ONE FORMAL RESULT FOR TORSION AND ARBOREAL
REPRESENTATIONS OF COMMUTATIVE ALGEBRAIC GROUPS

ANTIGONA PAJAZITI AND ANTONELLA PERUCCA

ABSTRACT. Consider a connected commutative algebraic group defined over a number field.
For every positive integer n we have a torsion representation p, describing the Galois action on
the torsion points of order dividing n. The image of p, is usually seen as a subgroup of some
finite group Gy, (that depends on which type of algebraic group we are considering). We assume
some basic properties for G and pn, for example that the index [Gr : Im(py)] is bounded by
varying n, and we prove that there exists some positive integer N such that the index for n is
the same as the index for gcd(n, N). The same holds for the arboreal representations describing
the Galois action on the division points over a rational point of A having infinite order.

1. INTRODUCTION

Let E be an elliptic curve defined over a number field K and without CM over K. For every
positive integer n we consider its mod n torsion representation p,,, describing the Galois action
on the group of torsion points E[n]. To determine the image of p, for every n > 1 it suffices to
determine it for finitely many values of n:

Theorem 1. There exists an integer N = 1 such that for every n = 1 we have
[GL2(Z/nZ) : Im(pn)] = [GL2(Z/ ged(n, N)Z) : Im(pgea(n,n))] -

Consequently, the image of py is the preimage in GLa(Z/nZ) of the image of pgeam,n) under the
reduction modulo ged(n, N).

A similar result holds for the arboreal representations attached to a rational point P € E(K)
of infinite order. Indeed, consider the Galois representation p/, describing the Galois action on the
group of division points n~'P. Up to choosing a division point, the image of p/, can be identified
to a subgroup of GLy(Z/nZ) x (Z/nZ)*. Then the following holds:

Theorem 2. There exists an integer N = 1 such that for every n = 1 we have
[GL2(Z/nZ) x (Z/nZ)* : Im(p;,)] = [GLa2(Z/ ged(n, N)Z) x (Z/ ged(n, N)Z)* : Im(pyeq(p,vy)] -

Consequently, the image of p!, is the preimage in GLy(Z/nZ) % (Z/nZ)? of the image of pfgcd(mN)
under the reduction modulo ged(n, N).

The proof of the two above results is substantially the same. To easily allow for generalizations,
we provide a formal proof (see Theorem 6), where the assumptions are properties that hold in
particular for torsion and arboreal representations of elliptic curves without CM. One property
is that the indices are bounded by varying n (for the torsion representations of elliptic curves
without CM, this is Serre’s open image theorem).

Our results reduce the computation of the infinite family of groups Im(p,,) (respectively, Im(p!,))
to the computation of finitely many of them. For applications, it is important that an integer N
as in the above statements is known, and it is to be expected that effective results will be proven.
It is also an interesting question to determine under which conditions the arboreal representations
are surjective, building on the investigation by Jones and Rouse [5] and by Lombardo and Perucca
[7].



2 ANTIGONA PAJAZITI AND ANTONELLA PERUCCA

2. FORMAL SETTING

Definition 3. For every positive integer n let G, be a finite group and let H,, be a subgroup of
G,,. Suppose that the following properties hold:

(1) For all positive integers n, N such that n | N there is a group homomorphism 7y, : Gy —

G,. For all positive integers nj,ng,ng such that ng | ne and ng | ny; we have
Tni,ng = Tng,ng © Tny,ny -
(ii) For all coprime positive integers n, m the product map
Tnm,n X Tnm,m - Grm — G x Gy

is a group isomorphism. Consequently, G; is trivial and for all coprime positive integers
N, M such that n | N and m | M we have (with the identification provided by the above
isomorphisms)
TNMnm = TN,n X TM,m -
(iii) For all prime numbers ¢ there exists a smallest non-negative integer g, such that for all
integers ' > e > g, the group homomorphism 7e s : Gye — Gye is surjective. For all
but finitely many prime numbers ¢ we have gy = 0.
(iv) For every positive integer n the restriction of 7y, to Hy is surjective onto H,.
(v) The positive integer [G,, : H,] is bounded from above by varying n > 1.
We call Ny the smallest positive integer that is divisible by all integers £9¢. Moreover, if n, m are
coprime, we identify H,,, with a subgroup of G, x G,,.

