

PRIMITIVE ROOTS AND 6-GERMAIN PRIMES

ABSTRACT. We consider the 6-Germain primes, namely those primes p such that $6p + 1$ is also prime. By relying on a theorem of Lehmer on cubic residuacity, we express in terms of congruences the property that p is a primitive root modulo $6p + 1$.

1. INTRODUCTION

If p is a prime number, a *primitive root* modulo p is an integer a coprime to p such that $(a \bmod p)$ generates, multiplicatively, the group of non-zero residues modulo p . If n is an even positive integer, we call a prime number p an n -*Germain* prime if $q := np + 1$ is also a prime number.

The following results involve primitive roots and n -Germain primes:

- (1) If p is an odd 2-Germain prime: every quadratic non-residue modulo q is a generator of $(\mathbb{Z}/q\mathbb{Z})^\times$, with the exception of $(-1 \bmod q)$. In particular, by quadratic reciprocity, p (respectively, $p + 1$ as $p + 1 \equiv -p \bmod q$) is a primitive root modulo q if $p \equiv 3 \bmod 4$ (respectively, $p \equiv 1 \bmod 4$). See [1, Corollaries 2.1 and 2.3]. On the other hand, if p is prime and it is a primitive root modulo $2p + 1$, then p is a 2-Germain prime, see [4].
- (2) If p is an odd 4-Germain prime: ± 2 are primitive roots modulo q , see [1, Corollary 3.1].
- (3) If p is an odd 6-Germain prime: 3, 5, and 7 are primitive roots modulo q , see [2].
- (4) If p is an odd 8-Germain prime: ± 6 is a primitive root modulo q ; ± 3 is a primitive root modulo q if $p \neq 5$. See [1, Corollary 4.1].
- (5) If p is an odd 16-Germain prime: ± 3 and ± 16 are primitive roots modulo q , see [1, Corollary 4.2].

More results can be found for example in [5, 6]. We focus on 6-Germain primes and prove the following two results:

Theorem 1. *If a prime number p is a primitive root modulo $6p + 1$, then p is a 6-Germain prime.*

As a consequence of a result by Fermat, if p is a 6-Germain prime, there exist unique positive integers L and M (see Section 2) such that

$$p = \frac{1}{24}(L^2 + 27M^2 - 4).$$

Theorem 2. *Let p be a 6-Germain prime, with $p \neq 2, 7$. With the above notation, p is a primitive root modulo q if and only if the following holds: $p \equiv 3 \bmod 4$; we don't have*

$$(1) \quad L \equiv \pm \frac{27r(r^2 - 1)}{9r^2 - 1} M \bmod p,$$

where r is an integer such that r^2 is not congruent to $\frac{1}{9}$ modulo p .

The proof of our former theorem is rather elementary, and it mimics the proof of the analogue statement for 2-Germain primes. The proof of the latter theorem consists in reformulating the condition for being a primitive root considering the structure of the group $(\mathbb{Z}/(6p+1)\mathbb{Z})^\times$, and applying a result by Lehmer on cubic residuacity.

We have tested both results with a C program for primes p up to 10^6 .

2. 6-GERMAIN PRIMES

We begin by proving our first result:

Proof of Theorem 1. Since 2 is a 2-Germain prime, we may suppose that p is odd. Since $(\mathbb{Z}/(6p+1)\mathbb{Z})^\times$ is cyclic and $6p+1$ is odd, we have $6p+1 = m^k$ for some odd prime m . If $k > 1$, then we have

$$6p = m^k - 1 = (m-1)(1+m+\dots+m^{k-1}).$$

As $m-1$ is even, we have $m-1 \in \{2, 6, 2p, 6p\}$.

If $2 = m-1$, then $3p = 1 + 3 + \dots + 3^{k-1}$, which is impossible modulo 3.

If $6 = m-1$, then $p \equiv 1 + m + \dots \equiv 1 \pmod{m}$ so p is a square modulo m , contradicting that it is a primitive root modulo m^k .

If $m-1$ equals $2p$ or $6p$, then $1 + m + \dots + m^{k-1} \geq 1 + m$ should be 3 or 1, which is impossible. \square

Example 3. The integer 2 (respectively, 3) is a 6-Germain prime and it is a primitive root modulo 13 (respectively, 19). The integer 5 is a 6-Germain prime but it is not a primitive root modulo 31.

