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A B S T R A C T

Critical minerals play a crucial role in making eco-friendly and sustainable technology a reality. Yet, these
essential minerals face challenges such as disruptions in their supply chain, dwindling availability, limited
recycling methods, and uncertain demand, which may increase in the short term. In this study, we explore
how we can better extract and recycle these important minerals through international cooperation and
precommitment among different countries.

Our findings highlight a few key points: (1) While recycling technology can help reduce reliance on virgin
minerals, it cannot fully replace the need for them, as recycling still depends on limited resources. (2) When
deciding how to distribute these minerals in the market, international cooperation should consider both virgin
and recyclable sources, prioritizing the more globally desirable option. (3) If the recyclable sources are being
used up, it becomes challenging for a supranational decision-maker to decide how to best use the remaining
virgin minerals. (4) With precommitment from both virgin resource suppliers and recyclers, both recycled and
virgin resources can be used together until the virgin ones are completely used up.

In simpler terms, securing these crucial minerals for sustainable technology involves complex decisions
about recycling, resource allocation, and cooperation among nations.
1. Introduction

The term ‘‘critical minerals’’ usually refers to the raw materials that
are essential for modern technologies, particularly in the context of
the transition to clean and sustainable technology (Pommeret et al.,
2022). Examples of critical minerals include rare earth elements, which
are used in the manufacturing of magnets for wind turbines, electric
vehicles, smartphones and computers; lithium, cobalt, and graphite,
which are essential for the production of batteries; and platinum group
metals, which are used in catalytic converters in vehicles in order to
reduce CO2 emissions. The European Union (EU) has defined more
than 30 critical raw materials, including lithium, cobalt, and rare earth
elements. The United States has a similar definition as well.
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1 The same IEA report states that ‘‘In a scenario that meets the Paris Agreement goals (as in the IEA Sustainable Development Scenario), their share of total demand
will rise significantly over the next two decades, to over 40% for copper and rare earth elements, 60%–70% for nickel and cobalt, and almost 90% for lithium’’. Additional
details can be found in https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions.

In recent years, driven by the growth of renewable energy and
electric vehicles, the demand for critical minerals has increased enor-
mously, and at least in the near future, the trend of increasing demand
will continue. An International Energy Agency (IEA, 2022) report es-
timates that by 2040, in order to meet the needs of clean energy
technology, demand for critical minerals such as lithium, cobalt, nickel,
and rare earth elements could be six times that of 2020.1 The Inter-
national Energy Agency’s Sustainable Development scenario estimates
that nickel demand for use in batteries for electric vehicles and back-
up energy storage for variable renewable electricity will grow from
196,000 tons in 2020 to 3,804,000 tons by 2040.

Given the unique properties of critical minerals, substitutions are
difficult to find and reserves in the Earth’s crust are limited, which
makes their supply chains vulnerable to disruptions. Additionally, most
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critical minerals are concentrated in a few countries, and extraction
is in the hands of just a few companies. For example, China is the
world’s largest producer and exporter of rare earth elements and has the
largest reserves. China also has a dominant position in the production
of lithium and cobalt ((IEA, 2022) special report). With large deposits
of lithium, cobalt, and rare earth elements, Australia and Canada are
also becoming significant producers of critical minerals. China and
Russia supplied about two thirds of the total global supply of titanium
in 2020 (USGS, 2020). Large international companies from various
countries are also competing in Africa and South America for the large
deposits of critical minerals found there. However, the development
and technological progress of some countries is heavily reliant on
imports from critical-mineral-rich countries and the large companies
that operate in this field. The US imports about 100% of 17 important
minerals and over 50% of 46 other minerals. The EU faces a similar
situation: ‘‘the EU is a global manufacturing leader for products like
automotive traction motors and wind turbines, it does not produce any
rare earth elements itself. Of its total rare earth magnet demand, 98%
is met by Chinese imports’’; ‘‘Seventy-eight percent of the EU’s lithium
supply comes from Chile, which provides 44% of global supply’’.2

lthough the lithium supply from Imerys, France, which will begin in
028, promises to reduce the EU’s dependency on lithium imports, this
oes not significantly change the whole situation.

Reducing supply chain vulnerability and ensuring the secure supply
f critical minerals has become an important issue for many countries.
ot surprisingly, in the coming years we expect to see more intense
ompetition for critical minerals among countries. Some countries and
nternational organizations have already taken actions to reduce their
ependency on imports and to promote market supply. Among these
olicies, recycling critical minerals from end-of-life products can help
nsure a more sustainable supply. For example, both the USA and the
U have established targets for the recycling of critical minerals. Funds
nd policies are being devised to support the development of a circular
conomy for critical minerals. Nevertheless, recycling technologies for
ritical minerals are still in the early stages of development and are too
xpensive for large-scale commercial use (see Binnemans et al., 2013;
uist-Jensen et al., 2016; Zakotnik et al., 2016; Filippas et al., 2021),
mong others).3

Arguably, in facing the great challenge of reducing air pollution and
upply–demand competition for critical minerals, international coop-
ration and commitments from different countries are crucial to man-
ging their exploitation, distribution, and recycling. Countries should
ork together to develop strategies for securing the supply of critical
inerals to the global market. The United States’ Energy Resource
overnance Initiative (ERGI) and Global Battery Alliance are examples
f these kinds of cooperative efforts.

In the context of cooperation, what are the optimal strategies for the
xploitation of virgin resources and the recycling of critical minerals?
ould be it optimal to exhaust the global reserve first and then start

ecycling? And in which sense is this optimal? Furthermore, if countries
annot cooperate, what is the optimal commitment countries can make
o support global demand and guarantee the transition to clean energy
echnology?

To answer these questions, we first propose an optimal solution for
nternational cooperation, considering the minimum market demand
or critical minerals and with recycling technology only being available
n the future. Then, we propose an international competition model

2 See the European Commission’s website at https://single-market-
conomy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/rare-
arth-elements-permanent-magnets-and-motors-en.

3 Binnemans et al. (2013) provide a critical review of rare earths recycling.
hey conclude that ‘‘...up to 2011 less than 1% of the REEs were actually
ecycled’’. Additionally, Yanamandra et al. (2022) estimate that in the US and
2

he EU only one percent of lithium-ion batteries get recycled.
to investigate the optimal precommitment between a critical mineral
monopoly exporting country and an importing country that will engage
in developing recycling technology.

Our setting differs from the existing literature in three different
ways. Firstly, critical mineral recycling is different from the classical
economics literature on recycling such as Gaskins (1974), Swan (1980),
Martin (1982), and Weinstein and Zeckhauser (1974), among others,
which study the situation where recycling technology is already in use
when the competition starts. Furthermore, this branch of the recycling
literature considers competition between the virgin supplier and the
recycling sector in the same economy, whereas (as noted above) the
concerns regarding supply chains for critical minerals largely stem from
the competition between the exporting and importing countries.

Secondly, our framework aligns with the research of Weikard and
Seyhan (2009), Seyhan et al. (2012), and Kleemann et al. (2015), who
extensively explore the intricacies of phosphorus recycling and distri-
bution. Phosphorus stands as a pivotal fertilizer for agricultural land,
its supply reliant upon non-renewable and constrained raw materials
- phosphate rocks. With the exception of Kleemann et al. (2015), the
mentioned papers use a Hotelling-type model with a finite amount
of primary resource, which is also a crucial aspect we address by
incorporating the initial depletable reserve as one of our constraining
factors. Hoogmartens et al. (2018) have conducted a comprehensive
numerical exploration of optimal extraction policies for non-renewable
resources. However, their study focuses exclusively on non-competitive
market scenarios, incorporating the presence of recycling technology
and substitutes. These attributes diverge from the distinct landscape
presented by critical minerals. In the context of critical minerals, Weigl
and Young (2023) have recently made a valuable contribution by
utilizing a system dynamics model—the Lithium-Ion Battery Resources
Assessment—to forecast lithium-ion battery recycling trends in the
United States. Yet, even in this insightful work, there is no accounting
for the dynamics of market competition and constraints posed by virgin
resources.

Thirdly, our analysis is also different from the literature on backstop
(substitute) technology à la Dasgupta and Stiglitz (1980), Stiglitz and
Dasgupta (1982), and Dasgupta et al. (1983) (among other works). In
their setting, the backstop technology can support the market alone,
with pricing being independent from the competing non-renewable
resource. Critical mineral recycling essentially depends on the supply of
virgin resource, and the price from recycling either follows the market
price of the monopoly supply of the virgin resource, if the recycling
sector is small or competitive, or forms a duopoly competition if the
recycling sector is relatively large.

The remainder of the paper is organized as follows. Section 2
presents the model of the monopoly supply of critical virgin minerals
and potential recycling by the importing country. Section 3 presents
the cooperation situation where there is a supranational institute that
can design the optimal supply of critical minerals. Our analysis shows
that in the context of increasing exploitation costs, the updating optimal
supply indicates that the more socially desirable resource — that is, the
cheaper one — should be used first if neither of these two resources
are being exhausted. When the recyclable resource is being exhausted,
the exploitation is alternating between the two resources. More pre-
cisely, when recycling is more globally desirable than exploitation, in
which case the exploitation of original natural reserves should stop,
and market demand should be satisfied purely by recycling until the
recyclable reserve is exhausted. Then, the not-yet-exhausted natural
reserve should reopen to support the market. In this case, the supra-
national policy maker could face a situation of no optimal supply to
the market, except switching between the virgin and the recyclable
resource. Simultaneously exploiting the virgin resource and recycling
is possible only when supply from the virgin resource is more socially
desirable than recycling and the virgin resource is nearly exhausted.
In this scenario, the virgin resource is not sufficient to satisfy market

demand and recycling must be triggered.

https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/rare-earth-elements-permanent-magnets-and-motors-en
https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/rare-earth-elements-permanent-magnets-and-motors-en
https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/rare-earth-elements-permanent-magnets-and-motors-en


Resources, Conservation & Recycling 209 (2024) 107793W. Ruan and B. Zou

t

0

w

𝐵

a
‘
e
t
l
S

e

𝐶

w
t
𝜉
e
n

L
a
w
r
u
H
m

k
f
c
p
f
t
t

v
d
m
d

d
w

𝑅

w
p

o

f
a
e
b
a
g

Section 4 introduces a duopoly Nash competition between the ex-
porting and importing countries. The precommitted Nash equilibrium
for the duopoly game is presented in Section 5. Our model highlights
the exact time when the virgin reserve is exhausted, when the minimum
input level is reached, and when there is no more resource to be
employed after repeated recycling. Depending on the combination of
parameters, it is possible that minimum supply is the optimal choice.
Otherwise, the market supply first monotonically decreases until it
reaches the minimum requirement level. From then on, supply is at
the minimum level required (constant, decreasing, or increasing, de-
pending on the market). Under precommitment, the co-existence of the
two resources supplying the market is possible. Finally, Section 6 offers
some concluding remarks.

2. The model

Let 𝑆(𝑡) and 𝑥(𝑡)(≥ 0) be the reserve and depletion, respectively, of
a non-renewable critical mineral at time 𝑡, with known initial reserve
𝑆0(> 0) and

𝑆̇(𝑡) = −𝑥(𝑡); (1)

𝑆(𝑡) = 𝑆0 −𝑋(𝑡) = 𝑆0 − ∫

𝑡

0
𝑥(𝜏)𝑑𝜏(≥ 0),

where 𝑋(𝑡) = ∫ 𝑡
0 𝑥(𝜏)𝑑𝜏 is the accumulated depletion until 𝑡. Let 𝑦(𝑡) be

he recycling of the critical mineral at 𝑡 that satisfies

≤ 𝑌 (𝑡) = ∫

𝑡

0
𝑦(𝜏)𝑑𝜏 ≤ 𝜂𝑋(𝑡), (2)

where 𝜂 > 0 is a positive constant. Following the argument in Weinstein
and Zeckhauser (1974), Andre and Cerdra (2006), Hoogmartens et al.
(2018), and Ba and Mahenc (2019), not all of the primary resource
can be recycled. Nonetheless, as stated by Weinstein and Zeckhauser
(1974), p. 76), at the aggregate level the accumulated repeatedly
recycled resource could be more than the original depletion, that is,

∫

∞

𝑇
𝑦(𝜏)𝑑𝜏 ≥ 𝑋(𝑇 ) is possible, where 𝑇 ≥ 0 is the moment when

recycling starts. Furthermore, in the case of repeated recycling, the
maximum available recycled mineral could be

𝑋(𝑇 )(𝜌 + 𝜌2 +⋯ + 𝜌𝑛 +⋯) =
𝜌

1 − 𝜌
𝑋(𝑇 ) > 𝑋(𝑇 ), if 0 < 𝜌 < 1,

here 𝜌 is the share of the recyclable mineral, so that the rest
(

1 − 𝜌
)

𝑋 (𝑡) is permanently lost. Obviously, even with a repeated recycling pro-
cess, the aggregated recyclable resource is limited. Hence, we impose
the constraint in (2) for some constant 𝜂 ≤ 𝜌∕

(

1 − 𝜌
)

.
For simplicity, we use a linear-quadratic benefit function:

(𝑥, 𝑦) = 𝐵0(𝑥 + 𝑦) −
(𝑥 + 𝑦)2

2
, (3)

where 𝐵0 > 0 is a positive constant. The minimum demand

𝑥 + 𝑦 ≥ 𝑥𝑚𝑖𝑛 > 0 (4)

indicates the minimum consumption requirement to capture the essen-
tiality of the minerals.

The justification for a minimum demand encompasses several facets:
First and foremost, numerous industries — ranging from electronics
and renewable energy to telecommunications — rely significantly upon
critical minerals for the production of contemporary technologies. As
these industries expand, their growth inevitably aligns with the demand
for critical minerals, thereby establishing a foundational consumption
level that serves as the bedrock of minimum demand. Secondly, the
constant emergence of technological innovations consistently propels
the need for novel applications of critical minerals. A case in point is the
surge in demand for lithium and cobalt, driven by their indispensable
roles in energy storage solutions, owing to advancements in battery
technology. Thirdly, escalating environmental consciousness and the
3

implementation of stringent regulations have paved the way for cleaner t
technologies that pivot on critical minerals. The persistence of this
demand remains steadfast, constituting the indispensable threshold re-
quired to meet prevailing environmental standards. Lastly, but certainly
not least, the susceptibilities inherent in supply chains — affected by
geopolitical factors or unforeseen events such as the Covid-19 pandemic
— can lead to erratic fluctuations in availability. In light of these po-
tential disruptions, the imperative of maintaining a minimum demand
becomes paramount, ensuring an uninterrupted supply for industries of
utmost significance.

The extraction cost at time 𝑡 depends on both current extraction 𝑥(𝑡)
nd past accumulated extraction. Following Hotelling (1931, p. 152),
‘ the accumulated production affects both cost and demand. The cost of
xtraction increases as the mine goes deeper and durable substances by
heir accumulated influence the market ’’. Again for simplicity, we take a
inear extraction cost function, following Hotelling (1931, p. 153) and
eyhan et al. (2012), p. 105). Specifically, a linear function 𝐿(𝑋) =

𝜉𝑋 transforms the accumulated extraction 𝑋 as part of the current
xtraction cost. More precisely,

(𝑋, 𝑥, 𝑡) =

{

𝐶0𝑒−𝑔𝑡𝑥 + 𝜉𝑋(𝑡) if 𝑥 > 0,

0 if 𝑥 = 0,
(5)

here 𝐶0 > 0 is a scaling parameter measuring the starting cost of
he extraction, 𝑔 ≥ 0 measures cost-saving technological progress, and
≥ 0 indicates the marginal stock effect. Obviously, as long as there is
xtraction the accumulated past extraction matters, whereas if there is
o extraction there is no cost.

Previous literature, including works by Heal (1976), Hanson (1980),
ivernois and Uhler (1987), and Chakravorty and Roumasset (1990),
mong others, argue that extraction costs tend to increase as reserves
ithin a single deposit are depleted. In simpler terms, extraction costs

ise with aggregate extraction. Livernois and Martin (2001), Page 832)
tilize a more complex extraction cost function compared to ours.
owever, their model explicitly accounted for the rise in total and
arginal extraction costs due to depletion.

Moreover, as noted by Livernois (2009), Page 23), Hotelling ac-
nowledged the failure of his basic model to capture the tendency
or extraction costs to rise as a resource being depleted. This increase
an occur both within individual deposits, as firms dig deeper or
ressure declines in petroleum reservoirs, and across the industry, as
irms prioritize the use of lowest-cost deposits. This phenomenon, often
ermed the degradation effect or stock effect of extraction, underscores
he dynamic nature of extraction costs.

In a pioneering contribution, Slade (1982) developed a modified
ersion of the Hotelling model incorporating both cost-increasing degra-
ation effects and cost-reducing technological advancements. Further-
ore, the impact of cost-increasing degradation effects on market price
ecisions cannot be overlooked.

Furthermore, the exploitation of certain Rare Earth Element (REE)
eposits results in radioactive waste, necessitating costly management,
ith expenses escalating alongside accumulated exploitation.

Similarly, the recycling cost involves4

(𝑦, 𝑡) = 𝑅0𝑒
−𝜌𝑡𝑦, (6)

here 𝑅0 is a scaling parameter and 𝜌 ≥ 0 measures technological
rogress in recycling.

In the rest of this paper, we assume that initially the extraction cost
f the virgin resource is much cheaper than recycling. In other words,

4 It is evident that our recycling cost function represents the simplest form,
eaturing a constant marginal cost and overlooking the recyclable material’s
vailability. Weikard and Seyhan (2009), as well as Seyhan et al. (2012),
mploy more realistic recycling cost functions where the costs depend on
oth 𝑦 and 𝑥. The earlier work by Weikard and Seyhan (2009) provides
dditional rationale and support. Nevertheless, for ease of calculation in a
ame scenario, we opt for a considerably simpler cost function compared to

he earlier literature.
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there will be some time until 𝑇𝑖(> 0) during which exploitation of the
virgin resource is the cheaper supply. Here, 𝑇𝑖(> 0) is the date when
recycling starts, and it is known for all players without uncertainty;
𝑖 = 𝑏, 𝑛 indicate the benchmark cooperation equilibrium and Nash
precommitment equilibrium, respectively.

