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Abstract. We develop Kummer theory for algebraic function fields in finitely many transcen-

dental variables. We consider any finitely generated Kummer extension (possibly, over a cyclo-

tomic extension) of an algebraic function field, and describe the structure of its Galois group.
Our results show in a precise sense how the questions of computing the degrees of these exten-

sions and of computing the group structures of their Galois groups reduce to the corresponding

questions for the Kummer extensions of their constant fields.

1. Introduction

Let M ě 1 be an integer and let K be a field containing a primitive M -th root of unity. A
Kummer extension of K of exponent dividing M is an Abelian field extension of K obtained by
adjoining M -th roots of elements of Kˆ, the multiplicative subgroup of K. Kummer theory says
that any Abelian extension of K of exponent dividing M is of this form and, in fact, Abelian
extensions of K of exponent dividing M correspond bijectively with subgroups of the quotient
group Kˆ{KˆM . In this work, we develop Kummer theory for arbitrary algebraic function fields
and go beyond the classical theory: Using parameters that measure the divisibility of elements
up to constants, we completely solve the problem of understanding the nature of Kummer theory
over algebraic function fields by showing in a precise way that this theory reduces to the Kummer
theory over the corresponding constant fields.

1.1. Overview of the main results. We consider a function field K{k, work within a fixed
algebraic closure K of K, and suppose without loss of generality that k is algebraically closed
in K. For any element α P Kˆzkˆ, and any prime number ℓ ‰ charpkq, we can speak of its
ℓ-divisibility parameter modulo constants over K. This is the largest non-negative integer D such

that α P kKˆℓD .
For an integer M ě 1 not divisible by charpkq, and a choice ζM of primitive M -th root of unity

in K, the field KpζM q is a cyclotomic extension of K. Given a finitely generated subgroup G of
Kˆ, we consider the Kummer extensions

(1) KpζM ,
N
?
Gq{KpζM q where N | M .

In this article we show that, to compute the degree and the structure of the Galois group of the
above Kummer extensions, we may reduce to computations involving only the constant field k.

By Kummer theory, we may suppose that N “ ℓn for some prime number ℓ and some integer
n ě 1. We can write G “ G0G

1 where G0 :“ G X kˆ and where G1 is a subgroup of G such that
G1 Xkˆ “ t1u. We denote by r the rank of G1 and we suppose that r is strictly positive (for r “ 0,
see Remark 37). A careful choice of basis for G1, which we call ℓ-good basis modulo constants
(see Definition 28), allows us to conduct a finer analysis of Galois group structures of Kummer
extensions. The following result, which combines Corollary 27 and Theorem 31, considers the
so-called geometric Kummer extension Kk̄p

ℓn
?
Gq{Kk̄:

Theorem 1. There is a basis tα1, . . . , αru of G1 such that, calling Di the ℓ-divisibility parameter
modulo constants of αi over Kpζℓq, the integer

řn
i“1 Di is maximal (by varying the basis of G1).

The multiset of the Di’s is uniquely determined (it only depends on K{k and G), and for every
n ě 1 we have

GalpKk̄p
ℓn
?
Gq{Kk̄q »

r
ź

i“1

Z{ℓmaxpn´Di,0qZ .

1
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To simplify the notation, suppose that ζM P k. We deduce the following result on the cardinality
of the Kummer extensions (see Theorem 33):

Theorem 2. With the above notation, let ci P kˆ be such that αi{ci is in KˆℓDi
. Then we have

rKp
ℓn
?
Gq : Ks “ rk, ℓn

a

G0, ℓminpn,D1q?c1, . . . , ℓminpn,Drq?crq : ks ¨

r
ź

i“1

ℓmaxpn´Di,0q .

Up to relabelling, we suppose without loss of generality that D1 ď D2 ď ¨ ¨ ¨ ď Dr. Our main
result gives the precise Galois group structure of the Kummer extension Kp

ℓn
?
Gq{K (see Theorem

36):

Theorem 3. With the above notation, let di P Zě0 Y t8u be maximal such that the class of ci is
an ℓdi-th power in kˆ{xG0, cj : j ą iy. Then there is a group isomorphism

Gal
´

K
´

ℓn
?
G

¯

{K
¯

» Gal
´

k
´

ℓn
a

G0

¯

{k
¯

ˆ

r
ź

i“1

Z{ℓmaxpn´minpDi,diq,0qZ .

Thanks to the above results, to determine the cardinality and the structure of the Galois group
of the Kummer extensions in (1), as described in the last section, it suffices to compute the
parameters Di’s and the constant elements ci’s, and this then reduces to computations involving
only the constant field k. Such computations can be done (in principle) for all finite fields, but
there is also an explicit finite procedure to perform them for number fields and p-adic fields (see
[1, 6]).

The structure of the paper is as follows: Section 2 contains background theory on algebraic
function fields and a lemma about rank 1 discrete valuations and ℓ-divisibility modulo constants
of elements. Sections 3 and 4 are devoted to studying extensions of function fields (with some
general results that can be of independent interest). The theory of divisibility modulo constants
is developed in Section 5, and our main results for Kummer theory are proven in Section 6.

The idea of using parameters to consider the divisibility of elements in a given field comes from
past works of the second-named author on Kummer theory for number fields. Nevertheless, we
consider a completely new setting and we provide several auxiliary results to develop Kummer
theory for function fields in full generality.

1.2. Related Literature. Our paper addresses a natural question of Kummer theory for function
fields. The closest reference we have found is a paper from 1942 in Duke Math. J. by MacLane
and Schilling [4]. The authors consider algebraic function fields K{k with k algebraically closed
in K and study algebraic extensions L{kL of them, generated by radicals. A radical is an element
of α P L that has a positive integral power αn in K up to an element that is algebraic over k, that
is αnγ P Kˆ for some γ P kˆ

L . Extensions generated by radicals include, in particular, cyclotomic-
Kummer extensions. The motivation of [4] came from class field theory considerations and focus
on the theory of divisors and the willingness to generalize the main correspondence of Kummer
theory. Their work differs from our explicit study of field extensions with divisibility parameters,
and the results are very different. However, one may notice the same (natural) principle of setting
constant elements aside. Indeed, they also decompose a radical extension with the intermediate
extension that is the largest constant extension, which they call coefficient extension (see [4, §9
and §10 and in particular p.153, Corollary 1].

Although a classical subject, Kummer theory continues to be an active topic of research. On
the side of algebraic function fields, most of the literature seems to concentrate on the global
function fields. For example, the notion of genus field, analogous to the one for number fields,
was introduced in [7] for an algebraic function field K of a rational function field Fqptq, in analogy
with the number field side. There, the author computed the genus field for Kummer extensions of
the form K “ Fqptqp

ℓ
?
Dq for a prime number ℓ different from charpFqq and a polynomial in Fqrts

that is ℓ-th power free. The results were then generalized to the compositum of linearly disjoint
such extensions in [8], using Carlitz modules.