We may now suppose that p is a 6-Germain prime that is larger than 7. In particular, as p is coprime to 6, the group $(\mathbb{Z}/(6p+1)\mathbb{Z})^\times$ is isomorphic to the product of a cyclic group of order 2, a cyclic group of order 3, and a cyclic group of order p . We deduce the following:

Remark 4. Consider a 6-Germain prime $p \neq 2, 3$ and set $q := 6p+1$. Then an integer a is a primitive root modulo q if and only if all of the following conditions hold:

- (i) a is not a square modulo q
- (ii) a is not a cube modulo q
- (iii) $(a \pmod{q})$ does not have multiplicative order 6.

Proposition 5. A 6-Germain prime $p > 7$ (setting $q := 6p+1$) is a primitive root modulo q if and only if $p \equiv 3 \pmod{4}$ and p is not a cube modulo q .

Proof. We first prove that $(p \pmod{q})$ does not have multiplicative order 6. Indeed, consider the decomposition

$$p^6 - 1 = (p^2 - 1)(p^2 + p + 1)(p^2 - p - 1).$$

If the order of $(p \pmod{q})$ would be 6, then q divides $p^6 - 1$ but not $p^2 - 1$. We deduce that q divides $(p^2 + p + 1)$ or $(p^2 - p - 1)$. We have a contradiction because we have

$$p^2 + p + 1 \equiv p(p-5) \pmod{q} \quad \text{and} \quad p^2 - p - 1 \equiv p(p+5) \pmod{q}$$

but q divides neither p nor $p \pm 5$. By Remark 4 we may conclude by showing that p is not a square modulo q if and only if $p \equiv 3 \pmod{4}$ (which implies $q \equiv 3 \pmod{4}$). Indeed, this follows from quadratic reciprocity, remarking that $(q \pmod{p}) = (1 \pmod{p})$ is a square. \square

The problem of determining whether a 6-Germain prime p is a primitive root modulo $q = 6p + 1$ is then reduced to assessing a special case of cubic reciprocity (considering that $(q \pmod{p}) = (1 \pmod{p})$ is a cube).

2.1. Cubic reciprocity for 6-Germain primes. This section relies on [7]. We consider a 6-Sophie Germain prime $p > 7$, setting $q = 6p + 1$. Since $q \equiv 1 \pmod{3}$ is prime,

$$q = \frac{1}{4}(L^2 + 27M^2)$$

holds for some uniquely determined positive integers L, M . Thus we can write

$$p = \frac{1}{24}(L^2 + 27M^2 - 4).$$

Remark 6. *With the above notation, by Lehmer's theorem [3] the following holds: p is a cube modulo q if and only if $p \mid LM$ or (for at least one of the two sign choices) $L \equiv \pm \frac{9r}{2u+1} M \pmod{p}$, where $u \not\equiv 0, 1, -\frac{1}{2}, -\frac{1}{3} \pmod{p}$ and $3u+1 \equiv r^2(3u-3) \pmod{p}$.*

The condition $p \mid LM$ only holds for $p = 23$. The condition $p \mid LM$ is equivalent to $p \mid L$ or $p \mid M$. The latter condition is

$$(L^2 + 27M^2 - 4) \mid 24M,$$

giving $M = 1$ and hence $(L^2 + 23) \mid 24$. So $L = 1$ and $p = 1$, which is impossible.

The former condition is

$$(L^2 + 27M^2 - 4) \mid 24L$$

giving $L < 24$ and then also $M < 6$, thus $p \leq \frac{1}{24}(23^2 + 27 \cdot 5^2) = 50$. A computer check with C (testing the 6-Germain primes p up to 50) showed that $p \mid L$ only holds for $p = 23$.

