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Chapter 1

Introduction

This thesis concerns nonparametric estimation methods for interacting particle systems and their
mean-field equations. In this introductory chapter, we first present the stochastic differential
equations we study in this framework and cite some probabilistic results, including existence
and uniqueness of solutions, as well as a phenomenon called propagation of chaos, which links
the particle systems to their associated mean-field limits. Afterwards, we present some of the
literature on statistical estimation of these models that has been developed over the recent
years. We finish the introduction by outlining the content of this thesis and presenting the main
results.

1.1 Interacting Particle Systems and McKean-Vlasov Equations

For N € N, a N-interacting particle system X"V ... X'V is given by solutions of the following
system of N d-dimensional stochastic differential equations (SDEs)

{dX;"N =b(e, X", u))dt + o (e, X", u)dB],  £>0, (1.1)

(X(l))lsiSN ~ M?N,

where (B');<;<y are independent d-dimensional Brownian motions, the initial random variables
(X(i))l- are independent of (B');, and ,uff’N denotes the N-fold product of a probability measure
Uo- Unlike classical SDEs, the drift b and diffusion o depend on the empirical measure of the
trajectories, defined for each N > 1 as

1 &
N _ .
w, = E Oyin.

Ni=1 t

In other words, the dynamics of the i-th particle are governed by all other particles, causing
the interaction. Assuming all particles have the same initial distribution, they also share the
same trajectory, thus making them exchangeable. These systems have first been studied in
[McK66] in the context of plasma physics, and have later prompted probabilistic investigations
and extensions such as in [Gar88; Szn91; Mél96; Ben+98; Mal03; CGMO08; Kol10], to name
only a few references.

Let us present a well-posedness result given the standard assumption of Lipschitz continuity.
Let T > 0 and (#,(R%), W,) denote the space of probability measures on R? with finite second
moments, equipped with the Wasserstein-2 distance.
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Assumption 1. The initial distribution is given by p, € @,(R?). The drift b: [0, T] x RY x
2,(RY) = RY and diffusion o: [0, T] x R? x 2,(R?) — R¥*4 are Lipschitz continuous in the
sense that there exists a L > 0 such that for all x,y € R and u, v € ,97’2(Rd),

1b(x, u) = b(y, M) +[o(x, u) —o(y, I < L (lx = y| + Wy(u, 7).

By It0’s existence and uniqueness result for SDEs with Lipschitz coefficients, the solution to this
SDE system is well-defined.

Theorem 1.1 ([Lac], Lemma 3.2). Under Assumption 1, the system of SDEs (1.1) admits a
unique strong solution for any N € N.

Associated to these particles is a so-called mean-field equation, which is a d-dimensional SDE
given by
{dXt = b(t,X,, pe)dt + o (t, X, 4 )dB,, 1.2

Law(X,) = u,

where B is a d-dimensional Brownian motion. These equations are known in the literature as
McKean-Vlasov SDEs, distribution dependent SDEs (DDSDEs), or nonlinear SDEs in the sense
of McKean. The nonlinearity is given by the fact that, due to the distribution dependence in
the coefficients, solutions to these equations no longer satisfy the Markov property, and the
flow of measures (u;);>o solves a nonlinear Fokker-Planck equation

1
attu’[ = EVVT (O-O-T() ) nut) :u’t) -V (b(’ ) nu’t)nu’)’

where V denotes the divergence operator with respect to the space variable x. These equations
have been studied from multiple angles, either from a probabilistic perspective as the mean-field
limit of the aforementioned particle systems, or as DDSDEs [HRW21; GHM22], or through
their associated PDE [CMV03; BGG13; BR18; BR20].

To specify the relationship between interacting particle systems and their mean-field limit, let
us introduce the phenomenon of propagation of chaos. Heuristically, as the name suggests,
this means that particles that start out chaotically, i.e. (X(i))lsisN ~ ,ug’N , will propagate this
chaos in time more as the number of particles grows. There are a number of ways to define
propagation of chaos, we refer to the exhaustive reviews [CD22a; CD22b] for further literature.

Definition 1.2 (Propagation of Chaos). Let X i’N be the solution of (1.1), and X ; the solution of

Law(X}) = p,,

where the initial values (X é)i and the Brownian motions (B'); are the same as in (1.1). We say
that (pointwise) propagation of chaos holds if

2

J=o

Propagation of chaos in particular implies the weak convergence ,ultv — U;, pointwise in t.
More precisely, the random variable ultv converges in law to the deterministic measure u,. By
coupling the trajectories of the particle system with i.i.d. copies of the mean-field equation,
one can show that the classical case of Lipschitz coefficients indeed exhibits propagation of
chaos. Existence and uniqueness of solutions to the mean-field equation can be proved using a
fixed point argument.

lim sup ]E[ Xi’N —Xi

N—=00 e0,T]
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Theorem 1.3 ([Lac], Theorem 3.3). Under Assumption 1, the mean-field equation (1.2) admits
a unique strong solution. Furthermore, propagation of chaos in the sense of Definition 1.2 holds
for the associated interacting particle system given by (1.1).

A special case of interacting particle systems, and one we will be focusing on in this thesis, is
given by time-homogeneous drifts of convolution type, meaning that there exist differentiable
potentials V, W : R? — R such that

b(x, ) = V'(x) + W’ u(x),

where f * g(x) = [ga f(x —¥)g(y)dy denotes the convolution. In this case, V and W are
called confinement (or friction) potential and interaction potential, respectively. The associated
Fokker-Planck equation is known in the literature as the granular media equation. These types
of equations have been extensively studied, some works already mentioned include [Ben+98;
CMV03; Mal03; CGMO08; BGG13].

1.2 Results on Parametric Inference

The field of statistical inference of interacting particle systems and McKean-Vlasov equations
has only recently garnered attention. Originating as models in plasma physics and first studied
in [McK66], physical observations of the microscopic systems were not available, resulting in an
initial lack of interest in the development of statistical programmes. When these models found
more widespread applications in the recent decades, see for example [GH11; Bal+12; CFT12;
FS13; Cha+17; GSS20; Dje+22], the need for statistical inference became more apparent.
Since then, there have been many contributions made in a variety of directions. We highlight
some important works pertinent to this thesis in the present and following section.

We begin the exposition by outlining some works on parametric inference in interacting particle
systems. Let us first focus on the estimation in the asymptotic regime of N — oo. Consider a
system of N one-dimensional SDEs given by

{dXi’N = (0,6, XN, u)de + (6, XN)dBl, t<€[0,T] (1.3)

XD1<isn ~ udN.

Here the parameter of interest is given by 6 € © c RP. Using Girsanov’s theorem, the log-
likelihood of this system can be written explicitly, serving as a natural contrast function for the
estimation of 6, and motivating other contrast functions. Let

XWN) = (xLN | xNN)

be the canonical process on ¢V = C([0,T],R), equipped with its Borel o-algebra %Y.
Denote by IPIg and IPS’ be the probability measures on (6, %8") such that

XM solves (1.3) with respect to Py,

. , , (1.4)
XM solves dXi’N =o(t,Xx"N) dB; with respect to IP’S’.

Then the Radon-Nikodym derivative of these two measures is given by

dp N (T (o, e, xY uN) T (b0, X, u¥) )
Ly(6) = log(—f])(X(N))zz / ( t.NMt)dXi’N—l/ ( t.NMt dt |.
dP; =\ Jo o(t,X;) 2 Jo o(t,X;)

l (1.5)
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The maximum likelihood estimator (MLE) is defined as the maximiser of the above likelihood.

éML

N £ — argmax Ly(6).

0e€o
Furthermore, if 6 — Ly (60) is sufficiently regular, the Fisher information matrix of the experi-
ment (€N, BV, (]P’g’)gee) is defined as I(0) = ]Epzev [—5% Ly(0)], where 54, Ly is the Hessian
matrix of Ly with the derivatives taken with respect to 6.

Our primary interest is the study of the MLE in the high-dimensional limit, that is as N — oo.
Note that this is different from the classical literature of estimation in SDEs, where the asymptotic
usually considered is T — oo. We begin this literature review by presenting the first work
covering high-dimensional parametric statistics for interacting particle systems, [Kas90], where
the MLE was studied in particle systems with a linear dependence on the parameters. In
[DH23], the MLE has been shown to exhibit the LAN property. The joint estimation of parameters
appearing both in the drift and diffusion functions has been investigated in [Amo+23]. Different
settings are discussed afterwards: [Sha+23; PZ22b; PZ22a] study the asymptotic behaviour of
estimators in particle systems in large time. The works [Wen+16; 1.Q22; GL21a; GL21b; GL23a;
GL23Db] present estimation procedures based on observations of the mean-field equation of
particle systems.

1.2.1 Maximum Likelihood Estimation in the Case of Linear Dependence

[Kas90] was the first paper of its kind to analyse parametric estimation in interacting particle
systems by deriving and studying the maximum likelihood estimator. The author showed that
for an interacting particle system with a linear dependence on the parameter of interest 9,
the MLE can be computed explicitly, given knowledge of the drift and diffusion functions.
Furthermore, the MLE is shown to be a consistent and asymptotically normal estimator as the
number of particles goes to infinity.

Consider continuous-time observations (X EN))te[O,T] on a fixed time horizon t € [0, T] of the
N -particle system
i,N N N -
Xt =30, Okbu X )de +0y(x{)dB],
i,N
(Xg D<isn ~ uSY.
The drift and diffusion functions b;,o;: R¥ — R are assumed to be known and be such
that the interacting particle system admits a unique strong solution. We present the case of
exchangeable particles, however the original result also holds under more general conditions.

Denote the true parameter as 6, and the observed information as IV (6,) = —#¢, Ly(6,). Since
the drift is linear in 6, the MLE can be computed as the solution of

IN(QO)(QII\\]ALE —6y) =My,

where (M g\’ )tefo,r] is a local martingale. By Rebodello’s central limit theorem, the quadratic
variation of MV satisfies (M N )T — I(6,) almost surely as N — oo, which is the main argument
needed to show consistency and asymptotic normality of the MLE in this context.

Theorem 1.4 ([Kas90], Theorem 1). GA}\\,’ILE is a consistent estimator of 0, and
A d _
VN(ONE —0,) = A (0,171(6,)).

This result can also be used to test for interaction given a particle system.
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1.2.2 The LAN Property

[DH23] studied the MLE for a multivariate interacting particle system with a parameter 6 €
© C R? in the drift as in (1.3) and proved that the MLE is locally asymptotically normal as
N — o00. The LAN property implies Hajek’s theorem, which is used to show minimax optimality
of the MLE under some conditions.

Consider the experiments &Y generated by the canonical process X and the measures IPQ’
defined as in (1.4):
&N = (6N, B", (Byoco)-

Under some conditions, in particular on the regularity of the drift function b with respect to 6,
the experiment &V is regular in the sense of Ibragimov and Has’minskii, implying that the Fisher
information matrix Ien(6) is well-defined. Furthermore, the limit N~ !Izv(8) — I4(0) exists
for any 6 in the interior of ©, see [DH22, Proposition 11]. Under an additional identifiability
assumption on the experiment, the information matrix is non-degenerate and the authors show
the LAN property, following the strategy of Ibragimov and Has’minskii [IH81].

Theorem 1.5 ([DH23], Theorem 14). For every 6 in the interior of ©, the sequence of experiments
(&N)yen is locally asymptotically normal at 6 with information rate N14(0). That is to say, for
any u € R? such that 6 + (NLg(G))_l/zu €0, itis

1 s ey L g0,
(o) =u ——|u r 7u 1)
& dpyy ) N

where §]g—>ﬂ(0p, 1,.,) in distribution and ry(6,u)—0 in probability, and both convergences
are with respect to Py .

Due to Hajek’s theorem [DH23, Corollary 18], the LAN property implies some strong results
for the MLE regarding its minimax optimality.

Theorem 1.6 ([DH23], Theorem 19). For any polynomial loss function, the MLE is exactly locally
asymptotically minimax optimal at any 6 in the interior of ©. Furthermore, on any open subset
©) C O, the MLE is asymptotically minimax optimal.

1.2.3 Joint Estimation of Drift and Diffusion using Discrete Observations

The work [ Amo+23] studies the joint estimation of parameters in the drift and diffusion function
given discrete observations of the interacting particle system. Unlike the previously presented
works, the diffusion is also allowed to depend on the empirical measure and contribute to the
interaction in this framework. The discretised observations make the likelihood-based approach
unfeasible, asking instead for a pseudo-likelihood based approach. The resulting estimator is
shown to be consistent and asymptotically normal as the number of particles goes to infinity
and the discretisation step goes to zero.

Consider R-valued particles on t € [0, T] given by
X = b6y, X, )t + 0 (65, X", u)dBY,
(X(I)’N)lsiSN ~ M?N-
The vector of parameters is given by 6 = (0;, 0,) € © C RP1™P2, The observations (X Eﬂv))lg i<n
j

are assumed to be given by equidistant time steps t;? = jA, with discretisation step A, = %,

and the asymptotic studied is N — 0o and A, — 0. The estimator is defined as the minimiser
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érllv = argmingcg S nN (0) of a contrast function that is motivated by the Gaussian quasi-likelihood
function:

SnN(Q) = ] 2
-1

n
et

_ 2
+log (0 (GZ,X;ﬁ, u’t\él) ) )

Under some assumptions on the regularity of b and o, the estimator is shown to be consistent
in probability as n, N — oo, see [Amo+23, Theorem 3.1]. Furthermore, assuming the diffusion
coefficient depends linearly on the measure argument via some integration kernel, the authors
also prove asymptotic normality of their estimator, provided the limiting covariance matrix is
non-degenerate.

Theorem 1.7 ([Amo+23], Theorem 3.2). Let N and A, be such that NA,, — 0 as n,N — oo.

Then X
( VN (Y, —6o,)
2 (62, 602)

where 3(6,) = diag(2,(6y), 22(6y)) is an invertible block diagonal matrix with entries ¥;(6,) €
RPi*Pi

) < H(0,25(6,)7),

The main tool used to show asymptotic normality is based on studying the derivatives of the
contrast functional Vg Sf using a central limit theorem for martingale difference triangular
arrays. Define the block diagonal matrix MTIIV = diag(N~V/ zﬂp (A,/N)Y zﬂp ). Using
the Taylor expansion, one can show that

1XP1° 2%XP2

B (MY (6N — 65) = —MY VoSN (6)),
where I’r:’ is a RP*P-valued random variable that converges to 3(6,) in probability as N,n — oco.
On the other hand, using the aforementioned CLT, it is
d
M}V Sy (69) = A (0,25(6)),

which yields the claimed asymptotic normality of the MLE.

1.2.4 Large Time and Small Variance Statistics

In [GL21a; GL21b], the authors study the following one-dimensional McKean-Vlasov equation

{dxt =[V(a,X,)— ¢(B, ") % u(X)]dt + dB,,

(1.6)
Xo=x9€R, Law(X,)=u,.

The parameter of interest is given by 6 = (a,3) €0, X ©g C R2. In their first work, [GL21b],
the authors showed that in the small noise limit ¢ — 0, given continuous observations on
a fixed time interval (X)c[o,1], only the parameter a can be estimated, whereas 3 cannot.
Consequently, the authors next studied the joint estimation of the parameters 6 in the asymptotic
regime of T — 00, ¢ — 0, given a path (X,),>( as an observation. We present some of the
results from this second work, [GL.21a].

As a contrast function, the authors consider an approximation of the log-likelihood, using a
self-stabilisation property of the SDE. Under some conditions, it is

1irr(1) b(0,t,e,x)=¢(B,x —x.(a)),
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where b(8,t,¢,x) = @(f,") * u,(x) and x,(a) solves an ODE of the form

{%xt(a) = V(a, Xt(a)):

xo(a) = xq.

Therefore, substituting the true drift with H(9,t,x) = V(a,x) — ¢(,x — x,(a)) gives an
approximate likelihood function which can be minimised.

A 1 T 1 T
(e, Ber) = argmax [ HEO, X)X~ o [ (O, 0x V.
B 0 €= Jo

(a,p)eo €

The asymptotics of these estimators depend on the behaviour of the root of V, which is assumed
to be unique. For every a € ©, define x*(a) as the (unique) solution of V(a, x*(a)) = 0. The
rates of convergence vary depending on whether said root x*(a) is constant with respect to a.
Either case results in asymptotic normality, but with different convergence rates and covariance
matrices.

Theorem 1.8 ([GL21a], Theorem 3.3). Let ¢ — 0 and T — o0 in such a way that /T — 0.
Then the following convergences hold with respect to Py, .

1. If x*(a) is not constant with respect to a, then for every 6, € © there exists a diagonal
matrix IV (6y) such that

5_1ﬁA(&e,T—ao) )i M (g y-1
[y )i

2. If x*(a) = x* for all a € O, then for every 6, € © there exists a diagonal matrix I® (6,)
such that

e (G, —ap) )g @ (g -1
( VT (B —Bo) H(0,1?(0,)7).

From this theorem, we indeed see that the joint asymptotics e}, T — oo are needed to
obtain asymptotic statements for the joint estimation. The estimators are also shown to be
asymptotically efficient [GL.21a, Section 3.6], meaning that no information was lost when
considering this approximation of the likelihood function.

1.2.5 Further Works

The presented literature on parametric estimation in interacting particle systems is certainly
not exhaustive, and so we mention a few other works related to this field.

Maximum likelihood estimation in the mean-field setting is studied in [Wen+16]. Given an
observation of the McKean-Vlasov equation, it is shown that the MLE is consistent in probability
as T — oo. Furthermore, the experiments associated to the likelihood of the mean-field
equation are shown to be locally asymptotically mixed normal. This study has later been
generalised to a path-dependent setting by [1.022], where almost sure consistency of the MLE
was proved.

[Che21] study the MLE for so-called linear elasticity interacting particle systems where the
interaction potential is quadratic, meaning the drift is given by a linear transformation of the
particles. Given continuous observations of the system, the MLE is shown to be consistent and
optimal in the joint limit of N, T — oo.
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A method of moments estimator is studied in [PZ22a] based on observing the path of a single
particle in an interacting particle system. The drift and diffusion are assumed to be polynomials
and to depend linearly on the unknown parameters. The estimator is given as the solution
of a certain inverse problem that is constructed using approximations of the moments of the
invariant measure and the quadratic variation of the observed path. Consistency in L*(R) as
N, T — oo is shown.

In [PZ22b], an eigenfunction martingale estimator is presented that relies on discrete observa-
tions of a single particle in an interacting particle system. Their method assumes the existence
of an ergodic measure, which is granted under some convexity assumptions on the confinement
and interaction potentials. The estimator is designed to approximate the eigenfunctions of
a linear operator, where the latter is obtained by linearising the generator of the mean-field
equation using the aforementioned invariant measure. This procedure is shown to result in
an estimator that is consistent in probability and asymptotically normal in the joint limit of
N — oo and discretisation step A,, — 0. Convergence rates are given with high probability.

[Sha+23] study online estimation methods for both interacting particle systems as well as their
mean-field limits. The maximiser of an approximate log-likelihood, which is updated using a
stochastic gradient descent scheme, is shown to be consistent as N, T — 00, and as T — ©0.

Two more recent studies treating parameter estimation in McKean-Vlasov models in large time
have been undertaken by the same authors in [GL.23a; GL.23b]. When considering observations
solving the McKean-Vlasov equation, the true likelihood is a theoretical quantity due to the
distribution dependence in the drift. Therefore, the authors use two-step approaches to construct
pseudo-likelihood functions: The observations are assumed to be on a interval [0, 2T ], whereby
the path on [0, T] is used to approximate the unknown distribution, and the likelihood is
computed with respect to the remaining path on [T, 2T ] using said approximation. In addition
to their constructed estimators, the authors also study the true likelihood function in their
frameworks. In the first work, [ GL23a], the parametric inference of the polynomial interaction
functions is studied and the invariant distribution is approximated using moment estimators. In
their second and more general work, [GL.23b], both the confinement and interaction functions
are allowed depend on the unknown parameters, and the invariant measure is approximated
by a kernel estimator of bandwidth T. In both works, the resulting estimators are shown to be
consistent and asymptotically normal.

1.3 Results on Nonparametric Inference

Results on nonparametric methods are noticeably fewer and more recent than their parametric
counterparts. One of the first works, [Bis11], extended a linear case studied in [Kas90] to
consider parameters with a dependence in time. In [DH22], kernel estimators for the empirical
measure and the drift function are considered, alongside an estimator for the interaction
function, if the measure-dependence of the drift is of convolution type. A semiparametric setup
was considered in [BPP23], which served as motivation for the second work presented in this
thesis. A projection estimator is considered in [CG23], sharing similarities the first work of this
thesis, albeit in a less general setting.
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1.3.1 Sieve Estimator and an Approximate MLE

[Bis11] generalised the setting in [Kas90] to a nonparametric one by considering

XN =x; €R,

{dXi’N = Yic OBy (X)de + oy (x(V)dBL,

where the parameters 6 € L2([0, T],R?) now depend on time. In that case, the log-likelihood
Ly: L*([0,T],R?) — R is still explicit and coincides with the likelihood in the parametric
case given by (1.5). The authors use sieves to obtain an estimator for 8. Furthermore, in the
parametric setup, an approximate likelihood estimator, defined by minimising a time-discretised
version of the likelihood, is considered. We choose to skip the discussion of the latter and focus
on the nonparametric problem. For the sieve estimator, let Vy, N € N be increasing subspaces
of L2([0, T],RY) with dim(Vy) = dy and such that Uyen Vv € L%([0,T],RY) is dense. Then
the sieve estimator é]f, is defined by

élf, = argmax Ly(f).
feWw

Using similar methods as for the sieve estimator in a setting without interaction, the estimator
is shown to be consistent. Furthermore, its coefficients with respect to a given orthonormal
basis are asymptotically normal.

Theorem 1.9 ([Bis11], Theorems 3.1 and 3.2). The sieve estimator satisfies the following
statements.

2
1. Let (dy)yen be such that dy — oo and dﬁN — 0as N — oo. Then

A 2
S
65 — 90||L2 -0,

where the convergence is in probability.

2. Let élfl,k’ 0o x denote the coefficients of 63, 6, with respect to an orthonormal basis of L%(R?).

3
Let (dy)nen be such that dy — oo and dWN — 0 as N — oo. Then, for any k €N,

VN (65— 6ox) S H(0,171(65)).