As in Dasgupta et al. (1983) and Olsen (1988), in this paper we
do not consider R&D as a decision variable, given there are already
many studies focusing on this topic pioneered by Kamien and Schwartz
(1978). Nevertheless, we adopt the notation time-cost of R&D to indicate
the delay in the development of recycling technology. Furthermore, we
assume no uncertainty. Of course, the impact of the uncertainty of the
arrival date is not unimportant. Nevertheless, in the current study we
focus more on the reactions of different players under different compe-
tition in terms of the arrival of the recycling technology, rather than the
impact of uncertainty, which deserves a separate study investigating its
effect in different market structures.

3. The optimal choices for international cooperation

Suppose there is a supranational policymaker, which we will refer
to as an international organization or social planner. This international
organization can design (I) the optimal extraction of an exhaustible
and recyclable critical mineral to supply the market and satisfy con-
sumer demand, and (II) the invention and innovation dates of recycling
technology such that the resource can be used as long as possible.

The present study centers on critical minerals for which recycling
technology is either unavailable, such as rare earth elements (REEs) and
certain platinum group metals, or available but economically unfeasible
for widespread market adoption, as seen with lithium, cobalt, and
others (Yanamandra et al., 2022; Jena et al., 2024). Consequently,
immediate adoption of recycling measures remains impractical, even
for a social planner. However, it is important to note that in this study,
we do not address the timing of recycling technology adoption as a
strategic decision. Instead, we focus on a predetermined invention date,
𝑇𝑏 > 0. The optimal control problem of the social planner is choosing
the extraction, 𝑥𝑏(𝑡), and the recycling, 𝑦𝑏(𝑡), to achieve maximum joint
welfare:

max
𝑥𝑏(𝑡), 𝑦𝑏(𝑡)

𝑊𝐵(𝑇𝑏) = ∫

∞

0
𝑒−𝑟𝑡

[

𝐵(𝑥𝑏 + 𝑦𝑏) − 𝐶(𝑋𝑏, 𝑥𝑏) − 𝑅(𝑦𝑏)
]

𝑑𝑡, (7)

where the interest rate 𝑟 is the discount rate and is subject to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋̇𝑏(𝑡) = 𝑥𝑏(𝑡), 𝑥𝑏(𝑡) ≥ 0, ∀𝑡 ≥ 0,

𝑌̇𝑏 = 𝑦𝑏(𝑡), 𝑦𝑏(𝑡) = 0 for 0 ≤ 𝑡 ≤ 𝑇𝑏 and 𝑦𝑏(𝑡) ≥ 0 for 𝑡 ≥ 𝑇𝑏,

𝑥𝑏 + 𝑦𝑏 ≥ 𝑥𝑚𝑖𝑛𝑒
𝑚𝑡, ∀𝑡 ≥ 0,

0 ≤ 𝑌𝑏(𝑡) ≤ 𝜂𝑋𝑏(𝑡).

(8)

Obviously, if 𝑇𝑏 is the precise moment when the virgin resource is
exhausted, the problem is rather less interesting since it becomes a two-
stage optimal control scenario where, in the first stage, the optimal
supply comes from the virgin reserve only and in the second period
optimal supply depends solely on recycling. Thus, in the following we
consider mainly the case where recycling technology is available before
the exhaustion of the natural reserve. Therefore, it is interesting to
know (1) which source of critical minerals should be used to supply
the market — the virgin or recyclable resource, or both — and at
what rate; (2) whether the virgin reserve will be exhausted; and most
interestingly, (3) what is the optimal strategy, if any, when one of the
reserves is being exhausted?

From the social planner’s perspective, due to the given benefit
functions there is no difference between the extraction of the virgin
resource and recycling used mineral, except for the cost differences
between extraction and recycling. Thus, the order of employing each
of these sources depends on the costs: the extraction cost, the time-cost
4

of R&D for the recycling technology, and the recycling cost. m
The rest of this section is organized into two parts. Section 3.1
presents a naive solution where the international organization, as
supranational policymaker, only supplies the market according to the
minimum market demand. Although the minimum level may not be
globally optimal, the minimum supply provides a structure with which
to analyze the optimal choice. In Section 3.2, we provide conditions
under which the minimum supply (at least during some period) is
globally optimal, without taking into account cost-saving technol-
ogy. Furthermore, conditions under which different kinds of resources
should be used are investigated.

3.1. The naive solution - minimum supply only

A naive situation is that the supranational policymaker chooses the
minimum level of mineral supply: 𝑥 + 𝑦 = 𝑥min, for all times 𝑡 ≥ 0. If
the minimum supply is chosen and there is no technological progress,
𝑔 = 𝜌 = 0, it can be designed that for 𝑡 ≤ 𝑇𝑏, 𝑥 = 𝑥𝑚𝑖𝑛; after 𝑇𝑏, 𝑦 = 𝑥𝑚𝑖𝑛
nd at 𝑇𝑏,

(𝑇𝑏) = ∫

𝑇𝑏

0
𝑥(𝑡)𝑑𝑡 = 𝑥𝑚𝑖𝑛𝑇𝑏 = 𝑆(0).

hus, the virgin resource is exhausted at 𝑇𝑏 =
𝑆(0)
𝑥𝑚𝑖𝑛

and recycling starts.
The first period of recycling ends at

𝑇𝑏1 =
𝜌̄𝑆(0)
𝑥𝑚𝑖𝑛

+ 𝑇𝑏.

Obviously, after the recycled mineral is scrapped, re-recycling is
possible. To our knowledge, Weinstein and Zeckhauser (1974) are
the first to take into account repeated recycling. Although the alu-
minum recycling literature is generally implicit about repeated recy-
cling, the delay of recycling is clearly modeled. Swan (1980) assumes
that ‘‘...products made of aluminum all have the same lifetime before
becoming ‘scrap’ and therefore available for recycling ’’ and ‘‘the unit of time
is chosen so as to equal the ‘average’ period of delay between production of
virgin and its subsequent conversion into secondary aluminum’’. Gaudet and
Van Long (2003), among others, adopt the same modeling strategy as
Swan (1980). We combine Swan’s assumption with the idea of Wein-
stein and Zeckhauser (1974). The simplest possible model of repeated
recycling assumes that scrapped critical mineral (with the same average
age) is piled up and waiting to be recycled. Due to permanently lost
material and potentially increasing market demand, the amount of
scrapped resources decreases over each generation.

Nevertheless, due to the limitation of the initial reserve and there
being no substitute critical mineral, even repeated recycling cannot last
forever. To see this, recall that the recycling starts at time 𝑇𝑏 = 𝑆(0)

𝑥𝑚𝑖𝑛
and a first round of recycling generates 𝜌̄𝑆(0) of the critical material
and ends at 𝑇𝑏1 = 𝜌̄𝑆(0)

𝑥𝑚𝑖𝑛
+ 𝑇𝑏. Continuing the same process, clearly the

th round of recycling generates 𝜌̄𝑘𝑆(0) of the critical material and
ends at 𝑇𝑏𝑘 = 𝜌̄𝑘𝑆(0)

𝑥𝑚𝑖𝑛
+ 𝑇𝑏(𝑘−1). In the last round of recycling 𝑙, we have

𝑚𝑖𝑛 > 𝜌̄𝑙𝑆(0), where 𝑙 is given by the integer part of log𝜌̄
𝑥𝑚𝑖𝑛
𝑆(0) , i.e.,

𝑙 = ⌊log𝜌̄
𝑥𝑚𝑖𝑛
𝑆(0)

⌋. (9)

The above analysis leads to the conclusion that the recycling tech-
nology postpones the exhaustion of the non-renewable resource. Tho-
ugh the postponement could be for a long time period, ∑𝑘

𝑗=0,(𝑇𝑏(𝑗+1) −
𝑇𝑏𝑗 ) with 𝑇𝑏0 = 𝑇𝑏 and 𝑇𝑏(𝑘+1) = 𝑇𝑏𝑙, in the long run there is no critical

ineral to supply to the market, calling for a backstop substitute.
Grosse (2010) estimated the exhaustion time for a given reserve by

aking into account the growth rate of demand. However, he did not
nvestigate a repeated recycling scenario. The above analysis confirms
rosse’s (2010) finding that recycling technology can postpone the
xhaustion of the resource but it cannot be permanently postponed.
f course, given that repeated recycling may significantly increase the
sable resource (as indicated in Section 2), the postponement could be

uch longer than the pessimistic estimation by Grosse (2010).
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3.2. Globally optimal supply

In this section, we investigate the optimal international supply and
look for a subgame perfect optimal choice. To do so, let 𝑊 (𝑋, 𝑌 ) be
the value functions for the international organization. Recall that the
dynamic equation and constraints are given in (8).

The international organization’s optimal control problem faces three
additional difficulties compared to standard optimal control problems:
(a) one state variable depends on the other, and the boundaries of
the choice domain may provide optimal choices; (b) the exploitation
cost is not continuous at 𝑥 = 0, so one has to distinguish whether the
optimal choice is 𝑥 > 0 or 𝑥 = 0; and (c) there is minimum market
demand, which is an extra inequality-control constraint. In order to
make the process mathematically clear, in the following we present
the Hamilton–Jacobi-Bellman (HJB) equations in detail, as well as their
domains.

As mentioned above, we focus on the situation where there is
no cost-saving technology available, i.e., 𝑔 = 𝜌 = 0.5 The optimal
ontrol problem becomes autonomous and defined over an infinite time
orizon, and then a stationary solution becomes possible.

We begin with definitions and notations. The HJB equation for
tationary value function 𝑊 (𝑋, 𝑌 ) is

𝑊 = 𝑍
(

𝑋, 𝑥∗𝑏 , 𝑦
∗
𝑏
)

+ 𝑥∗𝑏𝑊𝑋 + 𝑦∗𝑏𝑊𝑌 , (10)

here

(𝑋, 𝑥, 𝑦) = 𝐵 (𝑥, 𝑦) − 𝐶 (𝑋, 𝑥) − 𝑅 (𝑦)

≡ 𝐵0(𝑥 + 𝑦) −
(𝑥 + 𝑦)2

2
− 𝐶 (𝑋, 𝑥) − 𝑅0𝑦.

In the above HJB equation,
(

𝑥∗𝑏 , 𝑦
∗
𝑏
)

is an optimal choice and satisfies

𝑥∗𝑏 , 𝑦
∗
𝑏
)

= argmax
(𝑥,𝑦)∈𝜔(𝑋,𝑌 )

𝐻
(

𝑋, 𝑌 , 𝑥, 𝑦,𝑊𝑋 ,𝑊𝑌
)

(11)

ith the Hamiltonian given by
(

𝑋, 𝑌 , 𝑥, 𝑦,𝑊𝑋 ,𝑊𝑌
)

= 𝑍 (𝑋, 𝑥, 𝑦) + ⟨𝑊𝑋 ,𝑊𝑌 ⟩ ⋅ ⟨𝑥, 𝑦⟩

= 𝑍 (𝑋, 𝑥, 𝑦) + 𝑥∗𝑏𝑊𝑋 + 𝑦∗𝑏𝑊𝑌 .

q. (10) is solved in the choice domain

𝛺 =
{

(𝑋, 𝑌 ) ∈ R2 ∶ 0 ≤ 𝑋 ≤ 𝑆0, 0 ≤ 𝑌 ≤ 𝜂𝑋
}

, (12)

here 𝜂 is the positive constant in assumption (2). To make the analysis
ore straightforward, we do not consider repeated recycling in our

nalysis of optimal choice but impose assumption (2) in the sequel.
ntuitively, since there is no clear-cut division between one period of
ecycling and another, it is more reasonable to simply assume that
he available amount for recycling at any time is proportional to the
xtracted amount at the moment. We use 𝛺 to denote the interior of 𝛺̄
nd let 𝛤1 and 𝛤2 denote the boundaries

1 =
{(

𝑆0, 𝑌
)

∶ 0 ≤ 𝑌 ≤ 𝜂𝑆0
}

, 𝛤2 =
{

(𝑋, 𝜂𝑋) ∶ 0 ≤ 𝑋 ≤ 𝑆0
}

. (13)

In other words, 𝛤1 denotes the situation where the initial natural re-
serve is exhausted while recycling is still possible. Boundary 𝛤2, rather,
indicates the situation where there is no recyclable resource available,
although the initial reserve may not yet have been exhausted.6

As mentioned above, the cost function 𝐶 (𝑋, 𝑥) is discontinuous at
𝑥 = 0. Therefore, the maximization problem (11) should be solved for
both 𝑥 = 0 and 𝑥 > 0, finding the larger of the two.

5 A separate study will focus on the impact of cost-saving technology on
he optimal choices, as well as the Markovian strategies.

6 Obviously, due to the constraints of the definition domain (12) and the
iscontinuity of the cost function 𝐶(𝑋, 𝑥) at 𝑥 = 0, the usually guessed linear-
uadratic value function, and thus the affine strategy, do not provide a solution
5

o the above seemingly linear-quadratic optimal control problem.
For 𝑥 = 0, there are two possibilities: Either the original reserve
s exhausted or the optimal choice is to maintain some reserves by
enying supply to the market, given that the extraction cost increases
ith the extraction and becomes more expensive than recycling. The
amiltonian in this case is
(

𝑋, 𝑌 , 0, 𝑦,𝑊𝑋 ,𝑊𝑌
)

= 𝐵0𝑦 −
𝑦2

2
− 𝑅0𝑦 + 𝑦𝑊𝑌 for 𝑦 ≥ 𝑥min. (14)

ts maximizer is

𝑦̄∗𝑏 = max
{

𝑥min, 𝐵0 − 𝑅0 +𝑊𝑌
}

, (15)

nd the corresponding value of the Hamiltonian is

̄ ∗ (𝑡,𝑊𝑌
)

=

⎧

⎪

⎨

⎪

⎩

1
2

[

𝐵0 − 𝑅0 +𝑊𝑌
]2 if 𝐵0 − 𝑅0 +𝑊𝑌 > 𝑥min,

[

𝐵0 − 𝑅0 +𝑊𝑌
]

𝑥min −
𝑥2min
2 otherwise.

(16)

For 𝑥 > 0, it is obvious that the natural reserves of the critical
mineral are not yet exhausted. Thus, both the exploitation of the
original resource and recycling are possible. To obtain the optimal
choice, we let

𝐶̃ (𝑋, 𝑡, 𝑥) = 𝐶0𝑥 + 𝜉𝑋 for 𝑥 ≥ 0

and

𝐻̃
(

𝑋, 𝑌 , 𝑥, 𝑦,𝑊𝑋 ,𝑊𝑌
)

= 𝐵 (𝑥, 𝑦) − 𝐶̃ (𝑋, 𝑥, ) − 𝑅 (𝑦) .

We also let 𝐻̃∗ (𝑋,𝑊𝑋 ,𝑊𝑌
)

denote the maximum value of 𝐻̃ in
𝜔 (𝑋, 𝑌 ). Note that at 𝑥 = 0,

𝐻̃
(

𝑋, 𝑌 , 0, 𝑦,𝑊𝑋 ,𝑊𝑌
)

= 𝐻
(

𝑋, 𝑌 , 0, 𝑦,𝑊𝑋 ,𝑊𝑌
)

− 𝜉𝑋 < 𝐻
(

𝑋, 𝑌 , 0, 𝑦,𝑊𝑋 ,𝑊𝑌
)

.

Therefore, the maximum value of 𝐻̃ on {𝑥 = 0} is less than that of 𝐻 .
Thus,

max
(𝑥,𝑦)∈𝜔(𝑋,𝑌 )

𝐻
(

𝑋, 𝑌 , 𝑥, 𝑦,𝑊𝑋 ,𝑊𝑌
)

= max
{

𝐻̃∗ (𝑋,𝑊𝑋 ,𝑊𝑌
)

, 𝐻̄∗ (𝑊𝑌
)}

.

.2.1. Optimal supply in the interior
Appendix A.1 demonstrates the following interior optimal choices

here neither the virgin reserve nor the recyclable resource are ex-
austed. In order to provide a clearer intuition, consider an optimal
hoice (𝑥∗, 𝑦∗) at an interior point (𝑋, 𝑌 ) ∈ 𝛺. Such a choice may
all into one of three distinct types: (a) Type (𝑥∗, 0), where 𝑥∗ > 𝑥𝑚𝑖𝑛,

indicates that it is optimal to prioritize mining and postpone recycling.
Despite the existence of recycling technology, its implementation is
delayed. (b) Type (0, 𝑦∗), with 𝑦∗ > 𝑥𝑚𝑖𝑛, represents the opposite case to
(a). Here, it is optimal to halt mining and rely entirely on recycling,
signifying the high cost associated with mining. (c) The third type
pertains to an interior supply (𝑥∗, 𝑦∗) with 𝑥∗ > 0, 𝑦∗ > 0 and 𝑥∗ + 𝑦∗ ≥
𝑚𝑖𝑛.

roposition 1. Let 𝑇𝑏 be the moment when the recycling technology
ecomes available. Suppose 𝑊 is differentiable in 𝛺, and let (𝑋, 𝑌 ) ∈ 𝛺.

(2.1) Suppose that

𝑊𝑌 (𝑋, 𝑌 ) − 𝑅0 < 𝑊𝑋 (𝑋, 𝑌 ) − 𝐶0 (17)

and

𝑥∗𝑏 = max
{

𝑥min, 𝐵0 − 𝐶0 +𝑊𝑋 (𝑋, 𝑌 )
}

(18)

satisfies

𝐻̃
(

𝑋, 𝑌 , 𝑥∗𝑏 , 0,𝑊𝑋 (𝑋, 𝑌 ) ,𝑊𝑌 (𝑋, 𝑌 )
)

≥ 𝐻̄∗ (𝑊𝑌 (𝑋, 𝑌 )
)

. (19)

Then
(

𝑥∗𝑏 , 0
)

is an optimal control at (𝑋, 𝑌 ). If (19) does not hold,
then

(

0, 𝑦̄∗𝑏
)

, where 𝑦̄∗𝑏 is given by (15), is an optimal control at

(𝑋, 𝑌 ).
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(2.2) Suppose

𝑊𝑌 (𝑋, 𝑌 ) − 𝑅0 > 𝑊𝑋 (𝑋, 𝑌 ) − 𝐶0. (20)

Then
(

0, 𝑦̄∗𝑏
)

, with 𝑦̄∗𝑏 defined in (15), is an optimal control at (𝑋, 𝑌 ).
(2.3) Suppose

𝑊𝑌 (𝑋, 𝑌 ) − 𝑅0 = 𝑊𝑋 (𝑋, 𝑌 ) − 𝐶0 (21)

and
(

𝑥∗𝑏 , 𝑦
∗
𝑏
)

that satisfies

𝑥∗𝑏 + 𝑦∗𝑏 = max
{

𝑥min, 𝐵0 − 𝐶0 +𝑊𝑋
}

and

𝐻̃
(

𝑋, 𝑌 , 𝑥∗𝑏 , 𝑦
∗
𝑏 ,𝑊𝑋 (𝑋, 𝑌 ) ,𝑊𝑌 (𝑋, 𝑌 )

)

≥ 𝐻̄∗ (𝑊𝑌 (𝑋, 𝑌 )
)

. (22)

Then
(

𝑥∗𝑏 , 𝑦
∗
𝑏
)

is an optimal control at (𝑋, 𝑌 ). If (22) does not hold,
then

(

0, 𝑦̄∗𝑏
)

is an optimal control at (𝑋, 𝑌 ).

