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Abstract—Beam-hopping (BH) technology, integral to multi-
beam satellite systems, adapts beam activation to the variable
communication demands of terrestrial users. The optimization
of power allocation and beam illumination scheduling constitutes
the core design challenge in BH systems, especially under the
constraint on a limited number of simultaneously active beams
due to restricted radio frequency chain availability. This paper
proposes a two-stage BH design solution, which minimizes energy
consumption in BH satellite communications while accommodat-
ing the heterogeneous demands of users. The first stage addresses
the coupling variables of power and beam status by recasting
the allocation and scheduling problem through a statistical lens,
thus breaking down the intricate relationship between variables.
To manage the resulting non-convex challenge, we propose an
iterative method that capitalizes on the optimality conditions
inherent to this problem. This method is designed to procure a
statistically-informed solution that aligns with our reformulated
interpretation. Subsequently, the second stage maps this solution
into a concrete beam illumination schedule, employing binary
quadratic programming techniques. A penalty-based iterative
method is applied, ensuring convergence to a locally optimal so-
lution. Through numerical simulations, the proposed framework
has been validated for its efficacy in improving energy efficiency
and accurately matching demands.

Index Terms—Energy minimization, power control, beam hop-
ping, binary quadratic programming

I. INTRODUCTION

Satellite communications (SatCom) are widely acknowl-
edged for their capability to offer pervasive connectivity
and reliable data transfer, utilizing high-altitude satellites to
encompass extensive geographic regions. Historically used
for television broadcasting through single-beam Geostationary
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(GEO) satellites, the technology has advanced significantly
since the 2000s. The evolution has led to multi-beam high-
throughput satellites that operate in the higher frequency
ranges (i.e., Ku and Ka bands) and cater to the broadband
market [1]. Nowadays, SatCom’s capabilities to connect any-
one, anywhere, and anytime are considered a key feature to
extend terrestrial 5G cellular connectivity to unreachable areas
[2].

Current broadband satellite communication systems typi-
cally use a static beam configuration where the coverage is
evenly divided into hundreds of spot-beam areas. To avoid
interfering among beams, the operator schedules the active
beams using an orthogonal frequency reuse strategy. However,
this method is frequency-inefficient, which has motivated the
development of more adaptable payload designs [3, 4].

To address this challenge, the concept of Beam-Hopping
(BH)-enabled satellite communication systems has been intro-
duced [5]. Unlike traditional fixed-beam systems, BH systems
only activate a subset of spot beams within a designated
period, known as "dwell time." These active beams can be
changed dynamically, following a beam illumination plan that
responds to varying demands.

Beam-hopping offers numerous benefits, the most signifi-
cant being the temporal flexibility it provides in distributing
capacity to different beams as needed. Additionally, activating
fewer beams at any given time requires fewer onboard Radio
Frequency (RF) chains, which can reduce spacecraft weight
and size. Ultimately, this reduction may result in decreased
launch costs.

BH satellite communication technology has reached a level
of maturity, significantly bolstered by industry support. This
support has led to adaptations, such as the standardization of
satellite air interfaces, to accommodate BH synchronization
needs [6, 7]. An example of this technology in action is the
Eutelsat Quantum satellite, which employs forward link BH.
While the technical capability for beam illumination and con-
figuration exists, the effective management of these functions
remains an active area of research and development. This is
mainly because crafting an optimal beam time-activation plan
and allocating power effectively is complex. Specifically, it
is challenging to properly allocate the limited satellite power
across all active beams to meet the dynamic demands while
satisfying the satellite payload hardware limitations.

SatCom systems should carefully manage energy consump-
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tion. Satellite payloads are equipped with solar panels that
convert solar energy into electricity, which powers wireless
transmission and other operations [8]. Given that these panels
can only collect a limited amount of power, it is crucial for
these systems to address the issue of energy efficiency. Addi-
tionally, excessive energy consumption can have adverse ef-
fects on the payload’s mass and lifespan [9]. As a consequence,
the minimization of transmit power has become a significant
area of research for general non-terrestrial communication
platforms, e.g. [10].

In recent years, flexible resource allocation strategies for
satellite communication systems have attracted considerable
attention. For instance, [11] offers a design and analysis of
the beam illumination pattern for BH systems, aiming to
optimally match the traffic demands. In [12], [13], and [14]
BH is combined with interference mitigation techniques to
enable the simultaneous activation of adjacent beams, using
the same spectral resources. Notably, [14] proposed to design
the illumination pattern by penalizing the activation of adjacent
beams, with the aim of reducing the usage of precoding
techniques whenever possible. Other works, like [15], and
[16], proposed to design the illumination pattern via deep
learning techniques. These works focus only on exploring the
flexibility in the time domain, which does not fully utilize the
capabilities of onboard resources. Power allocation for non-
BH satellite systems has also been evaluated. In [17], the
authors propose allocating power based on traffic demands
and channel conditions. An energy-aware power allocation
problem for non-BH systems is formulated in the work [9],
which aims to minimize both unmet system capacity and
total radiated power. Both [17] and [9] consider only the
flexibility of onboard resources in the power domain. Although
[18] proposed jointly allocating power and frequency carriers
to minimize the weighted objective of energy consumption
and frequency occupation, the proposed design does not fully
utilize the precious spectrum resources. The load coupling
model, originally analyzed by [19], characterizes the coupling
relationships among the temporal occupation of beams. The
model has been employed, for instance, in [20], the work
most closely related to ours, where the power and load of
beams are studied for cellular networks to minimize the energy
consumption. However, [20] does not consider the constraint
on the maximal number of simultaneously active beams, an
issue that is addressed in our work.

Based on the existing works, we consider the joint design of
beam illumination patterns and power allocation to optimize
the energy efficiency of the BH satellite system, which has
a limit on the maximum number of simultaneously active
beams. Intrinsically, the beam pattern and the corresponding
power assignment are coupled, both of which contribute to the
achievable capacity and therefore influence the overall energy
consumption. To the best of our knowledge, this challenge has
not been effectively addressed in the literature to date.

To address the challenge stated above, we propose a two-
stage framework to solve the combinatorial nonconvex prob-
lem. In the first stage, utilizing the mean-field theory [21, 22],
we reinterpret the beam illumination patterns with beam ac-
tivation probabilities, consequent to which the corresponding

power will be the average one for the whole time window.
Accordingly, the original problem is reformulated into a new
one, where the average powers and activation probabilities of
the beams are the optimization variables. An iterative method
is also proposed to solve this problem optimally. In the second
stage, the activation probabilities of the solution obtained in
the first stage are mapped into the discrete beam illumination
patterns by solving a binary quadratic programming problem.

Our major contributions are summarized as follows:
• We propose a two-stage framework to jointly design

power allocation and beam scheduling for BH satellite
systems. Within the framework, by utilizing the mean-
field theory, a probabilistic reformulation becomes avail-
able which paves the way for addressing the intrinsic cou-
pling between beam power and beam illumination pattern.
Besides, for the reformulated problem, we analyze the
optimality conditions and develop an iterative method to
yield a globally optimal solution.

• We also develop a systematic mapping scheme that
converts the probabilistic solution obtained in the first
stage into a deterministic one satisfying all constraints.
To ensure the practicality of the solution, beam hopping
latency is also integrated into the scheme.

• Numerical simulation results validate the theoretical find-
ings: i) the system consumes minimal energy when all
available beams are active during the time window; ii)
increasing the maximal number of active beams could
reduce energy consumption. Furthermore, given that our
mathematical model is based on the Shannon formula,
we acknowledge a potential performance loss due to
coding modulation methods in real-world applications.
To address this concern, our study includes a method
specifically designed to compensate for such performance
loss, ensuring the completeness and applicability of our
approach in practical scenarios.

