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Abstract

In this study we extend the use of the Wasserstein Impact Measure (WIM)

to the problem of assessing prior impact in Bayesian models governed by

systems of ordinary differential equations (ODEs) with moderate (5 to 10)

parametric dimension. First, we utilise algorithms from computational op-

timal transport to compute the WIM in moderate parametric dimensions.

Second, we propose a new prior scaled Wasserstein Impact Measure (sWIM)

measure which gives a relative sense of distance, easing with interpretation

of the WIM for understanding the impact of the prior on the resulting in-

ference. We show numerical computation and interpretation of the WIM

and sWIM for a Lotka-Volterra predator-prey model calibrated against the

Hudson Bay Company dataset and a compartment epidemiological model

calibrated against first-wave COVID-19 data from Luxembourg.
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1. Introduction

A strength of Bayesian statistics is the ability to easily incorporate prior

information, such as historical or expert knowledge, into a parameter infer-

ence problem. However, the inherent price to pay for this flexibility is that

the choice of prior may have a strong impact on the subsequent parame-

ter inference. Consequently a crucial component of Bayesian analysis is the

choice and justification of a prior, along with understanding the impact of

prior choice on the resulting parameter estimates and model output.

Bayesian methods are widely used for solving parameter identification

problems of continuous time dynamical systems modelled by ordinary differ-

ential equatiosince (ODEs) [1]. Fields of study where ODEs are a prominent

methodology for constructing models include epidemiology [2, 3], hydrol-

ogy [4] and mechanics [5]. These models typically contain 5 to 10 unknown

parameters that have a critical effect on the overall behaviour of the system,

and so it is necessary to identify these parameters using observed data before

the model can be put to use.

We now discuss some of the issues particular to solving parameter identi-

fication problems involving ODEs. Firstly, the observed data to calibrate the

model is often sparse in the sense that there are only observations available

at a limited number of points in time, and for each time point, usually only a

single (noisy) observation. Additionally there are usually only observations

on a limited subset of the system states. In some cases, we may only be able

to observe a proximal function of the system states, for example a weighted

sum. Due to this sparsity it is often the case that the data can only weakly

constrain the parameters, leading to inference problems that are inherently
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ill-posed. Aside from this notion of data sparsity, the parameters themselves

are usually constrained a priori by fundamental physical considerations, e.g.

positivity, or by a large body of expert knowledge from previous related

studies on perceived ‘sensible’ values.

Because of these issues, Bayesian methods, precisely because of the in-

clusion of a prior, are a natural choice for parameter identification problems

involving ODEs. Specifically, the inclusion of prior knowledge can turn a

problem that is inherently ill-conditioned due to data sparsity, into a well-

conditioned problem with a reasonable solution. Furthermore, the prior

gives a way to directly encode information about physical constraints on

the parameters and/or to incorporate historical data. Because of this priors

used with ODEs are rarely of the non-informative or objective type [6, 7],

with a preference for weakly informative [8, 9] or strongly informative pri-

ors [10, 11, 12]. We also remark that in these problems we are almost always

working far from the regime where Bernstein–von–Mises type results may be

applicable. Furthermore it has been shown in e.g. [13, 8, 9] that weakly and

strongly informative priors can lead to reduced computational cost over non-

informative priors when exploring the posterior distribution using Markov

Chain Monte Carlo (MCMC). Due to this widespread use of informative pri-

ors, it is desirable to develop quantitative methods to assess how the choice

of prior impacts posterior parameter estimates. For example, do the priors

have similar impact or does one have a higher impact on the posterior?

Before proceeding to our contribution, we take a moment to review the

existing literature on assessing prior impact in a general Bayesian model con-

text - we are not aware of any studies that discuss quantitative prior impact
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methods in the context of ordinary differential equation (ODE) systems. A

common approach is to recalibrate the model with slightly different priors

and judge how it impacts the resulting inference [14, 15, 16, 17]. Such an

approach is qualitative as it tells us if different priors lead to different poste-

rior statistics, but there is typically no quantitative measure of the difference

between the resulting posteriors.

Quantitative measures of posterior difference can be obtained by calcu-

lating the discrepancy between distributions as measures of informativeness.

