KUMMER THEORY FOR FUNCTION FIELDS

FELIX BARIL BOUDREAU AND ANTONELLA PERUCCA

ABSTRACT. We develop Kummer theory for algebraic function fields in finitely many transcen-
dental variables. We consider any finitely generated Kummer extension (possibly, over a cyclo-
tomic extension) of an algebraic function field, and describe the structure of its Galois group.
Our results show in a precise sense how the questions of computing the degrees of these exten-
sions and of computing the group structures of their Galois groups reduce to the corresponding
questions for the Kummer extensions of their constant fields.

1. INTRODUCTION

Let M > 1 be an integer and let K be a field containing a primitive M-th root of unity. A
Kummer extension of K of exponent dividing M is an Abelian field extension of K obtained by
adjoining M-th roots of elements of K>, the multiplicative subgroup of K. Kummer theory says
that any Abelian extension of K of exponent dividing M is of this form and, in fact, Abelian
extensions of K of exponent dividing M correspond bijectively with subgroups of the quotient
group K*/K>*M_ In this work, we develop Kummer theory for arbitrary algebraic function fields
and go beyond the classical theory: Using parameters that measure the divisibility of elements
up to constants, we completely solve the problem of understanding the nature of Kummer theory
over algebraic function fields by showing in a precise way that this theory reduces to the Kummer
theory over the corresponding constant fields.

1.1. Overview of the main results. We consider a function field K /k, work within a fixed
algebraic closure K of K, and suppose without loss of generality that k is algebraically closed
in K. For any element o € K*\k*, and any prime number ¢ # char(k), we can speak of its
L-divisibility parameter modulo constants over K. This is the largest non-negative integer D such
that o € kK *¢".

For an integer M > 1 not divisible by char(k), and a choice (s of primitive M-th root of unity
in K, the field K((ar) is a cyclotomic extension of K. Given a finitely generated subgroup G of
K>, we consider the Kummer extensions

(1) K(Cy, VG)/K(Cy)  where N | M.

In this article we show that, to compute the degree and the structure of the Galois group of the
above Kummer extensions, we may reduce to computations involving only the constant field k.

By Kummer theory, we may suppose that N = ¢" for some prime number ¢ and some integer
n = 1. We can write G = GoG’" where Gg := G n k* and where G’ is a subgroup of G such that
G' nk* = {1}. We denote by r the rank of G’ and we suppose that r is strictly positive (for r = 0,
see Remark 37). A careful choice of basis for G’, which we call ¢-good basis modulo constants
(see Definition 28), allows us to conduct a finer analysis of Galois group structures of Kummer
extensions. The following result, which combines Corollary 27 and Theorem 31, considers the
so-called geometric Kummer extension Kk( vV G)/Kk:

Theorem 1. There is a basis {a1,...,a,} of G’ such that, calling D; the (-divisibility parameter
modulo constants of a; over K((;), the integer > | D; is mazimal (by varying the basis of G').
The multiset of the D;’s is uniquely determined (it only depends on K/k and G), and for every
n =1 we have

Gal(KIQ( en /G)/K]%) ~ H Z/gmax(n—Di,O)Z )
=1
1
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To simplify the notation, suppose that (3 € k. We deduce the following result on the cardinality
of the Kummer extensions (see Theorem 33):

Theorem 2. With the above notation, let ¢; € k* be such that a;/c; is in KX Then we have
T
[K( /%) : K] _ [k‘, gm, [min(n.DI\)/a’ o Emm(n,DT\)/a) . k] . Hgmax(n—D,y,O) )
i=1
Up to relabelling, we suppose without loss of generality that D; < Dy < --- < D,.. Our main
result gives the precise Galois group structure of the Kummer extension K ( v/G)/K (see Theorem
36):

Theorem 3. With the above notation, let d; € Zso U {0} be mazimal such that the class of ¢; is
an €% -th power in k* [{Go,c; : j > iy. Then there is a group isomorphism

Gal (K (V@) /K) = Gal (k ( /Go) /k) x H 7,/max(n=min(D:.d).0)7,
i=1

Thanks to the above results, to determine the cardinality and the structure of the Galois group
of the Kummer extensions in (1), as described in the last section, it suffices to compute the
parameters D;’s and the constant elements ¢;’s, and this then reduces to computations involving
only the constant field k. Such computations can be done (in principle) for all finite fields, but
there is also an explicit finite procedure to perform them for number fields and p-adic fields (see
1,6]).

The structure of the paper is as follows: Section 2 contains background theory on algebraic
function fields and a lemma about rank 1 discrete valuations and ¢-divisibility modulo constants
of elements. Sections 3 and 4 are devoted to studying extensions of function fields (with some
general results that can be of independent interest). The theory of divisibility modulo constants
is developed in Section 5, and our main results for Kummer theory are proven in Section 6.

The idea of using parameters to consider the divisibility of elements in a given field comes from
past works of the second-named author on Kummer theory for number fields. Nevertheless, we
consider a completely new setting and we provide several auxiliary results to develop Kummer
theory for function fields in full generality.

1.2. Related Literature. Our paper addresses a natural question of Kummer theory for function
fields. The closest reference we have found is a paper from 1942 in Duke Math. J. by MacLane
and Schilling [4]. The authors consider algebraic function fields K /k with k algebraically closed
in K and study algebraic extensions L/ky, of them, generated by radicals. A radical is an element
of @ € L that has a positive integral power a™ in K up to an element that is algebraic over k, that
is oy € K* for some v € k. Extensions generated by radicals include, in particular, cyclotomic-
Kummer extensions. The motivation of [4] came from class field theory considerations and focus
on the theory of divisors and the willingness to generalize the main correspondence of Kummer
theory. Their work differs from our explicit study of field extensions with divisibility parameters,
and the results are very different. However, one may notice the same (natural) principle of setting
constant elements aside. Indeed, they also decompose a radical extension with the intermediate
extension that is the largest constant extension, which they call coefficient extension (see [4, §9
and §10 and in particular p.153, Corollary 1].

Although a classical subject, Kummer theory continues to be an active topic of research. On
the side of algebraic function fields, most of the literature seems to concentrate on the global
function fields. For example, the notion of genus field, analogous to the one for number fields,
was introduced in [7] for an algebraic function field K of a rational function field (), in analogy
with the number field side. There, the author computed the genus field for Kummer extensions of
the form K = F,(t)(v/D) for a prime number ¢ different from char(F,) and a polynomial in F,[¢]
that is -th power free. The results were then generalized to the compositum of linearly disjoint
such extensions in [8], using Carlitz modules.