First, note that although the finding in (2.3) of Proposition 1 seem-
ingly suggests that the coexistence of recycling and exploitation is pos-
sible, (21) defines a one-dimensional manifold in the two-dimensional
𝑋𝑌− space. Hence, the set in which (22) holds generally has measure
zero. That is, either 𝑥∗𝑏 = 0 or 𝑦∗𝑏 = 0 hold generically for (𝑋, 𝑌 ) ∈ 𝛺.
Therefore, we focus our interpretation on the first two cases.

The two inequalities (17) and (20) compare the marginal values of
exploitation and recycling, which are defined as the marginal value net
of the marginal cost of exploitation and recycling, respectively. When
inequality (20) holds, recycling is more globally desirable and thus
recycling is the only choice, as presented in (2.2). However, when (17)
holds the situation is more complicated due to the cost discontinuity
at 𝑥 = 0. Although from (17) exploitation is more globally desirable,
we still need to distinguish whether the optimal choice is 𝑥 = 0 or
𝑥 > 0. Condition (19) provides the criterion under which one of these
two indeed yield a higher current value Hamiltonian. Notwithstanding,
if 𝑥 = 0 yields a higher Hamiltonian, then it is optimal to stop supplying
the market from the virgin resource, even though this resource is not
exhausted. But considering the minimum market demand, 𝑥+ 𝑦 ≥ 𝑥𝑚𝑖𝑛,
then recycling must take place to satisfy the market; while if 𝑥∗𝑏 >
0 brings a higher Hamiltonian and is more globally desirable, then
naturally there is no recycling until the natural reserve is no longer
sufficient to support the market.

Nonetheless, given the perfect substitution in utility between the
original resource and the recycled one, from the perspective of the
international organization there is only one optimal way to supply the
critical mineral to the market: either from the exploitation of the nat-
ural reserve or recycling, provided neither reserve is being exhausted.
Thus, with the increasing cost of exploitation, it is possible that starting
recycling before exhausting the initial natural reserve is more globally
desirable. In the rest of this section, we provide conditions for when
this unexploited resource should be extracted.

In the following two subsections, we investigate the two boundary
cases, which provide more interesting results considering the scarcity of
critical minerals: Either the virgin resource or the recyclable resource
is being exhausted.7

3.2.2. Optimal supply near 𝛤1
We first solve (16) on 𝛤1, where the virgin resource is being ex-

hausted while recyclable resources are still available. Appendix A.2
demonstrates the following results.

Proposition 2. Suppose 𝑊 (𝑋, 𝑌 ) is differentiable in the closure 𝛺 of
omain 𝛺. Also, suppose that

0 +
𝜉𝑆0
𝑥min

≠ 𝑅0,
[

𝐵0 − 𝐶0
]2 −

[

𝐵0 − 𝑅0
]2 ≠ 2𝜉𝑆0. (23)

7 At the same time, the solutions provide boundary conditions to the HJB
q. (10).
6

r

Then for any 𝑌 satisfying 0 < 𝑌 < 𝜂𝑆0, there is 𝜀 > 0 such that 𝑥∗𝑏 = 0 at
𝑋, 𝑌 ) with 𝑆0 − 𝜀 < 𝑋 < 𝑆0.

No matter whether the central planner is lavish or frugal, this
roposition shows that for 𝑋 < 𝑆0 but near 𝑆0 there is no extraction if
> 0. In other words, if recycling technology is not only available but

lso starts to supply the market, although the virgin reserve is not yet
xhausted it is globally optimal to stop supply from the virgin reserve.

In other words, the above proposition indicates that at 𝑋 = 𝑆−
0 , the

nly possible point at which 𝑥∗𝑏 > 0 is 𝑌 = 0, that is, recycling has not
et started. The next proposition gives sufficient conditions for 𝑥∗𝑏 > 0
ear (𝑋, 𝑌 ) =

(

𝑆0, 0
)

, the proof of which is given in Appendix A.3.

roposition 3. Under the following conditions, 𝑥∗𝑏 > 0 at
(

𝑆0, 0
)

:

(4.1) at 𝑋 = 𝑆−
0 , the central planner chooses 𝑦∗𝑏 = 𝑥min and

𝑆0𝜉
𝑥min

+ 𝐶0 ≤ 𝑅0. (24)

(4.2) at 𝑋 = 𝑆−
0 , the central planner allows 𝑦∗𝑏 > 𝑥min and

2𝑆0𝜉
𝑥min

+ 𝐶0 ≤ 𝑅0. (25)

This proposition is a continuation of the previous one. From a global
point of view, to optimally use the original resource and prolong the
duration of each recycling period, the original resource must be nearly
exhausted when the recycling technology is available and being used.
On the one hand, this is in line with literature on perfect backstop
substitution (Dasgupta and Stiglitz, 1980; Dasgupta et al., 1983; etc.)
in the sense that in order to save time-costs in the invention and
innovation of recycling technology (which we do not model here), it
is optimal to delay the invention of the recycling technology. But at
the same time, the finding in Proposition 3 is different from those of
the perfect backstop substitution literature, given that we have to take
into account the minimum market demand constraint.

When the virgin reserve is nearly exhausted, the virgin supply
may not be sufficient to satisfy market demand, thus recycling must
be ready to be implemented. When recycling starts, by combining
Propositions 1 and 2 it is clear that recycling is more globally desirable,
but without exhausting the virgin reserve the duration of recycling is
shorter compared to exhausting the depletable resource first.

However, there is no guarantee that the virgin resource will indeed
be exhausted before recycling starts, if the recycling technology is
available. The following proposition provides sufficient conditions —
depending on the cost parameters and the minimum market demand
combination — for the international organization to start recycling
before exhaustion of the virgin resource. The proof of these findings
can be found in Appendix A.4.

Proposition 4. Under the following conditions, 𝑥∗𝑏 = 0 near (𝑋, 𝑌 ) =
(

𝑆0, 0
)

:

(5.1) at 𝑋 = 𝑆0 the central planner chooses 𝑦∗𝑏 = 𝑥min and

𝑅0 − 𝐶0 <
√

𝑥2min + 2𝜉𝑆0 − 𝑥min .; (26)

(5.2) at 𝑋 = 𝑆0 the central planner allows 𝑦∗𝑏 > 𝑥min at
(

𝑆0, 0
)

and
(

𝐵0 − 𝐶0
)2 + 𝑥min

(

𝑅0 − 𝐵0
)

< 2𝜉𝑆0. (27)

We next examine the situation where recycling reaches the limit
𝑌 = 𝜂𝑋, that is, the recyclable resource is nearly exhausted.

3.2.3. Optimal supply near 𝛤2
On boundary 𝛤2, the recyclable resource is exhausted although the

initial depletable resource still has some reserves. In this case, one
potential choice is that 𝑦∗𝑏 = 𝜂𝑥∗𝑏 . With this choice, both extraction and
ecycling are carried out simultaneously and in proportion. However,
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Proposition 6 presented in Appendix A.5 shows that this choice is not
optimal.

To obtain this finding, we argue by contradiction. Given that the
virgin reserve is not exhausted while recycling is, recycling must be
more globally desirable than exploitation. If we assume that the optimal
choice of supply from the virgin resource is when 𝑥∗𝑏 > 0, it must be
that 𝑦∗𝑏 = 𝜂𝑥∗𝑏 . Appendix A.5 demonstrates that this kind of combination
cannot be a solution to the HJB on 𝛤2. Detailed calculations are given
in the proof of Proposition 6 in Appendix A.5.

Intuitively, the above proportional choice pair (𝑥𝑏, 𝑦𝑏) = (𝑥∗𝑏 , 𝜂𝑥
∗
𝑏 )

fails to be an optimal choice coming from the modeling assumption of
there being an average lifetime of a product before it can be scrapped
from the market and enter recycling (Swan, 1980). When there is
no accumulated recyclable resource, that is, near the boundary 𝛤2,
simultaneous supply of the critical mineral from the virgin resource and
from recycling is impossible. Arguably, this finding suggests that the
potential optimal supply of critical minerals should involve switching
between the virgin resource and the recyclable resource. Thus, in the
following we construct the HJB equations that can offer this kind of
periodic supply.

In Appendix A.6, we derive the HJB equations for 𝑊 on 𝛤2 at the
points reached by recycling while extraction is paused. Let (𝑋, 𝜂𝑋) ∈ 𝛤2
be a point reached by a vertical line (𝑋, 𝑌 ), 𝑌 < 𝜂𝑋, along which 𝑥∗𝑏 = 0.

3.2.4. The overall structure of solutions
Based on the discussion of solutions, we can describe their overall

structure as follows. The triangular region 𝛺 is divided by a cure 𝛤 on
which

𝐻1
(

𝑋,𝑊𝑋 (𝑋, 𝑌 )
)

= 𝐻2
(

𝑊𝑌 (𝑋, 𝑌 )
)

,

where

𝐻1
(

𝑋,𝑊𝑋
)

=

⎧

⎪

⎨

⎪

⎩

[

𝐵0 − 𝐶0 +𝑊𝑋
]

𝑥min −
𝑥2min
2

− 𝜉𝑋 if 𝐵0 − 𝐶0 +𝑊𝑋 ≤ 𝑥min,
1
2

[

𝐵0 − 𝐶0 +𝑊𝑋
]2 − 𝜉𝑋 otherwise,

and

𝐻2
(

𝑊𝑌
)

=

⎧

⎪

⎨

⎪

⎩

[

𝐵0 − 𝑅0 +𝑊𝑌
]

𝑥min −
𝑥2min
2 if 𝐵0 − 𝑅0 +𝑊𝑌 ≤ 𝑥min,

1
2

[

𝐵0 − 𝑅0 +𝑊𝑌
]2 otherwise.

On the left side of 𝛤 , the international organization as policymaker only
extracts the natural resource and does not recycle; on the right side,
the opposite is true. Furthermore, 𝑋̂ is either less than or equal to 𝑆0,
at which point there is no extraction from the natural resource until
recycling concludes. Fig. 1 illustrates these findings.
7

There are two cases: Either 𝑋̂ = 𝑆0 or 𝑋̂ < 𝑆0. Propositions 3 and
4 provide sufficient conditions for the former and latter, respectively.
In the former case, recycling does not start until the virgin resource
is exhausted. In the latter case, recycling starts when 𝑋 = 𝑋̂ < 𝑆0
and continues until there is nothing to recycle. After that, there are
frequently switches between extraction and recycling until all resources
are gone. In the last stage, globally optimal control cannot be reached,
in the sense that there is no solution that satisfies the HJB equation
in any non-zero measure definition domain, but the faster the switches
between extraction and recycling, the greater the global benefit.

4. Duopoly competition

In this section, we consider the situation where the competing
duopoly takes the quantities sold by the competitor as given, the nat-
ural resource cartel sells the virgin critical mineral, and the importing
country supplies the market by recycling the used mineral.

The recycling technology is available at 𝑇𝑛 ≥ 0, and this is known
by both the importing country and the resource cartel. Before 𝑇𝑛 the
resource cartel is a monopolist and a duopoly situation only emerges
after 𝑇𝑛. Suppose the cartel owns the entire stock of the critical mineral
and maximizes profit generated from depletion of the virgin resource.

For simplicity, the cartel’s inverse demand function is

𝑝𝑛(𝑡) =

{

𝑎 − 𝑏𝑥𝑛(𝑡) for 0 ≤ 𝑡 ≤ 𝑇𝑛,

𝑎 − 𝑏[𝑥𝑛(𝑡) + 𝑦𝑛(𝑡)] for 𝑡 ≥ 𝑇𝑛,

where 𝑎, 𝑏 are positive parameters with 𝑎 sufficiently large such that
the price is always positive and 𝑎 > 𝑏𝑆0, and 𝑦𝑛 is the recycled supply
of the importing country. The instantaneous profit of the cartel is then

𝜋𝑛(𝑥𝑛 (𝑡)) = 𝑝𝑛(⋅)𝑥𝑛 =

{

[𝑎 − 𝑏𝑥𝑛] 𝑥𝑛 for 0 ≤ 𝑡 ≤ 𝑇𝑛,

[𝑎 − 𝑏(𝑥𝑛 + 𝑦𝑛)] 𝑥𝑛 for 𝑡 ≥ 𝑇𝑛.

Denote 𝑋𝑛(𝑡) = ∫ 𝑡
0 𝑥𝑛(𝜏)𝑑𝜏. The cartel’s optimal control problem is

the choice of monopoly supply 𝑥𝑛 to maximize aggregate profits:

max
𝑥𝑛

𝛱𝑛

= ∫

𝑇𝑛

0
𝑒−𝑟𝑡

[

𝜋𝑛(𝑥𝑛(𝑡)) − 𝐶(𝑋𝑛(𝑡), 𝑥𝑛(𝑡))
]

𝑑𝑡

+ ∫ ∞
𝑇𝑛

𝑒−𝑟𝑡
[

𝜋𝑛(𝑥𝑛(𝑡)) − 𝐶(𝑋𝑛, 𝑥𝑛)
]

𝑑𝑡

= ∫

𝑇𝑛

0
𝑒−𝑟𝑡

[

(𝑎 − 𝑏𝑥𝑛)𝑥𝑛 − 𝐶0𝑥𝑛 − 𝜉𝑋𝑛(𝑡)
]

𝑑𝑡

+∫

∞

𝑇𝑛
𝑒−𝑟𝑡

[

(𝑎 − 𝑏(𝑥𝑛 + 𝑦𝑛))𝑥𝑛 − 𝐶0𝑥𝑛 − 𝜉𝑋𝑛(𝑡)
]

𝑑𝑡,

(28)

subject to 𝑥𝑛(𝑡) ≥ 𝑥𝑚𝑖𝑛 for ∀𝑡 ∈ [0, 𝑇𝑛], 𝑥𝑛 ≥ 0 ∀𝑡 ≥ 𝑇𝑛, and

𝑋̇𝑛 = 𝑥(𝑡) ∀𝑡, with 𝑋(0) = 0.

Arguably, after recycling starts the minimum supply to the market
is no longer the concern of the cartel; rather, it is the constraint of
the importing country. Of course, when the recycling technology is
available at 𝑇𝑛, the importing country has accumulated mineral reserves
𝑋𝑛(𝑇𝑛), of which the recyclable amount is 𝜂𝑋𝑛(𝑇𝑛).

Consider the special case of a minimum requirement for the critical
mineral. The monopoly cartel then faces the following dilemma. On
the one hand, if the cartel supplies the market at the minimum level,
𝑥𝑚𝑖𝑛, it induces the importing country to make more effort to invent
recycling technology if there is no direct backstop substitution.8 Thus,
the cartel should supply enough critical mineral to the market and ease
the pressure on the importing country to find a substitute as soon as

8 Platinum group metals (PGMs) seem to face this kind of fate—platinum’s
market position in the global automotive industry was replaced by palladium.
However, there is currently a trend of returning to platinum or moving to
something new, given that Russia controls about 40% of the palladium market.
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possible, prolonging its monopoly position. But on the other hand, if
there is too much supply to the market—the extreme example being the
exhaustion of all initial natural reserves before or at the moment when
the importing country’s recycling technology is available—the cartel is
out of the market from that moment on.

The importing country’s objective is similar to that described in
Section 3, but the extraction cost is replaced by the importing cost and
we ignore the transportation cost. Thus, the importing country faces
the following optimal control:

max
𝑦𝑛 (𝑡)

𝑊𝑛 = ∫

𝑇𝑛

0
𝑒−𝑟𝑡

[

𝐵(𝑥𝑛) − 𝜋𝑛(𝑥𝑛)
]

𝑑𝑡 + ∫

∞

𝑇𝑛
𝑒−𝑟𝑡

[

𝐵(𝑥𝑛 + 𝑦𝑛) − 𝜋𝑛(𝑥𝑛) − 𝑅𝑛(𝑦𝑛)
]

𝑑𝑡

= ∫

𝑇𝑛

0
𝑒−𝑟𝑡

[

𝐵0𝑥𝑛 −
𝑥2𝑛
2

− (𝑎 − 𝑏𝑥𝑛)𝑥𝑛

]

𝑑𝑡

+∫

∞

𝑇𝑛
𝑒−𝑟𝑡

[

𝐵0(𝑥𝑛 + 𝑦𝑛) −
(𝑥𝑛 + 𝑦𝑛)2

2
− [𝑎 − 𝑏(𝑥𝑛 + 𝑦𝑛)]𝑥𝑛 − 𝑅0𝑦𝑛

]

𝑑𝑡

(29)

ubject to 𝑦𝑛(𝑡) = 0 for 0 ≤ 𝑡 < 𝑇𝑛, 𝑥𝑛 + 𝑦𝑛 ≥ 𝑥𝑚𝑖𝑛 and 𝑦𝑛 ≥ 0 for 𝑡 ≥ 𝑇𝑛,

𝑛(𝑡) ≡ ∫

𝑡

𝑇𝑛
𝑦𝑛(𝜏)𝑑𝜏 ≤ 𝜂𝑋𝑛(𝑡) = 𝜂 ∫

𝑡

0
𝑥𝑛(𝜏)𝑑𝜏, (30)

nd

̇𝑛 = 𝑦(𝑡) 𝑡 ≥ 𝑇𝑛 with 𝑌𝑛(𝑇𝑛) = 0, (31)

here 𝑥𝑛 is taken as given from the cartel’s optimal choice. Although
he first part of the integral in (29) does not have any choice variables
or the importing country, it provides information regarding which
ituation is more beneficial.