Popular discrepancy measures include the Kullback–Leibler (KL) divergence,

mean square error, Wasserstein distance and Hellinger distance. The KL di-

vergence has been used to calculate the prior effective sample size (ESS) [18]

as a measure of prior impact. The ESS is the number of observations with

the same amount of information as the prior. This measure can suffer from

being over-estimated for mixture and multimodal distributions. The mean

square error has been used to determine the effective current sample size [19],

which is the number of observations that have to be added or subtracted from

the prior to obtain the same inference as a baseline prior. The effective cur-

rent sample size might change if the mode or median is used instead of the

mean. Jones et al. [20] used the Wasserstein distance to calculate the mean

observed effective sample size (MOPESS).

Discrepancy measures have also been used for prior assessment outside

of determining the effective sample. Tang et al. [21] used the KL diver-

gence to quantify prior informativeness in hydrology. Ghaderinezhad et al.

[22] introduced the Wasserstein Impact Measure (WIM) which captures the

Wasserstein distance between two posterior distributions resulting from two
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different priors. They calculated the WIM for univariate and bivariate pa-

rameters. Weiss [23] used the chi-square divergence as an interpretable mea-

sure of prior sensitivity. Roos et al. [24] applied the Hellinger distance to

quantify the prior impact for hierarchical models. Gustafson [25] employed

the L2 norm to evaluate the sensitivity of prior perturbations to posterior

expectations.

The above divergences and distances [26] have trade offs and are gen-

erally chosen based on a combination of convenience [24], their suitability

for the problem at hand and the availability of a robust algorithm and soft-

ware implementation for their calculation. The KL divergence and chi-square

divergence are not symmetric, and are consequently not metrics/distances.

The KL divergence is undefined if the intersection of the support of the dis-

tributions is the empty set. The Hellinger distance is bounded between zero

and one and is a probability metric. The Wasserstein distance is symmetric,

computable between discrete and continuous probability distributions, takes

into account the geometry of the parameter space [27] and is a properly

defined metric. For these reasons, we focus now on the Wasserstein metric.

1.1. Contributions

We make two main contributions in this paper. Firstly, we extend the

WIM proposed in [22] to Bayesian models involving ODEs. This extension is

enabled by recent advances in computational optimal transport [28, 29, 30]

allowing for the efficient estimation of the Wasserstein distance in moderate

dimensions.

Secondly, we propose a new prior impact measure, which we call the prior

scaled Wasserstein Impact Measure (sWIM), that improves on the WIM by
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endowing it with a relative sense of scale. To fix ideas, we describe the

sWIM and WIM now in words. Given a baseline prior and a prior of interest,

and the two induced posteriors, the sWIM scales the Wasserstein distance

between the posteriors (the definition of the original WIM) by the distance

between the priors. This scaling is inspired by the one developed in [31, 24]

which gives a relative change of scale to the Hellinger distance when used

as a prior impact measure for priors with perturbed parameters. We show

that this sense of scale helps overcome some of the difficulties intepreting the

WIM, particularly whether a WIM for a given problem is ‘big’ (impactful) or

‘small’ (not impactful). We also introduce the marginal sWIM as the sWIM

for each parameter with a different prior from the baseline instead of for all

parameters.

1.2. Outline

An outline of this paper is as follows. In Section 2 we give an overview

the core components of the methodology for calculating the sWIM for ODE

systems. Then in Section 3 demonstrate and discuss the methodology on a

Lotka-Volterra predator-prey ODEmodel and a Susceptible-Exposed-Infected-

Removed (SEIR) epidemiological model, before concluding in Section 4.

2. Methodology

In this section, we begin by introducing the basic notion of a Bayesian

inference problem involving ODEs. We then discuss the Wasserstein distance

from an optimal transport perspective [32] and then introduce the Sinkhorn

algorithm that we use to calculate it. We then discuss the WIM and introduce

the new sWIM prior impact measure.
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2.1. Bayesian inference for ordinary differential equations

To set ideas we briefly review Bayesian inference in the context of a model

involving the solution of an ODE.

Bayesian inference is based on Bayes’ theorem which states that the poste-

rior distribution is proportional to the product of the data likelihood and the

prior distribution. In the subjective Bayesian framework, the prior reflects

the practitioner’s beliefs, expert knowledge or any other historical informa-

tion one may have about the parameters of interest. The likelihood indicates

how likely it is for a parameter value to have generated the data. For a given

data set y ∈ Rn and parameter vector θ ∈ Rp, Bayes’ theorem can be stated

as

p(θ|y) = f(y|θ)p(θ)
p(y)

, (1)

where p(θ|y) is the posterior distribution, p(θ) the prior distribution, f(y|θ)
the likelihood function and p(y) a normalising constant.

