PRIMITIVE ROOTS AND 6-GERMAIN PRIMES

ABSTRACT. We consider the 6-Germain primes, namely those primes p such
that 6p + 1 is also prime. By relying on a theorem of Lehmer on cubic resid-
uacity, we express in terms of congruences the property that p is a primitive
root modulo 6p + 1.

1. INTRODUCTION

If p is a prime number, a primitive root modulo p is an integer a coprime to
p such that (@ mod p) generates, multiplicatively, the group of non-zero residues
modulo p. If n is an even positive integer, we call a prime number p an n-Germain
prime if ¢ := np + 1 is also a prime number.

The following results involve primitive roots and n-Germain primes:

(1)

If p is an odd 2-Germain prime: every quadratic non-residue modulo q is
a generator of (Z/qZ)*, with the exception of (—1 mod ¢). In particular,
by quadratic reciprocity, p (respectively, p+1 as p+1 = —pmod q) is a
primitive root modulo ¢ if p = 3 mod 4 (respectively, p = 1 mod 4). See
[1, Corollaries 2.1 and 2.3]. On the other hand, if p is prime and it is a
primitive root modulo 2p + 1, then p is a 2-Germain prime, see [4].

If p is an odd 4-Germain prime: £2 are a primitive roots modulo ¢, see [1,
Corollary 3.1].

If p is an odd 6-Germain prime: 3, 5, and 7 are a primitive roots modulo
q, see [2].

If p is an odd 8-Germain prime: +6 is a primitive root modulo ¢; +3 is a
primitive root modulo ¢ if p # 5. See [1, Corollary 4.1].

If p is an odd 16-Germain prime: £3 and £16 are primitive roots modulo
g, see [1, Corollary 4.2].

More results can be found for example in [5, 6]. We focus on 6-Germain primes
and prove the following two results:

Theorem 1. If a prime number p is a primitive root modulo 6p + 1, then p is a
6-Germain prime.

As a consequence of a result by Fermat, if p is a 6-Germain prime, there exist
unique positive integers L and M (see Section 2) such that

1
= (L2 +2TM? —4).
p=g L7+ )

Theorem 2. Let p be a 6-Germain prime, with p # 2,7. With the above notation,
p is a primitive root modulo q if and only if the following holds: p = 3 mod 4; we
don’t have

(1)

27r(r? — 1)

9r2 —1
1

L=+ M mod p,
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where v is an integer such that r? is not congruent to % modulo p.

The proof of our former theorem is rather elementary, and it mimics the proof
of the analogue statement for 2-Germain primes. The proof of the latter theorem
consists in reformulating the condition for being a primitive root considering the
structure of the group (Z/(6p + 1)Z)*, and applying a result by Lehmer on cubic
residuacity.

We have tested both results with a C program for primes p up to 10°.

2. 6-GERMAIN PRIMES

We begin by proving our first result:

Proof of Theorem 1. Since 2 is a 2-Germain prime, we may suppose that p is odd.
Since (Z/(6p + 1)Z)* is cyclic and 6p + 1 is odd, we have 6p + 1 = m* for some
odd prime m. If £ > 1, then we have

bp=m"—1=m—-1)1+m+---+mr 1.

As m — 1 is even, we have m — 1 € {2,6,2p, 6p}.

If2=m—1, then 3p =1+ 3+ --- 4 3*~1, which is impossible modulo 3.

If6 =m-—1,then p=1+4+m-+--- = 1 modm so p is a square modulo m,
contradicting that it is a primitive root modulo m*.

If m — 1 equals 2p or 6p, then 1 +m +---+mF~1 > 14 m should be 3 or 1, which
is impossible. (I

Example 3. The integer 2 (respectively, 3) is a 6-Germain prime and it is a
primitive root modulo 13 (respectively, 19). The integer 5 is a 6-Germain prime
but it is not a primitive root modulo 31.

We may now suppose that p is a 6-Germain prime that is larger than 7. In
particular, as p is coprime to 6, the group (Z/(6p + 1)Z)* is isomorphic to the
product of a cyclic group of oder 2, a cyclic group of order 3, and a cyclic group of
order p. We deduce the following:

Remark 4. Consider a 6-Germain prime p # 2,3 and set ¢ :== 6p + 1. Then an
integer a is a primitive root modulo q if and only if all of the following conditions
hold:
(i) a is not a square modulo q
(ii) a is not a cube modulo q
(iii) (e mod q) does not have multiplicative order 6.

Proposition 5. A 6-Germain prime p > 7 (setting q := 6p+1) is a primitive root
modulo q if and only if p = 3 mod 4 and p is not a cube modulo q.