The reader should also be aware of the following work. In [5, Theorems 1 and 4], the author
studies, for a given rational global function field IF,(t) of some characteristic p > 0, the “cyclotomic
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extension” Fy(t)(Ap) of F,(t) generated by the P-torsion points Ap, of a Drinfeld F[t]-module,
for any monic irreducible polynomial in F,[t] of degree dp. This is a Galois extension of groups
isomorphic to (F,[t]/(P))*. The let h} be the class number of the subextension of F,(t)(Ap)
corresponding to the subgroup F) of (Fy[t]/(P))*. The author shows that if p divides h},, then
there is an integer 0 < m < ¢% — 1, multiple of ¢ — 1, such that the m-th Bernoulli-Carlitz
number’s minimal numerator is divisible by P. This result is analogous to a result by Kummer
over Q. Hence, despite similar names, when restricted to the “ground” algebraic function field
F,(t), where loc. cit and our manuscript have a common intersection, the questions studied in
these two manuscripts are of different nature.

2. PREREQUISITES ON FUNCTION FIELDS AND NOTATION

An algebraic function field (or function field, for short) is a triple (K, k,n), comprised of a field
K containing a field &k such that K is finitely generated over k of transcendence degree trdeg(K /k)
equal to some positive integer n. In this case, we write K/k (and can refer to it as a function field
in n variables). Let {t1,ta, - ,t,} be a transcendence basis for K over k. The function field K /k
is a rational function field if K = k(t1,ta, - ,t,) and it is a global function field if n = 1 and k
is a finite field.

In this manuscript, a valuation on K /k is a surjective map v from K to Z u {00}, with Z the
additive group of integers and oo a symbol subject to the rules n + 00 = 00 + n = 00 + 00 = oo for
all n € Z. The map v is satisfying for all fi, fo € K* the properties v(f1f2) = v(f1) + v(f2) and
v(f1 + f2) = min{v(f1),v(f2)}, is such that if f € k*, then v(f) = 0 and v(0) = 0. In particular,
our valuations are discrete in the usual terminology.

The ring O, of all f € K* satisfying v(f) > 0, is called the valuation ring of v. It is a local
ring whose maximal ideal m, is the set of f € O, satisfying v(f) > 0. The field k, := O,/m, is
called the residue field of v. It can be seen as a field extension of k£ and the transcendence degree
trdeg(k,/k) of k, over k will be the dimension of v over k. A prime divisor of K /k is a valuation
of K /k of dimension n — 1 over k. Each prime divisor is a discrete valuation of rank 1 (that is, O,
has Krull dimension 1) and k, is a function field of transcendence degree n — 1 over k. We denote
by Prime(K /k) the set of prime divisors of K /k.

The constant field of K/k is the algebraic closure k of k inside K. The extension E/k is finite
as

[k k] = [kt tn) : k(ty, - t)] < [K : k(t, -+ tn)]

is finite. Therefore, K /% is an algebraic function field of n variables over k.

Fixing an algebraic closure K of K, if M is a positive integer not divisible by char(k), we denote
by Car a primitive root of unity in K (or inside the algebraic closure k of k in K) of order M and
we obtain a cyclotomic extension k(Car)/k.

Throughout the text, ¢ is a prime number different from char(k). We define k({s~)/k inside
K as the union, over the integers n > 1, of the cyclotomic extensions k(()/k. We also write vy
for the f-adic valuation on Q*. Also, if G is a group, then G = {1, - ,«,) means that G is
generated by a finite set of elements {aq, -, a,}.

Lemma 4. Let f € K*\k and c € k*.

(i) For all v € Prime(K /k) we have v(c) = 0 and v(cf) = v(f).

(i) There is a finite non-empty set S of Prime(K/k) such that v(f) # 0 for all v e S and
v(f) =0 for all v ¢ S. More precisely, S has at least two elements, v1, vy respectively
satisfying ord,, (f) > 0 and ord,,(f) < 0.

(i) There are only finitely many positive integers n such that f € kK*". In particular, there is
no prime number ¢ such that f is infinitely ¢-divisible (not even up to constant elements).

Proof. (i) This follows immediately from the fact that v is also a valuation on K /E
(ii) The finiteness of S is classical divisor theory and the rest is proven in [10, p.99, Ch VI,
§14 and p.175, Ch VII, §4 bis].
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(iii) This follows from (i) and (ii) since if ¢f € kK*™, then n divides v(cf) = v(f) for all
v € Prime(K /k).
O

3. EXTENSIONS OF FUNCTION FIELDS
3.1. General results. The following results hold for fields that are not necessarily function fields.

Definition 5. Let K and L be two extensions of a field k£ that are contained in some algebraically
closed field. The field K is said to be linearly disjoint from L over k if every finite set of elements
of K that is linearly independent over k is linearly independent over L.

Remark that if K and L are linearly disjoint over k, then K and L’ are linearly disjoint over k
for any intermediate extension k € L’ < L.

Lemma 6. Let k be a field that is algebraically closed in some field K. Let « be an element of
a fived algebraic closure k over k. Then k(o) and K are linearly disjoint over k, or equivalently,
k(o) @ K is a field, and we have [k(«) : k] = [K(«) : K]. In particular, the minimal polynomial
of a over K and over k are the same.

Proof. Let m(x) be the minimal polynomial of « over k. Any constant factor of m(z) over K
has its coefficients algebraic over k, hence in k. Therefore, m(x) is irreducible over K and the
statement follows. O

Lemma 7 ([9, p.253, Proposition 8.4.1)). If a field k is algebraically closed in K and {T;}ier is
an algebraically independent set over K, then k({T;}icr) is algebraically closed in K ({T;}ier)-

Lemma 8. Let K/k be a field extension such that k is algebraically closed in K. Fix some algebraic
closure K of K and fix an algebraic closure k of k contained in K. Let F/K be a finite extension
such that F < KL for some field L < k that is separable over k. Then (F nk)/k is finite and we
have F = K(F n k).

Proof. Notice that, as F//K is finite we may suppose, up to replacing L by a subfield, that L/k is
finite. Thus, L/k is primitive. Since we have K n L = k, then K ®j, L is a field by Lemma 6.

We now prove the statement by induction on the degree of F/K. If [F : K] = 1, the statement
is trivial because F' n k = k. Now suppose that [F : K| > 1 and that the statement holds for all
field extensions of lesser degree.

