
Satellite Adaptive Onboard Beamforming Using
Neuromorphic Processors

Wallace A. Martins∗, Eva Lagunas†, Nicolas Skatchkovsky‡, Flor Ortiz†, Geoffrey Eappen†,
Osvaldo Simeone§, Bipin Rajendran§, Symeon Chatzinotas†

∗Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, France
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Abstract—The demand for improved satellite communication
(SatCom)-based broadband connectivity has led to significant
technological advancements, particularly in non-geostationary
orbit (NGSO) satellites. The new SatCom systems are expected to
have flexible beam footprints with fully adaptable payloads while
being energy-efficient. With this in mind, this paper explores
using neuromorphic processors (NPs) for the in-orbit receive
digital beamforming design. We specifically address the beam-
steering challenges of high-speed user mobility by means of
beamforming adaptation. Inspired by thinned antenna arrays, the
proposed beamforming solutions are based on the least absolute
shrinkage and selection operator (LASSO) and are adapted to
NPs using spiking locally competitive algorithms, namely S-LCA
and S-LCA with graded spikes. The proposed approaches can
benefit from the energy efficiency of NPs and further reduce the
SatCom payload’s power consumption by turning off as many
radio frequency chains as possible without compromising the
beamforming performance. Numerical experiments conducted on
a real-world aeronautical dataset demonstrate that the proposed
NP-oriented solutions offer performance on par with conventional
optimization algorithms, with the promise of a lower energy
expenditure after future implementation on dedicated hardware.

Index Terms—Beamforming, LASSO, Neuromorphic Proces-
sor, Non-geostationary Orbit, Satellite Communications, Sparsity

I. INTRODUCTION

Satellite communication (SatCom) systems have entered a
new era, bridging the coverage gap of current terrestrial mobile
services [1] and driving the evolving space economy [2]. The
latest SatCom developments include lower orbital deployments
and in-orbit reconfigurability of satellite-payload resources.
New non-geostationary orbit (NGSO) communication satel-
lites are equipped with fully reconfigurable payloads that
can quickly adapt to changes in traffic demand and channel
conditions [3]. In this context, beamforming plays a key role.

Beamforming is a mature spatial signal processing tech-
nique that can be implemented using different architectures,
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such as digital beamforming (DBF) [4], digitally-controlled
phase-shifter-based beamforming [5], and hybrid beamform-
ing [6]. Moreover, different design strategies can be targeted,
such as fixed beamforming [7], where the coverage of areas
of interest is ensured by generating beams of fixed size and
shape, and dynamic (or adaptive) beamforming [8], where the
design is adapted according to users’ traffic demand and/or
relative mobility between ground/space-segment nodes.

DBF techniques offer several advantages over conventional
analog (or hybrid) beamforming in various applications. In
DBF, a signal processor controls the excitation of the an-
tenna array elements (or subarrays) to synthesize the desired
radiation pattern in the case of transmit beamforming. Con-
versely, the signal processor can also control the combination
of the digitized signals coming from the radio frequency
chains (RFCs) associated with each antenna element (or each
subarray) in order to spatially filter the impinging signal in the
so-called receive beamforming [9]. The overall objective is to
increase the gain in the direction of the intended receivers or
desired signal sources, while reducing the gain from unwanted
steering angles or potential interference sources [10].

An overview of the trade-offs between conventional SatCom
beamforming and DBF strategies in the context of mobile
SatCom applications is provided in [11]. DBF enables adaptive
beamforming and is essential for meeting the demands of
modern heterogeneous traffic patterns in mobile SatCom. Ef-
ficient stream-like/online solutions are required to design and
realize onboard beamforming due to evolving beam patterns
as a spatiotemporal function of data traffic.

A crucial metric related to onboard processing in SatCom
payloads is energy efficiency. In this context, neuromorphic
processors (NPs) are promising hardware solutions. Unlike
conventional von Neumann computers, NPs operate using
binary spikes, offer more parallelization, and minimize the
separation of processing and memory [12]. NPs are well
known for their event-driven operation mode [13], which offers
interesting characteristics for reconfigurable systems such as
the SatCom beamforming application considered in this work.
NPs have been demonstrated to provide significant energy
savings and low-latency, both of which are attractive qualities
for in-orbit applications. The usage of such devices has already



been the focus of research from both the National Aeronautics
and Space Administration (NASA) [14] and the European
Space Agency (ESA) [15].