The remainder of the paper is organized as follows. In
section II, we present the system model and formulate the
energy minimization problem from a deterministic perspective.
In section III, we reformulate the problem from a statistical
perspective. Section IV, we focus on solving the statistical
problem, and we simply introduce the method to convert
the statistical solution to design the deterministic illumination
pattern in Section V. In Section VI, we validate the proposed
framework with numerical simulations. The conclusion is
made in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model for the
considered beam-hopping satellite system and then formulate
the problem of energy efficiency, which minimizes the total
consumed energy while satisfying both the limited onboard
resources and on-ground user demands.

A. System Model for Beam-Hopping Satellite

A bent-pipe multi-beam geostationary orbit (GEO) satellite
system is considered for the forward-link transmission. The
system covers the area of service by N spot beams, each of
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TABLE I: Glossary of notations

Notation Definition
B Available full bandwidth
K Maximal number of simultaneously active beams
M Total number of TSs within the time window
N Total number of beams
d Vector of demands in bps

d̂ Vector of demands in [number of TSs]
H The channel matrix
pn,t Transmit power of beam n at TS t
pn Average transmit power of beam n
p Vector of the average transmit power
P Penalty matrix

xn,t Beam activation indicator n at TS t
y Vector of consumed energy of beams
ρ Vector of activation probability of beams

∆T Duration of TS
σ(·) Spectral radius of the matrix
σ2
T Power of thermal noise

g(ρn) ρn(2
dn

Bρn − 1)
Gi Diag(g(ρi)), i = 0, 1, 2
τ Latency trade-off factor
ϵ Demand compensation coefficient

dim(·) The dimension of the vector
⌊·⌋ The minimal integer of the value

which reuses the same spectrum of the bandwidth B. The BH
time window for the system is composed of M consecutive
time slots (TSs) with time-slot duration △T . The considered
system configurations are compliant with the satellite DVB-
S2(X) standard [23] air interface, where the superframes
duration [24] corresponds to the minimum switching time △T
defined above. For such a system, we aim to design the beam
illumination pattern, which assigns these N beams over the
M time slots within the time window.

Let H ∈ CN×N be the channel matrix containing all the
channel coefficients of the forward link. In particular, the
channel coefficient corresponding to the n-th satellite beam
to the user k is modeled following the approach in [25], and
can be written as,

Hn,k =
√
GRx

k GTx
n (xk, yk)e

jϕn,k/(4π
Dk

λ
) (1)

where GRx
k denotes the receive antenna gain of the user k;

GTx
n (xk, yk) denotes the transmit antenna gain from the n-th

satellite beam to the user k, which is located at the longitude
xk and latitude yk; ϕn,k is the phase component associated
with the n-th satellite beam and the user k; λ denotes the
wavelength of the carrier frequency band; Dk denotes the
distance between the satellite and the user k.

Note that our main focus is on beam-demand satisfaction,
concentrating on beam scheduling rather than ground user
scheduling, which is beyond the scope of this work. Ac-
cordingly, a super-user terminal is modeled, which essentially
aggregates all user’s demands and is served by one of the
N beams. This abstraction is compliant with the unicast
transmission mode typically employed in the DVB-S2(X) air
interface, where the multiplexing of users is done via Time-
Division Multiple Access (TDMA). Thus given this one-
to-one mapping between beam and super-user, the index n
interchangeably refers to both the satellite beam and super-
user terminal.

We denote the traffic demand for beam n as dn with
unit bps, and the vector of demands of all beams as d =
[d1, . . . , dN ]T . We denote the transmit power for beam n at
TS t by pn,t,∀n = 1, . . . , N, t = 1 . . . ,M . The activation of
beam n at TS t is indicated by xn,t ∈ {0, 1} with xn,t = 1 if
the beam is activated and xn,t = 0 otherwise.

The achievable rate of the terminal in beam n at TS t is

Rn[t] = B log2(1 +
pn,t|Hn,n|2∑

i ̸=n pi,t|Hi,n|2 + σ2
T

), (2)

where σ2
T = τTRxB represents the thermal noise power with

τ being the Boltzmann constant, and TRx being the clear sky
noise temperature of the receiver [25].

Therefore, the demand constraint is

1

M

M∑
t=1

Rn[t] ≥ dn, ∀n, (3)

which ensures that the average achievable rate within the M
TSs is no less than the requested traffic demand of the n-th
beam.

B. Problem Formulation of Energy Minimization

We formulate a resource allocation problem to jointly opti-
mize power allocation and beam illumination to minimize the
total consumed energy while satisfying uneven beam demands.
Therefore, the problem, denoted as P0, is formulated as

P0



minimize
pn,t

M∑
t=1

N∑
n=1

pn,t

subject to (C1) :
1

M

M∑
t=1

Rn[t] ≥ dn, ∀n,

(C2) :

N∑
n=1

xn,t ≤ K, ∀t,

(C3) : pn,t ≥ 0, ∀n, t,
(C4) : xn,t = sign(pn,t), ∀n, t,

where Rn[t] is defined by Eq. (2), and sign(·) is the sign func-
tion. The problem is subject to four constraints: C1, the de-
mand constraint, C2, the maximum number of simultaneously
active beams, C3, the non-negativity of pn,t, and C4, the bina-
rization of xn,t. Among these constraints, C2 is incroporated.
Due to the mass limit of the satellite payload, the maximum
number of simultaneously active beams should not exceed the
number of digital RF chains, denoted as K(K ≤ N). The
constraint is a key feature of BH-based SatCom systems, as
it enables a significant reduction in satellite mass. P0 is a
non-convex mixed-integer programming problem, which poses
significant challenges in finding a solution.

III. PROBLEM REFORMULATION VIA MEAN FIELD
THEORY

For a conventional approach to mixed integer programming
problems, it first relaxes the binary variable xn,t to be con-
tinuous and linearizes the demand constraint with respect to
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Fig. 1: The formulation and reformulation of the problem. (a) the original problem P0; (b) the intermediate status of the
problem conversion; (c) the reformulated problem P1.

pn,t. Subsequently, the variables are alternatively updated with
iterations.

However, the variables of P0 are coupled, making this
typical approach less suitable. Furthermore, popular learning
methods such as deep learning often require a large dataset
for model training. Given the aforementioned challenges,
properly addressing the strong coupling relationship between
pn,t and xn,t is crucial for efficiently solving the problem P0.
To achieve this, we employ the Mean Field Theory (MFT)
[21, 22] to decouple the power and beam activation indicators.

In the mean-field method, the mutual influence between
random variables is replaced by an effective field, which acts
independently on each random variable [21]. Considering that
the power variable pn,t serves dual functions — representing
both the power value and potentially indicating the status of the
beam at a given instance of TS— these variables are mutually
influenced in the time domain via the demand constraint C1.
To simplify the problem, we apply the Mean Field Theory
method, which replaces the power vector variable with its
average power across all beams. This is followed by replacing
the indicator vector variable with its activation probability. We
summarize the reformulation progress graphically in Fig. 1.

Specifically, suppose that we have obtained the optimal
solution to P0, denoted by (pn,t, xn,t),∀n, t. We define pn
and ρn as the average power and activation probability, re-
spectively, over the entire time window for beam n across all
beams. The variable ρn represents the probability that beam
n is activated during the time window of the optimal solution,
and is defined as ρn =

∑M
t=1 xn,t

M ∈ (0, 1].
Accordingly, the total energy consumption can be refor-

mulated as the total expected consumed energy, ρTp · △T ,
where ρ = [ρ1, . . . , ρN ]T and p = [p1, . . . , pN ]T . The
number of simultaneously active beams can be expressed as
the expected number of active beams, ρT1. Regarding the
demand constraint C1, it can be reformulated to ensure the
expected capacity meets its demand as follows.