Suppose that F' ®j L is a field. Then the inclusion K — F' yields an injective ring morphism
¢1 : K@iL — F®;, L. We also have injective ring morphisms ¢y : FQiL — K and ¢ : KQpL — K,
that are given on elementary tensors by © ® y — xy. One sees the three morphisms satisfy the
compatibility ¢ = ¢ 0 ¢1. Since F € KL, then im(¢) = KL = im(¢3) and hence ¢; is an
isomorphism. Since L is a k-module, the functor e®y L is faithfully flat hence F' = K, contradicting
that [F: K] > 1.

If F®y L is not a field, then, by Lemma 6 the field k is not algebraically closed in F' and so there
is a non-trivial extension k; := F n k of k. So we have [F : Kki] < [F : K] and F < (Kky)(Lky)
and Lk /k; is separable. By induction hypothesis the field extension (F n k)/k; is finite and we
have F' = (Kky)(F nk) = K(F nk). O

3.2. Algebraic extensions of function fields. Given two algebraic function fields L/k;, and
K /k, we say that the former is an extension of the latter if L/K and kr/k are extensions of
fields. Moreover, if both L/K and kj/k are algebraic, we say the extension of function fields
is algebraic. From now on, an extension of function fields will mean an algebraic extension of
algebraic function fields. With the above notation we say that L'/kr/ is a subextension of L/ky,
if L' /kr, is an extension of K/k and L/ky, is an extension of L'/kr,. Suppose that L/ky is an
extension of K /k. Then the transcendence degree of L over kz, equals the one of K over k. The
constant field of L is %L = k n L and it is algebraic over k (for convenience, the field k;, will not
be specified if it equals k). In particular, K n %L = k. We call the extension of function fields
finite in case L/K and ki /k are finite. We call the extension of function fields Galois if L/K is
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Galois. In this case, kz/k is Galois (see Lemma 10) however k/k is not necessarily Galois. We
call the extension of function fields Abelian (respectively, of exponent N) if it is Galois and the
Galois group of L/K is Abelian (respectively, of exponent N). Note that for an Abelian extension
we have that %L /k is also Abelian while for an Abelian extension of exponent N, we have that
k1 /k is Abelian with exponent dividing N.

Remark 9. If L/k; is an extension of K /k, then L/K is finite if and only if kz /k is finite if and
only if k /k is finite. The second implication holds because the extensions ky, /kz, and k/k are both
finite. For the first implication choose transcendence variables 1, ..., z, for K/k, recall that the
two extensions K/%(atl, ..., Zy) and L/EL(:Bl, ..., &) are finite and write

[L:K|[K:k(z1,...,20)] = [L:k(@1,...,20)] = [L: ko, .. x0)][kL ¢ K]

Lemma 10. Let L/k;, be an extension of K/k. If L/K is separable, then ki /k is separable. If
L/K is normal, then kr,/k and kr/k are normal. Consequently,
(i) if L/K is Galois, then ky/k is Galois;
(it) if L/K is Galois and kr/k is separable, then kr/k is Galois;
(i) if L/ K is separable, then kY /k is Galois, where kY is the normal closure of ky, in k.

Proof We first prove that k;L / k is separable, assuming that L/K is separable. We may suppose
that kL /k is finite because if this extension is not separable, then there is some element « € kL
such that k( )/k is finite and not separable. We may also suppose that k1 /k is normal, up to
replacmg kL by its normal closure in k. Now assume that kL /k is not separable. Up to replacing
k by a separable extension, we may suppose that kL / k is purely inseparable. So let p be the finite
characteristic of k and let o € kL & be such that o™ € k holds for some positive integer m. As
Kn kL = k we have o € L ~ K such that a?” € K, contradicting the separability of L/K.

We now assume that L/K is normal and prove that ky, /k is normal, which immediately implies

that k L / k is normal. Consider an element of k 1, namely some « € L that is algebraic over k. The
conjugates of « are in L because L/K is normal and they are all algebraic over k, so they are in

%L. The last assertion is immediate. O

3.3. Constant and geometric extensions. We say that an algebraic extension L/kj, of K/k
is constant if L = Kk’ for some algebraic extension k' of k. Note that we may replace k¥’ by k'k
because L = K(k'k) and k'k/k is algebraic. Hence, we may suppose without loss of generality
that k < k.

Theorem 11. Let K/k be a function field, and let k' be an algebraic extension of k. If K or k'
is separable over k (in particular, if k is perfect), then the constant field of Kk' is k'.

Proof. Set L := KK’ and denote by k. its constant field. By Theorem 19 the extension kr/k’ is
finite and purely inseparable. So it suffices to prove that %L/ k' is separable.

Suppose that &’ /E is separable and fix o € k¥’ such that k¥’ = %( ). Since the minimal polynomial
of o over K divides the one over k, we deduce that L = K () is separable over K. To conclude
remark that, for an element of k 1, the minimal polynomial over k is the same as the one over K
by Lemma 6.

Now suppose that K /E is separable and let xy,---,x, € K be a transcendental basis over
k. Notice that K /%(:Bl, .-+ ,x,) is a finite separable extension and hence L is a finite separable
extension of k(z1,--- ,,). We deduce that kp(z1,--- ,2,)/k (z1,- - ,x,) is a finite separable
extension. So kz/k and hence k1 /k’ is separable by Lemma 10. O

Lemma 12. If C/K is a finite constant Galois extension and K'/K is a finite Galois extension

whose mazximal constant subextension is L/K, then CL/K is the maximal constant subextension
of CK'/K.
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Proof. Write C = k¢K and L = kK for some fields k¢, kp containing k and contained in k.
The extension CL/K is constant because we have CL = kckp K. If it is not maximal, let M/K
be the maximal constant subextension of CK'/K. By Galois theory, we have M = CL' for some
subextension L'/K of K'/K. Now, L’ strictly contains L, and L'/K must be constant by Lemma
8, contradicting the maximality of L. O

If L/ky is an extension of K/K, then k € L n k. This extension is said to be geometric if the
converse inclusion holds. We call an extension geometric if L Nk = k (remark that the inclusion
D always holds). Notice that an algebraic extension is geometric if and only if kj, = k.

Remark 13. An algebraic extension L/%L of K /% that is constant and geometric must be trivial.
For a constant extension we have L = Kk’ for some k € k' € k and k' < (Lnk) S k1, so, assuming
kr =k, we get k' = k and hence L = K.

