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Summary 

Dementia is recognised as a public health priority, affecting not only people living 

with the syndrome but also formal and informal carers as well as society at large. The 

growing number of people living with dementia worldwide strains economies increasingly, in 

part due to costs for disease management and care. In this thesis, key challenges of dementia 

prevention research were identified and targeted, with a special emphasis on the examination 

of modifiable social and behavioural risk factors.  

Chapter I introduces dementia as a public health priority in ageing societies across the 

globe, considering current population trends and increasing knowledge on the role of 

modifiable social and behavioural risk factors. Chapter I furthermore provides an overview of 

operationalisation strategies and outlines a research framework underlying this thesis, 

focussing on dementia and cognitive function in later life as well as risk and protective 

factors. In that, the underlying aetiological theories, involved interactions of endogenous and 

environmental factors, as well as a life course perspective on dementia prevention are 

acknowledged. Chapter I closes with identified key challenges and derived research questions 

evolving around socioeconomic disparities in dementia risk, the lack of knowledge about 

underlying working mechanisms and the need for identification of individuals at-risk of 

dementia. Chapter II (study 1) draws on data from a large observational cohort, the UK 

Biobank, to examine area-level socioeconomic deprivation as a risk factor for dementia, 

while accounting for individual-level socioeconomic deprivation and genetic predisposition. 

Our findings suggest higher area-level socioeconomic deprivation to be associated with 

higher risk of dementia irrespective of individual-level socioeconomic deprivation, lifestyle, 

or genetic risk. Chapter III (study 2) reports an examination of features of the gut microbiome 

as potential mediators of the association of years of education with the risk of cognitive 

impairment in old age. Using data from the Luxembourg Parkinson’s Study, findings 
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suggested that education is associated with gut microbiome composition and risk of mild 

cognitive impairment. However, there was no significant mediation. Chapter IV (study 3) 

presents the adaptation and validation of a dementia classification algorithm in the European, 

multi-country, context. Analysis was based on data from the Survey of Health, Ageing and 

Retirement in Europe. Results provide evidence for the usefulness of a dementia 

classification algorithm using a minimal predictor set, to help identify ‘probable dementia’ 

and to reduce cross-country variation in underreporting of dementia. Chapter V delivers a 

general discussion and synthesis of findings stemming from the individual studies. 

Contributions to the research field are further discussed, alluding to outlooks for future 

research.  

In sum, reported findings suggest that both individual characteristics as well as 

contextual features, i.e., of the environment in which people live, work, and age are 

associated with the risk of cognitive impairment and dementia in later life. As such results of 

this thesis extend on previous research reinforcing the potential to dementia prevention by 

targeting individual, and contextual factors. Findings further reinstate the need for utilising 

deeply-phenotyped data to further elucidate working mechanisms underlying associations of 

modifiable risk factors and dementia. Lastly, this thesis provides a transportable solution to 

'probable dementia' status classification in absence of clinical diagnosis in observational 

studies. 
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Chapter I – General Introduction 

I.1 Motivation for the Dissertation 

I.1.1 A Public Health Priority 

Over a decade ago, the World Health Organization (WHO) recognised dementia as a 

public health priority (Alzheimer’s Disease International [ADI] et al., 2012). “Dementia is a 

syndrome, usually of a chronic or progressive nature, caused by a variety of brain illnesses 

that affect memory, thinking, behaviour and ability to perform everyday activities” (ADI et 

al., 2012, p. 2).  

The number of people living with dementia is growing, which is largely attributed to 

population ageing and growth worldwide (ADI et al., 2012; WHO, 2021). In 2019, dementia 

was the seventh leading cause of death (GBD 2019 Collaborators et al., 2021; WHO, 2020). 

Of note, mortality due to non-communicable diseases may vary across countries. 

Nonetheless, on a global scale, dementia reflects the leading cause of disability or 

dependency in old age, to date without an available cure (WHO, 2017, 2021). 

As such, preventive efforts are key to respond to and address the growing prevalence 

of dementia, with a special emphasis on social and behavioural risk factors, given their 

theoretical modifiability. Before moving to previously established risk factors and defining 

risk and protective factors at the core of the thesis, the following sections will discuss the 

impact of dementia on an individual and population level and allude to relevant current 

trends. 