Remark 4. Let n be a positive integer, and consider its prime decomposition n = ]_[é‘nf“".
Properties (i) and (ii) of Definition 3 imply, by iteration, that the product map

nﬂ'mge : Gn - HGZP
ln ln

is a group isomorphism. Consequently, for all positive multiples N of n, considering their prime
decomposition N = H£|N (E we have

TN = HTQEJe .
ln

Lemma 5. Let n and N be positive integers such that n | N and for every prime number £ we
have ve(No) < ve(n) or ve(n) = ve(N). If the groups G,, and H,, are as in Definition 3, then Tn ,
is surjective and |Gy : Hy] is a multiple of [G, : H,].

Proof. By Remark 4 it is sufficient to prove the first assertion for the prime powers £v¢(") | (ve(N)
and we may clearly suppose that vs(n) # vs(N). So we have gy < ve(n) and we may apply
Property (iii). The second assertion follows from the first and Property (iv) because we have

#HN/#Hn = #ker(ﬂ'N,n |HN) ‘ #ker(ﬂ-N,n) = #GN/#GTL .
O

Theorem 6. We work in the setting of Definition 3. There exists a positive integer N such that
(1) [Gn : Hn] = [chd(n,N) : chd(n,N)]

holds for every positive integer n.

Proof. Fix a positive integer N such that Ny | N and such that [G : Hy] is maximal among the
multiples of Ny. We prove that (1) holds for any positive integer n.

Let S be the set of prime numbers such that ve(n) > v¢(N). We then write a = [[,cq "N
and A = [[,cq ™ and n = An/ and N = aN’. Notice that n’ | N’ and ve(n') = v¢(N') = 0
holds for every £ € S. We consider the following commutative diagram:
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Han' = Hiem(n,n)y —— Hono = Hy

HAn’ = Hn B d Han’ = chd(n,N)

The maps in the diagram are surjective by Property (iv). We claim that man o and man gn/
are surjective and that # ker(man’ an’) = # ker(mans an’).

By maximality of [Gy : Hy] among the multiples of Ny there are # ker(man on/) preimages
for any element under the upper horizontal map. Indeed, we have

[GAN/ . HAN’] = [GN . HN]
and hence
#Han [#Hon' = #Gan /#Gan' -

To prove (1) it suffices to show that the number of preimages of any element under the lower
horizontal map is # ker(man’ an). Clearly, this number of preimages cannot exceed # ker(m an’ qn’)-
Consider an element (M, M) € Hgy and a lift (M, M) € Hyns. As shown above, this element
has # ker(man/ on’) preimages (M4, Mn+) € Hans, and their first component are all distinct. The
elements (M4, M,,/) € H 4, all have image (M,, M,) under the lower horizontal map.

As for the claim: the former assertion is true by Lemma 5, while the latter is because man/ an/
and man’ on are the product of m4 , and the identity by Property (ii). O

Theorem 7. We work in the setting of Definition 3, replacing Properties (ii) and (iii) by the
following two assumptions for all positive integers m, M,ny,ny such that m | M and ny,ns are
coprime to M: the map Tar,m 1s surjective (consequently, (G, : Hy,] divides [Gar : Hy]); the
kernels of the maps Tarny mn, ONA Tarn, mn, have the same size. There exists a positive integer
N such that

(2) [Gn : Hn] = [chd(n,N) : chd(n,N)]

holds for every positive integer n. Moreover, this property is equivalent to [Gy : Hy| being
mazimal.

Proof. Notice that our assumptions imply Ny = 1. The fact that (2) implies the maximality of
[Gn : Hy] is because we have

[Gn : Hn] = [chd(n,N) : chd(n,N)] | [GN : HN] Vn=1.