A. Main contributions

In this paper, we address the in-orbit receive DBF design
using NPs for an NGSO system serving high-speed mobile
platforms like aircraft in the uplink — see Fig. 1. In current
commercial systems, beamforming calculations are commonly
done on-ground, at the gateway (GW) side, after receiving
the location information of the mobile platforms via return-
link signaling. However, by the time that the beamformer
coefficients are calculated and sent to the satellite platform
for realization, the actual users’ location might be substantially
different than that used to design the beamforming coefficients.
Hence, we focus on designing adaptive onboard beamforming
algorithms that can be readily deployed on energy-efficient
NPs.1

We first propose a formulation of the beamforming problem
based on the least absolute shrinkage and selection operator
(LASSO) [16], which serves as the basis for the NP-oriented
solutions. Toward this, we consider a modified minimum vari-
ance distortionless response (MVDR) design [17] by enforcing
sparsity on the beamforming coefficients. This is inspired
by thinned antenna arrays (see, for instance, [18]), and our
motivation for adopting such an approach is to turn off as many
payload’s RFCs as possible to decrease the underlying power
consumption without compromising performance. As observed
in [19], applying the original LASSO approach [16] in the
context of complex-valued variables is not straightforward.

Building on the basic LASSO formulation, we propose
to solve the DBF design problem using the spiking locally
competitive algorithm (S-LCA) and the S-LCA with graded
spikes (S-LCA-GS), which can be efficiently implemented on
NPs. We evaluate these algorithms on an aeronautical dataset
consisting of real-world time-varying airplane coordinates
obtained from [20]. The algorithms are implemented using
Intel’s Lava simulator [21], i.e., the open-source software for
neuro-inspired applications and baseline for Intel’s second-
generation neuromorphic research chip [22].

B. Organization

The remainder of this paper is structured as follows. Sec-
tion II describes the system model. Section III introduces
the basic LASSO beamforming formulation, and Section IV
describes the proposed adaptations for obtaining NP-oriented
solutions. Section V reports the simulation results, and Sec-
tion VI contains the concluding remarks.

II. SYSTEM MODEL

We consider an NGSO satellite that offers service to high-
speed mobile platforms such as aircraft. The NGSO satellite is
assumed to be capable of generating several steerable beams
over a given service area bounded by its field of view. In this

1The implementation of the proposed NP-oriented algorithms on an actual
neuromorphic chipset is beyond the scope of this conference contribution.
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Fig. 1: Latitude/longitude map with the projection on Earth of
the trajectories of an aircraft in red and an NGSO satellite in
yellow. Other aircraft are depicted fixed (i.e., a single snapshot)
in white. For further details, see Section V-A.

case, the direction of each central beam boresight is computed
based on the target angle of transmission/reception. The main
objective here is to design the receive DBF on the user uplink
so that each mobile platform is assigned a single spot beam.
The design should be updated following the fast mobility
pattern of the user platform, considering also the NGSO
satellite’s mobility. Such a beamforming model is proposed as
a baseline scenario in the 3rd Generation Partnership Project
(3GPP) 5G solutions to support nonterrestrial networks [23].

The antenna architecture at the satellite is assumed to be
a uniform planar array (UPA) of dimension NUPA × NUPA,
connected to N ≤ N2

UPA RFCs. Assume that the user terminal
(UT) — an aircraft — is uploading a signal, whose baseband
representation is s(t), in the presence of I baseband interfering
signals si(t), i ∈ {1, · · · , I}. The N×1 narrowband baseband
received signal vector of the satellite’s UPA can be written as

y(t) =h(t)ejεD(t)s(t)a(θ(t))︸ ︷︷ ︸
desired component

+

I∑
i=1

hi(t)e
jεD,i(t)si(t)a(θi(t))︸ ︷︷ ︸
interference

+ n(t)︸︷︷︸
noise

, (1)

where h(t) and hi(t) are, respectively, the equivalent channel
responses for the UT of interest and for I interferers; εD(t)
and εD,i(t) are the carrier frequency offsets for the UT of
interest and for the I interfering users, respectively, which
depend on the oscillators’ uncertainties and Doppler shifts; and
θ(t) =

[
ϕ(t) θ(t)