I.1.2 Burden of Dementia 

Consequences of the syndrome encompass cognitive impairment and resulting 

limitations in the ability of people living with dementia to successfully manage activities of 

daily living (ADL). This loss of autarchy denotes a varying need for support of dementia 

patients in different stages. Disease burden is evident in an elevated number of emergency 
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hospital admission in participants living with dementia (Sommerlad et al., 2019). Due to the 

progredient nature of the syndrome, likelihood of death and of admission to nursing homes 

increases, with only half of people residing at home 4 years after having retrieved a diagnosis 

(Mjørud et al., 2020). Of note, dementia is a deadly condition, which is not appreciated by 

research or reflected in care planning just yet, causing additional strain for those living with 

dementia, or those accompanying them (Harrison et al., 2019). Albeit the consequences of the 

syndrome centring around people living with dementia, the WHO acknowledges the scope of 

the burden also encompassing partners, families as well as carers (WHO, 2021). Of note, in 

many cases informal carers accompany people living with dementia over longer periods prior 

to nursing home admission. As a result, informal carers are at risk of psychological 

morbidity, social isolation and not least financial hardship (Brodaty & Donkin, 2009).  

I.1.3 Current Trends and Developments  

Disease burden on individual, societal, or economic level is not least driven by 

population growth and improved longevity and hence related, a growing number of people 

living with dementia (WHO, 2021). Previous findings suggest a three-fold increase from 

2019 (57.4 million people living with dementia [95% CI, 50.4, 65.1]) to 2050 (152.8 million 

people living with dementia [95% CI, 130.8, 175.9]), globally (Nichols et al., 2022). 

However, future projections may vary, as they are based on analytical decisions regarding 

e.g., the inclusion of risk factors, and assumptions about the future, involving but not limited 

to e.g., the development of the prevalence of risk factors, or management/treatment options. 

This is especially important considering region-specific variation in secular trends, or the 

relative importance of risk factors and consequently, their population attributable fractions 

(PAF) for dementia (Mukadam et al., 2019; Nichols et al., 2022). As an example, estimating 

dementia prevalence projections when considering e.g., a reduced age-specific dementia 

incidence in high income countries, suggests up to 36% lower increase in prevalence 



 

 

5 

compared with projections assuming stable incidence rates in the Netherlands (Brück et al., 

2022). 

Regarding dementia treatment, potential to disease modification is acknowledged with 

traditional approval for lecanemab by the Food and Drug Administration in the United States, 

but regulatory review in Europe is pending at the time of writing. Therapies, e.g., lecanemab, 

apply to at-risk populations, e.g., with Mild Cognitive Impairment (MCI) and biomarker 

evidence of dementia due to Alzheimer’s disease (AD), i.e., amyloid positivity (van Dyck et 

al., 2023). Appropriate use recommendations have been published recently (Cummings et al., 

2023). Currently approved therapeutics need to be delivered early in the disease trajectory. 

Despite an increasing potential to defining at-risk populations prior to clinical impairment, 

risk prediction comes with uncertainty given a significant subpopulation with biomarker 

evidence (e.g., amyloid positivity) or biologically defined AD as per positron emission 

tomography (PET) scans but without cognitive impairment (Jack et al., 2013, 2019; Perez-

Nievas et al., 2013). As such, a discussion about the ethics of disclosing biomarkers, i.e., to 

research participants without cognitive impairment, as well as the diagnostic utility of 

biomarkers has emerged (Alzheimer’s Association Workgroup, 2023; Bunnik et al., 2022; 

Gómez-Isla & Frosch, 2019; Grill & Karlawish, 2022; The Lancet Neurology, 2024).  

Given the increasing challenges imposed by a growing number of individuals living 

with dementia worldwide, the following section will briefly introduce aetiological theories 

relating to dementia and provide a definition of constructs at the core of this thesis.  

I.2 Alzheimer’s Disease and Related Dementias 

Dementia is a syndrome caused by different underlying diseases of the brain and 

comprises impairment of multiple higher order cognitive functions, such as memory, 

executive functions, attention, language, amongst others. Dementia is a progredient and 

ultimately terminal condition. Aside cognitive impairment, neurobehavioural changes are 
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common (WHO, 2022b). Subtypes of dementia may further be distinguished clinically 

regarding the underlying disease. In that, AD, dementia due to cerebrovascular disease (here 

referred to as Vascular dementia; VaD), or Lewy Body disease, and Frontotemporal dementia 

(FTD) are most frequent, aside existence of dementia in other specified diseases, such as 

Parkinson Disease (WHO, 2022b). AD may occur with an early onset (EOD) or late onset 

(LOD) of symptoms characterised by age below or above 65 (WHO, 2022b). 