An ODE describes how the state z(t) changes over time t ∈ (0, T ] and

can be written in standard form as

dz

dt
= F (t, z, θ), (2a)

ẑ = z(t = 0), (2b)

where ẑ ∈ R is the initial condition and F : (0, T ] × R × Rp → R a known

function particular to the modelled system. As there is usually no closed-

form solution of Eq. (2) we resort to numerical methods to find a solution,

see e.g. [33] for details.

To link Eq. (2) with Eq. (1), without loss of generality, we assume the
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following data generating model for y

yi | θ ∼ N([Gz(θ)]i, σ
2), i = 1, . . . , n, (3)

where Gz(θ) : Rp → Rn requires the solution of Eq. (2) for z at a fixed θ

and the subsequent evaluation of z at a set of n observation points in time

(t1, t2, . . . , tn) with each ti ∈ (0, T ]. With the additional specification of priors

θ, the Bayesian posterior in Eq. (1) is fully defined and can be explored using

standard techniques e.g. MCMC, see e.g. [34, 35].

2.2. Wasserstein distance

The definition of the p-Wasserstein distance (Wp) between two probability

measures µ, ν defined on the spaces X and Y is

Wp(µ, ν) = inf
π∈U(µ,ν)

(∫
X×Y

||x− y||pdπ(x, y)
)1/p

, p ≥ 1, (4)

where U(µ, ν) is the set of joint probability measures on X × Y [32]. Cal-

culating the Wasserstein distance becomes non-trivial in moderate to high

dimensions due to the ill-posed nature of the squared Euclidean distance

[36]. The Wasserstein distance is the minimum amount of work required to

reconfigure the mass of one distribution into another [27].

2.3. Wasserstein impact measure

Let P0 and P1 be posteriors induced from a baseline prior p0 and a prior of

interest p1, respectively, with all other factors defining the Bayesian problem
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(likelihood, data etc.) kept the same. The WIM from [22] is defined as

WIM (p0, p1) = W2 (P0, P1) . (5)

In order to overcome the difficulty in interpreting the WIM, we take inspi-

ration from [24] that scaled the Hellinger distance between posteriors by the

distance between priors with applications to hierarchical Bayesian models.

We thus propose to divide the Wasserstein distance (the original WIM) be-

tween the two posteriors by the Wasserstein distance between the two priors,

resulting in

sWIM (p0, p1) =
WIM(p0, p1)

W2 (p0, p1)
. (6)

The interpretation of our new measure of prior impact is similar to [24]:

when sWIM < 1, the distance between posteriors is smaller compared to the

distance between priors, while when sWIM > 1, the distance between pos-

teriors is greater than the distance between priors. In addition, when sWIM

≃ 1, the differences in prior and posterior are similar and hence not much

affected by the data (via the likelihood). The sWIM can also be interpreted

as the relative change in the posteriors due to a change in priors. This in-

terpretation is inspired by Roos & Held [31] for their chi-squared divergence

for sensitivity analysis

χ2(P0) =
E[P0]− E[P1]

E[P0]
(7)

The posterior expectation of the baseline prior is E[P0] while the posterior

expectation of the prior in question is E[P1]. The χ2(P0) is interpreted as
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the relative change in the posterior expectation due to perturbations in the

baseline prior.

In summary, our approach to prior impact assessment involves:

1. Choose a baseline prior denoted as p0 and a prior of interest denoted

as p1.

2. Obtainm samples from the baseline prior andm samples from the prior

of interest.

3. Perform Bayesian inference on the two models to obtain m baseline

posterior samples from P0 and m posterior samples from the prior of

interest P1.

4. Compute the Wasserstein distances between the baseline prior samples

and those of interest, as well as between the baseline posterior samples

and the samples of interest.

5. Finally calculate the sWIM, marginal sWIM using Eq. (6) and interpret

the resulting quantities.

2.4. Discrete optimal transport and Sinkhorn algorithm

For the practical calculation of the sWIM, we make use of techniques from

discrete optimal transport. For a full introduction to we refer the reader to

[30, 37], and we use similar notations to these two papers.

Consider two probability measures µ and ν approximated by m weighted

discrete samples X = {x1, x2 . . . , xm} and Y = {y1, y2 . . . , ym}, respectively

µ =
m∑
i=1

aiδ(xi), ν =
m∑
j=1

bjδ(yj), (8)
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where δ is the usual Dirac delta function, a is a vector of weights with ele-

ments ai > 0 and b is a vector of weights with elements bj > 0.