]T
and θi(t) =

[
ϕi(t) θi(t)

]T
are the 2D

angles-of-arrival for the UT of interest and for the interfering
users, respectively, with ϕ(t), ϕi(t) denoting the corresponding
azimuth angles, whereas θ(t), θi(t) are the elevation angles.
The vector a(θ(t)) denotes the steering vector associated with
the 2D angle-of-arrival θ(t) for the given UPA and already



accounts for the added processing (sum of signals) when
subarrays are employed (the case in which N < N2

UPA).
We assume that s(t), si(t), h(t), hi(t), and n(t) are real-

izations of independent random processes with zero mean
(except for the channels) and powers σ2

s , σ
2
s,i, Ph, Ph,i, and σ2

n,
respectively. Under this assumption, the received signal in (1)
is a realization of a zero-mean multivariate random process
with covariance matrix

R(t) =σ2
sPha(θ(t))a

H(θ(t))

+

I∑
i=1

σ2
s,iPh,ia(θi(t))a

H(θi(t)) + σ2
nIN . (2)

An important challenge with fast-moving platforms is to
obtain an accurate estimate of the angles-of-arrival θ(t) and
θi(t), which are needed to design an efficient DBF. The
satellite system may have access to an outdated location of
the aircraft, which may be obtained either from any global
navigation satellite system (GNSS) or from information in
previously decoded frames or from the GW. To denote the
inaccurate angles-of-arrival estimation, we will employ the

notation θ̂(t) =
[
ϕ̂(t) θ̂(t)

]T
. Similarly, we will use the

notation R̂(t) to denote the estimated covariance matrix of
the array output.2

III. LASSO BEAMFORMING DESIGN

The objective of the proposed in-orbit DBF is threefold: (i)
to ensure that the center of the spot beam is steered toward the
corresponding fast-moving platform; (ii) to minimize the noise
and interference that is collected by the beamformer from other
undesired angles-of-arrival; and (iii) to minimize the number
of nonzero beamforming weights in an attempt to maximize
the number of RFCs that can be turned off. Goals (i) and (ii)
are addressed by the conventional MVDR beamforming [17]
— see Section V-A; while goal (iii) aims to save the payload’s
power.

We propose to cast the DBF design as a LASSO optimiza-
tion problem [16] to compute the corresponding beamforming
vector w ∈ CN×1. This is formulated as the minimization

minimize
w∈CN×1

wHR̂(t)w + λ (∥ℜ {w} ∥1 + ∥ℑ {w} ∥1)

subject to wHa
(
θ̂(t)

)
= 1 ,

(3)

where λ > 0 and ∥ · ∥1 is the ℓ1-norm of a vector.
The objective function in (3) includes two terms. The first

term accounts for the overall signal power that is captured
by the beamforming design, which is minimized to reduce
the contribution received from angles not corresponding to
the target angle θ̂(t). Note that this is enforced with the linear
constraint in (3), which sets the beam center toward the desired
θ̂(t). The second term in the objective function in (3) aims
at enforcing sparsity in the real and complex parts of the
beamforming weights. The predefined parameter λ controls

2The optimal estimation of the above-mentioned parameters is beyond the
scope of this conference contribution.

the degree of sparsity. The idea is to enforce a high degree
of sparsity in the real and imaginary parts of w, i.e., ℜ{w}
and ℑ{w}, in order to enforce as many as possible complex-
valued entries of w to be zeroed.

After solving the problem in (3), the coefficients are trans-
formed so that those with negligible values are mapped to
zero. There are different ways to do this, such as considering
the coefficients that represent a certain percentage of the total
energy of the beamforming vector.

IV. PROPOSED NP-ORIENTED BEAMFORMING

While problem (3) can be iteratively solved using convex
optimization computational tools such as CVX, a package
for specifying and solving convex problems [24], the com-
putational and energy costs of doing so aboard a SatCom
payload is typically prohibitive. In this work, we propose
alternative algorithms that can be implemented on energy-
efficient neuromorphic chipsets and leverage their event-driven
operation.