I.2.1 Aetiology 

Dementia is inherently irreversible and progredient in nature. However, due to the 

variety in underlying diseases causing dementia, unification of stages of the syndrome is 

hampered. Since the overarching number of dementia cases is diagnosed with AD or VaD, 

this section will briefly introduce current theory and evidence on the pathophysiology and 

disease progression for these subtypes.  

Alzheimer’s Disease Dementia 

AD is the most common form of dementia and is caused by Alzheimer’s disease. The 

most prominent aetiological theory of AD is the amyloid cascade hypothesis (Hardy & 

Higgins, 1992). In that, protein accumulation, i.e., of amyloid β (Aβ) is followed by an 

increase in phosphorylation and secretion of the protein tau, ultimately leading to 

neurodegeneration and cognitive symptoms (Hardy & Higgins, 1992; Zetterberg & Bendlin, 

2021). A wide array of evidence for the hypothesis suggests presence of extracellular amyloid 

plaques and intraneuronal neurofibrillary tangles, i.e., hyperphosphorylated and truncated tau, 

in people with AD.  

The assumed cascade has been validated predominantly in rare familial AD cases 

(Zetterberg & Bendlin, 2021). Such familial cases are driven by genetic mutations in genes 

that for example encode Aβ turnover related proteins (Zetterberg & Bendlin, 2021). 

Critically, most AD cases occur sporadically in older age. Additionally, it is unclear to what 
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extent observed pathophysiological changes reflect ageing processes or unique features of the 

disease which translate into impaired cognition. As such, people may show lesions or 

neurodegeneration in signature regions of AD without dementia or cognitive impairment 

(Gómez-Isla & Frosch, 2022; Zetterberg & Bendlin, 2021; Y. Zhang et al., 2010). Moreover, 

common co-pathologies such as synucleinopathies, e.g., characterised by occurrence of α-

synuclein in brain tissue, a major constituent of Lewy Bodies, suggest more complex, 

overlapping working mechanisms in neurodegenerative diseases such as AD, Lewy Body 

disease and PD (Zetterberg & Bendlin, 2021). 

Nonetheless, recent drug trials have reinforced the established hypothesis, suggesting 

slowing of cognitive decline by amyloid clearance in people with incipient AD (van Dyck et 

al., 2023). Despite potential to disease modification, it is still unclear how the assumed 

cascade is started. Sporadic LOD and AD in old age, are likely due to a multi factorial 

process. The complex pathogenesis may involve genetic predisposition, but more critically 

also vascular changes, or exposure to modifiable risk factors that may contribute to resilience 

in presence of hallmark indicators of AD (Gómez-Isla & Frosch, 2022; Kivipelto et al., 2018; 

Livingston et al., 2020; Zetterberg & Bendlin, 2021). 

Vascular Dementia 

VaD may be characterised as dementia resulting from underlying cerebrovascular 

disease (WHO, 2022b). Interestingly, the first person acknowledged with AD, dating back to 

the beginning of the 20th century, was Auguste Deter. Her case presented vascular changes as 

key characteristics of a newly identified disease. Thus, long before the amyloid cascade 

hypothesis, neuropathological findings including microvascular injuries, endothelial 

proliferation, and neovascularisation suggested a vascular pathway leading to dementia 

(Alzheimer, 1907; Fierini, 2020). Dementia as a syndrome characterised by brain atrophy 
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was assumed to be caused by impaired blood supply following atherosclerosis and 

consequent hardening of arteries (Fierini, 2020).  

In more recent approaches to define VaD, variation in underlying causes is 

acknowledged and as such, VaD may follow general vascular damage in the brain, i.e., also 

post-stroke (Bir et al., 2021). VaD thus reflects cognitive impairment as a consequence of 

vascular injury. Importantly, clinical representation such as affected cognitive domains and 

staging may vary depending on the type and localisation of underlying vascular changes (Bir 

et al., 2021).  

I.2.2 Terminology in the Present Work  

Given the wide range of diseases such as Alzheimer’s disease, or cerebrovascular 

disease, that primarily or secondarily affect the brain and may underlie dementia, differential 

diagnosis is challenging for health care providers (HCP), especially in primary care settings. 

