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Abstract

Millimeter-wave (mmWave) radar sensors have emerged as critical monitoring devices in

various indoor applications, owing to their resilience to environmental conditions, non-

intrusiveness, and cost-effectiveness. This thesis presents advancements in radar signal

processing techniques tailored for indoor scenarios, with a focus on enhancing two radar

output representations of a scene observed by distributed sensors: spatial reflectivity

images and detection point clouds.

The thesis is divided into two parts, in the first part, it addresses challenges associ-

ated with generating high-quality reflectivity images from the reflected signals measured

by widely distributed radar sensors. Leveraging compressed sensing methods, novel al-

gorithms based on the Alternating Direction Method of Multipliers (ADMM) optimiza-

tion framework are proposed to reconstruct global reflectivity images. Additionally, a

heuristic method to accelerate the convergence of the proposed algorithms and reduce

their computational complexity is introduced. Moreover, an efficient implementation of

sparsity-based image reconstruction algorithms is proposed, achieved through automatic

tuning of the regularization parameters while also considering synchronization errors.

The second part is devoted to the design of statistical detectors for mmWave radar

sensors, focusing on detecting aspect-dependent targets and leveraging occlusion model-

ing in hypothesis testing formulations. Novel formulations are proposed, leading to 1) a

detector with optimum weights on the processed signals of distributed sensors to jointly

and efficiently detect aspect-dependent targets and 2) a detector based on occlusion

modeling which enhances detection performance at each sensor node by leveraging the

sparse structure of range profiles due to occlusions. Through scenario-based simulations

and model-based evaluations, the proposed detectors demonstrate improved accuracy in

detecting aspect-dependent and non-occluded targets, thereby providing accurate high-

resolution point clouds.

The algorithms presented in this thesis provide an enhancement of the quality of

radar images aiming to facilitate the subsequent analysis using classical image processing

or advanced deep-learning techniques in various indoor applications.
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Chapter 1

Introduction

Millimeter Wave (mmWave) radar sensors are becoming essential components across a

wide range of indoor applications. These applications span various domains, including

healthcare, smart homes, surveillance and security, industrial safety, retail analytics, and

non-destructive analysis and diagnosis [1–10]. Their emergence as indispensable tools in

these fields is attributed to their unique capabilities and advantages over other sensing

technologies.

Compared to LiDAR sensors and cameras, radar sensors exhibit remarkable resilience

under environmental conditions such as lighting variations and dust. This resilience

makes them particularly suitable for indoor environments like homes, healthcare facili-

ties, and industrial plants, where such conditions are commonly present. Additionally,

radar sensors provide less intrusive solutions, making them a preferred choice for appli-

cations where privacy is a major concern [11]. Further, being lightweight and efficient in

terms of power consumption fosters their suitability for indoor applications that require

continuous monitoring [12]. Moreover, radar sensors possess the unique capability of

penetrating walls and light materials, facilitating non-destructive testing and analysis

in different domains including industrial settings. This penetration capability enables

them to detect anomalies and defects within structures without physical access, reducing

inspection time and costs [9, 13].

Unlike wearable sensors that require direct contact with the body, radar sensors

offer a contactless monitoring solution, which is advantageous in healthcare applications.

They can monitor vital signs and movements from a distance, providing greater comfort

and convenience for patients and healthcare professionals [14].

Security screening is another venue where mmWave radar scanners are widely em-

ployed. Their adoption is linked to their emission of non-ionizing radiation, making

them an ideal substitute for conventional backscatter X-ray systems. This characteris-
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Chapter 1. Introduction

tic addresses safety concerns frequently raised around security scanners, rendering them

safer for deployment in environments with human presence, such as airports and public

spaces [7, 15].

1.1 Radar Images

Processing radar signals generates output in various formats, each requiring different

treatment of the signal and suitable for distinct types of analysis and interpretation.

These formats include range-angle maps, range-Doppler maps, micro-Doppler signa-

tures, reflectivity images, and point cloud detections. Traditionally, a radar image

refers to a high-resolution image formed using a Synthetic Aperture Radar (SAR) which

represents the reflectivity of the objects in the illuminated scene scattering back the

transmitted signal. However, other representations that reveal the reflectivity of targets

at specific spatial or velocity bins may also be referred to as radar images. Addition-

ally, recent advancements in mmWave technology have enabled radar sensors to achieve

high-resolution detections using multiple antennas. Consequently, high-resolution radar

point cloud detections are now commonly referred to as radar images, particularly in

automotive and industrial applications, as their resolution approaches that of LiDAR

point clouds [16, 17].

Examples of radar images are depicted in Figures 1.1, 1.2, and 1.3. The pictures in

Figure 1.1 show a setup developed at our laboratory to implement a SAR. On the left,

the picture demonstrates the setup featuring a single radar sensor mounted on a robotic

arm and the resulting high-resolution reflectivity image displayed on the laptop screen.

On the right, the picture shows the configuration of the imaged reflectors located in front

of the sensor. Figure 1.2 illustrates an instance of range-Doppler and range-angle images,

showcasing human targets in motion monitored by radar sensors. These measurements

were collected within the smart building measurement area established at the premises

of our industrial partner, IEE S.A. The layout of this measurement area is presented in

Figure 1.2.(a). Figure 1.2.(b) shows a snapshot of the scenario, highlighting the sensor

mounted on the wall where the reflected signals are processed. The resulting range-

Doppler and range-azimuth images are displayed in Figure 1.2.(c) and (d), respectively.

Finally, a high-resolution point cloud image is depicted in Figure 1.3.(b), generated by

processing simulated measurements from a radar sensor equipped with a massive array

of 121 transmitting and receiving antennas. The sensor measurements are simulated

based on ray tracing illuminating a scene that is modeled in 3D to contain five human

targets, shown in Figure 1.3.(a).
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1.1. Radar Images

Figure 1.1: Left: An example of a SAR reflectivity image (displayed on the laptop
screen) formed by a single radar sensor mounted on a moving robotic arm, Right: a
picture of the targets imaged by the sensor.
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Figure 1.2: Radar images in a dynamic scenario: (a) Layout of the measurement area,
(b) Snapshot of the scenario with two walking humans and the sensor mounted on the
wall, (c) Associated range-Doppler map, (d) Associated range-azimuth map.

Figure 1.3: Simulated indoor scenario: (a) Ground truth, (b) Point clouds detection
image.
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Chapter 1. Introduction

The images displayed in the figures are produced at various stages of the radar

signal processing chain. In the next section, a brief overview of the radar signal and the

corresponding processing blocks will be provided.

1.1.1 Radar Signal Processing Chain

Range 
Processing

Angle 
Processing

Doppler 
Processing

Detection

(a) (b) (c) (d)

Figure 1.4: Basic radar signal processing blocks and the associated output images: (a)
Range-Doppler, (b) Range-angle, (c) Reflectivity image, (d) Point clouds.

In essence, a radar sensor operates by transmitting an electromagnetic wave and

subsequently capturing the back-scattered echoes from the scene, often employing mul-

tiple receiving antennas. Frequency-Modulated Continuous-Wave (FMCW) is the stan-

dard waveform utilized by mmWave sensors across various applications including indoor

imaging [18, 19]. This waveform entails sweeping frequencies over the system bandwidth,

with each sweep referred to as a chirp. Typically, a series of chirps are transmitted, with

parameters such as sweeping time and chirp repetition interval tailored to specific appli-

cation requirements. The radar receives the backscattered signals that pass through its

front end which incorporates components to amplify, demodulate, and apply band-pass

filtering (mixing) resulting in Intermediate Frequency (IF) signals. These IF signals are

then digitized using Analog to Digital Converter (ADC) before being fed as an input to

the radar signal processing block.

The digitized raw IF signals are collected over fast-time (chirp duration), slow-time

(multiple chirps), and receiving antenna dimensions, and organized in a 3D data struc-

ture commonly referred to as a radar cube. Due to the mixing process, the IF signals

are the sum of several sinusoids corresponding to the number of scatterers in the scene.

Each sinusoidal component encapsulates details about the scattering object, with its

frequency mapping to the scatterer’s range, its phase difference across multiple chirps

encoding velocity, and its phase difference across multiple antennas reflecting angles.
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1.1. Radar Images

Accordingly, the IF signals are processed in order to retrieve this information about

the illuminated scene resulting in the images introduced above. The basic blocks of the

radar signal processing chain are depicted in Figure 1.4 and detailed below.

Range Processing is the initial stage of the radar signal processing chain which is

performed to compensate for round-trip delays of the reflected signals, which result in

a change of the frequency of IF signals. Accordingly, in FMCW radars, this is often

achieved by applying Fast Fourier Transform (FFT) to the fast-time received signals,

concentrating the signal power at frequencies corresponding to the range of scatterers,

and represented by one-dimensional range-profiles.

Doppler Processing aims at retrieving the velocity information of the moving objects

in the scene. This is done by considering the phase shift between consecutive chirps in

received signals, caused by the motion of scatterers relative to the radar and is a function

of targets’ velocity. Therefore, by applying FFT on the slow-time domain after range

processing, peaks form at frequencies corresponding to the target range and velocity

bins, leading to the formation of a range-Doppler map as in Figure 1.4.(a).

Angle Processing follows a similar approach, accounting for phase shifts among

receiving antennas caused by signal delay differences that are a function of angles of

arrival. This involves compensating these phase shifts either directly through FFT or

via beamforming or spatial processing techniques. Depending on the antenna array

configuration, range-angle reflectivity maps can be formed in azimuth, elevation, or

both. These maps are then translated into spatial maps through appropriate coordinate

transformations as in Figure 1.4.(b). Additionally, Higher aperture antenna arrays result

in high-resolution images, typically seen in SAR images as in Figure 1.4.(c).

Detection is the final stage of the basic radar signal processing chain. Here, the goal

is to obtain a point cloud image, which can be seen as a compressed representation of

previous formats. As received radar signals are often affected by noise and interference,

target detection is more complex than simple peak identification. The detection block

involves applying a statistical test to signals in each Cell User Test (CUT) and comparing

the result with a threshold to determine the presence or absence of a scattering target.

Detector design considers the statistical properties of received signals under interference,

optimizing the test and threshold to achieve the desired detection performance. Applied

to high-resolution spatial range-angle images, the resulting point cloud image resembles

the one depicted in Figure 1.4.(d).
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1.1.2 Which Radar Image?

All the aforementioned images offer valuable insights into the observed objects and

their features. Accordingly, the selection of a specific radar output format over another

depends largely on the particular application and the type of information necessary for

the analysis.

Reflectivity images capture the intensity of back-scattered signals from objects, en-

abling detailed analysis of their shape and composition. This makes them a favorable

representation across various domains. For example, in industrial inspection, they facili-

tate the identification of defects in materials or structures allowing for quality assurance

in manufacturing processes. [13]. Likewise, in security screening applications, reflectiv-

ity images enable the detection of concealed threats of varying shapes and materials,

giving law enforcement authorities a powerful and safe tool for threat detection [7, 8, 20].

On one hand, range-Doppler images depict the distance and velocity of objects within

the radar’s field of view. They serve as a fundamental representation in applications

involving highly dynamic environments such as automotive applications, where the de-

tection of moving targets like vehicles or pedestrians relies heavily on these images [21].

On the other hand, radar point clouds are often rendered in 3D, they provide a swift

representation of the detected objects, facilitating localization and tracking in complex

environments. This is because they present a compressed representation of the scene,

enabling fast subsequent processing suitable for real-time applications [22, 23].

In the realm of human activity monitoring and recognition, the primary utilized

representation is micro-Doppler images. This stems from the fact that micro-Doppler

signatures capture rich information about moving objects, providing unique details re-

garding the movements of different parts of the body [24, 25]. However, point cloud

data provides a more consistent basis for recognition that is less dependent on factors

such as target’s orientation and sensor parameters [18].

It is worth noting that these representations are not mutually exclusive, and a combi-

nation of different representations is often used in conjunction depending on the specific

requirements of the application [4, 26].

1.1.3 Radar Images Analysis

Historically, Automatic Target Recognition (ATR) techniques have been developed to

analyze radar images and extract the intended information without the intervention of

a human operator. These techniques were initially implemented in military applications

on SAR images and high-resolution range profiles [27, 28]. ATR algorithms analyze the
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shape, size, and intensity of objects within the image to classify them into predefined

categories, such as vehicles, pedestrians, or buildings. This is achieved either through

model-based [29, 30] or experiment-based (training) algorithms [31, 32]. Experiment-

based techniques rely on different Machine learning algorithms such as Support Vector

Machine (SVM) and K-Nearest Neighbors (KNN) and eventually became widely adopted

in many civilian applications [31].

In recent years, Deep Learning (DL) has become a powerful tool for radar data anal-

ysis, particularly in tasks such as classification and pattern recognition [33]. DL archi-

tectures such as Convolutional Neural Networks (CNN) and Long Short-Term Memory

(LSTM) can automatically learn complex features from radar images and make accurate

predictions without the need for manual feature engineering. This has led to significant

improvements in the performance of extracting information from radar images, expand-

ing the radar abilities beyond only target detection to identification and activity pattern

recognition.

A significant body of the literature on DL for radar images draws from techniques

and architectures initially proposed for analyzing and classifying optical images. Ac-

cordingly, they utilize radar reflectivity images, range-Doppler maps, and micro-Doppler

signatures. However, recent studies are increasingly utilizing learning over point cloud

images for human-pose estimation and activity recognition [34–36]. These studies rely

on neural network architectures originally developed for processing LiDAR point clouds.

1.2 Motivation

Whether employing classical image processing techniques or learning algorithms to ana-

lyze radar images, it is widely acknowledged that prioritizing the acquisition of superior

data is crucial. Thus, for any technique to deliver adequate performance, obtaining the

highest possible image quality is of high importance. This requirement translates into

obtaining high-resolution images, complete coverage of the scene of interest, and efficient

detectors for point clouds.

The radar image resolution over the range dimension is achieved through the band-

width of the transmitted wave, where the bandwidth at the mmWave band is satisfactory

for many applications. However, on the angular dimension(s), the resolution is dictated

by the antenna’s aperture size, requiring a larger aperture for better angular resolution.

In general, radar sensors operating at high frequencies, such as mmWave radar, require a

relatively small aperture to achieve acceptable angular resolution, such an aperture can

be realized with few antenna elements at the sensor spaced at half-wavelength. However,
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in applications when a matching image resolution in all dimensions is required, a larger

number of antennas and array configurations are usually employed.

Large apertures can also be realized synthetically, SAR relies on the movement of the

sensor platform equipped with a single or few antennas and combining signals collected

from different positions as the radar sensor moves. By processing the signals collected

from multiple positions, SAR systems can effectively synthesize a larger aperture, en-

abling high-resolution imaging without the need for physically multiple antennas. In

both cases, signals collected over the aperture are processed coherently, where a stable

track of the phase of the reflected signals from the different antennas/different positions

is mandatory for efficient coherent processing.

While a moving platform might be admissible or inherent for some applications

such as robotics mapping, security scanners, and non-destructive material inspection

[13, 20, 37], in most cases a moving radar platform is impractical, and fixed sensors are

far more suitable. Alternatively, a larger aperture can be realized by multiple sensors

which at the same time can bring other advantages and pose some limitations.

Accordingly, in this thesis, we aim to enhance the generation of radar images by

employing distributed sensors and address some of the limitations that may impede the

generation of high-quality images while building on the advantages further.

1.3 Widely Distributed Radars

Deploying a network of widely separated radar sensors offers several advantages over

single-sensor configurations. Apart from the advantage of realizing a larger effective

aperture by combining the signals from multiple sensors, widely separated radar net-

works provide spatial diversity, which is essential for capturing aspect-dependent vari-

ations in the RCS of observed targets [38, 39]. Additionally, by observing targets from

multiple angles and orientations, radar networks can mitigate occlusions in the scene,

both inter-object and self-occlusions, thereby enhancing the performance of target detec-

tion [40–42]. An example illustrating this and showing the detection outputs of widely

distributed sensors is provided in Figure 1.5. Moreover, a network of widely separated

radars offers redundancy and robustness against sensor failures. If one sensor in the

network fails or is obstructed, the remaining sensors can continue to operate, ensuring

continuous monitoring and coverage of the area of interest [43, 44].
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Detection Outputs
• Radar 1
• Radar 2
• Radar 3

•  Ground Truth

Figure 1.5: Detection outputs from three widely distributed sensors, highlighting the
advantage of observing targets over wide angles. (Figure courtesy of Moein Ahmadi)

1.3.1 Challenges With Distributed Radars

When dealing with multiple sensors, the first decision to be made is how and at what

level to combine or fuse their signals or outputs. Fusion of information from multiple

radar sensors can occur at various levels: at the raw signal level, the processed signal

level before detection, or the fusion of detection outputs [43, 44].

Dividing the signal processing chain introduced in Section1.1.1 into higher-level pro-

cessing and detection blocks, Figure 1.6 illustrates the possible fusion schemes assuming

a system of multiple sensors. A detailed description of each scheme and the associated

challenge is provided in the sequel.

Coherent joint processing of raw signals across sensors presents two significant chal-

lenges: sensor clock synchronization and precise knowledge of sensor positions. These

aspects are crucial for enabling coherent processing, as even subtle errors in either can

lead to phase errors that hinder accurate joint processing [45]. Given that phase errors

should be minimized to a fraction of the wavelength, these challenges are particularly

pronounced in mmWave frequency bands, requiring synchronization errors on the order

of picoseconds and position ambiguity in fractions of millimeters. Consequently, signifi-

cant errors would impede accurate representation, thus compromising the performance
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Processing Detection

Joint 
Processing

Joint 
Detection Fusion

Jointly processed signal

Fusion of individually  processed signals

Fusion of individual detection outputs

Raw signals

Individually  processed signals

Individual detections

Figure 1.6: High-level radar signal processing block with an illustration of the possible
schemes for fusing the signals from multiple sensors.

of subsequent image analysis. For instance, in scenarios where the intended radar out-

put is a reflectivity image, synchronization errors can degrade image quality, resulting

in blurred images. Likewise, imprecise position knowledge can produce blurry scene

images, preventing correct image analysis and target recognition [46, 47]. Additionally,

joint processing of raw signals necessitates transferring the signals to a central process-

ing unit for joint processing. This is often a limiting factor for fusion at the raw signal

level due to constraints on communication interfaces at the sensors and channels to a

central unit.

Alternatively, distributed sensor nodes may locally process the raw signal and trans-

mit the processed data to a central unit before detection. This approach allows for

exchanging compressed data formats, requiring significantly less communication band-

width between the sensors and a central decision or fusion unit. While this reduced

complexity sacrifices coherent integration gain, it becomes suitable for many applica-

tions with simple hardware setups. The processed signal can then undergo fusion or pass

through a detector block for joint detection. If the desired output is at the processed

signal level, such as a reflectivity image, the images may be combined to obtain a global

view of the scene. Fusion methods range from simple addition or averaging to weighted

fusion, with weights determined by specific metrics based on each sensor’s measurement

reliability, including Signal-to-Noise Ratio (SNR), target’s location, or velocity relative

to the sensor. Similarly, for joint detection, signals can be non-coherently integrated

while applying a detection test, which can favor one sensor’s measurement over another

based on similar metrics. Hence, in this scheme, identifying the optimal strategy for
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fusing the processed signal can enhance performance in the subsequent analysis stage.

Lastly, fusion can occur post-detection, where the point cloud outputs from each

sensor are combined. This approach is typically employed for tasks related to local-

ization and tracking. In this scenario, the primary processes for data fusion involve

clustering the point clouds and then fusing them by calculating the centroid distances

of the clusters and retaining overlapping regions. Alternatively, for object tracking,

fusion can occur directly at the track level using methods like covariance intersection.

Both fusion methods inherently suggest that improving the quality of point cloud de-

tections (reducing cluster spread/tracks’ uncertainty/false alarms) should enhance the

fusion process. This improvement can be achieved by enhancing the detection tests by

considering environment modeling for example.

1.4 Contributions

This thesis does not aim to provide an exhaustive treatment of all radar signal process-

ing blocks and output representations used in indoor applications. Instead, it focuses

on enhancing the output of two specific processing blocks and their corresponding rep-

resentations: reflectivity images and detection point clouds.

Reflectivity images are valued across many applications that require a comprehensive

description of the targets in the scene whether static or dynamic, at a specific moment

in time. Moreover, they enable immediate analysis using classical image processing

methods or advanced deep learning techniques, extensively studied for optical images.

On the other hand, detection point clouds serve as a straightforward representation

in scenarios where processing an image or sequence thereof is cumbersome for both

sensor capabilities and subsequent analysis, such as tracking or identification tasks in

applications where complex sensors are impractical. Additionally, while micro-Doppler

maps are commonly used in human activity monitoring due to their ability to capture

unique dynamic signatures, there is a growing interest in using detection point clouds

for human activity recognition and pose estimation. This is because point clouds offer

a geometrical representation of the target in the spatial domain, overcoming challenges

related to sensor parameters and aspect angles encountered in micro-Doppler maps.

Thus, detection point clouds present a promising avenue for leveraging transfer learning

over existing neural network architectures developed for LiDAR point clouds.

Therefore, the thesis is organized into two parts, each dedicated to one of these rep-

resentations. In the subsequent section, the contributions of the thesis are highlighted,

along with references to the corresponding chapters providing the thesis outlines.
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1.4.1 Thesis Organization

Part I: Reflectivity Image Formation This part focuses on generating high-resolution

reflectivity images of scenes observed by widely distributed radar sensors. The image

formation involves solving the inverse problem of reconstructing the image of the scene

over a 2D grid. Leveraging Compressed Sensing (CS) methods, various algorithms are

proposed to address some of the challenges outlined in Section 1.3.1. The contributions

are detailed as follows

• Chapter 2 introduces a novel approach to reconstructing a global image of an

observed scene by widely distributed radar sensors, utilizing the Alternating Di-

rection Method of Multipliers (ADMM) optimization framework. This method

aims to generate a fused image of the scene without the need for a late fusion

step. The chapter presents two problem formulations, namely Consensus ADMM

(CADMM) and Sharing ADMM (SADMM), along with their iterative algorithms.

Furthermore, it outlines explicit variable updates for each algorithm and suggests

a hybrid parallel implementation scheme for distributed sensors and a central pro-

cessing unit.

• Chapter 3 proposes a heuristic approach to accelerate the convergence of the

ADMM formulations introduced in the previous chapter. This acceleration is

achieved by gradually eliminating already converged pixels based on a predeter-

mined criterion. By focusing on the image portion containing scattering targets

and updating sub-images accordingly, this method not only reduces running time

but also computational complexity and communication costs between sensors dur-

ing iterative updates.

• In Chapter 4, the problem of hyperparameter tuning in CS-based radar image

reconstruction algorithms is addressed. A method for automatic selection of regu-

larization parameters is proposed, enhancing the efficiency of joint reconstruction

of scene images observed by partially synchronized distributed radar sensors. This

method eliminates the need for empirical search and introduces an efficient im-

plementation based on the FFT to reduce algorithm running time and memory

requirements. The proposed method is implemented by modifying a Fast Iterative

Shrinkage-Thresholding Algorithm (FISTA)-based algorithm existing in the liter-

ature, enabling efficient joint reconstruction of the scene image and correction of

synchronization errors.
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Part II: Point Clouds Detection This part delves into detector design using statis-

tical detection theory based on hypothesis testing. It tackles two problems: joint detec-

tor design using processed signals from widely distributed radar sensors, and detector

design for an individual high-resolution mmWave radar sensor incorporating modeling

of occlusion over individual range profiles. The contributions related to this part are

detailed in the corresponding chapters below.

• Chapter 5 focuses on detecting fluctuating targets using distributed mmWave

radar sensors. It formulates joint hypotheses leading to the design of a joint

detector based on the Generalized Likelihood Ratio Test (GLRT). This detector

estimates the fluctuation parameters of targets at each sensor using multiple chirps,

resulting in a joint test that is a weighted sum of individual tests applied to the

square law detector output of each sensor. The proposed detector accounts for

variations in aspect angles and path losses for a single CUT by weighting the

local SNR at each sensor. It offers improved detection performance compared to

a conventional square law detector applied directly to the integrated processed

signals of the sensors.

• Chapter 6 focuses on enhancing detection performance at individual sensors,

which inherently improves overall detection when fusion is performed at the point

cloud level. It proposes a novel formulation of null and alternative hypotheses

leveraging the sparse structure of range profiles due to cell-level occlusion occurring

when sensors with high angular resolution are employed. The resulting detector

aims to enhance the detection of non-occluded targets, providing accurate high-

resolution point clouds. Performance evaluation includes model-based numerical

simulations and scenario-based simulations, where a dynamic indoor scenario is

modeled in 3D and the reflected radar signal is generated using ray-tracing.

Finally, Chapter 7 concludes the thesis and provides insights into possible research

directions building on the work presented in the thesis. All chapters in this thesis are

self-contained, corresponding to the manuscripts derived from this thesis (Section 1.4.2).

As such, each chapter includes the necessary background and literature review, system

and signal models employed in problem formulation, as well as the adopted notation.

1.4.2 List of Publications

The research presented in this thesis has led to several peer-reviewed journal and con-

ference papers, which are either currently published or under review. The publications

associated with this thesis are provided below.
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Chapter 2

Distributed Imaging via ADMM

This chapter explores the joint reconstruction of a high-resolution reflectivity image of

a scene observed by widely distributed radar sensors. It introduces a novel approach to

directly reconstructing a global image of the scene using the ADMM optimization frame-

work, eliminating the need for an explicit fusion step. The problem is formulated as a

constrained optimization problem in which the global image which represents the aggre-

gate view of the sensors is a decision variable. Leveraging compressed sensing techniques

for high-resolution images, the problem is designed to promote a sparse solution for the

global image respecting a relationship with local images that can be reconstructed using

measurements at each sensor. Two problem formulations are introduced by stipulating

two different constraints of that relationship. The proposed formulations are designed

according to consensus ADMM (CADMM) and sharing ADMM (SADMM), and their

solutions are provided accordingly as iterative algorithms. Additionally, a scheme for

hybrid parallel implementation on the distributed sensors and a central processing unit

is introduced. The algorithms are validated on the Civilian Vehicles Dome dataset,

showcasing their performance across various practical scenarios.

