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Abstract. We investigate all Congruence Theorems for triangles involving heights, and possibly also

sides and angles. Moreover, we prove that a convex quadrilateral, as long as it is not a parallelogram,

is determined up to congruence by its heights. Finally, we prove two Congruence Theorems involving
heights that hold for all convex n-gons.

1. Introduction

Two subsets of the Euclidean plane R2 are congruent if one can be transformed to the other via
some sequence of translations, rotations, and reflections. Congruence Theorems provide criteria for
subsets of R2 to be congruent. As an example, the Side-Side-Side (SSS) Congruence Theorem says
that two triangles with all the same side lengths must be congruent. See [5] for a general introduction
and discussion on Congruence Theorems.

Congruence Theorems for triangles are well known: they are taught in high schools and, historically
speaking, go back all the way to Euclid [8]. Such Congruence Theorems typically involve lengths
of sides and measures of angles. Congruence Theorems for convex quadrilaterals have been studied
using the classical approach for triangles (see [7]) and also with a more modern point of view (see [2]).
Most recently, in [6], Perucca and Torti proved Congruence Theorems for convex n-gons, where n can
be arbitrarily large, with the given information being lengths of certain sides and diagonals and the
measures of certain angles. See also [1] about so-called generic Congruence Theorems for polygons and
polyhedra in higher dimensions. For an axiomatic introduction to Congruence Theorems for polygons,
we refer the reader to [3], which is also interesting from a didactic standpoint.

For triangles, heights are defined as follows. Given a triangle in R2, let A be a vertex and let ℓA
be the extension of the opposite side of the triangle to an infinite line in R2. The unique line segment
LA stemming from A that hits ℓA orthogonally is called the altitude of A, and the length hA of LA

is called the height of A. Observe that, if the angle at one of the other vertices is obtuse, then LA is
not contained inside the triangle. The definitions of altitude and height can easily be generalized for
polygons (see section 3). Altitudes and heights of triangles have been studied since the 3rd century BC;
for example, it is attributed to Archimedes that the three (possibly extended) altitudes of a triangle
intersect at a single point (the orthocenter). It might then come as a surprise that there does not
appear to be any systematic treatment of Congruence Theorems for convex polygons or even triangles
involving heights.

In this paper, we study Congruence Theorems involving heights for triangles, convex quadrilaterals,
and convex n-gons. For triangles, we obtain all possible Congruence Theorems in which the given
information includes a non-empty subset of the heights and (possibly) the side lengths and angles,
and we show in the process which extra Congruence Theorems apply to acute triangles. We show
by examples that for every result that is specialized to acute triangles, the acuteness assumption is
necessary (see, for instance, Examples 1 and 2). As well, for every case in which it is not obvious that
a Congruence Theorem doesn’t hold, we have a counterexample.

For convex quadrilaterals and beyond, we mostly give sufficient criteria for congruence, but no
complete classification. It seems reasonable that one could find all possible Congruence Theorems
involving heights for convex quadrilaterals. The methods presented in this paper (in particular in
the proof of Theorem 5) should be of use in carrying out that task, and we opted for leaving convex
quadrilaterals for a future investigation.

Before stating our theorems formally, we specify the standard notation that we will use throughout
the paper. For a triangle, we label the vertices as A,B, and C, and we call the triangle ABC. We
denote the corresponding angles by α, β and γ, and the heights by hA, hB and hC . For the (unoriented)
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side connecting vertices A to B, we write AB, and for the length we write AB. For a triangle A′B′C ′

we use the corresponding notation; for example, α′ is the angle at A′.
Firstly, all heights determine a triangle.

Theorem 1. A triangle is determined up to congruence if we know its three heights.

Next, we consider knowing one side and two heights, or two sides and one height, and then knowing
two angles and one height, or one angle and two heights.

Theorem 2. A triangle ABC is determined up to congruence if we know

(i) AB, hA and hB and the triangle is acute;
(ii) AB, BC and hB;
(iii) AB, hA and hC and the triangle is acute;
(iv) AB, BC and hC .