1.3.2 Kernel Estimators and Minimax Optimal Oracle Inequalities

In [DH22], the authors construct kernel estimators for the empirical measure and the drift
function where the kernel bandwidth is chosen via the Goldenshluger-Lepski method. The
associated oracle inequalities are derived and are shown to be minimax optimal in anisotropic
Holder classes, save for a logarithmic factor. Additionally, in the setting of interaction through
convolution, the authors present a consistent estimator for the interaction function.

Consider a d-dimensional interacting particle system as in (1.1) with a non-interactive diffusion
o that is Lipschitz in space and an initial distribution exhibiting exponential moments. For the
drift b, the authors consider several cases, in particular the one where the interaction is given
by some integral kernel b(t,x, ) = [pa b(t,x,y)du(y), also called the Vlasov case.
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Kernel Estimators for Empirical Measure and Drift

Let K: R? — R be a kernel of order | € N and write K, = h™?K () for any bandwidth h > 0.
We define a pointwise kernel estimator of u, (x,) for any t; € [0,T] and x € RY by

ﬁI;Y(fO: Xo) =Ky, * Mlt\g(xo)-

The data-driven Goldenshluger-Lepski estimator is given by ,llgL(to, Xg) = ,tlg] (to,xg), where h
is selected using the Goldenshluger-Lepski algorithm.

Let us next construct an estimator for b. The idea is to define a kernel estimator fca’ for
m(t,x) = b(t,x, u)u.(x) and then define a quotient estimator using ﬁg and ‘CLI}Y . Consider the
measure 7 on [0, T] x RY defined by

N T
1 . .
t,x)daN(t _——E £, xNydx N,
/[o,T]def( ,x)dn” (t, x) Ni=1/0 f(t, X)) dX,

Let H: [0, T] — R be another kernel of order . For h = (hy,h,) € R* x R*, define Ky, (t,x) =
Hy, (t)Ky, (x) with the kernel function K as above. We obtain a kernel estimator for 7 by taking
the space-time convolution of "V with the tensorised kernel function K:

ﬁg(to,xo) =Ky, * T (to, Xo).

Finally, we arrive at an estimator for b by taking the quotient of the two estimators and adding
a threshold parameter w > 0 to prevent a blow up.

7'Afll\,l(to,xo)

BN (tg,x0) = —">"—"— .
h.h 0,0 ~
e ,uﬁ’(to,xo)Vw

The Goldenshluger-Lepski estimator i)gL(tO, Xo) can be defined usingfl as above, and another
estimator h, which is also sAelected using the Goldenshluger-Lepski algorithm. It is shown that
the risks of () (to, o) and bﬁ” h’w(to, Xo) can be naturally decomposed into a bias and variance
term. Furthermore, following the Goldenshluger-Lepski method, ﬂgL(to, Xo) and BgL(to,xO)

are shown achieve the optimal bias-variance trade-off in terms of bandwidth selection, see
[DH22, Theorem 7 and Theorem 9].

Optimality in Anisotropic Holder Classes

Let & be the family of admissible triplets (b, o, uy) satisfying some assumptions regarding
existence and uniqueness of solutions, in particular that (t, x) — u,(x) is the weak solution of
the nonlinear Fokker-Planck equation

{@u =1 Zj,k:l 0%oo T u—v(by).

(1.7)
u(t =0) = uo.

Denote S: @ — LY(RY), (b,0,ug) — (Ue)eefo,r] as the solution map of (1.7). Consider the
anisotropic Holder class %P with a-Holder regularity in time and B-Holder regularity in
space. For the exact definition, we refer to [DH22, Definition 11]. The function class with
respect to which optimality of ,agL(to, X) is proved is given by

56‘(1,[5 = {(b, (o Mo) €EP: ||S(b’ ¢ “O)”j{’a,ﬁ < L} .

In this function class, the convergence rate of the Goldenshluger-Lepski estimator is shown to
be optimal up to a logarithmic factor, provided the estimation kernel is chosen to be of higher
order than the space-Holder regularity of u.
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Theorem 1.10 ([DH22], Theorem 14). Let a, B, L > 0. For any (ty,x,) € (0, T) x R? it is

BAL
log(N) ) BN+

1
sup B[ | (to,x0) =, o) ] 5 (5

(byc,ug)es, P

Moreover,
1
3 B
. AN 2732 —=F
inf  sup ]E[M —uto(xO){] X N2,
NGRS

where the infimum is taken over all estimators constructed using ,ult\g .

The lower bound of the estimation problem is computed using a two-point lower bound
argument with LeCam’s lemma, whereas the upper bound follows from classical arguments in
the Goldenshluger-Lepski methodology. A similar result also holds for the drift estimator BgL,
see [DH22, Theorem 15]. There the rate also depends on the regularity in time a.

Consistency of an Interaction Estimator

The introduced kernel estimators can also be employed for the estimation of the interaction
function ¢ in the case of a time-homogeneous drift given by b(x, u) = G(x)+ ¢ *u(x), whereby
the function G is regarded as a nuisance parameter. In order to express ¢ in terms of only
(,u]tv )tefo,r] and b, the authors introduce an integral operator which removes the dependence
of b on G. For a family of measures (u,);c[o,r], the operator £: LY([0,T],C) — R is defined
in such a way that, for any x € R,

Zb(x,u.) = ¢ * ZLu.(x).

On the left hand side, £ acts on the function t — b(x, u,) for a fixed x € RY. Using the Fourier
transform to invert the convolution, we have the relation

F(£b(,u))

F =

(¥) 7 (Zn)
An estimator ¢ is then obtained by replacing b and u. with their respective estimators and
adding truncations to ensure the estimator is well-defined. For details, we refer to [DH22,
Section 5]. The resulting estimator is shown to be consistent with respect to the L%(R?)-norm
in [DH22, Theorem 17]. The statement is purely qualitative; in order to derive a convergence
rate additional assumptions on the distributions (u;)[o,r] Would be necessary.

1.3.3 Adaptive Projection Estimators

[CG23] extended the study of [Bis11] by studying nonparametric estimation of the functions
a, 3 € L2([0, T],R) in the following one-dimensional interacting particle system.

{dxglN = (a(t)x™ + ()N —XM)) de +dBL,
(X(I)’N)lsiszv ~ H{?N-

This model was first studied in [Kas90] as an example in the case of constant coefficients, and in
[Bis11] the joint estimation of (a, ) € L2([0, T], R?) was considered. In [CG23], the problem

of separately estimating a and f3 is studied, given continuous observations (X EN))te[O,T] and
letting N — oo. The dependence of the log-likelihood on the parameters can be decoupled,
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motivating two contrast functionals for the estimation of @ and y := a— 3 which are minimised
separately using projection estimators. We note that this methodology is very similar to the first
work of this thesis, the main difference being that some computations can be done explicitly
due to the dependence on the functions a and y. Denoting the processes of the empirical mean
and empirical variance as X™) and V) respectively, the authors consider the functionals

T T
UN,1(f)=/O f(f)ZXEN)dt—Z/O f(t)XEN)dXEN)

’ 21,(N) 2 [T S LN _ ¢(N) i,N
Unalh) = [ F@PVOde=2 [ p0 D o -2 ax.
i=1

These two terms indeed decompose the log-likelihood into two parts which only depend on «
and y respectively, since it is

Uy 1(a) + Uy (y) = Ly((a, 7).

for any a,y € L2([0, T],R). This decoupling of the likelihood allows for separate estimation of
a and y. Let (S ;,)men and (S; ,)pen be two sequences of increasing subspaces of L*([0,T],R).
The projection estimators &, and 7, are then defined as

&, =argminUy 1(f) and 7, =argminUy ,(f).
fesl,m fESZ,p

We will next outline the procedure and results for &, and note that the study of ¥, is treated
in a similar way. Computing the estimator is the same as solving a certain inverse problem:
Let (e,;)men De an orthonormal basis of L2([0, T],R) and S1,m =span(ey,...,ey). Then &, =
Z;.":l Cq,j¢j, and the coefficients are given by ¢, ; = (\fJ;lZm)j, where

. T _ 2 R T _ -
(@) = /0 e (e (X)) de,  (Zn);= /0 e;()XMax ™.

The study of &, revolves around the behaviour of the matrix ¥,,, as well as a deterministic
counterpart ¥,, ~ E [\i/m]. As is standard for these kinds of projection estimators (see [CG19;
CG20]), the spectral norms H\@;l ||Op and ||\IJ;1 ||Op are increasing as m — ©0, such that there
needs to be some restriction on the choices of m in order to guarantee the stability of the
estimation procedure, namely, for some ¢ > 0,

- N N
I‘T’1(||\I’rnl||0pv1)S 21i)gN’ L ::;|{ej||io' (1.8)

Similarly, the estimator needs to be restricted to the event A, = {Lm(”\i/;ll ||Op v1) < %},
meaning that we consider the truncation &, = &, 1, . To study the risk of &,,, there are two
norms which arise naturally which involve the empirical mean. For this, the authors first show
in [CG23, Proposition 1] that XY) solves a SDE with a diffusion term that vanishes as N — oo.
As such, there exists a deterministic processes (x,)c[o,r] that is the mean-field limit of XM,
that is

X EN) — Xt

lim sup =0 a.s. (1.9)

N—09 1e0,1]

Thus, the natural norms in which to measure the risk of &,, are given by an empirical norm
Illz and its deterministic counterpart ||-||,, defined as

T T
IIfII;aN):/O FO*(X2) dt, ||f||x=/0 F(£)2x2dt.
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The probability that these norms are equivalent on L%([0, T],R) approaches 1 with arbitrary
polynomial speed as N — 00, see [CG23, Proposition 3]. Following the same ideas, the risk of
7, can be naturally measured with respect to two norms that depend on the empirical variance

and its mean-field limit in the same sense as in (1.9). Similarly to X W ), the empirical variance
is the solution of a SDE that only depends on y and vanishing noise.

The risk of the projection estimator with respect to the two introduced norms is as follows.

Theorem 1.11 ([CG23], Proposition 8). Suppose m is such that (1.8) is satisfied. Then it is
C m 1
~ 2 . 2

E[lla,—aliw] < (1 + N) (fler}sijn If —all? +2N) +

as well as c )

~ 2 . 2 m
Bl —al?] < (145 ) nf 1 -l 4220 )+
where C depends on T, a, and the first two moments of Xé.

This statement is proved by splitting the risk into events on which the estimator is well-behaved
and where it is not, the probability of the latter can be handled using concentration inequalities
for random matrices involving W,,. To illustrate the result, the authors note that this convergence
rate results in an optimal estimator with respect to the Sobolov-Laguerre basis.

An adaptive estimation method is given by using a data-driven choice of m, where the added
penalty reflects the bias-variance trade off of the risk. Define

A A m
My = {m <N: Lm({|qf,;1||op V1)< th = argmin Uy 1 (&) + K1

c
logN } ’ ey

We recall that ./, is the set of projections dimensions such that the growth condition A,, holds.
As a result, the estimator minimises the risk in .}, which is the set of m < N such that the
empirical counterpart of A, (as stated in (1.8)) holds.

Theorem 1.12 ([CG23], Theorem 1). There exists a numerical constant K such that for any
K1 2 Ko,

A . C . m 1
B[ln —al] s int (145 ) (inf 17 —al 4 )+

where C is the same constant as in [CG23, Proposition 8].

1.3.4 Semiparametric Estimation in the Ergodic Case

In [BPP23], a semiparametric estimation procedure in the joint asymptotics of N, T — oo has
been studied. The system is given by one-dimensional particles

dxPN = ¢ xulN (xPN)de +dBi,
i,N
(X(l) Ji<i<n ™~ M?N~
Following [ CGMO8], the interaction function is assumed to be locally Lipschitz with polynomial
growth, and it is the derivative of an interaction potential W : R — R that is strictly convex with
convexity constant A > 0. This ensures well-posedness of the system as well as the existence

and uniqueness of an invariant measure 7, and a propagation of chaos statement that is uniform
in time. For the statistical estimation, the interaction potential is assumed to be of the form

J

W(x) =D apx™ + p(x),

j=1
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where a; > 0 are the parameters and 3 the unknown function to be estimated. The authors
also allow the potential to include trigonometric contributions, however we omit these terms
here as they do not affect the estimation procedure. A key observation [BPP23, Lemma 3.1] is
that the convolution of the polynomial part of W with 7 preserves the polynomial structure: it
is (Z] 14 xm(x) = Z i1 a;x*, where the parameters a = (a;); are obtained through
a linear transformation of (a;);. Therefore the authors construct an estimator for a that is
motivated by the quantities

J
I(x)= m(x) and l(x,a)z—ZZjaszj_l
m(x) =

/

An empirical version of the log-density [ is given by Iy ¢ = {nN >5}> where my 1 is a

7TN T
regularisation of 7 using a kernel function, and 6 > 0 is a threshold to prevent blow-up. Using

a weight function wy;, the estimator of the parameters a is defined as

ay = argmin I(x,a)—ly r(x) 2 wy(x)dx.
, X ,

acR/

The estimation procedure for 8’ is motivated by the relation
B’ xm(x)=1(x,a)—1I(x).

The left hand side of this expression is estimated by ¥y y = [(-,ay 7) — Iy r, such that we
obtain an estimator for 8/, denoted as f3; ., through deconvolution via Fourier transforms

F(¥y 1)
9(/5N,T) = _Wzi)l{g(nl\w»w}’

where w > 0 is a threshold to prevent blow-up of the estimator. The constructed estimator
converges with logarithmic speed if the decay of 3’ is assumed to be polynomial.

Theorem 1.13 ([BPP23], Proposition 4.7). Assume that 3’ is an entire function of first order
and type less than some ¢ > 0. Furthermore, assume that

xll)m xP2 /xoo |ﬂ’(u)|du+xp (/xoo |/5’(u)’2du)% < o0.

il

This logarithmic rate is shown to be minimax optimal in a certain class of functions & =
9P,C,(Ci)i,7l given by

Then

, 2
> - ﬂ LZ(R)

] < & 2(log Ny ).

= {f € CiR): IIflloo < Co [|f || oo < Cr. inf £7(x) 2 —Cy limsupx* / fl(y)dy < c}

where the constants C, C; satisfy some relations. Using the two hypothesis method (see for
example [Tsy08]), the logarithmic rate is retrieved the setting of i.i.d. observations of the
limiting process.

Theorem 1.14 ([BPP23], Theorem 5.1). Let p > % Then there exists a constant c such that

1[r51/fsup PN (Hﬁ -B ||L2(R) > ¢co(logN) p/J)
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The logarithmic rate is reminiscent of the rates in the classical deconvolution problem, where
the role of the added noise is played by the invariant measure 7, and the conditions on the
Fourier transform of the data distribution found in deconvolution problems correspond to the
conditions on the tail behaviour of 3’ imposed above.

1.3.5 Estimation of Friction and Interaction using Method of Moments and Sieves

Motivated by the method of moment estimators introduced in [PZ22a] for parametric estimation,
the work [CGL.24] considers a nonparametric estimation method that combines a method of
moment procedure with projection estimation. Consider ergodic McKean-Vlasov equations of

the type

(1.10)

dX, =—(b(X,) + ¢ * n(X,))dt + odB,,
XONTL'.

Under some conditions on the friction term b and the interaction function ¢, the process
(X¢)¢>o is stationary with Law(X,) = 7 for all t > 0. The aim is to estimate the two functions
(b, ¢), given observations (X,).efo,r] @ T — ©0. The authors consider a (joint) projection
estimator as follows. Let (S ;n)men, (S2,p)pen be two sequences of increasing subspaces of
L?(R), given by Sim = span(ey,...,€1,) and S, , = span(ey1,...,e5,). The procedure is
motivated by the minimisation objective

(BY 9!y = argmin  [I(fi— b, fo—@lly-
(flsfz)esl,mXSZ,p

Here ||-||y is the natural (semi-)norm associated to (1.10), given by

1, )2 = /R (1) + fo # n())2d (),

whenever this expression is well-defined for a pair of functions (f;, f;). Let (b, ¢),, , denote the
inverse problem V,, (b, ¢),, , = Z,, , are approximated using the aforementioned method of
moments. For the method to work, it is assumed that four trajectories following (1.10) are
observed, such that the approximations V,,, , and Z,, , can be constructed using two given paths
each. The necessity of two paths is again due to the involvement of the unknown distribution.
The estimator is given by the minimiser of the approximate inverse problem, with a truncation
to ensure stability, that is
A1 .
va,p OPSC}

The risk is shown to naturally decompose into a bias and a variance term. As with the sieve
estimator presented in [CG23], the main idea is to split the risk into parts where it is easily
controlled, and parts whose probabilities vanish sufficiently fast, and the latter statement is
shown using concentration inequalities for random matrices. To state the result, we define

—_\"m 2 P 2
Ll,m - Z i=111€1,j || 0o and LZ,P - i=111€2,j || 00"
] J

Theorem 1.15 ([CGL24], Theorem 1). Assume that Ly, + Ly, < T. Then

—_ A1

(b; (p)m,p =V ,pzm,pl{

2 . Ll,m+L2,
]< inf (fi— b, fo— @I +C-Lm 28

[jE. o0l ]
[( Lp)m’P (b, ¢) v (f1:£2)€51,m%S2,p !

Lastly, the authors show that the bias and variance term are sensible on a heuristic level by
considering the Hermite basis on L2(R). Since b and ¢ are assumed to grow polynomially in
order for the invariant measure to be well-defined, both functions are not square integrable,
however the example still provides some intuition on the validity of their risk bounds.
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1.4 Organisation of the Thesis

The remainder of this thesis, presenting the main findings during the PhD, is split into two
parts. The first part, Chapter 2, also available as [BPZ24], focuses on projection estimators of
the interaction function ¢ in interacting particle systems of the form

dx;™ = (pxp )X M) de + 0dB,
g™ ) ~ .

Our estimator ¢y is defined through risk minimisation on sieves (Sy)yey With respect to a loss
function [|-||, that is natural for the particle systems considered. We present two methodologies,
depending on the function class in question. The first case encompasses compact spaces where
the supremum norm is uniformly bounded by some constant K,, that is assumed to be known.
In this setup, we can employ techniques from the study of U-statistics to bound the risk term
using Dudley integrals of metric spaces, denoted by DI(X, p,1) and defined in (2.5). Our main
result reads as follows.

Theorem 2.3. For any q > 2, it is

K, DI(SNy(2K,), || - loos WPe2)
_nq1te < _ ) N ® ocos> We,2
E[llon —¢ll] < fof IIf soll*+C( N

+p2K¢ DI(SN (2K), Il - lloos ¥ p/2) N p°K, DI(Sy(2K,), - ||oo,¢p/3))

N N3/2

The risk naturally decomposes into a bias term and a variance term, where the latter is achieved
by using concentration inequalities for U-statistics. Furthermore, we present function spaces
for which our achieved bound is polynomial in N and almost minimax optimal. For A,D > 0,
define

D D
S(A, D) := {x — iZ:ck exp(imtkx/A) : Z lcx] < \/ZKw}.
VAiD k=0

In these function classes, our estimator achieves a parametric convergence rate up to a logarith-
mic factor with respect to the loss ||-||,, assuming the initial distribution is a centred Gaussian
with variance { > 0.

Theorem 2.6. Set with arbitrary small 6 > 0,

Ay = V2AQ2+T)log(N),  Dy:=\(2+ 5)% ~log(N).
exp(K2T) 1
E[low —¢I2]"* 5\ —F— +K, O%SN)-

We also are able to present risk bounds in general vector spaces of functions, removing the
strong assumption on uniform boundedness. The study of the projection estimator in this setup
is closely related to [CG19; CG20; CG23] and heavily relies on understanding and controlling
the behaviour of a change of base matrix that is associated with transforming an orthonormal
basis in Sy into an orthonormal system with respect to the inner product induced by ||-||,. We
obtain uniform risk bounds in certain function spaces as follows.

Then, it is
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Theorem 2.9. It is
~ 2 . 2
supE[ |5y — ¢lI?] < (1 +0(1))sup inf [If — ol
7 7 fesSy

_ CD
+CN7Y2(1 + Ly)sup o, — ll?, + N—;,
'

where the supremum is taken over the class of functions ® defined as
®:={¢p:R>R: [[pllo <Ky, Ky < [lplluip < Ks}

for fixed constants K;,K5, K3 > 0.

The quantity Ly depends on the choice of basis vectors and can be controlled in many examples.
The functional ||-||,, is closely related to the original loss ||-||,, and we present an example in
which the term can be controlled in Proposition 2.12.

Finally, we investigate the minimax optimality of this estimation problem. The parametric rate
obtained in compact function classes is shown to be optimal in Theorem 2.13, using the two
hypothesis method. Furthermore, we are able to generalise the optimality result in [BPP23].
In this work, the authors proved that in a semiparametric estimation setting, the optimal rate
of convergence is logarithmic, given observations of the McKean-Vlasov equation at fixed point
in time. We extend this result in Theorem 2.14 by proving that, given continuous observations
of the same processes, the optimal result is still logarithmic.

In Chapter 3, available as [Amo+24], we study the estimation of particle systems with both a
confinement term and an interaction term of the form

{dx;?N =—(V' (XN + W s pN (xXPY))de + dBL,

N
(X(l) Di<isn ~ Ug)N'

The assumptions imposed on V and W are such that existence and uniqueness of an invariant
measure II are guaranteed, and that the empirical measure converges to IT with a certain rate
Ny as N, T — oo with respect to the Wasserstein-1 distance. Furthermore, we are able to show
a uniform propagation of chaos result in L?’(R) for any p € N, which differs from the existing
literature in that the convexity assumption on W is weakened.

Proposition 3.6. Let p > 1. There exists a constant ¢ > 0 such that forany N € Nand1 <i <N,
it is 4
supE [IX?N —)_(i|2p:| <cN7P,

t=0

In the above statement, X lt are N i.i.d. copies of the associated mean-field equation. The
framework of this chapter is similar to [BPP23] and we seek to answer some questions that
naturally arise from their results. We study a deconvolution-type estimator for the interaction
function W’ which is similar to the aforementioned work, however due to the more complicated
potentials in play, the resulting estimator requires a more delicate study. As proved in [BPP23,
Proposition 4.7], polynomial decay assumptions on the potential W lead to logarithmic conver-
gence rates of the estimator WIQ’T. Thus a natural question to ask is whether an exponential
decay assumption can lead to a polynomial rate. Our main result is that we are able to answer
this question positively in
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Theorem 3.11. Let € € (0,1) and a € R. There exist ¢,y > 0 such that

_r
2

1
IE|:/ Wy, T(J’)—W’(J’)|2dy]2 < CeXP(%(CIOgNT)%)(IOgNT)‘llNT .
g N

This statement hinges on the knowledge of the roots of Z(I1), which is the Fourier transform
of the invariant measure. More precisely, we have the following

Assumption 7. For a € R, define the set &, = {y +ia: y € R} C C. There exists a @ > 0 such

that
L.