ρnB log2(1 +
pn|Hn,n|2∑

i̸=n ρipi|Hi,n|2 + σ2
T

) ≥ dn, ∀n. (5)

which can be further rewritten as

ρn ≥ fn(ρ,p) ≜
dn

B log2(1 +
pn|Hn,n|2∑

i̸=n ρipi|Hi,n|2+σ2
T
)
, ∀n. (6)

Therefore, P0 can be reformulated as

P1



minimize
ρ,p

ρTp

subject to (Ĉ1) : ρ ⪰ f(ρ,p),

(Ĉ2) : ρ
T1 ≤ K,

(Ĉ3) : p ≻ 0,

(Ĉ4) : 0 ≺ ρ ⪯ 1,

where f(ρ,p) = [f1(ρ,p), . . . , fN (ρ,p)]T . The curled in-
equality symbol ⪰ (and its strict form ≻) is used to denote a
generalized component-wise inequality between vectors. The
vectors 0 and 1 are the ones with all elements being 0 and 1,
respectively.

Note that the solution of P1 is in terms of activation
probabilities of the N beams, which need to be converted into
a discrete illumination pattern. This conversion method will
be developed in Section V. In the next section, we will focus
on solving P1.

IV. FIRST-STAGE: PROBABILISTIC BEAM HOPPING
SOLUTION

In this section, our focus is on solving the non-convex
problem P1. The conventional approach might involve lin-
earizing constraint Ĉ1 first and then updating the two variables
through iterations [18]. However, this approach often leads
to performance loss due to the approximation error between
the original and linearized versions and is typically time-
consuming. In this work, we propose a novel method that
optimally solves the problem. Briefly, we first prove that the
fixed point satisfying ρ = f(ρ,p) is a necessary condition
for the optimum of P1. Based on this necessary condition,
the optimal power can be expressed as a function of the
optimal activation probability. Consequently, the objective of
the problem boils down to an inverse matrix optimization
problem, which we have further demonstrated is equivalent
to a convex problem.

A. Necessary Condition for the Feasible Problem P1

According to [26], a fixed point of a function is a point
that the function maps to itself, i.e. x = 1 is a fixed point
of the function f(x) = x2 because f(1) = 1. In nonlinear
programming, the characteristics of the fixed point can be
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utilized to devise iterative methods for finding solutions [27].
The following theorem indicates that the solution to P1 is a
fixed point.

Theorem 1: Given d,H, and K, the solution to the problem
P1, if it exists, is the fixed point of the equations: ρ = f(ρ,p).

Proof: The proof is in Appendix A.
Theorem 1 illustrates the coupling relationship between

power and activation probability. Intuitively, a change in
demand for one beam can strongly affect the solutions of
adjacent beams and, consequently, the entire system. This
observation validates the theorem and leads to the following
corollary.

Corollary 1: Denoting the relationship between the optimal
activation probability ρ and the optimal power p as p = f̂ (ρ),
the function f̂(·) is a one-to-one mapping.

Proof: Theorem 1 states that the fixed point is the neces-
sary condition of the solution to the P1. Given the fixed point
equation ρn = fn(ρ,p),∀n, we can derive the followings.

dn = ρnB log2(1 +
pn|Hn,n|2∑

i ̸=n ρipi|Hi,n|2 + σ2
T

) (8a)

⇒ pn = (2
dn

Bρn − 1)(
∑
i ̸=n

ρipi
|Hi,n|2

|Hn,n|2
+

σ2
T

|Hn,n|2
) (8b)

⇒ ρnpn = ρn(2
dn

Bρn − 1)(
∑
i ̸=n

ρipi
|Hi,n|2

|Hn,n|2
+

σ2
T

|Hn,n|2
) (8c)

⇒ yn = g(ρn)(
∑
i ̸=n

yiAi,n + bn) (8d)

where we denote matrix A with elements An,n = 0, and ∀i ̸=
n,Ai,n =

|Hi,n|2
|Hn,n|2 ; bn =

σ2
T

|Hn,n|2 ; g(ρn) = ρn(2
dn

Bρn − 1); and
yn = ρnpn, representing the consumed energy of the n-th
beam.

According to (8d), we denote the vector of all beams’
consumed energies by y = [y1, . . . , yN ]

T and establish its
relationship with the vector ρ compactly as follows:

y = (I−GA)−1Gb (9a)

⇒ p = Diag(ρ−1)(I−GA)−1Gb (9b)

where G = Diag(g(ρ)), and g(ρ) = [g(ρ1), . . . , g(ρN )]T .
Diag(x) denotes the diagonal matrix with diagonal elements
given by vector x, and I is the identity matrix. Finally, b =
[b1, . . . , bN ]T .

Eq. (9b) indicates that the relationship between the optimal
power and the activation probability is a one-to-one mapping
and thereby completes the proof.

Based on Eq. (9a), P1 is equivalent to

P2



minimize
ρ

1T (I−G(ρ)A)−1G(ρ)b

subject to (Ĉ2) : ρ
T1 ≤ K

(C̃3) : σ(G(ρ)A) < 1

(Ĉ4) : 0 ≺ ρ ⪯ 1

where G(ρ) = Diag(g(ρ)) is a function of ρ and will be
denoted as G for simplicity. σ(X) denotes the spectral radius
of the matrix X – the largest absolute eigenvalue of X.

The constraint C̃3 in P2 corresponds to the constraint Ĉ3

in P1. Note that ∀ρ ≻ 0, there holds G ≻ 0. Additionally,
b ≻ 0,A ≻ 0 for all times. According to Eq. (9b), given
ρ ≻ 0, the positivity of p is equivalent to the positivity of
the matrix (I −GA)−1 which is determined by the spectral
radius of the matrix GA. The following Theorem 2 provides
a detailed explanation.

Theorem 2: Given d,H and K, a feasible positive solution
of the Eq. (9b) exists if and only if there exists a ρ such
that the spectral radius of the matrix GA is less than 1, i.e.
σ(GA) < 1.

Proof: The proof is given by the [28, Theorem 1].
Theorem 2 establishes the necessary condition for the

feasibility of the solution to P2.

B. Convexity Analysis of Problem P2

P2 involves matrix inverse and spectral radius, making
it challenging to solve in general. However, by analyzing
and exploiting the special structures of the constraints and
the objective function, we demonstrate that solving P2 is
equivalent to solving a convex problem. This insight paves
the way for obtaining the global optimal solution to P1.

Lemma 1: Given B, d, the function g(z) = z(2
d

Bz − 1)
is monotonically decreasing and convex in the domain z ∈
(0,+∞)

Proof: The proof is in Appendix B.
Lemma 2: Given H,d, the set Y = {ρ|σ(GA) ≤ 1,0 ⪯

ρ ⪯ 1} is convex.
Proof: The proof is in Appendix C.

In the proof presented in Appendix C, we define the
condition to determine whether the given parameters H,d are
reasonable. When given reasonable parameters, the set Y is
non-empty.

Theorem 3: The solution to P2 is equivalent to the solution
to a convex problem, which is given by

P3 : minimize
ρ∈Ŷ

L(ρ) (11)

where Ŷ = Y ∩ {ρ|ρT1 ≤ K}, and

L(ρ) =

{
1T (I−GA)−1Gb ρ ∈ Ŷ \ {ρ|σ(GA) = 1}
+∞ ρ ∈ {ρ|σ(GA) = 1}

(12)
Proof: The proof is in Appendix D.