Theorem 3. A triangle ABC is determined up to congruence if we know

(i) α, β and any one of hA, hB , and hC ;
(ii) α, hB and hC ;
(iii) α, hA, hB and the triangle is acute.

Our last result for triangles concerns the case of knowing one angle, one side, and one height.

Theorem 4. A triangle ABC is determined up to congruence if we know

(i) α, AB, and hA and the triangle is acute;
(ii) α, BC and hA;
(iii) α, BC, and hB and the triangle is acute;
(iv) α, CA and hB.

Our Examples 1, 2, and 3 for triangles show explicitly that dropping the acuteness assumption
leads to a number of extra pathologies and a lack of rigidity. With this in mind, for n ≥ 4, we restrict
ourselves to convex n-gons.

For convex quadrilaterals, we show that knowing all the heights is not enough to specify the con-
gruence class. Indeed, it is possible to construct infinitely many non-congruent parallelograms with
the same heights (see Example 4). However, we prove that, for convex quadrilaterals, parallelism is
the only obstruction.

Theorem 5. A convex quadrilateral that is not a parallelogram is determined up to congruence by its
heights.

Finally, we present two results that apply to convex n-gons, where n ≥ 3 is arbitrary.

Theorem 6. A convex polygon is determined up to congruence if we know all heights toward two
neighboring sides and the angle between those sides.

Theorem 7. A convex polygon is determined up to congruence by the lenghts of its sides and its
heights.

There are plenty of directions for future research: as we indicated above, it seems within reach
to provide a complete list of Congruence Theorems for convex quadrilaterals. The case of pentagons
might be manageable too, and would help point to more general phenomena. One could also try
for Congruence Theorems for non-convex quadrilaterals and beyond. As well, one could instead ask
for Similarity Theorems (two subsets of R2 are similar if they are related by scaling), rather than
Congruence Theorems. Another intriguing idea is to study Congruence Theorems involving heights or
other quantities for triangles or convex quadrilaterals in the hyperbolic plane. Finally, one could study
further shapes beyond polygons, allowing for some curvature away from vertices, or even working with
polytopes in higher dimensional Euclidean spaces (research in the higher dimensional setting is rather
limited at this point, see [1]).

Aside from being independently useful and interesting, the results above and the examples within
the main paper can be turned into exercises for motivated students and problems for mathematical
competitions. Pursuing some portion of the directions above could be an accessible research project
for undergraduates. School students and math enthusiasts can understand the statements and the
research questions presented in this article; we hope that people will find these Congruence Theorems
thought-provoking, and will feel inspired to try to come up with their own Congruence Theorems.
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2. Congruence theorems for triangles involving heights

Throughout this section, we keep all of the notation from the introduction.
In the work below, we will use the Angle-Side-Angle (ASA) and Side-Angle-Side Congruence The-

orems. The ASA Congruence Theorem says that, if ABC and A′B′C ′ satisfy α = α′, β = β′, and
AB = A′B′, then ABC is congruent to A′B′C ′. The Side-Angle-Side Congruence Theorem says that
if AB = A′B′, CA = C ′A′, and α = α′, then ABC is congruent to A′B′C ′.

We also need the following definition and notation: for a vertex A, the foot FA is the unique
intersection point of LA and ℓA. We will often make use of the observation that for a triangle ABC,
the three points A,B, and FA form a right triangle. If the angle β is acute, then the angle of ABFA

at B is β, and otherwise it is π − β.

2.1. Three heights.

Proof of Theorem 1. Suppose we have two triangles ABC and A′B′C ′ such that hA = hA′ , hB = hB′

and hC = hC′ . The area Area(ABC) of ABC is equal to all three of 1
2hABC, 1

2hBCA and 1
2hCAB,

and similar for A′B′C ′. Let λ > 0 be the constant such that Area(ABC) = λArea(A′B′C ′). We deduce
from the equality of the heights that the triangles are similar, with proportionality constant λ. The
equality hA′ = hA = λhA′ forces λ = 1 and moreover shows that ABC and A′B′C ′ are congruent. □

2.2. One side and two heights, or two sides and one height.

Proof of Theorem 2. Toward (i), note that, as β is acute, it is determined by the formula sinβ =
hA/AB. Assuming (i), α is determined by the analogous formula, and the Congruence Theorem
follows from the ASA congruence theorem.