The reader should also be aware of the following work. In [5, Theorems 1 and 4], the author
studies, for a given rational global function field Fqptq of some characteristic p ą 0, the “cyclotomic
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extension” FqptqpΛP q of Fqptq generated by the P -torsion points ΛP , of a Drinfeld Fqrts-module,
for any monic irreducible polynomial in Fqrts of degree dP . This is a Galois extension of groups
isomorphic to pFqrts{xP yqˆ. The let h`

P be the class number of the subextension of FqptqpΛP q

corresponding to the subgroup Fˆ
q of pFqrts{xP yqˆ. The author shows that if p divides h`

P , then

there is an integer 0 ă m ă qdP ´ 1, multiple of q ´ 1, such that the m-th Bernoulli-Carlitz
number’s minimal numerator is divisible by P . This result is analogous to a result by Kummer
over Q. Hence, despite similar names, when restricted to the “ground” algebraic function field
Fqptq, where loc. cit and our manuscript have a common intersection, the questions studied in
these two manuscripts are of different nature.

2. Prerequisites on function fields and notation

An algebraic function field (or function field, for short) is a triple pK, k, nq, comprised of a field
K containing a field k such that K is finitely generated over k of transcendence degree trdegpK{kq

equal to some positive integer n. In this case, we write K{k (and can refer to it as a function field
in n variables). Let tt1, t2, ¨ ¨ ¨ , tnu be a transcendence basis for K over k. The function field K{k
is a rational function field if K “ kpt1, t2, ¨ ¨ ¨ , tnq and it is a global function field if n “ 1 and k
is a finite field.

In this manuscript, a valuation on K{k is a surjective map v from K to Z Y t8u, with Z the
additive group of integers and 8 a symbol subject to the rules n ` 8 “ 8 ` n “ 8 ` 8 “ 8 for
all n P Z. The map v is satisfying for all f1, f2 P Kˆ the properties vpf1f2q “ vpf1q ` vpf2q and
vpf1 ` f2q ě mintvpf1q, vpf2qu, is such that if f P kˆ, then vpfq “ 0 and vp0q “ 8. In particular,
our valuations are discrete in the usual terminology.

The ring Ov of all f P Kˆ satisfying vpfq ě 0, is called the valuation ring of v. It is a local
ring whose maximal ideal mv is the set of f P Ov satisfying vpfq ą 0. The field kv :“ Ov{mv is
called the residue field of v. It can be seen as a field extension of k and the transcendence degree
trdegpkv{kq of kv over k will be the dimension of v over k. A prime divisor of K{k is a valuation
of K{k of dimension n´ 1 over k. Each prime divisor is a discrete valuation of rank 1 (that is, Ov

has Krull dimension 1) and kv is a function field of transcendence degree n´ 1 over k. We denote
by PrimepK{kq the set of prime divisors of K{k.

The constant field of K{k is the algebraic closure rk of k inside K. The extension rk{k is finite
as

rrk : ks “ rrkpt1, ¨ ¨ ¨ , tnq : kpt1, ¨ ¨ ¨ , tnqs ď rK : kpt1, ¨ ¨ ¨ , tnqs

is finite. Therefore, K{rk is an algebraic function field of n variables over rk.
Fixing an algebraic closure K of K, if M is a positive integer not divisible by charpkq, we denote

by ζM a primitive root of unity in K (or inside the algebraic closure k of k in K) of order M and
we obtain a cyclotomic extension kpζM q{k.

Throughout the text, ℓ is a prime number different from charpkq. We define kpζℓ8 q{k inside
K as the union, over the integers n ě 1, of the cyclotomic extensions kpζℓnq{k. We also write vℓ
for the ℓ-adic valuation on Qˆ. Also, if G is a group, then G “ xα1, ¨ ¨ ¨ , αry means that G is
generated by a finite set of elements tα1, ¨ ¨ ¨ , αru.

Lemma 4. Let f P Kˆzrk and c P rkˆ.

(i) For all v P PrimepK{kq we have vpcq “ 0 and vpcfq “ vpfq.
(ii) There is a finite non-empty set S of PrimepK{kq such that vpfq ‰ 0 for all v P S and

vpfq “ 0 for all v R S. More precisely, S has at least two elements, v1, v2 respectively
satisfying ordv1pfq ą 0 and ordv2

pfq ă 0.

(iii) There are only finitely many positive integers n such that f P rkKˆn. In particular, there is
no prime number ℓ such that f is infinitely ℓ-divisible (not even up to constant elements).

Proof. (i) This follows immediately from the fact that v is also a valuation on K{rk.
(ii) The finiteness of S is classical divisor theory and the rest is proven in [10, p.99, Ch VI,

§14 and p.175, Ch VII, §4 bis].
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(iii) This follows from (i) and (ii) since if cf P rkKˆn, then n divides vpcfq “ vpfq for all
v P PrimepK{kq.

□

3. Extensions of function fields

3.1. General results. The following results hold for fields that are not necessarily function fields.

Definition 5. Let K and L be two extensions of a field k that are contained in some algebraically
closed field. The field K is said to be linearly disjoint from L over k if every finite set of elements
of K that is linearly independent over k is linearly independent over L.

Remark that if K and L are linearly disjoint over k, then K and L1 are linearly disjoint over k
for any intermediate extension k Ď L1 Ď L.

Lemma 6. Let k be a field that is algebraically closed in some field K. Let α be an element of
a fixed algebraic closure k over k. Then kpαq and K are linearly disjoint over k, or equivalently,
kpαq bk K is a field, and we have rkpαq : ks “ rKpαq : Ks. In particular, the minimal polynomial
of α over K and over k are the same.

Proof. Let mpxq be the minimal polynomial of α over k. Any constant factor of mpxq over K
has its coefficients algebraic over k, hence in k. Therefore, mpxq is irreducible over K and the
statement follows. □

Lemma 7 ([9, p.253, Proposition 8.4.1]). If a field k is algebraically closed in K and tTiuiPI is
an algebraically independent set over K, then kptTiuiPIq is algebraically closed in KptTiuiPIq.

Lemma 8. Let K{k be a field extension such that k is algebraically closed in K. Fix some algebraic
closure K of K and fix an algebraic closure k of k contained in K. Let F {K be a finite extension
such that F Ď KL for some field L Ď k that is separable over k. Then pF X kq{k is finite and we
have F “ KpF X kq.

Proof. Notice that, as F {K is finite we may suppose, up to replacing L by a subfield, that L{k is
finite. Thus, L{k is primitive. Since we have K X L “ k, then K bk L is a field by Lemma 6.

We now prove the statement by induction on the degree of F {K. If rF : Ks “ 1, the statement
is trivial because F X k “ k. Now suppose that rF : Ks ą 1 and that the statement holds for all
field extensions of lesser degree.

Suppose that F bk L is a field. Then the inclusion K Ñ F yields an injective ring morphism
ϕ1 : KbkL Ñ FbkL. We also have injective ring morphisms ϕ2 : FbkL Ñ K and ϕ : KbkL Ñ K,
that are given on elementary tensors by x b y ÞÑ xy. One sees the three morphisms satisfy the
compatibility ϕ “ ϕ2 ˝ ϕ1. Since F Ď KL, then impϕq “ KL “ impϕ2q and hence ϕ1 is an
isomorphism. Since L is a k-module, the functor ‚bkL is faithfully flat hence F “ K, contradicting
that rF : Ks ą 1.