Let Cij be a cost matrix, which is the pairwise metric between the ele-

ments of the samples X and Y . When the metric is chosen as the squared

Euclidian distance, as in our case, the cost matrix is

Cij = ∥xi − yj∥2, i = 1, . . . ,m, j = 1, . . . ,m. (9)

For two matrices of the same size, A and B, the Frobenius inner product is

⟨A,B⟩ = Tr(ATB).

Then, the squared 2-Wasserstein distance between two discrete probability

measures µ and ν is

W 2
2 (µ, ν) = min

T∈U(a,b)
⟨C, T ⟩ (10)

Eq. Eq. (10) is the primal formulation of the Wasserstein distance, where T

is the joint probability and

U(a, b)
def
= {T ∈ Rm×m

+ : T T1m = a and T1m = b}.

contains all possible joint probabilities.

Cuturi [28] introduced entropic regularized optimal transport. This ap-

proach regularizes the optimal Wasserstein distance with an entropy term.

The entropy H(T ) is defined as
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H(T ) = −
∑
ij

Tij(log Tij − 1).

The entropy regularized 2-Wasserstein distance is defined as

W 2
2,ε(µ, ν) = min

T∈U(a,b)
⟨C, T ⟩ − εH(T ), (11)

where ε controls the strength of the penalty, when ε is zero, we recover

the original problem. The entropy-regularised optimal transport problem is

convex and has a unique solution [38]. Entropy based penalty is inspired by

the Schrödinger problem (see [39, 40]). The entropy regularized primal and

dual formulations are linear programming problems and can be solved with a

simple iterative scaling algorithm known as the Sinkhorn algorithm [30, 37].

3. Examples

In this section, we illustrate the proposed prior impact assessment method-

ology on the Lotka-Volterra predator prey and the SEIR models calibrated

against real-world data. By using different sets of priors, we aim to gain

insights into how priors impact inference. Specifically, we seek to answer

questions such as whether a prior is more informative than some baseline

and, if so, whether its impact on posterior inference is small or large. To do

this, we calculate the WIM and sWIM for different sets of priors as well as

comparing the parameter estimates and graphical posterior predictive checks.

The computational models are constructed using TensorFlow Probability [41]

on JAX [42], the No-U-Turn sampler (NUTS) algorithm [35] is used to ob-

tain posterior samples and Optimal Transport Tools (OTT) [29] is used to
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calculate Wasserstein distances with the Sinkhorn algorithm. Complete code

to reproduce the results is available in the supplementary material.

3.1. Lotka–Volterra model

The Lotka–Volterra model describes predator-prey dynamics in an envi-

ronment

du

dt
= αu− βuv, û = u(t = 0), (12a)

dv

dt
= δuv − γv, v̂ = v(t = 0), (12b)

where u(t) > 0 represents the number of preys at time t, v(t) > 0 the number

of predators at time t, α > 0 is the prey birth rate, β > 0 links prey mortality

to the number of preys and predators, δ > 0 links the increase in predators

to the number of predators and preys, and γ > 0 stands for the predator

death rate. The initial prey state is û and the initial predator state is v̂.

Let the parameter vector θ = (α, β, δ, γ, û, v̂)T ∈ R6. The data generating

model can be constructed as

z1i | θ ∼ LN
(
[Gu(θ)]i, σ

2
u

)
, ∀i = 1, . . . , n,

z2i | θ ∼ LN
(
[Gv(θ)]i, σ

2
v

)
, ∀i = 1, . . . , n,

y =
(
z1, z2

)T ∈ R2n.

where the operatorsGu andGv involve the solution of Eq. (12a) and Eq. (12b),

respectively, at n time points distributed between 1845 and 1935, and LN is

the log-normal distribution.

We consider hare-lynx data based on historical pelt records of the Hudson
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Bay Company [43] which is available in numpyro [44]. The pelt records are

used as a proxy for the populations of hare and lynx in the environment. Part

of this data from 1900 to 1920 has been analyzed in [45] using a Bayesian

approach, and the entire data has been used for model calibration using a

frequentist approach in [46].