For the remaining assertions we can make use of the proof of Theorem 6 (where Ny = 1), the only
difference being that the claim now holds because of our two new assumptions. O

Remark 8. We work under the assumptions of Theorem 6 (respectively, Theorem 7), and recall
that Ny = 1 in the latter case. The results imply that, to compute [G,, : H,] for every positive
integer n, it suffices to compute this index for the finitely many divisors of N. Consider an integer
N such that Ny | N and satisfying (1) (equivalently, (2)) for all positive integers n. Then the map
Tn,ged(N,n) 18 surjective (see Lemma 5 for Theorem 6) hence the group H,, is the preimage in G,
of H,, gca(n,ny under the map m, gea(n,n)-

3. RELEVANT MATRIX GROUPS

We write G,,, for the multiplicative group and G, for the additive group, which are in particular
commutative group schemes defined over SpecZ. For any positive integer d we write Mat(d) for
Gf, choosing an identification of its points with the d x d matrices. Moreover, we denote by GL(d)
the general linear group of degree d, which is a group scheme defined over Z. We can identify G¢
with the d x 1 matrices and hence we may consider the action of GL(d) on G¢ that is given by
matrix multiplication. With this action we define the semi-direct product GL(d) x GZ. If G is a
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group scheme defined over Z that is a subgroup scheme of GL(d), then G x G¢ is a group scheme
defined over Z that is a subgroup scheme of GL(d) x G¢.

Remark 9. We can identify GL(d) x G with a subgroup scheme of GL(d + 1). This can be
seen by identifying its points with the invertible d x d matrices with the following properties: the
upper d x d block on the main diagonal is a point of GL(d); the last row consists of zeroes, with
the exception of the last entry that is 1; the first d entries on the last column give a point of G¢.
Similarly, if G is a subgroup scheme of GL(d) that is defined over Z, then G x G¢ is a subgroup
scheme of GL(d + 1) that is defined over Z (the d x d block being now in G).

If G is a subgroup scheme of GL(d) defined over Z, then for any positive integer n we denote
by G(modn) the group of points of G over Z/nZ, which consists of invertible d x d matrices
with entries in Z/nZ, setting G(mod1) to be the trivial group. If ¢ is a prime number, we define
GL(d, Z¢) to be the group of Z-points of GL(d), and we similarly define GL(d, Z).

Remark 10. If n, N are positive integers such that n | N then the reduction modulo n provides
a group homomorphism Z/NZ — Z/nZ and hence (by considering the reduction entrywise) it
induces a group homomorphism 7y, : GL(d, modN) — GL(d, modn). For all positive integers
n1,ng, ng such that ng | ng and ng | 71 we have m,, n, = Tny ng O, n, because this property holds
for the reductions of the integers. Moreover, the reduction maps my , are surjective (because for
any E > e > 0 the lift of a matrix that is invertible modulo £¢ is invertible modulo /). The same
properties hold replacing GL(d) by GL(d) x G¢ (in view of Remark 9), where the map 7y, is the
reduction modulo n.

Lemma 11. Let G be a subgroup scheme of GL(d) that is defined over Z. For all coprime positive
integers n,m, we have a group isomorphism

Tnmon X Tnm,m : G(modnm) — G(modn) x G(modm).
The analogous result holds for the semi-direct product G x G2.

Proof. By Chinese remainder theorem the product of the reductions modulo n and modulo m
gives an isomorphism
Z/nmZ — Z/nZ x Z/mZ .

This isomorphism extends to the invertible d x d matrices with entries in those rings (because
an integer is invertible modulo nm if and only if it is invertible modulo n and modulo m). For
the first assertion, we may conclude because G is defined by polynomial equations with integer
coefficients (and an equality of integers holds modulo nm if and only if it holds modulo n and
modulo m). The second assertion follows by Remark 9. O

Remark 12. Let ¢ be a prime number, and consider a Cartan subgroup C of GL(2,Z;). Let
¢,d € Z be parameters for C (see [6, Theorem 8 and Remark 9]). As shown in [6, Section 2.4 and
Lemma 13], for any non-negative integer n the group of points of C' over Z/¢"Z consists of the
invertible matrices of the form

(:c (d mod ™)y )

y =+ y(cmod ™)

where x,y € Z/("Z. Then the reduction map C(modf¥) — C(mod¢¢) is surjective for all non-
negative integers F > e.