2.1 Introduction

Widely distributed radar systems are robust and fault-tolerant systems that provide

high angular resolution and permit the exploitation of spatial diversity and occlusion

avoidance [38]. They may also be viewed as synthesizing wide aperture in the spa-

tial domain [54]. The emergence of Commercial Off-The-Shelf (COTS) mmWave radar

modules with wide bandwidths over 4 GHz enables such a wide aperture using spa-

tially well-separated modules. With applications in surveillance, assisted living, and

health monitoring, radar systems with distributed antennas are expected to play a vi-
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tal role in emerging sensing paradigms [11, 55]. Under this architecture, the observed

targets feature an aspect-dependent scattering behavior restricting the employment of

conventional imaging methods. The main impediment arises due to the adoption of

the isotropic point scattering model of targets, thereby preventing algorithms like Back

Projection (BP) from providing an adequate imaging performance [40].

The works [47, 56, 57] considered radar imaging with distributed antennas and the

related issues due to ambiguity in antenna positions and clock synchronization. In these

works, model-based optimization algorithms are utilized to jointly achieve the imaging

task and resolve such issues. However, in these works, an isotropic scattering model,

suitable when antennas are closely spaced, is assumed; this is not suitable when widely

separated antennas are considered.

On the other hand, in Wide-Angle Synthetic Aperture Radar (WSAR), which bears a

close resemblance to a widely distributed architecture, two approaches exist for imaging

[58]. The first approach includes methods that utilize the full aperture data jointly. It

encompasses the methods that are based on parametric modeling that characterizes the

canonical scattering behavior of scatterers [59–62]. Correspondingly, the scene image

is reconstructed through joint processing of the measurements from the whole aperture

exploiting the model. Nevertheless, the imaging involves a dictionary search process that

is computationally cumbersome [30]. Additionally, when sensors are widely separated,

coherent processing of the scene might not be achievable due to the targets becoming

non-homogeneous as they are observed from widely varying aspect angles.

The second approach is composite imaging [63–66] in which the full aperture is

divided into sub-apertures within which the point scattering model holds. At first,

images of each sub-aperture are formed through regularized optimization exploiting

specific features such as sparsity and smoothness. Subsequently, individual images are

fused to constitute an aggregate image of the scene through simple techniques such as

the GLRT. This approach does not fully exploit the information from different aspects

where the final image of the scene is only a fused version of the images reconstructed with

sub-aperture data. Among other sub-aperture methods, Dynamic Compressed Sensing

(DCS) [67–70] aims to exploit the evolution of the scattering behavior structure along

with the common sparse structure of sub-aperture images. These methods estimate a

sequence of images and also do not attempt to reconstruct a single image; this has been

referred to as a drawback in [71]. Moreover, they are heavily reliant on the assumptions

of joint sparsity with highly overlapping support among sub-apertures and a gradual

change of such support [67, 69–71]. These assumptions are severely violated when views

and bandwidth are limited. Additionally, since those methods require either process-
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ing the entire data sequentially or jointly, an efficient parallel implementation becomes

difficult to realize [58].

While we also propose a sub-aperture method, unlike composite imaging, we aim

to solve the problem of widely distributed radar imaging by directly reconstructing a

global image that is introduced as an aggregate view of the scene. Besides, the prior in-

formation is only imposed on the global image rather than the local images of individual

sensors. Concurrently, the correspondence between the local images and the global one

is defined as a constraint to the optimization problem. Our approach allows for better

data exploitation by including the global image as a decision variable in the optimization

problem. We then provide a solution based on the ADMM framework [72]. ADMM is a

powerful distributed optimization regime suitable for systems that incorporate a collec-

tion of measurements through a distributed architecture. In [73] and [74], ADMM has

been introduced as a fast reconstruction method for generic imaging inverse problems.

Further, in [75] it is applied to reconstruct complex SAR images with enhanced features

in particular and to perform imaging with under-sampled measurements in the presence

of phase errors in [76].

While in these works ADMM has been mainly utilized to facilitate the solution of a

non-constrained optimization problem by the virtue of variable splitting, we employ its

constrained formulation directly in the interest of exploiting the system architecture and

implementing parallelizable image reconstruction algorithms. Accordingly, we establish

two problem formulations inspired by CADMM and SADMM. The first formulation

comes as a generalization of the method in [49], in which CADMM is utilized to mitigate

the layover artifacts in widely distributed radar imaging by considering sub-aperture

measurements from different elevations. While CADMM imposes a consensus on all sub-

images, albeit under an anisotropic setting, we present CADMM as a low-complexity

initial work that introduces the association between sub-aperture images and the global

image and reconstructs the image of the scene without restriction on data viewing angles.

Moreover, by stipulating the more relaxed sharing association in the constraints, we

introduce the second problem formulation based on SADMM. The different association

introduced by SADMM formulation enables another exploitation of the relationship

between the data collected by the sub-apertures. Additionally, it provides an alternative

realization of the system architecture through the ensuing unalike solution. We provide

the solutions as iterative algorithms with a recommendation of a parallel implementation

paradigm. Finally, the Civilian Vehicles Dome dataset [77] is used to realize three

experiments that comprise different practical use cases. Through them, we validate our

algorithms and show the performance of CADMM and SADMM, where the latter is
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found to provide an enhanced imaging performance in most of the scenarios.

The contribution of this chapter lies in the introduction of a parallelizable distributed

optimization framework to reconstruct an image of a scene observed by widely dis-

tributed radar apertures without the need for an explicit later fusion step. The pro-

posed framework allows the adoption of any prior information about the observed scene

in addition to giving the liberty to stipulate the relation between the global image and

the measurements collected by individual apertures. Moreover, validate the proposed

approach by exploiting the prior information on the sparsity of the global image and es-

tablishing the consensus and sharing relationships between global and local images. Our

proposed approach is well-adapted for implementation on various architectures including

WSAR and radar systems with collocated antennas.

Throughout this chapter, vectors are denoted in lowercase bold font, while matrices

are in uppercase bold. IL is the identity matrix of size L×L and 1N is a vector of all ones

of size N ×1. The superscripts (.)T and (.)H denote, respectively, the transpose and the

complex conjugate transpose of a vector or a matrix. On the other hand, superscripts

in parentheses denote the iteration count. The symbol ⊗ is used for the Kronecker

product.

2.2 Signal Model and Background

In this section, we present the considered distributed architecture, introduce the adopted

signal model, and provide background about the imaging problem formulation in the

literature.

Considering the system geometry illustrated in Figure 2.1, a group of red crossed

circles constitutes a cluster of Antenna Phase Centers (APCs). The figure shows the

case we consider in this chapter where each of the Q sensors forms a single cluster at

identical elevation angles. We consider a mono-static configuration where each sensor

receives the reflections due to its own illumination of the scene and does not process the

reflections induced by transmissions from others. Accordingly, our proposed algorithms

can be applied to architectures that are formed either by a synthetic or a real aperture.

At each cluster, the isotropic scattering model of the targets in the scene is assumed.

This way, the problem of aspect-dependent scattering behavior can be relaxed and Q

local images can be formed by processing the measurements of individual clusters. The

local images can then be appropriately combined at a central node, or the fusion center,

to generate the image of the entire scene. The fusion center can subscribe to different

combining methodologies, e.g., averaging or pixel-wise maximum, some of which will be
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Figure 2.1: Geometry of Distributed Radar System

explored in the sequel.

2.2.1 Tomography Inspired Modeling

Since the system comprises distributed sensors stationed at a diverse range of aspect

angles and our goal is to form a 2D reflectivity image of the scene, we adopt the tomo-

graphic radar imaging framework [78] to describe the signal model. The tomographic

model relies on the Projection-Slice Theorem (PST), a foundational result Computed

Tomography (CT) where a cross-section of an internal body part is imaged by detecting

the attenuation of traversing X-rays. In a CT scan, the subject is exposed to a parallel

beam of X-rays at a wide range of angles. At each angle, a row of detectors at the

opposite side measures the attenuation by forming a projection profile of the intensity

function of the imaged part along the emitting direction. PST (also known as Fourier-

Slice Theorem) states that the one-dimension (spatial) Fourier transform of a projection

profile at an angle θ is equivalent to the 2D Fourier transform of the intensity function

evaluated at a slice (line) that lies at the same angle θ in the spatial frequency domain.

This result allows for direct inversion of the measured projections after taking a Fourier

transform to reconstruct the desired intensity image.

Similarly, radar imaging systems having a geometry that favors spatial diversity, have

adopted the tomographic signal model for simpler interpretation and direct applicability

of efficient tools such as the FFT. Such systems include Spotlight-SAR and Circular-

SAR, in addition to custom multistatic geometries [79]. However, the application of
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PST in radar imaging differs in some aspects with respect to CT due to the differences

in both the acquisition method and the nature of the scattering to be recovered. In

Radar imaging, the measured signal is a transformed version of a transmitted waveform,

which is delayed in time and shifted in phase due to the location and proprieties of

the scattering target. As a result, the measured quantity is not the projection of the

scattering of the target as the case in CT per-se. Consequently, some restrictions, which

are governed by the transmitted signal bandwidth, are imposed on the available spatial

frequency samples. The frequency samples are located on an annulus centered around

the carrier frequency with a width proportional to the signal bandwidth. However,

effective image reconstruction from these limited portions is still possible using the

frequency content of these sectors [80]. We refer the readers to [78–81] for additional

background about the tomographic modeling of Radar imaging including its advantages

and limitations.

2.2.2 Distributed Radar Imaging Model

We consider the sensors to transmit the commonly used Linear Frequency Modulation

(LFM) waveform with a chirp rate ν. Consequently, they receive a scaled and time-

shifted version of the transmitted waveform as a reflection from the scene. According to

the aforementioned tomographic model, the discrete phase history received at the mth

antenna of the qth sensor after dechirping and low-pass filtering follows

ymq (k) =

∫∫
Ω

x̃q (x, y) exp

{
−j 4πfk

c
∆Rm

q (x, y)

}
dx dy

∆Rm
q (x, y) = cosφq

(
x cos θq,m + y sin θq,m

)
,

(2.1)

where ∆Rm
q (x, y) is the difference of the distances from the sensors to the scene center

and to a ground target located at coordinates (x, y) assuming far-field scenario, m =

1, . . . ,M is the index of antenna elements within each cluster, q = 1, . . . , Q is the index

of a sensor/cluster, k = 1, . . . ,K is the index of fast-time samples, Ω is the ground

footprint, which is assumed to be the same for all antennas, x̃q (x, y) indicates the

complex reflectivity coefficient of a ground target at coordinates (x, y) with respect to

the qth cluster, fk = (fc + 2νkTs) denotes the linear transmitted frequency where fc is

the carrier frequency and Ts is the fast-time sampling period, c is the speed of light, φq

is the elevation angle of the qth cluster, and θq,m is the azimuth angle of the mth antenna

element of the qth cluster.

By discretizing the scene with a uniform grid of N = Nx ×Ny pixels {(xn, yn)}Nn=1
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and stacking

{{
ymq (k)

}K

k=1

}M

m=1

into a vector yq, the phase history measurements can

be written in a matrix form as

yq = Aqx̃q +wq ∈ CKM×1, (2.2)

where Aq =
[
α1

q ,α
2
q , · · · ,αN

q

]
∈ CKM×N is the system model based forward operator

that its columns αn
q ∈ CKM×1 take the form

αn
q =



exp
{
−j4πf1 cosφq/c

(
xn cos θq,1 + yn sin θq,1

)}
exp

{
−j4πf2 cosφq/c

(
xn cos θq,1 + yn sin θq,1

)}
...

exp
{
−j4πfK cosφq/c

(
xn cos θq,1 + yn sin θq,1

)}

exp
{
−j4πf1 cosφq/c

(
xn cos θq,M + yn sin θq,M

)}
exp

{
−j4πf2 cosφq/c

(
xn cos θq,M + yn sin θq,M

)}
...

exp
{
−j4πfK cosφq/c

(
xn cos θq,M + yn sin θq,M

)}



, (2.3)

x̃q ∈ CN×1 is the vector containing the complex scattering coefficients of the entire

scene with respect to the qth cluster, and wq ∈ CKM×1 summarizes all errors including

receiver and measurement noise as well as model imperfections.

2.2.3 State-of-the-art Problem Formulation

Composite imaging algorithms obtain local images utilizing the signal received at each

cluster and subsequently fuse them into a global image. The scene size is usually much

larger than the number of measurements N >> KM and the imaging task is the inverse

problem of (2.2) which, consequently, becomes ill-posed. Compressed sensing methods

are commonly used to solve this inverse problem. Particularly, local images are obtained

by solving Q regularized least square optimization problems for each cluster of the form

x̂q = argmin
x̃q

{∥∥yq −Aqx̃q

∥∥2
2
+ h(x̃q)

}
, (2.4)

where x̂q is the estimated local image using the measurements yq for q = 1, . . . , Q and

h(·) is a regularization function that imposes apriori information about local images.
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Different choices of regularization function h(·) exist to enhance some image features

such as sparsity and smoothness, among others. When h(·) is a separable function (e.g.

l1-norm), the Q problems can be represented as a single optimization problem in Q

variables since the least squares term is naturally separable. Explicitly, the problem can

be written as

{
x̂1, . . . , x̂Q

}
= min

x̃1,x̃2,··· ,x̃Q

Q∑
q=1

{∥∥yq −Aqx̃q

∥∥2
2
+
∥∥x̃q

∥∥
1

}
. (2.5)

The problem in (2.5) is an unconstrained regularized optimization problem that has been

tackled through different optimization techniques in the literature. Finally, the image

of the scene is obtained through a fusion step of the Q reconstructed images which can

be as simple as a pixel-wise maximization among the Q local images.

As mentioned in the introduction, we alternatively reconstruct the global image of

the scene by introducing its variable in the objective function and imposing the l1-norm

on it directly for a sparsity-driven solution. Simultaneously, the relationship between the

global image and local images is defined as a constraint for our optimization problem. In

the next section, based on the ADMM framework, we provide two alternative problem

formulations along with their solutions.

2.3 ADMM Framework for Distributed Radar Imaging

ADMM is a powerful framework that renders itself amenable to optimization problems

of a distributed nature. It is a suitable tool to be utilized in a distributed radar system

especially when the component sensors are equipped with some computation power

capabilities. Although this computation power might be limited, it can be exploited

to process some information in order to reduce the communication overhead and the

computational burden at the central node. It also reduces latency as certain operations

can already be performed in parallel at the nodes. Here, we first give a brief introduction

of general ADMM formulation followed by our proposed reformulations of the problem

in (2.5) according to the ADMM framework.

Consider the following constrained optimization problem with linear constraints over

two separable functions in two variables u and z

argmin
u,z

f(u) + g(z)

s.t. Gu+Hz = c,
(2.6)
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where G, H, and c are the matrices and vectors of appropriate dimensions that establish

the constraints on the variables u and z. The augmented Lagrangian function of the

above problem becomes

L (u, z,σ) =
{
f(u) + g(z) + ⟨σ,Gu+Hz− c⟩+ β

2
∥Gu+Hz− c∥22

}
(2.7)

where σ is the dual variable, β is the augmented Lagrangian parameter, and ⟨·, ·⟩ denotes
the inner product of vectors.

The ADMM solution to the above problem is obtained by iteratively minimizing

the augmented Lagrangian function with respect to both the variables u and z in an

alternating fashion in addition to updating the dual variable each iteration. Accordingly,

after the kth iteration, the ADMM variable updates consist of [72]

u(k+1) :=argmin
u
L
(
u, z(k),σ(k)

)
z(k+1) :=argmin

z
L
(
u(k), z,σ(k)

)
σ(k+1) :=σ(k) + β

(
Gx(k+1) +Hz(k+1) − c

) (2.8)

Embracing the ADMM framework, we propose two different formulations as alternatives

to (2.5). Towards introducing the new formulations, we introduce the global image,

which is a unified entity representative of the scene; this refers to the output of the

fusion step mentioned in Section 2.2. This global image can be interpreted and utilized

based on the application. For example, for ATR tasks, the global image provides a

strong means to identify and classify targets. Similarly, the global image serves to

detect occluded targets or parts of the same target that are prone to self-occlusion.

By introducing a new variable xG ∈ RN×1 representing the magnitude of the global

image, both the formulations will have the same objective function of minimizing the

sum of the least square terms with respect to local images, in addition to minimizing

the l1 norm of the global image. The formulations differ in the constraints which define

the relationship between the global and local images. The optimization in imaging can

be carried out on real variables by decoupling complex images into their corresponding

magnitude and phase [64, 82]. Consequently, we consider the magnitude of the images

as our optimization variables assuming that the phases are estimated in a previous

step. Specifically, we assume that we have estimated Θq ∈ CN×N , the diagonal matrix

containing the phase of all pixels of local image over its diagonal such that x̃q = Θqxq.

For ease of notation, from now on we will consider the matrix Θq included in the

measurement matrix Aq. The details regarding the estimation of Θq will be discussed
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in the next section. Accordingly, with reference to (2.6), our first variable is x ∈ RQN×1

containing the magnitude of all local images x = {xq}Qq=1, and the second variable

represents the magnitude of the global image xG. Consequently, our objective function

contains f(x) =
∑Q

q=1

∥∥yq −Aqxq

∥∥2
2
and g(xG) = ∥xG∥1.

In the sequel, we will provide our proposed aforementioned formulations and their

solutions in terms of variable updates according to (2.8).

2.3.1 Consensus ADMM (CADMM)

As the name suggests, by posing the problem according to this formulation, we pursue

a solution that, at optimum, provides a sparse global image on which all clusters reach

a consensus. While this chapter considers a scene that contains anisotropic targets,

CADMM is presented as an initial work toward introducing distributed optimization for

imaging applications. Consequently, the constraints, in this case, are defined to impose

this relationship between the global and local images. Additionally, as mentioned earlier

and by following [49], we impose the l1-norm function to promote a sparse global image

solution. The problem becomes

argmin
x,xG

Q∑
q=1

µ

2

∥∥yq −Aqxq

∥∥2
2
+ λ ∥xG∥1

s.t. xq − xG = 0 ∀q.

(2.9)

where λ and µ are positive hyperparameters set to penalize less sparse global image

solutions and trade-off the data fidelity term, respectively. Note that the Q constraints

in (2.9) can be written in the form of the constraint in (2.6) by having G = IQN , u = x,

H = −[IN , IN , · · · IN ]T of the size QN ×N , z = xG, and c = 0 of size QN × 1.

As indicated in (2.8), the solution of (2.9) can be obtained by alternately minimizing

its associated augmented Lagrangian with respect to x, xG, and the dual variable σ.

The augmented Lagrangian is

L (x,xG,σ) =

Q∑
q=1

{
µ

2

∥∥yq −Aqxq

∥∥2
2
+
〈
σq,xq − xG

〉}
+

β

2

∥∥xq − xG

∥∥2
2
+ λ∥xG∥1,

(2.10)

where σq ∈ RN×1 is the sub-vector of the dual variable σ ∈ RQN×1 which corresponds

to the local image xq. The resulting updates of each variable according to CADMM

formulation are provided hereinafter in detail.
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Update of x (Local Images)

Let xG
(k) and σ(k) denote the values of xG and σ after the kth iteration. Since

L (x,xG,σ) in (2.10) is decomposable with respect to xq, the updated x(k+1) can be

obtained by updating all local images x
(k+1)
q for q = 1, . . . , Q in parallel as

x(k+1)
q = argmin

xq

L
(
xq;xG

(k),σ(k)
q

)
= argmin

xq

{
µ

2

∥∥yq −Aqxq

∥∥2
2
+ σ(k)

q

T
xq +

β

2

∥∥∥xq − xG
(k)
∥∥∥2
2

}
,

(2.11)

The problem in (2.11) is differentiable with respect to xq and the (k + 1)th update can

be obtained in a closed-form by letting ∇xqL = 0 resulting in

x(k+1)
q =

(
µAH

q Aq + βIN

)−1 (
µAH

q yq + βxG
(k) − σ(k)

q

)
, (2.12)

Note that the inverse in (2.12) is possible since
(
µAH

q Aq + βIN

)
is a positive definite

matrix.

Update of xG (Global Image)

For the global image update, following the ADMM framework, we consider the following

x
(k+1)
G = argmin

xG

L
(
xG;x(k+1),σ(k)

)
= argmin

xG

λ ∥xG∥1 +
Q∑

q=1

σ(k)
q

T
xG +

β

2

Q∑
q=1

∥∥∥x(k+1)
q − xG

∥∥∥2
2

 .
(2.13)

This objective function above involves information from all Q clusters and is not de-

composable with respect to xG. It further involves a non-differentiable function ∥xG∥1.
Thus, it can neither be parallelized nor solved in a closed form like (2.11). As a result,

it is more suitable for the global image update to be carried out in a central processor

after collecting local updates calculated at the distributed clusters. Moreover, for the

subsequent update of local images, the global image needs to be broadcast to all the

clusters. Alternatively, if the global image update were to be carried out at distributed

clusters, a fully meshed communication network would be needed to exchange all local

updates among the Q clusters. Later in Section 2.3.3, we will show how to solve (2.13)

in the central node.
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Update of σ (Dual Variable)

After updating the global image, the dual variable can be updated by

σ(k+1) = σ(k) + β
(
x(k+1) − 1Q ⊗ x

(k+1)
G

)
, (2.14)

The Kronecker product is used to replicate the global image to the same size as the

vectors x and σ. Since (2.14) is decomposable, it can be carried out in parallel as well

as local images’ updates. Instead, it is more convenient for the dual variable to be

updated in the central node subsequent to the update of global images. Then, both

updates are broadcast to the distributed clusters for the next update of local images.

2.3.2 Sharing ADMM (SADMM)

Under this formulation, we impose a different constraint on the optimization problem

to explore a different relationship between the local images and the global image. The

constraint is set such that the reconstructed global image is the sparse average of all

local images. Accordingly, the problem becomes

argmin
x,xG

Q∑
q=1

µ

2

∥∥yq −Aqxq

∥∥2
2
+ λ ∥xG∥1

s.t. x̄− xG = 0

(2.15)

where x̄ =
∑Q

q=1 xq contains the sum of magnitudes of local images. Note that the size

of constraints is reduced to the size of a single image instead of Q images in the consensus

formulation. The nomenclature stems from the constraint above since the global image is

considered a shared combination of all local images. We can again write the constraint

of (2.15) in the form of the constraint in (2.6) by having G = [IN , IN , · · · IN ] of size

N ×QN , u = x, H = −IN , z = xG, and c = 0.

The augmented Lagrangian of (2.15) can then be written as

L (x,xG,σ) =


Q∑

q=1

µ

2

∥∥yq −Aqxq

∥∥2
2
+ λ∥xG∥1 + ⟨σ, x̄− xG⟩+

β

2
∥x̄− xG∥22

 .

(2.16)

Note that since the number of constraints is reduced, the dual variable σ has a sizeN × 1

instead of QN × 1 as in CADMM. Next, we provide the variable updates according to

the SADMM formulation.
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Update of x (Local Images)

Unlike the consensus case, the augmented Lagrangian function (2.16) is not directly

decomposable into Q terms because of the variable x̄ inside the augmented quadratic

term which contains the sum of local images. However, we show here that it is still

possible to solve for each local image variable xq in parallel. Similar to (2.11), we use

the values of x
(k)
G and σ

(k)
q in order to solve for xq at the (k + 1)th iteration. However,

since we have also x̄ in (2.16), we keep the values of all other local images (x
(k)
i ∀i ̸= q)

fixed. Let x̄
(k)
q =

∑
(i ̸=q) x

(k)
i = x̄(k) − x

(k)
q . Consequently, the qth local image update

can be obtained by

x(k+1)
q = argmin

xq

L
(
xq; x̄

(k)
q ,x

(k)
G ,σ(k)

)
= argmin

xq

{
µ

2

∥∥yq −Aqxq

∥∥2
2
+ σ(k)Txq +

β

2

∥∥∥xq + x̄(k)
q − x

(k)
G

∥∥∥2
2

}
= argmin

xq

{
µ

2

∥∥yq −Aqxq

∥∥2
2
+ σ(k)Txq +

β

2

∥∥∥xq + x̄(k) − x(k)
q − x

(k)
G

∥∥∥2
2

} (2.17)

Now similar to (2.11), the problem in (2.17) is fully differentiable with respect to xq and

the (k + 1)th update can be obtained in the closed-form

x(k+1)
q =

(
µAH

q Aq + βIN

)−1
(
µAH

q yq + β
(
x
(k)
G − x̄(k)

q

)
− σ(k)

)
. (2.18)

From (2.18), we can observe that in SADMM, the qth local image update requires the

previous state x
(k)
q , the sum of the previous updates of all other local images x̄(k), the

global image update x
(k)
G , and the dual variable update σ

(k)
q . This suggests the need

for extra memory with respect to CADMM to track the previous state at each cluster.