The importing country faces a dilemma similar to that of the cartel:
n the one hand, earlier availability of recycling technology will par-

ially ease dependence on the cartel’s virgin resource stock, although
his means increasing the time-cost of R&D for the development of
ecycling technology. On the other hand, with the earlier arrival of
ecycling technology the recyclable resource accumulated for later use
ay not be sufficient. With depreciation (i.e., the permanently lost
ortion) the importing country still relies on supply from the cartel until
he original reserve is exhausted.

. Precommitted Nash equilibrium

Given the central theme of this paper, which centers around the
esign of international cooperation for the exploitation and recycling
f critical minerals, Section 3 above presents an ideal scenario charac-
erized by comprehensive cooperation. In this section, we delve into

more pragmatic situation wherein exporting cartels and importing
ountries base their actions on precommitments established through
arket competition. In this context, the term ‘‘precommitted’’ (also

eferred to as open-loop) Nash equilibrium pertains to the equilibrium
n which each player dedicates their optimal choices, contingent solely
pon time, while considering the optimal choice of the competing
layer as given.

With the two players making their precommitments, the cartel
upplies the market following a monopoly’s profit maximization choice,
nitially without constraints but at a level no lower than the minimum
equirement. In order to simultaneously solve the above two optimal
ontrol problems, we define the Hamiltonian of the cartel as

𝐻𝑐,𝐼 (𝑥𝑛, 𝑋𝑛, 𝜆𝑥, 𝜂𝑥, 𝜈𝑥, 𝜇𝑥) = [(𝑎 − 𝑏(𝑥𝑛 + 𝑦𝑛))𝑥𝑛 − 𝐶0𝑥𝑛 − 𝜉𝑋𝑛]

+𝜆𝑥𝑥𝑛 + 𝜂𝑥𝑥𝑛 + 𝜈𝑥(𝜂𝑋𝑛 − 𝑌𝑛) + 𝜇𝑥(𝑥𝑛 − 𝑥𝑚𝑖𝑛)

and the Hamiltonian of the importer as

𝐻𝐼 (𝑦𝑛, 𝑌𝑛, 𝜆𝑦, 𝜂𝑦, 𝜈𝑦, 𝜇𝑦) =
[

𝐵0(𝑥𝑛 + 𝑦𝑛) −
(𝑥𝑛 + 𝑦𝑛)2

2

]

−[𝑎 − 𝑏(𝑥𝑛 + 𝑦𝑛)]𝑥𝑛 − 𝑅0𝑦𝑛 + 𝜆𝑦𝑦𝑛 + 𝜂𝑦𝑦𝑛
8

+𝜈𝑦(𝜂𝑋𝑛 − 𝑌𝑛) + 𝜇𝑦(𝑥𝑛 + 𝑦𝑛 − 𝑥𝑚𝑖𝑛),
with 𝜆𝑥, 𝜆𝑦 being co-state variables and 𝜂𝑥, 𝜂𝑦, 𝜈𝑥, 𝜈𝑦, 𝜇𝑥, 𝜇𝑦 being Kuhn–
Tucker multipliers associated with the inequality constraints.

The solution is obtained via backward induction. Thus, we start
from the moment when 𝑡 ≥ 𝑇𝑛. To complete this section, we have to
model the period when 𝑡 ≤ 𝑇𝑛, namely, Period I. But in Period I, the
game reduces to the cartel’s optimal control problem, given that the
importing country’s recycling technology is not yet available. We leave
the details to Appendix A.8.

Appendix A.7 demonstrates the following results.

Proposition 5. Let 𝑡 ≥ 𝑇𝑛. If there is no cost-saving technology, i.e., 𝑔 = 0
and 𝜌 = 0, then there exist finite times (𝑇𝑛 ≤)𝑇𝑛2, 𝑇𝑛3 ≤ 𝑇𝑛4 ≤ 𝑇𝑛5 such that
there is an open-loop Nash equilibrium, (𝑥𝑜𝑛(𝑡)), 𝑦𝑜𝑛(𝑡), given by the following:

𝑥𝑜𝑛(𝑡) =

⎧

⎪

⎨

⎪

⎩

1
𝑏(𝑏 + 1)

[

𝑎 − 𝑏(𝐵0 − 𝑅0) − 𝐶0 + 𝜆𝑥 − 𝑏𝜆𝑦
]

, 𝑇𝑛 ≤ 𝑡 ≤ 𝑇𝑛3,

0, 𝑡 ≥ 𝑇𝑛3.
(32)

6.1) If 𝑇𝑛2 < 𝑇𝑛3,

𝑦𝑜𝑛(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝐵0 − 𝑅0 + (𝑏 − 1)𝑥𝑜𝑛(𝑡) + 𝜆𝑦, 𝑇𝑛 ≤ 𝑡 ≤ 𝑇𝑛2,

𝑥𝑚𝑖𝑛 − 𝑥𝑜𝑛(𝑡), 𝑇𝑛2 ≤ 𝑡 ≤ 𝑇𝑛3,

𝑥𝑚𝑖𝑛, 𝑇𝑛3 ≤ 𝑡 ≤ 𝑇𝑛5;

6.2) if 𝑇𝑛2 > 𝑇𝑛3

𝑦𝑜𝑛(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝐵0 − 𝑅0 + (𝑏 − 1)𝑥𝑜𝑛(𝑡) + 𝜆𝑦, 𝑇𝑛 ≤ 𝑡 ≤ 𝑇𝑛3,

𝐵0 − 𝑅0 + 𝜆𝑦(𝑡), 𝑇𝑛3 ≤ 𝑡 ≤ 𝑇𝑛4,

𝑥𝑚𝑖𝑛, 𝑇𝑛4 ≤ 𝑡 ≤ 𝑇𝑛5;

6.3) at 𝑡 = 𝑇𝑛5, the recyclable resource is exhausted.

The shadow value 𝜆𝑥 measures the value of the cartel’s accumulated
supply in the market, 𝑋𝑛(𝑡). Thus, it is the value of lost mineral to
the importer—obviously, it is always negative for the cartel. Similarly,
𝜆𝑦 measures the value of the importing country’s recycled minerals.
Although the recycled mineral can be recycled again, due to the lost
material following each round of recycling, some value is lost. Addi-
tionally, the two costs have different impacts on the cartel’s optimal
market supply: Its own marginal cost, 𝐶0, gives the cartel an incentive
to decrease market supply, while the importer’s recycling cost augments
the cartel’s supply—the more costly recycling is, the larger the market
share for the cartel. Nevertheless, the impact of cost on the importing
country also depends on the market structure—whether 𝑏 > 1 or 𝑏 < 1.

In the above, there is an implicit condition 𝑥𝑜𝑛 > 0 for 𝑇𝑛 ≤ 𝑡 ≤ 𝑇𝑛3,
that is, at least when 𝑡 = 𝑇𝑛,

𝑎 − 𝑏𝐵0 + 𝑏𝑅0 − 𝐶0 + 𝜆𝑥(𝑇𝑛) − 𝑏𝜆𝑦(𝑇𝑛) > 0. (33)

Of course, it may occur that at 𝑡 = 𝑇𝑛, 𝑆(𝑇𝑛) = 0, that is, the natural
reserve is exhausted when recycling starts. The conditions for this
situation are presented in Appendix A.8 for Period I. If this is the case,
the supply in the second period depends only on recycling and 𝑥𝑜𝑛(𝑡) = 0
for 𝑡 ≥ 𝑇𝑛.

Suppose (33) holds. It is straightforward that the joint market
supply of the mineral is

𝑥∗𝑛 + 𝑦∗𝑛 = 1
𝑏 + 1

[

𝑎 + 𝐵0 + (𝜆𝑥 + 𝜆𝑦) − (𝑅0 + 𝐶0)
]

, (34)

which follows
𝑑(𝑥∗𝑛 + 𝑦∗𝑛)

𝑑𝑡
= 1

𝑏 + 1
[

𝜆̇𝑥 + 𝜆̇𝑦
]

.

Given that both shadow values decrease at the rate of interest, the joint
supply in the market also decreases over time at the same rate. Thus,
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the market price

𝑝𝑛(𝑥∗𝑛 + 𝑦∗𝑛) = 𝑎 − 𝑏(𝑥∗𝑛 + 𝑦∗𝑛) =
1

𝑏 + 1
[

𝑎 − 𝑏𝐵0 − 𝑏(𝜆𝑥 + 𝜆𝑦) + 𝑏(𝑅0 + 𝐶0)
]

(35)

ollows
𝑑𝑝𝑛
𝑑𝑡

= −𝑏
𝑑(𝑥∗𝑛 + 𝑦∗𝑛)

𝑑𝑡
.

In other words, without cost-saving technological progress, i.e., 𝜌 =
0 and 𝑔 = 0, the price follows Hotelling’s rule by increasing over
time at the rate of interest, and the total supply from the cartel and
recycler decreases at the same rate over time until the minimum market
requirement level is reached.

Keeping this monotonic changing in mind, the intuition of time 𝑇𝑛𝑖
is clear. 𝑇𝑛2 is the moment when the (monotonically decreasing) joint
supply, 𝑥𝑜𝑛+𝑦𝑜𝑛, reaches the minimum market demand level, 𝑥𝑚𝑖𝑛. Thus,
from that moment on the supply has to follow this minimum level and:

𝑥𝑜𝑛(𝑇𝑛2) + 𝑦𝑜𝑛(𝑇𝑛2) = 𝐵0 − 𝑅0 + 𝑏𝑥𝑜𝑛(𝑇𝑛2) + 𝜆𝑦(𝑇𝑛2) = 𝑥𝑚𝑖𝑛. (36)

Two possibilities appear: (a) At 𝑇𝑛2, the cartel’s original reserve
is not yet exhausted, and (b) the natural reserve is exhausted before
𝑇𝑛2. In the first case, the cartel continues to supply the market until
the reserve is exhausted at 𝑇𝑛3 > 𝑇𝑛2. Thus, during the time interval
[𝑇𝑛2, 𝑇𝑛3], the recycler complements the cartel’s insufficient supply to
maintain market supply at its minimum level:

∫

𝑇𝑛3

𝑇𝑛
𝑥𝑜𝑛(𝑡)𝑑𝑡 = 𝑆(0) −𝑋(𝑇𝑛). (37)

In the second case, the cartel must supply the market alone for
𝑡 ≥ 𝑇𝑛2. If the monotonically decreasing recycling supply is above the
minimum level, that is, if

𝑦𝑜𝑛(𝑡) = 𝐵0 − 𝑅0 + 𝜆𝑦(𝑡) > 𝑥𝑚𝑖𝑛, 𝑡 ≥ max{𝑇𝑛2, 𝑇𝑛3},

it can only last until 𝑇𝑛4 (and thus, 𝑦𝑜𝑛(𝑇𝑛4) = 𝑥𝑚𝑖𝑛). From that moment
on, the recycling is fixed at the minimum market-demand level until
𝑇𝑛5:

∫

𝑇𝑛5

𝑇𝑛
𝑦𝑜𝑛(𝑡)𝑑𝑡 =

𝜌̄𝑆(0)
1 − 𝜌̄

. (38)

In other words, the duration of each recycling process shrinks with
epeated recycling until, at a finite time, the recyclable resource is
xhausted, such that either the supply is not sufficient to satisfy the
inimum market demand or the amount of unused critical mineral

s greater than the total stock of mineral to be recycled. Thus, the
ecycling process can no longer continue.

Of course, it is not impossible that from the beginning 𝑡 = 𝑇𝑛,
𝑛(𝑇𝑛) + 𝑦𝑛(𝑇𝑛) ≤ 𝑥𝑚𝑖𝑛. In this case, 𝑥𝑜𝑛(𝑡) + 𝑦𝑜𝑛(𝑡) = 𝑥𝑚𝑖𝑛 for all 𝑡 ≥ 𝑇𝑛.
he rest of 𝑇𝑛𝑖, 𝑖 = 2, 3, 4, 5 can be similarly defined.

. Conclusion

Critical minerals are essential components of many modern tech-
ologies, and especially those used for renewable energy and electric
ehicles. As the demand for these minerals grows, so does the need for
reliable and secure supply. In this article, we looked into the best
ays to obtain these minerals, either by working together globally or
y competing in a certain way.

The main findings are as follows. (i) When both the virgin resource
nd recyclable reserves are abundant, it is globally optimal to rely
n only one resource to satisfy market demand. Obviously, this main
inding differs from the existing literature, such as, Hoogmartens et al.
2018) and Seyhan et al. (2012) etc., where both extraction and recy-
ling could supply the market simultaneously. The fundamental reason
re two fold: under our setting the (shadow) price is monotonic, which
9

𝑥

s not the case within the framework of Seyhan et al. (2012); and
hich resource to supply the market is an endogenous decision instead
f exogenous assumption ((Hoogmartens et al., 2018), etc.). (ii) The
ore globally desirable resource, i.e., the cheaper one, should supply

he market first. (iii) The two resources supply the market at the same
ime only if the cheaper one is being exhausted and is not sufficient
o satisfy market demand. (iv) When the recyclable reserve is being
xhausted but the virgin reserve is not, it must be that recycling is
heaper than exploitation. In this case, the international organization,
s policymaker, has no optimal choice as to how to exploit the remain
esource. (v) In contrast, under precommitment both resources could
upply the market at the same time.

Our paper takes a first step toward a comprehensive framework that
an be used to understand the complexity of supply chains for many
ritical minerals, in order to reduce their vulnerability to disruptions
nd geopolitical risks.
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ppendix A

.1. Proof of Proposition 1

We first find maximizers of 𝐻̃ in each case. In the interior 𝛺, a
aximizer

(

𝑥̃∗𝑏 , 𝑦̃
∗
𝑏
)

of 𝐻̃ satisfies

𝐻̃ + 𝜇∇
[

𝑥 + 𝑦 − 𝑥min
]

+ 𝜈∇𝑥 + 𝛾∇𝑦 = 0,

here ∇ is the gradient with respect to (𝑥, 𝑦) and 𝜇, 𝜈, and 𝛾 are
uhn–Tucker multipliers. The above equation is equivalent to

𝐵0 − (𝑥 + 𝑦) − 𝐶0𝑒−𝑔𝑡 +𝑊𝑋 + 𝜇 + 𝜈 = 0,

𝐵0 − (𝑥 + 𝑦) − 𝑅0𝑒−𝜌𝑡 +𝑊𝑌 + 𝜇 + 𝛾 = 0,

𝜇 ≥ 0, 𝑥 + 𝑦 ≥ 𝑥min, 𝜇
(

𝑥 + 𝑦 − 𝑥min
)

= 0,

𝜈 ≥ 0, 𝑥 ≥ 0, 𝜈𝑥 = 0,

𝛾 ≥ 0, 𝑦 ≥ 0, 𝛾𝑦 = 0.

(39)

hus,

0 + 𝜇 − (𝑥 + 𝑦) = 𝐶0𝑒
−𝑔𝑡 −𝑊𝑋 − 𝜈 = 𝑅0𝑒

−𝜌𝑡 −𝑊𝑌 − 𝛾. (40)

y subtracting the first two equations in (39), we find

𝐶0𝑒
−𝑔𝑡 +𝑊𝑋 + 𝜈 + 𝑅0𝑒

−𝜌𝑡 −𝑊𝑌 − 𝛾 = 0. (41)

uppose (17) holds. Then

= 𝜈 − 𝐶0𝑒
−𝑔𝑡 +𝑊𝑋 −

[

−𝑅0𝑒
−𝜌𝑡 +𝑊𝑌

]

> 0.

y the last line in (39), 𝑦̃∗𝑏 = 0. Also, by (40),

̃∗𝑏 = 𝐵0 + 𝜇 − 𝐶0𝑒
−𝑔𝑡 +𝑊𝑋 .

ither 𝜇 = 0 or 𝜇 > 0. In the former case,

̃∗𝑏 = 𝐵0 − 𝐶0𝑒
−𝑔𝑡 +𝑊𝑋 ,

nd by the third line in (39),
∗ ∗ ∗
̃𝑏 = 𝑥̃𝑏 + 𝑦̃𝑏 ≥ 𝑥min.
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f

In the latter case, by the same relation we have

𝑥̃∗𝑏 = 𝑥min > 𝐵0 − 𝐶0𝑒
−𝑔𝑡 +𝑊𝑋 .

This proves that
(

𝑥̃∗𝑏 , 0
)

, where

𝑥̃∗𝑏 = max
{

𝑥min, 𝐵0 − 𝐶0𝑒
−𝑔𝑡 +𝑊𝑋

}

is a maximizer of 𝐻̃ .
If (19) holds, then

(

𝑥̃∗𝑏 , 0
)

is a maximizer of 𝐻 . Otherwise,
(

0, 𝑦̄∗𝑏
)

is
maximizer of 𝐻 . This proves Part 1.

Suppose (20) holds. By (41),

= 𝛾 + 𝐶0𝑒
−𝑔𝑡 −𝑊𝑋 − 𝑅0𝑒

−𝜌𝑡 +𝑊𝑌 > 0.

Hence, by the fourth line in (39), 𝑥∗𝑏 = 0. Furthermore, by (40),

𝑦∗𝑏 = 𝐵0 + 𝜇 − 𝑅0𝑒
−𝜌𝑡 +𝑊𝑌 .

If 𝜇 = 0, then

𝑦∗𝑏 = 𝐵0 − 𝑅0𝑒
−𝜌𝑡 +𝑊𝑌 > 𝑥min.

If 𝜇 > 0, then

𝑦∗𝑏 = 𝑥min > 𝐵0 − 𝑅0𝑒
−𝜌𝑡 +𝑊𝑌 .

Hence, 𝑦∗𝑏 = 𝑦̄∗𝑏 . This proves Part 2.
Finally, suppose (21) holds. Then 𝜈 = 𝛾. It is not possible for both

to be positive, because if so, by the fourth and fifth lines in (39),
𝑥̃∗𝑏 = 𝑦̃∗𝑏 = 0, contradicting the third line. Thus, 𝜈 = 𝛾 = 0. By (40),

𝑥̃∗𝑏 + 𝑦̃∗𝑏 = 𝐵0 + 𝜇 − 𝐶0𝑒
−𝑔𝑡 +𝑊𝑋 = 𝐵0 + 𝜇 − 𝑅0𝑒

−𝜌𝑡 +𝑊𝑌 .