Since neuromorphic chips can only tackle real-valued prob-
lems, we define the real-valued quantities

w̃ =
[
ℜ
{
wT
}

ℑ
{
wT
}]T ∈ R2N×1 , (4)

Ã
(
θ̂(t)

)
=

 ℜ
{
a
(
θ̂(t)

)}
ℑ
{
a
(
θ̂(t)

)}
−ℑ

{
a
(
θ̂(t)

)}
ℜ
{
a
(
θ̂(t)

)} ∈ R2N×2,

(5)

R̃(t) =

ℜ{R̂(t)
}

−ℑ
{
R̂(t)

}
ℑ
{
R̂(t)

}
ℜ
{
R̂(t)

}  ∈ R2N×2N , (6)

to rewrite problem (3) as

minimize
w̃∈R2N×1

w̃TR̃(t)w̃ + λ∥w̃∥1

subject to Ã
(
θ̂(t)

)T
w̃ =

[
1
0

]
.

(7)

Solutions to problem (7) can be approximated on neuromor-
phic hardware using the S-LCA [25]. To do so, we first note
that the constraint in (7) is equivalent to the equality∥∥∥∥Ã(θ̂(t))T w̃ −

[
1 0

]T∥∥∥∥
2

= 0, (8)

wherein ∥·∥2 is the ℓ2-norm of a vector. Hence, we can define
a surrogate unconstrained problem for (7) by integrating the
constraint in (8) into the LASSO’s cost function, as follows:

minimize
w̃∈R2N×1

∥Aw̃ − c∥22 + λ∥w̃∥1, (9)

in which we have defined

A =

Ã(θ̂(t))T
µS̃(t)

 ∈ R2(N+1)×2N and c =

[
1

0(2N+1)×1

]
,

(10)

with S̃(t) being a matrix square root of R̃(t) satisfying the
equality R̃(t) = S̃(t)TS̃(t), and µ > 0.



The solutions to problem (9) can be encoded into the firing
rates of a leaky-integrate-and-fire spiking neural network (LIF-
SNN) via the S-LCA (see [25] for details). To do so, we
define a LIF-SNN as a directed graph of 2N spiking neurons
operating over discrete time steps ℓ ∈ {1, . . . , L}. We denote
as f ℓ ∈ R2N×1 the instantaneous firing rates of neurons in the
LIF-SNN. At each time step, the operation of the 2N neurons
is defined by their currents iℓ ∈ R2N×1, voltages vℓ ∈ R2N×1,
spiking outputs oℓ ∈ {0, 1}2N×1, and connectivity matrix
C = −(ATA − I2N ). For ℓ ∈ {1, . . . , L}, the outputs of
the LIF-SNN are obtained recursively as

iℓ = (1− α)iℓ−1 − (ATA− I2N )f ℓ , (11)

vℓ = vℓ−1 +ATc− λ12N×1 + iℓ , (12)
oℓ = χ{vℓ≻ϑ12N×1} , (13)

with no leakage of the voltage compartment and with fixed
excitatory current ATc− λ12N×1, where 12N×1 is a 2N × 1
vector filled with 1s. Notation-wise, we have the decay value
α ∈ (0, 1); the firing threshold ϑ > 0; the inequality in (13)
is defined elementwise; and χ{·} is the indicator function.
The algorithmic time horizon L is chosen such that the
instantaneous firing f ℓ of the neurons converges to the solution
of problem (9) [25].

The latest version of Intel’s Loihi chipset features graded
spikes, that is, the output of spiking neurons is not restricted
to {0, 1} but to an alphabet {0, . . . ,K − 1}, with K > 1. An
alternative version of the S-LCA, namely the S-LCA-GS, can
be used to solve problem (7) using graded spikes. Solutions
are computed iteratively through the recursion

w̃ℓ+1 = −αℓR̃(t)w̃ℓ − βℓÃ
(
θ̂(t)

)
δ(w̃ℓ), (14)

where αℓ > 0 is the learning rate, βℓ > 0 is the constraint-

correction rate, and for k ∈ {1, 2} and δk = [Ã
(
θ̂(t)

)T
w̃ℓ]k,

we have

[δ(w̃ℓ)]k =

{
Q (δk − 1) , if δk > 1,

0, if δk ≤ 1,
(15)

with Q(·) denoting the quantization operation to the graded
spike levels.

V. SIMULATION RESULTS

In this section, we first describe the simulation scenario, the
dataset used in our experiments, and the benchmark technique.
We then validate the proposed LASSO approach through
MATLAB-based numerical experiments by showcasing its ef-
fectiveness in selected samples of the dataset. Last, we evaluate
the performance of the proposed NP-oriented approaches,
which rely on the S-LCA and S-LCA-GS, for the entire dataset
using Intel’s Lava simulator.