If F bkL is not a field, then, by Lemma 6 the field k is not algebraically closed in F and so there
is a non-trivial extension k1 :“ F X k of k. So we have rF : Kk1s ă rF : Ks and F Ď pKk1qpLk1q

and Lk1{k1 is separable. By induction hypothesis the field extension pF X kq{k1 is finite and we
have F “ pKk1qpF X kq “ KpF X kq. □

3.2. Algebraic extensions of function fields. Given two algebraic function fields L{kL and
K{k, we say that the former is an extension of the latter if L{K and kL{k are extensions of
fields. Moreover, if both L{K and kL{k are algebraic, we say the extension of function fields
is algebraic. From now on, an extension of function fields will mean an algebraic extension of
algebraic function fields. With the above notation we say that L1{kL1 is a subextension of L{kL
if L1{kL1 is an extension of K{k and L{kL is an extension of L1{kL1 . Suppose that L{kL is an
extension of K{k. Then the transcendence degree of L over kL equals the one of K over k. The

constant field of L is rkL “ k̄ X L and it is algebraic over k (for convenience, the field kL will not

be specified if it equals k). In particular, K X rkL “ rk. We call the extension of function fields
finite in case L{K and kL{k are finite. We call the extension of function fields Galois if L{K is
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Galois. In this case, rkL{rk is Galois (see Lemma 10) however kL{k is not necessarily Galois. We
call the extension of function fields Abelian (respectively, of exponent N) if it is Galois and the
Galois group of L{K is Abelian (respectively, of exponent N). Note that for an Abelian extension

we have that rkL{k is also Abelian while for an Abelian extension of exponent N , we have that
rkL{k is Abelian with exponent dividing N .

Remark 9. If L{kL is an extension of K{k, then L{K is finite if and only if rkL{rk is finite if and

only if kL{k is finite. The second implication holds because the extensions rkL{kL and rk{k are both
finite. For the first implication choose transcendence variables x1, . . . , xn for K{k, recall that the

two extensions K{rkpx1, . . . , xnq and L{rkLpx1, . . . , xnq are finite and write

rL : KsrK : rkpx1, . . . , xnqs “ rL : rkpx1, . . . , xnqs “ rL : rkLpx1, . . . , xnqsrrkL : rks .

Lemma 10. Let L{kL be an extension of K{k. If L{K is separable, then rkL{rk is separable. If

L{K is normal, then rkL{k and rkL{rk are normal. Consequently,

(i) if L{K is Galois, then rkL{rk is Galois;

(ii) if L{K is Galois and rkL{k is separable, then rkL{k is Galois;

(iii) if L{K is separable, then rkNL {k is Galois, where rkNL is the normal closure of rkL in k.

Proof. We first prove that rkL{rk is separable, assuming that L{K is separable. We may suppose

that rkL{rk is finite because if this extension is not separable, then there is some element α P rkL
such that rkpαq{rk is finite and not separable. We may also suppose that rkL{rk is normal, up to

replacing rkL by its normal closure in k̄. Now assume that rkL{rk is not separable. Up to replacing
rk by a separable extension, we may suppose that rkL{rk is purely inseparable. So let p be the finite

characteristic of rk and let α P rkL ∖ rk be such that αpm

P rk holds for some positive integer m. As

K X rkL “ rk, we have α P L∖K such that αpm

P K, contradicting the separability of L{K.

We now assume that L{K is normal and prove that rkL{k is normal, which immediately implies

that rkL{rk is normal. Consider an element of rkL, namely some α P L that is algebraic over k. The
conjugates of α are in L because L{K is normal and they are all algebraic over k, so they are in
rkL. The last assertion is immediate. □

3.3. Constant and geometric extensions. We say that an algebraic extension L{kL of K{k

is constant if L “ Kk1 for some algebraic extension k1 of k. Note that we may replace k1 by k1
rk

because L “ Kpk1
rkq and k1

rk{k is algebraic. Hence, we may suppose without loss of generality

that rk Ď k1.

Theorem 11. Let K{k be a function field, and let k1 be an algebraic extension of rk. If K or k1

is separable over rk (in particular, if rk is perfect), then the constant field of Kk1 is k1.

Proof. Set L :“ Kk1 and denote by rkL its constant field. By Theorem 19 the extension rkL{k1 is

finite and purely inseparable. So it suffices to prove that rkL{k1 is separable.

Suppose that k1{rk is separable and fix α P k1 such that k1 “ rkpαq. Since the minimal polynomial

of α over K divides the one over rk, we deduce that L “ Kpαq is separable over K. To conclude

remark that, for an element of rkL, the minimal polynomial over rk is the same as the one over K
by Lemma 6.

Now suppose that K{rk is separable and let x1, ¨ ¨ ¨ , xn P K be a transcendental basis over
rk. Notice that K{rkpx1, ¨ ¨ ¨ , xnq is a finite separable extension and hence L is a finite separable

extension of k1px1, ¨ ¨ ¨ , xnq. We deduce that rkLpx1, ¨ ¨ ¨ , xnq{k1px1, ¨ ¨ ¨ , xnq is a finite separable

extension. So rkL{rk and hence rkL{k1 is separable by Lemma 10. □

Lemma 12. If C{K is a finite constant Galois extension and K 1{K is a finite Galois extension
whose maximal constant subextension is L{K, then CL{K is the maximal constant subextension
of CK 1{K.
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Proof. Write C “ kCK and L “ kLK for some fields kC , kL containing rk and contained in k̄.
The extension CL{K is constant because we have CL “ kCkLK. If it is not maximal, let M{K
be the maximal constant subextension of CK 1{K. By Galois theory, we have M “ CL1 for some
subextension L1{K of K 1{K. Now, L1 strictly contains L, and L1{K must be constant by Lemma
8, contradicting the maximality of L. □

If L{kL is an extension of K{K, then rk Ď L X k. This extension is said to be geometric if the

converse inclusion holds. We call an extension geometric if L X k “ rk (remark that the inclusion

Ě always holds). Notice that an algebraic extension is geometric if and only if rkL “ rk.

Remark 13. An algebraic extension L{rkL of K{rk that is constant and geometric must be trivial.

For a constant extension we have L “ Kk1 for some rk Ď k1 Ď k and k1 Ď pLXkq Ď rkL so, assuming
rkL “ rk, we get k1 “ rk and hence L “ K.

Remark 14. An algebraic separable extension of function fields of prime degree is constant if and
only if it is not geometric. The “only if” direction is a consequence of Remark 13. Conversely,

suppose that the extension is not geometric. So there exists some γ P rkLzrk. Since rkL Ď k we

deduce that γ R K hence it is a primitive element for L{K, showing that L “ Krkpγq is constant.

Recall that any group whose order is the power of a prime ℓ has a normal subgroup of index ℓ.

Lemma 15. Let ℓ be a prime number different from charpkq. Let L{kL be a finite Galois extension
of K{k such that the degree of L{K is a power of ℓ. In particular, there exists a Galois subextension
of L{K of degree ℓ. Write L1{K for the largest subextension of exponent ℓ (namely, the compositum
of all such extensions). Then L{kL is geometric if and only if L1{kL1 is geometric.

Proof. If rkL “ rk, then rkL1 “ rk. Conversely, suppose that rkL{rk is not trivial. This extension is
finite (because L{K is finite) and Galois (by Lemma 10) and its degree is a power of ℓ (by Lemma

6). Then it has a Galois subextension of degree ℓ. This extension is of the form rkpαq{rk where

α P kzrk. Since α P L1 we deduce that rkL1 ‰ rk. □

3.4. Cyclotomic extensions. An extension L{kL of K{k is called cyclotomic if L Ď Kpζmq holds
for some integer m ě 1. Since Kpζmq{K is finite and Abelian, a cyclotomic extension of function
fields is finite and Abelian.