Either 𝜇 = 0 or 𝜇 > 0. If 𝜇 = 0, then

𝑥̃∗𝑏 + 𝑦̃∗𝑏 = 𝐵0 − 𝐶0𝑒
−𝑔𝑡 +𝑊𝑋 = 𝐵0 − 𝑅0𝑒

−𝜌𝑡 +𝑊𝑌 ≥ 𝑥min.

Otherwise,

𝑥̃∗𝑏 + 𝑦̃∗𝑏 = 𝑥min > 𝐵0 − 𝐶0𝑒
−𝑔𝑡 +𝑊𝑋 = 𝐵0 − 𝑅0𝑒

−𝜌𝑡 +𝑊𝑌 .

Hence,
(

𝑥̃∗𝑏 , 𝑦̃
∗
𝑏
)

is a maximizer of 𝐻̃ . If (22) holds, then
(

𝑥̃∗𝑏 , 𝑦̃
∗
𝑏
)

is also
a maximizer of 𝐻 . Otherwise,

(

0, 𝑦̄∗𝑏
)

is a maximizer of 𝐻 .
This completes the proof.

A.2. Proof of Proposition 2

The proof is complete in two steps: we first rewrite the HJB equa-
tion for this boundary case; then we provide a detailed proof of the
proposition.

Step 1. The HJB equation.
The HJB equation takes the form

𝑟𝑊 (𝑆0, 𝑌 ) =

⎧

⎪

⎨

⎪

⎩

[

𝐵0 − 𝑅0 +𝑊𝑌
]

𝑥min −
𝑥2min
2 if 𝐵0 − 𝑅0 +𝑊𝑌 ≤ 𝑥min,

1
2

[

𝐵0 − 𝑅0 +𝑊𝑌
]2 otherwise.

(42)

here are two cases: Either 𝐵0−𝑅0 ≤ 𝑥min or 𝐵0−𝑅0 > 𝑥min. In the first
ase, if we choose
(

𝑆0, 𝜂𝑆0
)

≤
𝑥min
𝑟

[

𝐵0 − 𝑅0 −
𝑥min
2

]

(43)

nd solve the linear differential equation of 𝑊 (𝑌 ) in terms of 𝑌 ,

𝑊 =
[

𝐵0 − 𝑅0 +𝑊𝑌
]

𝑥min −
𝑥2min
2

, (44)

then

𝑊
(

𝑆0, 𝑌
)

= 𝑒
𝑟(𝑌−𝜂𝑆0)

𝑥min
{

𝑊
(

𝑆0, 𝜂𝑆0
)

−
𝑥min
𝑟

[

𝐵0 − 𝑅0 −
𝑥min
2

]}

+
𝑥min
𝑟

[

𝐵0 − 𝑅0 −
𝑥min
2

]

, (45)
10
with initial condition 𝑊
(

𝑆0, 𝜂𝑆0
)

undetermined but satisfying con-
straint (43). By (43), this solution satisfies

𝑊
(

𝑆0, 𝑌
)

≤
𝑥min
𝑟

[

𝐵0 − 𝑅0 −
𝑥min
2

]

for 𝑌 < 𝜂𝑆0.

ence,

0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)

= 𝑟
𝑥min

𝑊
(

𝑆0, 𝑌
)

+
𝑥min
2

≤ 𝐵0 − 𝑅0 ≤ 𝑥min

for all 𝑌 such that 0 < 𝑌 < 𝜂𝑆0. Therefore, 𝑊 satisfies Eq. (42) for all
𝑌 < 𝜂𝑆0.

In the case where 𝐵0 − 𝑅0 > 𝑥min, by (44) and (45)

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)

= 𝑟
𝑥min

𝑊
(

𝑆0, 𝑌
)

+
𝑥min

2

= 𝑒
𝑟(𝑌−𝜂𝑆0 )

𝑥min
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝜂𝑆0
)]

+
(

1 − 𝑒
𝑟(𝑌−𝜂𝑆0 )

𝑥min

)

[

𝐵0 − 𝑅0
]

> 𝑥min

f 𝑆0 is sufficiently large and 𝑌 is sufficiently small, that is, at the early
stage of recycling. Let 𝑌 be such that

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)

= 𝑥min.

n the case where 𝑌 > 0, then for 𝑌 < 𝑌 (42) becomes

𝑊 = 1
2
[

𝐵0 − 𝑅0 +𝑊𝑌
]2 . (46)

ith such a value function,
∗
𝑏 = 𝐵0 − 𝑅0 +𝑊𝑌 > 𝑥min for 𝑌 < 𝑌 .

o when the virgin resource is exhausted, the central planner may be
avish at first but then becomes frugal.

Alternatively, we can choose 𝑊
(

𝑆0, 𝜂𝑆0
)

to be sufficiently negative
uch that

0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)

≤ 𝑥min for 0 ≤ 𝑌 ≤ 𝜂𝑆0.

n this way, (44) is valid for the entire 𝛤1. This solution represents a
rugal central planner who provides only the minimum supply when
he virgin resource is exhausted.
Step 2. The proof of Proposition 2.
We first show that if there is such a 𝑌 at which no 𝜀 exists, then

here is a sequence
(

𝑌𝑘
)

such that lim𝑘→∞ 𝑌𝑘 = 𝑌 and 𝑥∗𝑏 = 0 at
(

𝑋, 𝑌𝑘
)

or 𝑆0 − 𝛿 < 𝑋 ≤ 𝑆0. Assume that the opposite holds, so that there are
, 𝑏 > 0 such that 𝑎 < 𝑏 and 𝑥∗𝑏 > 0 at (𝑋, 𝑌 ) for 𝑆0 − 𝛿 < 𝑋 ≤ 𝑆0 and
≤ 𝑌 ≤ 𝑏 for some 𝛿 > 0. Then 𝑊 satisfies

𝑊 =

⎧

⎪

⎨

⎪

⎩

[

𝐵0 − 𝐶0 +𝑊𝑋
]

𝑥min −
𝑥2min
2 − 𝜉𝑋 if 𝐵0 − 𝐶0 +𝑊𝑋 ≤ 𝑥min,

1
2

[

𝐵0 − 𝐶0 +𝑊𝑋
]2 − 𝜉𝑋 otherwise

(47)

or (𝑋, 𝑌 ) ∈
[

𝑆0 − 𝛿, 𝑆0
]

× [𝑎, 𝑏]. The equation is supplemented with the
oundary value 𝑊

(

𝑆0, 𝑌
)

solved from (42) at 𝑋 = 𝑆0. Reducing 𝜀 and
he interval [𝑎, 𝑏] if necessary, we can assume that either

𝑊 (𝑋, 𝑌 ) =
[

𝐵0 − 𝐶0 +𝑊𝑋 (𝑋, 𝑌 )
]

𝑥min −
𝑥2min
2

− 𝜉𝑋 (48)

or

𝑟𝑊 = 1
2
[

𝐵0 − 𝐶0 +𝑊𝑋
]2 − 𝜉𝑋. (49)

olds in the domain
[

𝑆0 − 𝛿, 𝑆0
]

×[𝑎, 𝑏]. In addition, we can assume that
42) is either (44) or (46) for the entire interval [𝑎, 𝑏].

We first consider the case where (44) and (48) hold. In this case,
rom these two equations we derive

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑌
)

= 𝑟
𝑥min

𝑊
(

𝑆0, 𝑌
)

+ 𝑥min
2 + 𝜉𝑆0

𝑥min
,

𝐵 − 𝑅 +𝑊
(

𝑆 , 𝑌
)

= 𝑟 𝑊
(

𝑆 , 𝑌
)

+ 𝑥min
(50)
0 0 𝑌 0 𝑥min
0 2



Resources, Conservation & Recycling 209 (2024) 107793W. Ruan and B. Zou

𝐵

W

𝑟

T

𝑊

F

𝐵

a

𝑟

f
𝑒

c

[

f
[

I

f

𝑊

H

=

O

𝑊

w

𝜇

=

T

2

T
[

c

e

s
(

𝐵

for 𝑌 ∈ [𝑎, 𝑏]. Hence

0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑌
)

−
𝜉𝑆0
𝑥min

= 𝐵0 −𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)

for 𝑌 ∈ [𝑎, 𝑏] .

(51)

e next differentiate the two sides of (44) to derive

𝑊𝑋
(

𝑆0, 𝑌
)

= 𝑥min𝑊𝑋𝑌
(

𝑆0, 𝑌
)

, 𝑟𝑊𝑌
(

𝑆0, 𝑌
)

= 𝑥min𝑊𝑌 𝑌
(

𝑆0, 𝑌
)

.

(52)

he solutions are

𝑋
(

𝑆0, 𝑌
)

= 𝑒
𝑟

𝑥min
(𝑌−𝑎)𝑊𝑋

(

𝑆0, 𝑎
)

, 𝑊𝑌
(

𝑆0, 𝑌
)

= 𝑒
𝑟

𝑥min
(𝑌−𝑎)𝑊𝑌

(

𝑆0, 𝑎
)

(53)

for 𝑌 ∈ [𝑎, 𝑏]. Hence,

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑌
)

= 𝑒
𝑟(𝑌−𝑎)
𝑥min

[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑎
)]

+
(

1 − 𝑒
𝑟(𝑌−𝑎)
𝑥min

)

[

𝐵0 − 𝐶0
]

,

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)

= 𝑒
𝑟(𝑌−𝑎)
𝑥min

[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑎
)]

+
(

1 − 𝑒
𝑟(𝑌−𝑎)
𝑥min

)

[

𝐵0 − 𝑅0
]

.

(54)

rom the first equation, we obtain

0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑌
)

−
𝜉𝑆0
𝑥min

= 𝑒
𝑟(𝑌−𝑎)
𝑥min

[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑎
)

−
𝜉𝑆0
𝑥min

]

+
(

1 − 𝑒
𝑟(𝑌−𝑎)
𝑥min

)[

𝐵0 − 𝐶0 −
𝜉𝑆0
𝑥min

]

.

Hence, by (51),

𝐵0 − 𝐶0 −
𝜉𝑆0
𝑥min

= 𝐵0 − 𝑅0.

This contradicts (23).

Note that (46) and (48) cannot both hold because the former leads
to

𝑟𝑊
(

𝑆0, 𝑌
)

=
[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑌
)]

𝑥min −
𝑥2min
2

− 𝜉𝑆0 ≤
𝑥2min
2

− 𝜉𝑆0,

nd the latter leads to

𝑊
(

𝑆0, 𝑌
)

= 1
2
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)]2 ≥

𝑥2min
2

.

We next consider the case where (44) and (49) hold. In this case,

1
2
[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑌
)]2 − 𝜉𝑆0 = 𝑟𝑊

(

𝑆0, 𝑌
)

=
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)]

𝑥min −
𝑥2min
2

for 𝑌 ∈ [𝑎, 𝑏]. This cannot be true because by (45) 𝑊
(

𝑆0, 𝑌
)

is a linear

unction of 𝑒
𝑟𝑌

𝑥min , but by (54) the right-hand is a linear combination of
2𝑟𝑌
𝑥min and 𝑒

𝑟𝑇
𝑥min .

We now consider the case where (46) and (49) both hold. In this
ase,

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑌
)]2 − 2𝜉𝑆0 =

[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)]2 (55)
11
or 𝑌 ∈ [𝑎, 𝑏]. Differentiating both sides with respect to 𝑌 , we obtain

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑌
)]

𝑊𝑋𝑌
(

𝑆0, 𝑌
)

=
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)]

𝑊𝑌 𝑌
(

𝑆0, 𝑌
)

.

(56)

n addition, differentiating both sides of (46), we obtain

𝑟𝑊𝑋
(

𝑆0, 𝑌
)

=
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)]

𝑊𝑋𝑌
(

𝑆0, 𝑌
)

,

𝑟𝑊𝑌
(

𝑆0, 𝑌
)

=
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)]

𝑊𝑌 𝑌
(

𝑆0, 𝑌
) (57)

or 𝑌 ∈ [𝑎, 𝑏]. Hence, (56) leads to

𝑋
(

𝑆0, 𝑌
) [

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑌
)]

= 𝑊𝑌
(

𝑆0, 𝑌
) [

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)]

.

ence, by (55),
[

𝐵0 − 𝐶0
] [

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑌
)]

−
[

𝐵0 − 𝑅0
] [

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)]

[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑌
)]2 −

[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)]2 = 2𝜉𝑆0.

n the other hand, solving equations in (57) we obtain

𝑋
(

𝑆0, 𝑌
)

= 𝜇 (𝑌 )𝑊𝑋
(

𝑆0, 𝑎
)

, 𝑊𝑌
(

𝑆0, 𝑌
)

= 𝜇 (𝑌 )𝑊𝑌
(

𝑆0, 𝑎
)

,

here

(𝑌 ) = 𝑒
∫ 𝑌
𝑎

𝑟𝑑𝑠
𝐵0−𝑅0+𝑊𝑌 (𝑆0 ,𝑠) .

Hence,
[

𝐵0 − 𝐶0
] [

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑌
)]

−
[

𝐵0 − 𝑅0
] [

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)]

[

𝐵0 − 𝐶0
] [

𝐵0 − 𝐶0 + 𝜇𝑊𝑋
(

𝑆0, 𝑎
)]

−
[

𝐵0 − 𝑅0
] [

𝐵0 − 𝑅0 + 𝜇𝑊𝑌
(

𝑆0, 𝑎
)]

.

his leads to

𝜇 (𝑌 ) 𝜉𝑆0 + (1 − 𝜇 (𝑌 ))
{

[

𝐵0 − 𝐶0
]2 −

[

𝐵0 − 𝑅0
]2
}

= 2𝜉𝑆0.

his is only possible if

𝐵0 − 𝐶0
]2 −

[

𝐵0 − 𝑅0
]2 = 2𝜉𝑆0,

ontradicting (23).
This proves the existence of a sequence

(

𝑌𝑘
)

of the asserted prop-
rty.

We next show that 𝑌 does not exist. If such a 𝑌 exists. Then, 𝑊
atisfies (47) at (𝑋, 𝑌 ) for 𝑋 ∈

[

𝑆0 − 𝜀, 𝑆0
]

. We first assume (44) and
48) both hold. Thus,

0 − 𝐶0 +𝑊𝑋 (𝑋, 𝑌 ) −
𝜉𝑋
𝑥min

≥ 𝐵0 − 𝑅0 +𝑊𝑌 (𝑋, 𝑌 ) (58)

for 𝑋 ∈
[

𝑆0 − 𝜀, 𝑆0
]

. However, since 𝑌𝑘 → 𝑌 and the reversed inequality
holds with 𝑌 replaced by 𝑌𝑘, the two sides are equal. By differentiating
(48), we obtain

𝑟𝑊𝑋 (𝑋, 𝑌 ) = 𝑥min𝑊𝑋𝑋 (𝑋, 𝑌 ) − 𝜉, 𝑟𝑊𝑌 (𝑋, 𝑌 ) = 𝑥min𝑊𝑌 𝑋 (𝑋, 𝑌 ) .

(59)

Hence,

𝑊𝑋 (𝑋, 𝑌 ) = 𝑒
𝑟(𝑋−𝑆0)

𝑥min

[

𝑊𝑋
(

𝑆0, 𝑌
)

+
𝜉
𝑟

]

−
𝜉
𝑟
,

𝑊𝑌 (𝑋, 𝑌 ) = 𝑒
𝑟(𝑋−𝑆0)

𝑥min 𝑊𝑌
(

𝑆0, 𝑌
)

.

(60)

This leads to

𝐵0 − 𝐶0 +𝑊𝑋 (𝑋, 𝑌 ) = 𝑒
𝑟(𝑋−𝑆0)

𝑥min
[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 𝑌
)]

+

(

1 − 𝑒
𝑟(𝑋−𝑆0)

𝑥min

)

[

𝐵0 − 𝐶0 −
𝜉
𝑟

]

,

𝐵0 − 𝑅0 +𝑊𝑌 (𝑋, 𝑌 ) = 𝑒
𝑟(𝑋−𝑆0)

𝑥min
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 𝑌
)]

+

(

1 − 𝑒
𝑟(𝑋−𝑆0)

𝑥min

)

[

𝐵0 − 𝑅0
]

.
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Substituting these into (58), the two sides are different types of Func-
tions and thus cannot be equal on the interval.

If (44) and (49) hold, then

[

𝐵0 − 𝐶0 +𝑊𝑋 (𝑋, 𝑌 )
]

𝑥min −
𝑥2min
2

− 𝜉𝑋 = 1
2
[

𝐵0 − 𝑅0 +𝑊𝑌 (𝑋, 𝑌 )
]2

or 𝑋 ∈
[

𝑆0 − 𝜀, 𝑆0
]

. Moreover, 𝑊𝑋 and 𝑊𝑌 satisfy (60). We again find
hat the two side are different types of functions and, therefore, cannot
e equal on an interval.

Finally, if (46) and (49) hold, then
1
2
[

𝐵0 − 𝐶0 +𝑊𝑋 (𝑋, 𝑌 )
]2 − 𝜉𝑋 = 1

2
[

𝐵0 − 𝑅0 +𝑊𝑌 (𝑋, 𝑌 )
]2 (61)

for 𝑋 ∈
[

𝑆0 − 𝜀, 𝑆0
]

. By differentiation with respect to 𝑋, it follows that

[

𝐵0 − 𝐶0 +𝑊𝑋 (𝑋, 𝑌 )
]

𝑊𝑋𝑋 (𝑋, 𝑌 ) − 𝜉 =
[

𝐵0 − 𝑅0 +𝑊𝑌 (𝑋, 𝑌 )
]

𝑊𝑌 𝑋 (𝑋, 𝑌 ) .

(62)

Differentiating (49), we find

𝑟𝑊𝑋 =
[

𝐵0 − 𝐶0 +𝑊𝑋
]

𝑊𝑋𝑋 − 𝜉, 𝑟𝑊𝑌 =
[

𝐵0 − 𝐶0 +𝑊𝑋
]

𝑊𝑌 𝑋 . (63)

The solutions are

𝑊𝑋 (𝑋, 𝑌 ) = 𝜈 (𝑋, 𝑌 )
[

𝑊𝑋
(

𝑆0, 𝑌
)

+
𝜉
𝑟

]

−
𝜉
𝑟
,

𝑌 (𝑋, 𝑌 ) = 𝜈 (𝑋, 𝑌 )𝑊𝑌
(

𝑆0, 𝑌
)

,
(64)

here

(𝑋, 𝑌 ) = 𝑒
∫ 𝑋
𝑆0

𝑟𝑑𝑠
𝐵0−𝐶0+𝑊𝑋 (𝑠,𝑌 ) .

