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Abstract. Consider a connected commutative algebraic group defined over a number field.

For every positive integer n we have a torsion representation ρn describing the Galois action on
the torsion points of order dividing n. The image of ρn is usually seen as a subgroup of some

finite group Gn (that depends on which type of algebraic group we are considering). We assume

some basic properties for Gn and ρn, for example that the index rGn : Impρnqs is bounded by
varying n, and we prove that there exists some positive integer N such that the index for n is

the same as the index for gcdpn,Nq. The same holds for the arboreal representations describing

the Galois action on the division points over a rational point of A having infinite order.

1. Introduction

Let E be an elliptic curve defined over a number field K and without CM over K̄. For every
positive integer n we consider its mod n torsion representation ρn, describing the Galois action
on the group of torsion points Erns. To determine the image of ρn for every n ě 1 it suffices to
determine it for finitely many values of n:

Theorem 1. There exists an integer N ě 1 such that for every n ě 1 we have

rGL2pZ{nZq : Impρnqs “ rGL2pZ{ gcdpn,NqZq : Impρgcdpn,Nqqs .

Consequently, the image of ρn is the preimage in GL2pZ{nZq of the image of ρgcdpn,Nq under the
reduction modulo gcdpn,Nq.

A similar result holds for the arboreal representations attached to a rational point P P EpKq

of infinite order. Indeed, consider the Galois representation ρ1
n describing the Galois action on the

group of division points n´1P . Up to choosing a division point, the image of ρ1
n can be identified

to a subgroup of GL2pZ{nZq ˙ pZ{nZq2. Then the following holds:

Theorem 2. There exists an integer N ě 1 such that for every n ě 1 we have

rGL2pZ{nZq ˙ pZ{nZq2 : Impρ1
nqs “ rGL2pZ{ gcdpn,NqZq ˙ pZ{ gcdpn,NqZq2 : Impρ1

gcdpn,Nqqs .

Consequently, the image of ρ1
n is the preimage in GL2pZ{nZq ˙ pZ{nZq2 of the image of ρ1

gcdpn,Nq

under the reduction modulo gcdpn,Nq.

The proof of the two above results is substantially the same. To easily allow for generalizations,
we provide a formal proof (see Theorem 6), where the assumptions are properties that hold in
particular for torsion and arboreal representations of elliptic curves without CM. One property
is that the indices are bounded by varying n (for the torsion representations of elliptic curves
without CM, this is Serre’s open image theorem).

Our results reduce the computation of the infinite family of groups Impρnq (respectively, Impρ1
nq)

to the computation of finitely many of them. For applications, it is important that an integer N
as in the above statements is known, and it is to be expected that effective results will be proven.
It is also an interesting question to determine under which conditions the arboreal representations
are surjective, building on the investigation by Jones and Rouse [5] and by Lombardo and Perucca
[7].
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2. Formal setting

Definition 3. For every positive integer n let Gn be a finite group and let Hn be a subgroup of
Gn. Suppose that the following properties hold:

(i) For all positive integers n,N such that n | N there is a group homomorphism πN,n : GN Ñ

Gn. For all positive integers n1,n2,n3 such that n3 | n2 and n2 | n1 we have

πn1,n3
“ πn2,n3

˝ πn1,n2
.

(ii) For all coprime positive integers n,m the product map

πnm,n ˆ πnm,m : Gnm Ñ Gn ˆGm

is a group isomorphism. Consequently, G1 is trivial and for all coprime positive integers
N,M such that n | N and m | M we have (with the identification provided by the above
isomorphisms)

πNM,nm “ πN,n ˆ πM,m .

(iii) For all prime numbers ℓ there exists a smallest non-negative integer gℓ such that for all
integers E ě e ě gℓ the group homomorphism πℓE ,ℓe : GℓE Ñ Gℓe is surjective. For all
but finitely many prime numbers ℓ we have gℓ “ 0.

(iv) For every positive integer n the restriction of πN,n to HN is surjective onto Hn.
(v) The positive integer rGn : Hns is bounded from above by varying n ě 1.

We call N0 the smallest positive integer that is divisible by all integers ℓgℓ . Moreover, if n,m are
coprime, we identify Hnm with a subgroup of Gn ˆGm.

Remark 4. Let n be a positive integer, and consider its prime decomposition n “
ś

ℓ|n ℓ
e.