This condition is notably difficult to verify, deserving its own section dedicated towards its
analysis. Utilising Hadamard’s factorisation theorem, we find lower bounds for & (IT), which
together with the exponential decay assumption on W’ guarantees the existence of the above
integral. We formalise this in Corollary 3.20. Lastly, we present an example wherein & (I1)
indeed exhibits a polynomial decay, provided the confinement potential is not smooth, but is
only continuously differentiable up to some J € N.

zW) (@[

Z(1)(z)




Chapter 2

Risk Minimisation of a Projection
Estimator

2.1 Introduction

We present our work [BPZ24]. This chapter is dedicated to the study of N-dimensional
interacting particle systems described by the equation

dXi’N=(<p *,ujtv)(Xi’N)dt+adBﬁ, i=1,...,N, 2.1
where t € [0,T], ¢: R — R is the interaction potential and (Bi)?’ , are independent one-
dimensional Brownian motions. Here, ,ultv stands for the empirical measure of the particle
system at time t, given by

N
1

,u]tv = —ZSXi,N, (2.2)
N=

and ¢ * u(x) := [z o(x —y)du(y). We make the assumption that we observe N paths
(x i’N,t €[0,T],i = 1,...,N) and aim to estimate the unknown interaction function ¢ as
N — oo with T > 0 being fixed. It is noteworthy that, given complete path observations, the
diffusion coefficient o can be considered to be known.

Interacting particle systems of the type (2.1) play an important role in probability theory
and applications. Initially introduced by McKean in his pioneering work [McK66], these
systems served as models for plasma dynamics. In more recent years, diffusion-type interacting
particle systems have found wide-ranging applications in finance [Car+19; Dje+22; FS13;
GSS20; GH11], social science [Cha+17], neuroscience [Bal+12], and population dynamics
[ME99], among others. From a probabilistic perspective, the particle system outlined in (2.1)
is inherently linked to its corresponding mean-field limiting equation—a one-dimensional
McKean-Vlasov stochastic differential equation

(2.3)

dX; = (¢ *u)(X,)dt + odB,,
Law(X,) = py,

where B is a 1-dimensional Brownian motion. Under suitable assumptions on the function
¢, a well-known phenomenon known as propagation of chaos emerges. This phenomenon
indicates that, as N — oo, the empirical probability measure ,u]tv weakly converges to u, for
any t > 0, and the McKean-Vlasov stochastic differential equation (2.3) characterises the

19
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asymptotic trajectory of an individual particle. Classical treatments of propagation of chaos
and McKean-Vlasov SDEs can be found in the monographs [Kol10; Szn91]. Furthermore,
the measure yu, is absolutely continuous with respect to the Lebesgue measure for all t > 0,
assuming certain regularity conditions on ¢. Moreover, the density of u,, denoted again by u,
with a slight abuse of notation, satisfies the granular media equation

Oty = Ox {(0'2/2)3xy,t + (¢ * Mt)“t} . 2.4

The realm of statistical inference for interacting particle systems remains a less explored domain.
While a considerable number of recent articles delve into parametric estimation for particle
systems and McKean-Vlasov stochastic differential equations under diverse model and sampling
assumptions (see, for instance, [Amo+23; Bis11; Che21; CG23; DH23; GL.21a; GL21b; Kas90;
L022; Sha+23; Wen+16]), non- and semiparametric estimation of the interaction potential ¢
presents a notably more intricate challenge. This complexity arises from the convolution with
measures the ult\’ or u, and has only been the subject of investigation in three recent papers.
Specifically, the articles [BPP23] and [Amo-+24] explore the semiparametric estimation of ¢
given observations X ;N ,i=1,...,N,with N,T — oo. The methodology heavily relies on the
existence of the invariant density, necessitating the asymptotic regime T — ©o, and employs
the deconvolution method. Another relevant work, [DH22], focuses on the same observation
scheme as the current paper, presenting a nonparametric approach for the drift function ¢ * u,
but demonstrating consistency only for an estimator of the interaction function ¢.

This work aims to investigate nonparametric estimation of the function ¢ using the sampling
scheme X ;’N, te[0,T],i=1,...,N,with N - oo and T held fixed. We propose two intercon-
nected methods, both based on empirical risk minimisation over sieves (S,,),>1, employing an
unconventional underlying loss function ||-||, that depends on the unknown measure (U, )¢<[o,7]-
Our first approach addresses the scenario where the functional spaces (S,,),>1 are compact
with respect to ||||oo. In this case, the analysis of the rate of the proposed estimator heavily
relies on empirical process theory for (degenerate) U-statistics. The second approach investi-
gates a more traditional setting, where (S,,),,>1 are finite-dimensional vector spaces. Here, we
require a further truncation of the empirical risk minimiser, akin to the approach introduced in
[CG20] for classical stochastic differential equations, where the coefficients are independent
of the laws (u,)c[o,r]- We derive convergence rates with respect to the loss function |||,
involving an examination of stochastic and approximation errors. We will demonstrate that the
resulting convergence rate is often 4/log(N)/N in the first scenario, which essentially matches
the minimax lower bound. However, for the second method, the convergence rate decreases
due to the truncation procedure. Additionally, we will establish that the minimax lower bound
for the traditional L?(R)-loss is logarithmic, consistent with the findings of [BPP23].

The remainder of this chapter is structured as follows. Section 2.2 concentrates on a risk min-
imisation approach over compact functional classes. This section elucidates the core concepts,
establishes convergence rates in terms of metric entropy, and analyses the approximation error
associated with the estimation method. In Section 2.3, we introduce an alternative approach
that involves risk minimisation over vector spaces coupled with an additional dimension trun-
cation. Uniform convergence rates for the resulting estimator are presented. Section 2.4 delves
into an exploration of minimax lower bounds. Specifically, we demonstrate that the estimator
developed in Section 2.2 attains essentially optimal rates with respect to the ||-||,-norm. Addi-
tionally, we establish a logarithmic lower bound when considering the traditional L2-loss. For
the detailed proofs of the main results, we refer to Section 2.5.
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Notation

All random variables and stochastic processes are defined on a filtered probability space
(Q,Z,(Z¢)=0,P). Throughout, positive constants are represented by C (or C,, if dependent on
an external parameter p), though their values may vary across lines. We use the notation C*(RR)
(resp. Cck(]R)) to denote the space of k times continuously differentiable functions (resp. the
space of k times continuously differentiable functions with compact support). The sup-norm
of a function f : R — R is denoted as ||f||oo or [|Iflq := supyeq |f (x)|. When referring to a
probability measure or density u, i denotes its Fourier transform:

ﬁ(z)=/Rexp(izx),u(x)dx.

Given a matrix A € R**¥ we denote by llAllop the operator norm of A; we write A= B if A—B
is a positive semidefinite matrix. For two sequences (a,),cy and (b, ) ey We write a,, < b,, if
there exists a constant C > 0 with a,, < Cb,, for all n € N. The Orlicz norm of a real valued
random variable 1) with respect to a nondecreasing, convex function 3 on R with ¢(0) =0 is
defined by

Inlly :=inf{t > 0:E[y(Inl/t)] < 2}.

When v, (x) := xP with p > 1 the corresponding Orlicz norm is (up to a constant) the L”-norm
lInll, = (E[|n|PD)YP. We say that 7 is sub-Gaussian if Inlly,, < oo with ¢, 5 := exp(x?)—1.
In particular, this implies that for some constants C, ¢ > 0,

2

P(Inl=t) <2exp| ————
InlZ

) and E[|n]’]"? < CyplInlly,,, p=1.
Consider a real valued random process (X,);cs on a metric space (7,d). We say that the
process has sub-Gaussian increments if there exists C > 0 such that

||Xt _XSH'L/)e,z < Cd(t:s)) vt,s € g

Let (Y, p) be a metric space and X CY. For ¢ > 0, we denote by A4 (X, p, ¢) the covering
number of the set X with respect to the metric p, that is, the smallest cardinality of a set (or
net) of e-balls in the metric p that covers X. Then log A (X, p, €) is called the metric entropy of
X and

diam(X)
DI(X, p, ) := /O PN (X, p,u))du (2.5)

with diam(X) := max, ,ex p(x, x"), is called the Dudley integral with respect to 1. For example,
if |X| < oo and p(x,x’) = Lixxy we get DICX, p, 4, 5) = +/10g | X|, where |X]| is the cardinality
of X

2.2 Risk Minimisation over Compact Functional Classes

We start by introducing assumptions on the underlying interacting particle system that insure
propagation of chaos. We assume that the initial law of the model is given by Law(X, é NoX (I)V Ny =
,ug)@N , where ,ug)@N denotes the N-fold product measure of some probability measure u, with

i x*uo(dx) < oo for all k € N. Furthermore, we assume the following condition.
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Assumption 2. The interaction function ¢ : R — R is globally Lipschitz continuous and
bounded, that is,

lp(x) = <Lylx—yl, le(x)<K,, x,y€R
for some finite L, K, > 0.

This condition guarantees the validity of propagation of chaos in the sense that, for all t € [0, T ],
the random measure ,u’tv converges to the deterministic measure u, in law (see e.g. [CD22b,
Theorem 3.1]).

2.2.1 Construction of the Estimator and Main Results

We initiate our exposition by outlining the fundamental principles of our estimation methodology.
To begin, we consider a sequence of spaces (S,,),,>1 (sieves). The crucial idea of our approach
lies in the following minimisation strategy:

}EISQIWZ/ (f *pl ™) — w*ut(XlN)) dt. (2.6)

However, the above risk function cannot be directly computed from the data since the interaction
function ¢ is unknown. We derive an emplrlcal (noisy) version of the minimisation problem
by omitting the irrelevant term ¢ * u; N, { )2 in the integrand and minimising the resulting
quantity:

rn(f) = (/ faplxPN)?2de— /f*u (XIN)XmN)

over Sy . For further analysis, we introduce the following bilinear forms:

(. Z / (F )Y ) d,

T
(8. =7 /0 /R (f %) * OO (o) dx dt.

We set |IfII3 := (f,f)y and |If||?> := (f,f),. With these notations at hand, we deduce the
identity
If =y =rn(F)+ o () + el 2.7)

where vy (f) is the martingale term defined via

. 20 il iN i
vN(f):ﬁ;/o (f # )XY dBL.

Finally, our estimator ¢y is defined as follows:

oy =argmingeg yn(f), @) =argminggg, [If — ¢ll2. (2.8)

The identity (2.7) means that by minimising y,(f) we minimise (up to a martingale term
() IIf —¢lly which is close to ||f — ¢||, for N large enough.

Before we proceed with the asymptotic analysis, we give some remarks about a rather uncon-
ventional loss function ||-||, and its relation to the classical L?(R)-norm.
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Remark 2.1. The upcoming analysis will reveal that the risk ||-||, is the intrinsic norm for
evaluating error bounds. Unlike conventional literature on empirical risk minimisation, it is
crucial to note that this norm is elusive since the laws u, remain unobserved. This presents
one of the principal mathematical challenges in our statistical analysis.

Remark 2.2. The norm || - ||, can be bounded from above by the L?(R)-norm. Indeed, if
we assume that the densities (u,),co,r7 satisfy fOT ||u¢lloo dt < 00, we conclude by Young’s
convolution inequality that

1 /T 1 /7
12 < 5 | Moo # Py e < I ey 3 [ Il

Nonetheless, these two norms are far from being equivalent. To illustrate this point, we assume,
for simplicity, that u, = u represents the density of the standard normal distribution for all t.
Now, consider the function f (x) = 1[p 307(x) for some M > 0. In this scenario, it is evident

that ||f ||%2(R) = M. On the other hand, there exist constants c;, c, > 0 such that

IFI = /[ IRGEIOTOLS /

(f *p)*(x)u(x) dx
M
< ¢y exp(—c,M?).
In particulat, ||f || 2g) — ©© while ||f||, — 0 as M — oo at an exponential rate.

To formulate our main statements, we assume that the spaces (S,,),>1 are compact with respect
t0 ||| oo With [|f|lec < K,, for f € Sp,. In certain cases, we employ the notation S,,(K,) to
explicitly express the dependence of the spaces on the parameter K,,. Additionally, we assume
the existence of spaces S,,(2K,,) which are also compact with respect to ||-|| oo with ||f [[oc < 2K,
and

f,8€Su(K,) = f+geS,(2K,).

Subsequently, we establish the bounds for the error term ||y — ¢,

Theorem 2.3. It holds under Assumption 2,

K, DI(Sy(2K ), [lloo > We.2)
1/q N @ N @l 005 Ye,2
E[llon — ll2] " < Nl —sOII*+C( /7

+p2K<p DI(Sn (2Kp), [I*lleo > Wpy2) N p°Ky, DISN (2K ), (Il » ¥ p/3)
N N3/2

forany p > 2,2 < q < p, where C > 0 is an absolute constant and ¢* stands for the best
approximation of ¢ as defined in (2.8).

Let us outline the key concepts behind the proof of Theorem 2.3. We commence with the
inequality:

llow —¢ll2 < ||<PQ’-<P|I§+2(SUP If =@l = Ilf —@l?| + sup |VN(f)|)- 2.9)
feSy fesy

This inequality decomposes the estimation error into an approximation error ||<,0*N —¢ ||§ and
stochastic errors related to the last two terms. To handle the stochastic errors, we initially
consider i.i.d. observations from the McKean-Vlasov SDE (2.3). Remarkably, the term ||f —
cplljzv —f— ||§ turns out to be a linear combination of (degenerate) U-statistics, while vy (f)
represents a martingale, as noted earlier. Concentration inequalities are applied to both terms,
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leading to the moment bound in Theorem 2.3 via the metric entropy. In the final step of
the proof, we employ a change of measure device initially proposed in [DH22] to transfer
the statement from i.i.d. observations of the McKean-Vlasov SDE (2.3) to observations of the
original particle system (2.1). In case we have a bound on the covering number of the space
Sy, we immediately obtain the following corollary.

Corollary 2.4. Suppose that A (S N(2K,), [l oo » 8) < e7Pv for all N and an increasing sequence
of positive numbers Dy satisfying DI%,N ~1/2 0 as N — o0o. Then it holds

1/ D
Ellon = llI ] <l — ol +CK, \ .

Our focus now shifts to examining the approximation error ||<pf:’ — ¢||,, which will be addressed
in the subsequent analysis.

2.2.2 Approximation Error

In this segment, we delve into an examination of the approximation error outlined in Theo-
rem 2.3. The strong contractivity inherent in the norm ||-||, introduces a surprising characteristic
wherein the error || Lpi\’ — ||, often exhibits exponential decay in the dimensionality of the space
Sy- In the following, we adopt the following assumption regarding the initial distribution:

Assumption 3. Assume that the initial distribution is normal, that is,

po(x) = exp(—x?/(2¢%))

1
V2nrl?
for some ¢ > 0.

We also consider a condition on the interaction function ¢:
Assumption 4. There is a monotone increasing sequence (a,,) with
a, > o0, a,./a,—1, n— oo

such that the following representation holds

oo

> cpexp(inkx/ay)i(—k/ay),  x € [~an, a,],
n k=0

(ue * p)(x) =

with coefficients ¢, = ¢, (a,) satisfying Z,C:Zl |l S Ky /0y

Remark 2.5. Let us examine Assumption 4. This assumption holds for any function ¢ which
admits a Fourier series representation of the form

oo

p(x)= % kzzoak exp(itkx/a), x€R, (2.10)

with absolutely summable coefficients (a;)r>o satisfying Y, lax| < VaK, for some a > 0.
These types of periodic potentials appear in McKean-Vlasov equations arising in physics, see e.g.
the Kuramoto-Shinomoto-Sakaguchi model in [Fra05]. Indeed, for such functions we readily
deduce the identity

(e 9)(x) = % ;Oak exp(inkx /@) (—k/a).
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Taking for instance a,, = an and comparing the coefficients, we obtain the statement of
Assumption 4 with ¢;,, = agy/nand ¢; =0 for & {kn: k > 0}.

Next, for any A> 1 and D € N, we consider the functional space

D D
S(A, D) := {x — %\;Ck exp(itkx/A) : Z lcx] < ‘/;\Kw}'

k=0
The main result of this subsection is the following theorem.

Theorem 2.6. Suppose that Assumption 3 and Assumption 4 hold. Set with arbitrary small & > 0,

T

Ay = +/2(02+T)log(N), Dy (2+6)>—— 7

log(N)
and define ny :=min{n : a, = Ay}, N € N. Then we obtain

2
2 o exp(KwT).

inf — S
sesvma D) g —¢lI N

As a consequence, we deduce that

1/2 exp(K2T) log(N)
|:||‘PN 90||:| T¢+K¢ N

As a consequence of Theorem 2.6, the resulting convergence rate is established as 1/1og(N)/N.
We will demonstrate in Section 2.4 that this rate is essentially optimal. However, it is important
to note, as highlighted in Remark 2.2, that this does not necessarily imply a polynomial conver-
gence rate with respect to the classical L?(R)-norm. In fact, we will establish in Section 2.4
that the minimax lower bound for the L2(RR)-norm is logarithmic, consistent with the findings
of [BPP23].

Remark 2.7. Theorem 2.6 suggests that the approximation error decays exponentially when
dealing with functions of the form described in (2.10). However, this phenomenon is not
exclusive to the Fourier basis. Remarkably, a similar result can be observed for the polynomial
basis. The following explanation sheds light on the fast rates of approximation in the ||-||,-norm.
Suppose that ¢ € L(R). Then we have by the Parseval identity

1 ~
(pxu)x+iy)= 2—/ exp(iux —uy)p (Wi, (—u) du.
T Jr
Under Assumption 3, |fi,(u)| < exp(—u?¢?/2) (see (2.38)) and hence
ol =
(o p )l +iy)l < == [ exp(—uy)ld, (u)] du
o Cz — el exp(y?/(22%).

Thus

max |(¢ * u)(2)] < el exp(r?/(2¢%), r>o.

lz|=r 2n CZ
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As a result, the function ¢ * u, is entire of order 2 and finite type. Furthermore, we deduce the

power series expansion
o0

(6 1)) = Y 2"

n=0

with ¢, < (e /¢ 2n)n/2 . This implies the inequality

D
(¢ )(x) = D cpx”

n=0

sup
x€[-AA]

() €A2 n/2
seo= 33 (%)

n=D+1

Note that
ep g < 2~ (1HD)/2

provided (1 + D) 'A% < {2/e?. Let T¢[f] = Lroy<kyf () + Ksign(f (x)) be a truncation
operator at level K. Then it holds that

) 1
inf —
yespan{z",n<D} T

T 2 )
| (0360~ T T2 100) ) e < 63,4 R )

with
4K? T
RT(A)=—“’// p,(x)dxdt.
T Jo Jix|>a

Here we used the fact that for any ¢ € span{z" : n < D}, itis ¢ * u, € span{z" : n < D}.
Similarly to the case of Fourier basis (see the proof of Theorem 2.6), we get

A2
Rr(4) < 8KG exp(KST/2) exp (—m)

If we choose Ay = 4/2(Z2+ T)log(N) and Dy = @ log(N), then

1 exp (K; T/Z)
inf — _ .
pespan{zn: n<Dy} T

/OT / ((Mt *p)(x)— TKw[tp >x<ut](x))2 ue(x)dxdt <

In other words, we obtain an exponential decay of the approximation error for the polynomial
basis as well.

2.3 Risk Minimisation over Vector Spaces

While the empirical minimisation approach presented in the preceding section serves as a
valuable estimation method, it is not without its limitations. Firstly, the construction of the
estimator ¢y in (2.8) inherently assumes knowledge of the constant K,. Secondly, a significant
drawback lies in the necessity of the compactness property of functional spaces S,,, with respect
to the supremum norm, a condition that is notably stringent.

2.3.1 Setting and Construction of the Estimator

This section focuses on a more traditional setting of risk minimisation within vector spaces. We
assume that the finite-dimensional spaces Sy are equipped with an inner product (-, ), and
(e1,-..,ep,) represents an orthonormal basis of Sy satisfying |lej||oo < 00 forall j=1,...,Dy.
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Due to the vector space structure, the estimator ¢, introduced at (2.8) can be computed
explicitly as

Dy
on = .(60); ¢, 2.11)
j=1

where 6y = \I/FZ v and the random vectors ¥y, Zy, taking values in RPY*P~ and RP~ respec-
tively, are given by

(s = (e e )y »

N T
1 i,N i,N
)i =57 > /0 ejxppy (X )dX . (2.12)
i=1

There is a theoretical counterpart to the empirical matrix ¥y. Indeed, we have that E[¥y ] ~ ¥
where the matrix ¥ is given by the formula

(W) = (ej ex), - (2.13)

Obviously, both matrices are positive semidefinite by construction. In the next step, we will
regularise the estimator ¢, . For a given sequence Dy, the operator norm ||\I/1§1 |lop may become
too large compared to the sample size N and we would like to avoid such situations. For this
purpose, we restrict the growth of [|¥|,,.

Assumption 5. Let 1 > 5 be a given number. We assume that Wy, is invertible almost surely
and the sequence Dy is such that the following growth condition is satisfied:
cytNT

l HOP ~ 4log(NT)

D _
where Ly := Z].I:"l llejl12, and ¢, ¢ == (72nT) ™"
We now consider the regularised version of the initial estimator j introduced at (2.8):

PN =N Yoz <) (2.14)

op = Tog(NT)
An analogous methodology was suggested in [ CG20] within the framework of classical stochastic
differential equations. Nevertheless, the probabilistic analysis of ¢ becomes notably more
intricate due to the sophisticated structure of the model. Moreover, unlike the analysis in

[CG20], the theoretical quantity || ¥~ ||(2)p in Assumption 5 proves challenging to control due to
the absence of information about u,. We will discuss this condition in detail in Section 2.3.3.

2.3.2 Main Results

This section is devoted to the asymptotic analysis of the estimator p. We start by introducing
two random sets, which will be crucial for our proofs. We define

¢y, rN'T I£113

A . [2 12 n,T Qn N
N { vl lop < log(Nl)}’ N { If 112
*

We recall that Ay reflects the cut-off introduced in (2.14). On the other hand, on Qy the norms
|-lly and ||-||, are equivalent, i.e.

1

S%Vf eSN}. (2.15)

1 3
Ellfllf <} 1q, < Ellfllf-
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Our first theoretical statement shows that, under Assumption 5, P(Ay) and P(2y) approach 1
as N — oo.