Previously, we explored the problem theoretically. Next,
we will graphically illustrate the potential characteristics of
the optimum, providing the basis for mapping the statistical
solution to the deterministic one in Section V.

Lemma 3: Given reasonable d,H, i.e. Y ̸= ∅, the feasibility
of P3 depends on the parameter K, which represents the
maximum number of active beams. If K is small, the problem
may be infeasible. However, increasing K may render an
initially infeasible problem feasible.

Proof: The feasible set of P3 is the intersection of two
convex sets, i.e., Ŷ = Y ∩ {ρ|ρT1 ≤ K}, thus it is convex.

According to Lemma 2, given reasonable H,d, the set Y is
convex and non-empty. Therefore, whether the set Ŷ is empty
is determined by the parameter K. Additionally, for ∀ρ1 ⪰
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Fig. 2: The feasible zone for P3 is indicated by the yellow shading. By increasing the parameter K from K1 to K2, the
previously infeasible problem becomes feasible.

ρ2, it holds that G1A ≤ G2A (The symbol ≥ is defined
in Appendix C). Consequently, based on [29, Corollary 1.5
p-27], we have σ(G1A) ≤ σ(G2A).

Based on these two characteristics, we illustrate how K
affects the set Ŷ using Fig. 2. As seen in the figure, the left
side displays the N dimensions of the variable ρ and the right
side illustrates the slice of set Ŷ cut by the plane determined by
any two dimensions of ρ, i.e. ρiOρj ,∀i ̸= j. Given reasonable
d,H, the zone EAQBCD is non-empty, which denotes the
slice of the set Y . The dashed curve EAQBC denotes the
boundary on which σ(GA) = 1. The line AB denotes the
boundary on which ρT1 = K. The yellow shadow with its
boundaries, i.e. AQBP , is the slice of the set Ŷ , which denotes
the slice of the feasible zone cut.

When K is small, i.e. K = K1, the zone AQBP is ∅,
denoting the infeasibility of P3. However, by increasing K to
K2, the line AB will move parallel to the direction of vector
O⃗D, which would result in the feasibility of the problem.
Thereby, we complete the proof.

Lemma 4: The total consumed energy L(ρ) is monotoni-
cally decreasing with respect to the variable ρ ∈ Ŷ .

Proof: The proof is in Appendix E.
Theorem 4: The system achieves minimal energy con-

sumption when all available beams are active within the
time window; furthermore, increasing the maximum number
of simultaneously active beams further reduces the energy
consumed.

Proof: The proof is in Appendix F.
Theorem 4 demonstrates that the solution to P3, if it exists,

will be located on the boundary where ρT1 = K. This
theorem also suggests that increasing the maximum number
of active beams reduces energy consumption. It is important
to note that there is an inherent constraint on K, which must
not exceed the total number of beams due to the satellite

hardware constraints. Choosing an appropriate value for K
is a complex task that involves considerations such as size,
weight, power (SWaP), and the distribution of traffic demands.
However, these considerations are beyond the scope of this
paper.

C. Iterative Optimization of Problem P3

For solving P3, we will start by rewriting the spectral
radius constraint using its equivalent expression. Then, we will

develop a method based on Successive Convex Approximation
(SCA) [30] to tackle the resulting problem.

In general, the SCA method addresses a complicated prob-
lem by iteratively approximating the function value. When the
original problem is convex, SCA can find the global optimum
[30]. The objective function can be expressed as

L(ρ) = Tr{(I−GA)−1GB} (13)

where B = b ·1T , and Tr · represents the trace of the matrix.
Given ρ0 and subsequently defining G0 = Diag(g(ρ0)), we
approximate inverse matrix (I −GA)−1 using its first-order
Taylor expansion with respect to the variable G [31]. This
allows us to approximate the total consumed energy as follows:
(at the bottom of this page).

Since Ω is a diagonal matrix of positive elements, the
function y(z) = zTΩz is convex and non-decreasing when
z ≻ 0. As the function g(ρ) is convex, and following the
composition rules outlined in [32], the composite function
L(ρ|ρ0) with respect to the variable ρ is also convex. Fur-
thermore, according to [33], σ(X) ≤ t is equivalent to
σ(X) ≤ t, σ(−X) ≤ t, which is further equivalent to(

tI X
XT tI

)
⪰ 0. (14)

L(ρ|ρ0) ≈ Tr{(I−G0A)−1︸ ︷︷ ︸
T

GB+ (I−G0A)−1A(I−G0A)−1GB(G−G0)} (15a)

= gT (ρ) Diag(1TTATB)︸ ︷︷ ︸
Ω

g(ρ) + [1TTB− 1TTATG0B]︸ ︷︷ ︸
b̂T

g(ρ) = gT (ρ)Ωg(ρ) + gT (ρ)b̂ (15b)
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By substituting the equivalent expression into the constraint
σ(GA) ≤ 1 in P3, we obtain the subproblem to be solved at
each SCA iteration as follows:

P4



minimize
ρ

L(ρ|ρ0)

subject to (Ĉ2) : ρ
T1 ≤ K,

(C̃3) :

(
I Diag(g(ρ))A
AT Diag(g(ρ)) I

)
⪰ 0,

(C4) : 0 ⪯ ρ ⪯ 1,

which is convex and can be efficiently solved using CVX
[34]. An overview of the proposed approach for solving P3 is
provided in Algorithm 1.

Algorithm 1 INVERSE MATRIX OPTIMIZATION

1: Initialization ρ0 = 1,K,A,d,H, k = 0
2: repeat
3: if σ(GkA) < 1 then
4: Set k = k + 1, Update Ω, b̂
5: Solve ρk+1 = arg minimize

ρ∈Ŷ
L(ρ|ρk)

6: else
7: Return: Infeasible
8: end if
9: until ∥ρk+1−ρk∥2

dim(ρk)
≤ 10−3

D. Computational Complexity

The overall computational complexity of Algorithm 1 scales
linearly with the number of outer loop iterations. Given
ρ0, the non-symmetric exponential cone optimization of P4

is solved using CVX [35] with an advanced solver, which
employs a primal-dual interior point method with a worst-case
computational complexity of O((MN)3) [36, 37].

V. SECOND-STAGE: STATISTIC-TO-DETERMINISTIC
SOLUTION MAPPING

In this section, we first introduce the method to convert
the acquired activation probability into discrete demands.
Subsequently, we design the illumination pattern, where beam
hopping latency is also considered.

A. Conversion to Discrete Demands

Recall that in the previous section, we obtained the optimal
beam activation probability and power. To implement this
resource allocation solution in a satellite system, we still need
to convert them into deterministic illumination operations. This
involves selecting time slots for beam activation and assigning
the corresponding power.

We present a rounding scheme that converts the continuous
probability into discrete demand in the number of TS. Accord-
ing to Theorem 4, the optimum is located on the boundary
where ρT1 = K. Therefore, the rounding algorithm aims to
find an integer point, i.e. the number of selected active TS for
all beams, that is not only close to Mρ but also sums up to
MK. The rounding scheme is detailed in the Algorithm 2.

Algorithm 2 ROUNDING

1: Input: ρ⋆, M , K
2: The lower bound of the demands d̂ = ⌊ρ⋆ ·M⌋
3: The residual o = ρ⋆ ·M − d̂
4: Sort the residual o in descending order and find the index

of its first KM − 1T d̂ elements.
5: Modify the demands d̂ by adding 1 to the selected indexes

of beams.