Example 7. *The 6-Germain prime $p = 23$ is not a primitive root modulo 139. And indeed we have $L = 23$ and $M = 1$, thus $p \mid LM$.*

The remaining condition from Lehmer's theorem. Consider the condition

$$(2) \quad L \equiv \pm \frac{9r}{2u+1} M \pmod{p}$$

where

$$u \not\equiv 0, 1, -\frac{1}{2}, -\frac{1}{3} \pmod{p} \quad \text{and} \quad 3u+1 \equiv r^2(3u-3) \pmod{p}.$$

The last congruence is equivalent to

$$u \equiv \frac{3r^2 + 1}{3(r^2 - 1)} \pmod{p}$$

recalling that p is coprime to 3 and that $r^2 \not\equiv 1$ (else the given congruence would imply $p \mid 4$). Excluding the listed values for $(u \pmod{p})$ means excluding those values of r such that at least one of the following holds:

$$\begin{aligned} 3r^2 + 1 &\equiv 0 \pmod{p} & 3r^2 + 1 &\equiv 3(r^2 - 1) \pmod{p} \\ -2(3r^2 + 1) &\equiv 3(r^2 - 1) \pmod{p} & -3(3r^2 + 1) &\equiv 3(r^2 - 1) \pmod{p}. \end{aligned}$$

We then need to exclude r^2 equivalent to $-\frac{1}{3}$, $\frac{1}{9}$, or 0 modulo p .

Proof of Theorem 2. We can prove the theorem by hand for $p = 3$ (it is a primitive root modulo 19; we have $p \equiv 3 \pmod{4}$ and there is no r satisfying (1) modulo 3 with $L = 7$ and $M = 1$), for $p = 5$ (it is not a primitive root modulo 31; we don't have $p \equiv 3 \pmod{4}$), for $p = 23$ (it is not a primitive root modulo 139; the congruence (1) modulo 23 with $L = 23$ and $M = 1$ is satisfied with $r = 0$). Now we may suppose that $p > 7$ and $p \neq 23$.

We make use of the considerations made in this section, observing that we can rewrite (2) as (1). Now we inspect the excluded values of r for (2). We remark that for $r^2 \equiv 0 \pmod{p}$ the congruence (1) does not hold (because we have shown that $p \nmid L$), so we do not need to exclude this value. The same holds for $r^2 \equiv -\frac{1}{3} \pmod{p}$ because in this case the congruence can be rewritten as

$$L \equiv \pm 9rM^2 \pmod{p}$$

hence

$$L^2 \equiv -27M^2 \pmod{p}$$

implying that

$$4 \equiv 4q \equiv L^2 + 27M^2 \equiv 0 \pmod{p},$$

which is impossible because $p > 7$. \square

Example 8. The 6-Germain prime $p = 11$ is a primitive root modulo 67: we have $p \equiv 3 \pmod{4}$ and $L = 5$ and $M = 3$, and the congruence

$$5 \equiv \pm \frac{27r(r^2 - 1)}{9r^2 - 1} 3 \pmod{11}$$

is not satisfied for any $r \in \mathbb{Z}$.

Example 9. The 6-Germain prime $p = 83$ is not a primitive root modulo 499: we have $p \equiv 3 \pmod{4}$ and $L = 32$ and $M = 6$, and the congruence

$$32 \equiv \frac{27r(r^2 - 1)}{9r^2 - 1} 6 \pmod{83}$$

is satisfied for example taking $r = 3$.

REFERENCES

- [1] A. ECKER, *On primitive roots*, Elem. Math. 37, 103-108 (1982).
- [2] R. FUETER, *Über primitive Wurzeln von Primzahlen*, Comment. Math. Helv. 18, 217-223 (1946).
- [3] E. LEHMER *Criteria for Cubic and Quartic Residuacity*, Mathematika, Lond. 5, 20-29 (1958).
- [4] V.P. RAMESH AND M. MAKESHWARI, *A Prime Primitive Root p of $2p+1$ is a Sophie Germain Prime*, Am. Math. Mon. 129, No. 6, 538 (2022).
- [5] V.P. RAMESH AND M. MAKESHWARI, *A Note on Generalized Sophie Germain Primes*, Reson. 28, 923-928 (2023).
- [6] G. WERTHEIM, *Primitive Wurzeln der Primzahlen von der Form $2^x q^\lambda + 1$* , in welcher $q = 1$ oder eine ungerade Primzahl ist, Acta Math. 20, 143-152 (1896).
- [7] WIKIPEDIA CONTRIBUTORS, *Cubic reciprocity*, Wikipedia, The Free Encyclopedia. Retrieved May 10, 2025, https://en.wikipedia.org/w/index.php?title=Cubic_reciprocity&oldid=1215675848.