Proposition 2.8. Suppose that Assumption 2 and Assumption 5 are satisfied.
(i) There exists a n € N such that for all N > n:

1 cptMNT
IF’(”\I'_”Z\I/N\I/_UZ—ID || > —) < Dﬁ/“exp ——”2’T ,
N llop 2 16LN||\I;—1||§p

where I, ~denotes the identity matrix in RO~ *D

(ii) It holds that
P(AS) < P(QS) < (NT) .

The concentration bound in Proposition 2.8(i) is key in understanding the asymptotic behaviour
of the estimator @y. The main result of this section is the following theorem.

Theorem 2.9. Suppose that Assumption 2 and Assumption 5 are satisfied. Then we obtain uniform
bounds

cD
E[||Gy —¢l> | < supE| inf ||f — 2]+—N, 2.16
sup ey —¢ll3] sup [fler}SNllf elly |+ ~7 (2.16)

as well as
supE [ 15x — ¢lI*] < (1 +0(1))sup inf |If — ol
7 ¢ feSn

CDy

) 2.17
NT (2.17)

+CNTV2(1 + Ly)suplloN — oll?, +
¥

where the supremum is taken over the class of functions ® defined as
®:={¢p:R>R: [lpllo <Ky, Ky < llplluip < K3}

for fixed constants K;, K, K5 > 0. Here the norm ||f ||, is defined as

1 T
2 . 2
fI, == T/o /Rf * e () (x) dxdt.

We remark that ||f||, < ||f|l... However, it does not hold a priori that ||g0*N — ¢l — 0 as
N — oo. We will discuss this term in the next subsection.

2.3.3 Checking Assumption 4 and Bounding the Norm |¢" — ¢|,,

The primary challenge in implementing the theoretical findings from the preceding section
lies in selecting an appropriate sequence of dimensions Dy, which ensures the fulfilment of
Assumption 4. This requirement is essentially equivalent to determining an upper bound for
the quantity || ¥~* llop- In this context, we introduce an approach to establish an upper bound
on the operator norm ||~} llop, guided by a Gaussian-type condition on the densities u,. We
introduce the following condition on (u;)efo,r]:

Assumption 6. We suppose that the densities u, are symmetric and there exist numbers
¢1,¢y > 0 and functions g1, g, such that g, € L*([0, T]), g182 € L*([0, T]), and

pe() = gr(Dexp(—x?/c;)  and [, (x) = gy(t) exp(—x?/cy).
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Remark 2.10. The lower bound for the densities (u,);c[o,r] can be deduced via [QZ02, Theo-
rem 1]. Indeed, under Assumption 3, it holds that

1 % (z+K, «/?)2)
)= —— /R o) /%zexp( 2 ) dady

exp (—K; t)

y? (x—y)?
2 g e (e )ee (07 ) o

exp (—K p t) ( 32 )
=———"—¢exp|— .
V2n(§2+t/2) 202+t
Obtaining lower bounds for the Fourier transforms (i, );<[o r] is @ more delicate problem, see
Chapter 3.

We consider the vector space Sy generated by functions (ex)1<k<p, with
ex(x) = (2Ay) P exp(inkx/Ay),  x€R,

which is an orthonormal system in L2([—Ay,Ay ]). For this choice of basis we obtain the identity

T
Uy = (e, €)= /o e (—k /AN (1/AN) (T — k) /Ay )dt. (2.18)

245 T
We deduce the following result.

Proposition 2.11. Suppose that Assumption 6 holds. Assume that Dy = aplog(N) and Ay =
a,+/log(N) for some ap,a, > 0. Then it holds that

2 2
2aD a_A

1T lop S veN 2% 7 (1+0(1)),

where vy 1= 2/2nT (fOT gl(t)gz(t)zdt)_l.

In the next step we will study the norm ||<in — ||, For this purpose, we assume that ¢ has

the representation
o

P(x) = cre(x)

k=1
with coefficients ¢; = ¢, (N) satisfying the condition Z;Z 1 lex] < o0,

Proposition 2.12. Suppose that Assumption 3 is satisfied. Then it holds that

3D2§2 s} 2

— - N

||cp*N—<p||§*S(1+AN1D;\‘,II\IJ 1||§pexp(— i )) > el |-
N

k=Dy+1

Now, we can combine the statements of Theorem 2.9, Proposition 2.11 and Proposition 2.12,
to derive the convergence rate for ||py — ¢||,. For clarity, we focus on the ergodic scenario
where u, = ygy and u, satisfies Assumption 3. In this context, the constants ¢; and ¢, from
Assumption 6 are explicitly given by

2
=207, =75
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As |le; 12, =AE1 and Dy = aplog(N), Ay = ay+/log(N), Proposition 2.11 implies the following
bound:

2 112 a% Za%zgz %
Lyllw™ ||Op < glog(N)N &
A

Hence, for Assumption 5 to hold true, the constants a, and aj need to fulfil

Za%CZ aj
> +—2 <1.
a; 4

On the other hand, exploring the proof of Theorem 2.6, the approximation error is obtained as

2,2
as 2
D ay

loN — @I’ SN % +N =2,

Consequently, if we choose a%(z/af‘ = af\/(ZCZ) = (1 —€)/4 for a small € > 0, we finally
conclude that

E[lgy — @lI?] S N7V (2.19)

provided the condition (Z,fiDN 41 lcx])? < CN~* with z > 5/8 holds. The substantial decrease
in the convergence rate compared to Theorem 2.6 directly stems from the stringent constraint
imposed by Assumption 5. Still this is the first result in the literature regarding the convergence
rates of the linear-type estimates within the context of McKean-Vlasov SDEs.

2.4 Lower bounds

This section is dedicated to deriving minimax lower bounds. We start by establishing a lower
bound for the previously examined estimation problem concerning the norm ||-||,. To achieve
this, we focus on a simplified scenario involving i.i.d. observations drawn from a McKean-Vlasov
SDE:
dX, = (¢ *u)X,)dt + o dB,,
{ Law(X,) = py,

and denote by P, the associated probability measure. We assume that X, ;)p =x € R for all ¢.
The ensuing theorem establishes a minimax lower bound with respect to the norm ||-||,.

Theorem 2.13. There exists a constant ¢ > 0 such that, for every N €N,

ipfsup]P"?N (II@N —pll,> cN_l/Z) >0, (2.20)
YN @

where ]P"?N is the N-fold product measure, the supremum is taken over all functions ¢ satisfying

Assumption 4 and ||¢||eo < (32T)"Y/2, and the infimum is taken over all estimators of ¢ retrieved
from N observations of (X;)¢e[o,1]-

Proof. Consider two functions ¢, ¢; € S and denote by ,u(t) and ,u} the corresponding marginal
densities. The Kullback-Leibler divergence KL(P,, ,P,, ) between the probability measures P,
and Py, can be explicitly computed as

¥0°

1 [T )
KL(IF’%,IF’%)ZE/O /R(‘PO*M?(X)—Sﬁ *u%(x)) ,u?(x)dxdt.
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As a consequence we obtain the inequality

T 2
KL(P,,,F,,) < Tligo— o1l2 + ol /O | [ oo -uieo] ax | ae

where the ||-||,-norm is computed with respect to ,u?. Furthermore, using Theorem 1.1 of
[BRS16], we derive

e -] ax]
= ' |/ [Coornl0 oy eGP x| ac

< 8TKL(P,,,P,,).
Since ||¢4]|2, < (16T)~! we finally deduce that
KL(P,,, Py ) < 2Tlpo— ¢1I2.

Applying the two hypotheses method described in [Tsy08, Theorem 2.2], we obtain the state-
ment of the theorem. O

We will now consider the L2(R)-norm instead of ||-||, and compare the results to [BPP23]. We
recall that logarithmic rates have been obtained in the LZ(R)-norm in [BPP23, Theorem 5.1]
for a similar estimation problem given the observation scheme (X ;"’N)lgisN with N, T — oo. It
turns out that these rates cannot be improved to polynomial ones in their framework, and the
same holds in our case (note however that polynomial rates may appear under a different set of
conditions as demonstrated in Chapter 3). To see this, we again consider simplified setting of
i.i.d. observations drawn from McKean-Vlasov SDE (2.3). Furthermore, we consider a similar
model as presented in [BPP23]: Let W : R — R be an even and strictly convex interaction
potential of the form

J
W(x)=p(x)+B(x),  p(x)= D a;x?,
j=1

where (a;);—;,.; are known constants and f§ € C CZ(]R). The potential W determines the
interaction function ¢ via ¢ = W’ and we are interested in the estimation of the non-parametric
part 3 in the case of stationarity. The invariant law p solves the elliptic nonlinear Fokker-Planck
equation

1d* d
-4 .4 -0, 2.21
[2dx2 dx(tp*u)}u (2.21)
meaning that y is given by the implicit equation
u(x) = c,exp (=W x u(x)), (2.22)
where c,, is a normalising constant such that u is a probability density.

To introduce the appropriate class of functions, we consider CCZ(R)-wavelets. More specifically,
we let the mother wavelet be a symmetric function ) € CC2 (R) with supp(y)) =[—1,—1/2]uU
[1/2,1], [[¥ |l 2r)y = 1 and, for n, k € Z, define

Yox(x) =22 (2"x —k).
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The set (v, x )n kez forms a basis of L?(R). Now, for a, K > 0, we consider the functional space

T = {/5’ : B eCX(R), Z Z (ﬁ’,zpn,k)izm) <Km* Vme N}.

n€Z |k|>m

For the estimation of the nonparametric part 3’ of ¢ based on i.i.d. observations of (2.3) we
obtain the following lower bound.

Theorem 2.14. Assume that the coefficients (a;)1<j<; and the function [ satisfy the conditions
of [BPP23, Theorem 5.1]. Then there exists a constant ¢ > 0 such that, for every N € N,

igf sup ]P’S?N (||[/5\1’V —[5’||%2(R) > c(logN)_%) >0, (2.23)
By B'eF¢

where POV is the N-fold product measure and the infimum is taken over all estimators of f3’
retrieved from N observations of (X)) e[o,77]-

Proof. We will use the two hypotheses method described in [Tsy08, Theorem 2.2]. We will find
two interaction forces ¢, p; € Z¢ such that, for some constant ¢ > 0,

l9o— @1ll72zy = ¢ (logN)™¥  and KL(P%)N’P%N) <1.

The Radon-Nikodym density of dP, /dP, canbe computed using Girsanov’s theorem: denoting
the stationary marginals as u;, i = 0,1, we have for X € C([0,T]; R)

dp T
log| 2. (x) | = / o1 # (X0 — 9o % o (X)X,
dIF’% 0

1 [T
_5/0 <P1*M1(Xr)2—900*M0(Xr)2dt,

such that

dP,,
KL(IED%,]P)%) = / log (x) | (x)dx
R dPiPo
T 2
= 5 . (1 * p1 () — o * o (x))” py (x)dx.
In a similar manner as in [BPP23, Theorem 5.1], we can show that
T
KL(B,, By,) < PPRL(B,, By, )+ 5 [ (B3 B+ ol ()

with y € (0,1). So, it remains to show the estimate

/ / 2 1

[ =B o P 5 (229

for a proper choice of ¢, ¢;. Now we will choose the two hypotheses. Let p > 0, M € N be
rescaling parameters to be determined later. We define

2M
f=pr Z Yok

|k|=M
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Note that our choice of basis elements implies that supp f = [—2M —1,—M —1/2]U[M +
1/2,2M + 1] and ||f||i2(R) = p2(M + 1). We will consider the hypotheses ¢, € F¢ and
1 = o+ f. In order to guarantee ¢, € Z¢, we observe that

IF1I3=p*M, m<2M,
P3] Y 3 (ot )i SHETO S
n€Z [ky|>m [ky|=M m '
Hence, in order for ¢; € Z¢ to hold, we set
p2 — O(M—a—l).

This means we choose
“(pO (PlllLZ(R) ”f ”LZ(]R) O(M a)

We will now verify that (2.24) holds. The main ingredient is the observation that, fori =0, 1,
wi(x) Sexp (—aszj) ) (2.25)

which in particular implies ||u;[/;2r) < ©©. By symmetry of u; and f, it suffices to show

0 1
/o f s po(x)?uq ()dx S N (2.26)

Let us split the integral at some 0 < k < M which we determine later. The tail behaviour is
governed by (2.25): Using Cauchy-Schwarz, we have ||f * uol|2, < |If|I? 2(]R)Il,uoll M2,

such that
o0 exp (—a k%’
| ol s o SR k)
) k2J-1

LZ(]R) ~ p

For the remaining integral, we have

k
/0 £ o2 dun(x) S sup ().

x€[0,k]

We deduce that

x—M k—M
sup £+ oGP < sup [ flr— o0y < Iy | ol dy
x€[0,k] x€[0,k]J—o00 —00
o €Xp (—a;(M —k)¥)
~P (M — k)21

From this, we see that by choosing k = M /2, the entire integral is bounded by
o0
/ f 3 to(x)?up (x)dx S exp (—aJMZJ).
0

1
Choosing M = c (logN)¥ with some constant ¢ > 0 gives (2.26), which in turn gives us the
rate

llpo— 901”%2(]1@ =CM “=C(logN) 7,

which implies the claim of the theorem. O
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2.5 Proofs

This section is devoted to proofs of the main results. We will often transfer probabilistic results
from i.i.d. observations of the McKean-Vlasov SDE displayed in (2.3) to observations of the
original particle system at (2.1) via a change of measure device established in [DH22]. For this
purpose we consider two N-dimensional processes given by the weak solutions of

dX, =(p*p)X,)+odB , 1<i<N,

t

- Npori ‘ _
dX; =(¢*u)X)+0odB, , 1<i<N

. . =N . . .
having the same initial value, and denote by P and PV, respectively, the associated probability
measures.

2.5.1 Proof of Theorem 2.3

Before we begin the proof, we briefly recall a result related to U-statistics.

Maximal Inequalities for U-statistics
Let ¢ be a class of real-valued functions on RX and (Uy(g) : g € ¢¥) be a U-process of the form

N

Un(®) = 2, i Xy)

where X4,...,Xy is a sequence of i.i.d. random variables with common distribution P and
(N)y =N(N—1)-...-(N—K+1).If foreach g € ¥,

EX~]P[g(x1; . ..,Xl'_]_,X,XH_],.. .,XK)] = 0, l = 1,. . .,K,
for arbitrary x, ..., x;_1,X;41,---,Xg € R, then the process (Uy(g), g € ¥) is called degenerate.

Theorem 2.15. Suppose that ¢ is a class of uniformly bounded functions with sup,ey lIgllco < G
and the U-process (Uy(g), g € ¥) is degenerate. Then it holds

1/q
{Bsup V¥ Uy (@'} § 6P DICY, 1o 1)
ge

forany p >q.

Proof. We can apply the maximal inequality from [She94, Section 5] and note that for uniformly
bounded classes ¥

dy, = [Un(If =] < lIf —glloo

as well as UN(IgIZ) < G? with probability 1 for all f,g € ¥. O

Let us now come to the proof of Theorem 2.3. We consider the setting of i.i.d. observations
drawn from the mean field limit (2.3), that is we work under B". We recall the inequality

lon =@l <l —ell? +2(sup I —@li% = IIf — @ll?| + sup IvN(f)I), (2.27)
fESy feSy
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where (p*N has been introduced in (2.8). Next, we set vy (f) =: 2My(f)/vNT where for all
f €8S, My(f) is a martingale with quadratic variation

o < [T NN y12 2112112
— ’ d .
T ;:1:/0 [(f +u )X )] de < o7l f o

Hence, we deduce by the Bernstein inequality for continuous martingales,

P (IMy(f) — My(g)| = @) < 2exp(—a®/(a?|If —glI2,))

for any a > 0 and f, g € Sy. Since for all ¢ > 1, the LY(Q)-norm is dominated by |||, ,, an
application of the general maximal inequality [KosO8, Theorem 8.4] implies

sup My (F) =My ()| | 5 DICSy oo s e2) (2.28)
fesy L1(Q)

for any f;, € Sy. Consider now the difference ||g||]2V — ||g||3k for a function g € Sy(2K,,). We
obtain the decomposition

gl —11gl12 = Uy n(8) + Usn(g) + Us n(8) +O(N ™) (2.29)

where A, (x,y) := g(x —y)— (g *u)(x), and

. 2 T 1 N i
Ul’N(g)'_?/o /R(N;At("’xt )) (g * 1) () (x) dxdt
i N r i,N~\2 _l T 9
+(NT;/0 (g*u )X, ) dt T/o /R(g*,ut)(x) ,ut(x)dxdt),

Uy n(g) = ! i Z l/T/ A (x Xj’N)A (x Xk’N),u (x)dxdt
’ NN-DWN=-2)Z GiuT /o Jr ' ‘
Z/ N_le(X‘NXJ”)(g*ut)(XIN)dt
Jj#

N T
—N—Z’T; /0 N—1Z / Ao, X (g 1) (0 (x) dxdt,

N

1 1 (7 iN oj.N iN kN
Us n(g) = > > —/ AN XA (PN XNy de
3N NN-DN-2)& £, T Jo e % TR %t

J,.N
N(N—l)(N 2) Z / /A (e, X7 )A(x, X ),U:,;(X)dxdt

i= ljkgélj#k

The key observation is that each U, y is a degenerate U-statistic of order r for r = 1,2, 3, while
U, y is the leading term. First, turn to U; y and note that

N
Unn(8) = 2 > (4(8) B 2,())

j=1
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with

T . .
2 =1 [ (2] AP e x )0 dx )+ (g )P e,

It holds that
1Z;(2) <8K2, 1Z;(8)—Z;j(g)] < 4K,lIg — &' ll oo,

with probability 1 for g, g’ € Sy(2K,,). Hence
1Z;(8) = Z;(gMy,, SK,llg — &'llco-
This implies that the process ﬁLN =vN U, y has sub-Gaussian increments and

101,5(8) = Uin (&), SK,llg — &' lloo-

Fix some g, € Sy(2K,,). By the triangle inequality,

sup |61,N(g)| < sup |ﬁl,N(g)_ijl,N(g/)| + |61,N(g0)|-
g€Sn(2K,) 8.8’eSn(2K,)

By the Dudley integral inequality, see [Ver18, Theorem 8.1.6], for any 6 € (0, 1), we conclude
that

sup |[~]1,N(g) - ﬁl,N(g/)| < K¢[D|(SN, I'lloo > We,2) + 4/ 108(2/5)]

8.8'€Sy(2K,)

holds with probability at least 1 — 6. Applying Hoeffding’s inequality, see e.g. [Ver18, Theorem
2.6.2.], we have for any 6 € (0, 1),

U1 v (80)l S K,+/1log(1/6),

with probability at least 1 — 6. In other words, for any u > 0,

(u—K,DISy(2K,), [l oo » e 2))?
2K3) '

P ( sup |l~]1’N(g)| > u) <exp (—

g€Sn(2K,)

Putting things together we conclude that

1/q _ qK, DI(Sy(2K), [|*lloo » Pe 2)
Ep|[ sup U] s = AL (2.30)
geSy (2K,,) VN
Furthermore, due to Theorem 2.15,
Ve o
Epe[ sup  [NUsn(@)|'] T 5 %K, DISN(2K,), oo » Ppy2) (2.31)
g<eSy(2K,)
and
3/2 M1 3
Ex| sup  [N¥2U;5(9)|'] T S p°K, DIGSN (2K, [ llco » Wpys) (2.32)
geSy(2K,)

for any p > 2 and q < p. This implies the statement of Theorem 2.3 in the setting of i.i.d. ob-
servations drawn from the McKean-Vlasov SDE (2.3).
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Now, we will transfer the result from i.i.d. observations to observations of the original particle
system at (2.1) via a change of measure device established in [DH22]. Recalling the definition

of probability measures P" and PV , we deduce the identity

dpV —N
—v =6r(M )
P

where é’t(MN) = exp(M]tV - % <MN>t) and
N t .
— B — .
M, =Z/O o7 [ (U —p)(X,) | dw
i=1
isa P -local martingale. According to [DH22, Proposition 19], we obtain the bound

Ifllgi te[?)l,IYP—S]EFN [exp (T (<MN>t+5 N <MN>t))] = C5:T (2.33)

for every 7 >0, 0 < 6 < 5, and some constant Cs . > 0. Let £ be any Z#-measurable random
variable. Then by the Hélder inequality

—N 1/2 —N., 1 1/2
Epn (18171 =Epn [ €16, (M) | < {En (181271} {Epn 620071} 2.34)
Next, fixagrid 0 =ty < t; <...< tgx = T with |t;,; — t;] < 6 and decompose
K
2N _ —N —N —N —N
Exn [62(M")] =Eqv ﬂexp(Z(Mtk ~-M, )+ <M >tk_1 - <M >tk) (2.35)
K —N —N —N —N
=By | [ 6,00, M, Dexp((M; —M; ) (2.36)
k=1

—N —N
(1), —01),)

By using the martingale property of &, , repeatedly applying the Holder inequality and using

(2.33), we deduce the inequality

—N
Exn [67(M )] < Cs r.

As a consequence the bounds (2.28)-(2.32) remain valid under the probability measure PN.
This completes the proof.

2.5.2 Proof of Theorem 2.6

considered for the sequence a, , we obtain the inequality

Note that a, _; < Ay < a,, and hence Ay/a, — 1 as N — oo. Under Assumption 4

1T )
inf = /0 /R (o % 1)) — (g * ) ()Y () dxde

gesy T
T a sl 2
1 "N . ~
< [ Ml [ | D cvexplink/an J(—k/ay,)| dxde +R(ap,)
ny 1J0 Oy |k=Dy+1

1 T — ~ 2
< [ Ml D ClullECk/an, ) de+Rea,)

Ay, T k=Dy+1
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where

4K? T
RQA) < —% / / () dxdt.
T Jo Jix|>a

In the next step we would like to obtain estimates for the marginal densities u,. For this purpose
we consider the SDE

dX, = (¢ xu )X, )dt +odB,, X, ~ (2.37)

which is obtained by freezing the densities u, in the McKean-Vlasov equation (2.3). Note that,
under Assumption 2, (2.37) is the standard SDE with bounded and Lipschitz continuous drift
function ¢ * u,. By applying [TT20, Theorem 3.1] to (2.3) and using our Assumption 3, we
deduce that

1 — (z—K,v1)?
H() < <= /R ) |,z (—ZT“") dzdy

exp(K27/2) y? (x —y)?
v hool ) (0o
_ exp (K;T/Z) e (_ x2 )

V2n(Z+ o) 2(82+1) )

Therefore, we get

2
R = sk exp (k27/2) e 85 )

Next, note that (2.3) can be written as
t
Xt =‘XO +/0 ((P *nus)(Xs)ds + UBt

meaning that i, (u) = ty(uw)vy (1) where 1, is the characteristic function of the random variable
fot (¢ * us)(X;)ds + oB;. Thus, under Assumption 3, we conclude that

i, (W) < exp(—u?¢?/2). (2.38)

Furthermore, by [TT20, Remark 3.3], [|u¢|lco < 2[lUolloo + K- As a consequence we derive

K S kZCZ
; — o2 < ¥ 2 _
glé}ng”g ell; S 2 Z |kl exp( )

2
N k=Dy+1 Ay

A2
+exp (KiT/Z) exp (—Wﬁ”)

Hence under our choice of Ay and Dy we obtain that

exp(Kj T/2)

. f _ 2<
glensNIIg ellf S N

This completes the proof of Theorem 2.6.
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2.5.3 Proof of Proposition 2.8

Before we begin the proof of Proposition 2.8, we present some preliminary results.