Remark 14. An algebraic separable extension of function fields of prime degree is constant if and
only if it is not geometric. The “only if” direction is a consequence of Remark 13. Conversely,
suppose that the extension is not geometric. So there exists some v € %L\% Since %L C k we
deduce that v ¢ K hence it is a primitive element for L/K, showing that L = Kk(7) is constant.

Recall that any group whose order is the power of a prime £ has a normal subgroup of index /.

Lemma 15. Let ¢ be a prime number different from char(k). Let L/ky, be a finite Galois extension
of K /k such that the degree of L/K is a power of £. In particular, there exists a Galois subextension
of L/K of degree £. Write L' /K for the largest subextension of exponent £ (namely, the compositum
of all such extensions). Then L/ky is geometric if and only if L' /kr: is geometric.

Proof. If %L = %, then %LI = k. Conversely, suppose that EL /% is not trivial. This extension is
finite (because L/K is finite) and Galois (by Lemma 10) and its degree is a power of ¢ (by Lemma
6). Then it has a Galois subextension of degree ¢. This extension is of the form %(a) /% where
a € E\% Since o € L' we deduce that %L/ # k. O

3.4. Cyclotomic extensions. An extension L/kj, of K/k is called cyclotomic if L = K((p,) holds
for some integer m > 1. Since K ((,)/K is finite and Abelian, a cyclotomic extension of function
fields is finite and Abelian.

In the following results, ¢ is a prime number different from char(k) and k(=) = Uns1k((en).

Proposition 16. Let K/k be a function field. For every M > 1 that is not divisible by char(k),
the constant field of K(Car)/k is k(Car). Moreover, the constant field of K((o=)/k is k(Cp).

Proof. By the assumption on M, the field extension %(C M) /75 is separable. Hence, by Theorem 11
the constant field of K (Cpy) is k(Car). The field k(Cp=) is contained in the constant field of K (Cp= )
because its elements are algebraic over k. The converse implication holds because an element of
K ({=) that is algebraic over k is an element of K ((ym) for some integer m > 1 and hence is
contained in the constant field of K({sm ), which we have shown to be %(Cgm). d

Remark 17. Let K/k be a field extension such that k is algebraically closed in K. Fix some
algebraic closure K of K and choose an algebraic closure k of k contained in K. Let F/K be a
finite extension of degree coprime to char(k) that is contained in Kk. Then Lemma 8 applies.
Indeed, it is clear that ' < KL’ for some finite and normal extension L’ of k. Let L/k be the
maximal separable subextension of L’/k hence L'/L is purely inseparable. So K'L'/K L has degree
a power of char(k) and it has FL/K L as a subextension. This is only possible if FL = KL, giving
FcKL.

Lemma 18. Let f € K*. The following statements are equivalent:

(i) There exists g € Kk such that f = g*.
(ii) For some choice of £-th oot </f of f, the extension K({/f)/K is constant.
(i1i) For every {-th root /f of f, the extension K(/f)/K is constant.
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Moreover, these statements are implied by
(iv) There exist c € k and be K such that f = cb’.
and, if (o€ K (or if f € K**), they are equivalent to it.

Proof. First notice that if f € K** then all conditions (i) to (iv) hold (remark that K(¢,)/K is
constant). So now we may suppose that f ¢ K ** hence the polynomial z* — f is irreducible in
K[z] by [3, Theorem 9.1 of Chapter VI|. In particular, the extension K (v/f)/K has degree ¢ for
any choice of the ¢-th root of f.

To complete the proof of the last assertion we show that (#i7) implies that there is some
c € %(Cg) and b € K((,) such that f = cb’. We may clearly reduce to the case f ¢ K({7)*.
Recall from Proposition 16 that the constant field of K (¢;) is k((;). By assumption the extension
K (Co, /F)/K(Cp) is constant, so there is an extension k’/k((;) that has degree ¢ (by Lemma 6)
such that K (o, VF) = K(Co)k'. By Kummer theory over k((;) and over K(C;) there is c € k((y)*
such that ¥(¢) = k(Cs, ¥/¢) and we have fe' € K(()*‘. Thus we have f = cb’ where b is an
¢-th root of fc=tin K(¢p).

We are left to prove the equivalence of (i),(4i), and (4ii) in the case where f ¢ K*‘ noticing
that (ii1) = (i) is obvious.

(1) = (i1): By Lemma 8 (that can be applied thanks to Remark 17) we deduce that K(g)/K is
constant, so we conclude by choosing /f = g.

(ii) = (i): By assumption, K (v/f) = Kk’ with k’ a subfield of k and we may take g = ¥/f.

(i) = (iii): Let o, 3 € K\K be such that of = ¢ = f. Suppose that K(a)/K is constant
hence K(B)/K is contained in the constant extension K(«,(y)/K. By Lemma 8 (that can be
applied thanks to Remark 17) we deduce that K(3)/K is constant. O

4. AN AUXILIARY RESULT ON FUNCTION FIELDS EXTENSIONS

The following result generalizes [9, p.254, Theorem 8.4.2] from transcendence degree 1 to any
finite transcendence degree. We let K /k be a function field, and we suppose that k is algebraically
closed in K.

Theorem 19. If k' is an extension of k, then there exists a function field L/ky, that is an extension
of K/k such that L = kK and there is a Z:—isomorphism A:kp — K. The above properties imply
that %L s a purely inseparable finite extension of kr. Finally, if ﬁ, kg, \ are also as above, there
exists a K-isomorphism L—>L extending A~' o .

Proof. Let n = trdeg (K /k) and fix a transcendence basis x1,- - , 2, of K over k.

Let {t;}ier be a transcendence basis of k' over k and choose elements {T;};c; that are alge-
braically independent over K. Mapping t; — T; gives a k-morphism from %’ to some algebraic
closure of K({T};}icr). We denote its image by k;, and we define L := kK.

Let t € K\k be transcendental over k, and suppose that it is algebraic over k. Then it is
algebraic also over k({T;};cr) because the extension kr,/k({T;}icr) is algebraic. Therefore, we have
without loss of generality. (and up to clearing the denominators) a relation of the form

Frt" 44 fo=0

with f; € k[Ty, -+ ,T,n], not all zero. Some of the f; must be nonconstant, else ¢ would be
algebraic over k. Hence, we have a non-trivial algebraic relation over K of the elements 71, -+ , Ty,
contradicting the algebraic independence of the T;’s. Therefore, we have k; " K = k and x1,..., %,

are algebraically independent over kr. Now, k; contains k£ and we have
[L:kp(z1,...,20)] <[K : k(xy,---,2,)] < 00,
Hence, L/ky, is a function field.