In the following results, ℓ is a prime number different from charpkq and kpζℓ8 q “ Yně1kpζℓnq.

Proposition 16. Let K{k be a function field. For every M ě 1 that is not divisible by charpkq,

the constant field of KpζM q{k is rkpζM q. Moreover, the constant field of Kpζℓ8 q{k is rkpζℓ8 q.

Proof. By the assumption on M , the field extension rkpζM q{rk is separable. Hence, by Theorem 11

the constant field of KpζM q is rkpζM q. The field rkpζℓ8 q is contained in the constant field of Kpζℓ8 q

because its elements are algebraic over k. The converse implication holds because an element of
Kpζℓ8 q that is algebraic over k is an element of Kpζℓmq for some integer m ě 1 and hence is

contained in the constant field of Kpζℓmq, which we have shown to be rkpζℓmq. □

Remark 17. Let K{k be a field extension such that k is algebraically closed in K. Fix some
algebraic closure K of K and choose an algebraic closure k of k contained in K. Let F {K be a
finite extension of degree coprime to charpkq that is contained in Kk. Then Lemma 8 applies.
Indeed, it is clear that F Ă KL1 for some finite and normal extension L1 of k. Let L{k be the
maximal separable subextension of L1{k hence L1{L is purely inseparable. So KL1{KL has degree
a power of charpkq and it has FL{KL as a subextension. This is only possible if FL “ KL, giving
F Ď KL.

Lemma 18. Let f P Kˆ. The following statements are equivalent:

(i) There exists g P Kk such that f “ gℓ.
(ii) For some choice of ℓ-th root ℓ

?
f of f , the extension Kp ℓ

?
fq{K is constant.

(iii) For every ℓ-th root ℓ
?
f of f , the extension Kp ℓ

?
fq{K is constant.
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Moreover, these statements are implied by

(iv) There exist c P rk and b P K such that f “ cbℓ.

and, if ζℓ P K (or if f P Kˆℓ), they are equivalent to it.

Proof. First notice that if f P Kˆℓ then all conditions piq to pivq hold (remark that Kpζℓq{K is
constant). So now we may suppose that f R Kˆℓ hence the polynomial xℓ ´ f is irreducible in
Krxs by [3, Theorem 9.1 of Chapter VI]. In particular, the extension Kp ℓ

?
fq{K has degree ℓ for

any choice of the ℓ-th root of f .
To complete the proof of the last assertion we show that piiiq implies that there is some

c P rkpζℓq and b P Kpζℓq such that f “ cbℓ. We may clearly reduce to the case f R Kpζℓq
ˆℓ.

Recall from Proposition 16 that the constant field of Kpζℓq is rkpζℓq. By assumption the extension

Kpζℓ,
ℓ

?
fq{Kpζℓq is constant, so there is an extension k1{rkpζℓq that has degree ℓ (by Lemma 6)

such that Kpζℓ,
ℓ

?
fq “ Kpζℓqk

1. By Kummer theory over rkpζℓq and over Kpζℓq there is c P rkpζℓq
ˆ

such that k1pζℓq “ rkpζℓ, ℓ
?
cq and we have fc´1 P Kpζℓq

ˆℓ. Thus we have f “ cbℓ where b is an
ℓ-th root of fc´1 in Kpζℓq.

We are left to prove the equivalence of piq,piiq, and piiiq in the case where f R Kˆℓ, noticing
that piiiq ñ piiq is obvious.

piq ñ piiq: By Lemma 8 (that can be applied thanks to Remark 17) we deduce that Kpgq{K is
constant, so we conclude by choosing ℓ

?
f “ g.

piiq ñ piq: By assumption, Kp ℓ
?
fq “ Kk1 with k1 a subfield of k and we may take g “ ℓ

?
f .

piiq ñ piiiq: Let α, β P KzK be such that αℓ “ βℓ “ f . Suppose that Kpαq{K is constant
hence Kpβq{K is contained in the constant extension Kpα, ζℓq{K. By Lemma 8 (that can be
applied thanks to Remark 17) we deduce that Kpβq{K is constant. □

4. An auxiliary result on function fields extensions

The following result generalizes [9, p.254, Theorem 8.4.2] from transcendence degree 1 to any
finite transcendence degree. We let K{k be a function field, and we suppose that k is algebraically
closed in K.

Theorem 19. If k1 is an extension of k, then there exists a function field L{kL that is an extension

of K{k such that L “ kLK and there is a rk-isomorphism λ : kL Ñ k1. The above properties imply

that rkL is a purely inseparable finite extension of kL. Finally, if L̂, kL̂, λ̂ are also as above, there

exists a K-isomorphism L̂ Ñ L extending λ´1 ˝ λ̂.

Proof. Let n “ trdeg pK{kq and fix a transcendence basis x1, ¨ ¨ ¨ , xn of K over k.
Let ttiuiPI be a transcendence basis of k1 over k and choose elements tTiuiPI that are alge-

braically independent over K. Mapping ti ÞÑ Ti gives a k-morphism from k1 to some algebraic
closure of KptTiuiPIq. We denote its image by kL and we define L :“ kLK.

Let t P Kzk be transcendental over k, and suppose that it is algebraic over kL. Then it is
algebraic also over kptTiuiPIq because the extension kL{kptTiuiPIq is algebraic. Therefore, we have
without loss of generality. (and up to clearing the denominators) a relation of the form

frt
r ` ¨ ¨ ¨ ` f0 “ 0

with fi P krT1, ¨ ¨ ¨ , Tms, not all zero. Some of the fi must be nonconstant, else t would be
algebraic over k. Hence, we have a non-trivial algebraic relation overK of the elements T1, ¨ ¨ ¨ , Tm,
contradicting the algebraic independence of the Ti’s. Therefore, we have kLXK “ k and x1, . . . , xn

are algebraically independent over kL. Now, kL contains k and we have

rL : kLpx1, . . . , xnqs ď rK : kpx1, ¨ ¨ ¨ , xnqs ă 8.

Hence, L{kL is a function field.

We now prove the last assertion. Setting θ :“ λ´1˝λ̂, we prove that we obtain a K-isomorphism
ρ : L̂ Ñ L by defining

ρ

˜

řn
i“1 αiβi

řm
j“1 γjδj

¸

“

řn
i“1 αiθpβiq

řm
j“1 γjθpδjq

where αi, γj P K and βi, δj P kL̂ and
m
ÿ

j“1

γjδj ‰ 0.
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We claim that for elements Ai P K and Bi P kL̂ we have

(2)
n

ÿ

i“1

AiBi “ 0 if and only if
n

ÿ

i“1

AiθpBiq “ 0 .

Then the formula for ρ produces an element in L and different expressions for an element of L̂
lead to the same image and the map ρ is injective. We immediately see that ρ is a K-morphism,
and it is surjective because θ is invertible.

Notice that (2) only involves a finite number of elements and so we may assume that kL̂ and
kL are finitely generated over k.