For (ii), by Pythagoras’ Theorem we can compute FBA and CFB , which we then sum to get CA.
Knowing all side lengths, we can apply the Side-Side-Side Congruence Theorem.

For (iii), we can compute β via the formula sinβ = hA/AB, using acuteness as in (i). Through the
formula sinβ = hC/BC, we obtain BC. We then apply the SAS Congruence theorem using AB, BC,
and β.

To see (iv), by Pythagoras’ Theorem, hC and BC determine FCB. Then AFC = AB − FCB, and
AFC and hC determine AC, by Pythagoras again. We conclude via the SSS Congruence Theorem. □

Example 1. If we drop the acuteness assumption, a triangle ABC is not necessarily determined up
to congruence if we know AB, BC and hB . Consider a triangle ABC such that α = 45◦ and β = 120◦.
Relabel FB as D and call D′ the symmetric of D at the line AB. That is, if ℓ is the line stemming
from D that hits AB orthogonally, then D′ is the unique point on ℓ and on the other side of AB with
the same distance to AB as D. Consider a triangle A′B′C ′ such that A = A′, B = B′, and α′ = 135◦.
We clearly have AB = A′B′. Moreover, hB = BD = BD′ = hB′ . Finally, we have BC > AB (one

may compute BC = AB(
√
3+ 1)) so we can move C ′ without altering A′, B′andα′ while keeping that

B′C ′ = BC (one may compute that hC′ =
√
3+1
2 ).

A B

C

D′

D

C ′

Example 2. Similarly, a triangle ABC is not necessarily determined up to congruence if we know
AB, BC, hA and hC . For example, consider an equilateral triangle ABC and a triangle A′B′C ′ such
that A′ = A, B′ = B (in particular, AB = A′B′) and γ′ = 120◦. Moreover, we may suppose that
CC ′ is parallel to AB, ensuring that hC = hC′ . By construction, CA and B′C ′ are parallel and hence
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BC = CA = B′C ′. Finally, we have hA = hA′ because the lines BC and B′C ′ are symmetric with
respect to the line connecting AB with the intersection point of BC and C ′A′.

A BA

C C ′

2.3. Two angles and one height, or one angle and two heights.

Proof of Theorem 3. For (i), we show that we can always compute AB, and hence we can apply the
ASA Congruence Theorem. If we know hA or hB , then we can find AB via the formulas hA = AB sinβ
or hB = AB sinα respectively. If we know hC , we split into subcases: α and β are acute, or one of
them is obtuse. We record that, independently, AFC = hC sinα and FCB = hC sinβ are known. In
the first situation, AB = AFC + FCB. In the latter, we assume without loss of generality that α is
obtuse. Then AB = FCB −AFC . As stated above, knowing AB completes the proof.

To prove (ii), we use sinα = hB/AB and sinα = hC/AC to get AB and AC respectively, and with
these quantities in hand we use the SAS Congruence Theorem.

To see (iii), we obtain AB via AB = hB sinα, and then sinβ via sinβ = hA/AB. Since ABC
is acute, β is uniquely determined by sinβ. With α, β and AB, we apply the ASA Congruence
Theorem. □

A triangle ABC is not determined up to congruence if we know α, hA and hB . Indeed, see Example
3 below, in which it will be shown that even AB, α, hA and hB are not enough.

2.4. One angle, one side, and one height.

Proof of Theorem 4. Beginning with (i), hA and AB determine sinβ via sinβ = hA/AB, and, as
we’ve argued before, acuteness then implies that β is uniquely determined. We then go by the ASA
Congruence Theorem. Item (iii) is totally analogous: sin γ = hB/BC and the acute assumption yields
that γ is determined, and hence we can apply ASA again.