Recall that the relationship between the optimal power
and the corresponding activation probability is a one-to-one
mapping. Consequently, by applying the rounding algorithm,
the power also needs to be modified given that the beam
activation probability changes. Specifically, the modification
is expressed as

ρ̂ =
d̂

M
, p̂ = Diag(ρ̂−1)(I− ĜA)−1Ĝb (17)

where d̂ is the vector of converted discrete demands and Ĝ =
Diag(g(ρ̂)).

B. Mapping to Deterministic Illumination Pattern

With the required power and discrete demand for all beams,
the next step is to design the illumination pattern. This involves
choosing specific TS from the entire time window to meet
the required number of TS for each beam and assigning the
necessary power to them. In a prior study [38], a heuristic
method was proposed to randomly assign the demands while
satisfying the constraints.

However, as discussed in Section III, the problem refor-
mulation is based on the assumption that we have obtained
the optimal solution. In other words, the activation probability
denotes the probability of a beam being activated during
the BH window of the optimal solution, which minimizes
consumed energy while meeting the constraints. We follow
the optimal assumption to design the deterministic solution
xn,t,∀n, t. Given (p̂, ρ̂), the consumed energy is determinate.
In this context, we propose focusing on demand-matching
performance while satisfying the constraint of a maximum
number of active beams. Specifically, our proposed method
penalizes the activation of any two beams simultaneously,
aiming to minimize the total penalty while adhering to the
constraints.

The penalty P̂ ∈ RN×N defines the relative accumulated
interference from one beam to the other. Specifically, the
interference from the i-th beam to the j-th beam is defined
as

P̂i,j =

∫∫
Sj

|Hi,k|2 pidxk dyk∫∫
Sj

|Hj,k|2 pjdxk dyk
(18)

where (xk, yk) represents the longitude and latitude of user
k which is in the beam j; and Sj stands for the coverage of
beam j which is defined by the beam contour at −3dB from
the maximum gain.

Moreover, the operator must also take into account the
minimization of the beam-hopping latency when designing
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the illumination pattern in practice. In the context of the
considered system, beam-hopping latency of the beam refers
to the number of times the beam switches from on to off and
from off to on in a given time window. Given the required
number of active time slots for the beam within a specific
time window, latency increases more when the frequency of
the switch turning on and off is higher. This increase in latency
is due to the multiple operations required across various layers,
including but not limited to the physical and MAC layers,
which result in additional time consumption.

Based on the above illustration, the goal to avoid the latency
increase is equivalent to reducing the total number of switching
times of the designed beam pattern, which can be expressed
as

N∑
n=1

M−1∑
t=1

∥ xn,t − xn,t+1 ∥2 (19a)

=

N∑
n=1

{2d̂n − x2
n,1 − x2

n,M −
M−1∑
t=1

2xn,txn,t+1} (19b)

=− xT P̃x+ Const (19c)

where xt = [x1,t, . . . , xN,t]
T is the binary vector indicating

the status of all beams at TS t, and x = [xT
1 , . . . ,x

T
M ]T . The

matrix P̃ is characterized as a block tridiagonal matrix. When
M = 2 and M ≥ 3, its expressions can be given respectively
by

P̃ =

[
IN IN
IN IN

]
2N×2N

(20a)

P̃ =



IN IN 0N . . . 0N 0N

IN 0N IN . . . 0N 0N

0N IN 0N
. . .

...
...

...
...

. . . . . . IN 0N

0N 0N . . . IN 0N IN
0N 0N . . . 0N IN IN


MN×MN

(20b)

where IN signifies the identity matrix and 0N represents the
zero matrix, both of which are of dimensions N ×N ."

Therefore, the mapping problem is defined as follows:

Pm


minimize

x
xT (P− ιP̃)x

subject to (C5) : Etx ⪯ K · 1M

(C6) : Ebx = d̂

(C7) : x ∈ {0, 1}MN

where P = Diag(P̂, . . . , P̂) ∈ RMN×MN is the block
diagonal penalty matrix and ι is the trade-off factor between
the interference penalty and the operation cost.

The matrix Et = IM ⊗ 1T
N serves as the selective matrix,

with each row selecting all the active beams at TS t, where
⊗ denotes the Kronecker product; and 1N denotes a column
vector of dimension N with all elements equal to 1. Addi-
tionally, Eb = 1T

M ⊗ IN is another selective matrix, with each
row selecting all the active TS for the beam. Lastly, d̂ is the
converted discrete demands in terms of the number of TS.

Pm is a binary quadratic programming (BQP) task,
efficiently addressed using the multiplier penalty and

TABLE II: Summary of System Parameters

Satellite orbit 13◦E (GEO)
Additional payload loss 2 dB
Number of virtual beams (N ) 67
Beam radiation pattern (GTx

n (xk, yk) e
jϕn,k ) Provided by ESA

Downlink carrier frequency 19.5 GHz
User link bandwidth, (B) 500 MHz
Roll-off factor 20%
Temperature 50 K
Number of TSs (M ) 20

majorization-minimization (MPMM) method proposed in our
previous work [14].

In summary, Fig. 3 illustrates the procedures of the proposed
framework. Given the request demands d, the framework
provides the designed illumination pattern x and the corre-
sponding power of beams p̂ such that the provided capacity c
matches the demands as closely as possible. The preprocessing
demand compensation part will be explained in Section VI-C.

VI. NUMERICAL RESULTS

In this section, we conduct various simulations to evaluate
the proposed framework. First, we demonstrate the influence
of system parameters on the final performance. Specifically,
we show the convergence of the proposed solving method and
validate the theoretical findings. Second, the ideal capacity
given by the Shannon formula [39] is undermined in prac-
tical implementations, we propose a preprocessing scheme
to compensate in advance the difference between the ideal
and practical capacities. Third, we analyze the impact of
different latency trade-off factors on system-level performance.
Lastly, to assess the performance of the proposed framework,
we compare it with state-of-the-art alternatives in terms of
energy consumption and demand-matching performance, also
providing computational time complexity.

A. Simulation Setup

The parameter settings of the GEO satellite are summarized
in TABLE II. The traffic demands of all beams are randomly
generated and follow a uniform distribution between 400r and
1500r (Mbps), that is, 400r ≤ dn ≤ 1500r, ∀n. Herein
r stands for the demand density factor, selected from the
set {0.1, 0.2, 0.3, 0.4, 0.5}. For each selected r, 50 demand
instances are generated for testing. A single user in the beam
center is assumed. To the best of our knowledge, the method
described in [14] represents the state-of-the-art and is thus
chosen as the baseline. For the baseline, we set the power
of each beam as 60 W with 3 dB output back-off (OBO). 1

Unless stated otherwise, all the parameter settings are applied
to simulations.

1The first step of the baseline is to convert the demands in bps into
demands in the number of time slots by approximation, within which the
expected interference from adjacent beams will be omitted because of the use
of precoding. Since there is no precoding in this paper, we would not take
this part into account when conducting approximation in the baseline.
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Fig. 3: The proposed framework.
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Fig. 4: The convergence of the proposed method. The max-
imal number of simultaneously active beams K = 26, and
consumed energy is calculated by 10 log 10(ρTp).

B. Performance of the Proposed Method

1) Convergence of Algorithm 1: Fig. 4 shows the conver-
gence of the proposed Inverse Matrix Optimization Algorithm
1 at different demand densities. As observed, the algorithm
converges to the optimum within approximately two to three
iterations across all demand densities. We set the initial point
to ρ0 = 1, representing the largest value of ρ, which results
in the minimal objective value and the spectral radius of the
matrix. However, this initial point falls outside the feasible
zone unless K = N . Consequently, the consumed energy ini-
tially increases due to the objective function’s monotonically
decreasing nature.