Critically, most cases occur in later life and older patients at risk for dementia may present 

themselves with multiple health conditions. Barriers further include but are not limited to 

time constraints in clinical practice, as well as awareness about early symptoms not reflecting 

a normal ageing process (Porsteinsson et al., 2021). Time and cost sensitive testing 

procedures need to be employed to differentiate diseases underlying a potential dementia 

diagnosis. These involve e.g., blood tests, genotyping, neurological examination, or imaging 

such as magnetic resonance imaging (MRI) or PET scans. Still, more accurate diagnosis 

requires neuropathological examination. 

Differential diagnosis is required to appropriately adapt treatment strategies to the 

specific needs implicated by underlying aetiology. Critically, symptom representation (AD: 

e.g., impaired/semantic memory, abstract thinking; VaD: e.g., impaired executive 

functioning, processing speed) may differ within and between individuals with dementia and 

thus interfere with specificity of differential diagnoses (Fierini, 2020). Diagnostic procedures 
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are further complicated by high frequency of mixed pathologies in later life, e.g., comorbid 

diabetes or heart failure, with in part overlapping pathophysiology (Alzheimer’s Association, 

2023). Additionally, presence of multiple brain pathologies is common in people living with 

dementia, e.g., indicated by half of AD patients showing Lewy Body co-pathology (Robinson 

et al., 2018; Schneider et al., 2007). While the majority of dementia cases are specified as AD 

or VaD, with distinct underlying pathology, recent evidence suggests a continuum of 

neurodegeneration and vascular dysfunction, reflecting mixed dementia (Fierini, 2020; Flier 

& Scheltens, 2005). As such, hallmark indicators of AD, e.g., neurodegeneration, or amyloid 

deposition, appear intertwined with vascular disease burden and downstream damage 

(Gottesman et al., 2017; Robinson et al., 2018; Snyder et al., 2015; Stakos et al., 2020). 

Recent clinical evidence showed that people living with similar dementia severity show less 

AD pathology when presenting with versus without vascular damage (Fierini, 2020; Zekry et 

al., 2002). Potential working mechanisms of such a mixed dementia phenotype involve 

altered Aβ production following vascular insufficiency, and in turn, loss of vascular 

homeostasis (Fierini, 2020). In sum, isolated, prototypical manifestations of subtypes are 

likely rare, compared with mixed forms of dementia. Consequently, research on risk factors 

targeting prevention of dementia has commonly focused on all-cause dementia or 

Alzheimer’s disease and related dementias (ADRD) as umbrella concept, encompassing 

different subtypes, to capture the total contribution to and preventive potential for dementia 

as a clinical syndrome. 

Although most ADRD cases occur in older age, evidence on prevalence of EOD is 

scarce and previous findings suggest likely underestimation of EOD prevalence due to, e.g., 

reliance on registry data (Hendriks et al., 2021). With a likely time-lag between symptom 

onset and diagnosis, as well as a steep increase in EOD incidence in later life, differentiation 

of EOD and LOD is to some extent arbitrary and researchers have argued to instead expand 



 

 

10 

on young onset dementia, e.g., prior to age 60/65, and 45 (Prince et al., 2015; van de Veen et 

al., 2021). There has been no consensus reached about aetiological differences between EOD, 

LOD or young onset dementia. Increased risk of EOD is likely conferred by genetic 

predisposition (autosomal dominant AD), albeit recent findings suggest associations with 

modifiable risk factors in line with those identified for LOD (Hendriks et al., 2024). The 

clinical presentation of EOD, although similar to LOD, is characterised by more rapid 

progression of cognitive impairment (WHO, 2022b). Young onset dementia is likely due to 

rare conditions, such as developmental disorders, epilepsy, psychiatric disorders, Korsakoff’s 

syndrome, or traumatic brain injury (van de Veen et al., 2021).  

Given the exponential growth in EOD and LOD above age 60, the absence of 

biological reasoning for established age cutoffs, scarcity of clinically validated subtyping and 

synergies in underlying risk factors, the term dementia will be used interchangeably with 

ADRD in this thesis. ADRD thus refers to dementia as a syndrome manifesting in later life, 

i.e., above age 60, or 65, most likely due to AD, VaD, FTD or Lewy Body disease (Prince et 

al., 2015; van de Veen et al., 2021). Following this terminology, dementia and ADRD reflect 

commonly investigated umbrella variables, without further specification of the subtype or the 

disease causing the syndrome.  