From (62) and (63), we derive

𝑊𝑋 (𝑋, 𝑌 )
[

𝐵0 − 𝐶0 +𝑊𝑋 (𝑋, 𝑌 )
]

= 𝑊𝑌 (𝑋, 𝑌 )
[

𝐵0 − 𝑅0 +𝑊𝑌 (𝑋, 𝑌 )
]

.

Then, by (61),
(

𝐵0 − 𝐶0
) [

𝐵0 − 𝐶0 +𝑊𝑋
]

−
(

𝐵0 − 𝑅0
) [

𝐵0 − 𝑅0 +𝑊𝑌
]

= 2𝜉𝑋.

Finally, by (64),
(

𝐵0 − 𝐶0
)2 −

(

𝐵0 − 𝑅0
)2 −

𝜉
𝑟
= 2𝜉𝑋 for 𝑋 ∈

[

𝑆0 − 𝜀, 𝑆0
]

.

ince the left-hand side is a constant and the right-hand side is a linear
unction, the two sides are not equal on the interval.

Therefore, there is no positive 𝑌 such that 𝑥∗𝑏 > 0 at (𝑋, 𝑌 ) near 𝛤1.
The proof is complete.

.3. Proof of Proposition 3

Let 𝑊 satisfy (42) on 𝛤1. We find values of 𝑊 at (𝑋, 0) for 𝑋 < 𝑆0
nd near 𝑆0 by solving (47) with 𝑌 = 0 and 𝑋 < 𝑆0, that is, 𝑋 = 𝑋−

0 .
here are three Possibilities: Either

𝑊
(

𝑆0, 0
)

≤
𝑥2min
2

− 𝜉𝑆0, (65)

or
𝑥2min
2

− 𝜉𝑆0 < 𝑟𝑊
(

𝑆0, 0
)

≤
𝑥2min
2

, (66)

or

𝑟𝑊
(

𝑆0, 0
)

>
𝑥2min
2

. (67)

Note that if the central planner chooses 𝑦∗𝑏 = 𝑥min at 𝑋 = 𝑆0, either (65)
or (66) holds. (67) holds only if the central planner allows 𝑦∗𝑏 > 𝑥min at
𝑋 = 𝑆0.

Suppose (65) holds. Then Eq. (47) takes the form

𝑟𝑊 (𝑋, 0) =
[

𝐵 − 𝐶 +𝑊 (𝑋, 0)
]

𝑥 −
𝑥2min −𝜉𝑋 for 𝑋 < 𝑆 . (68)
12

0 0 𝑋 min 2 0
ince (65) implies that (42) takes the form (44), it is necessary that

0 − 𝐶0 +𝑊𝑋 (𝑋, 0) −
𝜉𝑋
𝑥min

≥ 𝐵0 − 𝑅0 +𝑊𝑌 (𝑋, 0) (69)

or 𝑋 near 𝑆0. Let 𝐹 (𝑋) and 𝐺 (𝑋) denote the left- and right-hand sides
f the above inequality, respectively. Differentiating both sides of (48)
ith respect to 𝑋 and 𝑌 , we obtain

𝑊𝑋 (𝑋, 0) = 𝑥min𝑊𝑋𝑋 (𝑋, 0) − 𝜉, 𝑟𝑊𝑌 (𝑋, 0) = 𝑥min𝑊𝑌 𝑋 (𝑋, 0) .

n addition, 𝑊𝑋 and 𝑊𝑌 satisfies the boundary conditions

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 0
)

= 𝑟
𝑥min

𝑊
(

𝑆0, 0
)

+ 𝑥min
2 + 𝜉𝑆0

𝑥min
,

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 0
)

= 𝑟
𝑥min

𝑊
(

𝑆0, 0
)

+ 𝑥min
2 .

Solving the boundary value problems, we obtain

𝑊𝑋 (𝑋, 0) = 𝑒
𝑟

𝑥min
(𝑋−𝑆0)

[

𝑊𝑋
(

𝑆0, 0
)

+
𝜉
𝑟

]

−
𝜉
𝑟
,

𝑊𝑌 (𝑋, 0) = 𝑒
𝑟

𝑥min
(𝑋−𝑆0)𝑊𝑌

(

𝑆0, 0
)

.

herefore,

(𝑋) = 𝑒
𝑟

𝑥min
(𝑋−𝑆0) [𝐵0 − 𝐶0 +𝑊𝑋

(

𝑆0 , 0
)]

−
𝜉𝑋
𝑥min

+
(

1 − 𝑒
𝑟

𝑥min
(𝑋−𝑆0)

)

[

𝐵0 − 𝐶0 −
𝜉
𝑟

]

,

𝐺 (𝑋) = 𝑒
𝑟

𝑥min
(𝑋−𝑆0) [𝐵0 − 𝑅0 +𝑊𝑌

(

𝑆0 , 0
)]

+
(

1 − 𝑒
𝑟

𝑥min
(𝑋−𝑆0)

)

[

𝐵0 − 𝑅0
]

.

By (50),

𝐹
(

𝑆0
)

= 𝐺
(

𝑆0
)

.

Hence, (69) holds if

𝐹𝑋 (𝑋) < 𝐺𝑋 (𝑋) .

By differentiation,

𝐹𝑋 (𝑋) = 𝑟
𝑥min

𝑒
𝑟

𝑥min
(𝑋−𝑆0)

{

[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 0
)]

−
[

𝐵0 − 𝐶0 −
𝜉
𝑟

]}

−
𝜉

𝑥min

𝐺𝑋 (𝑋) = 𝑟
𝑥min

𝑒
𝑟

𝑥min
(𝑋−𝑆0) {[𝐵0 − 𝑅0 +𝑊𝑌

(

𝑆0, 0
)]

−
[

𝐵0 − 𝑅0
]}

.

In particular, by (50),

𝐹𝑋
(

𝑆0
)

= 𝑟
𝑥min

{[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0
)]

−
[

𝐵0 − 𝐶0
]}

= 𝑟
𝑥min

{

𝑟
𝑥min

𝑊
(

𝑆0, 0
)

+
𝑥min
2

+
𝜉𝑆0
𝑥min

− 𝐵0 + 𝐶0

}

,

𝑋
(

𝑆0
)

= 𝑟
𝑥min

{

𝑟
𝑥min

𝑊
(

𝑆0, 0
)

+
𝑥min
2

− 𝐵0 + 𝑅0

}

.

n view of (24), 𝐹𝑋
(

𝑆0
)

> 𝐺𝑋
(

𝑆0
)

. Thus, (69) holds in a neighborhood
of 𝑆0.

Suppose (66) holds. Eq. (47) takes the form (49), and (42) takes the
form of (44). For this solution to be valid, it is necessary that

1
2
[

𝐵0 − 𝐶0 +𝑊𝑋 (𝑋, 0)
]2− 𝜉𝑋 ≥

[

𝐵0 − 𝑅0 +𝑊𝑌 (𝑋, 0)
]

𝑥min−
𝑥2min
2

. (70)

We let 𝐿 (𝑋) and 𝑀 (𝑋) denote the left- and right-hand sides, respec-
tively. By differentiating both sides of (49) with respect to 𝑋 and 𝑌 ,
we obtain
𝑟𝑊𝑋 (𝑋, 0) =

[

𝐵0 − 𝐶0 +𝑊𝑋 (𝑋, 0)
]

𝑊𝑋𝑋 − 𝜉,

𝑟𝑊𝑌 (𝑋, 0) =
[

𝐵0 − 𝐶0 +𝑊𝑋 (𝑋, 0)
]

𝑊𝑌 𝑋 .
(71)

et

(𝑋) = 𝐵0 − 𝐶0 +𝑊𝑋 (𝑋, 0) , 𝜇 (𝑋) = 𝑒∫
𝑋
𝑆0

𝑟𝑑𝑠
𝐴(𝑠) . (72)

We find the solutions to (71) in the form

𝑊𝑋 (𝑋, 0) = 𝜇 (𝑋)
[

𝑊𝑋
(

𝑆0, 0
)

+
𝜉
𝑟

]

−
𝜉
𝑟
,

𝑊𝑌 (𝑋, 0) = 𝜇 (𝑋)𝑊𝑌
(

𝑆0, 0
)

.
(73)
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This leads to

𝐵0 − 𝐶0 +𝑊𝑋 (𝑋, 0) = 𝜇
[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 0
)]

+ (1 − 𝜇)
[

𝐵0 − 𝐶0 −
𝜉
𝑟

]

,

𝐵0 − 𝑅0 +𝑊𝑌 (𝑋, 0) = 𝜇
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 0
)]

+ (1 − 𝜇)
[

𝐵0 − 𝑅0
]

.

(74)

Hence, (70) is equivalent to

1
2

{

𝜇 (𝑋)
[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 0
)]

+ (1 − 𝜇 (𝑋))
[

𝐵0 − 𝐶0 −
𝜉
𝑟

]}2
− 𝜉𝑋

≥
{

𝜇 (𝑋)
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 0
)]

+ (1 − 𝜇 (𝑋))
[

𝐵0 − 𝑅0
]}

𝑥min −
𝑥2min
2 .

(75)

Note that by (44) and (49),

1
2
[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 0
)]2−𝜉𝑆0 = 𝑟𝑊

(

𝑆0, 0
)

=
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 0
)]

𝑥min−
𝑥2min

2
.

(76)

ence,
(

𝑆0
)

= 𝑀
(

𝑆0
)

.

t suffices to prove

𝑋
(

𝑆0
)

< 𝑀𝑋
(

𝑆0
)

.

y differentiation, we find

𝐿𝑋
(

𝑆0
)

= 𝑟
𝐴
(

𝑆0
)

[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 0
)] {[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 0
)]

−
[

𝐵0 − 𝐶0 −
𝜉
𝑟

]}

− 𝜉

𝑀𝑋
(

𝑆0
)

=
𝑟𝑥min

𝐴
(

𝑆0, 0
)

{[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 0
)]

−
[

𝐵0 − 𝑅0
]}

.

n view of (72),
(

𝑆0
)

=
[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 0
)]

.

Hence, by (76)

𝐿𝑋
(

𝑆0
)

= 𝑟𝐴
(

𝑆0
)

− 𝑟
[

𝐵0 − 𝐶0
]

,

𝑀𝑋
(

𝑆0
)

= 𝑟
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 0
)]

= 𝑟
⎛

⎜

⎜

⎝

𝐴
(

𝑆0
)2 + 𝑥2min

2𝑥min
−

𝜉𝑆0

𝑥min

⎞

⎟

⎟

⎠

− 𝑟
[

𝐵0 − 𝑅0
]

.

Using (24) and the inequality

𝐴
(

𝑆0
)2 + 𝑥2min
2𝑥min

≥ 𝐴
(

𝑆0
)

,

e obtain

𝑋
(

𝑆0
)

> 𝐿𝑋
(

𝑆0
)

.

his proves that 𝐿 (𝑋) > 𝑀 (𝑋) for 𝑋 in a neighborhood of 𝑆0.
Finally, suppose (67) holds. Then (42) and (47) take the forms (46)

nd (49), respectively. For the solution to be valid, it is necessary that
1
2
[

𝐵0 − 𝐶0 +𝑊𝑋 (𝑋, 0)
]2 − 𝜉𝑋 = 1

2
[

𝐵0 − 𝑅0 +𝑊𝑌 (𝑋, 0)
]2 (77)

or 𝑋 < 𝑆0 and near 𝑆0. We let 𝑈 (𝑋) and 𝑉 (𝑋) denote the left- and
ight-hand sides, respectively. By differentiating the two sides of (49),
e obtain Eq. (71). Hence, (74) holds. Therefore,

𝑈 (𝑋) = 1
2

{

𝜇
[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 0
)]

+ (1 − 𝜇)
[

𝐵0 − 𝐶0 −
𝜉
𝑟

]}2
− 𝜉𝑋

𝑉 (𝑋) = 1
2

{

𝜇
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 0
)]

+ (1 − 𝜇)
[

𝐵0 − 𝑅0
]}2 .

(78)

By (46) and (49), we have

1
2
[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 0
)]2 − 𝜉𝑆0 = 𝑟𝑊

(

𝑆0, 0
)

= 1
2
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 0
)]2 .

(79)
13
Thus, 𝑈
(

𝑆0
)

= 𝑉
(

𝑆0
)

. We differentiate 𝑈 and 𝑉 with respect to 𝑋 to
obtain

𝑈𝑋
(

𝑆0
)

= 𝑟
𝐴
(

𝑆0
)

[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0 , 0
)]

{

[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0 , 0
)]

−
[

𝐵0 − 𝐶0 −
𝜉
𝑟

]}

− 𝜉,

𝑉𝑋
(

𝑆0
)

= 𝑟
𝐴
(

𝑆0
)

[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0 , 0
)] {[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0 , 0
)]

−
[

𝐵0 − 𝑅0
]}

.

Using (72), we find

𝑈𝑋
(

𝑆0
)

= 𝑟
{

𝐴
(

𝑆0
)

−
[

𝐵0 − 𝐶0 −
𝜉
𝑟

]}

− 𝜉 = 𝑟
{

𝐴
(

𝑆0
)

−
[

𝐵0 − 𝐶0
]}

,

𝑉𝑋
(

𝑆0
)

= 𝑟
𝐴
(

𝑆0
)

{

𝐴
(

𝑆0
)2 − 2𝜉𝑆0 −

[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 0
)] [

𝐵0 − 𝑅0
]

}

By (25) and (79),

𝐴
(

𝑆0
)

> 𝑥min,
𝐵0 − 𝑅0 +𝑊𝑌

(

𝑆0, 0
)

𝐴
(

𝑆0
)

[

𝐵0 − 𝑅0
]

< 𝐵0 − 𝑅0.

ence,

𝑋
(

𝑆0
)

≥ 𝑟
{

𝐴
(

𝑆0
)

−
2𝜉𝑆0

𝑥min
−
[

𝐵0 − 𝑅0
]

}

≥ 𝑟
{

𝐴
(

𝑆0
)

−
[

𝐵0 − 𝐶0
]}

= 𝑈𝑋
(

𝑆0
)

.

his proves (77).
This completes the proof.

.4. Proof of Proposition 4

We show that any solution 𝑊 that satisfies (47) at (𝑋, 0) for 𝑋 in a
eighborhood of 𝑆0 is invalid.

There are three cases, either (65), (66), or (67) holds at such points.
he first two correspond to Part 1 and the last one, Part 2. Suppose (65)
olds. Then (47) takes the form (68). For this solution to be valid, it
s necessary that (69) holds. As in the proof of Proposition 3, the left-
nd right-hand sides of (69) satisfy

𝑋
(

𝑆0
)

− 𝐹𝑋
(

𝑆0
)

= 𝑟
𝑥min

{

−
𝜉𝑆0
𝑥min

+ 𝑅0 − 𝐶0

}

.

ince by (26)

0 − 𝐶0 <
2𝜉𝑆0
𝑥min

1

𝑥min +
√

𝑥2min + 2𝜉𝑆0

<
𝜉𝑆0
𝑥min

,

it follows that

𝐹𝑋
(

𝑆0
)

> 𝐺𝑋
(

𝑆0
)

.

Hence,

𝐹 (𝑋) < 𝐺 (𝑋)

for 𝑋 near 𝑆0. This contradicts (69). Therefore, such a solution does
not exist.

Suppose (66) holds. We follow the proof of Proposition 3 to obtain

𝐿𝑋
(

𝑆0
)

= 𝑟
[

𝐴 − 𝐵0 + 𝐶0
]

, 𝑀𝑋
(

𝑆0
)

= 𝑟

[

𝐴2 + 𝑥2min

2𝑥min
−

𝜉𝑆0

𝑥min
− 𝐵0 + 𝑅0

]

,

where

𝐴 = 𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 0
)

.

ence

𝑋
(

𝑆0
)

− 𝐿𝑋
(

𝑆0
)

= 𝑟

{

𝐴2 + 𝑥2min
2𝑥min

−
𝜉𝑆0
𝑥min

− 𝐴 + 𝑅0 − 𝐶0

}

. (80)

The right-hand side is a quadratic function in 𝐴 with the minimum at
𝐴 = 𝑥min. Note that (66) implies that

𝐴 > 𝑥min,
𝐴2 + 𝑥2min
2𝑥min

−
𝜉𝑆0
𝑥min

≤ 𝑥min.

The second inequality leads to

𝐴 ≤
√

𝑥2 + 2𝜉𝑆 .
min 0
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By (26) and (80),

𝑀𝑋
(

𝑆0
)

− 𝐿𝑋
(

𝑆0
)

≤ 𝑟
{

𝑥min −
√

𝑥2min + 2𝜉𝑆0 + 𝑅0 − 𝐶0

}

< 0.

herefore,

(𝑋) < 𝑀 (𝑋)

or 𝑋 near 𝑆0.
Suppose (67) holds. We follow the proof of Proposition 3 to obtain

𝑋
(

𝑆0
)

= 𝑟
{

𝐴 − 𝐵0 + 𝐶0
}

,

𝑉𝑋
(

𝑆0
)

= 𝑟
𝐴

{

𝐴2 − 2𝜉𝑆0 −
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 0
)] [

𝐵0 − 𝑅0
]}

.

ence,

𝑋
(

𝑆0
)

> 𝑉𝑋
(

𝑆0
)

f

𝐵0 − 𝐶0
]

𝐴 < 2𝜉𝑆0 +
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 0
)] [

𝐵0 − 𝑅0
]

. (81)

It is reasonable to assume that 𝑊𝑋 ≤ 0. Hence,

𝐴 = 𝐵0 − 𝐶0 +𝑊𝑋
(

𝑆0, 0
)

≤ 𝐵0 − 𝐶0.

Also, by assumption,

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑆0, 0
)

= 𝑦∗𝑏 > 𝑥min.

Therefore, (81) holds if (27) holds.
This completes the proof.

A.5. Proposition 6 and its proof

Proposition 6. Let 𝑋0 ∈
(

0, 𝑆0
)

. If 𝑥∗𝑏 = 0 along the vertical line
(

𝑋0, 𝑌
)

approaching
(

𝑋0, 𝜂𝑋0
)

∈ 𝛤2, then 𝑦∗𝑏 = 0 at
(

𝑋0, 𝜂𝑋0
)

.