The proof of (ii) is more interesting. If we know BC and hA, we can move A the line ℓ parallel
to BC and containing A without changing those quantities. The angle α is maximal when A is on
the perpendicular bisector of BC and the angle strictly decreases the more we move A away from the
perpendicular bisector (this could be seen as a consequence of the Inscribed Angle Theorem). So if
we fix α, then A can be either the point A0 that maximizes α, or one of exactly two points on ℓ that
are of equal distance from A0. Thus, up up to reflecting in the line from A0 to BC that hits BC
orthgonally (that is, up to performing a certain congruence-preserving transformation), the triangle
ABC is determined.

For (iv), we compute AB = hB/ sinα and we apply the SAS Congruence Theorem with CA, AB,
and α. □

Example 3. A triangle ABC is not necessarily determined up to congruence if we know α, AB, and
hA. Note that adding the information of hB won’t help, since, by hB = AB sinα, knowing α and
AB is equivalent to knowing α and hB . Consider a triangle ABC such that α = 30◦ and β = 60◦

and call D the symmetric of C at the line AB (defined as in Example 1). Then consider the triangle
A′B′C ′ such that A = A′, B = B′, α′ = α and β′ = 120◦. We clearly have AB = A′B′. Moreover,
hA = CA = DA = hA′ .

A B

C

C ′

D
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Similarly, knowing α, BC, and hB is not sufficient to determine the triangle up to congruence. Similar
to above, the formula hB = AB sinα implies that adding AB won’t change anything. We know by
the theorem above that there is a unique acute triangle ABC carrying this data. One can construct
a unique triangle A′B′C ′ such that A′ = A, B′ = B, and β′ = π − β, which is easily seen to have
hB′ = hB and B′C ′ = BC.

3. Congruence theorems for quadrilaterals and convex polygons

Heights for polygons are defined analogously to heights for triangles. For polygons, we label the
vertices A1, A2, . . . , An and write the polygon as A1 . . . An, side lengths as AiAi+1 (with An+1 = A1),
etc. If A1 . . . An is a polygon, we can define the height of a vertex Ai relative to a side AjAj+1, for all
j ̸= i. Indeed, let ℓAjAj+1 be the extension of AjAj+1 to an infinite line in R2. Then the height (of Ai

relative to AjAj+1) is the length of the unique line segment LAi,AjAj+1
stemming from Ai that hits

ℓAjAj+1
orthogonally. By analogy with the triangle case, LAi,AjAj+1

is called the altitude at Ai relative
to AjAj+1, and the point at which Ai strikes AjAj+1 is called the foot and denoted FAi,AjAj+1

.
We begin our investigation on Congruence Theorems involving heights with the case of convex

quadrilaterals. We point out immediately that the direct analog of Theorem 1 cannot hold.

Example 4. For a convex quadrilateral, knowing all heights is not sufficient to determine it up to
congruence. Consider for example the square with all side lengths equal to 1 and the parallelogram
with angles 45◦ and 135◦ and such that the distance between the opposite vertical sides is 1 and the
distance between opposite horizontal sides is 1 (or, the lengths of the two horizontal sides is

√
2). For

both convex quadrilaterals, all heights are equal to 1.

More generally, suppose that two sides of a convex quadrilateral are parallel. Without loss of generality,
they are the sides AB and CD. Then, the heights from A to CD, from B to CD, from C to AB and
from D to AB are all equal, and in particular equal to the distance between the two sides.

As a consequence of the discussion in the example above, if we have a parallelogram and we know all
heights, then we only know the distances between the opposite sides. And there is, up to congruence,
an infinite family of parallelograms with prescribed distances of the opposite sides, precisely one of
them being a rectangle.

As stated in the introduction, Theorem 5 shows that, for convex quadrilaterals, parallelograms
present the only case where knowing all the heights is not sufficient.