Additionally, the distributed clusters will need to receive each other updates. This can

be broadcast by the central node subsequent to the update of the global image and dual

variables. The central node will have such values regardless since they are needed for the

global image update. Although the exchanged information between the central node and

the distributed clusters in SADMM seems to be more than CADMM, the size of those

variables to be exchanged is still less than CADMM by a factor of (Q+2)/3 due to the

reduced size of the dual variable in SADMM. This significantly reduces communication

bandwidth requirements between the central node and the sensors, especially for a large

number of distributed sensors.
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Update of xG (Global Image)

Similar to the global image update in Section 2.3.1, after collecting the updates of

the local image from the distributed sensors, the global image update for the sharing

formulation is obtained by minimizing the augmented Lagrangian with respect to xG

as follows

x
(k+1)
G = argmin

xG

{
λ ∥xG∥1 +

β

2

∥∥∥xG − x̄(k+1)
∥∥∥2
2
+ σ(k)TxG

}
. (2.19)

Again, we here assume that both the global image and the dual variable are calculated

at the central node. As a result, the sum of the local images x̄(k) is calculated directly

at the central node following the local updates collection needed for the global image

update. The solution of (2.19) will be detailed in Section 2.3.3.

Update of σ (Dual variable)

The dual variable update then is a straightforward step of the ADMM algorithm which

is

σ(k+1) = σ(k) + β
(
x̄(k+1) − x

(k+1)
G

)
(2.20)

Deferring the study of the imaging performance of each formulation to the next section,

it suffices to summarize that SADMM provides an alternative processing architecture

with respect to CADMM in which: 1) extra memory is needed at the distributed clusters

for local image updates, 2) communication overhead between the distributed clusters and

the central node is reduced by a factor of (Q+2)/3 due to the difference in the size of the

constraints. In both CADMM and SADMM, local images can be updated in parallel

at each cluster node and communicated back to the central node. The central node

in turn updates both the global image and the dual variable. Subsequently, both the

global image and dual variable updates are broadcast back to the distributed clusters

in the case of CADMM in addition to the sum of the previous local images in the case

of SADMM in order to calculate the next local image updates. Other comparisons and

performance metrics such as image reconstruction quality and convergence rate will be

provided later in Section 2.4.

2.3.3 Solution Techniques

Considering the above formulations, in this section, we provide the techniques used to

solve the sub-problems for local images and global image updates. Additionally, we

provide the stopping criteria adopted to terminate both algorithms. Lastly, we show
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how to obtain the phases of complex-valued local images prior to ADMM iterations.

Variable Updates

The updates of local images (2.12) and (2.18), employ a matrix inversion in a closed-

form solution. However, due to the large size of the problem, it needs to be solved

iteratively using a numerical procedure. In particular, we carry out the inversion in

the local update using the Conjugate Gradient (CG) method [83]. Being a numerical

method, the output of CG is a complex-valued image since both the measurements yq

and the forward model Aq are complex. However, the optimization is carried out over

the real-valued magnitude of the images where the phase of the images is included in

the measurement matrix. Therefore, subsequent to the update of the local image using

CG, a projection of the resulting complex image on the real positive orthant is applied

to obtain the magnitude of the local image. This projection implicitly states that the

phase of the complex-valued output of CG is regarded as a numerical phase error.

On the other hand, global image updates, (2.13) and (2.19), require solving a Least

Absolute Shrinkage and Selection Operator (LASSO)-like optimization problem which

can be solved using a proximal gradient method. In our numerical experiments, we used

the accelerated proximal gradient [84] to calculate the global image updates.

Stopping Criteria

Variable updates are repeated until termination which is decided upon comparing the

values of the primal and dual residuals with their corresponding feasibility tolerances

ϵpri and ϵdual, respectively.

Following the definitions of the residuals and the stopping criteria brought up in

[72], let ηpri and ηdual denote the primal and dual residuals, respectively. The dual

residual is defined over the subsequent updates of the global image variable. Hence, it

is the same for both CADMM and SADMM. Accordingly, at the kth iteration, the dual

residual for both formulations is given by

η
(k)
dual = β

(
x
(k+1)
G − x

(k)
G

)
. (2.21)

On the other hand, the primal residual measures the constraint satisfaction and takes a

different form in the two formulations. For CADMM, the primal residual is given by

η
(k)
pri = x(k+1) − 1Q ⊗ x

(k+1)
G . (2.22)
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Similarly, in SADMM the primal residual is

η
(k)
pri = x̄(k+1) − x

(k+1)
G . (2.23)

The feasibility tolerances can be chosen based on an absolute tolerance ϵabs and a relative

tolerance ϵrel. Similar to the primal and dual residuals, the feasibility tolerances indicate

non-identical definitions depending on the formulation due to the different constraints.

In CADMM, they are given by

ϵpri =
√

QN ϵabs + ϵrel max

{∥∥∥x(k)
∥∥∥
2
,
√
Q
∥∥∥x(k)

G

∥∥∥
2

}
ϵdual =

√
QN ϵabs + ϵrel

∥∥∥σ(k)
∥∥∥
2
.

(2.24)

Likewise, for SADMM, feasibility tolerances are:

ϵpri =
√
N ϵabs + ϵrel max

{∥∥∥x̄(k)
∥∥∥
2
,
∥∥∥x(k)

G

∥∥∥
2

}
ϵdual =

√
N ϵabs + ϵrel

∥∥∥σ(k)
∥∥∥
2
.

(2.25)

Lastly, for both CADMM and SADMM, the algorithm is terminated either when a

defined maximum number of iterations is reached or when both the ensuing inequalities

are satisfied ∥∥∥η(k)
pri

∥∥∥
2
⩽ ϵpri∥∥∥η(k)

dual

∥∥∥
2
⩽ ϵdual,

(2.26)

where the variables in the above inequalities are calculated according to the definitions

of the corresponding quantities (2.21)-(2.25).

Phase Matrix Θ

As mentioned earlier, we assume that the phase of local images is already provided

prior to carrying out the optimization algorithms. Our proposed imaging methods can

be considered partially non-coherent imaging methods since the phases are only used

within the data-fidelity term in the objective function. Thus, a coarse estimated phase

of local images is sufficient for our algorithms to perform satisfactorily. Therefore, we

use the phase of the images obtained by backprojection for each cluster as an estimate of

the phase of local images. Accordingly, for each cluster q, the diagonal matrix containing
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the phase of all pixels of its local image is constructed as

Θq = diag
{
exp (j[∠(AH

q yq)])
}
. (2.27)

Finally, a summary of the steps of CADMM and SADMM in addition of a schematic to

depict the parallel implementation scheme are reported in Algorithm 1 and Figure 2.2,

respectively.

CADMM:

SADMM:

𝒙𝑞
(𝑘)

𝒙𝑞
(𝑘)

𝒙𝐺
(𝑘+1)

, 𝝈(𝑘+1) 

𝒙𝐺
(𝑘+1)

, 𝝈(𝑘+1), σ𝑸𝒙𝑞
(𝑘+1)

  

𝒙1
(𝑘)

𝒙𝑄
(𝑘)

𝒙2
(𝑘)

𝒙𝐺
(𝑘+1)

𝝈(𝑘+1)

Figure 2.2: Illustration of the parallel implementation scheme of CADMM and SADMM.

2.4 Performance Evaluation

In this section, we validate and evaluate the performance of the algorithms proposed in

Section 2.3 to reconstruct radar images using distributed sensor clusters. To achieve this

goal, we use the publicly available Civilian-Vehicles Dome (CVDomes) dataset which

offers simulated scattering data of civilian vehicle facet models. Although the dataset is

originally intended to simulate circular synthetic aperture radars, a particular configu-

ration of WSAR, it can also be used to simulate a mono-static distributed radar sensors

system.

First, we give a brief introduction to the dataset and its parameters. Consequently,

we define the performance metrics used in our evaluation to compare both algorithms.

Finally, we evaluate our algorithms on three different scenarios of practical relevance for

several applications. The scenarios are realized by different combinations of full/limited

views and full/limited bandwidth measurements as we will show later in this section.

2.4.1 Data-Set Introduction

CVDomes dataset contains simulated electromagnetic high-frequency scattering data of

ten civilian vehicles. For each model, an X-band mono-static scattering is simulated
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Algorithm 1 Widely Distributed Radar Imaging using CADMM and SADMM

Input:

• The measurement matrices
{
Aq

}Q
q=1

• Measured echos signal
{
yq

}Q
q=1

• Hyperparameters µ and β

• Absolute and relative tolerances ϵabs and ϵrel

Initialize:

• Local images
{
x̂
(0)
q = 0

}Q

q=1

• Global image x̂
(0)
G = 0

• Dual variable σ(0) = 0

• The iteration counter k = 0

while stopping criterion (2.26) not satisfied do

1. Update
{
x̂
(k+1)
q

}Q

q=1
locally in parallel

• CADMM → (2.12)

• SADMM → (2.18)

2. Update x̂
(k+1)
G in central node

• CADMM → (2.13)

• SADMM → (2.19)

3. Update
{
σ
(k+1)
q

}Q

q=1
in central node

• CADMM → (2.14)

• SADMM → (2.20)

4. k ← k + 1.

end while
Output: x̂G

in a far-field scenario. Scattered waves are simulated with full polarization over an

azimuth extent of 360° where 16 viewing angles per degree of azimuth are considered.

Similarly, data are simulated over the range of elevation angles from 30° to 60°. For each

tuple of azimuth and elevation viewing angles, 512 frequency samples of complex-valued

scattering coefficients centered at 9.6 GHz and spanning a bandwidth of approximately
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5.35 GHz are provided. The range information of those frequency measurements is

compressed already resulting in what is usually referred to as phase history.

2.4.2 Performance Metrics

As discussed in the previous section, the difference in problem formulation between

CADMM and SADMM has induced slightly different system implementation features in

terms of memory requirements and communication bandwidth. Additionally, to compare

the performance of the proposed algorithms, the following aspects are considered.

1. Convergence rate: it can be assessed by the number of iterations needed to reach

the stopping criteria that is defined identically for both algorithms.

2. Computational complexity: the main computational burden of both algorithms lies

in the local image updates (2.12) and (2.18), where the matrix inversion term is

present. Due to their large size, the measurement matrices Aq are realized through

matrix operators based on two-dimensional non-uniform Fast Fourier transform

(2D Non-uniform Fast Fourier Transform (NuFFT)) [85]. Moreover, the inversion

step is carried out numerically using CG as mentioned earlier. Thus, while the

complexity of both algorithms seems to be equivalent, the convergence of CG

highly depends on the other variables in the update formulas (2.12) and (2.18).

As a result, the comparison solely in terms of the number of iterations is not

indicative since a single iteration in each of the algorithms may realize a different

cost. Accordingly, computational complexity can be measured by calculating the

total processing time spent until termination.

3. Image reconstruction quality: the dataset does not contain a reference image with

which a comparison can be made in order to evaluate the quality of reconstructed

images. Correspondingly, we use image entropy as a quantitative metric to assess

the image quality as a measure of its sharpness or constituent randomness. The

smaller the image entropy the sharper the reconstructed image and vice versa.

After clipping the image intensity values which are beyond a certain dynamic range

in the dB scale, the image is translated to the grayscale so the entropy is calculated

in bits. Consequently, a randomly generated image would have an entropy equal

to or close to 8 bits. Additionally, as a subjective measure of image quality,

the images reconstructed utilizing full aperture and full bandwidth measurement

could act as a visual reference for the other scenarios when the aperture and/or

the bandwidth measurements are reduced.
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Figure 2.3: Hyperparameters sweep for ’Jeep99’ data (FVFB): Top row: Normalized
sparsity, Bottom row: Image entropy.

2.4.3 Experiments

In this subsection, we demonstrate the imaging results of CADMM and SADMM using

the simulated data of two different vehicle models differing in type and geometry. The

first is of a Jeep Cherokee (SUV) ’Jeep99’, while the second is of a Toyota Tacoma

(Pick-up) ’Tacoma’. We consider image reconstruction utilizing the dataset according

to the following scenarios:

1. Full aperture views measurements: for a general validation of both algorithms, the

full 360° aperture measurements of the entire available bandwidth are considered.

2. Full views and limited bandwidth measurements: limited frequency samples of

the full aperture measurements are considered for image reconstruction realizing

a typical use case of WSAR imaging.

3. Limited views and limited bandwidth measurements: assuming a distributed sys-

tem of radar sensors illuminating the scene according to a Time-Division Multi-

plexing (TDM) scheme, limited frequency samples of limited aperture measure-

ments are considered for image reconstruction.
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For all experiments, measurements are taken at a fixed elevation angle of 30° and with

’HH’ polarization. Moreover, all measurements are impaired with a white Gaussian

noise realizing a SNR of 15 dB. A fine grid of 256 cells in both range and cross-range

directions (7 meter-long each) is used resulting in a total number of N = 65536 pixels.

Additionally, images are reconstructed considering an elevated image plane at 1 meter

from the ground level. This renders the projection of layover-ed elements to be mostly

contained within the vehicle’s outlines and permits a better visual interpretation.

The choice of µ, β, and λ for both CADMM and SADMM is made through a pa-

rameter sweep guided by normalized image sparsity and image entropy as performance

metrics. The normalized sparsity considered is the percentage of the non-zero pixels

in the image. Hyperparameters used to reconstruct the illustrated images throughout

this section are those that guarantee a similar degree of sparsity for both CADMM and

SADMM images at a lower entropy value. Also, we tried to pick the parameters where β

is as close as possible in both methods for a fair comparison of convergence rates. Given

the considered scene size and typical dimensions of a vehicle, a sparsity level around the

range of 5%− 10% is considered in our experiments based on the scenario and the vehi-

cle. Needless to say, parameter sweep analysis is conducted separately for each dataset

and each scenario. It is worth mentioning that, for a given β, the ratio λ/µ can be

automatically selected given the desired sparsity range as will be discussed in Chapter

4. However, since an empirical search for β is needed at almost exact sparsity levels for

both CADMM and SADMM, a parameter sweep would facilitate finding more accurate

parameters for the sake of comparison. An example of image sparsity and image entropy

versus different parameters is shown for the first scenario. For later experiments, such

analysis will be omitted for brevity. CADMM and SADMM are run for a maximum

number of 100 iterations while the feasibility tolerances ϵabs and ϵrel are both set to

10−2. Scenario-specific parameters and reconstructed images of all the aforementioned

experiments are provided and discussed in the sequel.

Full Views - Full Bandwidth (FVFB)

Using the full 360° azimuth extent and the full bandwidth of the dataset (approxi-

mately equal to 5.35 GHz), we reconstruct the images of the two vehicles to validate

our proposed methods and show their superior reconstruction quality with respect to

the conventional BP method. The reconstructed images in this experiment can also

be used as a reference for subsequent scenarios when images are reconstructed using

limited views and/or limited bandwidth measurements. As mentioned previously, to

avoid anisotropic scattering over the large angular azimuth extent, it is divided into
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sub-apertures (clusters) at which the isotropic scattering assumption is valid. The an-

gular width of a cluster has a double-faced effect on the imaging performance trading-off

between angular resolution and homogeneous target scattering. The wider the cluster

the better the resolution while the scattering becomes anisotropic. Therefore, in this

experiment, the cluster width is chosen to maximize the imaging performance in a bal-

anced manner. We use a cluster width of 5° within which we assume the targets exhibit

isotropic scattering.

As anticipated earlier, we perform a hyperparameter sweep over different values of β

and λ/µ to obtain the values that provide good reconstruction quality given the image

sparsity level. The sparsity level is decided based on the assumed dimensions of the

observed targets relative to the scene dimensions. They are set separately for each

scenario due to the dissimilarities of aperture size and signal bandwidth utilized, hence

images exhibit a different resolution in each scenario. Figure 2.3 shows the normalized

sparsity level and entropy of the reconstructed image of the ’Jeep99’ dataset versus the

varying parameters of β and λ/µ for both SADMM and CADMM. The desired sparsity

level range is highlighted with a light green color in the figure. As expected, the higher

the ratio λ/µ, the more sparse the reconstructed images for both the algorithms and

naturally the lower the entropy. This is true except for some values of β for which

SADMM optimization does not converge to a sparse solution. Such divergence for

those parameters can be seen from the corresponding entropy values which indicate the

reconstruction of random images. Moreover, beyond those values of β, reconstructed

images using the same λ/µ ratio exhibit similar sparsity levels and attain close values

for entropy as shown in the magnified part of Figure 2.3.

To first demonstrate the performance of both methods, CADMM and SADMM im-

ages reconstructed considering two different sparsity levels are shown for the ’Jeep99’

dataset in Figure 2.4. The left column images have a normalized sparsity degree of

12% versus 5% for the images in the right column. For lower sparsity images, CADMM

shows a sharp high-intensity reconstruction of the strong features of the vehicle such as

edges and ceiling structure, and a lower-intensity reconstruction of the weaker features

such as the projection of the tire wheels. On the other hand, SADMM images manifest

an average intensity of the different parts of the vehicle resulting in less sharp images.

While the behavior is maintained for the images at higher sparsity, the weaker features

are further suppressed in the images of both methods. Moreover, the images of both

methods at a similar sparsity level have similar entropy values. This behavior is again

confirmed by the reconstructed images of the ’Tacoma’ vehicle. At a sparsity level of

10%, the reconstructed images of the two vehicles are shown in Figure 2.5 in addition to
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Figure 2.4: Jeep image reconstruction at different sparsity levels: Left column: 12%,
Right column: 5%.

the images reconstructed through conventional back-projection averaged over all clus-

ters. The red dots on the images show the angular aperture views which cover 360° in

this experiment. Note that due to the abundance of the available bandwidth and the full

aperture measurements, both CADMM and SADMM images have very high resolution

and show the detailed structure of the imaged objects.

Additionally, the processing time until termination in SADMM is higher than CADMM.

The numerical values of the parameters used in image reconstruction and the correspond-

ing metrics are reported in Table 2.1 while the ratio between SADMM and CADMM

processing time and number of iterations are reported in Table 2.2.

Full Views - Limited Bandwidth (FVLB)

In practice, the signal bandwidth of a SAR system is usually an order of magnitude

less than the available bandwidth of the dataset. Thus, analyzing the performance of

our proposed algorithms considering fewer bandwidth samples is of high interest and
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0-10-20-30-40

Figure 2.5: FVFB image reconstruction at sparsity level ≈ 10%, Q = 72 clusters, band-
width = 5.35 GHz: Left column: Jeep Cherokee, Right column: Toyota Tacoma.
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0-10-20-30-40

Figure 2.6: FVLB image reconstruction at sparsity level ≈ 10%, Q = 72 clusters, band-
width = 600 MHz: Left column: Jeep Cherokee, Right column: Toyota Tacoma.
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Figure 2.7: Low sparsity FVLB reconstruction of Toyota Tacoma (sparsity level ≈ 15%).

is a relevant use case in WSAR imaging. To realize a limited bandwidth measurement

scenario, we utilized an equivalent of 600 MHz samples around the center frequency

from the samples of phase history. In this experiment as well, SADMM images exhibit

the property of higher averaging than that of concentrated intensity resulting from

CADMM images as shown in Figure 2.6. This peculiarity makes it capable of capturing

the true structure of the vehicles even with low bandwidth measurements when referring

to the images in Figure 2.5 of the FVFB experiment. On the other hand, images

reconstructed using CADMM have higher intensity around the strong reflectors and

weaker or no intensity of the poorly reflective components of the vehicles; this is evident

in the reconstructed images of both vehicles in Figure 2.6. For example, the crossing of

the beams in the rear part of the ’Jeep99’ data is localized and well identified with strong

intensity in the SADMM image, while in the CADMM image, the same area exhibits

only a strong intensity in a wider region. Similarly, in ’Tacoma’ images, CADMM

fails to capture the outline of the vehicle at this sparsity level and the strong trunk

dominates the image. On the other hand, in the SADMM image, the vehicle outline

appears while the trunk is being better identified. The depicted images have a sparsity

level approximately equal to 10%. Note that by considering lower sparsity, images

of both algorithms will increase the background intensity around the strong features

without capturing the general structure of the object differently. An example is shown

in Figure 2.7 where the images of the ’Tacoma’ vehicle are reconstructed at a lower

normalized sparsity level of about 15%. In summary, although CADMM images have

similar entropy values as their SADMM counterparts at the same sparsity level, the

latter provides a higher capability of capturing the structure of the observed targets

given relatively low bandwidth measurements. The exact values of sparsity and entropy
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for each image are reported in Table 2.1.

The superior performance of SADMM comes at the cost of increased computational

complexity to reach convergence. This complexity is manifested through the higher

number of iterations and the longer processing time required for SADMM to reconstruct

the shown images. The ratio of these two quantities for SADMM and CADMM is

depicted in Table 2.2.

Limited views - Limited Bandwidth (LVLB)

A mono-static distributed sensing scenario can be realized by considering far-field il-

lumination with limited and narrow views of the full aperture measurements. In this

experiment, we consider using the dataset to realize a system of distributed radar sensors

in which the TDM scheme is used to illuminate the scene of interest where a single cluster

transmits at a time. Consequently, in addition to the limited bandwidth measurements

of 600 MHz introduced in the previous experiment, we further consider limited aperture

measurements representing the views of distributed sensors. In particular, 16 clusters of

1° width each are uniformly distributed around the scene and considered as the viewing

angles of the sensors. This number of clusters makes a realistic choice for the number of

sensors where they cover only a span of about 4.4% of the full aperture measurements.

For this experiment, the reconstructed images of the two vehicles are shown in Fig-

ure 2.8. Similar to the previous experiment, SADMM captures both vehicles’ structures

better than CADMM. However, due to the limited aperture measurements, the arti-

facts present in the images of both methods are stronger. Increasing the sparsity would

eliminate the artifacts but limit the reconstruction of the entire outline of the vehicles.

Of course, reconstructed images are view-dependent. However, the performance of

both methods is the same when the different orientation of the sensors is considered.

For example, the images reconstructed using another random orientation of views are

shown in Figure 2.9. The images confirm the capability of SADMM to retain the orig-

inal structure of the imaged target while CADMM has a better ability to diminish the

artifacts. Similar to previous experiments, processing times for imaging using SADMM

are higher than the time needed for CADMM. Finally, the parameters used to recon-

struct the images in Figure 2.8 and the corresponding values of entropy and sparsity

are reported in Table 2.1 while processing time and the number of iterations ratios are

reported in Table 2.2.

Finally, to provide an additional comparison with the state-of-the-art, we recon-

structed the images of ’Jeep99’ using Least Squares (LS)-CS-Residual composite imag-

ing [70]. Figure 2.10 depicts the performance of the LS-CS-Residual composite imaging
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0-10-20-30-40

Figure 2.8: LVLB image reconstruction at sparsity level ≈ 10%, Q = 16 clusters, band-
width = 600 MHz: Left column: Jeep Cherokee, Right column: Toyota Tacoma.
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Figure 2.9: LVLB reconstruction with different random sensors orientation: Left col-
umn: Jeep Cherokee, Right column: Toyota Tacoma.

in the three scenarios combining different aperture and bandwidth ranges. Comparing

with the results of CADMM and SADMM in Figs. 2.5, 2.6 and 2.8, shows the limitations

of using the methods of DCS and/or methods that rely on the evolution of RCS when

the support of the underlying image sequence is not highly overlapped as the case of

the dataset we use. This is particularly evident in the scenarios of limited views and/or

limited bandwidth, where LS-CS-Residual imaging almost fails completely.

Additionally, since the update of each local image depends on the estimate of the

preceding image in the sequence in LS-CS-Residual imaging, the implementation is

forced to be sequential. This is another advantage of our proposed methods where

local images can be updated in parallel at each iteration. This is further highlighted

by the significantly contrasted computing times of our proposed method versus LS-CS-

Residual which are reported in Table 2.3. The reported values serve also as an indication

of the absolute computing time of our proposed methods, in addition to the relative

values reported in Table 2.2. All numerical experiments were carried out on a node of

the High-Performance Computing (HPC) facility at the University of Luxembourg [86].
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Figure 2.10: LS-CS-Residual imaging results for ’Jeep99’ data for the three experiments:
Left: FVFB, Middle: FVLB, Right: LVLB.

The node utilized has an AMD EPYC 7H12 64-Core processor CPU at 2.6 GHz and 256

GB of physical memory and is running a MATLAB Version: R2021a. By leveraging a

multi-core processor, we implemented both CADMM and SADMM to run local updates

in parallel but were not able to realize a similar implementation for LS-CS-Residual

composite imaging.

Table 2.1: Summary of parameters used in the experiments and corresponding metrics

FVFB FVLB LVLB

CADMM SADMM CADMM SADMM CADMM SADMM

(β, λ/µ)
Jeep (30,18) (30,2.5) (30,16) (30,1.4) (10,1.25) (20,0.4)

Tacoma (30,25) (30,2.5) (30,24) (50,1.8) (10,1.75) (20,0.65)

Sparsity
Jeep 0.100 0.102 0.104 0.102 0.100 0.098

Tacoma 0.096 0.10 0.097 0.098 0.099 0.103

Entropy
Jeep 1.24 1.25 1.27 1.26 1.25 1.22

Tacoma 1.19 1.24 1.20 1.21 1.24 1.26

To summarize, in the first experiment where a plenitude of measurements in both

aperture and bandwidth is available, both CADMM and SADMM are capable of re-

constructing detailed and super-resolution images of the observed targets far surpassing

the conventional methods. On the other hand, in the latter experiments where mea-

surements are limited in aperture and/or bandwidth, SADMM exhibits superior perfor-

mance over CADMM in terms of capturing the structure of the target and reconstructing

smoother images. Although they have similar entropy in all cases, the depicted images

reconstructed by both algorithms show a clear visual advantage of SADMM by reference

to the images of full measurements. Such higher quality comes at the expense of higher
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Table 2.2: Relative convergence and complexity

FVFB FVLB LVLB

Ratio
SADMM/CADMM

Iterations Time Iterations Time Iterations Time

Jeep 1.41 1.46 3.45 2.11 1.45 2.19

Tacoma 1.41 1.52 3.13 2.06 1.51 2.04

Table 2.3: Absolute computing times using proposed methods vs. LS-CS-Residual for
’Jeep99’ (in minutes)

FVFB FVLB LVLB

CADMM 5.1562 1.2264 0.4066
SADMM 7.5389 2.5879 0.8902
LS-CS-Residual 21.1528 16.1970 3.9681

computational costs. Surprisingly, in terms of convergence and complexity, SADMM fell

behind the most in the second experiment where the full aperture measurements with

limited bandwidth are considered. This can be owed to the fact that SADMM has fewer

degrees of freedom than CADMM which with the full aperture measurements requires

less than a third of SADMM iterations to reach convergence.