Remark 13. Fix some positive integer g and consider the algebraic group GSp(2g) of symplectic
similitudes, which is a subgroup scheme of GL(2g) that is defined over Z. Denoting by I the g x g

. . . S . I
identity matrix and considering the matrix J = ( ), we have

—I

GSp(2¢) := {M € GL(2¢9) | IN€ G,,,, MTIM = \J}.

For every prime number ¢ and for all integers F > e > 0 the reduction map
e oo GSP(2g, mod/¥) — GSp(2g, mod(©)
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is surjective. This holds by the infinitesimal lifting criterion [13, Lemma 37.11.7] because GSp(2g)
is an algebraic subgroup of GL(2g) that is defined over Z and it is reductive hence smooth (see
[9, Section 1.2.1]).

4. TORSION AND ARBOREAL REPRESENTATIONS OF COMMUTATIVE ALGEBRAIC GROUPS

Let A be a connected commutative algebraic group of positive dimension defined over a number
field K. We fix some algebraic closure K of K and let Gi := Gal(K/K) be the absolute Galois
group of K. We will consider the Kummer representations associated to a point P € A(K) of
infinite order (supposing that such a point exists).

4.1. Torsion points and torsion representations. For every positive integer n we denote by
A[n] the subgroup of A(K) consisting of the torsion points of order dividing n. Choosing a basis
for A[n] we identify this group with (Z/nZ)®, where b is the first Betti number of A. If A is a
torus (respectively, an abelian variety) then b is the dimension (respectively, twice the dimension)
of A.

If n,m are positive integers, then the multiplication by m is a surjective group homomorphism
A[nm] — A[n] whose corresponding map (Z/nmZ)® — (Z/nZ)® is the reduction modulo n. We
say that basis choices in A[nm] and A[n] are coherent if the latter basis is the image of the former
under multiplication by m.

The field K (A[n]) obtained by adjoining the coordinates of the points in A[n] is a finite Galois
extension of K. Any Galois automorphism acts Z/nZ-linearly on A[n], and this action defines the
torsion representation of A, namely the group homomorphism

pn s G — Aut(A[n]).

Notice that p, factors through the Galois group of K(A[n])/K because its kernel is the Galois
group of K/K(A[n]).

Choosing (coherently) a Z/nZ basis of A[n], we identify Im(p,,) with a subgroup of GLy(Z/nZ).
For all positive integers n, N such that n | N the Galois action on A[N] determines, by restriction,
the action on A[n] and p,, is the composition of py with the reduction modulo n. So we have:

Remark 14. Property (iv) from Definition 3 holds for H,, := Im(p,,), considering the restriction
of the reduction map on GL(d, modN).

Remark 15. Consider subgroups G,, < GL(b, modn) such that G,, = G(modn) holds for some
subgroup scheme G of GL(b) that is defined over Z. Setting 7y, to be the reduction modulo n,
Properties (i) and (ii) from Definition 3 hold. Indeed, the former property is because 7y, is the
restriction of the reduction map on GL(b, mod N), while the latter property holds by Lemma 11.

If A is an abelian variety, as a candidate for the group G we may consider the Zariski closure
of the Mumford-Tate group MT(A).

4.2. Division points and arboreal representations. Consider a point P € A(K) of infinite
order. For every positive integer n we let n~'P be the set of points in A(K) that are mapped to
P under multiplication by n. We may consider P, € n~!P such that for all positive integers n, m
we have [m]|P,,, = P,. Remark that n=!P consists of the points P, + T, for T, € A[n], so we
have K (A[n],n"1P) = K(A[n], P,). We also define n=1ZP as the group generated by n=1P (it
consists of the points whose image under multiplication by n is a multiple of P).

Since the multiplication by n on A is defined over K and it has a finite kernel, for any n > 1
the extensions K(A[n])/K and K(A[n], P,)/K are finite and Galois. Moreover, the extension
K(A[n], P,)/K(A[n]) is abelian because its Galois group can be identified to a subgroup of A[n]
thanks to the Kummer map, which is the group homomorphism

kn : Gal(K/K(A[n])) — A[n]
oc—o(P,)—P,.