I.3 Operationalisation of Dementia 

The three individual studies at the core of this thesis respond to research questions 

relating to ADRD. The following sections will introduce relevant outcomes and their 

operationalisation in different settings and allude to implications for case ascertainment and 

subsequent formal analysis. In that, outcome definitions may vary with respect to dementia 

progression over time.  
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I.3.1 Dementia in the Clinical Context 

Aetiological models informing the diagnostic process regarding AD and other 

dementia subtypes are increasingly defined as probabilistic models of disease progression. 

This is in part due to insufficient knowledge to formulate deterministic models for different 

subtypes (Fierini, 2020; Frisoni et al., 2022). However, as an introductory example for 

dementia progression, the following section aims to deliver a blueprint of AD staging, 

including a prodromal stage, a preceding preclinical stage, MCI, or mild behavioural 

impairment and subsequently, major neurocognitive disorder.  

Prodromal Stage 

Research on AD biomarkers suggest pathophysiological alterations, i.e., identified in 

cerebrospinal fluid (CSF) and blood as early as midlife, decades before the onset of clinical 

symptoms as (Zetterberg & Bendlin, 2021). A growing body of evidence supports AD-related 

decreases in the 42 amino acid-long Aβ42 and subsequent increases in total and 

phosphorylated tau in CSF and plasma as early as midlife (Zetterberg & Bendlin, 2021). 

Further biomarker candidates involve (ordered by time of positive testing) biomarkers of Aβ 

pathology (amyloid PET), neuroinflammation (sTREM2), synaptic dysfunction (CSF 

neurogranin), tau pathology (tau PET) and neurodegeneration (e.g., CSF neurofilament light, 

or hippocampal volume), respectively (Weston et al., 2019; Zetterberg & Bendlin, 2021). 

The diagnostic process currently tests presence of clinical symptoms and relating 

limitations in everyday activities, as well as biomarker presence, determined e.g., with 

amyloid PET scans. Due to high costs, limited infrastructure and invasiveness of PET scans, 

uptake of fluid biomarkers in clinical practice may follow, soon, provided positive evaluation 

of clinical trials (Zetterberg & Bendlin, 2021). However, biomarkers, such as neurofilament 

light may increase, e.g., indicating neuroaxonal degeneration, over a decade before onset of 

clinical symptoms and eventual cognitive impairment (Weston et al., 2019; Zetterberg & 
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Bendlin, 2021). As such, biomarker-based diagnosis would reflect a biological definition of 

e.g., AD in absence of clinical symptom complexes. Given complexities in the definition of 

cutoffs for biomarker burden, limited causal evidence, likely small effect sizes, heterogeneity 

among asymptomatic individuals and potential resilience of some individuals to 

neuropathology, application in primary care settings, e.g., for initial screening and monitoring 

in clinical trials may follow as an first step (Gómez-Isla & Frosch, 2019; Jack et al., 2024; 

Zetterberg & Bendlin, 2021). 

Preclinical Stage: Mild Cognitive Impairment  

MCI is characterised by early and subtle changes in memory and thinking which 

however do not affect a person’s ability to engage in activities required to master their daily 

living (Alzheimer’s Association, 2022; Petersen et al., 2018). MCI may be classified either as 

amnestic, or nonamnestic depending on symptom representation. As such, impaired memory 

reflects amnestic MCI whereas impaired executive function, language, or visuospatial 

abilities reflect nonamnestic MCI (Petersen et al., 2018). MCI may be due to different 

underlying conditions, e.g., sleep deprivation, medication or anxiety, and entirely unrelated to 

dementia (Alzheimer’s Association, 2022; Petersen et al., 2018). Accelerating impairment in 

cognitive function, however, is a hallmark indicator of dementia, and especially amnestic 

MCI may indicate preclinical AD. As such, MCI prevalence increases with age. The relative 

risk of dementia is 3.3-fold, and of AD 3-fold higher in people living with MCI compared to 

age-matched controls (Petersen et al., 2018).  

