that
∑
r∈neg({r1,r2,r3},y) fw(r, c2) = fw(r2, c2) = 5. From this and Definition

4.5, we have PR(c2, wC) = 0. 2

Proposition 5.6 Maximizing balancing (Definition 4.3) with Fixed Weight
(Principle 3.7) satisfies Polarity Monotony (Principle 5.1).

Proof. Let Bo = (C, wC ,Pm) be a maximizing balancing operator with a
fixed weight system. Consider an arbitrary context c = (R, y) ∈ C such that
Pm((R, y), wC) = v and v 6= 0. Assume that there is some reason r′ = (x, y, v)
and a context (R ∪ {r′}, y) ∈ C. To establish that Polarity Monotony is
satisfied, we need to show that Pm((R ∪ {r′}, y), wC) = v. Without loss of
generality, we assume that v = +. From Pm((R, y), wC) = v and Defini-
tion 4.3, we know that max({fw(r, (R, y)) | r ∈ pos(R, y)}) = P > N =
max({fw(r, (R, y)) | r ∈ neg(R, y)}). Now notice that fw(r′, (R∪ {r′}, y)) > 0,
and that in (R ∪ {r′}, y) reasons have the same weights that they had in
(R, y). From here, max({fw(x, (R ∪ {r′}, y)) | r ∈ pos(R, y) ∪ {r′}}) =
max(P, fw(r′, (R ∪ {r′}, y))) ≥ P > N = max({fw(r, (R, y)) | r ∈ neg(R, y)}).
And this is enough to conclude that Pm((R ∪ {r}, y), wC) = +.

2

The proofs of other propositions—that is, the propositions that show which
of the remaining operators do (or do not) satisfy which propositions—are
equally straightforward. We leave them for a technical report and let Table
1 summarize the results that they establish: the topmost row lists the balanc-
ing operators; the leftmost column lists the principles; the remaining cells state
whether the given operator does (X) or doesn’t (−) satisfy the given principle.
For example, the third column makes it clear that the class of multiplicative
operators (this is what Mul stand for) satisfy only two principles, namely, Rel-
evance (Rel) and Commensurate Removal (CoRe).

It may be surprising to see that none of the operators satisfy Neutrality.
Recall that Knoks and van der Torre [8] thought that both Relevance and
Neutrality formalize properties that seem to be inherent in the metaphor of
weighing reasons on scales. It turns out that the operators do not, in general,
satisfy Neutrality with the assumption of Fixed Weight for the same reason that
they do not, in general, satisfy all other principles without the assumption of
Fixed Weight: nothing in the definition of fixed weight systems precludes them
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from assigning (x, y,+) and (x, y,−) different weights in different contexts.
We can, of course, define a notion in the vicinity of fixed weight systems

that makes this impossible.

Definition 5.7 [Symmetric weight systems] Let C be a set of contexts and
wC = (W, fw) a weight system for C. Then wC is called a symmetric weight
system just in case, for any pair of reasons r = (x, y,+), r′ = (x, y,−) and any
pair of contexts c, c′ ∈ C, we have fw(r, c) = fw(r′, c′).

The counterpart of Fixed Weight then runs thus:

Principle 5.8 (Symmetry) A balancing operator Bo = (C, wC ,P) satisfies
Symmetry, Sym, just in case (i) (R, y) ∈ C if and only if ({(x, y, v) : (x, y, v) ∈
R}, y) ∈ C and (ii) wC is a symmetric weight system.

It is not difficult to verify that Symmetry entails Fixed Weight. What’s more,
it turns out that, with Symmetry in the background, every balancing operator
from Section 4 satisfies Neutrality. Here is a sample proof.

Proposition 5.9 Additive balancing (Definition 4.1) with Symmetry (Princi-
ple 5.8) satisfies Neutrality (Principle 3.6).