Let k1{k have transcendence basis t1, ¨ ¨ ¨ , tm and that is generated over kpt1, ¨ ¨ ¨ , tmq by some
elements αi. Then by construction the elements Ti “ λ´1ptiq are a transcendence basis of kL
(and they are algebraically independent over K) which generate kL together with the elements
λ´1pαiq. The correspondence ti ÞÑ Ti maps the minimal polynomial of α to the one of λ´1pαiq.
The analogous statement holds for kL̂, and we deduce that (2) holds.

If kL{k is purely transcendental with transcendental basis tTiuiPI , by Lemma 7 the field kL “

kpTiqiPI is algebraically closed in L “ KpTiqiPI . So the constant field of L is kL. In general,
kL{k will have an intermediate extension k1

L{k that is purely transcendental. By applying what is
above, we may replace K{k by k1

LK{k1
L and are left to deal with the case where kL{k is algebraic.

Since kLK{kL is a function field, the extension rkL{kL is finite. We are left to prove that rkL{kL is
purely inseparable.

So write rkL “ kpγ1, ¨ ¨ ¨ , γrq for some γ1, ¨ ¨ ¨ , γr algebraic over k. We prove the result by
induction on r. The result holds trivially for r “ 0. Now, suppose the result holds for some
r ´ 1 ě 0 and let k1 “ kpγ1, ¨ ¨ ¨ , γr´1q and L1 :“ Kk1 “ Kpγ1, ¨ ¨ ¨ , γr´1q. Let k2 be the algebraic

closure of k1 in L1. To conclude, it suffices to prove that rkL is purely inseparable over k2. Since
γr is algebraic over k, the same is true for the coefficients of the minimal polynomial minpγr, L1q

of γr over L1. So minpγr, L1q P k2rXs and hence minpγr, L1q “ minpγr, k2q, so we have

rL1pγrq : k2s “ rL1pγrq : L1srL1 : k2s “ rk2pγrq : k2srL1 : k2s

and we deduce rL1 : k2s “ rL1pγrq : k2pγrqs.

If c P rkL and p :“ charpkq, there is an integer u ě 0 (taking pu “ 1 if p “ 0) for which
the element cp

u

is separable over k2pγrq. By separability, we have k2pγr, c
pu

q “ k2pδq for some
primitive element δ. We can write

rL1pγrq : k2pγr, c
pu

qs “ rL1pδq : k2pδqs “ rL1 : k2s “ rL1pγrq : k2pγrqs,

where the second inequality is because a separable extension is linearly disjoint from an inseparable
extension. Hence, cp

u

P k2pγrq, so c is purely inseparable over kL “ k2pγrq. □

5. Divisibility modulo constants

5.1. Divisibility parameter modulo constants. Let K{k be a function field and let ℓ be a

prime number different from charpkq. We will see in Lemma 20 that for any α P Kˆzrkˆ there

exists a maximal integer D ě 0 such that α P rkˆKˆℓD , which we call ℓ-divisibility parameter
modulo constants over K. We say that α P Kˆ is ℓ-indivisible modulo constants if D “ 0, which

means α R rkˆKˆℓ.

Lemma 20. Let α P Kˆzrkˆ. There is an integer D ě 0 which is the largest integer n for which

α P rkˆKˆℓn . Moreover, if α “ cβℓn for some c P rkˆ, for some β P Kˆ, and for some integer
n ě 0, we have D “ n if and only if β is ℓ-indivisible modulo constants. Consequently, for all but
finitely many primes ℓ, α is ℓ-indivisible modulo constants.

Proof. There is v P PrimepK{kq such that vpαq ‰ 0 (see Lemma 4 (ii)). This shows that D is
well-defined and it also proves the last assertion. If β is not ℓ-indivisible modulo constants, we

can write β “ c1β
ℓ
1 for some c1 P rkˆ and for some β1 P Kˆ. Then α “ pcc1qβℓn`1

1 P rkˆKˆℓn`1

,

implying that n ă D. Conversely, suppose that n ă D and write α “ c2β
ℓD

2 for some c2 P rkˆ and
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for some β2 P Kˆ. We can write βℓn “ pc2c
´1
1 qβℓD

2 hence there is γ P k such that β “ γβℓD´n

2 .

Since γ P K X k “ rk we deduce that β is not ℓ-indivisible modulo constants. □

Lemma 21. Let α P Kˆ, and suppose that ζℓ P K. For any M ě 1 not divisible by charpkq

the ℓ-divisibility parameter D of α over K{rk is the same over KpζM q{kpζM q. If L{kL is a finite
constant extension of K, then the ℓ-divisibility parameter D of α over K is the same over L.

Proof. Write α “ cβℓD with c P rkˆ, β P Kˆ. Since β is ℓ-indivisible modulo constants (and a
constant extension of prime degree is geometric), the extension Kp ℓ

?
βq is not contained in Kk. We

deduce that the extension LpζℓD`1 , ℓD`1?
αq{K is not contained in Kk, which makes it impossible

to have α “ cLg
ℓD`1

with cL P rkˆ
L , g P Lˆ. □

Example 22. Let K “ kptq, let s be a positive integer and let α “ c
śs

i“1 P
ni
i where c P kˆ, Pi

are distinct monic irreducible polynomials in krts, and ni P Zzt0u. Then the divisibility parameter
of α over K is DK “ mintvℓpniq, 1 ď i ď su because krts is a unique factorization domain.

Suppose that c “ 1 and let n be a non-zero integer pairwise coprime with each ni. Consider
the function field L{k such that L “ Kpyq for some choice of y in an algebraic closure K̄ of K
such that yn “ α (the function field L{k is called superelliptic if n and all ni are positive).

If ℓ divides n, then the ℓ-divisibility parameters of α over L is ordℓpnq. If ℓ divides the greatest
common divisor of the ni’s, then the ℓ-divisibility parameter of α over L (equivalently, over K) is
mintvℓpniq, 1 ď i ď su.

Remark 23. Suppose that α P Kˆzrk, and let n ě 1. If L{K is a constant extension containing
ζℓn , then we have

rLp ℓn
?
αq : Ls “ rLp ℓD

?
αq : Ls ¨ ℓn´D for n ą D .

Indeed, by Lemma 21 the ℓ-divisibility parameter D over L is the same as over K and hence

α R LˆℓD`1

. We conclude by Kummer theory.

5.2. Independence modulo constants. Let K{k be a function field and let n ě 1 be an integer

coprime with charpKq. If G is a subgroup of Kˆ, then we write Kp
n
?
Gq for the extension of K

generated by all the n
?
α, with α P G. This extension is uniquely determined by G, as a subfield of

a fixed algebraic closure K. In particular, if tα1, ¨ ¨ ¨ , αru is a minimal subset of Kˆ of generators
for G, then by [3, Corollary 6.1.16] we have

Kp
n
?
Gq “ Kp n

?
α1, ¨ ¨ ¨ , n

?
αrq “ Kp n

?
α1q ¨ ¨ ¨ ¨ ¨ Kp n

?
αrq

and we have a canonical group isomorphism

GalpKp
n
?
Gq{Kq

»
ÝÑ GalpKp n

?
α1q{Kq ˆ ¨ ¨ ¨ ˆ GalpK n

?
αrq{Kq.

We now suppose that n is the power of some prime number ℓ and hence we will suppose that
ζℓ P K (as we are interested in the Kummer extensions, we may replace K by Kpζℓq).

Definition 24. We say elements α1, . . . , αr P Kˆ are ℓ-independent modulo constants if for each
vector px1, ¨ ¨ ¨ , xrq P Zr not in pℓZqr, the element

śr
i“1 α

xi
i is ℓ-indivisible modulo constants.

