
PRIMITIVE ROOTS AND 6-GERMAIN PRIMES

Abstract. We consider the 6-Germain primes, namely those primes p such

that 6p+ 1 is also prime. By relying on a theorem of Lehmer on cubic resid-

uacity, we express in terms of congruences the property that p is a primitive
root modulo 6p+ 1.

1. Introduction

If p is a prime number, a primitive root modulo p is an integer a coprime to
p such that (a mod p) generates, multiplicatively, the group of non-zero residues
modulo p. If n is an even positive integer, we call a prime number p an n-Germain
prime if q := np+ 1 is also a prime number.

The following results involve primitive roots and n-Germain primes:

(1) If p is an odd 2-Germain prime: every quadratic non-residue modulo q is
a generator of (Z/qZ)×, with the exception of (−1 mod q). In particular,
by quadratic reciprocity, p (respectively, p + 1 as p + 1 ≡ −p mod q) is a
primitive root modulo q if p ≡ 3 mod 4 (respectively, p ≡ 1 mod 4). See
[1, Corollaries 2.1 and 2.3]. On the other hand, if p is prime and it is a
primitive root modulo 2p+ 1, then p is a 2-Germain prime, see [4].

(2) If p is an odd 4-Germain prime: ±2 are a primitive roots modulo q, see [1,
Corollary 3.1].

(3) If p is an odd 6-Germain prime: 3, 5, and 7 are a primitive roots modulo
q, see [2].

(4) If p is an odd 8-Germain prime: ±6 is a primitive root modulo q; ±3 is a
primitive root modulo q if p ̸= 5. See [1, Corollary 4.1].

(5) If p is an odd 16-Germain prime: ±3 and ±16 are primitive roots modulo
q, see [1, Corollary 4.2].

More results can be found for example in [5, 6]. We focus on 6-Germain primes
and prove the following two results:

Theorem 1. If a prime number p is a primitive root modulo 6p + 1, then p is a
6-Germain prime.

As a consequence of a result by Fermat, if p is a 6-Germain prime, there exist
unique positive integers L and M (see Section 2) such that

p =
1

24
(L2 + 27M2 − 4) .

Theorem 2. Let p be a 6-Germain prime, with p ̸= 2, 7. With the above notation,
p is a primitive root modulo q if and only if the following holds: p ≡ 3 mod 4; we
don’t have

(1) L ≡ ±27r(r2 − 1)

9r2 − 1
M mod p ,

1



2 PRIMITIVE ROOTS AND 6-GERMAIN PRIMES

where r is an integer such that r2 is not congruent to 1
9 modulo p.

The proof of our former theorem is rather elementary, and it mimics the proof
of the analogue statement for 2-Germain primes. The proof of the latter theorem
consists in reformulating the condition for being a primitive root considering the
structure of the group (Z/(6p + 1)Z)×, and applying a result by Lehmer on cubic
residuacity.

We have tested both results with a C program for primes p up to 106.

2. 6-Germain primes

We begin by proving our first result:

Proof of Theorem 1. Since 2 is a 2-Germain prime, we may suppose that p is odd.
Since (Z/(6p + 1)Z)× is cyclic and 6p + 1 is odd, we have 6p + 1 = mk for some
odd prime m. If k > 1, then we have

6p = mk − 1 = (m− 1)(1 +m+ · · ·+mk−1) .

As m− 1 is even, we have m− 1 ∈ {2, 6, 2p, 6p}.
If 2 = m− 1, then 3p = 1 + 3 + · · ·+ 3k−1, which is impossible modulo 3.
If 6 = m − 1, then p ≡ 1 + m + · · · ≡ 1 mod m so p is a square modulo m,
contradicting that it is a primitive root modulo mk.
If m− 1 equals 2p or 6p, then 1+m+ · · ·+mk−1 ≥ 1+m should be 3 or 1, which
is impossible. □

Example 3. The integer 2 (respectively, 3) is a 6-Germain prime and it is a
primitive root modulo 13 (respectively, 19). The integer 5 is a 6-Germain prime
but it is not a primitive root modulo 31.

We may now suppose that p is a 6-Germain prime that is larger than 7. In
particular, as p is coprime to 6, the group (Z/(6p + 1)Z)× is isomorphic to the
product of a cyclic group of oder 2, a cyclic group of order 3, and a cyclic group of
order p. We deduce the following:

Remark 4. Consider a 6-Germain prime p ̸= 2, 3 and set q := 6p + 1. Then an
integer a is a primitive root modulo q if and only if all of the following conditions
hold:

(i) a is not a square modulo q
(ii) a is not a cube modulo q
(iii) (a mod q) does not have multiplicative order 6.

Proposition 5. A 6-Germain prime p > 7 (setting q := 6p+1) is a primitive root
modulo q if and only if p ≡ 3 mod 4 and p is not a cube modulo q.

Proof. We first prove that (p mod q) does not have multiplicative order 6. Indeed,
consider the decomposition

p6 − 1 = (p2 − 1)(p2 + p+ 1)(p2 − p− 1) .