A. Scenario Description, Dataset, and Benchmark

For assessing the performance of the beamforming tech-
niques, we considered Equatorial medium-Earth orbit (MEO)
satellites at an altitude of 8063 km, similar to the commercial

SES’s O3b mPower system. Focusing on the receive DBF
design, we concentrated on the user uplink in the Ka-band,
between 29.5 GHz and 30.0 GHz. The simulation setup was
built with an aeronautical dataset consisting of time-varying
airplane coordinates obtained from [20]. From the dataset,
we selected a subset of 29 aircraft. To each aircraft we
assigned an index AC ∈ {1, . . . , 29}. For the simulations,
we considered 37 snapshots, indexed by SS ∈ {1, . . . , 37},
and for each snapshot SS, we calculated the corresponding 2D
relative aircraft’s location θ(tSS) = [ϕ(tSS) θ(tSS)]

T from the
satellite’s viewpoint, with tSS+1 − tSS ≈ 1 min on average.
Overall, the dataset was composed of 29×37 = 1073 aircraft-
snapshot pairs, which were indexed by (AC, SS). Fig. 1 (see
p. 2) illustrates the trajectory of one of these aircraft and its
serving satellite. A clear-sky channel model was considered,
for the aircraft were above the clouds.

Regarding the UPA at the satellite platform, we considered
the following characteristics: 25λ×25λ in size; 50×50 radiat-
ing elements; 5× 5 subarrays; 10× 10 RFCs; and 0.5λ inter-
element spacing. Furthermore, we assumed an interference-
free scenario with just one aircraft uploading signals. In this
case, the estimation of the covariance matrix in (2) was done
considering perfect knowledge of the parameters σ2

s and σ2
n,

whereas the channel power Ph was estimated numerically from
the entries of the vector in (1), yn(t), as

P̂h(t) =
1

σ2
s

(
1

|N |
∑
n∈N

|yn(t)|2 − σ2
n

)
, (16)

where N is the set of antenna elements used for the compu-
tation. Note that some are unavailable due to the turning off
of the RFCs in the proposed approaches. In addition, in order
to emulate an imperfect knowledge of the angles-of-arrival
(i.e., azimuth and elevation angles), θ̂(tSS) was modeled as
the average between the two latest actual snapshot values,
i.e., θ(tSS) and θ(tSS−1). Furthermore, we set SNR = 4 dB
and λ = 10−7 and, for the proposed sparsity-promoting ap-
proaches, we zeroed the coefficients on ℜ{w} that contributed
to less than 1% of the energy of this vector; we did the same
for the imaginary part as well.

As a benchmark, we adopted the conventional MVDR
beamforming [17], which does not account for sparsity. It
addresses the problem

minimize
w∈CN×1

wHR̂(t)w

subject to a
(
θ̂(t)

)H
w = 1 ,

(17)

obtaining the closed-form solution

wMVDR =

(
R̂(t)

)−1

a
(
θ̂(t)

)
a
(
θ̂(t)

)H (
R̂(t)

)−1

a
(
θ̂(t)

) . (18)

B. LASSO Validation

Table I shows the sparsity level results achieved with the
proposed LASSO approach when generating beams for a set
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Fig. 2: Beam patterns for both azimuth, ϕ, and elevation, θ, angles. The selected dataset point was (AC,SS) = (4, 12). The
vertical dashed lines show the azimuth/elevation angles corresponding to the actual relative aircraft position.

TABLE I: Percentage of nonzero entries of the DBF vector

LASSO DBF solved with MATLAB’s CVX
(AC,SS) Real Imaginary Complex

(4,2) 22% 19% 41%
(4,12) 22% 18% 40%
(20,2) 21% 21% 42%

(20,12) 21% 18% 39%

of 4 selected (AC, SS) pairs. In the table, the smaller the
percentage value (relative number of nonzero entries), the
higher the sparsity level. The percentage of nonzero entries
of the complex-valued coefficients was around 40%, implying
that about 60% of the RFCs could be turned off without com-
promising the resulting beam pattern. Regarding the MVDR
benchmark, all its coefficients were nonzero, as expected, thus
not allowing any RFC to be turned off.