We now prove the last assertion. Setting 6 := ™! o;\, we prove that we obtain a K-isomorphism
p: L — L by defining

Y aif S af(B;) N
p 1= === where a;,7v; € K and 3;,0; € k; and ;6 # 0.
(Zj—l V65 ) 25=170(55) ! S ;1 o
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We claim that for elements A; € K and B; € k; we have

n n
(2) D AB; = 0if and only if Y A;0(B;) =

i=1 i=1
Then the formula for p produces an element in L and different expressions for an element of L
lead to the same image and the map p is injective. We immediately see that p is a K-morphism,
and it is surjective because @ is invertible.

Notice that (2) only involves a finite number of elements and so we may assume that k; and
ky, are finitely generated over k.

Let k' /k have transcendence basis t1,-- - ,t,, and that is generated over k(ty,- - ,t,,) by some
elements «;. Then by construction the elements T; = A~1(¢;) are a transcendence basis of ky,
(and they are algebraically independent over K) which generate kj together with the elements
A~1(a;). The correspondence t; — T; maps the minimal polynomial of « to the one of A~!(a;).
The analogous statement holds for k; , and we deduce that (2) holds.

If k /k is purely transcendental with transcendental basis {T;};cr, by Lemma 7 the field k; =
k(T;)er is algebraically closed in L = K(T;);er. So the constant field of L is k;. In general,
kr/k will have an intermediate extension k7 /k that is purely transcendental. By applying what is
above, we may replace K /k by k7 K/k; and are left to deal with the case where kp/k is algebraic.
Since kr K /ky, is a function field, the extension EL /kp, is finite. We are left to prove that %L Jkr is
purely inseparable.

So write kj = k(y1,---,7.) for some 71, ,7,. algebraic over k. We prove the result by
induction on 7. The result holds trivially for » = 0. Now, suppose the result holds for some
r—1>0andlet ky = k(y1,-+- ,v—1) and Ly := Kky = K(v1, -+ ,7v—1). Let ko be the algebraic
closure of Ky in Li. To conclude, it suffices to prove that %L is purely inseparable over ks. Since
v, is algebraic over k, the same is true for the coefficients of the minimal polynomial min(~,, L)
of 7, over Li. So min(v,, L1) € ko[ X] and hence min(y,, L1) = min(y,, k2), so we have

[L1(vr) k2] = [La(y)  La][La = ko] = [ka(yr) < k2][L1 ¢ k2]
and we deduce [Ly : ko] = [L1 () : k2(72)]-
If ¢ € ki, and p := char(k), there is an integer v > 0 (taking p* fp

the element ¢P” is separable over ko(7,). By separability, we have k‘g(’yr,cp )
primitive element §. We can write

[Li(3e) : ka(y )] = [L1(8) : k2(8)] = [ : ko] = [La(3r) : k()]s
where the second inequality is because a separable extension is linearly disjoint from an inseparable
extension. Hence, c?* € ky(7,), so ¢ is purely inseparable over kg = ky(7,). O

= 0) for which
ko (9) for some

5. DIVISIBILITY MODULO CONSTANTS

5.1. Divisibility parameter modulo constants. Let K/k be a function field and let ¢ be a
prime number different from char(k). We will see in Lemma 20 that for any o € K*\k* there

exists a maximal integer D > 0 such that o € k* K XeD, which we call ¢-divisibility parameter
modulo constants over K. We say that o € K* is £-indivisible modulo constants if D = 0, which
means o ¢ kX K¢

Lemma 20. Let a € KX\%X, There is an integer D = 0 which is the largest integer n for which
o e kXKX. Moreover, if a = ¢B" for some ¢ € EX, for some B € K*, and for some integer
n = 0, we have D = n if and only if B is l-indivisible modulo constants. Consequently, for all but
finitely many primes £, « is £-indivisible modulo constants.

Proof. There is v € Prime(K/k) such that v(a) # 0 (see Lemma 4 (ii)). This shows that D is
well-defined and it also proves the last assertion. If § is not ¢-indivisible modulo constants, we
can write 8 = ¢3¢ for some ¢; € k* and for some $; € K*. Then a = (cc;) f"H e kXK

implying that n < D. Conversely, suppose that n < D and write o = CQﬂéD for some co € k™ and
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for some By € K*. We can write 3" = (cac7 )B4 hence there is v € & such that 8 = y84 .
Since v € K n k = k we deduce that 3 is not ¢-indivisible modulo constants. O

Lemma 21. Let « € K*, and suppose that {, € K. For any M > 1 not divisible by char(k)
the (-divisibility parameter D of a over K /k is the same over K((a)/k(Car). If L/kL is a finite
constant extension of K, then the £-divisibility parameter D of a over K is the same over L.

Proof. Write o = cﬁED with ¢ € %X, B € K*. Since § is f-indivisible modulo constants (and a
constant extension of prime degree is geometric), the extension K (+4/3) is not contained in Kk. We
deduce that the extension L((yp+1, *“*y/a)/K is not contained in Kk, which makes it impossible
to have a = (:LgeDJrl with ¢y, € EZ, ge L*. O

Example 22. Let K = k(t), let s be a positive integer and let a = c¢[[}_, P/'" where c € k*, P;
are distinct monic irreducible polynomials in k[t], and n; € Z\{0}. Then the divisibility parameter
of @ over K is Dg = min{vy(n;),1 < i < s} because k[t] is a unique factorization domain.

Suppose that ¢ = 1 and let n be a non-zero integer pairwise coprime with each n;. Consider
the function field L/k such that L = K(y) for some choice of y in an algebraic closure K of K
such that y™ = « (the function field L/k is called superelliptic if n and all n; are positive).

If ¢ divides n, then the ¢-divisibility parameters of « over L is orde(n). If ¢ divides the greatest
common divisor of the n;’s, then the ¢-divisibility parameter of o over L (equivalently, over K) is
min{vs(n;),1 < i < s}.

Remark 23. Suppose that o € KX\%7 and let n > 1. If L/K is a constant extension containing
Cen, then we have

[L(“/a): L] = [L(*Va): L] - P forn>D.
Indeed, by Lemma 21 the ¢-divisibility parameter D over L is the same as over K and hence
a¢ L7 We conclude by Kummer theory.