Properties (i) and (ii) of Definition 3 imply, by iteration, that the product map
ź

ℓ|n

πn,ℓe : Gn Ñ
ź

ℓ|n

Gℓe

is a group isomorphism. Consequently, for all positive multiples N of n, considering their prime
decomposition N “

ś

ℓ|N ℓE , we have

πN,n “
ź

ℓ|n

πℓE ,ℓe .

Lemma 5. Let n and N be positive integers such that n | N and for every prime number ℓ we
have vℓpN0q ď vℓpnq or vℓpnq “ vℓpNq. If the groups Gn and Hn are as in Definition 3, then πN,n

is surjective and rGN : HN s is a multiple of rGn : Hns.

Proof. By Remark 4 it is sufficient to prove the first assertion for the prime powers ℓvℓpnq | ℓvℓpNq,
and we may clearly suppose that vℓpnq ‰ vℓpNq. So we have gℓ ď vℓpnq and we may apply
Property (iii). The second assertion follows from the first and Property (iv) because we have

#HN{#Hn “ #kerpπN,n |HN
q | #kerpπN,nq “ #GN{#Gn .

□

Theorem 6. We work in the setting of Definition 3. There exists a positive integer N such that

(1) rGn : Hns “ rGgcdpn,Nq : Hgcdpn,Nqs

holds for every positive integer n.

Proof. Fix a positive integer N such that N0 | N and such that rGN : HN s is maximal among the
multiples of N0. We prove that (1) holds for any positive integer n.

Let S be the set of prime numbers such that vℓpnq ą vℓpNq. We then write a “
ś

ℓPS ℓ
vℓpNq

and A “
ś

ℓPS ℓ
vℓpnq and n “ An1 and N “ aN 1. Notice that n1 | N 1 and vℓpn

1q “ vℓpN
1q “ 0

holds for every ℓ P S. We consider the following commutative diagram:
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HAN 1 “ Hlcmpn,Nq HaN 1 “ HN

HAn1 “ Hn Han1 “ Hgcdpn,Nq

The maps in the diagram are surjective by Property (iv). We claim that πAN 1,aN 1 and πAn1,an1

are surjective and that #kerpπAn1,an1 q “ #kerpπAN 1,aN 1 q.
By maximality of rGN : HN s among the multiples of N0 there are #kerpπAN 1,aN 1 q preimages

for any element under the upper horizontal map. Indeed, we have

rGAN 1 : HAN 1 s “ rGN : HN s

and hence

#HAN 1 {#HaN 1 “ #GAN 1 {#GaN 1 .

To prove (1) it suffices to show that the number of preimages of any element under the lower
horizontal map is #kerpπAn1,an1 q. Clearly, this number of preimages cannot exceed #kerpπAn1,an1 q.
Consider an element pMa,Mn1 q P Han1 and a lift pMa,MN 1 q P HaN 1 . As shown above, this element
has #kerpπAn1,an1 q preimages pMA,MN 1 q P HAN 1 , and their first component are all distinct. The
elements pMA,Mn1 q P HAn1 all have image pMa,Mn1 q under the lower horizontal map.

As for the claim: the former assertion is true by Lemma 5, while the latter is because πAn1,an1

and πAN 1,aN 1 are the product of πA,a and the identity by Property (ii). □

Theorem 7. We work in the setting of Definition 3, replacing Properties (ii) and (iii) by the
following two assumptions for all positive integers m,M,n1, n2 such that m | M and n1, n2 are
coprime to M : the map πM,m is surjective (consequently, rGm : Hms divides rGM : HM s); the
kernels of the maps πMn1,mn1

and πMn2,mn2
have the same size. There exists a positive integer

N such that

(2) rGn : Hns “ rGgcdpn,Nq : Hgcdpn,Nqs

holds for every positive integer n. Moreover, this property is equivalent to rGN : HN s being
maximal.

Proof. Notice that our assumptions imply N0 “ 1. The fact that (2) implies the maximality of
rGN : HN s is because we have

rGn : Hns “ rGgcdpn,Nq : Hgcdpn,Nqs | rGN : HN s @n ě 1 .