2) Impact of the maximum number of simultaneously active
beams: TABLE III and IV illustrate the influence of the
maximum number of simultaneously active beams, denoted
as K, on the total consumed energy and the corresponding
optimal spectral radius of the matrix GA, respectively.

The results yield the following findings and corresponding
analysis: As shown in TABLE III, the total consumed energy
decreases with an increase in the maximum number of si-
multaneously active beams across all demand densities. This
observation validates Theorem 4. Furthermore, we confirm
Lemma 3. Specifically, P3 becomes feasible when the value
of K surpasses a certain threshold. For instance, at a demand

TABLE III: Influence of K on energy

r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5
K = 10 14.89 24.43 NaN NaN NaN
K = 15 13.69 20.34 27.46 NaN NaN
K = 20 13.12 18.77 23.43 39.74 NaN
K = 25 12.80 17.91 21.71 27.87 NaN
K = 30 12.58 17.37 20.72 25.34 30.80
K = 35 12.43 17.00 20.07 23.96 27.55
K = 40 12.32 16.73 19.60 23.07 25.93
K = 45 12.23 16.52 19.25 22.44 24.90
K = 50 12.16 16.36 19.00 21.97 24.21
1 NaN represents that there is no optimal solution in the case.
2 The energy is given by 10 log 10(ρTp)

TABLE IV: Influence of K on spectral radius

r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5
K = 10 0.097 0.477 NaN NaN NaN
K = 15 0.075 0.265 0.644 NaN NaN
K = 20 0.066 0.201 0.417 0.970 NaN
K = 25 0.062 0.171 0.326 0.669 NaN
K = 30 0.059 0.155 0.278 0.530 0.801
K = 35 0.057 0.144 0.249 0.452 0.655
K = 40 0.056 0.136 0.230 0.402 0.567
K = 45 0.055 0.131 0.216 0.369 0.511
K = 50 0.054 0.128 0.207 0.346 0.474
1 NaN represents that there is no optimal solution in the case.
2 The spectral radius is σ(GA) of the optimal solution.

density of r = 0.4, P3 is infeasible with the initially set K, but
becomes feasible when K is increased to 20. Lastly, comparing
TABLE III with TABLE IV, we find that energy consumption
has a positive correlation with the spectral radius of the matrix.

3) Correlation among Parameters Density Distribution:
We define the parameter density distribution as the normalized
distribution of the parameter of the beam across all beams. Fig.
5 intuitively demonstrates the correlation among the density
distribution of parameters such as demands, power, activation
probability, and consumed energy.

Initially, the given demands are decomposed into power and
activation probability with the proposed framework. Subse-
quently, the consumed energy can be calculated by multiplying
the power by the activation probability. As expected, the
resulting energy density distribution has great similarity with
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Fig. 5: Density distribution of parameters of an instance. The
demand density is at r = 0.3.

the given demands density distribution, which validates our
proposed framework. Surprisingly, we also find that the proba-
bility density distribution has a positive correlation with that of
the demands, which suggests an efficient heuristic approach to
allocate the limited maximal number of simultaneously active
beams.

C. Demand Precompensation

As illustrated in Fig. 3, the proposed two-stage framework
aims to design power p̂ and illumination pattern x for the
satellite communication system such that the satellite’s capac-
ities (outputs, c) for the ground users match correspondingly
the required traffic demands (inputs, d) of these users. In the
first stage of the proposed framework, the formulated problem
is conditioned on the Shannon Formula, which indicates that
the capacity y and the SINR (x) are related by y = log2(1+x)
as shown in the blue curve in Fig. 6(a).

However, in practice, the operator modulates the signal
based on the range of the SINR following the DVB-S2X
standard [23] when transmitting the information. Due to these
modulations, there is a gap between the Shannon capacity
and the DVB-S2X actual output, as seen clearly in Fig. 6(a).
Taking a step further, we plot the ratio of DVB-S2X output to
Shannon capacity along with SINR, which is the blue curve in
Fig. 6(b). It is observed that the information transmission can
be conducted well only when the SINR exceeds a particular
level. Specifically, when the SINR exceeds 5 dB, the observed
ratio surpasses 0.8. However, as long as the ratio is not 1, there
is always a transmission loss systematically.

To compensate for the gap, a straightforward approach
is to increase the input demands. This adjustment can be
expressed as d̃ = d/ϵ, where ϵ is the chosen compensation
coefficient. With a smaller coefficient, the required demands
become higher, resulting in increased energy consumption.

For performance comparison of energy consumption and
demand-matching, we choose three different coefficients. The
performance metric of energy ratio is defined as

ER1 =
ρ⋆
ϵ
Tp⋆

ϵ

ρ⋆
1
Tp⋆

1

(22)

0 5 10 15 20

SINR

0

1

2

3

4

5

S
p
e
c
tr

a
l 

E
ff

. 
[b

it
s/

s/
H

z
]

Shannon

DVB-S2X

(a)

0 5 10 15 20

SINR

0

0.2

0.4

0.6

0.8

1

S
p
e
c
tr

a
l 

E
ff

. 
R

a
ti

o 0.82

Spectral Eff. Ratio

Baseline

(b)

Fig. 6: The comparison between Shannon and DVB-S2X stan-
dard in terms of spectral efficiency. (a) the spectral efficiency
of DVB-S2X standard and Shannon capacity; (b) the ratio of
DVB-S2X standard output to Shannon capacity.

where ρ⋆
1 and p⋆

1 are the optimal solutions to P3; ρ⋆
ϵ and

p⋆
ϵ are the compensated ones with the parameter ϵ. While

the performance metric of demand matching is illustrated by
the cumulative distribution function (CDF) of the ratio of the
provided capacity to the required demand (C/D) of the beam.

In Fig. 7(a), the performance of energy ratio is provided.
It is observed that the proposed system would necessitate
approximately 2.2 times the energy of the ideal system when
ϵ = 0.80, whereas it is around 1.8 times when ϵ = 0.84.

Fig. 7(b) demonstrates demand matching performance with
different compensation coefficients. The red dashed line indi-
cates the ideal situation where the provided capacity perfectly
matches the demand for all beams. It is observed that when
ϵ = 0.80, the demands of almost all beams are satisfied.
However, with ϵ = 0.84, more than 10% of the beams
remain unsatisfied. Additionally, at ϵ = 0.82, less than 5% of
the beams are unsatisfied, with the satisfaction ratio ranging
between 0.95 and 1. Based on the performance metrics shown
in Fig. 7, we conclude that the selection of ϵ represents a
trade-off between energy consumption and demand-matching
performance. For all subsequent simulations, we will use
ϵ = 0.82.
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Fig. 7: Performance comparison with different compensation
coefficients for the experiment on 50 instance with r = 0.3
and the value of K decided via the baseline [14]. (a) energy
consumption performance; (b) demand matching performance.

D. Influence on Latency Trade-off Factor

Fig. 8 demonstrates the influence of the trade-off factor ι
on the BH pattern design. Fig. 8(a) examines its impact of
three factors on total latency at a demand density r = 0.3
across 50 instances. It is shown a significant reduction in
latency when the trade-off factor exceeds 0. Moreover, as
expected, the larger the factor, the lower the latency. Fig. 8(b)
highlights the corresponding demand-matching performance.
It is evident that, despite a latency penalty, all three curves
of the demand-matching ratio fall within the range of 0.95
and 1.15, demonstrating the superior demand-matching per-
formance of the proposed method. Additionally, as expected,
the curve without latency penalties outperforms the latency-
penalized curves. Specifically, fewer than 3% of the beams
represented by the non-latency-penalized curve fail to meet
the criteria, compared to over 6% of the beams depicted by
the latency-penalized curve.