Some Properties of ¥

We begin by pointing out that W is invertible. Indeed, this immediately follows from the repre-
sentation ¥ = (<el~, ej >*)1Sl~, j<Dy» Since (e j)ls j<py IS an orthonormal system. The invertibility
of the matrix ¥ implies that we can transform (e;)1<j<p, into an orthonormal system with
respect to (-, ).

-
)

Lemma 2.16. The collection &€ = (&,,...,ep ) given by

e=w12, (2.39)
where e = (eq, ..., eDN)T, is an orthonormal system with respect to (-, -),.

Proof. Denoting the Kronecker delta as 0;;, we have

ij>

<éi,éj>* = ((\1;—1/26)1_’(\1,—1/26)])* - (qj—l/zq,qj—llz) =5

;= Bij- (2.40)

Matrix Concentration Inequality for Independent Observations

First of all, we recall a result from [PMT16], which provides a concentration inequality for
operator norms of self-adjoint matrices.

Theorem 2.17 ([PMT16], Corollary 6.1). Let (X;)1<;<n be a sequence of independent random
variables taking values in a Polish space &, and let H be a function from & into the space of
m x m real self-adjoint matrices H™. Assume that there exists a sequence (A;)1<i<y C H™ that
satisfies

2 2
Al‘ Y (H(xla"~:xl—1:xl:xl+1"'>XN)_H(x1:"':xl—laxl/:xl+1 "':xN))

for each index 1 < i < N, where x; and xl’ range over all possible values of X;. Define v* =

| 22| mhen it hotds dhat
op

t
P(IHX,, ..., Xy) —EH(X, ..., Xy)llop > t) < mexp (—2—1)2)

We begin by considering the random matrix W, which has been constructed from i.i.d. observa-

tions X l’N, i=1,...,N, drawn from the mean field limit (2.3) instead of mutually dependent
. —N .

particles (thus, we work under P ). That is,

N T
— 1 . .
@ =y 20 | e i (R ey (R e
i=170

for 1 < j,k < Dy. As a slight abuse of notation, we denote the corresponding bilinear form as
(-,-)n- In what follows, we prove that Proposition 2.8 holds for ¥y and then transition to the
particle system in the next section.
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Proof of Proposition 2.8 in the independent case. (i) Here we would like to prove the inequality

— — 1 cprNNT
B (||\p—1/2\1:N11r1/2 VRG> ) < Dy ex p( ;’T—_lz) (2.41)
412 o1,
via Theorem 2.17. Recall that by Lemma 2.16

(‘I’_l/ZEN‘I'_l/Z)jk = <éj’ €k >N ’

where & = W1/2¢. We consider the space Z = C([0, T],R) and the map H given by

H: (C([0,T],R))N — HP¥,

1< (7
(1seea ) (WZ /0 & % () (xi (D)2 + 5x(t)(xi(t))dt)
i=1

1<j,k<Dy

where 5, = ~ Z?’Zl 8y,(t)- We have that
Vg, g2 \I"_l/zEﬁN [Ty Jw /2
=H(X,... X )-Ex[H(X,. .. X")].

For x = (x1,...,xy) € (C([0, T],R))N we denote by & the same vector where the [-th entry is
replaced by x;”. We need to study AHjy := (H(x)— H(X))j, which is given by

Aty =LY [ 5005, (D10 - 0)

i,rq,ra=1

—&;(x;(t) = %, (£))er (%, (1) — %, (1))dt.

If either none or all of the indices are equal to [, the difference vanishes. Therefore, there are at
most 3N (N — 1) non-zero terms. Consequently, for any 1 <[ < N, we can bound the difference
as

6
|AH | < N ||éj||oo llexll oo -

Moving on to the spectral norm of AH, we have for any y € RPv:

Dy Dy
yTAH?y = > yjy ) AHyAHy < Z |yjyk|2 ]| oo Nkl oo 121112,
jk=1 =1 )k 1
<[ J||oo) P < 2522 [ |2 e
This means that 36
A= Sk 75, I,

satisfies the condition A2 AH? for all 1 <1 < N. We also define v? 36L2 H\I/_l “ . Now

we apply the concentration inequality of Theorem 2.17 and deduce the statement (2. 41) which
completes this part of the proof.
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(ii) To finish the proof of Proposition 2.8(i) in the independent case we observe that

qu—l/ng\p—uz Iy, ”op < H\I,—l/z@Nq,—l/z _ \Ij—1/2EﬁN [Ty Jw /2

op
-1/2 T lu—1/2
+ H\IJ PRy [Oy |97V —1p, "
Thus we only need to show the convergence
"w—l/z%N [EN]\p—l/z—IDNH -0 asN — oo, (2.42)
op

Since the particles are exchangeable and independent, we have

Bp (@] = s Z / Epv [ (%, —XNex X, — X, )] dt

i,r1,ry=1

T
L /0 (V=12 [ 50, (B ey 5 (R + €(0)e (0)

~ TN?
+(N—-1) (EﬁN [ej * ,ut()_(i)] e (0) + Egv [ek * ,ut()_(i)] ej(O)))dt

(N —1)? e;(0)ex(0)
= Nz \Iljk + : Nzk

N-—-1
+
TN2

/OT (EFN [ej *ut()_(:)] e (0) + Egv [ek *ut()_(:)] ej(O))dt

Hence, we deduce that

o [@03] = 9] $ + (U + [l el

Now, the spectral norm can be bounded through Assumption 5:

Dy 1/2
o 90 5 o 3 ol et

ik=1

< Ly ||\Il_1||op (2.43)
N

PO S

~ mlog(NT)'

This gives the claim (2.42) and thus the validity of Proposition 2.8(i) in the independent case.
(iii) On A}, the following inequalities hold:
2
»)

o o a1 [ -

NT

T Tog(NT) ~ <Ly (”‘I’ lop H‘I’_l_ql

2

op '
So, if Assumption 5 holds, we deduce that

1

B e L
N op

op  4L2 log(NT) ~
and [CG19, Proposition 4 (ii)] yields the claim. O

v -,
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From Independent Observations to the Particle System

To transfer the results of Proposition 2.8 from the independent case to the particle system
introduced in (2.1), we use an elegant transformation of measure argument investigated

in [DH22]. We recall the probability measures P¥ and P" that have been introduced in
Section 2.5.1. According to [DH22, Theorem 18, eq. (35)], there exists a k € N such that

PN(A) < Cé(k+1)/8ﬁN(A)k/4 VA€ Z;, (2.44)

where C,, is a constant independent of N and bounded by

oo
Cp <1+ ) (80, P lloll2, (2.45)
p=1

where a,, depends exponentially on |[¢||;;, and & needs to be chosen. Clearly,

5 < (20, lloll,)

gives us an upper bound for C,, which is uniform over the class ®. Therefore, we have

_ . k/4
B (fle e 2o | > 5 ) S (e 2o, ), > 2

Cn,T
<D1/4exp —n—’nNT
~ N 2
1615 115,

meaning that Proposition 2.8 is true for the particle system (2.1). This completes the proof of
Proposition 2.8.

2.5.4 Proof of Theorem 2.9

We begin by considering the RP~-valued random vector Ey = Zy — (e, )y, that is

N T
g i,N -
(EN)J:N—TZ/O e u¥ (XY dBL.
i=1

By the It isometry,
2
o .
E[(En);(Ex)i] = 7 Ykt O(N72). (2.46)

Lemma 2.18. For Ey defined as above, we have
2

DyL
4 NEN
E[lEyI*] S NTYE

Proof. Using Jensen’s inequality, the Burkholder-Davis-Gundy inequality, and independence of
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the B!, we get
Dy Dy 1 N T ) 9 2
E[IIEyI*] < oDy D E[(Ey)}] S 0*Dy D E (W > / (e +pf C6™) dt)
i=1 =1 i=170
T WA (O N

]111

o*D DyL?
- (NT?IZZ” JHoo ~ (]\JIVT?;’

which is the claim. O

For the asymptotic behaviour in ||-||, and ||:||y, we consider orthogonal projections and their
error with respect to our introduced norms. We begin with some intermediate estimates.

Proposition 2.19. Let TTV : L2(||-||,) — Sy (resp. IT*) be the orthogonal projection with respect
to ||-|ly (resp. ||-|l,) and recall that TT*¢p = cp*N. Suppose that Assumption 5 is satisfied. Then we
have

@ E[|lon =0 |y 1agnay | S -

~

(@) E[||lon — T |3 Laynas | S w7

i) [TV (¢ — )2 10, | S N2+ Llle — V12, + O ) + o (Il — N 12).

Remark 2.20. Depending on the choice of 1), (ii) actually decays faster than stated. However,
as (i) is the slowest term in Theorem 2.9, a convergence rate of (N T)™! is sufficient. We will see
in our proofs that this requires 11 > 3, see (2.55). Considering we are analysing the projection
error in its respective norm, the proof of this lemma hardly differs from that of [CG20, Lemma
6.3].

Proof of Proposition 2.19. (i) AsTIN ¢ —p = argmin; g |If — ¢lly, a straightforward computa-
tion gives

N
Mo = > (ay)e;, ay =Yy (e, @)y (2.47)

By definition of Ey, Oy —ay = \IllglEN. Hence,

”901\’ —yp HN 1EN = ET‘I’ v En- (2.48)

On Qy, all eigenvalues of W~V/2¥\¥~1/2 are in [ 5, 3], which implies that
1/2q,~1,1/2
w22 <2, (2.49)

such that E; \IJFEN 1g, < ZE; U~ 'Ey. Together with (2.46) and Lemma 2.18, we have deduced
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by Assumption 5:

Dy
IEI:”QPN _HN(P”IZV 1ANOQN] < 2]E[EI—VI—‘"IJ_IEN] N Z ( 1)]k( 1T\Ijjk + 1\}2)
jk=1
Dy, Dy o, <Dy Dy
NT N2 NT Ly+/N31og(NT)
< Dnv
Y NT’

(ii) By Proposition 2.8, (2.48) and Lemma 2.18, we have

/
E[H‘PN ~Vo|y 1AN0%] = E[H‘I’El”ip Lay ||EN||4]1 ZP(QE)UZ
< \/D_N(NT)_(”/HD.

(iii) We define g = ¢ — cpiv and write the projection of ITV g according to (2.47) as an inner
product. Using Lemma 2.16, Parseval’s identity, and (2.49) we deduce the following inequalities
on Qy:

[0V [2 = fleT e fe. o) ][220, —HGT‘I’”Z‘I’ | (e )
— H\IJI/Z\I’ l\Pl/Z 6 g | H
Dy

<4, (e 8y

Jj=1

Due to the identity g = ¢ — c,a*N, we have that (ej,g>* =0forall j=1,...,Dy. Hence,

DZ;E[(@M = ZE[(@-@)N —(e;.2),)°]- (2.50)

For the latter term we want to use the decomposition (2.29). However, we note that ||g||so is
not necessarily uniformly bounded in N, and thus we need a precise estimate of this norm. We
recall that ||¢]|, < |l¢lleo < K; for all ¢ € . Also note the identity

Dy
= Z (éJ > ¢ >>s< e]
j=1
Consequently, we deduce that

Dy 1/2 7 p, 1/2
e ||°°SZ| 2. 0).] 13 ”oo—(Z(éj,wﬁ) (Znéjnio)
j=1

=1

Dy 1/2
<L”2<|w—1||”2(z<ej,w>i) |
j=1

On the other hand, we have

[l —Z< o) < lloll? <K2.

j=1
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Hence, we obtain the inequality

lglloo < (14132 w7 05). (2.51)

In the next step, we use the decomposition (2.29) and the polarisation identity (f, g), =
(If +glZ2=IIf —glI2)/4 to get

<ej,g>N —<ej,g>* =Uin(g,e) +Usn(g,e;) +Usn(g,€;)+0 (N_1||g||oo||ej||oo), (2.52)

where Uy y(g,¢;) := (U n(g +¢;) — U n(g —€;))/4 for k = 1,2,3. Now, we need to estimate
the variance of the terms Uy (g, e;). For this purpose we will use the same change of measure
device as proposed in Section 2.5.1. In particular, due to the Cauchy-Schwarz inequality (2.34),
it suffices to find an appropriate bound for the fourth moment of Uy y(g,€;), k =1,2,3, under

the probability measure P

We start with the U-statistics U, y(g,e;) and Us y(g,e;). Replacing g (resp. e;) by g/l|gllco
(resp. by e;/|lejll o), we conclude as in Section 2.5.1:

1/2 —
Epr [Usn(8,¢)]T" S llzolesllooN ™
47172 - 2 2 A7—3
g [Usn(g,e)*]"" S llgl2, llej 12N>, (2.58)

Next, we treat the term U; (g, e;). Under F" we deal with i.i.d. random variables. Observe
that for a statistic Wy := N~ Zflzl Z;, where Z;’s are i.i.d. random variables with E[Z;] =0

and E[Z;] < oo, we have that E[Wy] = 3N2E[Z2]* + N3E[Z,']. Using this observation and
applying the Holder inequality, a straightforward computation shows that
1/2 _ _
Eov [Unn(g.e)* ] S llesll2, (gl + N1gl2) (N7 + N 732 lesl12,11g112,) - (2.54)
Now, we put everything together. According to (2.34), we deduce that

]1/2

Epn [Un(8,€,)*] < CEzv [Us n(g,€))* fork=1,2,3.

Plugging the inequalities (2.53) and (2.54) into (2.50), and taking into account the bound in
(2.51), we conclude that

B[ (o =)l 10, ] 5 975,13 (V2 +872)
N Ly g2 + lgli2,)

- )
NN LR (sl + Nl
Recalling Assumption 5, we obtain the statement of the proposition. 0

Now, we proceed with the proof of Theorem 2.9. Let us start with the asymptotic result in the
empirical norm. We split

18 —lly = inf IIf =@l +[|on Vo
= inf 1f =l +[low =T [ (Taynn, + Layng ) + ol 1

=: inf ||f —@|% +1; +1, +15.
feSN“f 90||N 1TlaTl3
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Recall that E[I;] and E[I,] are treated in Proposition 2.19. Furthermore, we have El; < 1/N
due to Proposition 2.8. This gives us

D
E[lgy —¢l2] SE| inf |If — 2]+—N.
(16w — ol3 1S E] inf 1lf = o3 ]+ 25
Taking the supremum over ¢ € ® gives the first claim.
For the asymptotic results in ||-||,, we split
18n — @112 = 18w — 12 (Laynay + Lagnns )+ ol 1x
= IIl +IIz+IIS.
For II;, we set g = ¢ — (p . Note that ITVIT* = IT*, therefore
MMy —p=M"(g+T*p)—p =T"g—g.
So we split the terms in II; into
~ ~ 2 2
1oy — @l < ||&n —Vo||, + [TV e — ]|
~ 2 2
< [[ew=m"e|[ + e[+ el
Since ||-||y and ||-||, are equivalent on €2, we have
~ N 2 —~ N 2 DN
E[|~wN_H SOH* 1ANOQN] = 2]E|:H(pN —I SOHN 1ANHQN] S ﬁ
By Proposition 2.19 (iii), we have
2 _ _
E[[1Vg| 1agnny |+ 1812 S (1 +0(D) lIgl2 + N7V2(1 + Ly) lIgll2, + O(N D).
Moving on to II,, we have
E[I16n — @12 Layngg, | SE[lonl? Lagngs, |+ l0l2B(25).
Recalling the definition of ¢y given in (2.11) and that (Zy); = (Ey); + <ej, cp>N, we have
lowll? = (v 2y) Wy zy < oy 1” 1@ llop 112112

= w12 1 llop ([1 e b ]| + 1Ew11)

Since ¢ is bounded,

Dy

Dy
ZE[@'#’);]SﬁZ/OT [ej N O MY g+ N (X M) ] dt

j=1
IIejlloo s _ L3 lelld,

such that
E[ (|t o ||” + 1ENI?) 1ayngg | < (E[II(e,somll“]”2 +E[JIEI1*] z)ﬂ»(ﬂ;)” ’

2
||<P||oo Ly + \/ENLN (NT)_T’TA
NT NT

< (”wli" +1)L (NT) 2
-\ VDy N '

IA




2.5. PROOFS 47

Finally, with Assumption 5 and Lemma 2.18, and the fact that ||¥||,, < Ly, we obtain
E[lonl2 Taynag | SE[9 o, 1910p ([[ (e n||” + 1En117) Ly |

lell2, ) (2.55)
<cpr +1 |(NT)"00D/2,
! ( VDy

Last but not least, we have that
E[1I3] S P(AY)

which completes the proof due to Proposition 2.8.

2.5.5 Proof of Proposition 2.11
Let us denote by A,,;,(Q) the smallest eigenvalue of a symmetric matrix Q € RPv*Pv | Since

Amin(QlQZ) = Amin(Ql )Amin(Qz) and

T T
Amin (T_l/ Qtdt) = T_l/ Amin(Qt)d t,
0 0

for all positive semi-definite matrices Qq,Q,,(Q;);>0, We obtain via (2.18):

1 T
Domin(¥) > / min_ (7 (k/Ay) Amin(ROd1

2ANT 0 k=1,...,Dy
exp(—ZD]%/(cZAIZV) r,
= = YRR

where R, € RPV*Px is a Toeplitz matrix given as thd = . ((I—k)/Ay). To deduce a lower bound
for A, (R,), we introduce the discrete-time Fourier transform

F(w) :ZZﬁt(n/AN)exp(—iwn), w€[—m,m].
nez

A well-known result states that

A’min(Rt) = min F(C‘)):
we

[—n,7]

and hence we need to compute F(w). For this purpose, we will apply the Poisson summa-
tion formula. Define the function f(x) := p,(x/Ay)exp(—iwx) for x € R and Zf(z) :=
Jg f(x)exp(—i2nzx)dx. The Poisson summation formula states that

F(w)= > f(n)= Y Ff(n).
nEezZ nEz
By the Fourier inversion formula we obtain the identity
A
Ff(n)= / . (x/Ay)exp (—ix(w +2mn))dx = —N,ut (Ay(w +27n)/n).
R V27

Due to Assumption 6, we deduce that

Angq(t) A2 (w + 271tn)?
F(w) = %éexp (—NCT)

Aygi (1) _‘ﬁ)
Z—m exp( . (1+0(1)).
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Putting things together, we conclude that

exp (—2D2 /(A% )) exp (—A2 /cl) T
hia() 2 N V[ st
2v2nT 0

This implies the statement of Proposition 2.11.
2.5.6 Proof of Proposition 2.12
Consider the decomposition

oo Dy oo

L,DZZCJ(Z]: CJeJ+ Z Cjej = (,01+(P2.
j=1 j=1 j=Dyn+1

Furthermore, it is

0o 2
loall?. < lloalZ SA#( > chl) :

j=Dy+1
2

To estimate the term ||TT*p,||Z,,

we introduce the decomposition

Dy

Moy = > (&), ¢3), &

j=1
Now, we deduce that

1T, |12, S 1T 0,12,
We obtain the inequality

Dy
I s lleo < D 1(212 ), | 112lloo-
j=1

In the next step we will find a bound for the term | <é N >* |. First, we note

Dy
<é]" (‘02>>¢< = Z Z \Ijj_kl/zcl (ekJ el)* .
k=11=Dy+1

We already know that

T
(errer). = /0 B (kAL A)B (L — k) /Ay )dt.

2A5T

Due to Assumption 3, the leading order of the above term is achieved for | = D, + 1 and
k = D, /2. Hence, we conclude that

3D2CZ e}

- — N

(2, ¢2), | S Dyllw 1||5{,2exp(— v ) >0 el
N

Consequently, we obtain the inequality

2 72 o0
I allon S AR2D2 10 opexp— 2282 ) S
Palloo S N N op P 4A2 P
N

which completes the proof.



Chapter 3

Polynomial Rates through
Deconvolution Estimation

The foundation of stochastic systems involving interacting particles and the development
of nonlinear Markov processes, initially introduced by McKean in the 1960s [McK66], can
be traced back to their roots in statistical physics, particularly within the domain of plasma
physics. Over subsequent decades, the significance of these systems in probability theory
has steadily grown. This area has witnessed the development of fundamental probabilistic
tools, including propagation of chaos, geometric inequalities, and concentration inequalities.
Pioneering contributions from researchers such as [M¢l96; Mal01; CGMO08; Szn91 ] have played
a crucial role in shaping this field.

However, formulating a modern statistical inference program for these systems remained
challenging until the early 2000s, with few exceptions, such as Kasonga’s early paper [Kas90].
Several factors contributed to this challenge. Firstly, the advanced probabilistic tools required for
estimation were still under development. Secondly, the microscopic particle systems originating
from statistical physics were not naturally observable, making the motivation for statistical
inference less apparent. This situation began to change around the 2010s with the widespread
adoption of these models in various fields where data became observable and collectable.
Applications expanded into diverse fields, including the social sciences (e.g., opinion dynamics
[Cha+17] and cooperative behaviours [ CFT12]), mathematical biology (e.g., structured models
in population dynamics [ME99] and neuroscience [Bal+12]), and finance (e.g., the study of
systemic risk [FS13] and smile calibration [GH11]). Mean-field games have emerged as a new
frontier for statistical developments, as evident in the references [Car+19; Dje+22; GSS20].
This transition has led to a growing need for a systematic statistical inference program, which
constitutes our primary focus. Recently, this interest has manifested in two primary directions.
On one front, statistical investigations are rooted in the direct observation of large interacting
particle systems, as evidenced in works [Amo+23; Che21; CG23; DH22; DH23; PZ22b]. On
the other front, statistical inference revolves around the observation of the mean-field limit,
the McKean-Vlasov process, as exemplified in [GL.21b; GL21a; Sha+23]. Concerning stationary
McKean-Vlasov SDEs, the literature is relatively sparse. To the best of our knowledge, only
a handful of references exist, including [PZ22a] and [GL.23a], which focus on the special
McKean-Vlasov model without a potential term. In [GL.23b], a more general model is explored.