For the remaining assertions we can make use of the proof of Theorem 6 (where N0 “ 1), the only
difference being that the claim now holds because of our two new assumptions. □

Remark 8. We work under the assumptions of Theorem 6 (respectively, Theorem 7), and recall
that N0 “ 1 in the latter case. The results imply that, to compute rGn : Hns for every positive
integer n, it suffices to compute this index for the finitely many divisors of N . Consider an integer
N such that N0 | N and satisfying (1) (equivalently, (2)) for all positive integers n. Then the map
πn,gcdpN,nq is surjective (see Lemma 5 for Theorem 6) hence the group Hn is the preimage in Gn

of Hn,gcdpn,Nq under the map πn,gcdpN,nq.

3. Relevant matrix groups

We write Gm for the multiplicative group and Ga for the additive group, which are in particular
commutative group schemes defined over SpecZ. For any positive integer d we write Matpdq for

Gd2

a , choosing an identification of its points with the dˆd matrices. Moreover, we denote by GLpdq

the general linear group of degree d, which is a group scheme defined over Z. We can identify Gd
a

with the d ˆ 1 matrices and hence we may consider the action of GLpdq on Gd
a that is given by

matrix multiplication. With this action we define the semi-direct product GLpdq ˙ Gd
a. If G is a
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group scheme defined over Z that is a subgroup scheme of GLpdq, then G˙ Gd
a is a group scheme

defined over Z that is a subgroup scheme of GLpdq ˙ Gd
a.

Remark 9. We can identify GLpdq ˙ Gd
a with a subgroup scheme of GLpd ` 1q. This can be

seen by identifying its points with the invertible dˆ d matrices with the following properties: the
upper d ˆ d block on the main diagonal is a point of GLpdq; the last row consists of zeroes, with
the exception of the last entry that is 1; the first d entries on the last column give a point of Gd

a.
Similarly, if G is a subgroup scheme of GLpdq that is defined over Z, then G ˙ Gd

a is a subgroup
scheme of GLpd` 1q that is defined over Z (the dˆ d block being now in G).

If G is a subgroup scheme of GLpdq defined over Z, then for any positive integer n we denote
by Gpmodnq the group of points of G over Z{nZ, which consists of invertible d ˆ d matrices
with entries in Z{nZ, setting Gpmod1q to be the trivial group. If ℓ is a prime number, we define

GLpd,Zℓq to be the group of Zℓ-points of GLpdq, and we similarly define GLpd, Ẑq.

Remark 10. If n,N are positive integers such that n | N then the reduction modulo n provides
a group homomorphism Z{NZ Ñ Z{nZ and hence (by considering the reduction entrywise) it
induces a group homomorphism πN,n : GLpd,modNq Ñ GLpd,modnq. For all positive integers
n1, n2, n3 such that n3 | n2 and n2 | n1 we have πn1,n3 “ πn2,n3 ˝πn1,n2 because this property holds
for the reductions of the integers. Moreover, the reduction maps πN,n are surjective (because for
any E ě e ě 0 the lift of a matrix that is invertible modulo ℓe is invertible modulo ℓE). The same
properties hold replacing GLpdq by GLpdq ˙Gd

a (in view of Remark 9), where the map πN,n is the
reduction modulo n.

Lemma 11. Let G be a subgroup scheme of GLpdq that is defined over Z. For all coprime positive
integers n,m, we have a group isomorphism

πnm,n ˆ πnm,m : Gpmodnmq Ñ Gpmodnq ˆGpmodmq .

The analogous result holds for the semi-direct product G˙ Gd
a.

Proof. By Chinese remainder theorem the product of the reductions modulo n and modulo m
gives an isomorphism

Z{nmZ Ñ Z{nZ ˆ Z{mZ .
This isomorphism extends to the invertible d ˆ d matrices with entries in those rings (because
an integer is invertible modulo nm if and only if it is invertible modulo n and modulo m). For
the first assertion, we may conclude because G is defined by polynomial equations with integer
coefficients (and an equality of integers holds modulo nm if and only if it holds modulo n and
modulo m). The second assertion follows by Remark 9. □

Remark 12. Let ℓ be a prime number, and consider a Cartan subgroup C of GLp2,Zℓq. Let
c, d P Z be parameters for C (see [6, Theorem 8 and Remark 9]). As shown in [6, Section 2.4 and
Lemma 13], for any non-negative integer n the group of points of C over Z{ℓnZ consists of the
invertible matrices of the form

ˆ

x pd mod ℓnqy
y x` ypc mod ℓnq

˙

where x, y P Z{ℓnZ. Then the reduction map CpmodℓEq Ñ Cpmodℓeq is surjective for all non-
negative integers E ě e.