Proof.
Suppose the opposite is true. That is, suppose 𝑦∗𝑏 > 0 at

(

𝑋0, 𝜂𝑋0
)

.
Then it is necessary that 𝑦∗𝑏 = 𝜂𝑥∗𝑏 at

(

𝑋0, 𝜂𝑋0
)

. As

𝑟𝑊
(

𝑋0, 𝜂𝑋0
)

= 𝐵0
(

𝑥∗𝑏 + 𝑦∗𝑏
)

−

(

𝑥∗𝑏 + 𝑦∗𝑏
)2

2
− 𝐶0𝑥

∗
𝑏 − 𝜉𝑋0 − 𝑅0𝑦

∗
𝑏

+𝑥∗𝑏𝑊𝑋
(

𝑋0, 𝜂𝑋0
)

+ 𝑦∗𝑏𝑊𝑌
(

𝑋0, 𝜂𝑋0
)

= 𝑥∗𝑏
{[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝜂𝑋0
)]

+ 𝜂
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝜂𝑋0
)]}

−
(1 + 𝜂)2

(

𝑥∗𝑏
)2

2
− 𝜉𝑋0,

Either

𝑟𝑊
(

𝑋0, 𝜂𝑋0
)

=
𝑥min
1 + 𝜂

{[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝜂𝑋0
)]

+ 𝜂
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝜂𝑋0
)]}

−
𝑥2min
2

− 𝜉𝑋0 (82)

if
[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝜂𝑋0
)]

+ 𝜂
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝜂𝑋0
)]

≤ 𝑥min (83)

r

𝑊
(

𝑋0, 𝜂𝑋0
)

= 1
2 (1 + 𝜂)2

{[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝜂𝑋0
)]

+ 𝜂
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝜂𝑋0
)]}2 − 𝜉𝑋0 (84)

f

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝜂𝑋0
)]

+ 𝜂
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝜂𝑋0
)]

> 𝑥min. (85)

here are three cases: Either

𝑊
(

𝑋0, 𝜂𝑋0
)

≤
𝑥2min
2

− 𝜉𝑋0, (86)

or
𝑥2min − 𝜉𝑋 < 𝑟𝑊

(

𝑋 , 𝜂𝑋
)

≤
𝑥2min , (87)
14

2 0 0 0 2
or

𝑟𝑊
(

𝑋0, 𝜂𝑋0
)

>
𝑥2min
2

. (88)

We examine each case below.
Suppose (86) holds. At points (𝑋, 𝑌 ) ∈ 𝛺 near

(

𝑋0, 𝜂𝑋0
)

, 𝑊 satisfies
ither (42) or (47). If 𝑊

(

𝑋0, 𝑌
)

satisfies (42) for 𝑌 near 𝜂𝑋0, because
f (86), (42) becomes (44) near

(

𝑋0, 𝜂𝑋0
)

. For the solution to be valid,
t is necessary that

0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝑌
)

−
𝜉𝑋0
𝑥min

≤ 𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝑌
)

. (89)

ote that 𝑊
(

𝑋0, 𝜂𝑋0
)

satisfies both (44) and (82). The two equations
ead to

0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝑌
)

−
𝜉𝑋0
𝑥min

= 𝑟
𝑥min

𝑊
(

𝑋0, 𝜂𝑋0
)

+
𝑥min
2

+
𝜂𝜉𝑋0
𝑥min

,

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝜂𝑋0
)

= 𝑟
𝑥min

𝑊
(

𝑋0, 𝜂𝑋0
)

+
𝑥min
2

.

Hence, (89) is false for 𝑌 near 𝜂𝑋0. This means there is no solution
with 𝑥∗𝑏 = 0 near 𝛤2 if (86) holds.

Suppose (87) holds. Then (42) still takes the form of (44). The
solution is valid if

1
2
[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝑌
)]2 − 𝜉𝑋0 ≤

[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝑌
)]

𝑥min −
𝑥2min
2

.

(90)

We let 𝐹 (𝑌 ) and 𝐺 (𝑌 ) denote the left- and right-hand sides of the above
inequality, respectively. Note that 𝑊

(

𝑋0, 𝜂𝑋0
)

satisfies both (44) and
either (82) if (83) holds, and (84) if (85) holds. In the former case,

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝜂𝑋0
)

= 𝑟
𝑥min

𝑊
(

𝑋0, 𝜂𝑋0
)

+
𝑥min
2

,

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝜂𝑋0
)

= 𝑟
𝑥min

𝑊
(

𝑋0, 𝜂𝑋0
)

+
𝑥min
2

+
1 + 𝜂
𝑥min

𝜉𝑋0.

It follows that

𝐹
(

𝜂𝑋0
)

= 1
2𝑥2min

{

𝐺
(

𝜂𝑋0
)

+ (1 + 𝜂) 𝜉𝑋0 +
𝑥2min
2

}2

− 𝜉𝑋0.

nequality (90) is equivalent to

𝐾2

2𝑥2min

−𝐾 + 𝜂𝜉𝑋0 +
𝑥2min
2

≤ 0,

where

𝐾 = 𝐺 (𝑌 ) + (1 + 𝜂) 𝜉𝑋0 +
𝑥2min
2

.

However, since

𝐾2

2𝑥2min

−𝐾 + 𝜂𝜉𝑋0 +
𝑥2min
2

= 1
2

(

𝐾
𝑥min

− 𝑥min

)2
+ 𝜂𝜉𝑋0 > 0,

he inequality cannot hold. So no valid solution exists in this case.
If (84) and (85) both hold, we let

= 𝐵0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝜂𝑋0
)

=
√

2𝐹
(

𝜂𝑋0
)

+ 2𝜉𝑋0,

𝑉 =
√

2𝐺
(

𝜂𝑋0
)

+ 2𝜉𝑋0.

Then (84) and (85) lead to

(1 + 𝜂)𝑉 = 𝑈 + 𝜂

[

𝐺
(

𝜂𝑋0
)

𝑥min
+

𝑥min
2

]

= 𝑈 + 𝜂
[

𝑉 2

2𝑥min
−

𝜉𝑋0
𝑥min

+
𝑥min
2

]

.

Inequality 𝐹 ≤ 𝐺 is equivalent to 𝑈 ≤ 𝑉 . Thus,

(1 + 𝜂)𝑉 − 𝜂
[

𝑉 2

2𝑥min
−

𝜉𝑋0
𝑥min

+
𝑥min
2

]

≤ 𝑉 .

This is equivalent to

− 𝑉 2
+ 𝑉 −

𝑥min +
𝜉𝑋0 ≤ 0.
2𝑥min 2 𝑥min
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This inequality is satisfied for

𝑉 ≤ 𝑥min −
√

2𝜉𝑋0 or 𝑉 ≥ 𝑥min +
√

2𝜉𝑋0. (91)

On the other hand, by (66),

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑥, 𝜂𝑋0
)

≤ 𝑥min < 𝐵0 − 𝐶0 +𝑊𝑋
(

𝑥, 𝜂𝑋0
)

.

t follows that

min ≤ 𝑈 ≤ 𝑉 ≤
√

𝑥2min + 2𝜉𝑋. (92)

ince

𝑥2min + 2𝜉𝑋 < 𝑥min +
√

2𝜉𝑋,

(92) contradicts (91). Thus, there is no valid solution in this case.
Suppose (88) holds. Then (42) takes the form

𝑟𝑊 = 1
2
[

𝐵0 − 𝑅0 +𝑊𝑌
]2 for 𝑌 < 𝜂𝑋 (93)

and the solution is valid if
1
2
[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝑌
)]2 − 𝜉𝑋0 ≤

1
2
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝑌
)]2 . (94)

t 𝑌 = 𝜂𝑋0, both (84) and (93) hold. Hence,
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝜂𝑋0
)]2 = 2𝑟𝑊

(

𝑋0, 𝜂𝑋0
)

= 1
(1 + 𝜂)2

{[

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝜂𝑋0
)]

+ 𝜂
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝜂𝑋0
)]}2

−2𝜉𝑋0.

This implies

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝜂𝑋0
)

= (1 + 𝜂)
√

[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝜂𝑋0
)]2 + 2𝜉𝑋0

− 𝜂
[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝜂𝑋0
)]

>
√

[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝜂𝑋0
)]2 + 2𝜉𝑋0.

s a result,

𝐵0 − 𝐶0 +𝑊𝑋
(

𝑋0, 𝜂𝑋0
)]2 − 2𝜉𝑋0 >

[

𝐵0 − 𝑅0 +𝑊𝑌
(

𝑋0, 𝜂𝑋0
)]2 .

This contradicts (94) for 𝑌 near 𝜂𝑋0. Hence, there is no valid solution
in this case.

This completes the proof.

A.6. Optimal controls and HJB equations on 𝛤2

Below, we derive the HJB equations for 𝑊 on 𝛤2 at the points
reached by recycling while extraction is paused. Let (𝑋, 𝜂𝑋) ∈ 𝛤2 be a
point reached by a vertical line (𝑋, 𝑌 ), 𝑌 < 𝜂𝑋, along which 𝑥∗𝑏 = 0. By
Proposition 6, 𝑦∗𝑏 = 0 at (𝑋, 𝜂𝑋). Hence, the central planner must choose
a value 𝑥 ≥ 𝑥min at (𝑋, 𝜂𝑋) for a brief moment 𝛥𝑡. This will change the
state to (𝑋 + 𝑥𝛥𝑡, 𝜂𝑋). Since 𝑦∗𝑏 > 0 in the interior near (𝑋, 𝜂𝑋), the
central planner must choose 𝑦 ≥ 𝑥min to return to 𝛤2. The time 𝛥𝑡 to
return to 𝛤2 satisfies

𝑦𝛥𝑡 = 𝜂𝑥𝛥𝑡. (95)

This leads to

𝛥𝑡 =
𝜂𝑥
𝑦
𝛥𝑡, 𝜂𝑋 + 𝑦𝛥𝑡 = 𝜂 (𝑋 + 𝑥𝛥𝑡) . (96)

Let 𝑊 (𝑋) = 𝑊 (𝑋, 𝜂𝑋). After the zig-zag steps that take an amount of
ime

𝑡 + 𝛥𝑡 =
(

1 +
𝜂𝑥
𝑦

)

𝛥𝑡, (97)

he state is (𝑋 + 𝑥𝛥𝑡, 𝜂 (𝑋 + 𝑥 + 𝛥)) ∈ 𝛤2. Therefore, by dynamic pro-
ramming,

𝑊 (𝑋) = max
𝑥,𝑦≥𝑥min

{[

𝐵0𝑥 − 𝑥2

2
− 𝐶0𝑥 − 𝜉𝑋

]

𝛥𝑡 +
[

𝐵0𝑦 −
𝑦2

2
− 𝑅0𝑦

]

𝛥𝑡

+𝑒−𝑟(𝛥𝑡+𝛥𝑡)𝑍 (𝑋 + 𝑥𝛥𝑡)
}

15
= max
𝑥,𝑦≥𝑥min

{[

𝐵0 (1 + 𝜂) 𝑥 − 1
2
(

𝑥2 + 𝑥𝑦
)

−
[

𝐶0 + 𝜂𝑅0
]

𝑥 − 𝜉𝑋
]

𝛥𝑡

+𝑒−𝑟
(

1+ 𝜂𝑥
𝑦

)

𝛥𝑡𝑍 (𝑋 + 𝑥𝛥𝑡)
}

.

e use the Taylor expansion
−𝑟

(

1+ 𝜂𝑥
𝑦

)

𝛥𝑡𝑊 (𝑋 + 𝑥𝛥𝑡) = 𝑊 (𝑋) +
{

−𝑟
(

1 +
𝜂𝑥
𝑦

)

𝑊 (𝑋) +𝑊 𝑋 (𝑋) 𝑥
}

𝛥𝑡+ 𝑜 (𝛥𝑡) .

ubtracting 𝑊 (𝑋) from both sides, dividing the result by 𝛥𝑡, and letting
𝑡 → 0, we obtain

𝑊 (𝑋) + 𝜉𝑋 = max
𝑥,𝑦≥𝑥min

{[

𝐵0 (1 + 𝜂) 𝑥 − 1
2
(

𝑥2 + 𝑥𝑦
)

−
[

𝐶0 + 𝜂𝑅0
]

𝑥

− 𝑥
𝑦
𝑟𝜂𝑊 (𝑋) +𝑊 𝑋 (𝑋) 𝑥

]}

.

hen, four possible outcomes appear:
(I) If

0 (1 + 𝜂) −
(

𝐶0 + 𝜂𝑅0
)

+𝑊 𝑋 −
√

2𝑟𝜂𝑊 > 𝑥min,
√

2𝑟𝜂𝑊 > 𝑥min,

the maximizer
(

𝑥∗𝑏 , 𝑦
∗
𝑏
)

is

∗
𝑏 = 𝐵0 (1 + 𝜂) −

(

𝐶0 + 𝜂𝑅0
)

+𝑊 𝑋 −
√

2𝑟𝜂𝑊 , 𝑦∗𝑏 =
√

2𝑟𝜂𝑊 .

In this case,

𝑟𝑊 + 𝜉𝑋 = 1
2

[

𝐵0 (1 + 𝜂) −
(

𝐶0 + 𝜂𝑅0
)

+𝑊 𝑋 −
√

2𝑟𝜂𝑊
]2

.

(II) If

𝐵0 (1 + 𝜂) −
(

𝐶0 + 𝜂𝑅0
)

+𝑊 𝑋 −
𝑟𝜂𝑊
𝑥min

−
𝑥min
2

> 𝑥min,
√

2𝑟𝜂𝑊 ≤ 𝑥min,

then

𝑥∗𝑏 = 𝐵0 (1 + 𝜂) −
(

𝐶0 + 𝜂𝑅0
)

+𝑊 𝑋 −
𝑟𝜂𝑊
𝑥min

−
𝑥min
2

, 𝑦∗𝑏 = 𝑥min

nd

𝑊 + 𝜉𝑋 = 1
2

[

𝐵0 (1 + 𝜂) −
(

𝐶0 + 𝜂𝑅0
)

+𝑊 𝑋 −
𝑟𝜂𝑊
𝑥min

−
𝑥min
2

]2

.

(III) If

𝐵0 (1 + 𝜂) −
(

𝐶0 + 𝜂𝑅0
)

+𝑊 𝑋 −
√

2𝑟𝜂𝑊 ≤ 𝑥min,
√

2𝑟𝜂𝑊 ,> 𝑥min,

then

𝑥∗𝑏 = 𝑥min, 𝑦∗𝑏 =
√

2𝑟𝜂𝑊

and

𝑟𝑊 + 𝜉𝑋 =
[

𝐵0 (1 + 𝜂) −
(

𝐶0 + 𝜂𝑅0
)

+𝑊 𝑋 −
√

2𝑟𝜂𝑊
]

𝑥min −
𝑥2min
2

.

(IV) If

𝐵0 (1 + 𝜂) −
(

𝐶0 + 𝜂𝑅0
)

+𝑊 𝑋 −
√

2𝑟𝜂𝑊 ≤ 𝑥min,
√

2𝑟𝜂𝑊 ≤ 𝑥min,

hen 𝑑𝑖𝑠𝑝𝑙𝑎𝑦𝑠𝑡𝑦𝑙𝑒𝑥∗𝑏 = 𝑦∗𝑏 = 𝑥min and

𝑊 + 𝜉𝑋 =
[

𝐵0 (1 + 𝜂) −
(

𝐶0 + 𝜂𝑅0
)

+𝑊 𝑋

]

𝑥min − 𝑥2min − 𝑟𝜂𝑊 .

This completes the derivation of the HJB equations for 𝑊 (𝑋) =
(𝑋, 𝜂𝑋).

.7. Proof Proposition 5 - Open-loop

The objective of the cartel is

max
𝑥𝑛

𝛱𝑛 = ∫

∞

0
𝑒−𝑟𝑡

[

𝜋𝑛(𝑥𝑛) − 𝐶(𝑋𝑛, 𝑥, 𝑡)
]

𝑑𝑡

= ∫

𝑇𝑛

0
𝑒−𝑟𝑡

[

(𝑎 − 𝑏𝑥𝑛)𝑥𝑛 − 𝐶0𝑥 − 𝜉𝑋𝑛
]

𝑑𝑡

+
∞
𝑒−𝑟𝑡

[

(𝑎 − 𝑏(𝑥𝑛 + 𝑦𝑛))𝑥𝑛 − 𝐶0𝑥 − 𝜉𝑋𝑛
]

𝑑𝑡
∫𝑇𝑛
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𝑋

𝑥

s

𝑌

a

𝑌

F

w
{

c

T
a
e

⎧

⎪

⎨

⎪

⎩

w

𝑥

𝑏

𝑥
f

𝑥

a

𝐴

𝐴

t
s

subject to

̇ 𝑛 = 𝑥𝑛(𝑡), 𝑡 ≥ 0, 𝑋𝑛(0) = 0,

𝑛(𝑡) ≥ 𝑥𝑚𝑖𝑛 ∀𝑡 ∈ [0, 𝑇𝑛] and 𝑥𝑛(𝑡) ≥ 0 ∀𝑡 ≥ 𝑇𝑛.

The objective of the importing country is

max
𝑥𝑛

𝑊𝑛 = ∫

∞

0
𝑒−𝑟𝑡

[

𝐵𝑛(𝑥𝑛, 𝑦𝑛) − 𝜋𝑛(𝑥𝑛) − 𝑅(𝑦𝑛, 𝑡)
]

𝑑𝑡

= ∫

𝑇𝑛

0
𝑒−𝑟𝑡

[

𝐵0𝑥𝑛 −
𝑥2𝑛
2

− (𝑎 − 𝑏𝑥𝑛)𝑥𝑛

]

𝑑𝑡

+∫

∞

𝑇𝑛
𝑒−𝑟𝑡

[

𝐵0(𝑥𝑛 + 𝑦𝑛) −
(𝑥𝑛 + 𝑦𝑛)2

2
− (𝑎 − 𝑏(𝑥𝑛 + 𝑦𝑛))𝑥𝑛 − 𝑅0𝑦

]

𝑑𝑡

ubject to

̇𝑛 = 𝑦𝑛(𝑡), 𝑡 ≥ 𝑇𝑛, 𝑌 (𝑇𝑛) = 0,

nd 𝑦𝑛 ≥ 0, 𝑌𝑛(𝑡) ≤ 𝜂𝑋(𝑡) and 𝑥𝑛 + 𝑦𝑛 ≥ 𝑥min.
Though intuitively, the last inequality constraints, 𝑌𝑛(𝑡) ≤ 𝜂𝑋(𝑡) and

𝑥𝑛+𝑦𝑛 ≥ 𝑥min, are not the concern of the cartel but, rather, the recycler,
the cartel also needs to take into account the market demand as well as
the supply to the market, as mentioned above in regards to the dilemma
both players face.