This chapter, based on [Amo+24], focuses on statistical inference for an interacting particle

49
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system described by the following stochastic differential equation:

3.1

{dX;’N =—(V/(XPY) + 3w pl (X pV))de + dBY,
X5 )~ ug™,

where the processes B! := (Bi)tzo are independent standard Brownian motions. The function
V is referred to as the confinement potential, while W (or W’) is the interaction potential (or
interaction function respectively). Our primary objective is to estimate the interaction function

W’ based on observations X %’N, s XN of the particles, which are solutions of the system

T
(8.1). Our approach hinges on the analysis of the associated inverse problem concerning
the underlying stationary Fokker-Planck equation, relying on various results related to the

probabilistic properties of the model.

Our research is closely connected to a recent study [BPP23] that discusses estimation of the
interaction function with a specific semiparametric structure. The authors in [BPP23] develop
an estimation procedure, demonstrating convergence rates that critically depend on the tail
behaviour of the nonparametric part of the interaction function W. Specifically, assuming a
polynomial decay of the tails, they establish logarithmic convergence rates, proven to be optimal
in that context. This naturally raises the question of whether polynomial rates can be achieved
under a different set of conditions. This work aims to address this question, and our key finding
is that, by assuming exponential decay of the interaction function W, we can introduce an
estimator that achieves polynomial convergence rates, as demonstrated in Theorem 3.11.

Compared to the framework proposed in [BPP23], our model features some distinctions. The
smoothness of the confinement potential V emerges as a crucial factor influencing the achieved
convergence rate. Additionally, the regularity of the invariant density 7 of the associated
McKean-Vlasov equation and the analysis of its Fourier transform % () are vital for establishing
the asymptotic properties of our estimator. Notably, a lower bound on & () is required, pre-
senting one of the primary challenges in this work. We address this challenge using Hadamard
factorisation, leading to the desired lower bound under mild assumptions on the model. Fur-
thermore, we provide an example demonstrating how a non-smooth confinement potential V
results in the Fourier transform % (1) exhibiting a polynomial decay. As another interesting
situation, we consider the case of non-smooth potential W and show that even in this case the
Fourier transform of 7t decays exponentially fast. Further technical tools include the extension
of the Kantorovich-Rubinstein dual theorem to functions lacking Lipschitz continuity, presented
in Theorem 3.4, and an extension of the uniform propagation of chaos in the L%’ -norm without
a convexity assumption for W, as demonstrated in Proposition 3.6.

The structure of this chapter is as follows. In Section 3.1, we introduce the model assumptions.
This section also offers a concise overview of interacting particle systems, and the relevant
tools about Fourier and Laplace transforms. Crucially, we present key probabilistic results that
lay the groundwork for our main findings. Section 3.2 is dedicated to formulating our primary
statistical problem and the associated estimation procedure. Additionally, we establish upper
bounds on the L? risk of the proposed drift estimator. The proof of our main results is provided
in Section 3.3, where we delve into the detailed verification of our key findings. Finally, in
Section 3.4, we explore the sufficient conditions necessary to ensure that the transforms satisfy
the requirements for our main results. All remaining proofs are collected in Section 3.5.
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Notation

All random variables and stochastic processes are defined on a filtered probability space
(2, Z,(Z,)i>0,P). Throughout the chapter, we use the symbol c to represent positive constants,
although these constants may vary from one line to another. For any function f : R — R, we
denote its supremum as ||f oo := supyeg |f (¥)|. The notation x, < y, signifies the existence
of a constant ¢ > 0, independent of n, such that x, < cy,. The derivatives of a function f
are denoted as f', f”,...,or f (k), k > 1. For a complex number z € C, we denote its complex
conjugate, real part, and imaginary part as z, Re(z), and Im(z), respectively. For a € R, we use
the notation

%, ={y+ia:yeR}

3.1 Model and Assumptions

We start our analysis by introducing a set of assumptions on the confinement potential V and
the interaction potential W. It will become evident that the smoothness of V plays a pivotal
role in our asymptotic analysis. Our investigation encompasses two distinct scenarios: Either
the confinement potential of smoothness takes the form V(x) = ax?/2 for a positive constant
a, or the confinement potential is expressed as V(x) = ax?/2 + V(x), where a >0 and V is a
known function characterised by non-smooth features, as explained below. We assume that V
and W satisfy the following hypothesis:

Assumption 7. The potentials W: R — R and V: R — R are such that

* The interaction potential W € C2(R) is even with bounded derivatives W’ € L'(R) and
W such that inf, g W”(x) = —Cy for some Cy, > 0.

* The confinement potential V is given by V(x) = $x2 + V(x), with a + inf, e V"(x) =
Cy > 0, where Cy and Cy;, satisfy the relation Cy, — Cy, > 0. V is given by either

Al. V=0, or

A2. V is even, and there exists J € N, J > 2 such that V € C/(R) and V ¢ C’*1(R).
Furthermore, for each 2 < j < J, sup,r VO(x)| = & < oo.

Additionally, the initial distribution admits a density, which (by abuse of notation) we also
denote as g, satisfying

/ exp(cx)ug(x)dx < oo, VYceR, /log(,uo(x)),uo(x)dx < 00. (3.2)
R R

Remark 3.1. We emphasise that we do not assume convexity of the interaction potential W, as
is commonly done in most works. Instead, our assumption is that W’ is bounded below by a
constant —Cy, < 0. While the geometric convergence of the distribution of the system (3.1) to
the invariant distribution for t — oo now follows from [CMV03, Theorem 2.1], Proposition 3.6
establishes a uniform (in time) propagation of chaos under the above assumptions. Lastly, note
also that Al can be seen as a special case of A2, where J = oo.
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3.1.1 Probabilistic Results

The mean field equation associated to the interacting particle system introduced in (3.1) is
given by the 1-dimensional McKean-Vlasov equation

(3.3)

dX, =—(V/X,) + 3W’ % pu,(X,))dt +dB,,
Law(X,) = .

Under Assumption 7, existence and uniqueness of strong solutions of (3.1) and (3.3) follow
as in [Ben+98; CMV03; Mal03]. Additionally, the measure u, possesses a smooth Lebesgue
density and the McKean-Vlasov equation admits an invariant density 7 solving the stationary

Fokker-Planck equation
L, d (( s Lo ) )
— e — V + —W , 3.4
2 T o > *T|TT (3.4)

which means that 7 is given by

n(x) = Zi exp(—2V(x)—W xn(x)), x€R, (3.5)

T

with a normalising constant
Z,= / exp (—2V(x) —W * t(x)) dx < oo.
R

The invariant density can be upper and lower bounded under our assumptions, according to
the following lemma. Its proof can be found in Section 3.5.

Lemma 3.2. Suppose that Assumption 7 holds true. Then, for any x € R, there exist two constants
€1, Co > 0 such that
1 exp(—Cx?) < m(x) < ¢y exp(—Cyx?),

with C := a + &, and Cy and &, are as in Assumption 7. Furthermore, it holds that

R < 1+ |xD" exp(—Cyx?), 0<n<J.

A crucial tool in our estimation procedure consists in a result which combines uniform in time
propagation of chaos for (3.1) with convergence to the equilibrium of (3.3). In order to state
it we start by introducing the Wasserstein metric. The Wasserstein p-distance between two
measures U, v on R is defined by

P
— ; _vIP
WG, )=, inf =L -v1P1)’,
where the infimum is taken over all the possible couplings (X,Y) of random variables X and Y
with respective laws u and v. The following result combines point (iv) of [CMV03, Theorem
2.1] with [Mal03, Theorem 5.1] or [CGMO08, Theorem 3.1], adapted to the current framework,
see also our Proposition 3.6 below.

Theorem 3.3. Let X l, 1<i <N, bei.id. copies of the process X defined in (3.3) so that every X '
is driven by the same Brownian motion as the i-th particle of the system (3.1) and they are equal
at time 0. Denote by

N
HN,T == N_l Z 5X;N
i=1
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the empirical distribution of the particle system X %N for 1 <i <N, and by 11 the law associated to
the invariant density m. Under Assumption 7 there exists a constant ¢ > 0 independent of N and
T such that _
supE[lXi’N —)_(;’NIZJ <cN71
=0
and
E[W,(Iy 7, m2]<c (N_1 + exp(—)LT)) =:cN7 1,

where A = Cy, — Cy, > 0, and Cy, and Cy, have been introduced in Assumption 7.

The aforementioned bound asserts that the invariant distribution IT of the mean field equation
can be accurately approximated by the empirical measure Iy 7, while providing an associated
error bound for this approximation. In the upcoming estimation procedure all convergence
rates will be measured in terms of N;. In the following, we will present and prove a similar
result, but from a dual perspective, involving the Laplace transforms of ITy ; and II.

We opt to replace the use of the Fourier transform, as seen in [BPP23], with the Laplace
transform. This choice is made with a similar intent as the authors of [BG21], allowing for
greater flexibility and the inclusion of diverse scenarios.

Before we proceed further, let us now introduce some notation and properties concerning
the Laplace transform. For any locally integrable function ¢, we define the bilateral Laplace
transform as follows:

a(z):z/qu(t)exp(—zt)dt. (3.6)

The Laplace transform $ (2) is an analytic function within the convergence region Xy, which
typically takes the form of a vertical strip in the complex plane:

Ty = {ZE(C : x;SRe(z)Sx;}

for some x e xT such that —oco < x; < x} < oo. The convergence region 24 can degenerate

¢ ¢ ¢
to a vertical line in the complex plane, in that case it is X := {z €C : Re(z) = x¢}, with

xg € R. If ¢ is a probability density, then the imaginary axis always belongs to the convergence
region X,. In this case the Fourier transform of ¢

$iy) = F($)) = /R $(Dexpliyn)dt,  y <R,

is the characteristic function of ¢. This degenerate case pertains to distributions whose
characteristic function lacks the ability to be analytically extended to a strip surrounding the
imaginary axis on the complex plane.

We are now ready to state a propagation of chaos type result for the Fourier transforms that is
reminiscent of Theorem 3.3 by means of the Kantorovich-Rubinstein theorem. In particular, we
can demonstrate that the transform of IT can also be effectively approximated by the transform
of the empirical measure Iy . The proof can be found in Section 3.3.

Theorem 3.4. Under Assumption 7, there exists a constant ¢ > 0 such that, for any z € %.,,

E[|Z (I)(z) — Z (T 1)(2)I*] < clz]*N;

Remark 3.5. Note that for z € R, this theorem is a direct implication of the Kantorovich-
Rubinstein dual formulation, applicable to 1-Lipschitz functions. However, when dealing with
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2z € %4, the function exp(iz) no longer possesses Lipschitz continuity, thereby rendering the
use of the Kantorovich-Rubinstein dual formulation unfeasible. This motivates us to establish
this analogous formulation.

Some crucial results will be instrumental in the derivation of the theorem above. Specifically,
we present an extension of the propagation of chaos theorem, as stated in Proposition 3.6
below, in the L% norm, for p > 1. For the detailed proof of this result, we refer to Section 3.5.

Proposition 3.6. Under Assumption 7 for any p = 1 there exists a constant ¢ > 0 such that for
any NeNand1<i<N, itis

supE[lXi’N —)_(;’NIZF’] <cN7P,

t=>0
3.2 Statistical Framework and Main Results

3.2.1 The Estimation Procedure

Suppose we observe the data X ;’N, X ITV N 'in the asymptotic framework where N, T — oo.

Our goal is to estimate the interaction function W’. In particular, we will propose an estimator
Wy, ; and study its performance by considering the associated mean integrated squared error,
aiming to achieve polynomial convergence rates.

The estimation procedure is semiparametric in the sense that it consists of four different steps,
involving both parameter estimation and nonparametric estimation techniques.

1. The first step consists in the estimation of the derivative of the log-density which we
denote as I(y):

)

n(y)’

This will be achieved by the introduction of kernel estimators for both 7 and ©’. Let K

be a smooth kernel of order m > 2, that is

I(y) :=(ogn)(y)= y €R.

/K(x)dle, /ij(x)dxzo j=0,...,m—1, /xmK(x)dx#O.
R R R

It is worth noting the choice of the kernel order, denoted by m, is flexible and can be
determined by the statistician. As we will see later on, the choice of m is determined
by the regularity of V: a smooth confinement potential allows us to choose an arbitrary
m € N. On the other hand, if V is non-smooth as described in A2 of Assumption 7, we
need to additionally assume that m < J. Indeed, this is a standard restriction on the
order of the kernel when estimating non-smooth functions. Let us also introduce the
bandwidths h; := h; y r, i = 0, 1, which satisfy h; — 0 for N, T — o0 and the notation
Ky(x) = %K(%). Then, we can define the kernel estimators 7y r and TE;V,T for 7 and 7/,
respectively, as

N N
-— 1 i:N / o— 1 / i,N
mr(y) = ﬁ;Kho(y —XPY), (0= N_hl;Khl(y_XT )
An estimator for the derivative of the log-density [(y) is then given by

o) o= ﬂfv,T(J’)l
N,T\Y )= TCN,T(y) {mnr(y)>0}

where 6 =6y —>0asN, T — oo.
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2. In the second step, we estimate the parameter a > 0 appearing in the confinement
potential. This is based on the identity

I(y)=—2ay —2V'(y)—W'*n(y)

and on a contrast function method. Indeed, since W’ € L'(R), we know that |W' % 70( y){ —
0 as |y| — oo, which allows us to construct a minimal contrast estimator for a. In partic-
ular, for any e € (0, 1) arbitrarily small, we can introduce an integrable weight function w

with support on [€,1] and a parameter U = Uy 1, which satisfies U — oo for N, T — oo.

Then, we can define the estimator ay 1 for a as

. ~ 2
ay,T = argmm/R(lN’T(y)+2ay+2V’(y)) wy(y)dy.

a€R

3. Using the results in the previous step we can construct an estimator Wy y of ¥ := —W'x .
Given the estimators [y r and ay  constructed above, we define

Uy r(y) = (lN,T()’) +2ay 1y + 2‘7,(}’)) liyi<euys yeR.

4. The last step consists in applying the deconvolution and the inverse Laplace transform to
obtain an estimator for W’. Note that because we want to consider values of .Z(I1) on a
domain where the function is analytic (e.g. to avoid zeros), we can not use the standard
regularisation techniques of deconvolution problems consisting of cutting off the estimates
outside bounded intervals on the real line, see [Joh09]. Instead, we are going to employ
a Tikhonov-type regularisation. More specifically, for some a > 0, choose a sequence of
entire functions py r such that for z € Z,,, |# (HN’T) (z2)+ pN’T(z)| > ey 1 > 0, where
ey — 0 for N,T — oo. Then, we define the estimator W]\’,,T via

F (‘I’N,T) (2)
F (W) @) =— .
F (HN,T) () + pn,7(2)
Observe that the rlght hand side is well defined since Wy € LY(R)N L2(R). Additionally,
forallz € Z,,, |F(Wy , such that W]Q 7> as the inverse Fourier

transform of the rlght hand s1de is well-defined.

It is natural to draw a comparison between our proposed estimation approach with the one
presented in [BPP23], particularly in scenarios where the interacting drift exhibits polynomial
tails. Although the overall steps in the estimation process share similarities, our context
introduces several novel considerations.

Our estimation procedure can be divided into two parts, depending on whether we are ad-
dressing the first case with infinite smoothness, where V = 0, or the less smooth case where V
adheres to condition A2. The model distinction arises from the absence of the potential function
V(x) in [BPP23]. Instead, the interaction potential in [BPP23] comprises two components: the
potential, encompassing trigonometric and polynomial functions, and the non-parametric com-
ponent of W. Despite this difference, it does not significantly impact the estimation procedure.
The parametric component in [BPP23] plays a role similar to the confinement potential in our
context, and both are estimated through a contrast function, yielding comparable results in
steps 1 and 2 for both cases.

The deviation becomes evident in step 3, where the constraint on exponential tails of W’ results
in polynomial convergence rates (see Theorem 3.8), a contrast to the logarithmic convergence
rates for ¥ in [BPP23] due to polynomial tails of W’.
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The divergence continues into the fourth and final step, where the estimation procedure takes
on entirely different forms. The primary challenge lies in analysing the joint decay of the
transforms of W’ and 7, introducing the condition || 2, |‘Z((VIV.II))((ZZ)) |2dz < oco. Analysing such a
condition proves to be a complex task. Notably, the analysis hinges on studying the zeros of
the transform of 7, leading us to use the Laplace transform instead of the Fourier transform.
It is worth noting that selecting a = 0 in £, allows obtaining the Fourier transform from the
Laplace transform. A comprehensive explanation regarding the fulfillment of the mentioned

constraint can be found in Section 3.4.

3.2.2 Main Results: Convergence Rates

Let us start with the first step, which consists in the estimation of [. We remark again that
the order of the kernel can be chosen arbitrarily in the case of V = 0, whereas for V as in
Assumption 7, A2, we require the condition m < J. In the sequel the bandwidths h, and h; for
Ty, 7 and n;V’T, respectively, are chosen as

1 1
AT 2(m+D) AT 2(m+2)
hy :==N, and h;:=N; .

Finally, the threshold parameter is chosen as
= a G172
6 := Eexp(—CU ),

where ¢;, C are the constants appearing in Lemma 3.2. We remark that the definitions for h,
and h, are the same as in [BPP23] while the choice of § is due to our lower bound on 7 as
presented in Lemma 3.2.

Proposition 3.7. Let hy, h; and & be as above and let U > 1. Assume that Assumption 7 holds.
Then it is

m

1 ~ _ __m
sup E[|ly 7(x) = 1()]* S exp(CU?) (NT 2D 4 UN, 2“"*”) ,

|x|<U

We now proceed to estimate a in step 2, employing the estimator ay ;. In our current context,
this step is less challenging than it was in the previous work cited as [BPP23], thanks to the
specific model under consideration. In particular, the estimation of a essentially involves
simplifying step 2 from [BPP23] to the scalar case, where an additional potential V has been
introduced. However, this potential is already known, and it can be chosen in a way such that
it does not contribute to the convergence rate at this stage of the analysis.

Theorem 3.8. Let U > 1 and recall that m is the order of the kernel K. If Assumption 7 holds
then, for any € € (0,1),

1
2 _ __m __m__
JE[ / |\PN,T(y)—\IJ(y)|2dy] gexp(cuz)U%(NT A L UN, 2”"*”) (3.7)
R

2exp(—Cy(e5)%) (
+ +
/|y|>

1

2
B |w’(y)|2dy) :
2

eU

The dependence of the convergence rate for ¥y ; on the tail behaviour of the function W’
is evident in Theorem 3.8. In particular, when the tails of W’ exhibit exponential decay, the
subsequent corollary, which directly follows from the previous result, provides a precise bound.



3.2. STATISTICAL FRAMEWORK AND MAIN RESULTS 57
Corollary 3.9. In the setting of the previous theorem, let p > Cy and assume that

lim sup exp(2px2) W/(y)|?dy < oo. (3.8)

X—00 ly|>x

Then, for any € € (0,1), choosing U? = ¢, log(Ny), where

1
Cu = n ~ 2.0 (3-9)
2(m+2)(C+c, <
gives
2 )
| /R () )Py || 5 logNp)y, (3.10)
where .
v m (3.11)

:2(m+2)1+%'
14

Remark 3.10. One might question why the convergence rate above depends on the auxiliary
parameter € € (0, 1) introduced in the second step of our estimation procedure. By following
the proof of Theorem 3.8, it is easy to verify that when the value of a is known and does
not require pre-estimation, the results still hold with e = 1. However, when estimating the
parameter a, we lose the option of setting ¢ = 1 and can only use € € (0, 1), which slightly
affects our convergence rate. The optimal choice is to take € as close to 1 as possible, resulting
in

m 1 -
T o(m+2)q. 4 ¢

1+ on

Y

for any arbitrarily small € > 0.

The estimation of ¥ leads us to the estimation of W’ as stated in the following theorem. In this
context, an assumption regarding the decay of the transforms of m and W’ will be crucial.

Assumption 8. Recall that &, = {y +ia : y € R} for some a > 0. There exists an @ > 0 such

that
J.

We will further analyse this assumption in Section 3.4. Therein, we will employ tools from
complex analysis to establish a lower bound on % (I1), allowing us to verify that Assumption 8
holds true in specific situations. Additionally, we will conclude said section by providing an
example, illustrating how a non-smooth confinement potential implies polynomial decay of
the transform of the invariant density. This example assists us in verifying the validity of
Assumption 8 as mentioned earlier.

7 W)@ [

Z(&) < 00, (3.12)

a

In the sequel, ey 7 is chosen as

_r
2

ae 1 1
ewr = exp( S-(c, logNr)? ) log Ny )Ny .

From a quick look at Theorem 3.11, it is easy to see that this constitutes the final convergence
rate for the estimation of W’.
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Theorem 3.11. Suppose that Assumption 7 and Assumption 8 hold true for some a > 0. Then

_r
2

1
2 ae 1 1
E| [ W00~ WP dy | < cenp (G (eulogNn)t ) Gognny iy
where ¢, is asin (3.9) and y as in (3.11).

Remark 3.12. Observe that when Assumption 8 holds for a = 0, the convergence rate found

in Theorem 3.11 is (logNT)‘ltNT_ §. Thanks to Hadamard’s representation theorem, we can
obtain such a result if % (IT) does not have zeros on the real line, see Theorem 3.19 below. In
Theorem 3.11, we consider a more general case, where % (I1) is allowed to have real zeros.
The crucial condition is indeed that there exists at least one line in C that is parallel to the
real axis on which the function does not have any zeros. Let us stress that this condition is
much weaker than requiring no zeros of % (II) on the real axis since there is a large class of
densities with Fourier transforms vanishing only on the real line, see, e.g. [Bru50]. We refer to
Section 3.4 for more details.

Remark 3.13. Even when Assumption 8 holds for a # 0, the observed convergence rate,
as determined in the previous theorem, remains polynomial. This outcome arises from the
dominance of the polynomial term over the exponential term in the presented upper bound.