Remark 13. Fix some positive integer g and consider the algebraic group GSpp2gq of symplectic
similitudes, which is a subgroup scheme of GLp2gq that is defined over Z. Denoting by I the gˆ g

identity matrix and considering the matrix J “

ˆ

I
´I

˙

, we have

GSpp2gq :“ tM P GLp2gq | Dλ P Gm,M
TJM “ λJu .

For every prime number ℓ and for all integers E ě e ě 0 the reduction map

πℓE ,ℓe : GSpp2g,modℓEq Ñ GSpp2g,modℓeq
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is surjective. This holds by the infinitesimal lifting criterion [13, Lemma 37.11.7] because GSpp2gq

is an algebraic subgroup of GLp2gq that is defined over Z and it is reductive hence smooth (see
[9, Section 1.2.1]).

4. Torsion and arboreal representations of commutative algebraic groups

Let A be a connected commutative algebraic group of positive dimension defined over a number
field K. We fix some algebraic closure K̄ of K and let GK :“ GalpK̄{Kq be the absolute Galois
group of K. We will consider the Kummer representations associated to a point P P ApKq of
infinite order (supposing that such a point exists).

4.1. Torsion points and torsion representations. For every positive integer n we denote by
Arns the subgroup of ApK̄q consisting of the torsion points of order dividing n. Choosing a basis
for Arns we identify this group with pZ{nZqb, where b is the first Betti number of A. If A is a
torus (respectively, an abelian variety) then b is the dimension (respectively, twice the dimension)
of A.

If n,m are positive integers, then the multiplication by m is a surjective group homomorphism
Arnms Ñ Arns whose corresponding map pZ{nmZqb Ñ pZ{nZqb is the reduction modulo n. We
say that basis choices in Arnms and Arns are coherent if the latter basis is the image of the former
under multiplication by m.

The field KpArnsq obtained by adjoining the coordinates of the points in Arns is a finite Galois
extension of K. Any Galois automorphism acts Z{nZ-linearly on Arns, and this action defines the
torsion representation of A, namely the group homomorphism

ρn : GK Ñ AutpArnsq .

Notice that ρn factors through the Galois group of KpArnsq{K because its kernel is the Galois
group of K̄{KpArnsq.

Choosing (coherently) a Z{nZ basis of Arns, we identify Impρnq with a subgroup of GLbpZ{nZq.
For all positive integers n,N such that n | N the Galois action on ArN s determines, by restriction,
the action on Arns and ρn is the composition of ρN with the reduction modulo n. So we have:

Remark 14. Property (iv) from Definition 3 holds for Hn :“ Impρnq, considering the restriction
of the reduction map on GLpd,modNq.

Remark 15. Consider subgroups Gn ă GLpb,modnq such that Gn “ Gpmodnq holds for some
subgroup scheme G of GLpbq that is defined over Z. Setting πN,n to be the reduction modulo n,
Properties (i) and (ii) from Definition 3 hold. Indeed, the former property is because πN,n is the
restriction of the reduction map on GLpb,modNq, while the latter property holds by Lemma 11.

If A is an abelian variety, as a candidate for the group G we may consider the Zariski closure
of the Mumford-Tate group MTpAq.

4.2. Division points and arboreal representations. Consider a point P P ApKq of infinite
order. For every positive integer n we let n´1P be the set of points in ApK̄q that are mapped to
P under multiplication by n. We may consider Pn P n´1P such that for all positive integers n,m
we have rmsPnm “ Pn. Remark that n´1P consists of the points Pn ` Tn for Tn P Arns, so we
have KpArns, n´1P q “ KpArns, Pnq. We also define n´1ZP as the group generated by n´1P (it
consists of the points whose image under multiplication by n is a multiple of P ).

Since the multiplication by n on A is defined over K and it has a finite kernel, for any n ě 1
the extensions KpArnsq{K and KpArns, Pnq{K are finite and Galois. Moreover, the extension
KpArns, Pnq{KpArnsq is abelian because its Galois group can be identified to a subgroup of Arns

thanks to the Kummer map, which is the group homomorphism

κn : GalpK̄{KpArnsqq Ñ Arns

σ ÞÑ σpPnq ´ Pn .