E. Designed Illumination Pattern

Fig. 9 shows an example of an illumination pattern designed
by the proposed method at a particular demand instance
obtained by r = 0.3. In Fig. 9(a), the white block refers to the
corresponding active beams while the dark ones are passive.
Moreover, the beam pattern corresponding to the first TS of
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Fig. 8: The influence of trade-off factor on the performance.
The demand density is at r = 0.3. (a) the total latency per
instance; (b) the demand matching ratio per beam.

the illumination pattern is illustrated in Fig. 9(b), where the
green circle refers to the illuminated spot-beam.

F. Influence of Length of Time Window

The influence of the length of time window on the perfor-
mance is also provided. We define the energy consumption
performance metric as

ER2 =
ρ̂T p̂

ρ⋆Tp⋆
(23)

where ρ⋆ and p⋆ denotes the optimal solution to P3, and ρ̂ and
p̂ are the modified solutions obtained after rounding, defined
by Eq. (17).

In Fig. 10(a), we can find that the higher the number of
time slots (M ) in the time window, the closer the distance
between the approximated solution and the optimum. For
instance, when M is small, i.e. M = 10, the total consumed
energy increases by a maximum of 8% compared to the
optimum. However, when M exceeds 20, the extra required
energy stabilizes at less than 1.5% of the optimum. Notably,
this amount drops to less than 0.5% when M exceeds 40.
Fig. 10(b) illustrates the demand-matching performance. As
observed in the figure, almost 10% of beams are not satisfied
when M = 10, but more than 97% of beams are satisfied
when M exceeds 20. Furthermore, the higher the M is, the
better the demand-matching performance.
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Fig. 9: The designed illumination pattern. (a) illumination
pattern; (b) the specific beam pattern at one TS

G. Comparison with the Baseline on Energy Efficiency and
Demand Matching

Fig. 11 demonstrates the performance comparison with the
baseline on energy consumption and demand matching across
three different demand densities. The performance metric of
energy consumption is ER2 defined by Eq. (23) and the
demand matching is by illustrating the CDF of the ratio of
the provided capacity to the required demand of the beam. To
ensure a fair comparison, both methods are constrained by the
same value of K, determined by the method in baseline.

The left-hand side of the figures depict the energy consump-
tion performance. It is evident that the baseline method incurs
significantly higher energy costs in all instances, amounting to
approximately 2.5 times, 1.5 times, and 1.2 times the energy
consumed by the proposed framework at demand densities
r = 0.1, 0.3, 0.5, respectively. The right-hand side figures
illustrate the demand-matching performance. Although the
baseline successfully fulfills the requirements for nearly all
beams, it tends to exceed the necessary capacity. In contrast,
the proposed method demonstrates greater stability in its per-
formance. The demand-matching ratio generally falls within
the range of 0.95 to 1.1 across all demand densities.

H. Comparison with Baseline on Computational Complexity

Fig. 12 presents the time consumption of the proposed
framework relative to the baseline at the different number of
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Fig. 10: The influence of M on the performance for the
experiments on 50 instances with r = 0.3, K = 21 and
ϵ = 0.82. (a) the energy consumption ratio; (b) the demand
matching

variables. The y-axis value is the ratio of the time consumption
of the proposed framework to that of the baseline, which is
averaged over 50 instances at r = 0.3, M = 20. The number
of variables is MN , where N ∈ {10, 20, 30, 40, 50, 60, 67}
is the number of beams and M is the number of TS in
the time window. The convergence conditions of the iterative
algorithms are given by ∥xk+1−xk∥2

dim(xk)
≤ 10−3, where dim(x)

denotes the dimension of the vector x.

We also provide Table V, which compares the system
performances of the proposed framework and the baseline.
The Jain’s Fairness Index is used to measure the satisfaction
coverage of the users’ demands and is defined as f(y) =

(
∑

i yi)
2

dim(y)
∑

i y
2
i )

, where the merit function yi = ci
di

is the ratio
of the provided capacity to the request traffic demand of the
beam [40]. The higher the index is, the better the scheme of the
resource allocation would be. In addition, statistical parameters
for the energy consumption ratio of the proposed framework
to that of the baseline across 50 instances are also provided.
Based on the results, we can see that, although the running
time of the proposed framework is around 1.3 times that of the
baseline, the system gets a notable performance improvement.
Specifically, the proposed solution consumes only 65% of the
energy by the baseline while still providing slightly better
demand-matching performance.
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Fig. 11: The performance comparison between the proposed method with the baseline.
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Fig. 12: The relative time-consumption comparison.

VII. CONCLUSION

In this paper, we propose a novel two-stage framework for
optimizing energy consumption through the joint design of
power and time slot allocation. The framework is designed to

achieve optimal performance by addressing various challenges.
In the first stage, we utilize mean-field theory to extract the
activation probability and reformulate the mathematical model
into an inverse matrix optimization problem. This reformula-
tion enables us to convert the problem into a convex form,
which has been thoughtfully analyzed and solved efficiently
using a proposed iterative method. In the second stage, we em-
ploy the MPMM method to map the activation probability into
the illumination pattern. Additionally, we introduce a compen-
sation method to mitigate the performance loss resulting from
the discrepancy between practical adaptive coding modulation
and the ideal Shannon formula. Overall, this step yields a
deterministic and practical solution for the considered beam-
hopping satellite system. To validate our theoretical findings,
we conduct numerical simulations. The results demonstrate
that our proposed method surpasses the benchmark in terms
of energy consumption and demand-matching performance.
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TABLE V: Performance comparison on resource allocation fairness and total consumed energy

Number of Variables 200 400 600 800 1000 1200 1340

Jain’s Fairness Index Proposed 0.9994 0.9992 0.9992 0.9992 0.9991 0.9991 0.9990
Baseline 0.9898 0.9904 0.9909 0.9920 0.9925 0.9930 0.9922

Consumed Energy
Mean 0.5119 0.6333 0.6159 0.6444 0.6647 0.6739 0.6766
Min 0.3744 0.4839 0.5295 0.5608 0.5730 0.6125 0.6073
Max 0.7931 0.8026 0.7801 0.7535 0.7564 0.7602 0.7583

a "Consumed Energy" denotes the ratio of energy consumption of the proposed framework to that of the baseline.

APPENDIX A

Proof: Given d,H, and K, assume that the optimal
solution to P1 is (ρ⋆,p⋆). Consequently, this solution satisfies
the demand constraint Ĉ2.

Suppose (ρ⋆,p⋆) is not the fixed point, taking into account
that it is the solution to the problem into account, then there
∃n such that ρ⋆n > fn(ρ

⋆,p⋆) and ρ⋆i ≥ fi(ρ
⋆,p⋆), ∀i ̸= n.

Consequently, there exists another point (ρ̂,p⋆) such that
ρ̂n = fn(ρ

⋆,p⋆) and ρ̂i = ρ⋆i , ∀i ̸= n. Subsequently,
according to the definition at Eq. (6), there would have
ρ̂i > fi(ρ̂,p), ∀i ̸= n, which proves that it is the feasible
solution to the problem. Moreover, it consumes less energy
than the supposed optimal solution, which contradicts the
optimal assumption. Thus the optimal solution to P1 should
be the fixed point of the equations.