Remark 3.14. It is important to highlight that the convergence rate outlined in Theorem 3.11
is contingent on the smoothness of the confinement potential V. Specifically, in the scenario of
smooth potentials, we have the flexibility to choose the order of the kernel m to be arbitrarily
large. Additionally, it is worth noting that the convergence rate y is 1/(2(1 + 4C/Cy)) at best,
which we would obtain if the choice of € = 1 were admissable. In contrast, when dealing with
a confinement potential of smoothness J, we encounter the constraint m < J. In this case, the
optimal choice is to set m = J, leading to y being close to J /(2(J + 2)(1 +4C/Cy)).

3.3 Proof of the Main Results

Let us introduce some notation and properties of the Laplace transform, as defined in (3.6), that
will be useful in the following section. The inverse Laplace transform is given by the following
formula
1 x+ico 1 0o
b= [ F@eweod= o [ Gltivexs(tx+in)0dy,
271 Jx—ico 27 J_

with x € (x;,x(;). The bilateral Laplace transform is unique in the sense that if $1 and q/5\2
are such that 51(2) = az(z) in a common strip of convergence Re(z) € (x;l, x;fl) N (x;z, x;fz),
then ¢(t) = ¢,(t) for almost all t € R (see [Wid41, Theorem 6b]).

Moreover, the following identities will prove to be useful. Let ¢ be a locally integrable function
and a > 0. By Parseval’s theorem, (see [Doe74, Theorem 31.7])
1 a+ioo
15 = oy F(¢)(—is)F (¢)(is)ds
Tt Ja—ioco

= i /_ _F@)—ia=Z(@)ia=y)dy.

Then,

(YRS /_ |7(¢)(—ia—y)Z($)(ia—y)|dy SA_+A,,
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where

A= /_ Z @) (ia—y)lPdy = /y Z (@) )Pz,

A, = /_ 7 ($)ia—y)Pdy = /2 17 ($)) dz,

and &, ={y +ia:y eR}.

3.3.1 Proof of Theorem 3.4

As it will be helpful for the proof of Theorem 3.4, we now state a lemma establishing that
finite exponential moments of X (1) =X é’N =X 6 imply finite exponential moments of X : and
X tl N forall t > 0. Its proof can be found in Section 3.5.3. Remark that the sub-Gaussianity
implies the required finite exponential moments (3.2). Indeed, a centered random variable
Z is sub-Gaussian if there exists a K > 0 such that E[exp(tZ)] < exp(K?t?/2) for all t € R.
For sufficient conditions ensuring sub-Gaussianity see [DH22, Definition 30] and references
therein.

Lemma 3.15. Under Assumption 7, we have

supE [exp(:I:c)_(t) + exp(:l:cXi’N)] < 00

t=0

uniformly in i and N. Additionally, for any k > 1,
supE[[X %+ XV [F] < o0 (3.13)

t=0

uniformly in i and N.

We start proving Theorem 3.4 by introducing some notation. Let II, be the law of X, II the
law with density 7 and H’T\f =TIy r with

N N ‘
g(nlj\[)(z) = ]l\] Z exp(izX]T’N), 9(ﬁlj\f)(z) = ]lvz exp(izj_(';w),

j=1 j=1
ZF(T7)(z) = E[exp(izX )], FD(z)=F(n)(z) = /_ exp(izx)m(x)dx.

In order to prove the result we now consider the following decomposition:

3
E[|Z(M)(z) — Z (M)()I*] S Z 6i(2),

i=1
where

5,1(2)=1Z(MG) - FANE)2  6:(2) =E[IZ[{1)k) - ZT)EE].,

j

and

53(z) =E[|2(TT;)(z) — Z(T)(2) ]

Nl

N
1 —j i
< (ﬁ jzgl E [I exp(izX]T) — exp(izXJT’N)lz]

=FE [l exp(iz)_(;) — exp(izX;’N)Iz:l .
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For x = x; +ixy and y = y; +iy,, we have that

lexp(x + y) —exp(y)| = |exp(x) — 1| exp(y,)
< (lexp(ixy) — 1| exp(x;) + |exp(x1) — 1|) exp(y1)
< (Ixalexp(x1) + |x1[(exp(x1) + 1)) exp(y1)
< V2|x|(exp(x; + y1) + exp(y1)) (3.14)

which implies, for any z € Z,,
=1 =1
53(2) < 20zlPE[ X — X" 2(exp(—aX ;) + exp(—ax V)% ]
Using the Cauchy-Schwarz inequality, we get
1
—1 5
55() 5 PE[ X — XV 1*]7,

because the exponential moments of X ; and X ;’N are uniformly bounded in T, N according to
Lemma 3.15. By Proposition 3.6,

=1 1,N 4 1
E[X; —Xx7"*] S %
which yields
65(2) S ﬁ (3.15)
3 ~ N . .
Next, consider 6,(z). Since ﬁ]]\f is based on i.i.d. X 1T, e ,)_(];I with common law I, we have
that 1 1
65(2) = NE [|E[exp(iz)_(1T)] — exp(iz)_(lT)lz] S N’ (3.16)

where exponential moments of X 1T are uniformly bounded in T by Lemma 3.15. Finally, let us
deal with 6 1(2). We introduce a random vector (X1, X) with Law(X ;) =TTy, Law(X) = II, and
E[|IX; —X|*]= WZZ(HT, IT). Then, using again (3.14), it is
51(2)% = [E[exp(izX )] — E[exp(izX)]|
< E[| exp(izX ;) — exp(izX)|]
< v2|z|E[ X ; — X|(exp(—aX 1) + exp(—aX))].
Using the Cauchy-Schwarz inequality we obtain

E[[X 1 —X|(exp(—aX ) + exp(=aX))] § Wo (11, D),

since the moments and the exponential moments of X1, X are uniformly bouned in T by
Lemma 3.15 and the fact that Law(X) = II is the invariant law of the McKean-Vlasov SDE.
[Mal03, Theorem 1.4] ensures that there exist two constants ¢ and A := Cy, — Cy, > 0 such that

Wy (TI7, 1) < cexp(—AT).

It yields that
51(2) S |z|% exp(—2A.T). (3.17)
From (3.15), (3.16) and (3.17) we get, for any z € %,
1 z|?
E[|Z (I)(z) — Z([})(2)I*] S |2 (ﬁ + EXP(—/lT)) = |N—|
T

Our reasoning easily extends to z € Z_,, thereby concluding the proof of the theorem.
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3.3.2 Proof of Proposition 3.7

The proof of Proposition 3.7 follows closely the proof of [BPP23, Theorem 4.1]. Recall that
Iy r is a kernel estimator of

m(x) _
[(x)= —2V'(x) — W' n(x). (3.18)

n(x)

Let us decompose its error into the sum
”N,T(x)_ [(x)| = |l(x)|1{nN,T(x)g5} + r(x) (3.19)

where

r(x) := [y, r () =10z, (0)>6)
<671 (1 () — ') + 1)y, () — m(x))]) (3.20)
Under our assumptions, we have that [V/(x)| < ¢(1+ |x|+|V’(x)]) < ¢(1 +|x]|), where we have
used that V/(0) = 0 and V" is bounded. Moreover, [W’x t(x)| < [[W/ |||l 7]l = W]l oo < 00,

which imply
sup |[(x)| SU.

|x|<U

Next, Lemma 3.2 gives the lower bound 7(x) > ¢; exp(—C|x|?), which in turn implies 7(x) >
26 for all |x| < U. It follows that for all |x| < U,

B(my1(x) < 8) = P(n(x) — 7y 1 (x) = 71(x) — 6)
<P(Iln—my rllco = 5) < 572E [l — my 712, ]

Finally, consider
Ty, 7(x) — m(x) = ro(x) + r1(x)

with
ro(x) = Ky, * (Tly p (x) —T1)(x),  r1(x) = Ky, * 1(x) — 7(x),

where recall Kj, (x) = hy'K(hy'x) is a scaled kernel. We get
[ro(x)] < Ch61W1(HN,T, IT)

by applying the Kantorovich-Rubinstein theorem, moreover, EflWZ(ITy 7, I1)] < cN; ! because
of Theorem 3.3. After substitution, we have that

() = /R (n(x + hoy) — G)IK(y) dy,

where by the Taylor theorem

n(x + yho) = m(x) + Z (yho)™

N 7 (x + Tyhg)
m!

for some 0 < 7 < 1. Recall that K has order m. Moreover, the bound in Lemma 3.2 ensures
that |70™(x)| < c, hence,
lr1 ()| < chg'
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uniformly in x € R. Our choice of h yields

IE|:||7TN,T - 75||200] N NT_m_+1
and similarly, that of h; yields

E[llny p —'I2, | S Ny 77

Using these bounds in (3.19), (3.20), we obtain

1
sup E Il 1) ~ 1) 5 exp(CU) (N, 7 4 UN, T ),

|x|<U

which concludes the proof.

3.3.3 Proof of Theorem 3.8

Recall that

Uy r(x) = (ZN,T(X) +2ay rx + 2V'(x)) Lx<evy
U(x) =1(x) + 2ax + 2V'(x) = =W’ % 7(x).

We decompose the mean integrated squared error of Wy  into

— 2 % — 2 %
]E[/R(\I’N,T(x) \Il(x)) dx} (/|X|>6U(\Il(x)) dx) +1, (3.21)

I:= (/ E[(\IJN,T(X)—\Il(x))Z]dx) :
[x|<eU

Applying Minkowski’s inequality, we get I < I; + I,, where

where

e (/| R (CRORIOY dX) Ul sup B[ (s (0107 ]’,

|x|<U
1
2
Iy:= (/ ]E[(zaN X —2ax)2:| dx) SU
|x|<eU ’

Next, consider the mean squared error of

N

E [(aN’T — a)z]% .

oy = argmin/ (I () + 20x + 2\7’(x))2 wy(x)dx,
R

a€R
where wy () :=w(-/U)/U. The estimator ay r and a can be computed explicitly via

anrt =

2C Uz / (lN T(x)+2V (x)) xwy(x)dx,

a=— 2, Uz/(l(x)+2v ) +w’ *n(x))wa(x)dx

where C, := [, x?w(x)dx. Since the support of wy is [eU, U], Jensen’s inequality can be
applied to get

2
(aN,T —a)* <

< 4C2U4/(NT(X)—Z(X) w’ *TE(X)) x2wy(x)dx.
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By Minkowski’s inequality, we obtain

1 1
E[(ayr—a)*]* < W(Jl +J3),
2

where

1
2

Jq = (/ E[(ZN,T(X)—l(X))Z]XZWU(X)dX)E < CZ%U sup E[(ZN,T(X)—Z(X))Z] ,
R

[x|<U

L / 2.2 % COOU% / 2 %
Jy = (/R(W * 10(x))°x WU(X)dX) < 5 (/|x|>EU(W * 1t(x)) dx) )

with Cgo := sup, g X?w(x). Using the above bounds in (3.21) we conclude that

E[ / (W 1) — W(x))? dx]i < U sup E[(y +(0)— 160 ]?
R

|x|<U

+ (/|X|>6U(W’ x 10(x))? dx)2 .

The first term on the right hand side has been studied in Proposition 3.7, and we are therefore
left to study the second term. It is

(/|x|>eU(W/ )’ dx)% - (/|x|>eU (/]R Wl =) dy)z dx)% '

By Minkowski’s inequality this is bounded by

"(x —y)|*d ’ d "(x —y)|*d ’ dy.
/MS%U( /| W) x) (y)dy + /MU( /| W) x) n(y)dy

(3.22)

Then, we apply a change of variables x — y := X, observing that |x| > eU and |y| < eU/2
imply |x — y| > eU/2. For the second integral we enlarge the domain of integration to R. It
follows that (3.22) is upper bounded by

(/|x|>iu |W’(x)|2dx)% /IR my)dy+ (/|y|>£U n(y)dy) (/R |W'(x)|2dX)% )

Thanks to Lemma 3.2, we know that

/Eoo n(x)dx S /OO (x)dx,

U 35U

with 7(x) = ¢, exp(—Cy x?) satisfying 7' (x) = —2¢,Cy, xTt(x). Hence, we can write

/oo () dx < = /Oo TE(0) dx = 4
u u u

2C2CVU ’

It implies that

m(x)dx S
, ) —

/oo 2exp(—Cy (§U)%) (3.23)
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Then, the boundedness of fR n(y)dy is straightforward, while fR |[W’(x)|? dx is bounded as
W’ e LY(R)NL°°(R). It follows

3 3 —C(EU)2
(/ (W 5 1t(x))? dx) S (/ |W/(x)|2dx) + 2exp(~Cv(5U) ), (3.24)
|x[>eU Ix|>5U

eU

as we wanted.

3.3.4 Proof of Corollary 3.9

Corollary 3.9 is a consequence of Theorem 3.8 and of the exponential decay of the tails of W’.
The choice of the threshold
U? = c,log(N7) (3.25)

1
2 21712 2
U _pe
(/ IW’(y)Izdy) SeXP(—p€4 )=NT i
lyl>5U

Together with Theorem 3.8 it implies that

gives

1
: e [T LT
E[ / |wN,T(y)—w(y)|2dy] saogNT)wﬁ%(Nﬂ 7 4 (logNy)IN, & “))
R

Recall that p > Cy. Then, we can choose ¢, in order to obtain the balance between the
remaining two terms above:

m 1
c = — . (3.26)
Y2Am+2)(C+ ¢y 9)
Then, the convergence rate is
e2
__m__S“g
2(m+2) &t €2
(logNT)%NT v

as claimed.

3.3.5 Proof of Theorem 3.11

Let &, :={y +ia:y € R} for some a > 0. Assume Re(.Z (IT1)(s)) > O for all s € &Z,. Recall that
we defined a sequence of entire functions py 1 (s) := Z(I1)(s) — Z (Ily 7 )(s) + ey 1, s € C, for
some £y v > 0. Note that for all s € £,

|Z Ty 7))+ pn () =IZ)(s) +eyrl = ey >0 (3.27)
and WIQ’T is defined via

_ g(\PN,T)(S)
F(My r)(s)+ pN,T(S).

Let 5y 1 := Wy, , —W'. Plancherel’s theorem gives

E(WI(,’T)(S) =

1 a+ioo

/_ 16y 7 (0P dx = T 1)) F (5 1 )(is)ds

271 Ja—ico

1 [ . ‘
= g/ F 6y )y —1a)F(6y )y +ia)dy SA_+4A,, (3.28)
—0oQ
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where

Auy = /_ Z (6 1)y £ i) dy = / | (8 1)(s) 2 ds.

a

It suffices to consider A,, because the analysis of A_, follows a similar route. Rewrite
F Py 1)) = F(P)(s) + ey, 1 F(W')(s)
F Iy 1))+ pn,7(s) .

Let us deal with the denominator by using (3.27) and Re(Z (I1)(s)) + ey r > Re(F(I1)(s)) > 0
for all s € £,. We get

F (6N r)(s)=—

2

ZWI) ds, (3.29)

F(I)(s)

2
b Aa,l + SN,T /
EN,T A

where

Mgy = /g | (B 1)(5) — F W) ds.

= (/_oo exp(—2ax)E[ ¥y 1(x) —¥(x)*] dx)2 <D; +D,, (3.30)

NI—=

E[Aa,l]

where

Dy := (/ exp(—2ax)|\l/(x)|2dx)j R
|x|>eU
D, := (2eU)% exp(aeU) sup ]E[l\PN,T(x) —\Il(x)|2:|E .

|x|<eU

We start handling D;, while the analysis on D, heavily relies on the bounds gathered in previous
steps. We recall that

U(x)=—W'sxmn(x)= —/RW/(X —y)n(y)dy.

By the Minkowski inequality,

1
3
D, < / (/ exp(—2ax)W’(x—y)2dx) n(y)dy =1, +1,
R |x|>eU

where after a change of variable the right hand side has been decomposed into

1
2
I ;:/ (/ exp(—2ax)W’(x)? dx) exp(—ay)n(y)dy,
ly+col<5U |x+y|>eU

1
2
I, ;:/ (/ exp(—2ax)W’'(x)? dx) exp(—ay)n(y)dy,
ly+col>5U \J|x+y|>eU

with ¢y := % Note that |y + co| < 5U and |x + y| > eU imply |x —cy| > 5U in the inner
integral in I;. Let us also enlarge the domain of integration to R in the outer and inner integrals
in I; and I, respectively. Then

L+I1,<J; / exp(—ay)n(y)dy +J, (/ exp(—2ax)W’(x)? dx)E , (3.31)
R R
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where

1
3
Jy = (/ exp(—2ax)W’(x)? dx) , Jy :=/ exp(—ay)n(y)dy.
lx—col>5U ly+col>5U

The upper bound on 7 in Lemma 3.2 implies that the first integral on the right hand side of
(3.31) is finite, furthermore,

Jy S / exp(—ay — Cyy?®)dy
ly+col>5U

exp(—Cy (5U)%)
U

~ / exp(—Cyy?)dy S
lyl>5U

Now consider J; and the second integral on the right hand side of (3.31), where W’ € L%(R) is
odd and satisfies the assumption (3.8) for p > Cy,. This means that there exists a ¢ > 0 such
that

oo
/ W/ (u)? du < cexp(—2px?)
X
for all x > 1, that is

/ W @rdu<c / ) dFw,
1 1

where F(u) := 1 —exp(—2pu?) and y(u) := 1(u > x), u € R, for all x > 1. By monotone
approximation the above inequality remains valid for all non-negative non-decreasing functions
¥ :[1,00) — [0,00), for example, y(u) = exp(2au). We get that the second integral of
W’ € L?(R) on the right hand side of (3.31) is finite. Moreover,

oo
(J1)?* S / exp(2ax)W’(x)? dx
SU—c

€
U_CO 3 U—CO

e 2
Sexp (—Zp (EU_CI) ),

where ¢; = ¢y + %. Since p > Cy, it follows that

o0 oo
S / exp(2ax)dF(x) = / exp(2ax — 2px2)(4px)dx
3

exp(—2Cy (5U)")
(5U)?

(1P S

We conclude that -
_ exp(=Cy(§UP)
1~ %U .

(3.32)

Regarding D,, we recall that from the definition of Wy ;(y) and ¥(y) we deduce
D, S (2€U)? exp(aeU)(R, +Ry),

where

1
2

Ry = sup E[|ly () —1()I*]?,
lyl<sUu
1

273 1 ’
Ry := GUIE[(OCN,T_(X) ]2 SRy+U 2 (/ \Il(x)zdx) .
|x|>eU
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The integral in the upper bound on R; coincides with D; when a = 0 hence satisfies (3.32),
whereas the upper bound on R, follows from Proposition 3.7. We get the upper bound

- _m_ __m_ exp(—Cy (5U)?
D2 S eXp (an) ((EU)% eXp(CUZ) (NT 2(m+2) + UNT 2(m+1)) + p( 6‘2](2 ) ))’
2

which also works for E[Aa’l]%. The choice U2 = ¢, log Ny for ¢, as in (3.26) gives us
1 1 1 —
E[Ag1]2 Sexp (ae(cu logNT)i) (logNp)iN, " =: Ay 1 (3.33)

for v as in (3.11). Finally, from (3.28), (3.29) and (3.33) it follows that
i 2 TP Anr
B [ Jovaf av] s 2wy,
—00 EN,T
1
where note that ey ; can be chosen such that ey ; := A% . = 0for N, T — oo. It yields

o0 , T
E[ / |5n,r ()] dy] SAZ;
—00

as required.

3.4 On the Fourier Transform of the Invariant Measure

We have observed that Assumption 8 is crucial in order to obtain the polynomial convergence
rate stated in Theorem 3.11. However, this assumption may appear somewhat unclear at first.
The objective of this section is to investigate sufficient conditions that guarantee the validity
of Assumption 8. Given our focus on the super-smooth case, it seems natural to require that
the transform of the function W’ we aim to estimate decays exponentially fast. Verifying the
condition (3.12) entails seeking a lower bound for the transform of 7, which will be the main
objective of this section. We will thus begin by examining the properties of the Fourier transform
of 7, with the intention of studying the set of zeros and finding a lower bound outside that set.
Recall that the Fourier transform of the density is (by definition) the transform of its associated
measure, that is

F()=F(n)= /Rexp(izx)n(x) dx.

We will use tools from complex analysis to study Z(n) as a function defined on C. More
specifically, our aim is to represent the entire function & () via Hadamard’s factorisation
theorem. For definitions of the terminology used in this work, we refer to [Hol73]. We begin by
deriving an upper bound of the order of # (), which stems from the fact that 7w has Gaussian
tails.

Theorem 3.16. Let Assumption 7 hold and 7 be as in (3.5). The map
F(n):C->C, z+— / exp(izx)m(x)dx (3.34)
R

is an entire function which coincides with the characteristic function of m on R. Moreover, the
order of Z () does not exceed 2.
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Proof. The integral in (3.34) exists and defines a continuous function at any z = a +ib with
a,b € Rsince |F(n)(a+ib)| < [ exp(—bx)n(x)dx < 0o by using m(x) S exp(—Cyx?) and
W Rl oo < W lleo < 00.

Furthermore, we have [. Z(n)(z)dz = 0 for any closed contour C which follows from the
Cauchy theorem applied to the function z — exp(izx). By Morera’s theorem, % () is an entire
function. To determine the order of Z (1), we use the inequality

1/1
lzx| < > (— 2| +c |x|2) Vz,x €C, ¢ >0,
c
such that, for any z € C,

|7 (m)(2)] < AeXp(IIm(Z)xl)ﬂ(X)dx

< exp(lmz(f)z)/ exp (%) m(x)dx.
R

Recall that according to Lemma 3.2, t(x) < exp(—Cy x2). Hence, the above integral is finite if
x — exp(—(Cy — c/2)x?) is integrable on R, which is the case for C;, > ¢/2. As a result, the
order of Z(7) does not exceed 2. O

Now that we have that & (7) is an entire function of finite order, we will find an expression for
the function using Hadamard’s factorisation theorem. For this, we denote the zeros of & () as
(aj)jen and order them by increasing modulus. Note that the zeros are symmetric around the
imaginary axis, in other words, if a; is a zero of # (), then so is its negative conjugate —a;.
Moreover, & (1) has no zeros on the imaginary axis because & (m)(ia) > 0 for all a € R, see
[LO77, Corollary 1 to Theorem 2.3.2]. Let us introduce the critical exponent of convergence
p1 of the sequence (a;);en:

1
P1=inf{r>0:zla.|r <oo}.
j

jeN
We denote the order of Z () as p and make the following
Assumption 9. Z () satisfies either p; < p or p; =p < 2.
We will use the Hadamard canonical factors

E() = 1—gz, d=0,
W)= (1—2)exp(z), d=1,

defined for z € C, to study the infinite product representation of % ().