Fig. 2 depicts an example of the obtained beam patterns cor-
responding to the pair (AC, SS) = (4, 12) and employing the
MVDR benchmark and the proposed LASSO algorithms. The
vertical dashed lines in the plots show the azimuth/elevation
angles corresponding to the actual relative aircraft position.
Since we considered outdated information regarding the air-
craft’s location, the main beams appear slightly shifted from
the aircraft’s actual position (in this particular example, this
is clearer for the azimuth beam pattern plotted in blue). This
highlights the need for fast adaptation of the beamforming
coefficients to enable the tracking of fast-moving users. This
figure shows that the LASSO beamforming strategy performed
as well as the MVDR benchmark when it comes to the
main lobes reasonably matching the aircraft’s location. Thus,
the promoted sparsity of the proposed technique (reported
in Table I) did not hamper the ability to generate the main
radiation lobe toward the target device. On the other hand, the
LASSO beam pattern experiences high values (higher than

0 dB) over a much wider range of azimuth/elevation angles,
which is a disadvantage. Nonetheless, the results in the next
section indicate that the LASSO beamformer’s average output
power is on par with the MVDR’s.

C. Performance Assessment of the NP-oriented Approaches

In order to go beyond a visual comparison among beam
patterns and holistically evaluate the proposed NP-oriented
beamforming for all the 1073 samples in the dataset, we
considered a single figure of merit summarizing the beamform-
ing behavior, namely the normalized beamformer’s average
output power, ρ. This quantity corresponds to the normalized
version of the MVDR benchmark cost function in (17), being
mathematically defined as

ρ =
wHR̂w

max
AC,SS

{wH
MVDRR̂wMVDR}

. (19)

The lower the cost-function value, the better the beamforming
capabilities to focus on the desired signal direction while
mitigating the effects of noise and interference. This inter-
pretation assumes that the beamformer is pointing toward the
desired direction since the weights satisfy a corresponding
linear constraint; all the algorithms considered in this work
belong to this category (prior to the zeroing process of the
negligible coefficients).

Fig. 3 depicts a comparison among the normalized beam-
former’s average output powers, ρ, obtained with all the
algorithms described in the paper. This figure considers all
the 1073 samples in the dataset. It can be seen in Fig. 3 that
the neuromorphic algorithms generally provided comparable
results to the benchmarks, indicating they can attain similar
performance in terms of pointing toward the desired direction
while avoiding capturing unwanted signals. The only technique
with a somewhat different behavior was the S-LCA, with a
smaller median value for ρ but a much wider spread, which
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Fig. 3: Statistics of the normalized beamformer’s average
output power, ρ, defined in (19). Each box shows the median
as the central mark (in red), with the 25th and 75th percentiles
indicated by the bottom and top edges of the blue box,
respectively. The whiskers extend to the most extreme data
points that are not considered outliers.

confers some uncertainty regarding the actual performance in
a particular situation.

As a final point, it is noteworthy that both the S-LCA and
S-LCA-GS achieved remarkable sparsity levels, comparable to
the LASSO DBF design. On average, we observed that around
60% of the RFCs could be turned off when using them.

VI. CONCLUSIONS

This work tackled the problem of designing digital beam-
forming using onboard neuromorphic processors deployed on
NGSO satellite systems serving fast-moving users like aircraft.
Starting from the MVDR beamforming, we proposed a novel
problem formulation, including a sparsity-promoting penalty
term, aiming at minimizing the number of active onboard
RFCs. The resulting problem, called proposed LASSO, served
as the fundamental building block from which we further
proposed an implementation with suitable NP-oriented algo-
rithms, namely S-LCA and S-LCA-GS, which were validated
in Intel’s open-source software Lava, the main programming
tool for Intel’s neuromorphic chips. The results underscored
the comparable performance of neuromorphic algorithms com-
pared to the benchmarks (MVDR and proposed LASSO).
Indeed, S-LCA and S-LCA-GS achieved high sparsity levels,
enabling turning off around 60% of the RFCs, thus demonstrat-
ing the efficacy of these algorithms in promoting sparsity while
maintaining the beamforming performance. Future works in-
clude implementing the proposed NP-oriented solutions on
Intel’s Loihi 2 chipset and assessing energy consumption and
time taken to converge to a solution (delay).
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