Since all involved parameters must be positive, the prior distributions on

the parameters are defined as

α, γ
iid∼ TN(1.0, 0.5),

β, δ
iid∼ TN(0.05, 0.05),

û, v̂
iid∼ LN(ln(10), 1.0),

σ2
u, σ

2
v

iid∼ LN(−1, 1),

where TN is the truncated normal distribution. The priors are the same as

those used in [45]. In order to obtain a variety of priors for our prior impact

assessment, we perturb the prior distribution for the initial states (û, v̂) as

well as for the error variances (σ2
u, σ

2
v) to create four distinct sets of priors

(p0, p1, p2, p3) as shown in Table 1.

Table 1: Priors used for the Lotka–Volterra model. Only the priors on the initial states
(û, v̂) and on the error variances (σ2

u, σ
2
v) are perturbed. The truncated normal (TN) and

the log-normal (LN) distributions are used.

p0 [45] p1 p2 p3

α, γ
iid∼ TN(1.0, 0.5)

β, δ
iid∼ TN(0.05, 0.05)

û, v̂
iid∼ LN(ln(10), 1.0)

σ2
u, σ

2
v

iid∼ LN(−1, 1)

α, γ
iid∼ TN(1.0, 0.5)

β, δ
iid∼ TN(0.05, 0.05)

û, v̂
iid∼ LN(ln(2), 1.0)

σ2
u, σ

2
v

iid∼ LN(−1, 1)

α, γ
iid∼ TN(1.0, 0.5)

β, δ
iid∼ TN(0.05, 0.05)

û
iid∼ LN(ln(15), 1.0)

v̂
iid∼ LN(ln(6), 1.0)

σ2
u, σ

2
v

iid∼ LN(2.0, 0.2)

α, γ
iid∼ TN(1.0, 0.5)

β, δ
iid∼ TN(0.05, 0.05)

û
iid∼ LN(ln(15), 1.0)

v̂
iid∼ LN(ln(6), 1.0)

σ2
u, σ

2
v

iid∼ LN(1.0, 0.1)
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We fitted four different models corresponding to the four sets of priors. We

obtained the posterior samples using the preconditioned NUTS. A thousand

samples were discarded as warm-up and three thousand used for inference.

The marginal posterior distributions and pairwise correlations are displayed

in Fig. 1. We can see high pairwise correlations between some parameters,

e.g. in the couples (α, û), (α, δ), and (α, γ). The choice of gradient-based al-

gorithms such as NUTS is crucial to sample the entire posterior distribution,

and we show the posterior mean estimates in Table 2. The prey birth rate

α is more than one unit higher for the baseline than the other prior models.

Also, the posterior mean estimates of the initial number of preys µ̂ and initial

predators ν̂ are more than two units greater for each model compared to the

baseline priors.

Now we calculate the WIM and the sWIM between various pairs of dis-

tributions. The results of the WIM are shown in Table 3 along with other

Wasserstein-2 distances, while those related to the sWIM appear in Table 4.

We first note that based on both WIM and sWIM the prior p1 is closest to

the baseline. This is in line with the posterior predictive check in Fig. 2(a).

The sWIM for p2 and p3 are greater than one. This means that p2 and p3

have different impact on the posterior, in the sense that in each case the

posteriors are further from the baseline posterior compared to the distances

between priors. The results are consistent with the graphical posterior pre-

dictive check, which shows that the predictions are noticeably different from

the baseline Fig. 2(a). In order to get more detailed information, we com-

pute the marginal sWIM for the initial conditions and error variances and

the results are given in Table 5. The marginal sWIM is greater than one
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Figure 1: Plot of posterior distributions associated to p0 in the Lotka-Volterra model, with
posterior marginal distributions on the diagonal and bivariate distributions for outside the
diagonal. One can observe high correlations between some pairs of parameters.

for the initial condition (µ̂) with priors p1, p2 and p3. Thus, the priors have

different impacts on the posterior number of hares compared to the baseline

prior. This information is not immediately apparent in the posterior predic-

tive plots Fig. 2(a), as p2 and the baseline prior (p0) appear indistinguishable.

However, it becomes evident when looking at the posterior estimates(Table 2)

as the initial number of hares µ̂ for the baseline prior is further away from

the other priors. The marginal sWIM is below one for the initial number of

lynxs (ν). This is consistent with the posterior estimates Table 2 where the
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Figure 2: Graphical posterior predictive check for (a) Hare and (b) Lynx. The prior p3
has a noticeable visual impact compared to p0 and p1. (c-f) Posterior predictive check for
each prior with 25% and 75% quantiles.
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difference between the baseline prior and the others is very small. Again,

this is not evident from the posterior predictive plots Fig. 2(b), where p3 is

visually different from the other priors.