Theorem 3.17. Suppose that Assumption 7 and Assumption 9 hold and let 7 be as in (3.5) and
ZF(m) as in (3.34). Then, there exist p; € R and p, > 0 such that for all z € C,
) 2
F(1)(2) = exp(—p,z? + ip12) l_[El (—) . (3.35)
; a;
jeN J
Proof. Firstly, we consider the case p; < p. Then p is either 2 or 1 by [Hol73, Lemma 4.10.1].
The representation in (3.35) follows from [L.O77, Remark, page 42]. We note that if () is of
order p = 2, then p, > 0 because p, = 0 would lead to the contradiction p < max(1, p;) by
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[LO77, Theorems 1.2.5, 1.2.7, 1.2.8]. However, if & (1) is of order p = 1 then its representation
may be reduced to

F(n)(z) = exp(iﬁlz)l_[Eo (ai) , Pr:=p1+ Zlm(i) . (3.36)
J J J

J

Next, we turn to the case p; = p < 2. According to Hadamard’s factorisation theorem,

Z
F(m)(z) = exp(qiz + o) [ | Ex (—)
i N
for some q;,q € C. We note that g, = 0 since & (7)(0) = 1. In order to say something about
q,, we note that X with a probability density function 7 satisfies E[|X|] < oo. Moreover,
E[X]= 0, whence

Z(n)'(0)

’ _ 2 _
0=re( Z 0 ) = Re(log (R .o = Re (ql DVryemry aj)) = Re(qy).

2=0

O

Remark 3.18. We have p, > 0 only if p; < p = 2. If Z () has no zeros then 7 must be a
density of a normal distribution with mean zero by [LO77, Corollary to Theorem 2.5.1], since
p is finite.

The following step consists in bounding the infinite product in (3.35). If | p;] = 0, the term
I jeN exp(z/a;) is well-defined, and the representation becomes

F(7)(z) = exp(—pyz* + P, 2) l_[Eo (ai) )
jeN J

where p; is the same as in (3.36). Let us now use [Dup17, Lemma 4.12]. For all z € C outside
U;Be,(a;), where €; = 1/la;|P** and £ > 0, p; + & < 2, we get

[ 120, (a%)

JEN

R exp(—cq|z[P17).

This leads us to the following theorem.

Theorem 3.19. Let Assumption 7 and Assumption 9 hold. Then there exist c, > 0 and a family
of positive numbers (€;);ey such that, for any z € C outside U j21Bej(aj): it holds that

|Z (1)(2)| 2 exp(—c,|z]?). (3.37)

Due to Theorem 3.19 we can explicitly describe a scenario where condition (3.12) is satisfied,
assuming that we are in the super-smooth case where the tails of the transform of the interaction
function are exponential.

Let us introduce slowly varying functions [: Rt — R™ (see also [Sen76]). These are positive

and measurable functions such that, for each A > 0, the following holds as t — oo: % — 1.



70 CHAPTER 3. POLYNOMIAL RATES THROUGH DECONVOLUTION ESTIMATION

Assumption 10. Let (a;)jen; Cr, and (€;) ey be as in Theorem 3.19. Assume that Uj21B€j(aj)ﬂ
%, = 0. Furthermore, there is a slowly varying function [ such that liminf,_, . [(z) > ¢, for
which the following holds true on %:

|Z(W)(2)| = O(exp(—Iz[*1(|2]))) as |z] — oo. (3.38)

Note that in the aforementioned assumption, we assert that the transform of W’ exhibits a
decay that is almost Gaussian. This observation aligns with our expectations, given the nature
of the model under consideration, where the confinement potential is driven by x2.

It is noteworthy that [Sed08, Theorem 5], specifically in the scenario where a = 0, yields
both necessary and sufficient conditions for the existence of non-trivial functions exhibiting an
almost Gaussian nature, accompanied by an almost Gaussian Fourier transform as defined in
(3.38). Furthermore, according to [Har33, Theorem 1], if both W’ and its Fourier transform
follow the asymptotic behaviour O(|z|* exp(—%zz)) as |z| — oo, then both can be expressed as
a finite linear combination of Hermite functions. This provides concrete examples that satisfy
our assumptions.

Corollary 3.20. Let Assumption 7, Assumption 9, and Assumption 10 hold. Then, we have

L.

Proof. The corollary is a straightforward consequence of Theorem 3.19 and Assumption 10.
We have indeed

2

F (W) ()
F(n)(z)

2

F (W) (2)
_ dzé/ exp(—|z]21(z]) + c.|z|?) dz,
| | me [ etz + el
which is bounded due to Assumption 10. O

We can conclude by noting that, under the assumptions of Corollary 3.20, Assumption 8 is
clearly satisfied. This implies that we can achieve a polynomial convergence rate for the
estimation of W’, as stated in Theorem 3.11. To underline these findings, we conclude this
section by providing two examples.

Example 3.21. Let us demonstrate how a non-smooth confinement potential leads to an
invariant density with a Fourier transform exhibiting polynomial decay. We have that

n(x) = Zi exp(—2V(x)—W % nt(x)),

s
where V(x) = (a/2)x? + V(x) and W (x) satisfy Assumption 7. In addition, assume that W, V
are smooth on R, R \ {0} respectively and there exist VU/TD(0%) := lim,_,: VU (x) < 00

such that
‘7(J+1)(0+) ;é V(J+1)(0—)‘

Furthermore, V), 2 < j <J 42, are bounded on R \ {0}. Therefore, 7 is smooth on R \ {0}

and there exist 7V+D(0%) # xU+D(07). Then, iteratively integrating by parts we obtain

F()E) = oy -+ L@,
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where

0 (e’
I (2) :=/_ exp(izx)m¥ D (x) dx, I+(z):=/0 exp(izx)m? D (x) dx.

If we integrate by parts once more, we obtain
1 o0
I.(z2)=— (—7‘5(”1)(0+) —/ exp(izx)rc(”z)(x)dx) (3.39)
1z 0

since /" (x) — 0 as x — oo and V"2 is integrable, which in turn follow using the same
arguments as in the proof of Lemma 3.2. By Riemann’s lemma, the last integral in (3.39) tends
to zero and so

1 1
I.(z):= —ETCUH)(OJF) +o0 (;)

as z — 00. Clearly an analogous reasoning applies to I_(z). It yields that for all large enough
2,

@2

Hence, the Fourier transform of 7 has a polynomial decay, as claimed.

Example 3.22. Consider a Burgers’ type ODE of the form
Ty + (W +x) % 1)), =0

with W/(x) = a8, for some a € (0,1). Even though W ¢ C2(R) in this case, it is still instructive
to study this situation. In particular, this example shows that for non-smooth potentials W, the
Fourier transform of 7t can decay rather fast. Let us introduce ¢(x) := ady + x. Then we have

(W' +x) + m)(x) = /R p(x—=y)n(y)dy = an(x) + (x —u)

provided [ n(y)dy =1 and [, yn(y)dy = u. Then
m,+(x—wmn+an?=0.

Applying the transformation
n=y'/(ay),
we obtain
O Iy +0"y =Py +(x—p)y'/y =0
or
y'+(x—wy'=o0.
The general solution of this equation is given by

X

ﬂm=q+%/’eme@—mvm$,cb%ek
oo

Hence, we deduce the identity

exp(—(x —pu)*/2)
c+a _xoo exp(—(s —u)%/2)ds
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with the constant ¢ > 0 chosen in such a way that fR 1t(x)dx = 1. The Fourier transform of 7
can be written as

exp(iwx — (x —p)?/2)
F(x—u)

exp(S(w; 2))

F) dz

Fw) = | x = explioon) |
where S(w;2) = iwz —22%/2 and
F(z):c+a/z exp(—s?/2)ds

—00

=c+ay/m/2+ a/ exp(—s2/2)ds,
0
. Z 2 0 2 _ . .
having used that [~__ exp(—s®/2)ds + [." exp(—s?/2)ds = 4/ 7/2. We have the identity

/lw exp(—t2/2)dt = iv2exp(w?/2)D,(w/v2)
0

where D, is the Dawson function satisfying

Hence, we conclude that

/Oiwexp(—tz/Z)dt = —%V:}Z/Z) [1 +O($)]’ v e

The same asymptotic holds for Re(w)/Im(w) — oo. We can therefore write

F(iw) =c+a\/§—igwexp(wz/2)[1 +O(%):|, w — 00.

Furthermore, note that the solution of the equation
exp(w?/2) _
iw q

has the form

w = 4/210g(q) + 2 log(i y/21og(@)) + O(log ()

for q large enough. Then the function F(z) has a zero at the point 2, = iw, with

Wy = \/ 210g((c + ay/7/2)/a) + 2log(iy/ 2log((c + av/7/2)/a)
+ O(log_l((c +ay/m/2)/a))

for a small enough (note that ¢ — +/271 for a — 0). Observe that we can write

/ exp(S(w;2))
R

F(2) dz, (3.40)

_ 20+00 exp(S(w;2))
dz =I{w)+ /zl-wo_oo )

where clearly '
I(W):/ exp(S(w;2)) dz_/21w°+°° exp(S(e32)) |
R F(z) 2iwg—00 F(z) '
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For I(w) we can use Cauchy’s integral theorem. Indeed, it can be considered as an integral over
a closed contour of exp(—z2/2) — 0 as |Re(z)| — co. On the strip {0 < Im(z) < 2Re(w,)}, the
function exp(S(w;2))/F(z) has a simple pole in z, = iw, with residue

exp(S(w;2)) .. exp(S(w;z)) _exp(—owy+wp/2)

lim(z —g)) ————— = lim = =a " exp(—wwy).
z—>z0( o) F(2) 252, F'(2) a exp(w%/Z) p( o)

Recall that if a function f is analytic inside a contour C except at some isolated singularities
a,...,a,, then Cauchy’s residue theorem ensures that fc f(z)dz =2mi ZZ:1 Res(f, a;). Hence,
we obtain

I(w) = 2mia ! exp(—wwy).

Besides that, the contribution of the second integral in (3.40) is negligible as

/21W0+°° exp(S(w; z))d _/ exp(S(w;z + 2iw))
2iwy—00 F(Z) [ee} F(Z + 2iWO)

since inf,cg |F (2 + 2iwg)| > 0. Thus, we deduce that

dz = O(exp(—2wwy))

F(n)(w) = %ﬂi exp(—wwg + iwu) + O(exp(—2wwy)).

3.5 Proofs of Technical Results

This section is devoted to proofs of our technical lemmas. We start by providing the proof of
Lemma 3.2.

3.5.1 Proof of Lemma 3.2

We can write the invariant density 7t(x) in the following equivalent ways:

n(x) = Zi exp(—2V (x) —W % t(x)) (3.41)

T

= Zi exp(—2Vy(x) — Wy * mt(x)), (3.42)
0

where Z,, Z, are the normalising constants and
Vo(x) := /Ox V/(u)du =V (x)—V(0),
Wo(x) := /Ox W' (u)du = W(x)—Ww(0),
satisfy Wp(0) = V(0) = 0 and Wj(x) = W'(x), V;(x) = V'(x) for all x € R. Note

Wy mt(x) =W x t(x) — W(0)

and
Wy * 1t(x) — Wy * m(0) = / W’ s n(u)du =W x n(x) — W % (0).
0

To obtain the bounds for 7t let us use the representation (3.42). According to Assumption 7 we
have ||W’||; < co. We deduce that for all x € R,

x|
Wo(x)| < /0 W (wldu < W,
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hence,
[Wo s (30| < [Wolloo Il 7elly < W/l
We get that
1
n(x) < A exp(—2Vo(x) +[[W']l1) = exp(—2Vp(x)) (3.43)
0
and

n(x) > Zloexp(—zvo(x) — Wl =~ exp(—2Vp(x).

As we have assumed that there exists a C;, > 0 such that V" > C,, we obtain, for all x > 0,

Vo(x) = /0 (V/(u) —V’(0))du + V’'(0)x
> &xz +V/(0)x
2
and

0
VO(—x)Z/ V/(u)du

—X

0
= (V'(0)—V'(w))du—Vv'(0)x

—X

C
> ?sz —V/(0)x.

In conclusion, we deduce that
C
Vo(x) > vaz +V/(0)x. (3.44)

Recall that V/(0) = 0 under both A1 and A2 as V = 0 or V € C3(R) is assumed to be even. The
proof about the upper bound of 7 is therefore concluded. For the lower bound, we have

m(x) > cexp(—ax? — 2V (x)). (3.45)

Observe that, similarly as above, we can take advantage of the fact that V" < ¢, to obtain, for
all x >0,

V() —(0) /OX(V’(u) —V(O)du+V'(0x <5 /0 =5

having also used that V’(0) = 0. An analogous reasoning holds true for x < 0. It implies that,
for any x € R, V(x) < V(0) + Zx?%. Replacing it in (3.45) we obtain

m(x) > cexp(—ax? —&x%—2V(0)) =¢ exp(—@xz)
with C = a + 9, as we wanted.

Let us move to the proof of the upper bound for the derivatives of . More specifically, we
want to prove by induction that for every n € N, n < J, there exists a ¢ > 0 such that

|7 ()] < e(1 + |x )7 (x). (3.46)
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Let us begin with the base case n = 1. Then © = —p’n, where ¢’ := 2V’ + W’ x 7. Note that
|’ (x)| < c(|x| + 1), where |V/(x)| < c|x]| follows from ||[V”||o, < o0 and V’(0) = 0. Now
assume the claim (3.46) holds for some n < J. Then the (n + 1)-th derivative of 7 is

n

R = ()0 = =S (“)(p(kmn(n—k)_ (3.47)
k=0 k

The inductive hypothesis ensures that |7 (x)| < ¢(1 + |x]|)* ™ 7(x). Moreover, we have
that |*D(x)| < c(1+]x|) since W x| oo < W15 5o < 00, whereas |[VE+D(x)| <
(1 + |x|) follows from ||[VP|| o, < ¢, 2 < j < J. We conclude by replacing it in (3.47), which
yields

D0 < ¢ > 1+ 1D+ )T Om(x) < e(1+ [x )™ a(x)
k=0

as we wanted, forn+1 < J.

3.5.2 Proof of Proposition 3.6

For convenience, we omit the dependency on N in our notation X ;N We will prove the claim
by applying a Gronwall-type argument to the function

P—
y(8) :=E[|X] - X [*].
We define

N N
1 —N 1 = -
Ht = N 5X;’ Ht = N 5}—(1, Ht = LaW(Xt)
i=1 i=1

. i =i i =i . . .
Since (X;);>0 and (X, );»o start at X, = X, and are driven by the same Brownian motion
(B} )¢>0, it holds that

X —X

t

1 1
= _/0 VXDH-VX)+ EW’ # IV (X1) — EW’ * I (X, ) ds.

Applying It6’s formula, summing over i = 1,...,N and dividing by N, yields

1< ‘ < [ 1 1
— ) XI-X |2 =-2 /(A- + =Bi(s) + =C; )d,
N;“ ! N; A+ 3B+ 566 |ds
where
Ai(s) = (X! —)_fi)ZP_l(V/(X;) - V/()_(i)),
Bi(s) = (Xi =X 2w« (x)) — W'+ TT (X)),
Ci(s) i= (X =X (W +T0 (X) — W+ TL,(XL)).

Taking the expectation and derivative gives

N
Y0 == 2 E2A) + B+ GO)
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Using the assumption V”/ > C, > 0 and the mean value theorem gives
P i
—E[4;()] < —CyE[|X; — X 7],

The analysis of B;(t) makes use of the symmetry of W and the exchangeability of (X i,)_{ i),
i=1,...,N. Indeed, we obtain

N
1
~E[B(D)] =~ D EIB;(1)],
j=1
where
E[B;;(t)] = E[(X] - X )*'(W'(x] — X)) - W'(X, —X)))]
1 i o o L
= SEL =X = =X )P W (X = X) = W/ (X, =X )]
By the mean value theorem, the assumption —W” < C, gives
C i o
—E[By;(1)] < —FEL((X; =X, )77 = (X7 =X P = X)) — (X, =X ))]
< 2Gy E[IX{ — X, 7],
hence, .
—E[B(t)] < 2Cy E[1X! — X, |?].
Holder’s inequality for C;(t) implies
i =i gy 271 bl
—E[C;(t)] < E[1X; —X |71 Ry(t)?,
where
R;(t) :=E[|W’*TI, (X,) — W'+ II,(X,)*"]
1 P —j s
=i = = i
NZW’(Xt —XD) =W s T(X,)
j=1

=E

Expanding this term, we deduce that

N 2p

1 —i =] = =i | =i
Ri(t)= 7 Z E [l_[]E[W’(Xt —X) =W TL,(X,) Xt]},

j k=1
because of the independence of X i, i=1,...,N. The key remark to study this expectation is
that for i # j,

T — — i —i

EW'X,—X,)—W xII,(X,)IX,]=0
since Law()_(i) = ﬁt. We observe that if there exists k such that j, # Iz Vi e {1,..,2p}\ k,
then the 2p-fold product vanishes. In other words, in order for a term to contribute to the sum

in R;(t), for every index j; there must be another j; such that j, = j;. We can have at most
NP of these combinations of indices. We recall we have assumed ||W’||o, < 00, which implies

]E[lW’()_(lt —)_({) —-w’ *ﬁt()_(i)lk] < oo for any k € N. Therefore, we have

1
R,(t)¥ SN72.
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In conclusion, by exchangeability,

1

LS siaons = (LS e —® )
Ni:1 : ~ N N ‘ ‘ .

i=1

2

Finally, we obtain
c
VN’

and since y(0) = 0 and C, — Cy, > 0, the conclusion follows by integrating this Gronwall-like
differential inequality, which provides y(t) < ¢/+/N uniformly in t.

y'(t) <=2(Cy — Cy)y(t) +

3.5.3 Proof of Lemma 3.15

Observe that for ¢ > 0 and any random variable X,

C2k
(2K)!

0< %(]E[exp(cX)] FElexp(—cX)) =1+ | ——E[X*], (3.48)
k=1

hence, it suffices to study the asymptotic growth rate of its even moments in order to show
E[exp(£cX)] < oo.

Let us start by looking at E[exp(ZcX i’N)], which leads us to study E[(X i’N )?k] for k € N. For
convenience, we omit the dependency on N in our notation and recall that the particles follow
the system of SDE’s:

¢ N
X;=X5+/O —v’(x;)—ﬁi W/(X;—-X])ds+B;, i=1,...,N.
j=1

Applying the It6 lemma gives
: ; t ' NI 1 |
(X;)Zk = (X(I))Zk + A — 2k(Xsl)2k_1(V/(Xsl) + ﬁ Z W/(Xsl _X‘g)) + E(zk)(zk _ 1)(Xsl)2k—2ds
j=1

t
+ 2k / (x1)*-1dB!.
0
Taking the expectation and then differentiating,
d . . e Y . o
B ] == 2KEL DXV (D] = 1 D L™ W (] —x))]
j=1
+ k(2k — DE[(X)* 2],

where

—E[(X)? TV (X)] = —E[(X (V') = V/(0)] - E[X )1V (0)]
< —CyE[IX{ ]+ V' (O)ELIX >, (3.49)

follows from the strong convexity of V, and ||W’|| o, < 0o implies

—E[XD)* W/ (X —XD] < W/l o ELIXI 2],
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We get
d . . - -
EEHX;F"] < —2kCyE[IX 2]+ 2k |V/(O)[E[IX[* 1] + kW | o ELIX[*<1]
+k(2k — DE[|X 23], (3.50)
where

E[IX P =E[X P x! < ©) + 1(IXY > €))]
<4 cTE[XI*], 1=1,2,

for all C > 0. Denote m,(2k) := IE[IX;'IZ’(]. Then it holds that

%mt(Zk) < —2kCym,(2k) + k(2[V/(0)]| + [|W']| 0o J(CZ1 + CVm,(2k))

+k(2k —1)(C*72 + C2m,(2Kk))
= —Ak(m.(2k) — B),

where

A:=2C, — IV (0)| +[W]leo)C Tt — (2k —1)C 2,
B:=A((2IV/(0)] + W]l )CZ 1 + (2k — 1)C*2)

do not depend on t. For some fixed ¢ € (0, 1), set

C =C(k):= ((ékc;gl))%’ k €N,

so that

2CyeC(k)%k

A=AKk)~2Cy(1—e)>0, B=B(k)~ ORE

where ~ denotes asymptotic equality as k — 0o. The Gronwall inequality

%mt@k) = %(mf@k) —B(k)) < —A(k)k(m,(2k) —B(k))

gives
m,(2k) < B(k) + (mo(2k) — B(k))e A0k,
which in turn implies that, for all large enough k, uniformly in ¢,
m,(2k) < max(my(2k), B(k)).
Based on (3.48) and the subsequent analysis, we conclude that sup,~ E[exp(£cX i)] is bounded
as long as

2k o) 2k

up Y o2 & D s (mo(2K) + B(K))
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is also bounded. We observe that Z,C:Zl c®*mg(2k)/(2k)! converges because of (3.48) and our
assumption E[exp(£cX)] < 0o. To test the convergence of the series Z;i 1 c?B(k)/(2k)! we
use the ratio test also known as d’Alembert’s criterion:

cZ*2B(k +1)/(2k + 2)! c2C(k + 1)%+2
kB(O/(2K)!  C(k)2k(2k + 1)(2k + 2)
B c?(2k + 1)k+1 0
(2C, €)(2k — 1)k(2k + 1)(2k + 2)

as k — 0o. The result for the exponential moments of X ; follows.

One can follow the preceding proof to get sup, E[exp(£cX,)] < oo from E[exp(£cX,)] < 0o,
where recall (X,),>¢ is a solution of

t
_ _ 1 _
Xt:XO_/o V/(XS)+§W’*HS(XS)ds+Bt

with TI, := Law(X,). Indeed, It&’s lemma for (X,)** gives

SR, =~ 2KE[ (KPR + W < TT(K))

dt
+k(2k — DE[(X,)**V],
where, in the same manner as in (3.49), we have
—E[(X)**"'V'(X)] < —CyE[IX;|*] + V' (0)|E[ X, [**71],
and since ||W'||o < 00, we get
—E[(X )W S TL,(X )] < W[l o BLIX 2]

Thus, we obtain the inequality (3.50) for E[|X,|?*] instead of E[|X ilzk]. The rest of the proof
remains the same.
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