2.5 Conclusion

In this chapter, we introduced a novel approach for widely distributed radar imaging

based on the ADMM framework. We imposed a sparsity prior on a defined global image,

assumed to represent an aggregate view of the scene. Subsequently, we designed two for-

mulations based on CADMM and SADMM to mathematically stipulate the relationship

between the images of individual sensors and the defined global image. We provided

solutions to these formulations as iterative algorithms, which are flexible and amenable

to implementation on a distributed architecture.

Through several experiments, we demonstrated the performance of the proposed

algorithms and showcased their significant edge over conventional methods in terms of

reconstructed image quality. Furthermore, we illustrated that SADMM outperforms

CADMM, especially under limited measurements, yielding images that better highlight

the structure and shape of observed objects. However, this advantage comes with slower

convergence and longer processing times.

As demonstrated in the experiments, the presented algorithms are applicable in many
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scenarios of distributed radar systems and WSAR imaging. The proposed approach

paves the way for various formulations and further developments. These formulations

could involve imposing different priors on the global image or establishing alternative

associations with the images of individual sensors to further enhance the image quality

depending on the intended application.
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Chapter 3

Imaging Acceleration

In this chapter, a heuristic approach aimed at accelerating the convergence of the ADMM

formulations presented in Chapter 2 is introduced. The method is based on gradually

eliminating already converged pixels according to a predetermined criterion. In addi-

tion to reducing running time, this accelerated implementation offers decreased com-

putational complexity and lower communication costs between sensors during iterative

updates. By gradually learning the scene support throughout the iterative reconstruc-

tion, the proposed method focuses on the image portion containing scattering targets

and updates the sub-images accordingly.

3.1 Introduction

In Chapter 2, we proposed ADMM-based algorithms to reconstruct the image of a

scene observed by widely distributed radar sensors. ADMM optimization framework

gives a distributed processing regime for measurements collected through a distributed

architecture. Additionally, different from the composite imaging methods, the proposed

algorithms jointly reconstruct and fuse the images of each sub-aperture into one global

image of the scene. Nevertheless, when high reconstruction accuracy is considered,

ADMM methods may suffer a noticeable slow convergence [72]. This is also evident from

the computational complexity and running time values reported in Tables 2.3 and 2.2.

To overcome this issue, in this chapter, we propose modified versions of CADMM and

SADMM that further leverage the scene sparsity and gradually learn the approximate

support of the scene. This allows reducing the size of the problem during optimization

by focusing the reconstruction on the sub-images containing the scene support. Such

adjustable size reduction lowers the problem complexity and significantly decreases its

running time in addition to accelerating the convergence rate.
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In contrast to other methods that rely on the partial known support of the scene [65,

70], we adaptively learn the support of the scene during the iterations of the algorithm

starting from the full scene size. This differs from the methods used in these works

which initially threshold the BP image to acquire knowledge about the scene support

and consequently remain tight with it throughout the image reconstruction process.

3.2 Signal Model

We consider a system where Q radar sensors are distributed around a scene of interest.

Each radar sensor is equipped with a Uniform Linear Array (ULA) comprising M an-

tenna elements. All antenna elements are utilized for receiving the reflected echo, while

the transmission is conducted through a single element. A mono-static configuration

is assumed, employing a TDM scheme among the sensors. Specifically, each sensor re-

ceives the reflected echo from the scene only during the slot associated with its own

transmission time. During its transmission, each sensor’s transmitting antenna emits a

LFM chirp of rate α and a bandwidth BW to illuminate the scene. Subsequently, the

reflected echo is received by the multiple receiving antenna elements on that sensor.

In a non-widely distributed architecture, the sensors observe the scene within a

rather narrow angular extent. Thus, the isotropic scattering model of scene reflectivity

is usually adopted; this permits modeling the scene reflectivity with a single variable for

all sensors. Moreover, it allows the imaging task to be carried out using the measure-

ments from all sensors jointly and obtain a reflectivity image of the scene. However,

in our case where the sensors are widely separated, the scene is observed over a large

angular extent. Consequently, the isotropic scattering assumption cannot be satisfied

across all the sensors. Accordingly, the isotropic assumption is only considered within a

single sensor (sub-aperture) which leads to a system model that comprises Q reflectivity

images. As a result, individual treatment of each sensor’s measurements is usually con-

sidered necessitating a fusion-embraced imaging algorithm or sub-aperture-aware joint

imaging algorithm for a global reflectivity image reconstruction.

Under the above-mentioned model and assumption, we denote with the subscript q

a single sensor where q = 1 . . . Q and with the superscript m a single antenna element

where m = 1 . . .M . When considering a 2D scene discretized into N pixels where each

pixel is assumed to contain a single reflective target, the frequency domain reflected echo
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ymq after demodulating and de-chirping can be modeled as

ymq (ω) =
N∑

n=1

xq,naq,nδ
(
ω −∆ωn,q

)
e

(
−j 2πfc

c
dq(m−1) sin θq,n

)
, (3.1)

where xq,n is the complex reflectivity coefficient of the nth pixel, aq,n is the propagation

coefficient, ω is the angular frequency, ∆ωn,q = 4πβ
c Rq,n is the angular frequency shift

due to the scattering by a target at the nth pixel located at a distance Rq,n from the qth

sensor, θn,q is the aspect angle of the nth pixel with respect to the qth sensor, fc is the

center frequency of the transmitted signal, and dq is the intra-element spacing between

the antenna elements of the qth sensor. The signal model in (3.1) assumes that a pixel

is located at the same distance and angle from all the antennas belonging to the same

sensor and its reflectivity coefficient is frequency independent. By uniformly sampling

the echo signal at K frequency bins, the matrix form of (3.1) is given by

ym
q = Am

q x̃q + nm
q ∈ CK×1,

Am
q = [αm

1 ,αm
2 , · · · ,αm

N ] ∈ CK×N ,

αm
n =


aq,nδ

(
ω1 −∆ωn,q

)
e

(
−j 2πfc

c
(m−1)dq sin θq,n

)
aq,nδ

(
ω2 −∆ωn,q

)
e

(
−j 2πfc

c
(m−1)dq sin θq,n

)
...

aq,nδ
(
ωK −∆ωn,q

)
e

(
−j 2πfc

c
(m−1)dq sin θq,n

)


,

(3.2)

where αm
n ∈ CK×1, x̃q is the vector contains the scene reflectivity coefficients with re-

spect to the qth sensor, Am
q is the measurement matrix for the mth antenna element of

the qth sensor, nm
q denotes the additive noise, error from model imperfections, measure-

ment error, etc. After a vertical stacking of
{
ym
q

}M

m=1
→ yq,

{
Am

q

}M

m=1
→ Aq, and{

nm
q

}M

m=1
→ nq, the whole measurement vector for the qth sensor is given by

yq = Aqx̃q + nq ∈ CKM×1. (3.3)

3.3 Problem Formulation

On-grid radar imaging usually involves a scene with a number of pixels much larger

than the number of measurements i.e. N >> KM . Due to that and especially when

sub-aperture methods are considered, where each sensor’s echo is processed separately,

the inverse problem of (3.3) becomes severely ill-posed. A reasonable solution can be ob-
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tained through regularized least square estimation leveraging prior knowledge about the

scene such as sparsity or smoothness. Following the formulations presented in Chapter

2, the problem of reconstructing the image of the scene was posed as the minimization

of the sum of quadratic data fidelity terms for the local images across all sensors plus

the l1-norm of a global image subject to the consensus and sharing constraints. Below

we provide again the proposed CADMM and SADMM formulations for completeness.

CADMM Formulation:

min
x1,x2,··· ,xQ,xG

Q∑
q=1

µ

2

∥∥yq −Aqxq

∥∥2
2
+ λ ∥xG∥1

s.t. xG − xq = 0 q = 1 . . . Q,

(3.4)

SADMM Formulation:

min
x,xG

Q∑
q=1

µ

2

∥∥yq −Aqxq

∥∥2
2
+ λ ∥xG∥1

s.t. x̄− xG = 0

(3.5)

where xG is defined as the magnitude of the global image, xq is the magnitude of the

complex local image of the qth sensor, x̄ =
∑Q

q=1 xq contains the sum of magnitudes of lo-

cal images, µ and λ are hyperparameters to trade-off the data fidelity and regularization

terms.

The problems in (3.4) and (3.5) are solved by iteratively updating the local images

and the global image in an alternating fashion according to ADMM iterative steps [72],

as presented in Sections 2.3.1 and 2.3.2. While our proposed methods proved effective

in reconstructing high-resolution scene images and reducing artifacts, they suffer from

slow convergence and high computational complexity. In the subsequent section, we

introduce modified versions of these algorithms, referred to as Accelerated CADMM

(ACADMM) and Accelerated SADMM (ASADMM). These modified versions maintain

similar image reconstruction quality to the original algorithms but exhibit improved

convergence rates and lower computational complexity.

3.4 Accelerated ADMM Imaging

Given the assumption of scene sparsity, a reflected echo is essentially a linear combination

of a small subset of columns from the measurement matrix. Therefore, in addition to

regularization, further exploitation of scene sparsity may be achievable by adaptively

reconstructing sub-images of the scene during ADMM iterations. In both CADMM and
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SADMM, the primal residual, which measures constraint satisfaction, tends to converge

faster than the dual residual, which reflects the residual of successive iterations of the

global image. This observation implies that local images converge over the scene support

more rapidly than the convergence of the global image. Consequently, we can initially

reconstruct the full scene and then concentrate on regions containing targets based

on the convergence of the primal residual. The selection of the focus region can be

determined by a criterion that tracks the convergence of individual pixels, calculating

the relative error across past iterations, and focusing on regions with errors below a

defined tolerance threshold.

To this end, we introduce Q matrices {Pq}Qq=1 with dimensions Nq × N , acting as

selector operators at the qth sensor to extract a sub-image containing Nq pixels from

the full scene image. Pq are binary matrices constructed such that each row selects

a single element (pixel) of the scene. Therefore, the rows represent element selector

vectors eTj ∈ {0, 1}N defined as
[
ej
]
i
= δj−i and j ∈ {1, . . . , N}.

Initially, when considering the full scene at the algorithm’s outset, all Q matrices

are the identity matrix IN , with Nq = N . Each pixel is selected only once within each

sensor’s sub-image, meaning that for two distinct rows j and l in Pq where j ̸= l, the

corresponding vectors eTj and eTl select the jth and lth pixels of the scene, respectively.

With these defined operators, the modified problem formulations are presented in

the following sections.

3.4.1 Accelerated Consensus ADMM

After considering sub-image selector matrices, the problem in (3.4) becomes

min
x1,x2,··· ,xQ,xG

Q∑
q=1

µ

2

∥∥∥yq −AqP̃qxq

∥∥∥2
2
+ λ ∥xG∥1

s.t. P̃q(xG − xq) = 0 q = 1 . . . Q,

(3.6)

where P̃q = PT
q Pq is an identity matrix of size N ×N with some zero elements on the

diagonal. The formulation in (3.6) suggests joint reconstruction of a global image of

the scene imposing a consensus constraint among the different sub-images reconstructed

by each sensor and the corresponding global sub-image. The augmented Lagrangian

function of (3.6) is given by
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L
(
{xq}Qq=1,xG, {σq}Qq=1

)
= λ∥xG∥1

+

Q∑
q=1

µ

2

∥∥∥yq −AqP̃qxq

∥∥∥2
2
+ σq

T P̃q

(
xq − xG

)
+

β

2

∥∥xq − xG

∥∥2
P̃q

,
(3.7)

where σq is the dual variable, β is the augmentation penalty parameter, and ∥.∥P denotes

the weighted norm induced by a semidefinite matrix P.

Similar to CADMM, we solve (3.6) by iteratively alternating the updates between

local images {xq}Qq=1, global image xG, and the dual variables {σq}Qq=1. However, since

we consider an adaptive sub-image focusing during the algorithm, an update step for

the matrices {Pq}Qq=1 is introduced in our implementation. The update of each variable

is discussed in detail here in the sequel.

Update of Local Images

As mentioned earlier, we consider the full scene initially in our variable updates, focusing

gradually on sub-images containing the scattering targets. Initially, all {Pq}Qq=1 are set

to the identity matrix IN . Further, let x̂q = Pqxq be the local image variable referring

to the sub-image to be updated at the current iteration. Similarly, Âq = AqP
T
q is the

measurement matrix containing the corresponding columns, and σ̂q = Pqσq is the dual

variable of the corresponding sub-image. Having a decomposable augmented Lagrangian

function with respect to local variables xq allows for a parallel update of the local images.

Accordingly, the qth local sub-image update at the kth iteration is obtained as

x̂(k+1)
q = argmin

xq

L
(
xq;x

(k)
G ,σ(k)

q

)
= argmin

xq

{µ
2

∥∥∥yq −AqP̃qxq

∥∥∥2
2
+ σ̂(k)T

q x̂q +
β

2

∥∥∥xq − x
(k)
G

∥∥∥2
P̃q

}
.

(3.8)

The updated local images can be obtained in a closed form since the Lagrangian function

is fully differentiable with respect to xq. Accordingly, x̂
(k+1)
q in (3.8) can be obtained

explicitly by setting ∇xqL = 0, which gives

x̂(k+1)
q =

(
µÂH

q Âq + βINq

)−1 (
µÂH

q yq + βPqxG
(k) − σ̂(k)

q

)
. (3.9)

Update of Global Image

Following a collection of the updated local images (or sub-images), the global image

update is obtained by minimizing the Lagrangian function (3.7) with respect to xG.
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Accordingly, the update is achieved by solving the following problem

xG
(k+1) = argmin

xG

L
(
xG; {x̂(k+1)

q }Qq=1, {σ̂
(k)
q }

Q
q=1

)
= argmin

xG

λ ∥xG∥1 +
Q∑

q=1

σ̂(k)T

q PqxG +
β

2

Q∑
q=1

∥∥∥xq
(k+1) − xG

∥∥∥2
P̃q

 .
(3.10)

Update of Dual Variables

After updating the global image, dual variables can also be updated at the central

node since it already has all the updates of local images. Let σ and x denote the vectors

stacking all the scaled dual variables σq and local images updates x
(k+1)
q for q = 1, . . . , Q,

respectively. The dual variable update can be obtained as:

σ(k+1) = σ(k) + β
(
x(k+1) − 1Q ⊗ x

(k+1)
G

)
. (3.11)

Update of Sub-image Selection Operators

ACADMM is based on adaptively reducing the scene size in the reconstruction process,

focusing on sub-images containing targets while excluding regions devoid of scatterers.

Each iteration considers a sub-image defined by the matrix Pq for each local image. As

previously discussed, we assume that sparse areas of the scene converge faster than re-

gions containing scattering targets, with convergence determined by the primal residual

as defined in (2.22). Furthermore, this convergence can be monitored by tracking the

relative error of each pixel individually. Accordingly, to update the matrix Pq, we intro-

duce a Sub-Image Selection Criterion (SSC) based on the average pixel relative error ζ

over Kp previous iterations. For an updated local image x
(k+1)
q at the kth iteration, ζ is

defined as

ζ({x(i)}ki=ki
) =

1

Kp

k∑
i=ki

|x(i) − x(i−1)|, (3.12)

where ki is calculated as max(1, k−Kp). Consequently, ζ becomes a vector of the same

size as the scene, containing the average pixel-wise relative errors over the previous Kp

iterations. The sub-image for the next iteration is determined by comparing elements

of ζ with a defined tolerance ϵp. Pixels corresponding to ζ elements above ϵp define the

support of the image to be focused on in the next iteration, denoted by the set {J},
where its cardinality dictates the dimension of the sub-image Nq. Based on the elements

of {J}, the matrix operator Pq is updated accordingly by activating the row selector

vectors correspond to the indices in {J}.
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Algorithm 2 provides a summary of the steps to execute the update of the selector

matrices {Pq}Qq=1. It is worth mentioning that according to the criterion in Algorithm

2, once a pixel gets out of the focused region, it is not considered again. Accordingly,

updated Pq either keeps the same previous dimensions or gets smaller at each successive

iteration.

Algorithm 2 SSC subroutine for Pq update

Input:
{
x
(i)
q

}k

i=Kp

, and ϵp

if
∥∥∥η(k)

pri

∥∥∥
2
≤ ϵpri

1. ζkq = ζ({x̂(i)
q }ki=Kp

)

2. {J} ← supp(ζkq ≥ ϵp), |J | = Nq

3. Pq ← [eTJ{1}e
T
J{2} · · · e

T
J{Nq}]

T

end if
Output: Pq

3.4.2 Accelerated Sharing ADMM

Similar to ACADMM, we utilize the selector operators {Pq}Qq=1 to formulate the accel-

erated version of SADMM. Accordingly, the problem becomes the following

argmin
x1,x2,··· ,xQ,xG

Q∑
q=1

µ

2

∥∥∥yq −AqP̃qxq

∥∥∥2
2
+ λ ∥xG∥1

s.t. xG −
∑Q

q=1 P̃qxq = 0

(3.13)

where µ and λ are hyper-parameters to trade-off the data fidelity and l1 regularization

terms and P̃q = PT
q Pq.

Following the same approach introduced in Section 3.4.1, the variable updates can

be obtained by minimizing the augmented Lagrangian function in addition to updating

the sub-image selector operators. Consequently, at the kth iteration the variable updates

are the following

Update of Local Images

x̂(k+1)
q =

(
µÂH

q Âq + βINq

)−1

µÂH
q yq + β

x̂
(k)
G −

Q∑
q=1

P(k)
q x̂(k)

q

− σ̂(k)

 (3.14)
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Update of Global Image

x
(k+1)
G = argmin

xG

{
λ ∥xG∥1 +

β

2

∥∥∥xG − x̄(k+1)
∥∥∥2
2
+ σ̂(k)TxG

}
(3.15)

Update of Dual Variables

σ̂(k+1) = σ̂(k) + β
(
x̄(k+1) − x

(k+1)
G

)
(3.16)

Update of Sub-image Selection Operators

P(k+1)
q = SSC({x(i)

q }ki=Kp
, ϵp) (3.17)

where β is the augmented penalty parameter, x̂q = Pqxq, Âq = AqP
T
q , σ̂ is the dual

variable with the support of the average of all sub-images x̄, and SSCS is the subroutine

to obtain the updates of the selector matrices detailed in Algorithm 2 where Kp and ϵp

are input parameters for testing convergence that are the number of previous iterations

considered and tolerance error, respectively.

3.4.3 Solution Techniques

The local image updates in (3.9) and (3.9) involve a matrix inversion that can be carried

out directly or iteratively through methods like conjugate gradient descent algorithm

[83] in case the problem size is large. Local updates can be carried out in parallel in

the distributed sensors exploiting the computation capability that is usually available

at these sensors. Additionally, since only a sub-image is being updated in subsequent

iterations, the dimension of this matrix is reduced from N × N to Nq × Nq hence a

complexity reduction by a factor of (N/Nq)
3 is achieved.

On the other hand, since the global image updates in (3.10) and (3.14) involves the

non-differentiable term λ ∥xG∥1, its solution cannot be found in a closed form and is

obtained using methods such as accelerated proximal gradient [84] which is used in our

implementation. Carrying out the global image update in a central processing node

is the only plausible choice for the system architecture since the collection of all local

updates is needed and an iterative method is used.

Note that ηpri is the primal residual and ϵpri is the feasibility tolerance that are

obtained based on the user-defined relative and absolute tolerances ϵabs and ϵrel, re-

spectively. The reader may refer to Section 2.3.3 for the detailed calculations of these

parameters.

With the accelerated versions provided in this section not only the computational

complexity is reduced, but also the communication cost. It is owed to the fact that after
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Algorithm 3 Widely Distributed Imaging using Accelerated ADMM

Input:

• Measurement matrices
{
Aq

}Q
q=1

• Measured echo signals
{
yq

}Q
q=1

• Hyperparameters µ, λ and β

• Absolute and relative tolerances ϵabs and ϵrel

• Pixel convergence tolerance ϵp and pixel tracking iterations Kp

Initialize:

• Local images
{
x
(0)
q

}Q

q=1
= 0

• Global image xG
(0) = 0

• Dual variable σ(0) = 0

• Sub-image selectors
{
Pq

}Q
q=1

= IN

• Iteration counter k = 0

while stopping criterion (2.26) not satisfied do

1. Update
{
x̂
(k+1)
q

}Q

q=1

ACADMM → (3.9)

ASADMM → (3.14)

2. Update xG
(k+1)

ACADMM → (3.10)

ASADMM → (3.15)

3. Update σ(k+1)

ACADMM → (3.11)

ASADMM → (3.16)

4. Update
{
Pq

}Q
q=1

ACADMM → Algorithm 2

ASADMM → Algorithm 2

5. k ← k + 1.

end while
Output: xG
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selecting sub-images, the communication exchange to the central node is necessitated

only for sub-images updates with their corresponding index on the full scene while the

remaining image parts are fixed and stored. A summary of accelerated ADMM image

reconstruction steps is provided in Algorithm 3.

3.5 Numerical Results

In this section, we validate the performance of ACADMM and ASADMM on a sim-

ulated scene and compare them to CADMM and SADMM, respectively, in terms of

image reconstruction quality and convergence rate. We run our simulations considering

a synthetic radar scene that contains static targets of different shapes. We considered

different targets geometry (point, line, cross) hence they manifest different scattering

behavior over the viewing angles. To model the spatial diversity, targets are assumed

to have their RCS as a function of the viewing angle. The aspect dependency func-

tions for each target are illustrated in Figure 3.1. Using a fine grid with cells of size

0.05 m × 0.05 m, our scene is a region consisting of Nc = 64 × 64 = 4096 pixels. To

observe the scene, Q = 4 radar sensors with M = 4 receiving antennas are distributed

around the scene; one per each side. Given the aspect-dependent behavior of targets,

Figure 3.2 shows sensor orientation with respect to the scene and the Ground Truth (GT)

image for each sensor. Individual GT images demonstrate the limitation of observing all

targets by all sensors. Considering a single sensor transmitting at a time, a LFM with

a sweeping bandwidth BW = 4 GHz around the center frequency fc = 60 GHz is used

for transmission at all sensors. The received signal is sampled at the Nyquist frequency

and corrupted with white Gaussian noise where a SNR of 15 dB is considered.

For image reconstruction, we simulated both CADMM and ACADMM with hyper-

parameters µ = 5, β = 100, and λ = 200 while the absolute and relative tolerance values

are set as ϵabs = 10−4 and ϵrel = 10−2, respectively. Kp = 5 iterations are considered

for ζ calculations and ϵp = 10−4 is set as threshold for Sub-Image Selection Criterion

(SSC) in ACADMM implementation.

Reconstructed images using CADMM and ACADMM are shown in Figure 3.3 along

with BP reconstruction and the composite GT image. The composite GT is defined as

the sum of individual GT images; hence it represents the maximum attainable recon-

struction. Images obtained by CADMM and ACADMM show the capability of both

algorithms to reconstruct high-quality images of the scene with a slightly lower quality

for the latter in terms of ghost targets and missed detection. However, as it can be seen

from Figure 3.5, ACADMM requires almost half of the iterations needed for CADMM
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to satisfy the same stopping criteria conditions. Moreover, ACADMM running time

is found to be approximately 80% less than it is of CADMM due to the complexity

reduction induced by updating only sub-images of the scene. The maximum sub-image

size considered by ACADMM at each iteration is also reported in the background of

Figure 3.5 where the values are normalized to the full scene size.

Figure 3.1: Targets RCS vs. Aspect angle

Similarly, for SADMM and ASADMM, we set the hyperparameters values as µ = 3,

β = 100, and λ = 20 while the absolute and relative tolerance values are set as ϵabs =

10−4 and ϵrel = 10−2, respectively. Kp = 5 iterations and ϵp = 10−5 error tolerance are

considered for the subroutine SSC in ASADMM implementation.

Reconstructed images using SADMM and ASADMM are shown in Figure 3.4 along

with BP reconstruction and the composite GT image. The composite GT is defined as

the sum of individual GT images; hence it represents the maximum attainable recon-

struction. Figure 3.4 shows the capability of both algorithms to reconstruct high-quality

images of the scene with very similar performance. However, as it can be seen from Fig-

ure 3.6, ASADMM requires fewer iterations than needed for SADMM to satisfy the same

stopping criteria conditions. Moreover, ASADMM running time is found to be approx-

imately 80% less than SADMM due to the complexity reduction induced by updating

only sub-images of the scene. The maximum sub-image size considered by ASADMM

at each iteration is also reported in the background of Figure 3.6 where the values are

normalized to the full scene size.
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Figure 3.2: Sensors orientation and their ground truth images

3.6 Conclusion

In this chapter, we introduced a modified accelerated version of the ADMM algorithm

tailored for radar imaging with widely distributed radar sensors. Our proposed al-

gorithms, namely ACADMM and ASADMM, exhibit similar imaging performance to

CADMM and SADMM, respectively. They effectively suppress artifacts and reconstruct

high-quality images of the scene. Additionally, they offer significant complexity reduc-

tion, resulting in considerably shorter running times compared to the original versions.