While up to 55.6% of people with MCI revert to unimpaired cognition, MCI prompts 

continued evaluation of cognitive performance, and further thorough diagnostic testing, i.e. 

functional impairment, when reported to HCPs (Petersen et al., 2018). Of note, efforts in 

predicting progression from MCI to dementia have proven challenging. Previous findings 

suggest limited additional value of complex modelling strategies involving, e.g., imaging 
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data, over established cognitive tests (Ansart et al., 2021). This may be due to testing 

algorithms in short-term prediction settings. Previous findings suggest, negligible 

performance gains of prediction models based on imaging data in terms of accuracy 

compared with a constant prediction, i.e., assuming stable MCI for all observations (Ansart et 

al., 2021). Other reasons for current limitations in predicting conversion from MCI to 

dementia may be increased selection of stable subjects into observational cohorts, or failure 

of included biomarkers to account for resilience to neurodegeneration (Oosterhuis et al., 

2023). Moreover, diversity in aetiological processes underlying dementia (e.g., in MCI due to 

AD, vascular MCI, or MCI related to Lewy Body pathology) may not be reflected in MCI 

diagnoses that are used to train algorithms and hence limit the validation. However, the 

evolving research landscape around biomarkers may offer opportunities to further improve 

subtyping or prediction of conversion from MCI to dementia (Franciotti et al., 2023). 

Major Neurocognitive Disorder 

Both International Classification of Diseases 11th Revision (ICD-11) and Diagnostic 

and Statistical Manual of Mental Disorders (DSM-5TM) categorise dementia as 

neurocognitive disorder (NCD) or subtype thereof (American Psychiatric Association, DSM-

5 Task Force [APA], 2013; WHO, 2022b).  

Following ICD-11, a clinical diagnosis of dementia requires impairment in at least 

two cognitive domains, reflecting a lower than expected level of functioning given the 

respective individual’s age and baseline performance, i.e., diagnosis requires a marked 

deterioration (WHO, 2022b). Following DSM-5TM, a clinical diagnosis of dementia, i.e., 

major NCD, requires significant decline in only one cognitive domain to capture severity of 

functional impairment (APA, 2013; First et al., 2021). Thus, severe memory impairment may 

be classified major NCD in DSM-5TM but reflect amnestic disorder (not dementia) in ICD-11 

(First et al., 2021).  
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Of note, a prodromal or preclinical stage (i.e., MCI) would be categorised minor NCD 

following DSM-5TM or mild NCD following ICD-11 (APA, 2013; WHO, 2022b). For a 

dementia or major NCD diagnosis, cognitive impairment needs to interfere with the person’s 

ability to master ADLs and must not be attributable to alternative explanations e.g., ageing, 

substance intoxication or withdrawal (WHO, 2022b). 

I.3.2 Dementia in Research 

Diagnostic procedures to determine the clinical status of an individual have direct and 

indirect implications for the patient’s journey, e.g., the provision of targeted treatment. In 

research, a diagnosis of dementia and more specifically, of a subtype due to a specific 

underlying disease may however not be of equal importance, depending on the research 

question. Research questions may be concerned with, e.g., identification of risk factors, 

quantification of the strength of associations with dementia, identification of at-risk 

populations, clustering of risk factors, classification of disease status, or evolution of 

cognitive function over time, to name a few. The following sections will discuss two 

operationalisation strategies for dependent variables i.e., outcomes, or primary endpoints, 

relevant for research questions in this thesis, namely cognitive function and (incident) 

dementia. 

Cognitive Function as Outcome 

Measurement of cognitive function as dependent variable, relates to research 

questions concerned with e.g., classification of MCI or dementia status when no clinical 

diagnosis is available, or investigating subtle changes and longitudinal trajectories of 

cognitive function, i.e., cognitive decline (Gianattasio et al., 2019; Hunt et al., 2021).  

Given heterogeneity of symptom representation across individuals and underlying 

diseases, screening tools or measures of cognitive function may vary between studies. As an 

example, in research about AD risk factors, memory may be operationalised with recall 
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performance as a potential measure (e.g., immediate/delayed word list recall). Comparability 

of cognitive function outcomes across studies focussing on different domains may thus be 

limited.  

More comprehensively, cognitive function may be operationalised with validated 

cognitive assessments in the form of screening instruments or test batteries. Such instruments 

combine performance across multiple domains of cognitive function to derive an overall 

estimate used by HCPs to determine the presence or level of impairment. Prominent 

screening tools are e.g., the Montreal Cognitive Assessment (MoCA), and the Mini-Mental 

State Examination (MMSE), which may be used to test presence of MCI or AD respectively 

(Folstein et al., 1975; Nasreddine et al., 2005). Classification of disease status is conducted 

by comparison of scores to cutoffs, which are based on normative samples. However, such 

cutoffs may lead to differential misclassification when applied to populations that are 

underrepresented in the normative samples (Nasreddine et al., 2012; Rossetti et al., 2011).  