Notice that this map does not depend on the choice of P, € n~' P because by definition o is the
identity on A[n]. Moreover, this map factors through the Galois group of K(A[n], P,,)/K(A[n])
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and the quotient map is injective. By considering (coherently) bases for A[n] we identify this
group with (Z/nZ)® and Im(x,) to a subgroup of (Z/nZ)®. Notice that for all positive integers
n,m the group [m]Im(kn,.,) is a subgroup of Im(k,,).

The arboreal representation describes the Galois action on n~'ZP. Knowing the Galois action
on n~1ZP is equivalent to knowing the action on A[n] and P,. This is why we define the arboreal
representation as the group homomorphism

by G — GLy(Z/nZ) x (Z/D) o (pu(0),0(Pa) = Pr).
This map factors through the Galois group of K(A[n], P,,)/K and the quotient map is injective.

Remark 16. For all positive integers n, N such that n | N, the Galois action on N~'ZP deter-
mines by restriction the action on n~'ZP. Then p/, is the composition of pf with the reduction
modulo n. So we have a surjective group homomorphism Im(p’y) — Im(p!,).

5. EVENTUAL MAXIMAL GROWTH OF THE KUMMER EXTENSIONS

We keep the notation introduced in the previous sections, and consider a point P € A(K)
of infinite order. We call Ap the smallest (not necessarily connected) algebraic subgroup of A
defined over K that contains P. The connected component A% of Ap that contains zero is a
connected commutative algebraic group defined over K (the dimension of A} is positive because
P has infinite order). We write ¢p for the number of connected components of Ap, which is finite.

For example, if A = A x T is the product of an abelian variety A and a torus T', then we have
A% = A’ x T' for some abelian subvariety A’ of A and a torus 7" which is an algebraic subgroup
of T' (because there is no non-zero homomorphism from A to G,, or conversely).

We now consider the Kummer map:

Lemma 17. We have [cp]Im(ky,) < A%[m]. Consequently, Im(k,) is contained in the
group (Ap[n], Alged(cp,n)]).

Proof. We know that Im(k,,) is a subgroup of .A[n], so we are left to prove that [cp] Im(k,,) consists
of torsion points in A%. If o € Gk, then cp(o(P,) — P,) = o(cpP,) — cpP,. The point cpP, is in
n~1(cpP), so we are left to prove that the image of the Kummer map !, for the point cp P consists
of points in A%. We conclude because the image of the Kummer map does not depend on the
choice of the division point so we have «/,(0) = o(P.) — P, where P, e n ' (cpP) n AL(K). O

Remark that, in the following property, the ratio is an integer by Lemma 17 because the
denominator is the size of Im(ky,):

Definition 18 (Eventual maximal growth of the Kummer extensions). The positive integer

#Ap[n] - cp
[K(A[n],n=1P) : K(A[n])]

is bounded independently of n.

Lemma 19. If the eventual mazimal growth of the Kummer extensions holds under the assumption
that cp = 1, then it holds in general.

Proof. The property holds for the point cp P, which generates the connected algebraic group A%.
We deduce that the property holds for P because the degree of K(A[n],n"'P)/K(A[n]) is a
multiple of the degree of K(A[n],n"!(cpP))/K(A[n]). O

Remark 20. Suppose that A is the product of an abelian variety and a torus. Betrand’s theorem
[1, Theorem 1] states that the eventual growth of the Kummer extensions holds for cp = 1. If A is
an abelian variety, a proof of Bertrand’s result [1, Theorem 1] is provided by Hindry in [3, Lemme
14] and by Bertrand in [1, Theoréme 5.2]. If A is a torus, Bertrand’s result has a proof that relies
on Schinzel’s theorem on abelian radical extensions, see [10, Corollary 2] by Perucca and Sgobba.



TORSION AND KUMMER REPRESENTATIONS OF COMMUTATIVE ALGEBRAIC GROUPS 7

Remark 21. Notice that A%[n] is mapped to itself by any Galois automorphism hence Im(p,,)
acts on it. If cp = 1, then Im(p),) is a subgroup of Im(p,,) x .A%[n]. This is because we may choose
P, € A%(K) hence for any o € Gx we have o(P,) — P,, € A%[n]. Moreover, the index of Im(p!,)
in Im(p,,) x A%[n] is bounded by varying n if A and P are as in Definition 18 because the ratio
#Im(pl)/# Im(p,,) is the denominator in (18).