If the the order of (p mod q) would be 6, then q divides p6 − 1 but not p2 − 1. We
deduce that q divides (p2 + p+1) or (p2 − p− 1). We have a contradiction because
we have

p2 + p+ 1 ≡ p(p− 5) mod q and p2 − p− 1 ≡ p(p+ 5) mod q
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but q divides neither p nor p± 5. By Remark 4 we may conclude by showing that
p is not a square modulo q if and only if p ≡ 3 mod 4 (which implies q ≡ 3 mod 4).
Indeed, this follows from quadratic reciprocity, remarking that (q mod p) = (1 mod
p) is a square. □

The problem of determining whether a 6-Germain prime p is a primitive root
modulo q = 6p + 1 is then reduced to assessing a special case of cubic reciprocity
(considering that (q mod p) = (1 mod p) is a cube).

2.1. Cubic reciprocity for 6-Germain primes. This section relies on [7]. We
consider a 6-Sophie Germain prime p > 7, setting q = 6p+ 1. Since q ≡ 1 mod 3 is
prime,

q =
1

4
(L2 + 27M2)

holds for some uniquely determined positive integers L,M . Thus we can write

p =
1

24
(L2 + 27M2 − 4) .

Remark 6. With the above notation, by Lehmer’s theorem [3] the following holds:
p is a cube modulo q if and only if p | LM or (for at least one of the two sign choices)
L ≡ ± 9r

2u+1M mod p, where u ̸≡ 0, 1,− 1
2 ,−

1
3 mod p and 3u+1 ≡ r2(3u−3) mod p.

The condition p | LM only holds for p = 23. The condition p | LM is equivalent
to p | L or p | M . The latter condition is

(L2 + 27M2 − 4) | 24M ,

giving M = 1 and hence (L2 + 23) | 24. So L = 1 and p = 1, which is impossible.
The former condition is

(L2 + 27M2 − 4) | 24L
giving L < 24 and then also M < 6, thus p ≤ 1

24 (23
2 + 27 · 52) = 50. A computer

check with C (testing the 6-Germain primes p up to 50) showed that p | L only
holds for p = 23.

Example 7. The 6-Germain prime p = 23 is not a primitive root modulo 139.
And indeed we have L = 23 and M = 1, thus p | LM .

The remaining condition from Lehmer’s theorem. Consider the condition

(2) L ≡ ± 9r

2u+ 1
M mod p

where

u ̸≡ 0, 1,−1

2
,−1

3
mod p and 3u+ 1 ≡ r2(3u− 3) mod p .

The last congruence is equivalent to

u ≡ 3r2 + 1

3(r2 − 1)
mod p

recalling that p is coprime to 3 and that r2 ̸≡ 1 (else the given congruence would
imply p | 4). Excluding the listed values for (u mod p) means excluding those values
of r such that at least one of the following holds:

3r2 + 1 ≡ 0 mod p 3r2 + 1 ≡ 3(r2 − 1) mod p

−2(3r2 + 1) ≡ 3(r2 − 1) mod p − 3(3r2 + 1) ≡ 3(r2 − 1) mod p .
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We then need to exclude r2 equivalent to − 1
3 ,

1
9 , or 0 modulo p.

Proof of Theorem 2. We can prove the theorem by hand for p = 3 (it is a primitive
root modulo 19; we have p ≡ 3 mod 4 and there is no r satisfying (1) modulo 3 with
L = 7 and M = 1), for p = 5 (it is not a primitive root modulo 31; we don’t have
p ≡ 3 mod 4), for p = 23 (it is not a primitive root modulo 139; the congruence (1)
modulo 23 with L = 23 and M = 1 is satisfied with r = 0). Now we may suppose
that p > 7 and p ̸= 23.

We make use of the considerations made in this section, observing that we can
rewrite (2) as (1). Now we inspect the excluded values of r for (2). We remark that
for r2 ≡ 0 mod p the congruence (1) does not hold (because we have shown that
p ∤ L), so we do not need to exclude this value. The same holds for r2 ≡ − 1

3 mod p
because in this case the congruence can be rewritten as

L ≡ ±9rM2 mod p

hence
L2 ≡ −27M2 mod p

implying that
4 ≡ 4q ≡ L2 + 27M2 ≡ 0 mod p ,

which is impossible because p > 7. □

Example 8. The 6-Germain prime p = 11 is a primitive root modulo 67: we have
p ≡ 3 mod 4 and L = 5 and M = 3, and the congruence

5 ≡ ±27r(r2 − 1)

9r2 − 1
3 mod 11

is not satisfied for any r ∈ Z.

Example 9. The 6-Germain prime p = 83 is not a primitive root modulo 499: we
have p ≡ 3 mod 4 and L = 32 and M = 6, and the congruence

32 ≡ 27r(r2 − 1)

9r2 − 1
6 mod 83

is satisfied for example taking r = 3.
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