5.2. Independence modulo constants. Let K /k be a function field and let n > 1 be an integer
coprime with char(K). If G is a subgroup of K*, then we write K (%/G) for the extension of K
generated by all the /o, with o € G. This extension is uniquely determined by G, as a subfield of
a fixed algebraic closure K. In particular, if {c,- -+, @, } is a minimal subset of K* of generators
for G, then by [3, Corollary 6.1.16] we have

K(VG) = K(x/ar. -, /ay) = K(y/an) -+ K(¥/ar)

and we have a canonical group isomorphism
Gal(K (V/G)/K) = Gal(K({/a1)/K) x -+ x Gal(K {/a,)/K).

We now suppose that n is the power of some prime number ¢ and hence we will suppose that
¢r € K (as we are interested in the Kummer extensions, we may replace K by K({;)).

Definition 24. We say elements a;,...,a, € K* are ¢-independent modulo constants if for each
vector (z1,---,2,) € Z" not in (¢Z)", the element [[;_, o is ¢-indivisible modulo constants.

Lemma 25. Let oy, ,a, € K* be l-independent modulo constants. The group generated by
the images of a1, -+ , o in the quotient group Ig—: has rank r. In particular, the a;’s generate a
subgroup G of K* that is torsion-free and of rank r.

Proof. The latter assertion is readily seen to be a consequence of the former. Suppose that
n:= [];_, af" for some non-zero vector (z1,---,x,) € Z". Up to replacing 7, we may suppose
without loss of generality that not all x; are divisible by ¢. Since 7 is not f-indivisible modulo
constants, this contradicts the assumption of /-independence modulo constants. O

The function fields appearing in the next theorem are implicitly considered as function fields
over the same field k.

Theorem 26. Let G be a torsion-free subgroup of K* of rank r > 0, and write G = {ay,...,q.)
with a; € K*. The following are equivalent:
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(i) The elements o, ..., q, are £-independent modulo constants.
(ii) The Kummer estension K(v/G)/K has degree £7 and it is geometric.
(iii) For every m = n > 1 the Kummer extension K (Com, V/G)/K(Com) has degree €' and it
18 geometric.
(iv) For every n = 1 the Kummer extension K(Cpo, VG)/K(Co») has degree 0™ and it is
geometric.
(v) For every n =1 the Kummer extension kK ( /G)/EK has degree ' and it is geometric.
(As the given Kummer extensions have exponent dividing £™ and rank at most r, their degree being
™ gmplies that their Galois group is (Z/("Z)".)

Proof. (iii) < (iv) Fix n = 1. By Kummer theory, the degrees of the given extensions do not exceed
¢, The degree of K (e, VG)/K () divides the one of K((m, VG)/K((m). Conversely,
since the degree in (iii) is constant in m, the two extensions K ((s») and K (Cn, V/G) are linearly
disjoint over K((s») and hence the degree of the Kummer extension equals ¢ also over K ((p=).
Now we may suppose that the given extensions have degree ™" and we only need to show that
if one of them is geometric, the other is also geometric. By Proposition 16, the constant field of

K(Cem)/k is %(Qm) while the one of K (Cp)/k is k((g») by Proposition 16. Moreover, we can write

K(Gee, VG) = Upoy K(Gem, VG).

Suppose that all extensmns K(Cm, VG)/K({gm) are geometric. An element v € K (e, V/G)
that is algebraic over k belongs to some field K((pm, Z:/@) Our assumption on this field then
implies v € k(Cym ). This shows that K (Cpe, ¥/G) n & = k(Co).

Now suppose that K(Czoo Y/G)/K (=) is geometric. An element of K ((ym, ¥/G) that is alge-
braic over k belongs to k(Cgeo) and hence to k((gu) for some u > m. We conclude by proving
that K (Com, V/G) A k(Con) = k(Com). If we had Cpmar in K (Com, ¥/G)\K (Com ), then the degree of
K (om, ¥/G)/K ((em) would not be the same as the one of K (Cpo, ¥/G)/K (e ), contradiction.

(i) = (i) This is immediate by taking m =n = 1.

(i) = (iii) Since K (v/G)/K is geometric, we deduce that K (Com, v/G)/K ((m) has also degree
¢". By Kummer theory, we deduce that K (Com, /G)/K(Cpm) has degree £, By Lemma 15 it
suffices to prove that K (Cpm, vV/G)/K(Cem) is geometric. This extension is a tower of extensions of
degree ¢ that are nonconstant and hence geometric by Remark 14, so we may conclude.

(i) < (ii) Property (ii) is equivalent to the fact that for every a € G that is not an ¢-th power
in G the extension K ({/a)/K is geometric of degree ¢ (because the Galois group of K (v/G)/K has
exponent dividing ¢, and an extension of degree ¢ is geometric if and only if it is not constant).
Recalling that (, € K, by Lemma 18 the above property precisely means that every element
a:=[]i_; o is (-indivisible up to constants whenever the integers z;’s are not all divisible by .

(i) < (v). The extension kK (V/G)/kK is always geometric. Indeed, the constant field of
kK(V/G) is a finite extension of the constant field of kK hence it is k. Property (i) means that
any element o := [[/_; " (where the integers z;’s are not all divisible by ¢) is (-indivisible
modulo constants. Property (v) (the assertion on the degree) means, by Kummer theory, that any
such element is not an ¢-th power in kK. We may conclude by Lemma 18 (i) < (iv). O

Corollary 27. Suppose that ay,...,ca, € K* can be expressed as c; = clﬁ ¢Pi , where c; € k and
where the elements B1,..., B, are E independent modulo constants over K. For everyn = 1 and
for every M such that " | M, the mazimal constant subextension of K(Car, VG)/K is

LM’n = K(CM, emin(Dl,n\)/ail’ . emin(Dr,n\)/a> )

Moreover, we have
Gal(K (Car, V@) /Lagn) ~ Gal(kK ( VG)/EK) ~ ﬂzmmax(n Di0)7,.