Notice that this map does not depend on the choice of Pn P n´1P because by definition σ is the
identity on Arns. Moreover, this map factors through the Galois group of KpArns, Pnq{KpArnsq
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and the quotient map is injective. By considering (coherently) bases for Arns we identify this
group with pZ{nZqb and Impκnq to a subgroup of pZ{nZqb. Notice that for all positive integers
n,m the group rms Impκnmq is a subgroup of Impκnq.

The arboreal representation describes the Galois action on n´1ZP . Knowing the Galois action
on n´1ZP is equivalent to knowing the action on Arns and Pn. This is why we define the arboreal
representation as the group homomorphism

ρ1
n : GK Ñ GLbpZ{nZq ˙ pZ{nZqb σ ÞÑ pρnpσq, σpPnq ´ Pnq .

This map factors through the Galois group of KpArns, Pnq{K and the quotient map is injective.

Remark 16. For all positive integers n,N such that n | N , the Galois action on N´1ZP deter-
mines by restriction the action on n´1ZP . Then ρ1

n is the composition of ρ1
N with the reduction

modulo n. So we have a surjective group homomorphism Impρ1
N q Ñ Impρ1

nq.

5. Eventual maximal growth of the Kummer extensions

We keep the notation introduced in the previous sections, and consider a point P P ApKq

of infinite order. We call AP the smallest (not necessarily connected) algebraic subgroup of A
defined over K that contains P . The connected component A0

P of AP that contains zero is a
connected commutative algebraic group defined over K (the dimension of A0

P is positive because
P has infinite order). We write cP for the number of connected components of AP , which is finite.

For example, if A “ Aˆ T is the product of an abelian variety A and a torus T , then we have
A0

P “ A1 ˆ T 1 for some abelian subvariety A1 of A and a torus T 1 which is an algebraic subgroup
of T (because there is no non-zero homomorphism from A to Gm or conversely).

We now consider the Kummer map:

Lemma 17. We have rcP s Impκnq ă A0
P r n

gcdpcP ,nq
s. Consequently, Impκnq is contained in the

group xA0
P rns,ArgcdpcP , nqsy.

Proof. We know that Impκnq is a subgroup of Arns, so we are left to prove that rcP s Impκnq consists
of torsion points in A0

P . If σ P GK , then cP pσpPnq ´Pnq “ σpcPPnq ´ cPPn. The point cPPn is in
n´1pcPP q, so we are left to prove that the image of the Kummer map κ1

n for the point cPP consists
of points in A0

P . We conclude because the image of the Kummer map does not depend on the
choice of the division point so we have κ1

npσq “ σpP 1
nq ´ P 1

n where P 1
n P n´1pcPP q X A0

P pK̄q. □

Remark that, in the following property, the ratio is an integer by Lemma 17 because the
denominator is the size of Impκnq:

Definition 18 (Eventual maximal growth of the Kummer extensions). The positive integer

#A0
P rns ¨ cbP

rKpArns, n´1P q : KpArnsqs

is bounded independently of n.

Lemma 19. If the eventual maximal growth of the Kummer extensions holds under the assumption
that cP “ 1, then it holds in general.

Proof. The property holds for the point cPP , which generates the connected algebraic group A0
P .

We deduce that the property holds for P because the degree of KpArns, n´1P q{KpArnsq is a
multiple of the degree of KpArns, n´1pcPP qq{KpArnsq. □

Remark 20. Suppose that A is the product of an abelian variety and a torus. Betrand’s theorem
[1, Theorem 1] states that the eventual growth of the Kummer extensions holds for cP “ 1. If A is
an abelian variety, a proof of Bertrand’s result [1, Theorem 1] is provided by Hindry in [3, Lemme
14] and by Bertrand in [1, Theorème 5.2]. If A is a torus, Bertrand’s result has a proof that relies
on Schinzel’s theorem on abelian radical extensions, see [10, Corollary 2] by Perucca and Sgobba.
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Remark 21. Notice that A0
P rns is mapped to itself by any Galois automorphism hence Impρnq

acts on it. If cP “ 1, then Impρ1
nq is a subgroup of Impρnq˙A0

P rns. This is because we may choose
Pn P A0

P pK̄q hence for any σ P GK we have σpPnq ´ Pn P A0
P rns. Moreover, the index of Impρ1

nq

in Impρnq ˙ A0
P rns is bounded by varying n if A and P are as in Definition 18 because the ratio

# Impρ1
nq{#Impρnq is the denominator in (18).

6. Applications of the formal setting

In this section we present various situations where we can apply our formal framework from
Section 2 to investigate the torsion and arboreal representations of a connected commutative
algebraic group A defined over a number field K. We keep the notation introduced in the previous
sections. With a choice for the basis of Arns (coherent by varying n) we identify Hn :“ Impρnq

with a subgroup of GLpb,modnq.