Lemma 25. Let α1, ¨ ¨ ¨ , αr P Kˆ be ℓ-independent modulo constants. The group generated by

the images of α1, ¨ ¨ ¨ , αr in the quotient group Kˆ

rkˆ
has rank r. In particular, the αi’s generate a

subgroup G of Kˆ that is torsion-free and of rank r.

Proof. The latter assertion is readily seen to be a consequence of the former. Suppose that
η :“

śr
i“1 α

xi
i for some non-zero vector px1, ¨ ¨ ¨ , xrq P Zr. Up to replacing η, we may suppose

without loss of generality that not all xi are divisible by ℓ. Since η is not ℓ-indivisible modulo
constants, this contradicts the assumption of ℓ-independence modulo constants. □

The function fields appearing in the next theorem are implicitly considered as function fields
over the same field k.

Theorem 26. Let G be a torsion-free subgroup of Kˆ of rank r ą 0, and write G “ xα1, . . . , αry

with αi P Kˆ. The following are equivalent:
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(i) The elements α1, . . . , αr are ℓ-independent modulo constants.

(ii) The Kummer extension Kp
ℓ

?
Gq{K has degree ℓr and it is geometric.

(iii) For every m ě n ě 1 the Kummer extension Kpζℓm , ℓn
?
Gq{Kpζℓmq has degree ℓrn and it

is geometric.
(iv) For every n ě 1 the Kummer extension Kpζℓ8 , ℓn

?
Gq{Kpζℓ8 q has degree ℓrn and it is

geometric.
(v) For every n ě 1 the Kummer extension kKp

ℓn
?
Gq{kK has degree ℓrn and it is geometric.

(As the given Kummer extensions have exponent dividing ℓn and rank at most r, their degree being
ℓrn implies that their Galois group is pZ{ℓnZqr.)

Proof. (iii) ô (iv) Fix n ě 1. By Kummer theory, the degrees of the given extensions do not exceed

ℓrn. The degree of Kpζℓ8 , ℓn
?
Gq{Kpζℓ8 q divides the one of Kpζℓm , ℓn

?
Gq{Kpζℓmq. Conversely,

since the degree in piiiq is constant in m, the two extensions Kpζℓ8 q and Kpζℓn ,
ℓn
?
Gq are linearly

disjoint over Kpζℓnq and hence the degree of the Kummer extension equals ℓrn also over Kpζℓ8 q.
Now we may suppose that the given extensions have degree ℓnr and we only need to show that
if one of them is geometric, the other is also geometric. By Proposition 16, the constant field of

Kpζℓmq{k is rkpζℓmq while the one of Kpζℓ8 q{k is rkpζℓ8 q by Proposition 16. Moreover, we can write

Kpζℓ8 , ℓn
?
Gq “

Ť8

m“1 Kpζℓm , ℓn
?
Gq.

Suppose that all extensions Kpζℓm , ℓn
?
Gq{Kpζℓmq are geometric. An element γ P Kpζℓ8 , n

?
Gq

that is algebraic over k belongs to some field Kpζℓm , ℓn
?
Gq. Our assumption on this field then

implies γ P rkpζℓmq. This shows that Kpζℓ8 , n
?
Gq X k “ rkpζℓ8 q.

Now suppose that Kpζℓ8 , n
?
Gq{Kpζℓ8 q is geometric. An element of Kpζℓm , n

?
Gq that is alge-

braic over k belongs to rkpζℓ8 q and hence to rkpζℓuq for some u ě m. We conclude by proving

that Kpζℓm , n
?
Gq X rkpζℓuq “ rkpζℓmq. If we had ζℓm`1 in Kpζℓm , n

?
GqzKpζℓmq, then the degree of

Kpζℓm , n
?
Gq{Kpζℓmq would not be the same as the one of Kpζℓ8 , n

?
Gq{Kpζℓ8 q, contradiction.

(iii) ñ (ii) This is immediate by taking m “ n “ 1.

(ii) ñ (iii) Since Kp
ℓ

?
Gq{K is geometric, we deduce that Kpζℓm , ℓ

?
Gq{Kpζℓmq has also degree

ℓr. By Kummer theory, we deduce that Kpζℓm , ℓn
?
Gq{Kpζℓmq has degree ℓrn. By Lemma 15 it

suffices to prove that Kpζℓm , ℓ
?
Gq{Kpζℓmq is geometric. This extension is a tower of extensions of

degree ℓ that are nonconstant and hence geometric by Remark 14, so we may conclude.
(i) ô (ii) Property piiq is equivalent to the fact that for every α P G that is not an ℓ-th power

in G the extension Kp ℓ
?
αq{K is geometric of degree ℓ (because the Galois group of Kp

ℓ
?
Gq{K has

exponent dividing ℓ, and an extension of degree ℓ is geometric if and only if it is not constant).
Recalling that ζℓ P K, by Lemma 18 the above property precisely means that every element
α :“

śr
i“1 α

xi
i is ℓ-indivisible up to constants whenever the integers xi’s are not all divisible by ℓ.

(i) ô (v). The extension kKp
ℓn
?
Gq{kK is always geometric. Indeed, the constant field of

kKp
ℓn
?
Gq is a finite extension of the constant field of kK hence it is k. Property (i) means that

any element α :“
śr

i“1 α
xi
i (where the integers xi’s are not all divisible by ℓ) is ℓ-indivisible

modulo constants. Property (v) (the assertion on the degree) means, by Kummer theory, that any
such element is not an ℓ-th power in kK. We may conclude by Lemma 18 (i) ô (iv). □

Corollary 27. Suppose that α1, . . . , αr P Kˆ can be expressed as αi “ ciβ
ℓDi

i , where ci P rk and
where the elements β1, . . . , βr are ℓ-independent modulo constants over K. For every n ě 1 and
for every M such that ℓn | M , the maximal constant subextension of KpζM , ℓn

?
Gq{K is

LM,n :“ KpζM , ℓminpD1,nq?α1, . . . , ℓminpDr,nq
?
αrq .

Moreover, we have

GalpKpζM ,
ℓn
?
Gq{LM,nq » GalpkKp

ℓn
?
Gq{kKq »

r
ź

i“1

Z{ℓmaxpn´Di,0qZ .

Proof. By definition of the ℓ-divisibility parameters, LM,n is a constant extension of K contained

in KpζM , ℓn
?
Gq. Remark that we have

kKp
ℓn
?
Gq “ kKp

ℓmaxpn´D1,0q
a

β1, . . . ,
ℓmaxpn´Dr,0q

a

βrq .
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Theorem 26 ensures that the latter field is a geometric extension of kK whose Galois group is
isomorphic to

śr
i“1 Z{ℓmaxpn´Di,0qZ. To conclude, it suffices to show that KpζM , ℓn

?
Gq X kK “

LM,n. This is the case because the degree of KpζM , ℓn
?
Gq{LM,n is a multiple of k̄Kp

ℓn
?
Gq{k̄K

hence it equals
řr

i“1 maxpn ´ Di, 0q (it is at most this number by Kummer theory as ℓn
?
αi is an

ℓmaxpn´Di,0q-th root of ℓminpDi,nq?αi). □

5.3. Good basis modulo constants. In the following definition, we let Di be the ℓ-divisibility
parameters of αi over K.

Definition 28. Consider a finitely generated subgroup G of Kˆ that intersects rk only trivially
and that has positive rank r. Let tα1, . . . , αru be a basis of G. This basis is said to be an ℓ-good
basis modulo constants if, equivalently:

(i) the quantity
řr

i“1 Di is maximal among the bases of G;

(ii) we can write αi “ ciβ
ℓDi

i where ci P rk and βi P K and β1, . . . , βr are ℓ-independent modulo
constants.