6. APPLICATIONS OF THE FORMAL SETTING

In this section we present various situations where we can apply our formal framework from
Section 2 to investigate the torsion and arboreal representations of a connected commutative
algebraic group A defined over a number field K. We keep the notation introduced in the previous
sections. With a choice for the basis of A[n] (coherent by varying n) we identify H, := Im(p,)
with a subgroup of GL(b, modn).

6.1. Powers of commutative algebraic groups. Suppose that there are subgroups G, of
GL(b,modn) such that H, and G, satisfy the properties in Definition 3 (where the map my,,
is the reduction modulo n). Now consider the algebraic group A™ for some positive integer m.
We then work in GL(bm, modn), choosing as basis for .A™[n] the torsion points whose m entries
belong to the given basis of A[n]. The image of the modulo n torsion representation for A™, which
we denote by H,, is a subgroup of GL(bm, modn). We have #f]n = #H,. More precisely, the
elements of ]:In are the b x bm matrices whose non-zero entries are in the m blocks on the main
diagonal of size b x b; all such blocks are equal and they are in H,,. With this same construction
for G, we obtain subgroups G,, of GL(bm, modn) such that #@, = #G,,. Moreover, H, and G,,
satisfy the properties in Definition 3 (considering the reduction maps). Now consider algebraic
groups Aj, ..., A, defined over K and positive integers ey, ..., e,. A straightforward adaptation of
the above reasoning allows us to describe the modulo n torsion representation for | [, A7 starting
from the modulo n torsion representation for [ [, A;.

6.2. Elliptic curves. Consider first an elliptic curve A that is without CM over K.

Proof of Theorem 1. For every n > 1 we set G,, := GL(modn). By Theorem 6 it suffices to show
that G, and H),, satisfy the properties of Definition 3, letting 7y 5, be the reduction modulo n. We
may apply Remarks 14, 10, and 15 while Property (v) is Serre’s open image theorem [12, Theorem
3. O

We refer to [8, Theorem 1.1] for an explicit description of the Cartan group C and the matrix
M (with a suitable coherent choice for the basis of \A[n]) mentioned in the following result.

Theorem 22. Let A be an elliptic curve with CM over K. If the complex multiplication is defined
over K, then there exists a Cartan subgroup C of GL(2) defined over Z such that Theorems 6
and 7 apply to H,, := Im(p,) and G, := C(modn), the maps mn being the reduction modulo
n. If the complex multiplication is not defined over K, then Theorem 7 applies, taking instead
G, = (M mod n),C(modn)), where C' is a Cartan subgroup C of GL(2) defined over Z and
(M mod n) is the reduction modulo n of a matriz M € GL(2,Z) such that M? is the identity, and
such that (M mod n) ¢ C(modn).

Proof. Remark 14 gives Property (iv) of Definition 3. We assume to make coherent base choices
for A[n] as in [8]. The fact that H,, is a subgroup of G,, and that the index [G,, : H,] is bounded
follows from [8, Theorem 1.1]. If the complex multiplication is defined over K, Remarks 15 and
12 (see also Lemma 5) imply Properties (i), (ii), and (iii) of Definition 3 with Ny = 1, and also
the two additional assumptions of Theorem 7. If the complex multiplication is not defined over
K, Property (i) and the two additional assumptions in Theorem 7 hold by Remark 10 and the
explicit description of G,, given in [8, Theorem 1.1]. O
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6.3. Abelian varieties of type GSp. Let A be an abelian variety of positive dimension g ¢ S
(for example, if g = 2 or g is odd), where

1/2
S={9>113k>3 odd.Ja>1,9=2""d"}u{g> 1]k >3, odd,9_2<kk)}.

We fix a polarization of A and an embedding of K into C. We say that A is of type GSp if the
Mumford Tate group of A is GSp(2g) (see Remark 13), which holds if Endg(A) =Z and g ¢ S.
Because of the Weil pairing, with an appropriate choice of basis of A[n] (coherent by varying n)
we identify Im(p,,) with a subgroup of GSp(modn).