Proof. We first prove that (p mod ¢) does not have multiplicative order 6. Indeed,
consider the decomposition

PP-1=@"-1P*+p+1)(°—p—1).

If the the order of (p mod ¢) would be 6, then ¢ divides p® — 1 but not p? — 1. We
deduce that ¢ divides (p?> +p+ 1) or (p*> —p —1). We have a contradiction because
we have

P +p+1=p(p—-5 modqg and p?—p—1=p(p+5) modgq
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but ¢ divides neither p nor p £ 5. By Remark 4 we may conclude by showing that
p is not a square modulo ¢ if and only if p = 3 mod 4 (which implies ¢ = 3 mod 4).
Indeed, this follows from quadratic reciprocity, remarking that (¢ mod p) = (1 mod
p) is a square. O

The problem of determining whether a 6-Germain prime p is a primitive root
modulo ¢ = 6p + 1 is then reduced to assessing a special case of cubic reciprocity
(considering that (¢ mod p) = (1 mod p) is a cube).

2.1. Cubic reciprocity for 6-Germain primes. This section relies on [7]. We
consider a 6-Sophie Germain prime p > 7, setting ¢ = 6p + 1. Since ¢ = 1 mod 3 is
prime,
1
q= 1(L2 +27M?)
holds for some uniquely determined positive integers L, M. Thus we can write

1
= (L2 4+2TM? —4).
p 24( + )

Remark 6. With the above notation, by Lehmer’s theorem (3] the following holds:
p s a cube modulo q if and only if p | LM or (for at least one of the two sign choices)

L= :&:23:_1M mod p, where u Z 0, 1, —%, —% mod p and 3u+1 = r%(3u—3) mod p.

The condition p | LM only holds for p = 23. The condition p | LM is equivalent
top| L orp| M. The latter condition is
(L* +27TM? — 4) | 24M |
giving M = 1 and hence (L% +23) | 24. So L = 1 and p = 1, which is impossible.
The former condition is
(L* +27M?* — 4) | 24L

giving L < 24 and then also M < 6, thus p < 2(23% + 27 5%) = 50. A computer
check with C (testing the 6-Germain primes p up to 50) showed that p | L only
holds for p = 23.

Example 7. The 6-Germain prime p = 23 is not a primitive root modulo 139.
And indeed we have L =23 and M =1, thus p | LM.

The remaining condition from Lehmer’s theorem. Consider the condition
9r

(2) L=+
2u+1

M mod p

where
u %= O,l,f%,f% modp and 3u+1=r*3u—3)modp.
The last congruence is equivalent to
3r2+1
u = m mod p

recalling that p is coprime to 3 and that 72 # 1 (else the given congruence would
imply p | 4). Excluding the listed values for (v mod p) means excluding those values
of r such that at least one of the following holds:

3r? +1=0mod p 3r2 +1=3(r*—1) mod p
—2(3r24+1)=3(r* — 1) mod p —3(3r?+1)=3(r>—-1) mod p.



4 PRIMITIVE ROOTS AND 6-GERMAIN PRIMES

1 1

We then need to exclude r? equivalent to -3, g, or 0 modulo p.

Proof of Theorem 2. We can prove the theorem by hand for p = 3 (it is a primitive
root modulo 19; we have p = 3 mod 4 and there is no r satisfying (1) modulo 3 with
L="7and M =1), for p =5 (it is not a primitive root modulo 31; we don’t have
p = 3 mod 4), for p = 23 (it is not a primitive root modulo 139; the congruence (1)
modulo 23 with L = 23 and M =1 is satisfied with » = 0). Now we may suppose
that p > 7 and p # 23.

We make use of the considerations made in this section, observing that we can
rewrite (2) as (1). Now we inspect the excluded values of r for (2). We remark that
for 2 = 0 mod p the congruence (1) does not hold (because we have shown that
p1 L), so we do not need to exclude this value. The same holds for r? = —% mod p
because in this case the congruence can be rewritten as

L = +9rM? mod p

hence
L? = —27M? mod p
implying that
4=4g=L%+27M? =0mod p,

which is impossible because p > 7. O

Example 8. The 6-Germain prime p = 11 is a primitive root modulo 67: we have
p=3mod4 and L =5 and M = 3, and the congruence
27r(r? — 1)

=+
’ 92 —1

3 mod 11

is not satisfied for any r € 7.
Example 9. The 6-Germain prime p = 83 is not a primitive root modulo 499: we
have p =3 mod 4 and L = 32 and M = 6, and the congruence

2 2_
g9 = 27r(r" = 1)
9rz —1

is satisfied for example taking r = 3.

6 mod 83
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