Proof. Consider some additive operator Bo = (C, wC ,P+) that satisfies
Symmetry. Consider an arbitrary context c = (R, y) for which we have
P+((R, y), wC) = v. Assume that (R′, y) ∈ C where R′ = {(x, y, v).
Without loss of generality, suppose that v = +. Then we know that∑
r∈pos(R,y) fw(r, (R, y)) = P > N =

∑
r∈neg(R,y) fw(r, (R, y)). Since wC is

symmetric, we know that fw((x, y, v), (R′, y)) = fw((x, y, v), (R, y)) for ev-
ery (x, y, v) ∈ R′. As a consequence,

∑
r∈pos(R′,y) fw(r, (R′, y)) = N < P =∑

r∈neg(R′,y) fw(r, (R′, y)), and, thus, P+((R, y), wC) = −. 2

6 Related work

In this section, we relate our extension of Knoks and van der Torre’s framework
to the original. First of all, it’s worth emphasizing that the original framework
with its notion of a detachment systems is more general. For instance, it does
not assume that the relation between contexts and values is functional, nor
makes any restrictions on the shape of the set of values V. Our notion of
balancing operators is grounded in some conceptual choices and so it is more
specific. Nevertheless, because of those conceptual choices it is also better
suited to capture the informal model of weighing reasons on weight scales from
the philosophical literature.

Knoks and van der Torre discuss two different classes of balancing operations
(which qualify as specific types of detachment systems): what they call anony-
mous and relational balancing operations. It wouldn’t be difficult to restate all
the particular anonymous operations that they define as balancing operators. 11

For instance, Knoks and van der Torre’s Simple Counting assigns a value to a
context of the form (R, y) by comparing the number of positive and negative

11This, again, speaks to the flexibility of the formal notion of a balancing operator.
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y-reasons in R. In the present framework, Simple Counting corresponds to a
special case of Additive Balancing, namely, one the underlying weight system of
which assigns the same weight to all reasons. (We leave the proof for the journal
version of this paper.) Other anonymous balancing operations are straightfor-
ward to redefine as operators. Knoks and van der Torre formulated several
principles that were satisfied by all of their anonymous balancing operations,
but that do not hold for every operator we defined in Section 4. This includes
Relevance and Polarity Monotony. As we saw, Relevance does not hold for all
of these operators unless Fixed Weight is also assumed, and Polarity Monotony
does not hold for Multiplicative Balancing even if Fixed Weight is assumed.
These observations illustrate that the notion of a balancing operator gives us
a grip on richer structures.

Turning to relational balancing operations, these are more difficult to re-
late to balancing operators, since relational operations come equipped with a
relation over reasons. It turns out to be possible to establish a connection be-
tween Maximizing Balancing Operators and one particular relational operation:
what Knoks and van der Torre call Decisive Reason. This operation assigns a
value to a context by checking the polarity of the “strongest” reason in it. It
shouldn’t be difficult to see that the “stronger than” relation can be mapped
to the greater than relation of numerical weights, and that, with this mapping,
Decisive Reasons has the form of Maximizing Balancing operators. (Again, we
leave the proof of this for the journal version.) To be in a position to explore
the connections between relational and numerical balancing, it would pay to
extend the notion of a balancing operator with a further component, namely, a
binary anti-symmetric relation over reasons (in contexts). With this, we would
be in a position to formulate principles that have to do with the relation—in ad-
dition to principles that have to do with weight systems and procedures—and
have a general framework for analyzing anonymous, numerical, and rational
balancing, as well as the connections between them.

7 Conclusion and future work

In this paper, we extended Knoks and van der Torre’s framework [8] to richer
structures in which reasons are associated with numerical weights. We started
by introducing the formal notions of weight systems, procedures, and balanc-
ing operators. Then we introduce six concrete classes of balancing operators,
presented a principle-based analysis of them, and explained how the results
presented here go beyond those of [8].

For future work, we plan to set up and explore the more general frame-
work we mentioned at the end of previous section, that is, a framework that
would unify numerical and relational balancing. It seems to be clear that what
we have done above shows that there is a rich variety of balancing operators
available for exploration and formal analysis. We also plan to explore how
our numerical balancing framework relates to multi-criteria decision-making
[7] and qualitative bipolar decision-making [4], as well as how it might be used
to model case-based reasoning.
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