Theorem 23. Let A be an abelian variety such that Endg(A) = Z and g ¢ S. Then Theorem
6 applies to H, := Im(p,) and G, := GSp(2g, modn) (the map mn , being the reduction modulo

Proof. 1t suffices to show that G,, and H,, satisfy the properties of Definition 3. We may apply
Remarks 15 and 14. Property (iii) holds by Remark 13. Property (v) holds because the adelic
Mumford Tate conjecture amounts to the ¢-adic Mumford Tate conjecture [2, Theorem 5.3] and
the latter holds by [4, Theorem 1.1]. O

6.4. Abelian varieties with real multiplication. Let A be an abelian variety of dimension g
defined over a number field K that has real multiplication. This means that its endomorphism
algebra is a totally real number field, which we call F. We suppose that F//Q has degree g. Let O
be the ring of integers of F, and choose an identification of O with Z9. This induces (coherently
by varying n) an identification of (Z/nZ)-modules between O/n® and (Z/nZ)9. Then we identify
GL(2,0/n0O) with a subgroup of GL(2g,n).

Theorem 24. Let A be an abelian variety that has real multiplication such that the degree over
Q of its endomorphism algebra is g. Suppose that the open image theorem holds for the torsion
representations (some sufficient conditions can be found in [11]). Then Theorem 6 applies to
H, :=Im(py,) and G,, := GL(2,0/nO) (the maps wn,, being the reduction modulo n).

Proof. Tt suffices to verify that the properties in Definition 3 hold. Property (v) holds by assump-
tion, and the other properties are immediate by the definition of G,, and 7y ,, see also Remarks
15 and 14. 0

6.5. Tori. We denote by (, a root of unity in K of order n and let Q be a positive integer such
that the largest cyclotomic subextension of K is contained in Q((q).

For the multiplicative group A = G,, we have A[n] = {(¢,). A Galois automorphism maps
Cn — (2 where a is some integer coprime to n. Thus the image of p, can be identified to
a subgroup of GL(1,modn). The index of Im(p,) in GL(1,modn) is finite because the former
group contains all matrices (a mod n) where a is an integer coprime to n such that a = 1 mod Q.
By the discussion in Section 6.1 we deduce that for A = G%, the image of p,, can be identified to
a subgroup of GL(b, modn) that has finite index in the scalar matrices.

Now let A be a non-split one-dimensional torus defined by an equation of the form z? —dy? = 1,
where d € K*\K*2. The splitting field is K (v/d). For every n > 1 the group A[n] is cyclic, and
the points of order n are those of the form

T = (Cn*‘@{l Cn—C;1>
n 9 ) 2\/&
For any o € Gk we have o(T},,) = mT,, for some integer m coprime to n. So Im(p,,) is a subgroup
of GL(1, modn). Notice that ¢(T,,) is determined by ¢(¢,) = ¢2 and o(v/d) = (—1)¢v/d. We have

Q(;1)&1 B G(q)‘»a
24/d )

o(T) = (¢ + 7V,

hence m and (—1)¢a are congruent modulo n.
More generally, let A be a torus of dimension b > 1 defined over K. Let L/K be a finite Galois

extension such that there is an isomorphism £ : A — G?, of algebraic groups that is defined over
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L. For any n we can choose (in a coherent way) a basis {(,,} for G,,[n], and then we have a basis
for G [n] whose elements have all coordinates 1 except for one coordinate that is equal to ¢,. By
taking the preimage under £ of this basis we have chosen (in a coherent way) a basis for A[n].
The image of p, is then identified to a subgroup of GL(b, modn). By restricting to the Galois
automorphisms that are the identity on L we deduce from the split case that Im(p,,) contains a
subgroup of the scalar matrices whose index is bounded by varying n.