Proof. By definition of the ¢-divisibility parameters, Ly, is a constant extension of K contained
in K(Cyr, vVG). Remark that we have

FE(VG) = B (™" By, ., 000G,



KUMMER THEORY FOR FUNCTION FIELDS 11

Theorem 26 ensures that the latter field is a geometric extension of kK whose Galois group is
isomorphic to []}_; 7,/¢mex(n=Di.0)7. - To conclude, it suffices to show that K(Car, VG) N EK =
Lasn. This is the case because the degree of K (Car, z%)/LMm is a multiple of kK ( VG)/EK
hence it equals Y,;_, max(n — D;,0) (it is at most this number by Kummer theory as #/a; is an
max(n=Di.0)_th yoot of ™7 /ay). O

5.3. Good basis modulo constants. In the following definition, we let D; be the ¢-divisibility
parameters of a; over K.

Definition 28. Consider a finitely generated subgroup G of K* that intersects k only trivially
and that has positive rank r. Let {a1,...,a,} be a basis of G. This basis is said to be an ¢-good
basis modulo constants if, equivalently:
(i) the quantity >);_, D; is maximal among the bases of G;
(ii) we can write a; = clﬂfD"' where ¢; € k and B; € K and (1, ..., 3, are f-independent modulo
constants.

The multiset of Dy,--- , D, is uniquely determined by K and G (see Remark 32). We call it the
L-divisibility parameters modulo constants of G over K.

Proposition 29. Definition 28 is well-posed, namely the equivalence holds true.

Proof. (i)=(ii) By the definition of the ¢-divisibility parameters we can write o; = czﬂfDi where
¢ € k and B; € K. Suppose that the (;’s are not ¢-independent modulo constants. So there
are a non-empty subset J < {1,...,r} and integers x; coprime to ¢ such that g := HjeJ 6]% is
not ¢-indivisible modulo constants. We may suppose without loss of generality that 1 € J and
Dy = max{D; : j € J}. We may additionally suppose that x; = 1 (by raising 3 to some power y;
such that 151 = 1 mod ¢ and then discarding an ¢-th power). Define

2 4P1= D
o= H « jJ .
jeJ
By inspecting the factor j = 1, we may replace a1 by « and still get a basis of G. Moreover, by
construction

-1
jed jeJ jeJ
is a constant hence (since f is not ¢-indivisible modulo constants) the first divisibility parameter
of « is strictly larger than D;, contradicting the maximality of 22:1 D;.
(ii)= (i) We cannot have a different basis {a}, -+ ,a}} of G such that >),_, D} > ' | D;.
This is because, if n is sufficiently large, by Corollary 27 the degree of kK ( v/G)/kK has f-adic
valuation nr — >/, D; while

[RE(VG) : BK] = [RE(™™ " /ad, ., ™ al) :RE] < nr— Y DL
i=1

O

Theorem 30. Consider a finitely generated subgroup G of K* of rank r > 0 that intersects k
only trivially. Then the following statements hold.

(i) The group G has an £-good basis modulo constants.
(i) For all sufficiently large n we have

(3) RK("VG) :kK(Va) =
(i1i) There exists an integer € = 0 such that for all n > ¢ we have

GARE*K*" cgl .
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Proof. Observing that (kK)*!" = kX (K*("), we have G n (kK)*!" = G n k* K**" hence (iii) is
equivalent to (ii) by Kummer theory over kK. If G has an ¢-good basis modulo constants, then
(#4) is proven in Corollary 27. The converse implication is because, if there is a basis such that
> Di > (n+ 1)r, then (3) does not hold.

We conclude by proving (iiz). By applying Lemma 4 to a set of generators of G, there is a finite
non-empty subset S of Prime(K /k) of cardinality #S consisting of the divisors v such that there
is some g € G such that v(g) # 0. Consider the group morphism

b G — Z# g— (v(g))ves -

The kernel of ® is trivial because by Lemma 4 it consists of constants, thus ®(G) is a subgroup of
7#5 of rank r. By choosing an appropriate basis of G, the basis of ®(G) consists of the column
vectors of the following matrix, where the integers ci, ..., ¢, are the non-zero entries:

C1
C2

Let € be the maximum of the f-adic valuation of the integers ¢;’s and fix n > ¢. If g € G is such
that €™ | v(g) for every v € S, then all the coordinates of ®(g) with respect to the above basis are

divisible by ¢"~¢, so we deduce that g € G °. O

Theorem 31. Let K/k be a function field and let G be a finitely generated subgroup of K*. An
£-good basis modulo constants exists for G if and only if the rank of G is the same as the rank of
G modulo constants.

Proof. The sufficiency has been shown in Theorem 30 and the necessity follows from Corollary 27
by working over kK. O

Remark 32. The multiset of parameters D; for an ¢-good basis modulo constants is uniquely
determined by K and G. This is clear from the Galois group structure in Corollary 27 by taking
n > max{D; : 1 <14 < r}. Provided that G admits an ¢-good basis modulo constants, there is
an easy algorithm to construct one from any given basis of G, which is based on the following
observation: if the elements of a given basis of G are not ¢-independent modulo constants, then
there is a way to modify one element of the basis and increase ), D; (following the strategy in
the proof of [2, Theorem 14], which also resembles the proof of Proposition 29 (i) = (ii)).

6. REDUCING TO CYCLOTOMIC-KUMMER EXTENSIONS OF THE CONSTANT FIELD

Consider a function field K/k and a Kummer extension of the form

K(Car, YG)/K(Cur),

where G is a finitely generated subgroup of K* and M and N are positive integers such that
M is divisible by N but not by char(K). In this section, we precisely show how the questions of
computing the degree of this extension and of computing the group structure of its Galois group
reduce to the corresponding questions for the Kummer extension of the constant fields.
Considering the prime factorization N = Hll N4 ¢(N) by Kummer theory (notice the pairwise
coprime exponents of the Kummer extensions in the product group) we have a group isomorphism

vy (N)
Gal(K (Cur, VG)/K (Cur)) = | [ Gal(K (Cur, " VG)/K () -
ON
We will therefore restrict to the case where N = ¢" for some fixed prime number ¢ different from
char(k) and for some integer n > 1. We may then without loss of generality replace K by K(().

We may also suppose that G is not a subgroup of Ex. Hence, from now on Gy := G n kis a
proper subgroup of G and we can write the set decomposition G = GoG’, where G’ is a subgroup
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of G isomorphic to G/Gy. Let r > 0 be the rank of G’ and let Dy, ..., D, be the ¢-divisibility
parameters modulo constants of G’ over K. Up to relabelling, we suppose without loss of generality
that D; < Dy <--- < D,. Let o; = ciﬁfDi be the elements of an £-good basis modulo constants
of G' over K, with ¢; € k and j3; € K.