This reduction in complexity stems from adaptive scene focusing during the iterative

reconstruction process. The accelerated algorithms gradually learn the support of the

image portion containing the scattering targets and concentrate on that region during

subsequent iterations. Simulation results have confirmed the efficacy of the accelerated

methods on synthetic simulated scenes.
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Figure 3.3: Composite ground truth image and reconstructed images with a 30 dB
dynamic range using BP, CADMM, and ACADMM
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Figure 3.4: Composite ground truth image and reconstructed images with a 30 dB
dynamic range using BP, SADMM, and ASADMM
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Figure 3.5: CADMM and ACADMM Convergence Rate
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Figure 3.6: SADMM and ASADMM Convergence Rate
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Chapter 4

Automatic Hyperparameters

Tuning

When employing compressed sensing algorithms for image reconstruction, tuning regu-

larization parameters is crucial to balance data fidelity and prior knowledge. However,

as demonstrated in previous chapters, this often involves an empirical grid search over

predefined parameter sets. This is a process that hinders the direct implementation of

developed methods on a variety of scenes, particularly ones much different from those

considered during tuning. To overcome this challenge, this chapter introduces a heuris-

tic method for automatically tuning hyperparameters under scene sparsity priors. The

method exploits the soft thresholding applied to back-projection images to set hyper-

parameter values based on required scene sparsity. Integrated as a sub-routine within a

FISTA-inspired algorithm originally proposed for coherently reconstructing scenes ob-

served with partially synchronized distributed sensors, the proposed method efficiently

reconstructs the image and corrects clock mismatch errors. Moreover, leveraging the

model structure, an FFT-based algorithm implementation is proposed, reducing com-

plexity, running time, and memory requirements compared to direct implementation.

Consequently, the modified algorithm provides an effective approach to jointly recon-

struct scene images and address clock mismatch errors.

4.1 Introduction

Technology advances in digital signal processing, antenna design, and electronic integra-

tion, have attracted considerable attention to the research on Multiple-Input Multiple-

Output (MIMO) radars [87]. Real-time imaging applications in surveillance, assisted

living, smart buildings, and robotic motion planning offer interesting avenues where
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MIMO radars are expected to excel [88, 89] as radar imaging helps to identify and

characterize complex objects in the scene [90]. The resolution of radar images in the

range and cross-range directions is related to the bandwidth of the transmitted pulse

and the size of the radar aperture respectively. Along with the use of wide-band radar

waveforms and the transition towards the millimeter-wave frequency spectrum, spatially

distributed antenna arrays can be utilized to realize a large physical aperture in order

to achieve high image resolution [46]. However, distributed radar sensors feature many

challenges that include the establishment of centralized/collaborative coordination of

sensor transmissions and precise synchronization among sensors [91].

As far as distributed sensing is concerned, images reconstructed using conventional

matched filtering approaches suffer in general from quality degradation due to non-

uniform sensor distribution [92]. Alternatively, radar imaging based on the inverse

problem and CS methods provide improved performance by incorporating prior infor-

mation about the scene such as sparsity and smoothness [93]. The advantages of the

sparsity-driven regularization methods include increased image quality and robustness

to limitations in data quantity [94]. Nevertheless, when considering radar imaging with

distributed sensors at high frequencies, the main challenge is the coherence problem

due to the ambiguities in antenna positions and difficulties in precisely synchronizing

the clocks [95]. While modern positioning systems and time synchronization protocols

provide quite accurate location and coarse timing, the remaining errors are still beyond

the required high resolution and affect the quality of the reconstructed image resulting

in a blurred/unfocused image [96].

The works in [46, 95, 97, 98] have considered these problems within a CS framework.

By modeling the position error and the clock synchronization error as shift kernels in

the image domain, variations of image blind deconvolution algorithms based on ℓ1-norm

minimization are used to jointly reconstruct the radar image and the shift kernel ex-

ploiting the sparsity of both. Such modeling and reconstruction provide very interesting

results due to the capability of the model to capture the nature of the error and the

powerful algorithms used for image reconstruction such as FISTA [84]. However, when

using FISTA and similar regularized optimization algorithms, an empirical search is usu-

ally conducted to find a suitable combination of regularization parameters that yield the

desired performance. Moreover, when considering clock synchronization mismatch, the

models do not account for the reciprocal relation between the distributed sensor pairs

leaving the reconstruction algorithm with more parameters than necessary to estimate,

thereby increasing the overall complexity and possible reconstruction.

In this chapter, we consider the problem of clock mismatch between the distributed
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sensors using the model formulation and FISTA-based reconstruction algorithm intro-

duced in [95]. Building on that work, we propose a modified imaging algorithm that al-

lows for the automatic selection of regularization parameters based on the reconstructed

image using the conventional back-projection method, albeit, blurred and influenced by

artifacts. Further, we incorporate the system features and introduce an efficient FFT

based implementation of the algorithm that exploits the model structure to improve

the algorithm running time and reduce its memory requirements compared to its direct

implementation.

The chapter is organized as follows. In Section 4.2, we revise the system model and

clocks mismatch error formulation. Section 4.3 introduces the subroutine for regulariza-

tion parameters auto-selection to be used with the FISTA-based algorithm introduced

in [95] and provides a reduced complexity implementation for the whole recovery al-

gorithm based on FFT. Subsequently, we examine the performance of our method in

Section 4.4 and show an example of image reconstruction. Finally, we conclude the

chapter in Section 4.5 and provide some final remarks.

4.2 System Model

We consider using Q distributed radar sensors to observe a two-dimensional scene of size

Nc cells containing K static targets. Each radar sensor contains a ULA of Nr receiving

antennas and a single transmitting antenna only. We also consider a TDM model in

which only one sensor transmits at a time and all the sensors receive the reflections

from the scene due to this single transmission. Under this model, we denote with index

m = 1, . . . ,M all the transmitter/receiver pairs combinations where M = Q2Nr. The

model presented is based on [95] and is presented here for completeness.

To illuminate the scene, a transmitting antenna emits a pulse s(t) with a bandwidth

BW; this pulse propagates through the scene and gets reflected off the targets to the

multiple receiving antennas. When considering the transmission related to the mth

transmitter/receiver pair, the reflected signal is

rm(t) =

K∑
k

akms(t− τkm)xk, (4.1)

where xk is the reflectivity of the target k, akm and τkm denote, respectively, the signal

attenuation and the delay due to the propagation between the transmitting and receiving

antennas of the mth pair reflected by the kth target. Assuming a free space propagation
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model, the signal attenuation and delay can be expressed as

akm =
1

dkm,Tx
2
dkm,Rx

2 and τkm =
dkm,Tx + dkm,Rx

c
,

where dkm,Tx and dkm,Rx are the distances between the target k and transmitting and

receiving antennas pertinent to the mth pair respectively, and c is the speed of light.

When considering a transmitter/receiver antenna pair not belonging to the same

sensor, it is extremely difficult to have their clocks perfectly synchronized, especially

at higher frequencies. As a result, the received reflected signal in (4.1) will be delayed

or advanced according to the relative drift/ mismatch between the clocks of the corre-

sponding sensors In the case of clocks among the sensors of the mth pair with a mismatch

error ϵm, the received signal is equivalent to a convolution of the signal rm(t) with a

delta function shifted with this error. The received signal in time and frequency domains

becomes

ym(t) = rm(t) ∗ δ(t− ϵm)

=

 K∑
k

akms(t− τkm)xk

 ∗ δ(t− ϵm),

Ym(ω) = Rm(ω)e−jωϵm

=

 K∑
k

akmS(ω)e−jωτkmxk

 e−jωϵm

(4.2)

where ω is the angular frequency, R(ω) and S(ω) are the frequency spectrum of r(t) and

s(t) respectively.

The observed scene is discretized considering a fine grid of Nc cells such that a sin-

gle cell can have a single target only and the reflectivity of all scene cells is collected

in the vector x ∈ CNc×1. If there is no synchronization error between the mth trans-

mitter/receiver pair, the Ns sampled frequency-domain received signal in matrix form

is

Rm = Amx, (4.3)

where Am ∈ CNs×Nc incorporate the transmitted pulse S(ω) and the propagation coef-
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ficient akme−jωτkm , i.e it can be expressed as

Am =


a1me−jω1τ1mS(ω1) · · · aNc

m e−jω1τ
Nc
m S(ω1)

a1me−jω2τ1mS(ω2) · · · aNc
m e−jω1τ

Nc
m S(ω2)

...
. . .

...

a1me−jωNsτ
1
mS(ωNs) · · · aNc

m e−jωNsτ
Nc
m S(ωNs)

 .

Following the model presented in [95], the frequency domain received signal with

synchronization error in equation (4.2) can be rearranged and written as

Ym(ω)ejωϵm = Rm(ω). (4.4)

Using (4.3) and (4.4), the vector contains the frequency domain received signal with

synchronization error Ym satisfies

DYmFzm = Rm = Amx, (4.5)

where DYm is a diagonal matrix with Ym on the diagonal, F is the discrete Fourier

transform matrix, and zm is the discrete vector of the time domain advance δ(t + ϵm).

With the assumption that Ym does not contain any zero frequency components, also

assuming noise-free measurements, (4.5) can be written as

[
D−1

Ym
Am −F

] x

zm

 = 0 (4.6)

where 0 of dimensions Ns × 1 is a zero vector.

When considering all the measurements from all M transmitter/receiver pairs in the

presence of noise, the complete model equation based on (4.6) is


Ã1 −F ∅ ∅ · · · ∅
Ã2 ∅ −F ∅ · · · ∅
...

...
...

...
. . .

...

ÃM ∅ ∅ ∅ · · · −F





x

z1

z2
...

zM


=


n1

n2

...

nM

 (4.7)

where Ãm = D−1
Ym

Am, ∅ is matrix of all zeros of dimension Ns × Ns, and nm is the

frequency domain additive noise to the measurements related to the mth pair. The

model indicates that both the scene reflectivity values x and the true time shifts zm,
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ideally, lie in the null space of the matrix in the left-hand side of (4.7).

4.3 Image Recovery

4.3.1 Solution Model

Using (4.7), the goal is to recover both the radar scene and the true time shifts jointly.

The problem is ill-posed when MNs < Nc +MNs and a unique solution does not exist.

Since zm is 1-sparse signal (shift kernel) and x is sparse by assumption, as formulated

in [95], both the parameters can be recovered by finding the solution of the following

optimization problem

min
x,z1,z2,··· ,zM

λx ∥x∥1 + λz

M∑
m=1

∥zm∥1 + ∥B w − b∥22 ,

subject to: x > 0Nc , zm > 0Ns , 1T zm = 1, ∀m,

(4.8)

where λx and λz are the regularization parameters on the ℓ1 norm of the scene reflectivity

and time shifts respectively,

B =



Ã1 −F ∅ ∅ · · · ∅
Ã2 ∅ −F ∅ · · · ∅
...

...
...

...
. . .

...

ÃM ∅ ∅ ∅ · · · −F
1TNC

0TNs
0TNs

0TNs
· · · 0TNs


,b =



0

0
...

0

C


, (4.9)

and w =
[
xT zT1 zT2 · · · zTM

]T
. The last row of the matrix B is to apply a soft

constraint on the sum of the reflectivity image to equal a pre-determined constant C to

avoid the trivial solution of all zeros. Here, 1 and 0 are vectors of all ones and zeros.

The hard constraints in (4.8) are to ensure that both x and zm are non-negative in

addition to a scaling constraint to ensure that zm is 1-sparse for each m.

4.3.2 FISTA Parameters Auto-selection

The problem in (4.8) is a convex sparse recovery problem for which a FISTA-inspired

algorithm has been proposed in [95]. The algorithm requires the regularization param-

eters λx and λz as inputs; however, these quantities vary from one scenario to another,

motivating an auto-selection procedure valid for a plethora of scenarios. In this context,

we consider a subroutine PAS which returns the vector λ containing the regularization
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Algorithm 4 FISTA for distributed unsynchronized radar imaging with parameters auto-
selection

Input: {Am}Mm=1 and {Ym}Mm=1

Initialize:

w0 = u0 =
[
0TNc

zT0

]T
, t0 = 1

λ̂, C ← PAS({Am}Mm=1, {Ym}Mm=1)

set B and b as in (4.9)

while stopping criteria do

1. vj ← wj−1 + αBH(b−Bwj−1)

2. ṽj ← T (vj , αλ)

3. ũj ← PR+(
˜̃vj)

4. uj ← Erp(ũ
j)

5. tj ← 1+
√

1+4(tj−1)2

2

6. wj−1 ← tj−1−1
tj

(uj − uj−1)

end while

parameters

λ̂ =



λ̂x1NC

λ̂z1Ns

λ̂z1Ns

...

λ̂z1Ns


. (4.10)

Algorithm 4 summarizes the steps to recover the radar image solving (4.8). The algo-

rithm is initialized with a zero vector for the image part of w, while z0 is a vector of di-

mensions MNs×1 comprising the shift kernels. z0 contains M time-domain Dirac deltas

(at zero lag) realizing a shift kernel equivalent to no mismatch error for all the M trans-

mitter/receiver pairs. The function T (.) at step 2 is the element-wise soft-thresholding

operator while PR+(.) at step 3 represents the projection onto the non-negative real

orthant followed by a normalization. Finally, Erp ensures that the z components be-

longing to a reciprocal transmitter/receiver pair are a flipped version of each other. The

parameters auto selection subroutine PAS relies on the blurred image reconstructed

from back-projection, i.e. multiplication with the adjoint matrix. Considering step (1)
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of Algorithm 4, we can write this step as vj ← Dα(w
j−1) where

Dα(x) = (I− αBHB)x+ αBHb. (4.11)

Accordingly, the soft thresholding operator step is ṽj ← T (Dα(w
j−1), αλ). Now, let x∗

be the optimum solution of the imaging problem with K-sparsity, Dα(x
∗) can be sorted

as

[Dα(x
∗)]1 ≥ [Dα(x

∗)]2 ≥ · · · ≥ [Dα(x
∗)]Nc .

Then, due to the thresholding operator T (.), the following holds∣∣∣[Dα(x
∗)
]
i

∣∣∣ ≥ αλ⇒ i ∈ {1, 2, · · · ,K}∣∣∣[Dα(x
∗)
]
i

∣∣∣ < αλ⇒ i ∈ {K + 1,K + 2, · · · , Nc},
(4.12)

which implies that

λopt ∈
[∣∣∣[Dα(x

∗)
]
K

∣∣∣ /α, ∣∣∣[Dα(x
∗)
]
K+1

∣∣∣ /α] . (4.13)

From (4.12) and (4.13), we notice that if we have an approximation of x∗ in terms of

sparsity and global magnitude order only (corresponding entries do not matter since we

can sort them), say x̂ with L-sparsity ≥ K, we can set λ̂ to
∣∣∣[Dα(x̂)

]
L

∣∣∣ /α and obtain a

good image reconstruction.

We claim that in our scenario such approximation is possible from the image recon-

structed through the adjoint matrix. Since we consider a single transmitter antenna at

each sensor, the monostatic contributions of transmitter/receiver pairs of which both

antennas belong to the same sensor will provide a certain relative energy level of all

targets that is proportionally related to the true relative targets’ reflectivity levels. Ad-

ditionally, even in the presence of ghost targets and blurring effects, the back-projection

image still has a high-energy focus in a few locations due to the sparse nature of the

scene itself. As a result, it can be made more sparse by applying a threshold β under

which the back-projection entries are set to zero. One way to specify β is to set it so it

nullifies the entries lower than a threshold.

In a few words, by appropriate scaling and thresholding of the back-projection image,

we can obtain an approximate x̂ sufficient to set the regularization parameters for FISTA

reconstruction. Algorithm 5 summarizes the steps of PAS subroutine. It is worth noting

that P is the power of the transmitted pulse.
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Algorithm 5 PAS subroutine for FISTA parameters auto-selection

Input: {Am}Mm=1 and {Ym}Mm=1

Set:

A←
[
AT

1 AT
2 · · · AT

M

]T
Y ←

[
YT

1 YT
2 · · · YT

M

]T
1. x̂← 1

MP A
HY

2. C ← ∥x̂∥1

3. [x̂]i ← 0 (if [x̂]i < max(x̂)/β)

4. x̂s ← sort(x̂,descend)

5. ls ← {max(i) : [x̂s]i ̸= 0}

6. ŵ←
[
x̂T zT0

]T
7. λ̂x ←

∣∣∣[Dα(ŵ)
]
ls

∣∣∣ /α
8. λ̂z ←

∣∣∣[Dα(ŵ)
]
Nc+M

∣∣∣ /α
Output: C, λ̂x, λ̂z

4.3.3 Reduced Complexity Implementation

The matrix B in (4.9) has the dimension MNs × (Nc +MNs) which is already a large

matrix and grows even larger when increasing the number of transmitter/receiver pairs

M , number of samples Ns (e.g. when using a pulse with a larger bandwidth), or the size

of the scene Nc. This affects the performance of the algorithm wherein each iteration

includes a multiplication with the matrix BHB in step 1 causing a significant increase in

execution time. More importantly, it requires a noticeably large memory size to store the

matrix B and other variables which is critical when dealing with radar sensors offering

limited resources. To this end, noticing that the big portion of the matrix B is nothing

but the Discrete Fourier Transform (DFT) matrix, also that the matrix BHB needed for

step 1 is symmetric, in this section we provide an implementation of the algorithm using

FFT which significantly reduces the memory requirements and enhance the algorithm

running time.
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Let us consider the block partitioned matrix B

B =

 Ã F
1TNc

∅

 (4.14)

where

F =


−F ∅ · · · ∅
∅ −F · · · ∅
...

...
. . .

...

∅ ∅ · · · −F

 and Ã =


Ã1

Ã2

...

ÃM


When considering step 1 of Algorithm (4), it can be rewritten as

vj ← wj−1 − αBHBwj−1 + αBHb (4.15)

Using (4.14) and (4.15), we can write

Bwj−1 =

 Ãxj−1∑
xj−1

 +

Fzj−1

0


BHb =

C1Nc

0

 (4.16)

where

wj−1 =

xj−1

zj−1

 , and Fzj−1 =


−fft(z1j−1)

−fft(z2j−1)
...

−fft(zMj−1)

 .

Similarly, from (4.15) and (4.16) we can write

BHBwj−1 =

ÃH 1Nc

FH 0



 Ãxj−1∑

xj−1

+

Fzj−1

0




=

ÃHÃxj−1 +
∑

xj−1

FHÃxj−1

+

ÃHFzj−1

FHFzj−1


(4.17)
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where

FHÃxj−1 =


ifft(Ã1x

j−1)

ifft(Ã2x
j−1)

...

ifft(ÃMxj−1)


which finally reduces step 1 of Algorithm 4 to

vj ← wj−1 − α

ÃHÃxj−1 +
∑

xj−1 + ÃHFzj−1 − C1Nc

FHÃxj−1 +Nsz
j−1

 (4.18)

Thus the computation is significantly reduced by the use of FFT, while only the matrices

ÃHÃ, and Ã need to be stored.

4.4 Numerical Analysis
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Figure 4.1: (a) Scenario layout; (b) Reflectivity ground-truth

In this section, the performance of our proposed method for automatic parameter

selection is evaluated and FISTA is implemented using our compact formula (4.18) of

the update step. We run our simulations considering a synthetic radar scene in which

a small Region of Interest (ROI) containing K = 5 static targets is examined. Using a

fine grid with cells of size 0.01 m × 0.01 m, our ROI consists of Nc = 94 × 93 = 8742

cells. To observe the scene, 4 radar sensors with 2 antennas each (1 transmitting and 1

receiving) are used. Figure 4.1 shows the layout of the distributed sensors and the true

reflectivity image of the ROI. Considering a single sensor transmission at a time, our

scenario has M = 16 transmitter/receiver pairs. A LFM with a sweeping bandwidth

BW = 3 GHz is used for transmission at all sensors and the received signal is sampled
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at the Nyquist frequency. The received signal is corrupted with white Gaussian noise

and has a Peak Signal-to-Noise Ratio (PSNR) of 20 dB.
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Figure 4.2: Image reconstruction by (a) Adjoint matrix, (b) FISTA with auto-selected
parameters λ̂, (c) and (d) FISTA with mismatched parameters 2λ̂ and λ̂/2, respctively.

We considered a maximum mismatch error between the clocks of the sensor Tmax =

1.33 ns which is equivalent to the time of 20 samples. As mentioned in section 4.3.2,

a couple of reciprocal transmitter/receiver pairs will have the reverse time error with

respect to each other (delay/advance), while a transmitter/receiver pair of antennas

belonging to the same sensor does not experience any mismatch error.

Along with the image reconstructed by the adjoint matrix Figure 4.2(a), we show

the reconstructed image of the scene using the FISTA algorithm with the regularization

parameters calculated through our method in Figure 4.2(b). Additionally, we show the

reconstruction using a slightly scaled version of the parameters, namely 0.5λ̂ and 2λ̂

Figure 4.2(c) and Figure 4.2(d) respectively. It can be seen that running FISTA with

auto-selected parameters λ̂ gives better image reconstruction in comparison with using

other slightly higher/lower parameters. When using a higher regularization parameter,
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Figure 4.3: ROC curves for image reconstruction using our calculated λ̂ versus 1.5λ̂ and
λ̂/2 at different PSNR levels. The maximum mismatch error Tmax is equivalent to 5
samples (Top row) and 25 samples (Bottom row).
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the reconstructed image becomes sparser and more ghost targets are introduced as in

Figure 4.2(c). On the other hand, using a lower parameter, results in an unfocused

image along with a concentrated region of ghost targets too as in Figure 4.2(d).

In order to assess the performance of our method at different PSNR levels and dif-

ferent mismatch errors, in Figure 4.3 we calculate the Receiver Operating Characteristic

(ROC) curves for image reconstruction using λ̂, 1.5λ̂ and λ̂/2 at PSNR level of 10, 20,

and 30 dB for maximum mismatch errors Tmax equivalent to 5 and 25 samples. Each

curve is the average performance over 30 realizations of noise and mismatch error.

From the curves, we note that while using 1.5λ̂ instead of λ̂ lowers the detection per-

formance at all PSNR levels, using λ̂/2 provides a comparable detection performance

to using λ̂ at high PSNR and even better performance at low PSNR levels. This can

be justified by looking to the reconstructed images in Figure 4.2(b) and Figure 4.2(d)

and recalling the nature of ROC curves being a measure of true target detection ver-

sus false alarms after a thresholding step. Accordingly, since a lower regularization

parameter allows for a higher magnitude and blurred reconstructed image, targets will

remain detectable after thresholding unlike the focused image reconstructed using higher

parameters.

4.5 Conclusion

In this chapter, we introduced a method for efficiently implementing a FISTA-based

algorithm for radar imaging with distributed unsynchronized sensors. This efficiency

enhancement is achieved through two aspects: 1) automatic hyperparameter tuning,

and 2) reduced complexity implementation based on FFT. The automatic parameter

tuning relies on exploiting the structure of the blurred image of the scene reconstructed

by the adjoint matrix (BP image) during the soft thresholding step. The BP image

provides an upper bound for the scene sparsity degree, allowing for setting the reg-

ularization parameters accordingly. The FFT-based implementation offers a compact

and storage-efficient implementation of the algorithm, reducing computation overhead.

Both parameter auto-selection and reduced complexity implementation pave the way for

applying such algorithms in real-time scenarios rather than relying on post-processing

after collecting measurements.
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Point Clouds Detection
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Chapter 5

Distributed Detection of

Aspect-Dependent Targets

In this chapter, we tackle the challenge of detecting aspect-dependent fluctuating targets

observed with distributed mmWave radar sensors. Our objective is to enhance the qual-

ity of point cloud detections by devising a detector that jointly considers the processed

signals from all sensors and accounts for variations in RCS due to aspect-dependent fluc-

tuations of the targets. To achieve this, we derive a detector based on the Generalized

Likelihood Ratio Test (GLRT), aiming to estimate the fluctuation parameters of the

targets at each sensor using multiple chirps. The resulting joint test is a weighted sum

of individual tests applied to the square law detector output of each sensor, with weights

proportional to the local SNR at each sensor. These weights contrast significantly due to

variations in aspect angles and path losses for a single Cell Under Test (CUT). Through

Monte-Carlo simulations, we validate the performance of the proposed detector, demon-

strating its superiority over conventional detection methods that employ non-coherent

integration of chirps and aggregation of tests from all sensors.

5.1 Introduction

The emergence of MIMO mmWave radar sensors has received tremendous interest in

recent years, especially for indoor sensing applications [55]. Such applications include

human detection and activity recognition [99], vital signs monitoring [14], and real-

time tracking of multiple individuals [100], to name a few. Additionally, driven by

the availability and affordability of such sensors, employing widely distributed sensing

systems has drawn attention in the majority of applications due to the advantages that

are allowed by such architectures [38]. In particular, the use of distributed sensors
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enables the capture of highly fluctuating and aspect angle-dependent targets. This

results in a higher detection of such targets in addition to improving system robustness

by providing redundancy in the events of occlusion or sensor failures [39, 41, 42].

Typically, detections by multiple widely distributed sensors are fused in the data

domain after processing, rather than implementing a joint detection scheme. While

data domain fusion allows for the use of simpler detection algorithms at each sensor,

joint detection can potentially offer improved detection performance by appropriately

weighting the data received from the different sensors and leveraging more the ones with

a higher available SNR [44, 101]. Even though the optimum detector in the Neyman-

Pearson sense for fluctuating targets observed with multistatic radars has long existed

in the literature [102–104], to the best of our knowledge, the corresponding sub-optimal

GLRT detector and the analysis of its performance versus the aspect angle dependence

of the RCS have not been explicitly introduced, especially for indoor sensing environ-

ments. The optimum detector performs the Likelihood Ratio Test (LRT) assuming

perfect knowledge of the expected average local SNR available to each sensor which is

impractical. Thus, an estimation of the average received power at each sensor is required

for the implementation of the detector.