Proof of Theorem 5. Consider a convex quadrilateral ABCD, where the vertices are listed in cyclic
order, and suppose we know all of its heights. Necessarily, at least one of the angles is less than or
equal to π/2. Up to congruence, we can assume that angle is at the vertex D, and we call this angle
δ; this choice restricts the number of cases that we need to consider. Furthermore, we can choose
coordinates such that A is the origin (0, 0), the point B is on the positive x-axis, B = (xB , 0), and
the quadrilateral ABCD is in the upper half-plane. We write C = (xC , yC) and D = (xD, yD) and
remark that yC and yD are the known heights from C and D respectively toward the side AB. Our
only unknowns are xB , xC , and xD.

We call θ the angle between −π
2 and π

2 that the altitude LA,BC from A to the side BC forms with
the positive direction of the x-axis. To ease notation, we write h for the corresponding height hA,BC .
Since A, the foot FA,BC and B are the vertices of a right triangle,

xB =
h

cos θ

(here, if θ = 0, we think of a line as a degenerate triangle). Next, by connecting the altitude LC,AB to
the line AB, we get the foot FC,AB , which together with B and C form a right triangle with an angle
of |θ| at C. Examining this triangle, we find that if β ≤ π

2 , which we note corresponds to θ ≥ 0, then
the side that lies on the x-axis has length xB − xC , and we have xB − xC = yC tan θ, and moreover
that

xC =
h

cos θ
− yC tan θ .
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If instead β > π/2, then θ < 0 and the x-axis side has length xC − xB , but we end up with the same
formula by noting that

xC − xB = yC tan |θ| = yC tan(−θ) = −yC tan θ.

As above, for notations sake we set h′ = hD,BC , the height from D toward the side BC. Consider
the points A and D and their altitudes relative to BC, as well as the horizontal segments from A and
D respectively to the side BC. In both cases, the horizontal segments and altitudes are the sides of a
right triangle. Since the two right triangles share an acute angle, namely the angles at A and D, they

are similar. The similarity constant is h′

h . Next, we draw the triangle with vertices B, (xB , yD), and
the point at which the horizontal line from D hits BC, which has an angle of |θ| at B. Since we assumed
δ ≤ π

2 , the side adjacent to the angle |θ| has length yD, and hence the opposite side has length yD tan |θ|.
Moreover, the point on the line BC with y-coordinate yD has x-coordinate xD,BC = xB − yD tan θ.
To see this, for β ≤ π/2, this point has x-coordinate xD,BC = xB − yD tan |θ| = xB − yD tan θ, and for
β > π/2 this point has x coordinate xD,BC = xB + yD tan |θ| = xB + yD tan(−θ) = xB − yD tan θ. We
point out in passing that if instead δ > π/2, then the length of this opposite side would be yC − yD.
Now, xD is xD,BC minus the length of the horizontal line in the triangle of D, which, using the

similarity constant, we see to be h′

h xB . That is,

xD = (xB − yD tan θ)− h′

h
xB =

h− h′

cos θ
− yD tan θ, .

The formulas above show that the values xB , xC , and xD, which are equivalent to the data of the
points A,B,C and D, are determined by the known heights and the angle θ. To prove the theorem,
we show that distinct values of θ lead to the same values for all heights only if the sides DA and BC
are parallel (equivalently, h = h′) and the sides AB and CD are parallel (equivalently, yC = yD).

For α the internal angle of ABCD at A, we have sinα = yD/AD. Moreover, relabelling h′′ = hB,DA,
we have h′′ = xB sinα. We deduce that

(h′′)2 =
x2
By

2
D

(AD)2
=

x2
By

2
D

x2
D + y2D

.

Substituting our expressions for xB and xD above, we get

(h′′)2 =
h2

cos2 θy
2
D

(h−h′)2

cos2 θ + y2D(1 + tan2 θ)− 2(h− h′)yD
sin θ
cos2 θ

=
h2y2D

(h− h′)2 + y2D − 2(h− h′)yD sin θ
.

Thus, if θ1 and θ2 give the same value of h′′, then we can rearrange the above formula to get

(h− h′)yD sin θ1 = (h− h′)yD sin θ2.

Since h, h′, and yD are known, the only way for θ1 and θ2 to be distinct is if h = h′.
To probe the sides AB and CD, note that the line through C and D is described by the equation

(yD − yC)x− (xD − xC)y + (yCxD − yDxC) = 0.