Table 2: Posterior mean estimates of the different models for the Lotka-Volterra model.

parameter p0 p1 p2 p3

Baseline

α 0.825 0.462 0.557 0.633

γ 0.037 0.019 0.023 0.028

β 0.404 1.038 0.894 0.810

δ 0.013 0.036 0.030 0.028

û 16.427 48.662 53.451 53.378

v̂ 27.818 33.392 30.843 25.689

σu 1.054 1.042 1.413 1.597

σv 0.775 0.519 0.866 1.331

Table 3: Wasserstein-2 distances between prior pi and posterior Pi distributions in the
Lotka-Wolterra model, i = 0, 1, 2, 3. The values in bold are the WIM between the baseline
posterior and the three other posteriors.

Wasserstein 2-distance

prior posterior

Baseline p1 p2 p3 P1 P2 P3

p0 36.266 26.975 25.124 28.864 40.504 39.40

P0 49.647 51.257 49.320 34.137 39.973 40.674

18



Table 4: Prior scaled WIM between the baseline posterior and the three other posteriors
in the Lotka-Volterra model.

posterior

Baseline posterior P1 P2 P3

P0 0.941 1.482 1.619

Table 5: Marginal prior scaled WIM between the baseline posterior and the three other
posteriors in the Lotka-Volterra model, only for parameters whose priors change across
models.

posterior

parameter P1 P2 P3

µ̂ 2.457 4.515 4.507

ν̂ 0.415 0.646 0.812

σu - 0.052 0.250

σv - 0.013 0.275
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3.2. SEIR model

The Bayesian approach is widely used for parameter estimation in epi-

demiology. We illustrate our prior assessment technique on the Susceptible-

Exposed-Infectious-Recovered (SEIR) model, a commonly used epidemiolog-

ical dynamical model. The COVID-19 pandemic in Luxembourg has been

analysed in a Bayesian setting in [3] considering various control measures

such as lockdown. Here, we calibrate the SEIR model for the first wave of

the COVID-19 pandemic in Luxembourg using publicly available data found

in [47]. The first wave lasted from February to mid June 2020, a time frame

that also similar studies determined as first wave [48]. Compared to the orig-

inal study [3], we additionally perform posterior predictive checks and prior

impact assessment using the proposed WIM and sWIM.

The SEIR model is defined by the following system of ODEs

dS

dt
= −ηS

I

N
, S(t = 0) = Ŝ = N̂ − Î − Ê − R̂, (13a)

dE

dt
= ηS

I

N
− σE, E(t = 0) = Ê, (13b)

dI

dt
= σE − ρI, I(t = 0) = Î , (13c)

dR

dt
= ρI, R(t = 0) = R̂ = 0, (13d)

IR = λ

(
dE

dt
+

dI

dt

)
, (13e)

N = S + E + I +R, (13f)

where S is the number of susceptible individuals, that is, people not immune

to COVID-19, E the number of exposed individuals, meaning people who

have been infected but are themselves not yet infectious, I the number of
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infected and infectious individuals, R the number of recovered or deceased

individuals, and IR the rate of infection. N is the total number of individuals

at any time which we assume to be constant.

The model has seven parameters, namely the transmission rate η > 0,

the reciprocal of the incubation rate σ > 0, the recovery rate ρ > 0, the

initial value for the number of infected individuals Î, the initial value for the

number of exposed individuals Ê, and a multiplicative correction for the rate

of infection denoted by λ ∈ (0, 1]. This factor corrects for under-reporting

and is the approach employed in [48].

We are interested in calibrating the model against the reported daily rate

of infection IR. To that end, we employ a count distribution, more precisely

the negative binomial NB with dispersion parameter ϕ > 0:

yi | θ ∼ NB([GIR(θ)]i, ϕ), i = 1, . . . , n,

where GIR : Rp → Rn requires the solution of Eq. (13e) and its evaluation at

n daily time points in the study period. We approximate IR in Eq. (13e) with

a first-order backwards finite differencing of Eqs. (13a) and (13b). Note that

because IR ∈ R we employ a non-standard negative binomial parametrization

in TensorFlow Probability [41] which naturally extends to the real numbers.

For the prior impact assessment, we use five sets of priors where the first

set of priors is the baseline prior to which other priors are compared. The

baseline prior p0 and is similar to the non-informative priors used in [48, 49]

21



except for the moments of the distributions:

η ∼ TN(2, 1),

ρ ∼ TN(0.4, 0.5),

σ ∼ TN(0.4, 0.5),

Î ∼ TN(0, 1),

Ê ∼ TN(0, 1),

λ ∼ Beta(1, 2),

ϕ−1 ∼ Exponential(5).