Accordingly, in this chapter, we analytically devise the GLRT detector for fluctuating

targets observed by widely distributed mmWave sensors each transmits multiple chips

(pulses). Due to the angular diversity, the targets feature an aspect-dependent RCS

that can vary significantly with respect to different sensors. We formulate the detection

problem taking this into account and utilize Maximum Likelihood Estimation (MLE)

in the derivation of the detector to achieve the optimum weighting in the GLRT sense.

We evaluate the performance of the proposed detector using Monte-Carlo simulations

and show that it outperforms the conventional detectors which employ non-coherent

integration of multiple chirps and integrate the data from multiple sensors equally [105].

The proposed detector realizes higher gain in detection performance in the cases of

higher variance of the RCS with respect to different sensors and achieves asymptotically

the performance of the optimum LRT detector in extreme scenarios of RCS variation.

Throughout this chapter, vectors are denoted in lowercase bold font, while matrices

are in uppercase bold. IL is the identity matrix of size L× L and 0N is a vector of all

zeros of size N × 1. The superscripts .T and .H denote, respectively, the transpose and

the complex conjugate transpose of a vector or a matrix. The operators |.| and ∥.∥2 are

used for the matrix determinant and the Frobenius norm, respectively. The symbol ⊗
is used for the Kronecker product.
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5.2 System and Signal Model

We consider a widely distributed radar system with Q mmWave MIMO radar sensors,

each having Ntx and Nrx transmitting and receiving antenna elements, respectively.

Assume that pq = [xq, yq, zq]
T denotes the absolute position of the qth radar sensor,

where xq, yq, and zq represents the absolute Cartesian coordinates, with q = 1, 2, . . . , Q.

In this case, a target with absolute position ps = [xs, ys, zs]
T and absolute velocity

vs = [vxs, vys, vzs]
T , will have a relative distance Rq, azimuth θq, and elevation ϕq with

the qth radar sensor. The target received signal can be expressed as

xq = αqsq(θq, ϕq) +wq ∈ CNtxNrx×1 (5.1)

where αq indicates the complex value of the reflected signal at the qth radar sensor

which comprises path losses and target RCS, and fluctuates from pulse to pulse, wq

denotes the interference signal that can include both clutter and thermal noise. In this

chapter, we assume wq ∼ CN (0, σ2
wI) contains only receiver thermal noise which has

a flat Power Spectral Density (PSD) with P (f) = kBT0, where kB is the Boltzmann

constant and T0 is the effective noise temperature. Moreover, the signal steering vector

is,

sq(θq, ϕq) = aq(θq, ϕq)⊗ bq(θq, ϕq),

where the spatial transmit and receive steering vectors are defined respectively as

aq(θ, ϕ) =


e−jkT (θ,ϕ)pq,1

e−jkT (θ,ϕ)pq,2

...

e−jkT (θ,ϕ)pq,Ntx

 , bq(θ, ϕ) =


e−jkT (θ,ϕ)pq,1

e−jkT (θ,ϕ)pq,2

...

e−jkT (θ,ϕ)pq,Nrx

 ,

and k(θ, ϕ) = 2π
λ [cos θ cosϕ, sin θ cosϕ, sinϕ]T is the wave-number vector with θ and ϕ

are azimuth and elevation angles, respectively. pq,nt and pq,nr are the locations of the

qth radar transmit and receive array elements, respectively. At the fusion center, the

received signals can be stacked by x = [xT
1 ,x

T
2 , ...,x

T
Q]

T and w = [wT
1 ,w

T
2 , ...,w

T
Q]

T , and

α = [α1, α2, ..., αQ]
T . By defining the steering matrix S ∈ CQNtxNrx×Q as,
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S =


s1(θ1, ϕ1) 0NtxNrx · · · 0NtxNrx

0NtxNrx s2(θ2, ϕ2) · · · 0NtxNrx

...
...

. . .
...

0NtxNrx 0NtxNrx · · · sQ(θQ, ϕQ)

 .

The stacked received signal of M chirps (pulses) in one Coherent Processing Interval

(CPI) reflected from a certain range CUT can be obtained by

X = SA+W ∈ CΩ×M (5.2)

where the matrix X = [x(1)x(2) · · ·x(M)] collects the received signal of M chirps having

the received signal at the mth chirp obtained by

x(m) = Sα(m) +w(m), (5.3)

A = [α(1),α(2), · · · ,α(M)] represents the fluctuation of the amplitude of the signal from

pulse to pulse, W = [w(1),w(2), · · · ,w(M)] is the aggregate matrix of thermal noise for

all pulses, Ω = QNtxNrx, and m = 1, · · · ,M .

The reflected signal amplitudes are assumed to fluctuate from pulse to pulse at each

sensor. We consider a Rayleigh fluctuation model (Swerling II) of the amplitudes of

the reflected signals at the qth sensor which is equivalent to its complex value being

distributed as αq ∼ CN (0, σ2
αq
).

Let H0 represent the null hypothesis that a target is absent, and H1 represent the

alternative hypothesis that a target is present in the CUT. The detection problem can

be cast as the following binary hypothesis testH0 : X = W

H1 : X = SA+W
(5.4)

In the next section, we provide the corresponding detector based on GLRT.

5.3 GLRT Detector Derivation

In order to derive the GLRT test, the Probability Density Function (PDF) of the col-

lection of the received signals from multiple chirps X under the null and the alternative

hypotheses are to be evaluated. We first simplify the PDFs for a single chirp, then

since the received signals from consecutive chirps are independent, the PDF of X is the
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multiplication of the PDFs of the single chirps. Under the null hypothesis, the received

signal contains only the noise that is modeled as a central complex white Gaussian noise

and has the PDF

p(x | H0) =
1√

π2Ω |Cww|
exp

(
−1

2
xHC−1

wwx

)
(5.5)

where Cww = σ2
wIΩ. Similarly, under the alternative hypothesis, the received signal has

the PDF

p
(
x | H1

)
=

1√
π2Ω |Cxx|

exp

(
−1

2
xHC−1

xxx

)
(5.6)

where in this case, from (5.3), the covariance matrix of the received signal is: Cxx =

SCααS
H + Cww since α and w are independent, where Cαα is the covariance matrix

of α.

Since the reflectivity coefficients with respect to each sensor are mutually independent,

the covariance matrix Cαα takes the form Cαα = diag
(
σ2
α1
, σ2

α2
, . . . , σ2

αQ

)
which leads

to a block diagonal structure of the covariance matrix Cxx with the qth block that has

the dimensions ζ × ζ defined as

[Cxx]q = σ2
αq
sqs

H
q + σ2

wIζ (5.7)

Under the alternative hypothesis (5.6), the log-likelihood function is

L
(
p
(
x | H1

))
= −2 ln (π)− 1

2
ln |Cxx| −

1

2
xHC−1

xxx (5.8)

where the quadratic term of the likelihood function is written and simplified using the

Matrix inversion lemma as

xHC−1
xxx =

Q∑
q=1

xH
q

(
σ2
αq
sqs

H
q + σ2

wIζ

)−1
xq

=

Q∑
q=1

xH
q

(
1

σ2
w

Iζ −
σ2
αq
/σ2

w

σ2
w + ζσ2

αq

sqs
H
q

)
xq.

(5.9)
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Similarly, using the Matrix determinant lemma, the logarithmic term can be written as

ln |Cxx| = ln

 Q∏
q=1

∣∣∣σ2
αq
sqs

H
q + σ2

wIζ

∣∣∣


=

Q∑
q=1

ln
(∣∣∣σ2

αq
sqs

H
q + σ2

wIζ

∣∣∣)

= ln |Cww|+
Q∑

q=1

ln

1 + ζ
σ2
α2
q

σ2
w

 .

(5.10)

Accordingly, considering the binary hypothesis test in (5.4), the optimum detector based

on GLRT is obtained by

tGLRT = ln


max

σ2
α1

,σ2
α2

,··· ,σ2
αQ

∏M
m=1

(
p(x(m) | H1)

)
∏M

m=1p(x
(m) | H0)


H1

≷
H0

η (5.11)

Using (5.9) and (5.10), the GLRT in (5.11) can be expanded in terms of the received

signal of all chirps and sensors as

tGLRT =
M∑

m=1

{
x(m)H

(
C−1

w − Ĉ−1
xx

)
x(m) + ln |Cww| − ln

∣∣∣Ĉxx

∣∣∣}H1

≷
H0

2η

=
M∑

m=1


Q∑

q=1

x(m)H

q

(
σ̂2
αq
/σ2

w

σ2
w + ζσ̂2

αq

sqs
H
q

)
x(m)
q −

Q∑
q=1

ln

1 + ζ
σ̂2
α2
q

σ2
w


H1

≷
H0

2η

=

M∑
m=1


Q∑

q=1

(
σ̂2
αq
/σ2

w

σ2
w + ζσ̂2

αq

)∥∥∥sHq x(m)
q

∥∥∥2
2
−

Q∑
q=1

ln

1 + ζ
σ̂2
α2
q

σ2
w


H1

≷
H0

2η

(5.12)

where Ĉxx is the estimated covariance matrix constructed by the estimated values of

σ̂2
αq

through MLE by minimizing the negative likelihood

−L

(∏M
m=1

(
p
(
x(m) | H1

))
with respect to σ2

αq
. Note that this minimization can be
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done separately for each σ2
αq

since they are independent. More specifically,

σ̂2
αq

= min
σ2
αq

−L
 M∏

m=1

p
(
x(m) | H1

)


= min
σ2
αq


M∑

m=1

x(m)H

q

(
σ2
αq
/σ2

w

σ2
w + ζσ2

αq

sqs
H
q

)
x(m)
q − ln

(
1 + ζ

σ2
αq

σ2
w

)
(5.13)

Solving for σ2
αq
, yields the solution

σ̂2
αq

=

1
M

∑M
m=1

∥∥∥sHq x
(m)
q

∥∥∥2
2
− ζσ2

w

ζ2
(5.14)

which is the estimation of signal power at the qth sensor. The MLE estimate above

requires knowledge of the noise power that is estimated using secondary data in adjacent

cells free of a target Xsec as σ
2
w = tr

[
1
M

∑M
m=1XsecX

H
sec

]
/Ω.

It is noted from (5.12) that the GLRT test is a weighted sum of the square output

of the matched filter of different sensors where the weights are proportional to the

local SNRs available at the sensors, as suggested in the literature. In the sequel, the

performance of the proposed detector is analyzed numerically.

5.4 Numerical Analysis

In this section, we evaluate the proposed GLRT detector numerically using Monte Carlo

simulations. The detector’s performance is demonstrated through the use of ROC

curves. Our proposed detector is compared to the conventional detector for fluctu-

ating targets, which comprises square-law detectors at each sensor, with their output

being non-coherently integrated [105]. Throughout this section, we consider distributed

sensors, each equipped with Ntx = 2 transmitting antennas and Nrx = 3 receiving an-

tennas for the different configurations and scenarios considered. We also considered the

Radio Frequency (RF) parameters of the sensors that match the operating parameters

for TI IWR6843ISK radar [106].

First, in Figure 5.1, with Q = 4 sensors, an average post-processing SNRpost = 13

dB, and M = 3Q chirps, we show the performance of the GLRT detector for three

cases of variance in aspect angle dependence of the fluctuating targets. In addition to

the ROC of the conventional detector, we show the ROC of the optimum LRT detector

for multistatic radars [102] which assumes perfect knowledge of the local SNR at each
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Figure 5.1: ROC curves for the proposed GLRT detector compared with conventional
and optimum LRT detectors where Q = 4, M = 3Q, SNRpost = 13 dB for a fluctuating
target with Top: isotropic RCS, Middle: Aspect-dependent RCS with maximum vari-
ation 10 dB, Bottom: Aspect-dependent RCS with maximum variation 20 dB.
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Figure 5.2: ROC curves of the proposed GLRT detector versus the number of distributed
sensors, SNRpost = 13 dB, M = 3Q.

sensor. The target in Figure 5.1(a) is assumed to be fluctuating with the same average

power σα2
q
with respect to all sensors (isotropic). Accordingly, as expected, all three

detectors manifest the same performance since the optimum test weights the output of

the matched filters of each sensor equally which is equivalent to the conventional detector

that applies no weighting. On the other hand, in Figure 5.1(b) and Figure 5.1(c), the

RCS is assumed aspect-dependent with its value varying in a range of 10 dB and 20 dB,

respectively. The depicted performance suggests that the proposed detector is crucial

when RCS varies dramatically with aspect angle. Moreover, Figure 5.1(c) shows that the

proposed detector may achieve asymptotically the performance of the optimum detector

which assumes perfect knowledge of local SNR in extreme cases of RCS aspect variance.

We also included the detection performance of individual sensors with no fusion; in

the figure, this is clearly inferior since the total SNR comes from the integration of all

sensors.

Figure 5.2 illustrates the performance of the proposed detector versus the number of

distributed sensors while keeping the post-processing SNR identical, and the number of

integrated chirps M = 3Q. Needless to mention, the proposed detector does not bring

any gain in performance with respect to the conventional one in the case of Q = 1 since
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Figure 5.3: ROC curves of the proposed GLRT detector versus different values of post-
processing SNR, Q = 4, M = 3Q

no angle diversity is exploited. Likewise, it can be also anticipated that the larger the

number of sensors, the higher gain is obtained by the proposed detector relying on more

measurements with high average power and weighing the unfavorable ones less.

Similarly, the performance of the detector versus different values of SNRpost and dif-

ferent number of chirps M while keeping Q = 4 is depicted in Figure 5.3 and Figure 5.4,

respectively. It can be observed that the proposed detector provides the highest gain in

the mid-range of SNR values. This can be attributed to the fact that, at very low SNR

values, most of the received signals from different sensors are inadequate for detection.

Also, for very high SNR values, all the received signals from different sensors can be

highly reliable for detection. This makes weighting in both cases of high and low SNR

not bring excessive gain in performance. On the other hand, increasing the number of

chirps enhances the estimation of the received signal power in each sensor which leads

to better performance of the proposed detector. Note that as seen in Figure 5.4, a few

chirps as low as the number of sensors is sufficient to realize a performance gain with

the proposed detector.
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Figure 5.4: ROC curves of the proposed GLRT detector versus the number of integrated
chirps, SNRpost = 13 dB, Q = 4

5.5 Conclusion

In this chapter, we developed a GLRT detector for aspect-dependent fluctuating targets

observed by widely distributed MIMO radar sensors. Leveraging the received signal

from multiple chirps, we estimated the average received signal power at each sensor using

MLE, which was then utilized in the likelihood ratio test to derive the GLRT detector.

The resulting detector is a weighted sum of individual tests at each sensor, with weights

proportional to the local SNR values that vary significantly due to differences in RCS

across various aspect angles and path losses towards each sensor.

Through Monte-Carlo simulations, we evaluated the performance of the proposed

detector and demonstrated its superiority over conventional detectors that employ non-

coherent integration of processed chirps and equal aggregation of tests from each sensor’s

received signal. Our simulations revealed that in scenarios where the RCS of targets

significantly differs, the proposed detector asymptotically achieves optimal performance

with perfect knowledge of local SNR values. Additionally, we conducted simulations

to analyze the proposed detector’s performance concerning post-processing SNR, the

number of distributed sensors, and the number of integrated chirps, providing valuable

insights for practical implementation and system optimization.
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Chapter 6

Occlusion-Informed Detection

Employing mmWave radar systems with high-angular resolution in occlusion-prone sce-

narios often results in sparse signal returns along range profiles. In extreme cases, only

one target return may be observed, as the resolution grid size becomes significantly

smaller than the targets, causing portions of the targets to consistently occupy the full

area of a test cell and occluding the region beyond it. Leveraging this structure, we

propose two detectors to enhance the detection of non-occluded targets in such scenar-

ios, thereby providing accurate high-resolution point clouds. The first method employs

multiple hypothesis testing over each range profile where the range cells within are

considered mutually occluding. The second is formulated based on binary hypothesis

testing for each cell, considering the distribution of the signal in the other cells within

the same range profile. Numerical analysis demonstrates the superior performance of

the latter method over both the classic detection and the former method, especially in

low SNR scenarios. Our work showcases the potential of occlusion-informed detection in

imaging radars to improve the detection probability of non-occluded targets and reduce

false alarms in challenging indoor environments.

6.1 Introduction

Over the past few years, there has been a surge of interest in mmWave MIMO radar

sensors, especially for their applications in indoor sensing. These applications include

tasks such as human detection and activity recognition, monitoring vital signs, fall de-

tection, and real-time tracking of multiple individuals simultaneously, as demonstrated

in [99],[14], [107], and [100], respectively. Advancements in mmWave sensor manufac-

turing technology have made such tasks possible. This development has led to the

production of affordable single-chip radar sensors incorporating a large number of an-
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tenna elements, facilitating high angular resolution and resulting in the emergence of a

category of imaging radars (see, for example, [16, 17]). Moreover, the optimization of

various MIMO waveforms has enabled the attainment of enhanced angular performance

which is an essential feature for many of the aforementioned tasks. Examples of different

proposed MIMO waveforms are presented in [108–111].

When monitoring human targets in indoor environments, the detection performance,

preferably of the full body, holds paramount importance for various applications. How-

ever, in typical crowded indoor settings, the likelihood of occluding human targets or

substantial portions of their bodies is quite high, posing a significant challenge for achiev-

ing satisfactory performance across all these applications [24, 112–114].

In the realm of automotive perception, occlusion remedies involve multi-modal fu-

sion, where occlusion scenarios are modeled by combining radar measurements with

other sensors like stereo cameras, as seen in [115], or LIDAR, as demonstrated in [116].

On the other hand, within indoor applications, several studies have proposed distributed

radar sensor architectures that enhance detection capabilities of occluded targets signif-

icantly through the exploitation of spatial diversity [39, 42, 53, 117].

While distributed sensors are essential to detect occluded targets, further measures

can be taken to combat occlusion. In the context of tracking multiple individuals with

distributed sensors, occlusion events concerning one sensor can lead to the division of a

single track into multiple tracks. A solution, proposed in [118, 119], involves overcoming

this issue by fusing track information instead of detection points in the fusion center. On

another note, to better account for the capture of the Doppler falling signatures, while

limiting occlusion events, the authors in [120] analyzed different sensor placements and

showed that wall-mounting of distributed sensors at a low level is favorable to optimize

the extraction of both range and micro-Doppler information necessary to detect falling

events. While the placement of sensors to minimize occlusion is also considered by the

authors in [24], their proposed gait recognition classifier is adjusted to make decisions

based on features expected to be least affected by the occlusion. Similarly, in [112], the

authors employed an architecture featuring separate transmitting and receiving anten-

nas for vital sign monitoring. Using this bi-static setup, they determined the angular

and distance separation of multiple targets to minimize mutual occlusion, resulting in

effective vital sign monitoring with the transmission of a single beam or steered multiple

beams.

The studies mentioned above effectively tackle detection limitations arising from oc-

clusion and propose methods to generate high-resolution detection point clouds. How-

ever, to the best of our knowledge, no study explicitly leverages the structure of in-
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dividual range profile signals under occlusion in the hypothesis testing formulation of

the detection problem. This structure is inherently sparse, particularly when utilizing

high-angular resolution systems, and incorporating it could significantly enhance the

detection capabilities of non-occluded targets, as occlusion would be evident across each

angular bin of the test grid. A significant body of literature exists on exploiting scene

sparsity in radar image reconstruction (see, for example, [121–128]), which is often mo-

tivated by the typical low number of targets in the scene in addition to the properties of

electromagnetic backscattering, including occlusion phenomenon [121, 123]. However,

these methods rely on compressive sensing theory and involve solving inverse problems

which usually require hyperparameter tuning and results in iterative algorithms, ren-

dering them computationally and time expensive, unsuitable for real-time applications

in many cases as shown in Chapter 2.
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Figure 6.1: 2D Range-Azimuth grid map illustrating the sparsity of range profiles relative
to targets’ size in an occlusion-prone sensing environment. Two targets in the scene,
with one occluding part of the other, are observed by two sensors with different angular
resolutions, depicted by the corresponding angular grid sizes. Left: Sensor with low
angular resolution (δθ1) relative to targets’ size. Right: Sensor with high angular
resolution (δθ2 = 0.5 δθ1) relative to targets’ size.

In this chapter, we demonstrate that leveraging the sparse structure in a hypothe-

sis testing-based formulation provides a statistical detector that enhances the detection

performance for non-occluded targets observed by a single sensor, resulting in accurate

high-resolution point clouds. This improved detection at the sensor level would aggre-

gate across a network of sensors, leading to an overall enhancement in detection at a

low computational cost. We capitalize on the phenomenon that in a sensing system

susceptible to occlusion, conducting detection over a dense angular grid yields limited

return responses across multiple range cells within the same angular bin. Consequently,
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Figure 6.2: 3D Demonstration of a full occlusion scenario over a range profile in an
indoor environment observed with a mmWave sensor featuring high angular resolution.
Left: Layout of the scene with the detection grid showing the sensor’s view and high-
lighted group of mutually occluding cells. Middle: Corresponding radar cube. Right:
Expected and actual signal returns in the group of highlighted cells.

we design detectors to enhance the probability of detection versus false alarms for fully

observed target areas. These detectors assume complete occupancy of an angular res-

olution cell, implying full occlusion of any potential object that may exist behind the

occupied cell within each range profile. This assumption can be justified considering

system parameters such as angular resolution and transmission frequency relative to

target size.

Figure 6.1 presents a schematic illustrating the relationship between system param-

eters and the sparsity of range profiles in sensing under occlusion. The figure depicts a

2D elevation cut of a range-angle detection grid map from two sensors. The sensor on

the right is assumed to have double the number of antenna elements, resulting in half

the angular resolution compared to the sensor on the left. Both sensors observe the same

scene and operate at the same frequency, indicating that the transmitted waves from

both possess identical scattering/penetration characteristics. As a result, the occlusion

in the scene will be consistent for both sensors. However, due to the higher angular

resolution of the sensor on the right, detection tests are conducted on a finer grid. Con-

sequently, the associated responses over range profiles are expected to be more sparse

since targets are dispersed on different angular bins. The figure highlights the angular

bins containing targets under each system, with their ideal range profiles depicted below

the corresponding grid map.

The sparsity of range profiles arises from both the occlusion phenomenon and the

size of the angular grid relative to the target size. If occlusion does not occur, all

targets would induce a response in the range profile of each angular bin. Similarly, if

the sensor’s angular resolution does not permit detection cells significantly smaller than
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the target size, a single range profile would contain multiple responses from targets over

a wider angle range, even if parts are occluded. Ultimately, when using an imaging

radar, angular bins are anticipated to be fully occupied by a portion of the target at

the respective location, leading to sparse range profiles, as they consist of a group of

mutually occluding cells.

Similarly, Figure 6.2 illustrates the same concept in an indoor scenario involving

human targets, where detection is conducted over a 3D detection grid map. The figure

highlights one range profile consisting of mutually occluding cells situated on the same

azimuth and elevation angle. The presence of a target (or a portion thereof) in one of

these cells closer to the sensor would obstruct targets that may exist in any other cell

within the same group. In such instances, the reception of echoes of the transmitted

wave from potential targets in those cells is physically impeded. Henceforth, throughout

the chapter, we will refer to this scenario as a ”full occlusion” scenario.

Accordingly, leveraging the sparse structure of range profiles, we introduce two de-

tectors based on distinct formulations of hypothesis testing. The first approach utilizes

multiple hypothesis testing, framing the detection problem to closely match the full

occlusion scenario. This involves deciding that the presence of a target will be in only

one cell of each range profile, based on the assumption of full occlusion. On the other

hand, the second approach is constructed using binary hypothesis testing. Here, the

alternative and null hypotheses for each cell are established with consideration for the

likelihood of the signal in the remaining cells within the same group of mutually occlud-

ing cells. For each of these formulations, we derive both Maximum A Posteriori (MAP)

and Maximum Likelihood (ML) detectors. The MAP detector assumes prior knowledge

of the probability model and values associated with targets’ presence in different cells

and utilizes this information in decision-making. On the other hand, the ML detector

lacks such knowledge and assumes equal probabilities of targets arriving in the group

of mutually occluding cells. While the multiple hypothesis formulation represents the

straightforward, intuitive method, the binary formulation exhibits superior performance,

as will be demonstrated in our numerical simulations.

The contributions of this chapter are summarized as follows:

1. Identification and modeling of range profile structure under occlusion, utilizing

probabilistic models of target presence within the detection grid cells.

2. Development of corresponding detectors using hypothesis testing, accommodating

both knowledge of the generating probabilistic models and the lack thereof.

3. Performance evaluation of the proposed detectors, demonstrated through ROC
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curves obtained numerically via Monte Carlo simulations. These simulations are

based on signal generation from defined models and evaluated under various model

parameters, SNR values, and sizes of range profiles.

4. Implementation of the proposed detectors on scenario-based simulated data, where

a realistic indoor scenario is modeled in 3D, and the radar signal is generated using

ray-tracing simulations.

Notations Throughout this chapter, lowercase bold font is used to denote vectors.