APPENDIX B

Proof: The first-order and second-order derivatives of the
function g(z) are given by g

′
(z) = 2

d
Bz (1 − d ln 2

Bz ) − 1 and
g

′′
(z) = 1

z3

(d ln 2)2

B2 2
d

Bz respectively. There always holds that
g

′′
(z) > 0,∀z > 0, so the first-order derivative of the function

is monotonically increasing on the zone (0,+∞). Taking
g

′
(+∞) = 0 into account, we would have g

′
(z) < 0,∀z > 0

and thereby completes the proof.

APPENDIX C

Proof: We define the given parameters are reasonable if
the minimal spectral radius of the matrix is no greater than
1. If the condition is not met, the parameters are irreasonable.
When given irreasonable parameters H,d, the set is empty, i.e.
Y = ∅, thus it is convex. In the following, we will first give
the condition to check if the given parameters are reasonable,
and then prove the convexity of the set when given reasonable
parameters.

Firstly, we define A ≥ B if Ai,j ≥ Bi,j , ∀i, j, and A >
B if A ≥ B, A ̸= B. According to [29, Corollary 1.5 on
p.27], given matrix A,B, if A > B > 0, there would have
σ(A) > σ(B), where 0 is the matrix all of whose elements
are 0. Moreover, based on the Lemma 4, the function g(z)
is monotonically decreasing, thus the minimal spectral radius
of the matrix GA = Diag(g(ρ))A is at the point ρ = 1 as
1 ⪰ ρ ∈ Y . According to the previous definition, the condition
is to check if the spectral radius of the matrix Diag(g(1))A
is less than 1.

Secondly, when given reasonable parameters, the set Y is
non-empty. Suppose ρ1,ρ2 ∈ Y , then there have σ(G1A) ≤
1, σ(G2A) ≤ 1, where Gi = Diag(g(ρi)), i = 1, 2.

Assume that ρ = θρ1 + (1 − θ)ρ2,∀ θ ∈ [0 1]. According
to [41, Remark 1.3], if the function g(z) is log-convex, there
would have σ(GA) ≤ σ(G1A)θ · σ(G2A)(1−θ) ≤ 1, which
proves that the convexity of the set is conditioned on the log-
convex of the function g(z). In the following, we will prove
the log-convex of the function g(z).

According to [35], that a function is log-convex is equivalent
to the positivity of the function h(z) = g(z) ·g(z)′′ −(g(z)

′
)2.

The function h(z) and its first-order derivative can be given by
h(z) = (t2−t)m

2

z2 −[t(1−m)−1]2 and h
′
(z) = m2

z3 {2t2m(z2−
1)+t(m−4t)+z2(2t−2t2)} respectively, where t = 2

d
Bz ,m =

d ln 2
Bz . Considering that there would have (z2 − 1) ≤ 0, (m−
4t) < 0, (2t − 2t2) < 0, ∀ 0 < z ≤ 1, subsequently h

′
(z) <

0, which proves that the function h(z) is strictly decreasing.
Taking into account that h(∞) = 0, thus ∀z > 0, h(z) > 0.
According to [35], the function g(z) is log convex, which
thereby completes the proof.

APPENDIX D

Proof: According to Lemma 2, the set Ŷ is the intersection
of two convex sets, thus it is convex [35]. In the following,
we will first prove the convexity of P3 and then demonstrate
that the solutions to P2 and P3 are equivalent.

The total derivatives of the objective function L(ρ) is given
by

dL(ρ) = Tr{d[(I−GA)−1]GB+ (I−GA)−1d[G]B}

(24a)

= Tr{(A(I−GA)−1GB+B)((I−GA)−1︸ ︷︷ ︸
Z

d[G]}

(24b)

where B = b · 1T .
Note that G = Diag(g(ρ)) is a diagonal matrix, thus

d[G] = Diag([g
′
(ρ1)dρ1, . . . , g

′
(ρN )dρN ]T ) (25)

According to [42] and Eq. (24b, 25), the first-order deriva-
tive of the objective L(ρ) is

∂L

∂ρi
= Zi,ig

′
(ρi), ∀i (26)

Subsequently the Hessian matrix of the objective is given

by ∂L2

∂ρi∂ρj
=

{
0 i ̸= j

Zi,ig
′′
(ρi) i = j

, which is a diagonal matrix.

In the following, we will prove the positive of the el-
ements in the diagonal of the matrix. First, according to
Lemma 1, we have g

′′
(ρi) > 0, ∀ρi > 0. Second, when
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ρ ∈ Ŷ \ {ρ|σ(GA) = 1}, there have (I − GA)−1 ≻ 0
because of σ(GA) < 1. Then, according to the definition
of Z in (24b), there have Zi,i > 0 ∀i. Taking these two
parts into account, the Hessian matrix of the objective is
positive definite at the domain ρ ∈ Ŷ \ {ρ|σ(GA) = 1}.
In addition, when ρ ∈ {ρ|σ(GA) = 1}, there would have
limσ(GA)→1 L(ρ) = +∞. To summarize, P3 is convex.

The difference between P2 and P3 is that the feasible set
of P3 contains the boundary points, i.e. ρ ∈ {ρ|σ(GA) =
1}∪{0}, while P2 does not. However, the optimum would not
be located at these boundaries as limσ(GA)→1 L(ρ) = +∞.
Thereby we complete the proof.

APPENDIX E

Proof: According to the Appendix D , the first order
derivative of L(ρ) is ∂L

∂ρi
= Zi,ig

′
(ρi), where Z = (A(I −

GA)−1GB+B)((I−GA)−1. For ∀ρ ∈ Ŷ , there would have
σ(GA) ≤ 1, and thus Zi,i > 0, ∀i. In addition, according
to Lemma 1, g

′
(z) < 0,∀z > 0. To sum up, the first-order

derivative of the objective is negative, so the total consumed
energy is monotonically decreasing within the feasible zone.

APPENDIX F

Proof: Suppose ρ⋆, the solution to P3, is not on the
boundary, i.e. (ρ⋆)T1 < K. Consequently, without losing
generality, we can always construct a point ρ+ in the following
manner: given any index n, the set ρ+j = ρ⋆j , for all j ̸= n,
and ρ+n > ρ⋆n. This configuration also satisfies the condition
(ρ+)T1 = K.

Because of the monotonically decreasing of the function
g(z) and the corollary in [29, Corollary 1.5 p-27], there would
have σ(Diag(g(ρ⋆))) > σ(Diag(g(ρ+))). In addition, taking
the constraint σ(Diag(g(ρ⋆))) ≤ 1 into account, there has
σ(Diag(g(ρ+))) < 1. Consequently, the constructed point is
in the feasible set, i.e. ρ+ ∈ Ŷ .

However, according to the Lemma 4, the objective L(ρ) is
monotonically decreasing. Thus there would have L(ρ⋆) >
L(ρ+) as ρ⋆ ⪯ ρ+. This contradicts the optimal assumption.
Therefore, if a solution to P3 exists, it would be located on
the boundary. This implies that the system achieves minimal
energy consumption when all available beams are activated
simultaneously. With this, we complete the first part of the
theorem.

As seen in Fig. 2, the line AB would move parallel to the
direction of vector O⃗D when K is increased, resulting in the
solution of the former preceding the latter, i.e. ρ⋆

former ≺
ρ⋆
latter. Considering that the objective function is monoton-

ically decreasing, we deduce that L(ρ⋆
former) > L(ρ⋆

latter).
This indicates that increasing the maximum number of active
beams reduces the consumed energy, thereby completing the
proof.
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