The following result reduces the problem of determining the degree of the Kummer extension
K(Car, VG)/K (Car) to determine the degree of a Kummer extension that only depends on k(Car),
0", Gy, the ¢;’s and the D;’s:

emax(nfDi ,0)

Theorem 33. Define H as the subgroup of K* generated by Gy and by the elements c
Then we have

4
r

[K (¢, VG) 2 K(Cur)] = [k(Cary VH) = k(Car)] - nfmax(n*D’”O)-

i=1

Proof. Remark that, by Lemma 6 applied to the monogenic extension k(Cpr, “VH)/k(Car) we have
[(o(Cors V) 2 M(Can)] = (K (Cars V) : K(Car)].

We may conclude by Corollary 27 (applied to G’) because the largest constant subextension of

K (¢, VG)/K(Cpr) is generated by the £7-th roots of H, in view of Lemma 12 (where C' is the
Kummer extension generated by Go and K’ is the Kummer extension generated by G'). (]

Definition 34. We define elements dy, ..., d, in Zso U {+0o0} as follows: d; is maximal such that
the image of ¢; in the quotient group %(CM)XKGO, cj 1 j > 1y is an £4i-th power.

Remark 35. According to the use that we make of dy,--- , d,., we do not need their precise value
if we know that d; > D; for all i. However, we could compute d; by multiplying ¢; by an element
of (Go,¢; : j > iy (and using powers of the generators with exponents from 0 to P — 1). Notice
that, if Gg, the D;’s and the ¢;’s are known in advance, then calculating the parameters d; only
involves computations over k(Cpr).

Theorem 36. With the above notation, we have a group isomorphism
Cal (K(CM7 [%)/K(CM)> ~ Qal (%(CMv o ﬁGO)/%<CM)) % HZ/Emax(n—min(Di,di),O)Z .
i=1

Proof. By Lemma 6 applied to the monogenic Kummer extension %(C s VGo)/ %(C]\/[) we have

Gal(k(Car, V/Go)/k(Car)) = Gal(K (Car, V/Go)/K (Cur)) -
By Lemma 21 the (-divisibility parameters of Gy over K are the same over K ((ys) and by Propo-
sition 16 the constant field of K (Car)/k is k(Car). We then work over K (Car)/k(Car)-

Notice that multiplying «; by an element of Gy does not change the ¢-divisibility parameter.
Also, since the f;’s are (-independent modulo constants and since we assume D; < D; for i < j,
then we can replace a; by a;af for any e € Z without altering the i-th ¢- divisibility parameter.
We perform such multiplications, modifying the elements a,., a,—_1,..., 1 in this order. In this
way, we can achieve that ¢; is an £P:-th power in %(C M)~ or that the largest integer d; such that
¢; is an £%i-th power in k(Cy)* is strictly less than D; and is as in Definition 34. Consider the
tower of Kummer extensions

L(N/Go) < L( NGy, “ay) < L( N Go, Waw, Say_1) < --- < L(VG).
By definition of d; (and by Kummer theory over L, recalling that +/3; ¢ L) the Galois group of

L( %/a;)/L is isomorphic to Z/¢max(n—min(Di,di),0)7, - To conclude, we only need to prove that this
extension has the same degree as

L( £ Qy, K\n/ (;()7 Z?/Oéj j > Z)/L( E\n/ Go, f,"/aj _] > ’L) .
By the radical correspondence of Kummer theory, this is equivalent to saying that there are no
integers z satisfying both

af mod L**" € (Go,; : j > iymod L**"  and af ¢ L**".
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If d; = D; we conclude because, by Theorem 26 (applied to the 3;’s), no integer z satisfies both
(4) B7 mod L ¢ <%X,6j :j # iy mod L and B ¢ Lx".

Now suppose that d; < D;. We have of = ! BfDi+y and without loss of generality, that x = ¥
for some integer y = 1. If D; + y < n we conclude because there is no integer z as in (4). Now
suppose that D; +y = n and hence o = ¢f mod L**" . We are left to prove that we cannot have

¢ mod L**" € (Go,aj : j >iymod L**"  and ¢ ¢ L*"".

Notice that, since %(CM) is the constant field of L, for any v € %(CM)X, we have v e L*¢" if and
only if v € k(¢ar)**". We claim that if ¢? mod L**" is in (Go,a; : j > iy mod L**", then it is in
(Go,¢j: j>1iymod L**". This will conclude because no integer = can satisfy both

¢ mod k(Car) <" €(Go, ¢ 5 > iy mod k(Car)*"  and  ¢F ¢ k(Car) <"

¥ as the one of its image in

Indeed, by construction, the divisibility of ¢; is the same in %(C M)
the quotient group %(CM)X/<G07 ¢;  j > 1). The claim holds because Theorem 26 (applied to the
Bi’s) gives that an integer z such that af mod L*" is in <E, ap s h # 7y mod L**" must satisfy
ve(2) + D; = n, and hence o = c; mod Lx", O

Remark 37. The extension %(g v, V/Go) /%(C ) is finite and separable, hence, monogenic. There-
fore, by Lemma 6 we have

(K (Gar, N/ Go) = K (Gan)] = [R(Gar, N/ Go) : R (Can)].

Example 38. We can apply the above results multiple times if k is a function field. For example,
let K = k(S) where k = Q(T). Then by Theorem 33 we may first reduce to Q(T) and then to Q.
Alternatively, we can see K as a function field over Q and apply Theorem 33 to reduce directly
from K to Q. This is possible because the Kummer extensions K (Cyr, ¥'G)/K ((ar) do not depend
on the choice of the constant field.

Example 39. We use the notation of Example 22. Fix two distinct monic irreducible polynomials
Py and P, and let ¢q,co € k*. We consider the group

G = <01]317 CQP1P22> .
Both generators are 2-indivisible modulo constants. We also have G = (a7, ag), where
a1 = (0162)(P1P2)2 and Qg 1= CQP1P22.

The latter is a 2-good basis because P P, and P1P22 are 2-independent modulo constants as they
generate the same group as P;,P,. The 2-divisibility parameters modulo constants are D(a;) = 1
and D(as) = 0. We have K(v/G) = K(y/ci¢2,v/caP1). Thus, for any n > 1, we have

Z)2"VT X )2V if cqep € X2
Gal(K (Con, VG)/K(Con)) ~ ~ )
al(K (G JE(Gr)) {Z/Q”Z X L)L if cres ¢ BX2.
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