We have a group homomorphism

Y : G — GL(b,Z) o— o7 o)

that factors through Gal(L/K), and we call v, the composition of ¢ with the reduction map
from GL(b,Z) to GL(b, modn). We remark that A is determined up to a K-isomorphism by the
conjugacy class of ¢ (meaning, up to conjugating with a fixed matrix in GL(b,Z)). With the
above choice of the basis for A[n], we have

pn(U) = Xn(0)¢n<(7) )

where xn(0) € (Z/nZ)* is the image of o under the modulo n torsion representation of Gy,
composed with the natural identification of a 1 x 1 matrix with its only entry.

Theorem 25. If A is a torus, then Theorem 6 applies to H, := Im(p,) < GL(b,modn) and
the subgroup G, of GL(b,modn) that is generated by the scalar matrices and Im(,) (the maps
TN,n being the reduction modulo n). In particular, for a one-dimensional torus, we have G, =

GL(1, modn).

Proof. We verify the properties of Definition 3. Properties (i), (ii), and (iv) hold by Remarks 15
and 14. By the above discussion, Im(¢)) is finite and H,, < G,,. By considering the split torus over
L, we deduce that Property (v) holds. Finally, Property (iii) holds because the reduction modulo
n of a scalar matrix in GL(b, modN) is a scalar matrix, while 1,, is the composition of 15 and
the reduction modulo n. (]

6.6. Application of the formal setting to arboreal representations. We now investigate
the arboreal representations p/, associated to a point P € A(K) of infinite order. We set H,, :=
Im(pn) < GL(b, modn), after having (coherently) chosen a basis T, 1, ..., Ty for A[n].

With the construction from Remark 9 we then identify H), := Im(p!,) with a subgroup of
GL(b + 1,modn). In particular, for any element of H] the following holds: all entries in the
last row are 0, with the exception of the last entry that is 1; the upper b x b block on the main
diagonal is in H,; if ¢cp = 1, the first b entries my,...,mp in the last column are such that the
point >, m;T,, ; belongs to A%[n], see Remark 21 (by choosing a basis for .A[n] such that the first
elements are a basis for A%[n] the last condition means my, 11 = -+ = my = 0, where bp is the
Betti number of A%).

Theorem 26. Let cp = 1 and suppose that A and P are as in Definition 18. Suppose that
H, :=TIm(p,) and groups G,, < GL(b, modn) satisfy all assumptions in Theorem 6 (respectively,
Theorem 7) with the reduction maps. Then the same holds for H], and for the subgroups G, of
GL(b + 1,modn) defined by the following conditions: all entries in the last row are 0, with the
exception of the last entry that is 1; the upper b x b block on the main diagonal is in Gy; the first
b entries my, ..., my in the last column are such that the point Y., m;T, ; belongs to A%L[n]. The
map Gy — G, is the reduction modulo n.

Proof. We consider the properties of Definition 3 and the two additional assumptions of Theorem
7. Property (i) is clear because we are considering the reduction maps. For the former case,
Property (ii) holds by Remark 15. Property (iii) (respectively, the assumptions of Theorem 7)
hold because they hold for the groups G,, and Z/nZ. Property (iv) is due to the fact that the
Galois action on N ! P determines the Galois action on n~!P. Finally, Property (v) holds because
by assumption it holds for the index [G,, : H,] and because we may apply Remark 21. O

Proof of Theorem 2. Since A has dimension 1, we have Ap = A and in particular ¢cp = 1. Then
the result follows from Theorem 1, in view of Theorem 26 and Remark 20. O
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To study arboreal representations we may reduce to the case cp = 1:

Remark 27. Denote by p!, the arboreal representation for the point cpP € A(K). To study 7,
it is clearly sufficient to study the product map (pl,, pcpn). We now explain how to identify the
representations (p},, pen) and g, ,,,. We can write P, = Qcpp + Tepp for some Qcpp € A%L(K) such
that [epn]Qcpn = cpP and T¢,, € Alcpn]. Consider o € Gx. The image of o under (p.,, pen)
amounts to p.p, (o) (which determines p,,(c)) and o (P, )—P,. The image of o under g/, ,,, amounts
t0 pepn(0) and 0(Qcpn) — Qepn- The image of o under one map determines the image under the
other map because we have

(O'(Pn) - Pn) - (U(QCPVL) - QCPn) = U(Tn) T, = (pan(U))Tn —Ty.
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