Of note, major NCD or ADRD are clinically characterised by apparent limitations in 

everyday functioning as well as cognitive decline over time, which implicates longitudinal 

assessment of cognitive function (APA, 2013; WHO, 2022b). Short tests, such as word list 

recall may reflect a more feasible approach to assessing cognitive function longitudinally. 

This is in part due to a shorter duration of testing compared to larger instruments or batteries 

and hence easier implementation in longitudinal observational studies. 

Besides, research targeting causal exposure-outcome relationships requires 

longitudinal data to ascertain temporality. Critically, risk factors may be associated with 

cognitive impairment inconsistently over time, and associations may indicate reverse 

causality (Brenowitz, 2021). The long prodromal or preclinical stage of ADRD, thus 

reinforces the need to measure domains of cognitive function and observe trajectories before 

clinical symptoms emerge (Kivimäki et al., 2018; Kivipelto et al., 2018). Instruments such as 
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the MMSE or MoCA are primarily developed to screen for clinical impairment in cognitive 

function (Folstein et al., 1975; Nasreddine et al., 2005). Critically, discrimination deteriorates 

at the upper end of the scales and resulting ceiling effects may hamper detection of subtle 

changes in cognitive function in a prodromal stage (Franco-Marina et al., 2010; Hoops et al., 

2009).  

From a clinical point of view, thresholds are necessary to classify a person’s level of 

cognitive function and to reach a binary decision regarding subsequent access to health care. 

From a statistical point of view however, application of a cutoff by design leads to reduction 

of information compared to analysis of e.g., continuous subscales. This reduction has 

implications for subsequent strategies of data analysis and interpretation. As an example, a 

binary classification may be used longitudinally, e.g., in multi-state models, but does not 

allow to model cognitive function trajectories over time.  

Although functional impairment is likely a consequence of impaired cognition, 

measuring cognitive function alone precludes generalisation about clinically meaningful 

cutoffs and consequences of underscoring those for an individual’s everyday life. Critically, 

when interested in risk factors for cognitive impairment and dementia, operationalising 

cognitive function with continuous measures of e.g., recall performance, may reflect a more 

patient-centred target considering its direct relevance for everyday functioning and quality of 

life. In addition to that, measurement of different domains of cognition such as executive 

function, processing speed, or memory, may operationalise distinctive underlying aetiological 

processes more accurately and fine-grained than a binary diagnosis. 

Dementia as Outcome 

Dementia is a common outcome in research examining e.g., risk and protective 

factors over the life course (Geraets & Leist, 2023; Licher, Darweesh, et al., 2019). As such, 

dementia as an outcome may be operationalised as diagnosis of AD, or VaD, or subsume 
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subtypes under the umbrella category ADRD. Observational studies need to ascertain 

dementia e.g., through linkage of health records, consensus diagnosis, or by asking 

participants or accompanying proxy respondents directly if they were diagnosed by an HCP.  

In case of linkage to health or death records, comparability across studies may be 

limited due to varying assessment protocols across sources of diagnostic records. Most 

dementia cases reflected in health records are likely diagnosed by general practitioners. As 

such, access to health care, knowledge about dementia, ageism, or differences in welfare 

regimes and infrastructure may affect the likelihood and timing of receiving a clinical 

diagnosis given presence of dementia pathology (Bond et al., 2005). Some studies, such as 

the UK Biobank study further include post-mortem case ascertainment (Sudlow et al., 2015). 

Of note, post-mortem diagnosis could also reflect informant interviews instead of 

neuropathological examination. Despite outlined sources of biases evolving around linkage to 

health records, findings suggest high validity for case ascertainment based on health and 

death records, e.g., in the UK Biobank (Wilkinson et al., 2019).  