6.1. Powers of commutative algebraic groups. Suppose that there are subgroups Gn of
GLpb,modnq such that Hn and Gn satisfy the properties in Definition 3 (where the map πN,n

is the reduction modulo n). Now consider the algebraic group Am for some positive integer m.
We then work in GLpbm,modnq, choosing as basis for Amrns the torsion points whose m entries
belong to the given basis of Arns. The image of the modulo n torsion representation for Am, which

we denote by Ĥn, is a subgroup of GLpbm,modnq. We have #Ĥn “ #Hn. More precisely, the

elements of Ĥn are the bmˆ bm matrices whose non-zero entries are in the m blocks on the main
diagonal of size b ˆ b; all such blocks are equal and they are in Hn. With this same construction
for Gn we obtain subgroups Ĝn of GLpbm, modnq such that #Ĝn “ #Gn. Moreover, Ĥn and Ĝn

satisfy the properties in Definition 3 (considering the reduction maps). Now consider algebraic
groups A1, . . . ,Ar defined over K and positive integers e1, . . . , er. A straightforward adaptation of
the above reasoning allows us to describe the modulo n torsion representation for

ś

i A
ei
i starting

from the modulo n torsion representation for
ś

i Ai.

6.2. Elliptic curves. Consider first an elliptic curve A that is without CM over K̄.

Proof of Theorem 1. For every n ě 1 we set Gn :“ GLpmodnq. By Theorem 6 it suffices to show
that Gn and Hn satisfy the properties of Definition 3, letting πN,n be the reduction modulo n. We
may apply Remarks 14, 10, and 15 while Property (v) is Serre’s open image theorem [12, Theorem
3’]. □

We refer to [8, Theorem 1.1] for an explicit description of the Cartan group C and the matrix
M (with a suitable coherent choice for the basis of Arns) mentioned in the following result.

Theorem 22. Let A be an elliptic curve with CM over K̄. If the complex multiplication is defined
over K, then there exists a Cartan subgroup C of GLp2q defined over Z such that Theorems 6
and 7 apply to Hn :“ Impρnq and Gn :“ Cpmodnq, the maps πN,n being the reduction modulo
n. If the complex multiplication is not defined over K, then Theorem 7 applies, taking instead
Gn :“ xpM mod nq, Cpmodnqy, where C is a Cartan subgroup C of GLp2q defined over Z and
pM mod nq is the reduction modulo n of a matrix M P GLp2,Zq such that M2 is the identity, and
such that pM mod nq R Cpmodnq.

Proof. Remark 14 gives Property (iv) of Definition 3. We assume to make coherent base choices
for Arns as in [8]. The fact that Hn is a subgroup of Gn and that the index rGn : Hns is bounded
follows from [8, Theorem 1.1]. If the complex multiplication is defined over K, Remarks 15 and
12 (see also Lemma 5) imply Properties (i), (ii), and (iii) of Definition 3 with N0 “ 1, and also
the two additional assumptions of Theorem 7. If the complex multiplication is not defined over
K, Property (i) and the two additional assumptions in Theorem 7 hold by Remark 10 and the
explicit description of Gn given in [8, Theorem 1.1]. □
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6.3. Abelian varieties of type GSp. Let A be an abelian variety of positive dimension g R S
(for example, if g “ 2 or g is odd), where

S “

!

g ě 1 | Dk ě 3, odd , Da ě 1, g “ 2k´1aku Y tg ě 1 | Dk ě 3, odd, g “
1

2

ˆ

2k

k

˙

)

.

We fix a polarization of A and an embedding of K into C. We say that A is of type GSp if the
Mumford Tate group of A is GSpp2gq (see Remark 13), which holds if EndK̄pAq “ Z and g R S.
Because of the Weil pairing, with an appropriate choice of basis of Arns (coherent by varying n)
we identify Impρnq with a subgroup of GSppmodnq.