These priors are truncated normal distributions for most of the parameters

which need to be positive, or zero in the case of Î and Ê.

The remaining five sets of priors shown in Table 6 where only the disper-

sion parameter ϕ varies across the priors. This is because overdispersion is

usually the issue when modelling count data. Hence, it is important to see

how overdispersion impacts inference. For the fifth set of priors not shown

in Table 6, the dispersion parameter ϕ−1 ∼ Exponential(150) is such that

we can make a statement when the prior has a high impact compared to the

baseline prior. It is noteworthy that we also choose a Gamma distribution

as prior p3, of which the Exponential is a special case.

The marginal posterior distributions for the baseline prior p0 are shown

in Fig. 3. The posterior estimates for Î, Ê and ϕ have a higher standard

deviation as shown by the density plots on the diagonal. Also, there is a

noticeable correlation in the parameter pairs (λ, σ) and (λ, Î). The results

of the posterior parameter estimates can be found in Table 7. The posterior
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mean estimates of ϕ for the priors p1 and p4 lie below one. For the Gamma

prior p3, the posterior estimate of the dispersion parameter is closer to that

of the baseline prior p0.

Fig. 4 shows posterior predictive checks for each prior with 25% and 75%

confidence bands. The Gamma prior p3 here resembles the most to the base-

line prior p0 but with a lower overdispersion parameter as shown in Table 7.

This indicates that the gamma prior might be an alternative to the expo-

nential prior on the overdispersion parameter. When the gamma prior is

applied, the prediction intervals are narrower and enclose more observations

than the baseline prior. In the case of the exponential prior, the mean value

increases with the overdispersion parameter. The task is to address overdis-

persion without affecting the mean. Additionally, it is worth noting that the

gamma distribution becomes the exponential distribution when the shape

parameter equals 1. The mean predicted daily number of cases is quite close

to the observed number for all priors except for p4. For this prior, the 25%

and 75% quantiles are also the widest compared to the others (see Fig. 3c

and f).

Table 6: Priors used for the SEIR model. Only the prior on the dispersion parameter is
different since overdispersion is usually the main modelling concern for count data. We
choose the baseline prior p0 like in other studies [49, 48]. A fifth prior not shown was also
included.

p0 (Baseline prior) p1 p2 p3

η ∼ TN(2, 1)

ρ ∼ TN(0.6, 0.5)

σ ∼ TN(0.4, 0.5)

Î , Ê
iid∼ TN(0, 1)

λ ∼ Beta(1, 2)

ϕ−1 ∼ Exponential(5)

η ∼ TN(2, 1)

ρ ∼ TN(0.6, 0.5)

σ ∼ TN(0.4, 0.5)

Î , Ê
iid∼ TN(0, 1)

λ ∼ Beta(1, 2)

ϕ−1 ∼ Exponential(42)

η ∼ TN(2, 1)

ρ ∼ TN(0.6, 0.5)

σ ∼ TN(0.4, 0.5)

Î , Ê
iid∼ TN(0, 1)

λ ∼ Beta(1, 2)

ϕ−1 ∼ Exponential(1)

η ∼ TN(2, 1)

ρ ∼ TN(0.6, 0.5)

σ ∼ TN(0.4, 0.5)

Î , Ê
iid∼ TN(0, 1)

λ ∼ Beta(1, 2)

ϕ−1 ∼ Gamma(16, 16)
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Figure 3: Plot of posterior distributions associated to p0 in the SEIR model, with posterior
marginal distributions on the diagonal and bivariate distributions for outside the diagonal.
There is a high correlation between the parameters λ and σ.
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Table 7: Posterior mean estimates of the different models for the SEIR model.

parameter p0 p1 p2 p3 p4

η 4.689 4.497 4.729 4.678 4.161

ρ 0.024 0.036 0.022 0.025 0.059

σ 0.066 0.069 0.066 0.066 0.076

Î 2.255 2.000 2.294 2.235 1.701

Ê 0.891 0.908 0.901 0.886 0.881

λ 0.005 0.006 0.005 0.005 0.009

ϕ 1.856 0.734 2.426 1.674 0.315

Let us now discuss the findings based on WIM and sWIM. The results

for the WIM are provided in Table 8. The WIM is highest for the prior p4,

which is totally in line with the posterior predictive check where the plot is

clearly distinguishable from the other plots and hence in particular from that

corresponding to p0. The same holds for p1, though with a smaller WIM and

this is consistent with a lower peak in Fig. 4a. The sWIM is shown in Table 9.