IN represents the identity matrix of size N × N , and 0N is a vector of all zeros of

size N × 1. The superscripts (.)T and (.)H denote, respectively, the transpose and the

complex conjugate transpose of a vector or a matrix. The operators |.|, ⊗, ℜ, and det(.)

are used for the absolute value operator, Kronecker product, the real part of a complex

value, and the matrix determinant, respectively. With p (x), we denote the probability

density function of an observation x from a random variable X, where the random

variable subscript is omitted for simplicity. We define the set of natural numbers from

1 to N as {N} = {1, 2, . . . , N}. Accordingly, a vector with subscript {N}, e.g., x{N},

denotes the stacked vectors [xT
1 ,x

T
2 , · · · ,xT

N ]T . To shorten equations, we contract the

exponential component of a Gaussian PDF for a random vector x with a mean µ and

variance σ2 using the notation eσ2(x, µ) = exp

(
−(x−µ)H(x−µ)

σ2

)
.

6.2 System Model

We consider a mmWave MIMO radar sensor havingNtx andNrx transmitting and receiv-

ing antenna elements, respectively. Assume that rs = [xs, ys, zs]
T denotes the absolute

position of the sensor, where x, y, and z represent the absolute Cartesian coordinates.

In this case, a target with absolute position rt = [xt, yt, zt]
T will have a relative distance

Rt, azimuth θt, and elevation ϕt with respect to the sensor. Following appropriate range

processing (either through FFT or matched filter), the target processed signal at the

range cell—specifically the CUT—corresponding to Rt can be expressed as

xt = αts(θt, ϕt) +w ∈ CNtxNrx×1. (6.1)

Here, αt =
√

ptxGtxGrxλ2σt

(4π)3R4 represents the amplitude of the reflected signal, encompassing

path loss and target RCS, where λ denotes the transmitted signal’s wavelength, ptx is

the transmit power, Gtx and Grx denote the transmit and receive antenna gains, and σt

is the RCS of the target at the CUT. Additionally, w denotes the interference signal,
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ideally encompassing both clutter and thermal noise, though, in this chapter, we assume

w ∼ CN (0, σ2
wI) contains only receiver thermal noise. Moreover, the signal steering

vector is

s(θt, ϕt) = a(θt, ϕt)⊗ b(θt, ϕt), (6.2)

where the spatial transmit and receive steering vectors are defined respectively as

a(θ, ϕ) =


e−jkT (θ,ϕ)rs,1

e−jkT (θ,ϕ)rs,2

...

e−jkT (θ,ϕ)rs,Ntx

 ,b(θ, ϕ) =


e−jkT (θ,ϕ)rs,1

e−jkT (θ,ϕ)rs,2

...

e−jkT (θ,ϕ)rs,Nrx

 ,

and k(θ, ϕ) = 2π
λ [cos θ cosϕ, sin θ cosϕ, sinϕ]T is the wave-number vector with λ being

the wavelength of the transmitted wave, θ and ϕ are the azimuth and elevation angles,

respectively, and rs,ntx and rs,nrx are the locations of the radar transmit and receive

antenna elements, respectively.

Since our focus is on designing a detector for scenarios involving full occlusion, it is

crucial to model the probability of signal returns at each cell under such conditions.

These probabilities can be derived by establishing a probability model for the presence

of targets in each cell. Consequently, we outline the essential probability components

required for the subsequent formulation of the problem. We assume each range profile

encompasses a group of N mutually occluding cells. We denote Pk as the probability

of the presence of a target at the kth cell, where k = 1, . . . , N , representing the target

space probability. Accordingly, the probability of having no target present at any of the

N cells is given by

P0 =
N∏
k=1

(1− Pk) . (6.3)

Under the full occlusion assumption over a range profile, among the potential targets in

the group of N cells, only one return will be reflected to the radar sensor. As a result,

we can express the signal space probabilities of receiving returns at a specific cell based

on the probabilities in the target space. Let ρk denote the probability of receiving a
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return from a target located at the kth cell, then

ρ0 = P0

ρ1 = P1

...

ρk = Pk
∏i=k−1

i=1 (1− Pi)

(6.4)

where ρ0 represents the probability of having no return in any of the cells, and
∑N

k=0 ρk =

1. Another useful probability in subsequent calculations is the probability of having a

signal return from the kth cell given that a certain nth cell, especially the CUT, has

no target return. Denoting this probability as ρk/ñ, we can compute it using Bayes’

theorem as

ρk/ñ =
ρñ/k ρk

ρñ
(6.5)

Since ρñ = 1− ρn, and by occlusion assumption ρñ/k = 1, the probabilities of having a

signal return at the kth cell given that a certain nth cell has no return is given by

ρk/ñ =
ρk

1− ρn
, ∀ k, n ∈ {N}, k ̸= n. (6.6)

The aforementioned probabilities in the signal space will be incorporated into the design

of the detectors and the evaluation of their performance in the next sections.

6.3 Occlusion-Informed Detector Design

In this section, we will present two formulations of the detection problem under the

assumption of full occlusion across a group of cells. First, we will frame the problem

as a multiple-hypothesis testing scenario, in line with our assumption that a single

target return is expected in all cells. Second, we will approach the problem as a binary

hypothesis testing situation at the CUT, taking into account the signal distribution in

the other cells. In both cases, we will develop the MAP and ML detectors. The MAP

detector assumes that knowledge of the probability model and values is available and

utilizes this information for detection. In contrast, the ML detector lacks such knowledge

and assumes equal probabilities of events [129].

6.3.1 Multiple Hypothesis Testing Design

Casting the problem as an M -ary detection problem is supposed to be a closer match

under the assumption of full occlusion where we expect a single echo return in one of
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N cells in the range profile. Accordingly, we consider M = N + 1 hypotheses over the

entire group of cells modeled as

Hk : x{N} = µk +w{N} ∀ k ∈ {N} (6.7)

where x{N} is the stacked vector of all the processed signals at the group of N cells,

w{N} is a stacked vector of the noise, and µk is a vector of size LN × 1 defined as

µk = [0TL . . . sTk . . .0TL]
T ∀ k ∈ {N}

µk = 0LN k = 0
(6.8)

where L = Ntx Nrx. The construction of µk in (6.8) for k ̸= 0 ensures that it contains

zero elements everywhere except for elements with indices in the range of [L(k−1)+1, Lk]

that are populated by sk, where sk = αks, and s is the normalized steering vector towards

the kth cell. Please note that we have dropped the dependence on θk and ϕk. This is due

to our assumption that the group of mutually occluding cells lies at the same azimuth

and elevation angle.

By considering the signal space probabilities defined in (6.4), the optimum decision

rule which minimizes the average error probability is the one that decides that x{N} is

generated according to Hk if ρkp
(
x{N}|Hk

)
= max

j

{
ρj p

(
x{N}|Hj

)}
[129].

Recalling the Gaussian PDF notation eσ2(x, µ), the hypotheses formulation in (6.7)

leads to the following likelihood

p
(
x{N}|Hk

)
= ζeσ2

w

(
x{N}, µk

)
, (6.9)

where ζ = 1/(πLNdet(σ2
wILN )). This likelihood can be simplified based on the signal

model (6.1) as

p
(
x{N}|Hk

)
=


ζeσ2

w

(
x{N̄},0L(N−1)

)
k = 0

ζeσ2
w

(
x{N̄},0L(N−1)

)
· exp

(
2ℜ{sHk xk} − sHk sk

σ2
w

)
k ∈ {N}

(6.10)

Accordingly, the optimum M -ary MAP detector under full occlusion formulation is the
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following

Decide Hk if ΓMAP
k = max

j
{ΓMAP

j } ∀ j ∈ {{N}, 0}

where

ΓMAP
j = ρj p

(
x{N}|Hj

)
/eσ2

w

(
x{N̄},0L(N−1)

)
.

(6.11)

The test (6.11) assumes the knowledge of the mean of signals sj = αjs where is s is the

known steering vector and αj is the target’s RCS, often unknown. In this context, the

corresponding GLRT detector is used wherein α̂j is estimated for each cell through MLE

of the likelihood function under each hypothesisHj . The estimation results in α̂j = sHxj

leading to ŝj = sHxjs and a corresponding GLRT detector ΓMAP
j = ρj exp

(
|sHxj |2/σ2

w

)
for j = 1, . . . , N .

The ML equivalent detector is obtained by assuming equal probabilities of signal

returns at all cells, namely, ρj = ρi ∀j, i ∈ {N}, j ̸= i. This simply translates to the

following decision rule

Decide Hk if ΓML
k = max

j
{ΓML

j } ∀ j ∈ {{N}, 0}

where

ΓML
j =


1 j = 0

exp
(
|sHxj |2/σ2

w

)
j ∈ {N}.

(6.12)

Note that in both (6.11) and (6.12), the noise power σ2
w is assumed to be known, which

is typically estimated using secondary cells in practice. Moreover, from (6.12), it is

evident that the resulting ML detector is equivalent to implementing a classic square

law detector on the signal after angle match filtering at each cell. It then decides on

the target presence at the cell with the maximum value of such a test among all the

cells related to the same range profile. Accordingly, from now on, we will refer to this

detector as the MAX detector.

6.3.2 Binary Hypothesis Testing Design

In this section, we approach the detector design problem through binary hypothesis

testing, where tests are formulated for each cell by considering the distribution of the

processed signal across all the N cells within the same range profile. First, let us define

the simple binary hypothesis without occlusion modeling for an arbitrary cell k. The
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range processed signal under H0 and H1 can be expressed as H1 : xk = αks+wk

H0 : xk = wk

(6.13)

This formulation leads to the classical GLRT detector

exp

(
|sHxk|2

σ2
w

)
H1

≷
H0

η. (6.14)

Now, we formulate the signal model under both hypotheses given the assumption of full

occlusion across the range profile containing N cells. To account for signals from cells

other than the CUT, we introduce a superscript n indicating the index of the CUT.

Specifically, H(n)
1 and H(n)

0 represent the alternative and null hypotheses, respectively,

when the nth cell is the CUT. Thus, the detection problem under occlusion can be

framed as testing the following hypotheses

H(n)
1 : (xn = sn +w , xk = w) ∀ k ∈ {N} \ n

H(n)
0 :



(xn = w , xk = w) ∀ k ∈ {N} \ n

(OR)

(xn = w , xk = w, xj = sj +w)

∀ k ∈ {N} \ {n, j}


(6.15)

The formulation above indicates that under the alternative hypothesis, the CUT contains

a signal due to the presence of a target at that cell, while all the other N − 1 cells will

only contain noise. Conversely, under the null hypothesis, the CUT contains only noise,

while all the other cells may also contain only noise, or at most one of them may contain

a target obstructing the signal of potential targets in other cells, including the CUT.

To derive the detector based on the above formulation, we need to express the

likelihoods under each of the hypotheses. Let x{N̄} represent the stacked measurements

of the signal related to all cells other than the CUT, where {N̄} := {N} \ n, and the

size of this set is N − 1. Therefore, the likelihood under the alternative hypothesis can

be formulated as follows

p
(
xn|H(n)

1

)
= p

(
xn = sn +w,x{N̄} = w{N̄}

)
, (6.16)

where w{N̄} is the stacked vector of all (N − 1) vectors modeling the noise at the cells
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other than CUT distributed as w{N̄} ∼ CN
(
0, σ2

wIL(N−1)

)
. Consequently, (6.16) can

be expressed as

p
(
xn|H(n)

1

)
= ζeσ2

w
(xn, sn) · eσ2

w

(
x{N̄},0L(N−1)

)
(6.17)

where ζ = 1/(πLNdet(σ2
wILN )). Similarly, the likelihood under the null hypothesis can

be expressed as

p
(
xn|H(n)

0

)
= p

(
xn = w,

[
x{N̄} = w (OR) x{N̄} = µ1 +w . . . (OR) x{N̄} = µN +w

])
,

(6.18)

where µk is as defined in (6.8). The likelihood in (6.18) is the joint probability density

function of the vector xn given it contains noise only and the stacked vector x{N̄}

modeled as a Gaussian mixture of signals with the different means µk weighted by the

probabilities of signal returns at the kth cell defined in (6.6). Consequently, (6.18) can

be written as

p
(
xn|H(n)

0

)
= ζeσ2

w
(xn,0L) ·

N∑
k=0
k ̸=n

ρk/ñ eσ2
w

(
x{N̄}, µk

)
. (6.19)

Using the likelihoods obtained in (6.16), and (6.18), we derive the detector which is

characterized by testing the likelihood ratio Λ of the signal in the CUT given the signals

of all other N̄ cells against a threshold η as follows

Λ(xn|x{N̄}) =
p
(
xn|H(n)

1

)
p
(
xn|H(n)

0

) H(n)
1

≷
H(n)

0

η (6.20)
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By plugging (6.17) and (6.18) into (6.20), the ratio test Λ(xn|x{N̄}) becomes

Λ(xn|x{N̄}) =
eσ2

w
(xn, sn) · eσ2

w

(
x{N̄},0L(N−1)

)
eσ2

w
(xn,0L) ·

∑N
k=0
k ̸=n

ρk/ñ eσ2
w

(
x{N̄}, µk

)
=

eσ2
w
(xn, sn) · eσ2

w

(
x{N̄},0L(N−1)

)
eσ2

w
(xn, sn) · eσ2

w

(
x{N̄},0L(N−1)

) · exp
(
2ℜ{sHn xn}−sHn sn

σ2
w

)
[
ρ0/ñ +

∑N
k=1
k ̸=n

ρk/ñ exp

(
(2ℜ{sHk xk}−sHk sk)

σ2
w

)]

=
exp

(
2ℜ{sHn xn}−sHn sn

σ2
w

)
[
ρ0/ñ +

∑N
k=1
k ̸=n

ρk/ñ exp

(
(2ℜ{sHk xk}−sHk sk)

σ2
w

)]
(6.21)

Accordingly, this test is the optimum MAP test given that we know the probabilities

ρk|ñ and αn. Assuming the former are known, the latter can be estimated through MLE

as discussed in the previous section. By substituting the MLE estimate in (6.21), the

attained detector (6.20) is

ΛMAP(xn|x{N̄}) =
exp

(
|sHxn|2

σ2
w

)
ρ0/ñ +

N∑
k=1
k ̸=n

ρk/ñ exp
(
|sHxk|2

σ2
w

) H(n)
1

≷
H(n)

0

η (6.22)

Note that in (6.22), we have assumed that the noise power σ2
w is known, which is

typically estimated using secondary cells in practice. The selection of cells suitable for

noise estimation can be further explored in an extended version of this work.

The corresponding ML detector can be obtained by assuming equal probabilities of

return at all cells, with ρk/ñ ∀k ∈ {N}, and is given by

ΛML(xn|x{N̄}) =
exp

(
|sHxn|2

σ2
w

)
1
N

[
1 +

∑N
k=1
k ̸=n

exp
(
|sHxk|2

σ2
w

)] H(n)
1

≷
H(n)

0

η. (6.23)

Accordingly, the resulting tests in (6.22) and (6.23) suggest that the optimal detectors

under the full occlusion assumption correspond to the classic test performed at the CUT

(6.13), normalized by a weighted sum of the tests from other cells within the same range

profile.
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6.4 Numerical Analysis

In this section, we evaluate the performance of the proposed detectors on two fronts.

Firstly, we model the signal after the angle processing block as input to the detector,

employing the full occlusion model presented earlier. We demonstrate the performance

of the derived detectors through ROC curves and compare them with the classic detector.

Secondly, we simulate a real indoor scenario observed with a FMCW system operating

in the mmWave band. This system has multiple transmitting and receiving antennas

operating in a TDM scheme, thereby realizing a MIMO radar system. Unlike the model-

based case, scenario-based simulations consider the complete standard signal processing

chain, starting from the reflected signal and concluding with the detection stage. We

then compare the output of the detectors accordingly.

6.4.1 Model-based ROC Assessment

Here, we evaluate the proposed detectors by numerical analysis using Monte Carlo sim-

ulations. We demonstrate the performance of these proposed detectors through ROC

curves. The detectors are implemented on a set of N test cells, assumed to mutually

occlude under a full occlusion scenario. Given this assumption, signal returns are gener-

ated so that in each realization, only one out of the N cells contains a target return. The

presence or absence of a return at each cell follows a particular signal space probability

model, derived from the assumed probability model in the target space, as described in

(6.4). Throughout the various Monte Carlo realizations, two sets of signals are generated

to represent the null and alternative hypotheses at a predefined CUT. Subsequently, the

different detectors are applied, and ROC curves are constructed by sorting the test out-

put relative to each hypothesis and calculating the corresponding probability of false

alarm and probability of detection.

To illustrate the signal generation process based on a specific probability model,

Figure 6.3 presents an example of probabilities in the target space Pk (a) and signal

space ρk (b) at each cell, along with the corresponding events of signal returns under the

null and alternative hypotheses in (c) and (d), respectively. This is a simplified case for

enhanced visualization with a limited number of Monte Carlo runs (KMC = 103) and a

small range profile size of N = 32 cells. In this particular example, the probability model

for target presence follows a linearly increasing pattern, with the lowest probability

assigned to the cell closest to the sensor and the highest to the farthest cell, set at 0.25.

Additionally, CUT is arbitrarily selected as cell index n = 23, indicated by a cross in

(a) and (b), and outlined by a red rectangle in (c) and (d).
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Figure 6.3: Illustration of signal generation in all cells under null and alternative hy-
potheses for a certain CUT n (highlighted with the red rectangle) given a probability
model in the target space for N = 32, n = 23, KMC = 103. (a) Probabilities of targets
presence Pk, (b) Probabilities of receiving a signal return (marginal ρk, and conditioned
on no return in CUT ρk|ñ), (c) Monte-Carlo realizations of signal return events under

H(n)
0 , (d) Monte-Carlo realizations of signal return events under H(n)

1 .

As shown in the figure, the chosen probability model in the target space leads to a

higher probability of returns in the signal space for cells located in the middle. In our

analysis, we considered two probability models additionally: one with an equal probabil-

ity of target presence at all cells and another with a linearly decreasing model where the

closest cell has the highest probability of target presence. Under each probability model,

ranges of the maximum probability of the target’s presence in a cell are evaluated.

We evaluate the performance of the MAP and ML detectors derived according to

binary and multiple hypothesis testing, presented in equations (6.11), (6.12), (6.22),

and (6.23). All our subsequent simulations entail KMC = 108 Monte Carlo runs for ro-
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𝑃𝑘 𝑃𝑘 𝑃𝑘𝜌𝑘 𝜌𝑘 𝜌𝑘

Figure 6.4: ROC curves of proposed detectors compared against classic detector for
N = 128 cells and SNR = 10 dB, for different models of the probability of targets
arrival in resolution cells and different values of maximum probability of target presence
pmax at cells. Left column: equal probability, Middle column: linearly increasing,
Right column: linearly decreasing. Top row: pmax = 0.1, Middle row: pmax = 0.5,
Bottom row: pmax = 0.9
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bust assessment. Comparisons are made against the classic detector (6.14). Figure 6.4

showcases this assessment when a fixed SNR of 10 dB is maintained at the CUT, and

for a range profile size of N = 128. The columns represent different probability mod-

els—equal probabilities, linearly increasing, and decreasing probabilities—while rows

denote varying maximum probabilities of target presence in a cell (Pk)max = (0.1, 0.5,

and 0.9) from top to bottom. From the figure, several key observations emerge:

• Detectors derived from binary hypothesis formulation under full occlusion consis-

tently outperform the classic detector.

• The MAX detector shows superior detection capability up to a certain probability

of false alarm. However, its performance saturates beyond this threshold due to

the non-linear maximum operator, particularly noticeable in low SNR scenarios.

• The performance of MAP detectors is scenario-dependent and therefore would lack

the Constant False Alarm Rate (CFAR) property.

• MAP detectors demonstrate maximum performance improvement when closer cells

have a higher probability of target presence, suggesting a greater likelihood of

occlusion for more distant targets.

• While the highest performance gain is provided by binary MAP detectors, the

corresponding ML detector still consistently outperforms the classic detector.

Building on the observations mentioned earlier, our subsequent analysis narrows down

to the performance evaluation of ML detectors, given their practical applicability. This

analysis seeks to assess their performance concerning the size of the range profile N and

the SNR levels.

In Figure 6.5, we observe the performance of the detectors across different numbers

of mutually occluding cells, specifically N = 16, 32, 64, and 128, assessed at SNR levels

of 8, 10, and 13 dB. The figure highlights that the detection performance gain is signif-

icant with a lower number of occluding cells. Additionally, it demonstrates a decrease

in the upper-bound probability of detection for the MAX detector as N increases, es-

pecially noticeable at low SNR levels. However, at high SNR levels, the performance

gain difference diminishes, with gains of approximately 10% achieved at a false alarm

probability of 10−6 for an SNR level of 13 dB.

Likewise, Figure 6.6 depicts the detector’s performance as SNR varies across different

values of N . It becomes evident that the higher the SNR, the more significant the gain

of ML detectors compared to the classic one. Moreover, at high SNR values, the MAX
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Figure 6.5: ROC curves of proposed ML occlusion-informed detectors compared to
classic detector varying the number of mutually occluding cells N = 16, 32, 64, 128 (the
arrows indicate the direction of increasing N) at different SNR levels. Top: 8 dB,
Middle: 10 dB, Bottom: 13 dB.
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Figure 6.6: ROC curves of proposed ML occlusion-informed detectors compared to
classic detector varying SNR at different numbers of mutually occluding cells. Top:
N = 32, Middle: N = 64, Bottom: N = 128.
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detector achieves a higher detection probability bound, but this decreases significantly

at low SNR levels, rendering its use unfeasible.

6.4.2 Scenario-based Simulations

In the previous section, we evaluated detectors’ performance based on a defined signal

model and specific parameters such as SNR, number of mutually occluding cells, and

probability of target presence at individual range cells. This section presents a simulation

of a dynamic indoor scenario where multiple human objects move within the scene along

predetermined trajectories, resulting in various occlusions, including self-occlusions and

inter-object occlusions. We observe this scenario using an FMCW radar sensor equipped

with multiple antenna elements for both transmitting and receiving. We generate the

radar signal based on a ray-tracing algorithm in tandem with the system parameters.

Following this, we process the received signal through a typical radar signal processing

chain. After range and angle processing, we apply the classic detector, the detector from

(6.23) (abbreviated as ML-Occ), and that from (6.12) (abbreviated as ML-Max), and

subsequently compare their performance. In the following subsections, we will elaborate

on the modeling of the scenario and targets, the radar signal generation and processing,

and finally, the evaluation of the proposed detectors against a classic detector.

Scenario Description and Modelling

𝟏
𝟏

 𝝀
/𝟐

z

y

(c)

(c)

(a)

(a) (b)

TX Elements
RX Elements

Triangle Mesh
  Center LOS

Figure 6.7: Simulation scenario and modeling: (a) Configuration of 121 × 121 TX-
RX antennas for the radar sensor, (b) Snapshot of a single time frame of the scenario
depicting human targets modeled using triangle batches, highlighting the origin points
of triangle batches with LOS, (c) Close-up view of a single human object.

We consider a scenario where five human targets are walking in an indoor environ-

ment along different trajectories. The scenario is designed using 3D models of actual-size

human objects animated in Blender software [130]. Spanning five seconds at a frame
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rate of 20 frames/second, it results in a total of 100 graphical frames. Each 3D model

consists of a high-resolution mesh of many constituent triangle batches, resulting in an

average triangle surface area of 0.001 m2. These triangle batches serve as scattering

surfaces, defined by an origin vector and two side vectors. Consequently, we utilize

a ray-tracing algorithm to identify triangles that have a Line of Sight (LOS) to each

transmitting/receiving antenna pair and to quantify the reflected rays. The primary

objective of radar ray-tracing is to determine the ray paths from the transmitter to the

receiver antenna elements and calculate their amplitude and distance, essential for the

generation of the radar signal.

Ray-casting is the fundamental operation employed in ray tracing, involving the cal-

culation of ray-triangle intersections. When a ray intersects a triangle, an intersection

point is identified, leading to the generation of new rays for the next bounce. Accord-

ingly, ray tracing starts by assigning rays to each transmit antenna element, calculating

intersections with the triangles (if any), and assigning new ray sources for each of the in-

tersection points. Subsequently, the new rays are bounced back in some directions, and

a new path is established for the rays that have a LOS intersecting with the receiving

antenna.

Consequently, the algorithm outputs a set of rays for each triangle for each transmit

and receive antenna pair. The length of each ray represents the relative travel distance of

the transmitted electromagnetic wave, reflecting off the target and reaching the receiving

antenna element. Meanwhile, the amplitude of the scattered radar wave is determined by

the radar equation considering the RCS of the triangle and the corresponding path length

to account for attenuation. Ideally, the RCS calculation should account for the number of

reflected rays from each triangle, its surface orientation relative to the transmit/receive

element pair, and the Normalized RCS [131] given the surface’s material. For simplicity,

we modeled the RCS of each triangle based on the relative aspect angles (azimuth and

elevation) of its normal vector from the origin point, modulating a maximum preset RCS

value σmax = 0.01 m2. Figure 6.7 shows a snapshot of a single time frame depicting the

human 3D models and the constituent triangle meshes in (b), highlighting the origin

points of the triangles with LOS to the antenna configuration of the sensor located at

the y − z plane with its center placed at coordinates (0, 0, 1) (a), and a close-up to one

of the human objects for enhanced visualization in (c).