Theorem 23. Let A be an abelian variety such that EndK̄pAq “ Z and g R S. Then Theorem
6 applies to Hn :“ Impρnq and Gn :“ GSpp2g,modnq (the map πN,n being the reduction modulo
n).

Proof. It suffices to show that Gn and Hn satisfy the properties of Definition 3. We may apply
Remarks 15 and 14. Property (iii) holds by Remark 13. Property (v) holds because the adelic
Mumford Tate conjecture amounts to the ℓ-adic Mumford Tate conjecture [2, Theorem 5.3] and
the latter holds by [4, Theorem 1.1]. □

6.4. Abelian varieties with real multiplication. Let A be an abelian variety of dimension g
defined over a number field K that has real multiplication. This means that its endomorphism
algebra is a totally real number field, which we call F . We suppose that F {Q has degree g. Let O
be the ring of integers of F , and choose an identification of O with Zg. This induces (coherently
by varying n) an identification of pZ{nZq-modules between O{nO and pZ{nZqg. Then we identify
GLp2,O{nOq with a subgroup of GLp2g, nq.

Theorem 24. Let A be an abelian variety that has real multiplication such that the degree over
Q of its endomorphism algebra is g. Suppose that the open image theorem holds for the torsion
representations (some sufficient conditions can be found in [11]). Then Theorem 6 applies to
Hn :“ Impρnq and Gn :“ GLp2,O{nOq (the maps πN,n being the reduction modulo n).

Proof. It suffices to verify that the properties in Definition 3 hold. Property (v) holds by assump-
tion, and the other properties are immediate by the definition of Gn and πN,n, see also Remarks
15 and 14. □

6.5. Tori. We denote by ζn a root of unity in K̄ of order n and let Ω be a positive integer such
that the largest cyclotomic subextension of K is contained in QpζΩq.

For the multiplicative group A “ Gm we have Arns “ xζny. A Galois automorphism maps
ζn ÞÑ ζan where a is some integer coprime to n. Thus the image of ρn can be identified to
a subgroup of GLp1,modnq. The index of Impρnq in GLp1,modnq is finite because the former
group contains all matrices pa mod nq where a is an integer coprime to n such that a ” 1 mod Ω.
By the discussion in Section 6.1 we deduce that for A “ Gb

m the image of ρn can be identified to
a subgroup of GLpb,modnq that has finite index in the scalar matrices.

Now let A be a non-split one-dimensional torus defined by an equation of the form x2´dy2 “ 1,
where d P KˆzKˆ2. The splitting field is Kp

?
dq. For every n ě 1 the group Arns is cyclic, and

the points of order n are those of the form

Tn “

´ζn ` ζ´1
n

2
,
ζn ´ ζ´1

n

2
?
d

¯

.

For any σ P GK we have σpTnq “ mTn for some integer m coprime to n. So Impρnq is a subgroup

of GLp1, modnq. Notice that σpTnq is determined by σpζnq “ ζan and σp
?
dq “ p´1qϵ

?
d. We have

σpTnq “

´

ζp´1q
ϵa

n ` ζ´p´1q
ϵa

n ,
ζ

p´1q
ϵa

n ´ ζ
´p´1q

ϵa
n

2
?
d

¯

hence m and p´1qϵa are congruent modulo n.
More generally, let A be a torus of dimension b ě 1 defined over K. Let L{K be a finite Galois

extension such that there is an isomorphism ξ : A Ñ Gb
m of algebraic groups that is defined over
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L. For any n we can choose (in a coherent way) a basis tζnu for Gmrns, and then we have a basis
for Gb

mrns whose elements have all coordinates 1 except for one coordinate that is equal to ζn. By
taking the preimage under ξ of this basis we have chosen (in a coherent way) a basis for Arns.
The image of ρn is then identified to a subgroup of GLpb,modnq. By restricting to the Galois
automorphisms that are the identity on L we deduce from the split case that Impρnq contains a
subgroup of the scalar matrices whose index is bounded by varying n.

We have a group homomorphism

ψ : GK Ñ GLpb,Zq σ ÞÑ ξ´1pσ´1ξσq

that factors through GalpL{Kq, and we call ψn the composition of ψ with the reduction map
from GLpb,Zq to GLpb,modnq. We remark that A is determined up to a K-isomorphism by the
conjugacy class of ψ (meaning, up to conjugating with a fixed matrix in GLpb,Zq). With the
above choice of the basis for Arns, we have

ρnpσq “ χnpσqψnpσq ,

where χnpσq P pZ{nZqˆ is the image of σ under the modulo n torsion representation of Gm,
composed with the natural identification of a 1 ˆ 1 matrix with its only entry.