Repeat the Hamiltonian of the cartel as

𝐻𝑐,𝐼 (𝑥𝑛, 𝑋𝑛, 𝜆𝑥, 𝜂𝑥, 𝜈𝑥, 𝜇𝑥) = [(𝑎 − 𝑏(𝑥𝑛 + 𝑦𝑛))𝑥𝑛 − 𝐶0𝑥𝑛 − 𝜉𝑋𝑛]

+𝜆𝑥𝑥𝑛 + 𝜂𝑥𝑥𝑛 + 𝜈𝑥(𝜂𝑋𝑛 − 𝑌𝑛) + 𝜇𝑥(𝑥𝑛 − 𝑥𝑚𝑖𝑛)

and the Hamiltonian of the importer as

𝐻𝐼 (𝑦𝑛, 𝑌𝑛, 𝜆𝑦, 𝜂𝑦, 𝜈𝑦, 𝜇𝑦) =
[

𝐵0(𝑥𝑛 + 𝑦𝑛) −
(𝑥𝑛 + 𝑦𝑛)2

2

]

−[𝑎 − 𝑏(𝑥𝑛 + 𝑦𝑛)]𝑥𝑛 − 𝑅0𝑦𝑛 + 𝜆𝑦𝑦𝑛 + 𝜂𝑦𝑦𝑛 + 𝜈𝑦(𝜂𝑋𝑛 − 𝑌𝑛) + 𝜇𝑦(𝑥𝑛 + 𝑦𝑛 − 𝑥𝑚𝑖𝑛).

The first order conditions yield

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜕𝐻𝑐,𝐼

𝜕𝑥𝑛
=
[

𝑎 − 𝑏(2𝑥𝑛 + 𝑦𝑛) − 𝐶0
]

+ 𝜆𝑥 + 𝜂𝑥 + 𝜇𝑥 = 0

𝜆̇𝑥 = 𝑟𝜆𝑥 − 𝜉 + 𝜂𝜈𝑥, lim
𝑡→∞

𝑒−𝑟𝑡𝜆𝑥𝑋𝑛(𝑡) = 0,

𝜇𝑥 ≥ 0, 𝑥𝑛 ≥ 𝑥𝑚𝑖𝑛, 𝜇𝑥(𝑥𝑛 − 𝑥𝑚𝑖𝑛) = 0, ∀𝑡 ∈ [0, 𝑇𝑛]

𝜂𝑥 ≥ 0, 𝑥𝑛 ≥ 0, 𝑥𝑛𝜂𝑥 = 0, ∀𝑡 ≥ 𝑇𝑛,

𝜈𝑥 ≥ 0, 𝜂𝑋 ≥ 𝑌 , 𝜈𝑥(𝜂𝑋𝑛 − 𝑌𝑛) = 0,

𝑋̇𝑛 = 𝑥𝑛, 𝑋𝑛(0) = 0

(98)

and
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜕𝐻𝐼
𝜕𝑦𝑛

=
[

𝐵0 − (𝑥𝑛 + 𝑦𝑛) − 𝑅0 + 𝑏𝑥𝑛
]

+ 𝜆𝑦 + 𝜂𝑦 + 𝜈𝑦 + 𝜇𝑦 = 0

𝜆̇𝑦 = 𝑟𝜆𝑦 − 𝜈𝑦, lim
𝑡→∞

𝑒−𝑟𝑡𝜆𝑦𝑌𝑛(𝑡) = 0,

𝜇𝑦 ≥ 0, 𝑥𝑛 + 𝑦𝑛 ≥ 𝑥𝑚𝑖𝑛, 𝜇𝑦(𝑥𝑛 + 𝑦𝑛 − 𝑥𝑚𝑖𝑛) = 0, ∀𝑡 ≥ 𝑇𝑛,

𝜈𝑦 ≥ 0, 𝜂𝑋 ≥ 𝑌 , 𝜈𝑦(𝜂𝑋𝑛 − 𝑌𝑛) = 0, ∀𝑡 ≥ 𝑇𝑛,

𝜂𝑦 ≥ 0, 𝑦𝑛 ≥ 0, 𝜂𝑦𝑦𝑛 = 0, ∀𝑡 ≥ 𝑇𝑛,

𝑌̇𝑛 = 𝑦𝑛, 𝑌𝑛(𝑇𝑛) = 0.

(99)

Note that the shadow value 𝜆𝑥 is non-positive given the state
variable 𝑋𝑛(𝑡) measures the accumulated supply to the market. Thus,
from the cartel’s point of view, 𝑋𝑛(𝑡) is the loss of windfall resource
and its shadow value cannot be positive. Similarly, 𝜆𝑦 is the shadow
value of state variable 𝑌𝑛, measuring the recycled used material; thus,
its value for the recycler is also non-positive.

We complete the analysis in a few steps. First, period II, 𝑡 ≥ 𝑇𝑛: Step
1, normal case where both 𝑥𝑛 > 0, 𝑦𝑛 > 0 and 𝑥𝑛 + 𝑦𝑛 ≥ 𝑥𝑚𝑖𝑛; Step 2,
𝑥𝑛 > 0, 𝑦𝑛 > 0 and 𝑥𝑛 + 𝑦𝑛 = 𝑥𝑚𝑖𝑛; and then period I, 0 ≤ 𝑡 ≤ 𝑇𝑛.

Except for 𝑥𝑛 > 0, 𝑦𝑛 > 0, and 𝑥𝑛 + 𝑦𝑛 ≥ 𝑥𝑚𝑖𝑛, we also suppose that
< 𝜂𝑋 . Then it follows that 𝜂 = 𝜂 = 0, 𝜇 = 𝜇 = 0, 𝜈 = 𝜈 = 0. The
16

𝑛 𝑛 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥
OCs (98) and (99) can be reduced to the following simplified forms:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎 − 𝑏(2𝑥𝑛 + 𝑦𝑛) − 𝐶0 = −𝜆𝑥,

𝐵0 − (𝑥𝑛 + 𝑦𝑛) − 𝑅0 + 𝑏𝑥𝑛 = −𝜆𝑦,

𝜆̇𝑥 = 𝑟𝜆𝑥 − 𝜉,

𝜆̇𝑦 = 𝑟𝜆𝑦,

(100)

ith state equation

𝑋̇𝑛 = 𝑥𝑛, ∀𝑡 ≥ 0, 𝑋𝑛(0) = 0,

𝑌̇𝑛 = 𝑦𝑛, ∀𝑡 ≥ 𝑇𝑛, 𝑌𝑛(𝑇𝑛) = 0.

First, note in (100) that the left-hand side of the first equation is the
cartel’s marginal gain net of marginal costs and the right-hand side is
the shadow value of supplying to the market. Thus, 𝜆𝑥 ≤ 0. Similarly,
the second equation’s right-hand side is the importing country’s shadow
value of the recycling mineral. The left-hand side is the marginal benefit
net of marginal costs for the importing country, in which the term 𝑏𝑥𝑛
omes from the decrease in prices by providing 𝑦𝑛 of recycled mineral

to the market and thus no payment to the cartel. Thus, 𝜆𝑦 ≤ 0.
Obviously, the solution from (100), 𝑥𝑛, 𝑦𝑛, 𝜆𝑥, and 𝜆𝑦 are indepen-

dent of the state variables 𝑋𝑛 and 𝑌𝑛, at least in the second period.
hus, the solution provided by (100) is not only open-loop but is also
Markovian strategy (although it may not be subgame perfect if the

quilibrium depends on the initial condition at 𝑇𝑛).
It is easy to see that the two co-state variables are

𝜆𝑥(𝑡) =
(

𝜆𝑥(𝑇𝑛) −
𝑥𝑖
𝑟

)

𝑒𝑟(𝑡−𝑇𝑛) +
𝜉
𝑟
,

𝜆𝑦(𝑡) = 𝜆𝑦(𝑇𝑛)𝑒𝑟(𝑡−𝑇𝑛)
∀𝑡 ≥ 𝑇𝑛,

here 𝜆𝑥(𝑇𝑛) and 𝜆𝑦(𝑇𝑛) are given by
{

𝜆𝑥(𝑇𝑛) = −𝑎 + 𝑏(2𝑥𝑛(𝑇𝑛) + 𝑦𝑛(𝑇𝑛)) + 𝐶0(≤ 0),

𝜆𝑦(𝑇𝑛) = −𝐵0 + (𝑥𝑛(𝑇𝑛) + 𝑦𝑛(𝑇𝑛)) − 𝑏𝑥𝑛(𝑇𝑛) + 𝑅0(≤ 0),

with 𝑥𝑛(𝑇𝑛) and 𝑦𝑛(𝑇𝑛) undetermined.
Thus, considering that 𝜆𝑥 and 𝜆𝑦 are known functions, for 𝑡 ≥ 𝑇𝑛,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑛(𝑡) =
1

𝑏(𝑏 + 1)
[

𝑎 − 𝑏𝐵0 + 𝑏𝑅0𝑒
−𝜌𝑡 − 𝐶0 + 𝜆𝑥(𝑡) − 𝑏𝜆𝑦(𝑡)

]

,

= 1
𝑏(𝑏 + 1)

[

𝐴 + [𝜆𝑥(𝑇𝑛) −
𝜉
𝑟
− 𝑏𝜆𝑦(𝑇𝑛)]𝑒𝑟(𝑡−𝑇𝑛)

]

(≥ 0),

𝑦𝑛(𝑡) = 𝐵0 − 𝑅0 + (𝑏 − 1)𝑥𝑛 + 𝜆𝑦(𝑡),

where constant 𝐴 = 𝑎 − 𝑏𝐵0 + 𝑏𝑅0 − 𝐶0.
Thus,

𝑜
𝑛(𝑡) + 𝑦𝑜𝑛(𝑡) =

1
(𝑏 + 1)

[

𝐴1 + 𝜆𝑥(𝑡) + 𝜆𝑦(𝑡)
]

≥ 𝑥𝑚𝑖𝑛, (101)

where 𝐴1 = 𝑎 + 𝐵0 − 𝑅0 − 𝐶0, and it is easy to see that 𝐴1 = 𝐴 + (1 +
)(𝐵0 − 𝑅0) > 0.

Given that both 𝜆𝑥(𝑡) and 𝜆𝑦 converge to −∞ for 𝑡 → +∞ and that
𝑛 and 𝑦𝑛 are monotonically decreasing over time, there must exist a
inite time 𝑇𝑛2 > 𝑇𝑛 such that ∀𝑡 ≥ 𝑇𝑛2,
𝑜
𝑛(𝑡) + 𝑦𝑜𝑛(𝑡) = 𝑥min,

nd 𝑇𝑛2 is given by

1 +
𝜉
𝑟
− (𝑏 + 1)𝑥𝑚𝑖𝑛 =

[

𝜉
𝑟
− 𝜆𝑥(𝑇𝑛) − 𝜆𝑦(𝑇𝑛)

]

𝑒𝑟(𝑇𝑛2−𝑇𝑛). (102)

A necessary condition for the above to be true is that

1 − (𝑏 + 1)𝑥𝑚𝑖𝑛 > −(𝜆𝑥(𝑇𝑛) + 𝜆𝑦(𝑇𝑛))(> 0). (103)

Furthermore, there must exist a finite time 𝑇𝑛3 ≥ 𝑇𝑛 such that at 𝑇𝑛3
he virgin resource is exhausted and after that the cartel is out of the
upply market:
𝑜

𝑛(𝑡) = 0 𝑡 ≥ 𝑇𝑛3,
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T

𝑥
t

𝑥

and thus 𝑇𝑛3 is given by

∫

𝑇𝑛3

𝑇𝑛
𝑥𝑜𝑛(𝑡)𝑑𝑡 = 𝑆(0) −𝑋𝑛(𝑇𝑛). (104)

Obviously, if 𝑇𝑛3 ≥ 𝑇𝑛2, it follows that

𝑥𝑜𝑛(𝑡) + 𝑦𝑜𝑛(𝑡) = 𝑥𝑚𝑖𝑛, 𝑇𝑛2 ≤ 𝑡 ≤ 𝑇𝑛3.

After the virgin resource is exhausted, the recycling supply must
satisfy

𝑦𝑜𝑛(𝑡) = 𝐵0 − 𝑅0 + 𝜆𝑦(𝑡) ≥ 𝑥𝑚𝑖𝑛

until 𝑇𝑛4(≥ 𝑇𝑛). At 𝑇𝑛4,

𝜆𝑦(𝑇𝑛)𝑒𝑟(𝑇𝑛4−𝑇𝑛) = 𝑥𝑚𝑖𝑛 + 𝑅0 − 𝐵0

and

𝑦𝑜𝑛(𝑡) = 𝑥𝑚𝑖𝑛, 𝑡 ≥ 𝑇𝑛4.

Finally, at 𝑇𝑛5 ≥ 𝑇𝑛4 recycling has exhausted all of the mineral :

∫

𝑇𝑛5

𝑇𝑛4
𝑦𝑜𝑛(𝑡)𝑑𝑡 = 𝑥𝑚𝑖𝑛[𝑇𝑛5 − 𝑇𝑛4] = 𝜂𝑆(0).

The conclusion of the above analysis is presented in Proposition .
That completes the proof.

A.8. Period I

In this period, define the cartel’s Hamiltonian as

𝐻𝑐,𝐼 (𝑥𝑛, 𝑋𝑛; 𝜆𝑥, 𝜇𝑥) = (𝑎 − 𝑏𝑥𝑛)𝑥𝑛 − 𝐶0𝑥𝑛 − 𝜉𝑋𝑛 + 𝜆𝑥𝑥𝑛 + 𝜇𝑥(𝑥𝑛 − 𝑥𝑚𝑖𝑛).

The first-order condition for optimality can be simplified as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

𝑎 − 2𝑏𝑥𝑛 − 𝐶0
]

+ 𝜆𝑥 + 𝜇𝑥 = 0,

𝜆̇𝑥 = 𝑟𝜆𝑥 − 𝜉,

𝜇𝑥 ≥ 0, 𝑥𝑛 ≥ 𝑥𝑚𝑖𝑛, 𝜇𝑥(𝑥𝑛 − 𝑥𝑚𝑖𝑛) = 0, ∀𝑡 ∈ [0, 𝑇𝑛],

𝑋̇𝑛 = 𝑥𝑛, 𝑋𝑛(0) = 0,

(105)

with the transversality condition

𝜆𝑥(𝑇 −
𝑛 ) = 𝜆𝑥(𝑇 +

𝑛 ). (106)

Considering 𝑥𝑛 ≥ 𝑥𝑚𝑖𝑛, 𝜇𝑥 = 0. Applying the transversality condi-
tion (106), the first equation in (105) yields

𝑥∗𝑛(𝑡) = max
{

𝑥𝑚𝑖𝑛,
1
2𝑏

(

𝑎 − 𝐶0 + 𝜆𝑥(𝑡)
)

= 1
2𝑏

[

𝑎 − 𝐶0 +
(

𝜆𝑥(𝑇𝑛) −
𝜉
𝑟

)

𝑒−𝑟(𝑇𝑛−𝑡) +
𝜉
𝑟

]}

.

(107)

It is easy to see that 𝑥𝑛(𝑡) is monotonically decreasing over time.
hus, if at 𝑡 = 0, 𝑥𝑛(0) ≤ 𝑥𝑚𝑖𝑛, we must have 𝑥𝑛(𝑡) = 𝑥𝑚𝑖𝑛 for all 𝑡 ∈ [0, 𝑇𝑛].

Inequality condition 𝑥𝑛(0) ≤ 𝑥𝑚𝑖𝑛 holds if and only if

𝜆𝑥(𝑇𝑛) ≤
(

−𝑎 −
𝜉
𝑟
+ 2𝑏𝑥𝑚𝑖𝑛 + 𝐶0

)

𝑒𝑟𝑇𝑛 +
𝜉
𝑟
≡ 𝜆𝑥(𝑇𝑛)(< 0).

In this case, for any 𝑡 ∈ [0, 𝑇𝑛],

𝑥𝑛(𝑡) = 𝑥𝑚𝑖𝑛 and 𝑋(𝑇𝑛) = 𝑇𝑛𝑥𝑚𝑖𝑛(≤ 𝑆(0)).

If 𝜆𝑥(𝑇𝑛) > 𝜆𝑥(𝑇𝑛), there are two possibilities: (a) For all 𝑡 ≤ 𝑇𝑛,
𝑛(𝑡) > 𝑥𝑚𝑖𝑛; or (b) there exists 𝑇𝑛1 ≤ 𝑇𝑛 such that 𝑥𝑛(𝑇𝑛1) = 𝑥𝑚𝑖𝑛, and
hus optimal exploiting is

𝑛(𝑡) =

⎧

⎪

⎨

⎪

⎩

1
2𝑏

[

𝑎 +
(

𝜆𝑥(𝑇𝑛) −
𝜉
𝑟

)

𝑒−𝑟(𝑇𝑛−𝑡) + 𝜉
𝑟 − 𝐶0

]

(> 𝑥𝑚𝑖𝑛), 0 ≤ 𝑡 < 𝑇𝑛1,

𝑥𝑚𝑖𝑛, 𝑇𝑛1 ≤ 𝑡 ≤ 𝑇𝑛.

Either way,

𝑋(𝑇𝑛) =
𝑇𝑛

𝑥(𝑡)𝑑𝑡 ≤ 𝑆(0).
17

∫0
Combining Period I and Period II together, the transversality condi-
tion

𝐻𝑐,𝐼 ((𝑇 −
𝑛 )) = 𝐻𝑐,𝐼𝐼 (𝑇 +

𝑛 ). (108)

will uniqueness determines the left unknown 𝜆𝑥(𝑇𝑛).
Finally, by combining Period I and Period II, i.e., combining the

transversality condition with Eqs. (36), (37), (38), and (106), all un-
knowns 𝑇𝑛2, 𝑇𝑛3, 𝑇𝑛5 and 𝜆𝑥(𝑇𝑛), 𝜆𝑥(𝑇𝑛) can be determined.
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