Radar Signal Generation

We employ an FMCW MIMO radar sensor operating in a TDM fashion to observe the

described scenario. The operating parameters and sensor characteristics for generating
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Central Frequency (fc) 70 (GHz)

Effective Sweeping Bandwidth (BW ) 1 (GHz)

Effective Chirp Duration (Tchirp) 5.124 (µs)
ADC Sampling Frequency (fs) 2.5 (MHz)

Transmitter Power (pTx) 13 (dBm)

Receiver Noise Figure (F ) 12 (dB)

Number of TX Elements (NTx) 121

Number of RX Elements (NRx) 121

Table 6.1: FMCW Radar System Parameters

the radar signal are detailed in Table 6.1. As shown in Figure 6.7. (a), the sensor com-

prises a 121-element transmitting planar array with an inter-element spacing of 11λ/2,

and a 121-element planar receiving array spaced at λ/2. By assigning each element of

the transmitting array to transmit at different time slots, a resulting uniform planar

virtual array is achieved leading to an angular resolution of approximately 1.165° in

both azimuth and elevation. This low angular resolution promotes cell-level occlusion,

thereby encouraging the application of our derived detector as it assumes that each res-

olution cell encompasses a limited scattering area, resulting in one or few backscattered

echoes over a certain range profile.

Accordingly, we simulate the sampled received IF signal (indexed by time samples

ns) at each receiving antenna (nRX), resulting from a backscattered wave due to the

signal transmitted by the nTX element, as follows

y(ns, nTx, nRx) =

Nrays∑
r=1

A(pTx, dr, σr)[ exp(−j2π(µτns/fs + fcτns/fs)) exp(k(θr, ϕr)
T (rnTx + rnRx)) ].

(6.24)

Here, Nrays represents the total number of rays traced from the transmitter element to

the scene and back to the receiver element. A(.) denotes the amplitude of the scattered

wave which depends on the transmitted power pTX , the two-way length of a ray dr,

and the associated triangle RCS σr. Additionally, µ = BW/Tc denotes the slope of

the chirp, while τ = dr/c is the associated time delay and c is the speed of light in

vacuum. Finally, k is the wave number defined in Section 6.2, θr and ϕr are the relative

azimuth and elevation angles of the normal vector of the surface associated with the

traced ray for the sensor, respectively, and rnTx and rnRx are the coordinate vectors of

the transmitting and receiving antenna elements, respectively.

Consequently, for each graphical frame, we have 121 × 121 channels, each having a
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Ns = Tchirpfs = 128 time samples. The simulated raw data is then organized in a 2D

matrix, with the time samples at the first dimension and the channel data at the second

dimension. Lastly, we add the thermal noise to all the channels as a white Gaussian

noise with power pnoise = (kB T BW F ), where kB is Boltzmann constant, T is the

absolute room temperature, and F is the receiver noise figure.

Radar Signal Processing

Number of Range FFT Bins 256

Number of Azimuth Bins 275

Number of Elevation Bins 121

CA-CFAR PFA (Classic/Max) Detector 10−6

CA-CFAR PFA (OccML) Detector 10−7

CA-CFAR number of training cells 12

CA-CFAR number of guard cells 2

Table 6.2: Radar Signal Processing and Detection Parameters

To process the radar signal, we begin by acquiring the 2D matrix of the raw signal at

each frame. We then proceed with a standard signal processing chain, involving range

FFT and angle processing using steering vectors. Finally, the detection performance of

the three detectors needs to be compared. Initially, we apply the range FFT on the

first dimension of the raw data matrix, choosing the grid size to be a power of two that

yields a size of half of the range resolution offered by the system’s bandwidth.

Subsequently, angle processing is conducted over a Field of View (FOV) of 160° on

the azimuth dimension and 70° in elevation. These FOVs were chosen to reduce compu-

tational complexity, considering the dimensions of the observed scene. The number of

angular bins in azimuth and elevation is similarly set to achieve a grid step size that is

half of the angular resolution in both dimensions. Angle processed signal is acquired by

multiplying each channel by the corresponding steering vector, as defined in (6.2), for

all the angles within the FOVs.

After angle processing, we apply the tests outlined in Section 6.3 to each range profile,

along with a classic test simplified to a square-law detector. To determine the threshold

corresponding to the desired probability of false alarms, we utilize Cell Averaging (CA)-

CFAR to estimate the local noise level at each CUT from neighboring secondary cells.

Anticipating superior performance of the OCC-ML detector based on ROC curves from

the previous section, we set a lower required Probability of False Alarm (PFA)) for the

CFAR applied after this specific test. Table 6.2 summarizes the processing parameters

used in the chain.
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Figure 6.8: Single time frame snapshot of point cloud detection. Top: Classic detector
output, Middle: Max-ML detector output, Bottom: Occ-ML detector output.
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Mean (Classic)
Mean (OccML)
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Figure 6.9: Detection performance versus time frames. Top: False alarms rate. Bot-
tom: Detection rate.

Performance Evaluation

To assess the performance of different implemented detectors, we establish a ground

truth grid for each frame. The ground truth grid matches the size of the range-angle

grid of the processed signal and has entries of one at the cells that correspond to the

location of origin of triangles with LOS rays. Similarly, we construct a grid for each

detector, where the locations of detected targets are also marked as one. Subsequently,

performance is evaluated by computing the Detection Rate (DR) and False Alarm Rate

(FR) using the formulas

DR =
TP

TP + FN
, FR =

FP

FP + TN
, (6.25)

where TP , FN , FP , and TN represent the counts of true positives, false negatives,

false positives, and true negatives, respectively, calculated with respect to the obtained

ground truth grid. The values of DR and FR versus frame are illustrated in Figure 6.9.

The figure shows that the detection rate of all three detectors remains nearly equal

across all frames, despite the OccML detector being configured to achieve a lower false

alarm rate which is achieved consistently. This performance aligns with the analyti-

cal analysis presented in Section 6.4.1. It is important to highlight that the analytical

model-based simulations were conducted for specific SNR values, demonstrating varying
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performance at each value. In contrast, in this realistic scenario-based simulation, each

target has a different SNR level that also changes over time, still, the OccML detector

exhibits superior performance. On the other hand, the Max detector does not con-

sistently improve detection performance on average. This observation aligns with the

findings from the ROC curves presented in the model-based analysis. For certain SNR

values and ranges of PFA values, the MaxML detector outperforms the classic detector,

whereas for other SNR values and PFA ranges, the opposite holds true. Additionally,

even though the assumption of a single echo per range profile might not hold for all range

profiles, on average, the proposed OccML detector enhances detection performance.

It is also important to acknowledge that the assessment is based on a single exper-

iment, involving only one noise realization across all channels. Consequently, it may

not fully reflect the asymptotic performance obtained through the analytical analysis

and illustrated via ROC curves, which considered multiple Monte Carlo realizations.

Another limitation arises from the dimensions of the detection grid, which inherently

sets a minimum false alarm rate that can be evaluated, higher than the required PFA

input to CA-CFAR algorithms. The lower limit of this assessment can be inferred by

examining the extremes of the counts in the false alarm rate formula in (6.25).

6.5 Conclusion

In this chapter, we introduced a novel approach to enhance the detection performance of

mmWave MIMO sensors with high angular resolution capability, particularly in indoor

environments, by leveraging the sparsity of range profiles under full occlusion scenarios.

Full occlusion refers to situations where, among multiple targets within a group of

mutually occluding cells, the sensor only receives the signal reflected from one target

obstructing all others. To achieve this goal, we presented two detection methods based

on two distinct formulations: multiple hypothesis testing and binary hypothesis testing.

Under both formulations, MAP and ML tests are derived where the former knows the

probabilities of target arrivals at the cells, and the latter assumes equal probabilities.

The numerical analysis demonstrated that, for a low required probability of false

alarm, all the proposed methods outperformed a classic detector which does not ac-

count for this sparse structure, providing a higher probability of detection. However, at

higher probabilities of false alarms, especially in low SNR scenarios, detectors derived

from our multiple hypotheses formulation exhibited an upper limit on the probability

of detection that could not be exceeded. In contrast, detectors based on our binary

hypothesis formulation significantly outperformed the classic detector, especially when
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knowledge of the probability of target presence in the cells was available. While ob-

taining such knowledge is often impractical and parameter-dependent, the ML binary

detector consistently outperformed the classic detector under all probability models. We

further demonstrated the performance of the proposed detectors on realistically simu-

lated data for an indoor scenario where the radar signal is generated using ray tracing

and the full standard signal processing chain is implemented.
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Conclusion

In this thesis, we studied the generation of two radar image representations obtain-

able by a system of distributed mmWave radar sensors, alongside the associated signal

processing blocks. Our focus was twofold: first, on jointly creating reflectivity images

leveraging CS algorithms, and second, on generating enhanced radar point clouds via

statistical detection techniques applied to processed radar signals.

The first part of this thesis introduced algorithms for joint reflectivity image recon-

struction, accompanied by methods for accelerating these algorithms and automatically

selecting regularization parameters. In the second part, we proposed a detector tai-

lored to accommodate aspect-dependent variations in the RCS of targets observed by

distributed sensors. Additionally, we devised a detector that accounts for occlusions

induced over individual range profiles, with the aim of enhancing detection performance

compared to conventional methods.

This chapter serves to summarize the contributions made in each part, offering a syn-

thesis of the key findings and insights gained. Furthermore, it outlines potential avenues

for future research, suggesting ways to extend or deepen the contributions presented in

this thesis.

7.1 Summary of Contributions

In Part I, our focus was on developing algorithms for jointly reconstructing a high-

resolution global image of a scene observed with distributed sensors, eliminating the

need for a fusion step. The joint reconstruction can be achieved through coherent or

non-coherent processing of the received signal from all sensors. Apart from the chal-

lenges posed by coherent processing (discussed in Section 1.3.1), it is not feasible unless

targets exhibit isotropic scattering behavior or are observed over a very small angu-
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lar extent. This limitation arises from the non-coherence of target complex reflectivity

across sensors.

Accordingly, in Chapter 2, we proposed an algorithm for non-coherent joint recon-

struction of global scene images observed by widely distributed radar sensors. This

algorithm leverages the ADMM optimization framework. The problem is formulated

by imposing a sparsity prior on a defined global image, representing an aggregate view

of the scene. Subsequently, we introduced two formulations based on CADMM and

SADMM to mathematically define the relationship between individual sensor images

and the global image. These formulations yielded two iterative algorithms, adaptable

for implementation in a hybrid parallel scheme that harnesses computational power at

the sensor and a central processing unit. They offer a trade-off between image quality

and processing time, with SADMM demonstrating slower convergence but producing

superior image quality, particularly under limited measurements or signal bandwidth.

While these algorithms offer high-quality image reconstruction, they often suffer from

slow convergence and long processing times, as expected with iterative algorithms. Con-

sequently, in Chapter 3, we proposed a heuristic method to accelerate the convergence of

these algorithms. This method involves learning the support of the image during itera-

tions and focusing the reconstruction on the scene support accordingly. The acceleration

method not only reduces processing time but also lowers computational complexity by

reducing the problem size over iterations. However, these advantages come with a slight

degradation in reconstruction quality, a trade-off that is desirable in many applications.

Throughout Chapters 2 and 3, it has been demonstrated that when employing reg-

ularized optimization methods for image reconstruction, an empirical search for the

hyperparameters balancing the data-fidelity term and the prior knowledge is often nec-

essary. Accordingly, in the final chapter of Part I, Chapter 4, we introduced a method

to automatically tune hyperparameters in image reconstruction methods based on regu-

larized optimization. This method is applicable to reconstruction techniques that utilize

scene sparsity as prior knowledge. By leveraging the structure of the back-projection

image during the soft thresholding step, which acts as an upper bound for scene sparsity,

the method allows for setting regularization parameters according to the desired sparsity

level of the scene. Implemented within a FISTA-based algorithm initially proposed for

coherent scene imaging with partially synchronized distributed sensors, this approach

provides an efficient means to jointly reconstruct the scene image and correct clock mis-

match errors. Additionally, we presented an efficient implementation of the algorithm

based on FFT, which includes automatic hyperparameter tuning, eliminating the need

for empirical parameter searches.
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In Part II, we shifted focus to another block of radar signal processing: the detec-

tor, with the aim of improving radar point cloud representations. In this part, we did

not consider signal processing prior to the detection block. However, we assumed that

the processing results in range-angle images, which serve as the input to the detector.

Accordingly, targets in the scene are directly modeled as an impulse with appropriate

reflectivity in the cell under test corresponding to their location over a range-angle grid

map on which the detectors are applied. Our objective was to enhance detection per-

formance and consequently improve the quality of radar point clouds using distributed

sensors.

In Chapter 5, we addressed the challenge of detecting aspect-dependent fluctuat-

ing targets observed with distributed mmWave radar sensors. Our approach involved

jointly considering the processed signals from all sensors to design a GLRT detector that

leverages the correlation of the received signal over multiple chirps. By estimating the

average received signal power at each sensor, the resulting detector becomes a weighted

sum of individual tests at each sensor. These weights are proportional to the local SNR

values, which vary significantly due to differences in RCS across various aspect angles

and path losses towards each sensor. The derived detector offers improved detection

performance compared to directly integrating received signals without prior weighting,

as typically done in joint detection.

Lastly, in Chapter 6, we introduced a novel approach to enhance the detection per-

formance of mmWave sensors with high angular resolution capability by leveraging the

sparsity of range profiles under full occlusion scenarios over individual range profiles. Full

occlusion refers to situations where, among multiple targets within a group of mutually

occluding cells, the sensor only receives the signal reflected from one target obstructing

all others. Leveraging this structure, we propose two detectors to enhance the detection

of non-occluded targets in such scenarios, thereby providing accurate high-resolution

point clouds. The first method employs multiple hypothesis testing over each range

profile where the range cells within are considered mutually occluding. The second is

formulated based on binary hypothesis testing for each cell, considering the distribution

of the signal in the other cells within the same range profile. Under both formulations,

MAP and ML tests are derived where the former knows the probabilities of target ar-

rivals at the cells, and the latter assumes equal probabilities. Through model-based

analysis, we demonstrated the superior detection performance through ROC curves of

the proposed detectors over classical detectors not accounting for occlusions over indi-

vidual range profiles, even when the ML version of the proposed detector is considered.

We further demonstrated the performance of the proposed detectors on realistically sim-
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ulated data for an indoor scenario where the radar signal is generated using ray tracing,

and the full standard signal processing chain is implemented for this simulation.

7.2 Future Work

The various studies presented in this thesis indicate several avenues for extension and

further analysis. Below are some areas of investigation and development that can build

upon the presented work.

Multistatic Sensors Configuration In most algorithms presented in this thesis,

the distributed radar systems follow a mono-static configuration, typically implemented

through a TDM scheme. In this scheme, the received signals at each sensor are the

echoes reflected off the scene due to its own transmission. While this simplifies the signal

model and processing, it does not fully exploit the system’s capabilities achievable with

bistatic or multistatic configurations. In these configurations, each sensor’s received

signal results from the reflection of the transmitted signal by all sensors. Consequently,

richer information about the illuminated scene can be harnessed.

Exploring Different Priors and Formulations in ADMM Imaging The jointly

distributed reconstruction algorithms based on ADMM presented in Chapters 2 and 3

provide a groundwork for similar reconstruction methods. Utilizing the same concept

of a single variable representing the global image, other reconstruction methods can be

developed to further exploit prior knowledge of the scene such as block sparsity, for

example. A direct extension would be employing different priors on the global image

and varying constraint formulations that establish relationships between global and local

images.

Integration of Aspect-dependent and Occlusion-informed Detectors The de-

tectors proposed in Chapters 5 and 6 were developed independently, with each focusing

on modeling different parameters in the hypothesis testing formulation. Integrating both

aspect-dependent target behavior and occlusion over range profiles in the formulation

of a single detector could lead to performance improvements by leveraging the strengths

of both detectors.

Occlusion-Informed Detector Under Partial Occlusions Extending the occlusion-

informed detector presented in Chapter 6 to consider partial occlusions, where cells are

not fully occupied by targets, would broaden its applicability beyond radar systems
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with very high angular resolution. This extension could enhance detection performance

without imposing excessive constraints on system parameters.

Analytical Formulation of PFA and Threshold for the Proposed Detectors

The performance evaluation of the detectors developed in Part II has primarily relied

on numerical assessments, either through ROC analysis using Monte Carlo simulations

or within defined dynamic scenarios. This was because deriving an analytical formula-

tion for the PFA and the corresponding threshold under the proposed detectors is not

straightforward due to the composite nature of the proposed hypotheses. Nonetheless,

an effort to derive or approximate these formulas would offer a more rigorous analysis of

the proposed detectors, enabling assessment across various parameters of the scenario

boundaries.
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sensing in radar imaging,” in Proceedings of the IEEE, no. 6, 2010, pp. 1006–1020.

[94] J. Yang, T. Jin, C. Xiao, and X. Huang, “Compressed sensing radar imaging:

Fundamentals, challenges, and advances,” Sensors (Switzerland), vol. 19, no. 14,

2019.

[95] M. A. Lodhi, H. Mansour, and P. T. Boufounos, “Coherent Radar Imaging Using

Unsynchronized Distributed Antennas,” in ICASSP, IEEE International Confer-

ence on Acoustics, Speech and Signal Processing - Proceedings. IEEE, 2019, pp.

4320–4324.

[96] G. Wang and K. V. Mishra, “Performance Bounds for Displaced Sensor Automo-

tive Radar Imaging,” in ICASSP, IEEE International Conference on Acoustics,

Speech and Signal Processing - Proceedings, vol. 2020-May. IEEE, 2020, pp.

8624–8628.

[97] H. Mansour, D. Liu, U. S. Kamilov, and P. T. Boufounos, “Sparse Blind De-

convolution for Distributed Radar Autofocus Imaging,” IEEE Transactions on

Computational Imaging, vol. 4, no. 4, pp. 537–551, 2018.

[98] H. Mansour, D. Liu, P. T. Boufounos, and U. S. Kamilov, “Radar autofocus

using sparse blind deconvolution,” ICASSP, IEEE International Conference on

Acoustics, Speech and Signal Processing - Proceedings, vol. 2018-April, pp. 1623–

1627, 2018.

[99] Y. Kim and T. Moon, “Human Detection and Activity Classification Based on

Micro-Doppler Signatures Using Deep Convolutional Neural Networks,” IEEE

Geoscience and Remote Sensing Letters, vol. 13, no. 1, pp. 8–12, Jan. 2016.

[100] H. Cui and N. Dahnoun, “High Precision Human Detection and Tracking Us-

ing Millimeter-Wave Radars,” IEEE Aerospace and Electronic Systems Magazine,

vol. 36, no. 1, pp. 22–32, Jan. 2021.

[101] B. K. Chalise, D. M. Wong, M. G. Amin, A. F. Martone, and B. H. Kirk, “De-

tection, mode selection, and parameter estimation in distributed radar networks

139



Bibliography

: Algorithms and implementation challenges,” IEEE Aerospace and Electronic

Systems Magazine, pp. 1–16, 2022.

[102] E. D’Addio, A. Farina, E. Conte, and M. Longo, “Multistatic detection of radar

signals for swerling models of the target,” in Optimized RADAR Processors, A. Fa-

rina, Ed. Peter Peregrinus Ltd., 1987, pp. 143–149.

[103] E. D’Addio and A. Farina, “Overview of detection theory in multistatic

radar,” IEE Proceedings F (Communications, Radar and Signal Processing),

vol. 133, pp. 613–623(10), December 1986. [Online]. Available: https://digital-

library.theiet.org/content/journals/10.1049/ip-f-1.1986.0098

[104] V. Aloisio, “Optimum detection of moderately fluctuating radar targets,” IEE

Proceedings - Radar, Sonar and Navigation, vol. 141, no. 3, p. 164, 1994.

[105] J. V. DiFranco and W. L. Rubin, Radar Detection. Raleigh, NC: SciTech Pub-

lishing, Apr. 2004.

[106] “IWR6843 data sheet, product information and support | TI.com.”

[107] B. Erol, M. G. Amin, and B. Boashash, “Range-doppler radar sensor fusion for fall

detection,” in 2017 IEEE Radar Conference (RadarConf), 2017, pp. 0819–0824.

[108] A. Bourdoux, U. Ahmad, D. Guermandi, S. Brebels, A. Dewilde, and

W. Van Thillo, “PMCW waveform and MIMO technique for a 79 GHz CMOS

automotive radar,” in 2016 IEEE Radar Conference (RadarConf), 2016, pp. 1–5.

[109] E. Raei, M. Alaee-Kerahroodi, P. Babu, and M. R. B. Shankar, “Generalized

waveform design for sidelobe reduction in mimo radar systems,” Signal Processing,

vol. 206, p. 108914, 2023. [Online]. Available: https://doi.org/10.1016/j.sigpro.

2022.108914

[110] M. Alaee-Kerahroodi, P. Babu, M. Soltanalian, and B. S. Maysore Rama Rao,

Signal Design for Modern Radar Systems. Artech House, 2022.

[111] N. K. Sichani, M. Alaee-Kerahroodi, B. S. Maysore Rama Rao, E. Mehrshahi,

and S. A. Ghorashi, “Antenna array and waveform design for 4d-imaging mmwave

mimo radar sensors,” IEEE Transactions on Aerospace and Electronic Systems,

pp. 1–16, 2023.

[112] Z. Yang, P. H. Pathak, Y. Zeng, X. Liran, and P. Mohapatra, “Vital sign and

sleep monitoring using millimeter wave,” ACM Transactions on Sensor Networks,

vol. 13, no. 2, pp. 14:1–14:32, 2017.

140

https://digital-library.theiet.org/content/journals/10.1049/ip-f-1.1986.0098
https://digital-library.theiet.org/content/journals/10.1049/ip-f-1.1986.0098
https://doi.org/10.1016/j.sigpro.2022.108914
https://doi.org/10.1016/j.sigpro.2022.108914


Bibliography

[113] M. Shen, K.-L. Tsui, M. A. Nussbaum, S. Kim, and F. Lure, “An indoor fall

monitoring system: Robust, multistatic radar sensing and explainable, feature-

resonated deep neural network,” IEEE Journal of Biomedical and Health Infor-

matics, vol. 27, no. 4, pp. 1891–1902, 2023.

[114] J. Pegoraro and M. Rossi, “Real-time people tracking and identification from

sparse mm-wave radar point-clouds,” IEEE Access, vol. 9, pp. 78 504–78 520, 2021.

[115] A. Palffy, J. F. P. Kooij, and D. M. Gavrila, “Detecting darting out pedestrians

with occlusion aware sensor fusion of radar and stereo camera,” IEEE Transactions

on Intelligent Vehicles, vol. 8, no. 2, pp. 1459–1472, 2023.

[116] S. K. Kwon, E. Hyun, J.-H. Lee, J. Lee, and S. H. Son, “Detection scheme for

a partially occluded pedestrian based on occluded depth in lidar–radar sensor

fusion,” Optical Engineering, vol. 56, no. 11, pp. 113 112–, 2017.

[117] M. Ahmadi, M. Alaee-Kerahroodi, B. S. Maysore Rama Rao, and B. Otter-

sten, “Subspace-based detector for distributed mmwave mimo radar sensors,” in

2023 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2023, pp. 1–5.

[118] M. Canil, J. Pegoraro, A. Shastri, P. Casari, and M. Rossi, “ORACLE: Occlusion-

resilient and self-calibrating mmwave radar network for people tracking,” IEEE

Sensors Journal, vol. 24, no. 3, pp. 3157–3171, 2024.

[119] A. Shastri, M. Canil, J. Pegoraro, P. Casari, and M. Rossi, “mmSCALE: Self-

calibration of mmWave radar networks from human movement trajectories,” in

2022 IEEE Radar Conference (RadarConf22), 2022, pp. 1–6.

[120] T. Yang, J. Cao, and Y. Guo, “Placement selection of millimeter wave FMCW

radar for indoor fall detection,” in 2018 IEEE MTT-S International Wireless Sym-

posium (IWS), 2018, pp. 1–3.

[121] D. Liu, U. S. Kamilov, and P. T. Boufounos, “Sparsity-driven distributed array

imaging,” in 2015 IEEE 6th International Workshop on Computational Advances

in Multi-Sensor Adaptive Processing (CAMSAP), 2015, pp. 441–444.

[122] V. H. Tang, A. Bouzerdoum, and S. L. Phung, “Compressive radar imaging of

stationary indoor targets with low-rank plus jointly sparse and total variation

regularizations,” IEEE Transactions on Image Processing, vol. 29, pp. 4598–4613,

2020.

141



Bibliography

[123] T. Benoudiba-Campanini, J.-F. Giovannelli, and P. Minvielle, “Sprite: 3-d sparse

radar imaging technique,” IEEE Transactions on Computational Imaging, vol. 6,

pp. 1059–1069, 2020.

[124] R. Hu, B. S. Maysore Rama Rao, A. Murtada, M. Alaee-Kerahroodi, and B. Ot-

tersten, “Widely-distributed radar imaging based on consensus ADMM,” in 2021

IEEE Radar Conference (RadarConf21), 2021, pp. 1–6.

[125] D. Kozlov and P. Ott, “Cfar detector for compressed sensing radar based on l1-

norm minimisation,” in 2020 28th European Signal Processing Conference (EU-

SIPCO), 2021, pp. 2050–2054.

[126] C. A. Rogers and D. C. Popescu, “Compressed sensing mimo radar system for

extended target detection,” IEEE Systems Journal, vol. 15, no. 1, pp. 1381–1389,

2021.

[127] J. Ding, M. Wang, H. Kang, and Z. Wang, “Mimo radar super-resolution imaging

based on reconstruction of the measurement matrix of compressed sensing,” IEEE

Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.

[128] M. Jafri, S. Srivastava, S. Anwer, and A. K. Jagannatham, “Sparse parameter

estimation and imaging in mmwave mimo radar systems with multiple stationary

and mobile targets,” IEEE Access, vol. 10, pp. 132 836–132 852, 2022.

[129] R. G. Gallager, Stochastic Processes: Theory for Applications, 1st ed. Cambridge

University Press, 2013.

[130] blender (3.6 LTS), blender foundation. Accessed: Feb., 11, 2024. [Online].

Available: https://www.blender.org/download/
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