The multiset of D1, ¨ ¨ ¨ , Dr is uniquely determined by K and G (see Remark 32). We call it the
ℓ-divisibility parameters modulo constants of G over K.

Proposition 29. Definition 28 is well-posed, namely the equivalence holds true.

Proof. (i)ñ(ii) By the definition of the ℓ-divisibility parameters we can write αi “ ciβ
ℓDi

i where

ci P rk and βi P K. Suppose that the βi’s are not ℓ-independent modulo constants. So there
are a non-empty subset J Ď t1, . . . , ru and integers xj coprime to ℓ such that β :“

ś

jPJ β
xj

j is
not ℓ-indivisible modulo constants. We may suppose without loss of generality that 1 P J and
D1 “ maxtDj : j P Ju. We may additionally suppose that x1 “ 1 (by raising β to some power y1
such that x1y1 ” 1 mod ℓ and then discarding an ℓ-th power). Define

α :“
ź

jPJ

α
xjℓ

D1´Dj

j .

By inspecting the factor j “ 1, we may replace α1 by α and still get a basis of G. Moreover, by
construction

αβ´ℓD1
“

ź

jPJ

α
xjℓ

D1´Dj

j

˜

ź

jPJ

β
xjℓ

D1

j

¸´1

“
ź

jPJ

c
xjℓ

D1´Dj

j

is a constant hence (since β is not ℓ-indivisible modulo constants) the first divisibility parameter
of α is strictly larger than D1, contradicting the maximality of

řr
i“1 Di.

(ii)ñ (i) We cannot have a different basis tα1
1, ¨ ¨ ¨ , α1

ru of G such that
řr

i“1 D
1
i ą

řr
i“1 Di.

This is because, if n is sufficiently large, by Corollary 27 the degree of kKp
ℓn
?
Gq{kK has ℓ-adic

valuation nr ´
řr

i“1 Di while

rkKp
ℓn
?
Gq : kKs “ rkKp ℓ

maxpn´D1
1,0qa

α1
1, . . . ,

ℓ
maxpn´D1

r,0q
a

α1
rq : kKs ď nr ´

r
ÿ

i“1

D1
i .

□

Theorem 30. Consider a finitely generated subgroup G of Kˆ of rank r ą 0 that intersects rk
only trivially. Then the following statements hold.

(i) The group G has an ℓ-good basis modulo constants.
(ii) For all sufficiently large n we have

(3) rkKp
ℓn`1?

Gq : kKp
ℓn
?
Gqs “ ℓr .

(iii) There exists an integer ε ě 0 such that for all n ą ε we have

G X rkˆKˆℓn Ď Gℓn´ϵ

.
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Proof. Observing that pk̄Kqˆℓn “ k̄ˆpKˆℓnq, we have G X pk̄Kqˆℓn “ G X rkˆKˆℓn hence piiiq is
equivalent to piiq by Kummer theory over kK. If G has an ℓ-good basis modulo constants, then
piiq is proven in Corollary 27. The converse implication is because, if there is a basis such that
ř

i Di ą pn ` 1qr, then (3) does not hold.
We conclude by proving piiiq. By applying Lemma 4 to a set of generators of G, there is a finite

non-empty subset S of PrimepK{kq of cardinality #S consisting of the divisors v such that there
is some g P G such that vpgq ‰ 0. Consider the group morphism

Φ : G Ñ Z#S g ÞÑ pvpgqqvPS .

The kernel of Φ is trivial because by Lemma 4 it consists of constants, thus ΦpGq is a subgroup of
Z#S of rank r. By choosing an appropriate basis of G, the basis of ΦpGq consists of the column
vectors of the following matrix, where the integers c1, . . . , cr are the non-zero entries:

¨

˚

˚

˚

˚

˚

˚

˚

˝

c1
c2

. . .

cr

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Let ε be the maximum of the ℓ-adic valuation of the integers ci’s and fix n ą ε. If g P G is such
that ℓn | vpgq for every v P S, then all the coordinates of Φpgq with respect to the above basis are

divisible by ℓn´ε, so we deduce that g P Gℓn´ϵ

. □

Theorem 31. Let K{k be a function field and let G be a finitely generated subgroup of Kˆ. An
ℓ-good basis modulo constants exists for G if and only if the rank of G is the same as the rank of
G modulo constants.

Proof. The sufficiency has been shown in Theorem 30 and the necessity follows from Corollary 27
by working over kK. □

Remark 32. The multiset of parameters Di for an ℓ-good basis modulo constants is uniquely
determined by K and G. This is clear from the Galois group structure in Corollary 27 by taking
n ą maxtDi : 1 ď i ď ru. Provided that G admits an ℓ-good basis modulo constants, there is
an easy algorithm to construct one from any given basis of G, which is based on the following
observation: if the elements of a given basis of G are not ℓ-independent modulo constants, then
there is a way to modify one element of the basis and increase

ř

i Di (following the strategy in
the proof of [2, Theorem 14], which also resembles the proof of Proposition 29 piq ñ piiq).

6. Reducing to cyclotomic-Kummer extensions of the constant field

Consider a function field K{k and a Kummer extension of the form

KpζM ,
N
?
Gq{KpζM q ,

where G is a finitely generated subgroup of Kˆ and M and N are positive integers such that
M is divisible by N but not by charpKq. In this section, we precisely show how the questions of
computing the degree of this extension and of computing the group structure of its Galois group
reduce to the corresponding questions for the Kummer extension of the constant fields.

Considering the prime factorization N “
ś

ℓ|N ℓvℓpNq, by Kummer theory (notice the pairwise

coprime exponents of the Kummer extensions in the product group) we have a group isomorphism

GalpKpζM ,
N
?
Gq{KpζM qq »

ź

ℓ|N

GalpKpζM ,
ℓvℓpNq?

Gq{KpζM qq .

We will therefore restrict to the case where N “ ℓn for some fixed prime number ℓ different from
charpkq and for some integer n ě 1. We may then without loss of generality replace K by Kpζℓq.

We may also suppose that G is not a subgroup of rkˆ. Hence, from now on G0 :“ G X rk is a
proper subgroup of G and we can write the set decomposition G “ G0G

1, where G1 is a subgroup
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of G isomorphic to G{G0. Let r ą 0 be the rank of G1 and let D1, . . . , Dr be the ℓ-divisibility
parameters modulo constants of G1 overK. Up to relabelling, we suppose without loss of generality

that D1 ď D2 ď ¨ ¨ ¨ ď Dr. Let αi “ ciβ
ℓDi

i be the elements of an ℓ-good basis modulo constants

of G1 over K, with ci P rk and βi P K.
The following result reduces the problem of determining the degree of the Kummer extension

KpζM , ℓn
?
Gq{KpζM q to determine the degree of a Kummer extension that only depends on rkpζM q,

ℓn, G0, the ci’s and the Di’s:

Theorem 33. Define H as the subgroup of Kˆ generated by G0 and by the elements cℓ
maxpn´Di,0q

i .
Then we have

rKpζM ,
ℓn
?
Gq : KpζM qs “ rrkpζM ,

ℓn
?
Hq : rkpζM qs ¨

r
ź

i“1

ℓmaxpn´Di,0q .