Observing that the height h′′′′ = hA,CD is the distance from this line to the origin, we compute, keeping
in mind that h = h′,

(h′′′′)2 =
(yCxD − yDxC)

2

(yD − yC)2 + (xD − xC)2
=

y2Dh2

(yD − yC)2 + h2 − 2h(yC − yD) sin θ
.

Similar to above, different values of θ give rise to the same height h′′′′ only if yC − yD = 0. □

Remark 1. Notice that we only made use of 6 out of 8 heights. In particular, we did not need to
know the values hB,CD and hC,DA.

In view of the remark above, we point out that, generally speaking, up to congruence, we can choose
the coordinate of A to be (0, 0) and B to be on the x-axis, so this problem should have 5 degrees of
freedom. However, in general, 5 heights are not enough to determine the polygon up to congruence,
as the following example shows.

Example 5. We consider non-congruent convex quadrilaterals ABCD and ABCD′, cyclically ordered,
such that the points C, D and D′ are aligned and such that the heights hB,DA and hB,D′A are the
same. The two convex quadrilaterals share 5 heights but are not congruent. We can also construct
such quadrilaterals so that no two sides are parallel:



CONGRUENCE THEOREMS INVOLVING HEIGHTS 7

A B

D

D′
C ′

Proof of Theorem 6. Let AB and BC be the neighboring sides. By translating, we can assume B =
(0, 0). By considering the height from A (respectively, C) relative to BC (respectively, AB) we can
determine the length and angle of the line connecting B to A (respectively, C). Indeed, the relevant
altitude is part of the right triangle with points A (respectively C), the relevant foot, and B, around
which the angle is known. Since we know the position of B, the information of the length and angle
determines A and C. For any other point Ai, using the known height to AB, we can determine a line
parallel to AB on which Ai lies. Using the known height to BC, Ai lies on another known line parallel
to BC. These two lines intersect in one point, which gives us the location of Ai. □

Proof of Theorem 7. Fix a convex n-gon and assume that we know the lengths of its sides and its
heights. To determine the n-gon up to congruence, we will in fact make use of only 2n (appropriately
selected) heights. Call the vertices A,B,C,D in cyclic order. Up to congruence we can fix the side AB
and the half-plane with respect to AB where the the n-gon lies. By considering the point C, B and
the foot of C relative to AB, we get a right triangle. Recalling that we know the length of BC, we
see that there are at most two possibilities for C, depending on whether the angle β at B is less than
π/2, or at least π/2. Fixing the choice for C determines the choice for D. Indeed, consider the line
in R2 containing BC. Since the polygon is convex, we know which side D is on with respect to this
line. Then D is determined: knowing CD, the angle θ between CD and the altitude from D to BC
determines D, and we can compute θ via cos θ = h/CD. All together, we have at most two possibilities
for the location of the two points C,D.

We claim that in fact there is just one possibility, so that C and D are determined. Iterating the
reasoning over all sides of the polygon in cyclic order will show that we know the whole n-gon up to
congruence.

A B

D′ D′′

C ′ C ′′

To prove the claim, we suppose that there are two distinct possibilities for C,D, and we call the
two choices C ′, D′ and C ′′, D′′ respectively. Note that, by our assumptions, the lengths of C ′D′ and
C ′′D′′ are equal. The angle β at B is either less than π/2, which corresponds to C being to the left of
B, or at least π/2, which corresponds to C being to the right. In the two cases, we get different values
for the height from B relative to CD, which is our sought contradiction.

□

Example 6. A convex hexagon is not determined up to congruence if we know all side lengths and all
4 heights toward one same side. Indeed, we consider two non-congruent convex hexagons ABCDEF
and ABCD′E′F ′, whose vertices (in Cartesian coordinates) are as follows:

A = (−2, 1) B = (0, 0) C = (6, 0)

D = (3, 4) E = (−1, 5) F = (−5, 4) D′ = (9, 4) E′ = (5, 5) F ′ = (1, 4) .
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A
B C

D D’

E E’

F F’
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