Theorem 25. If A is a torus, then Theorem 6 applies to Hn :“ Impρnq ă GLpb,modnq and
the subgroup Gn of GLpb,modnq that is generated by the scalar matrices and Impψnq (the maps
πN,n being the reduction modulo n). In particular, for a one-dimensional torus, we have Gn “

GLp1,modnq.

Proof. We verify the properties of Definition 3. Properties (i), (ii), and (iv) hold by Remarks 15
and 14. By the above discussion, Impψq is finite and Hn ă Gn. By considering the split torus over
L, we deduce that Property (v) holds. Finally, Property (iii) holds because the reduction modulo
n of a scalar matrix in GLpb,modNq is a scalar matrix, while ψn is the composition of ψN and
the reduction modulo n. □

6.6. Application of the formal setting to arboreal representations. We now investigate
the arboreal representations ρ1

n associated to a point P P ApKq of infinite order. We set Hn :“
Impρnq ă GLpb,modnq, after having (coherently) chosen a basis Tn,1, . . . , Tn,b for Arns.

With the construction from Remark 9 we then identify H 1
n :“ Impρ1

nq with a subgroup of
GLpb ` 1,modnq. In particular, for any element of H 1

n the following holds: all entries in the
last row are 0, with the exception of the last entry that is 1; the upper b ˆ b block on the main
diagonal is in Hn; if cP “ 1, the first b entries m1, . . . ,mb in the last column are such that the
point

ř

imiTn,i belongs to A0
P rns, see Remark 21 (by choosing a basis for Arns such that the first

elements are a basis for A0
P rns the last condition means mbP `1 “ ¨ ¨ ¨ “ mb “ 0, where bP is the

Betti number of A0
P ).

Theorem 26. Let cP “ 1 and suppose that A and P are as in Definition 18. Suppose that
Hn :“ Impρnq and groups Gn ă GLpb,modnq satisfy all assumptions in Theorem 6 (respectively,
Theorem 7) with the reduction maps. Then the same holds for H 1

n and for the subgroups G1
n of

GLpb ` 1,modnq defined by the following conditions: all entries in the last row are 0, with the
exception of the last entry that is 1; the upper bˆ b block on the main diagonal is in Gn; the first
b entries m1, . . . ,mb in the last column are such that the point

ř

imiTn,i belongs to A0
P rns. The

map GN Ñ Gn is the reduction modulo n.

Proof. We consider the properties of Definition 3 and the two additional assumptions of Theorem
7. Property (i) is clear because we are considering the reduction maps. For the former case,
Property (ii) holds by Remark 15. Property (iii) (respectively, the assumptions of Theorem 7)
hold because they hold for the groups Gn and Z{nZ. Property (iv) is due to the fact that the
Galois action on N´1P determines the Galois action on n´1P . Finally, Property (v) holds because
by assumption it holds for the index rGn : Hns and because we may apply Remark 21. □

Proof of Theorem 2. Since A has dimension 1, we have AP “ A and in particular cP “ 1. Then
the result follows from Theorem 1, in view of Theorem 26 and Remark 20. □
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To study arboreal representations we may reduce to the case cP “ 1:

Remark 27. Denote by ρ̃1
n the arboreal representation for the point cPP P ApKq. To study ρ̃1

n

it is clearly sufficient to study the product map pρ1
n, ρcPnq. We now explain how to identify the

representations pρ1
n, ρcnq and ρ̃1

cPn. We can write Pn “ QcPn `TcPn for some QcPn P A0
P pK̄q such

that rcPnsQcPn “ cPP and TcPn P ArcPns. Consider σ P GK . The image of σ under pρ1
n, ρcnq

amounts to ρcPnpσq (which determines ρnpσq) and σpPnq´Pn. The image of σ under ρ̃1
cPn amounts

to ρcPnpσq and σpQcPnq ´QcPn. The image of σ under one map determines the image under the
other map because we have

pσpPnq ´ Pnq ´ pσpQcPnq ´QcPnq “ σpTnq ´ Tn “ pρcPnpσqqTn ´ Tn .
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