We can see that the sWIM is below 1 for p2 and p3 while above 1 for p1 and

p4. This example illustrates that the gamma prior (p3) has similar impact

on the posterior as the baseline prior (p0). For p1 with sWIM of 1.276, the

parameter estimates are still close to those of the baseline posterior, although

the posterior predictive check shows higher predictions than observed. In the

case of p4 with sWIM of 1.762, the parameter estimates are further from the

baseline posterior estimates, and the posterior predictive check shows higher

predictions than observed.

The marginal sWIM was also computed for ϕ, and the results are in
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Figure 4: (a) Graphical posterior predictive check for all priors in the SEIR model,
and (b-f) posterior predictive check for each prior with 25% and 75% quantiles. The
Gamma(16,16) prior seems to be a better option since the posterior has less variability
compared to the other. Moreover, most of the observed counts are in the 25% to 75% pre-
diction bands unlike for other posteriors considered where the highest and lowest counts
are outside, or the bands are wider like for Exponential(42). The prior p4 has the largest
predicted values and the predictions are further away from the observed values compared
to the other priors.

Table 10. The marginal sWIM values are less than 1 for p2 and p3, which

ties to parameter estimates and predictions closer to baseline.
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Table 8: Wasserstein-2 distances between prior pi and posterior Pi distributions in the
SEIR model, i = 0, 1, 2, 3. The values in bold are the WIM between the baseline posterior
and the four other posteriors.

Wasserstein-2 distance

prior posterior

Baseline p1 p2 p3 p4 P1 P2 P3 P4

p0 1.1055 1.650 1.401 1.109 3.299 4.240 3.811 1.109

P0 3.991 3.747 3.644 4.000 1.410 0.925 0.688 1.954

Table 9: Prior scaled WIM between the baseline posterior and the four other posteriors
in the SEIR model.

sWIM

posterior

Baseline posterior P1 P2 P3 P4

P0 1.276 0.561 0.491 1.762

Table 10: Marginal prior scaled WIM between the baseline posterior and the four other
posteriors in the SEIR model, only for parameters whose priors change across models.

sWIM

posterior

parameter P1 P2 P3 P4

ϕ 6.245 0.855 0.324 7.866
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4. Conclusions

This study employs computational optimal transport to quantify the dif-

ference in posterior inference between different priors for dynamic systems

modelled by ODEs. Using the Sinkhorn algorithm from computational op-

timal transport, we can rapidly compute the Wasserstein distance for mul-

tiparameter systems. Building on this, we have extended the WIM as prior

impact assessment tool to ordinary differential equations. We have also in-

troduced the sWIM, an interpretable impact measure. Like the WIM, it can

be quickly calculated. When sWIM < 1, the prior in question has no greater

impact than the baseline prior. When sWIM > 1, the prior in question has

a higher impact than a baseline prior. It is also insightful to compute the

marginal sWIM, meaning the sWIM for each parameter instead of the joint

parameters. Our approach has been exemplified with the Lotka–Volterra

predator-prey model and the SEIR for Covid-19. For both examples, we

used real-world data. The results show that the difference in posterior mean

estimates is close to zero when sWIM < 1. In addition, graphical posterior

predictive checks show that predictions are closer to the baseline when sWIM

< 1 and further when sWIM > 1. In future research, our goal is to decide

by means of an extensive simulation study at what values of the sWIM one

should label a prior as high or low impact relative to a baseline prior.

Glossary

KL Kullback–Leibler. 4, 5

MCMC Markov Chain Monte Carlo. 3, 8

28



MOPESS mean observed effective sample size. 4

NUTS No-U-Turn sampler. 12, 15

ODE ordinary differential equation. 4, 6, 7

ODEs ordinary differential equatiosince. 2, 3, 5, 6, 28

OTT Optimal Transport Tools. 12

SEIR Susceptible-Exposed-Infected-Removed. 6, 12, 20, 28

sWIM prior scaled Wasserstein Impact Measure. 1, 5, 6, 9, 10, 12, 15, 16,

25, 26, 27, 28

WIM Wasserstein Impact Measure. 1, 4, 5, 6, 9, 12, 15, 18, 19, 25, 28
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