Proof. Remark that, by Lemma 6 applied to the monogenic extension rkpζM , ℓn
?
Hq{rkpζM ) we have

rrkpζM ,
ℓn
?
Hq : rkpζM qs “ rKpζM ,

ℓn
?
Hq : KpζM qs .

We may conclude by Corollary 27 (applied to G1) because the largest constant subextension of

KpζM , ℓn
?
Gq{KpζM q is generated by the ℓn-th roots of H, in view of Lemma 12 (where C is the

Kummer extension generated by G0 and K 1 is the Kummer extension generated by G1). □

Definition 34. We define elements d1, . . . , dr in Zě0 Y t`8u as follows: di is maximal such that

the image of ci in the quotient group rkpζM qˆ{xG0, cj : j ą iy is an ℓdi-th power.

Remark 35. According to the use that we make of d1, ¨ ¨ ¨ , dr, we do not need their precise value
if we know that di ě Di for all i. However, we could compute di by multiplying ci by an element
of xG0, cj : j ą iy (and using powers of the generators with exponents from 0 to ℓDi ´ 1). Notice
that, if G0, the Di’s and the ci’s are known in advance, then calculating the parameters di only

involves computations over rkpζM q.

Theorem 36. With the above notation, we have a group isomorphism

Gal
´

KpζM ,
ℓn
?
Gq{KpζM q

¯

» Gal
´

rkpζM , ℓn
a

G0q{rkpζM q

¯

ˆ

r
ź

i“1

Z{ℓmaxpn´minpDi,diq,0qZ .

Proof. By Lemma 6 applied to the monogenic Kummer extension rkpζM , ℓn
?
G0q{rkpζM q we have

GalprkpζM , ℓn
a

G0q{rkpζM qq » GalpKpζM , ℓn
a

G0q{KpζM qq .

By Lemma 21 the ℓ-divisibility parameters of G0 over K are the same over KpζM q and by Propo-

sition 16 the constant field of KpζM q{rk is rkpζM q. We then work over KpζM q{rkpζM q.
Notice that multiplying αi by an element of G0 does not change the ℓ-divisibility parameter.

Also, since the βi’s are ℓ-independent modulo constants and since we assume Di ď Dj for i ă j,
then we can replace αi by αiα

e
j for any e P Z without altering the i-th ℓ- divisibility parameter.

We perform such multiplications, modifying the elements αr, αr´1, . . . , α1 in this order. In this

way, we can achieve that ci is an ℓDi-th power in rkpζM qˆ or that the largest integer di such that

ci is an ℓdi-th power in rkpζM qˆ is strictly less than Di and is as in Definition 34. Consider the
tower of Kummer extensions

Lp
ℓn
a

G0q Ď Lp
ℓn
a

G0, ℓn
?
αrq Ď Lp

ℓn
a

G0, ℓn
?
αr, ℓn

?
αr´1q Ď ¨ ¨ ¨ Ď Lp

ℓn
?
Gq .

By definition of di (and by Kummer theory over L, recalling that ℓ
?
βi R L) the Galois group of

Lp ℓn
?
αiq{L is isomorphic to Z{ℓmaxpn´minpDi,diq,0qZ. To conclude, we only need to prove that this

extension has the same degree as

Lp ℓn
?
αi,

ℓn
a

G0, ℓn
?
αj : j ą iq{Lp

ℓn
a

G0, ℓn
?
αj : j ą iq .

By the radical correspondence of Kummer theory, this is equivalent to saying that there are no
integers x satisfying both

αx
i mod Lˆℓn P xG0, αj : j ą iy mod Lˆℓn and αx

i R Lˆℓn .
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If di ě Di we conclude because, by Theorem 26 (applied to the βi’s), no integer z satisfies both

(4) βz
i mod Lˆℓn P xrkˆ, βj : j ‰ iy mod Lˆℓn and βz

i R Lˆℓn .

Now suppose that di ă Di. We have αx
i “ cℓ

y

i βℓDi`y

i and without loss of generality, that x “ ℓy

for some integer y ě 1. If Di ` y ă n we conclude because there is no integer z as in (4). Now
suppose that Di ` y ě n and hence αx

i ” cxi mod Lˆℓn . We are left to prove that we cannot have

cxi mod Lˆℓn P xG0, αj : j ą iy mod Lˆℓn and cxi R Lˆℓn .

Notice that, since rkpζM q is the constant field of L, for any γ P rkpζM qˆ, we have γ P Lˆℓn if and

only if γ P rkpζM qˆℓn . We claim that if cxi mod Lˆℓn is in xG0, αj : j ą iy mod Lˆℓn , then it is in

xG0, cj : j ą iy mod Lˆℓn . This will conclude because no integer x can satisfy both

cxi mod rkpζM qˆℓn P xG0, cj : j ą iy mod rkpζM qˆℓn and cxi R rkpζM qˆℓn .

Indeed, by construction, the divisibility of ci is the same in rkpζM qˆ as the one of its image in

the quotient group rkpζM qˆ{xG0, cj : j ą iy. The claim holds because Theorem 26 (applied to the

βi’s) gives that an integer z such that αz
j mod Lˆℓn is in xrk, αh : h ‰ jy mod Lˆℓn must satisfy

vℓpzq ` Di ě n, and hence αz
j ” czj mod Lˆℓn . □

Remark 37. The extension rkpζM , ℓn
?
G0q{rkpζM q is finite and separable, hence, monogenic. There-

fore, by Lemma 6 we have

rKpζM , ℓn
a

G0q : KpζM qs “ rrkpζM , ℓn
a

G0q : rkpζM qs.

Example 38. We can apply the above results multiple times if rk is a function field. For example,

let K “ rkpSq where rk “ QpT q. Then by Theorem 33 we may first reduce to QpT q and then to Q.
Alternatively, we can see K as a function field over Q and apply Theorem 33 to reduce directly
from K to Q. This is possible because the Kummer extensions KpζM , N

?
Gq{KpζM q do not depend

on the choice of the constant field.

Example 39. We use the notation of Example 22. Fix two distinct monic irreducible polynomials
P1 and P2 and let c1, c2 P kˆ. We consider the group

G “ xc1P1, c2P1P
2
2 y .

Both generators are 2-indivisible modulo constants. We also have G “ xα1, α2y, where

α1 :“ pc1c2qpP1P2q2 and α2 :“ c2P1P
2
2 .

The latter is a 2-good basis because P1P2 and P1P
2
2 are 2-independent modulo constants as they

generate the same group as P1,P2. The 2-divisibility parameters modulo constants are Dpα1q “ 1

and Dpα2q “ 0. We have Kp
?
Gq “ Kp

?
c1c2,

?
c2P1q. Thus, for any n ě 1, we have

GalpKpζ2n ,
2n
?
Gq{Kpζ2nqq »

#

Z{2n´1Z ˆ Z{2nZ if c1c2 P rkˆ2,

Z{2nZ ˆ Z{2nZ if c1c2 R rkˆ2.
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