In some cases, legal obligations imposed by country-specific General Data Protection 

Regulations hamper uptake of linkage to health records. Researchers may then opt to conduct 

expert consensus diagnosis, or include common diagnostic instruments such as MoCA or 

MMSE (Folstein et al., 1975; Nasreddine et al., 2005). Of note, consensus diagnosis is time 

consuming (also increasing the barrier for participation) and cost intensive leading to limited 

uptake in large observational studies. Additionally, dementia diagnosis within a study 

protocol imposes ethical challenges. Testing may reveal prevalent, formerly unknown early 

signs or symptoms that may be associated with cognitive impairment and dementia. This 

would prompt disclosure and often further follow-up by HCPs, which is likely exceeding 

resources of researchers.  
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A third option to ascertain dementia status is to ask participants or related proxies 

directly, if they were ever given a dementia diagnosis by an HCP, as is for instance done in 

SHARE (Börsch-Supan et al., 2013). However, selective attrition and cognitive impairment 

may limit reliability of such strategies. Moreover, previous findings suggest limited 

consistency of self-reported health outcomes (Cigolle et al., 2018). Consequently, absence of 

clinically validated cognitive assessments and barriers to linkage and monitoring of health 

care records has led researchers to develop classification algorithms to identify participants 

with ‘likely’ or ‘probable’ dementia (Alzheimer’s Association, 2010; Crimmins et al., 2011; 

Herzog & Wallace, 1997; Hurd et al., 2013; Q. Wu et al., 2013). Such classification 

algorithms may also exploit further information collected in representative cohort surveys, 

including modifiable risk factors, to improve accuracy of prediction. In that, machine 

learning (ML) offers a fruitful extension to traditional modelling approaches allowing 

amongst other things faster processing of large amounts of (unstructured) data as well as 

modelling of nonlinear associations and higher-order interactions (Leist et al., 2022). 

In sum, using binary dementia status as outcome may help to improve our 

understanding of risk factors of (subtypes of) dementia, to model likelihood of progression to 

a clinically meaningful state or yield relevant information for HCPs supporting patients. 

Conversely, continuous measures of cognitive function may facilitate detection of early 

changes in cognitive function and more generally, observe inter- and intraindividual 

variability of cognitive function over time. Analytical decisions are thus directly linked to the 

intended focus of the research question at hand.  

Given the wealth of operationalisation strategies relating to dementia, the following 

sections provide an introduction of research frameworks relevant for dementia prevention. 

This involves a brief overview of the nomenclature of prevention, a structural framework to 

characterise risk factors and their interactions, implications of a life course approach to 
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dementia prevention, and related, constructs underlying potential working mechanisms of 

modifiable risk factors.  

I.4 Dementia Prevention 

Although dementia prevalence increases dramatically with age, dementia in later life 

is not considered an inevitable consequence of ageing (ADI et al., 2012; Licher, Darweesh, et 

al., 2019). LOD, i.e., ADRD, likely results from complex gene-environment interactions, 

with multiple domains contributing to or protecting against neurodegeneration and vascular 

changes which then cause the onset of clinical symptoms and disease progression (Finch & 

Kulminski, 2019). In absence of a cure and given the current trends outlined in I.1.3, 

including but not limited to population ageing and growth, targeting modifiable risk and 

protective factors to foster prevention is paramount to reduce the burden of disease globally.  

I.4.1 Conceptualisation of Prevention in ADRD Research 

Traditionally, prevention can be classified into primary, secondary, and tertiary 

prevention. Primary prevention is delivered prior to any pathological manifestation, such as 

cortical thinning, or reduced hippocampal volume, thus aiming to prevent dementia 

altogether. Interventions for primary prevention may target lifestyle-related risk factors such 

as a sedentary lifestyle or increased blood sugar levels, in cognitively healthy at-risk 

individuals with e.g., high polygenic risk for dementia (Barbera et al., 2023; Kivipelto et al., 

2013). Secondary prevention is concerned with stopping or slowing progression of 

pathological changes associated with dementia, e.g., with experimental antibodies against 

amyloid, so that the time to functional impairments interfering with daily activities is 

maximised (van Dyck et al., 2023). Target groups for secondary prevention interventions are 

living with asymptomatic ADRD in a prodromal or preclinical stage, e.g., Aβ positive 

individuals without pathological evidence, or with MCI due to AD (J. Lee et al., 2022). 

Tertiary prevention includes treatment and delay of disease progression after clinical 
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manifestation, such that partial independence of people living with dementia is maintained, 

and quality of life is optimised (J. Lee et al., 2022). Consequently, target groups for tertiary 

prevention may fulfil criteria for minor or major NCD, but the distinction to secondary 

prevention is less clear (J. Lee et al., 2022). 

Early tertiary prevention trials suggested modest improvements of clinical symptoms 

but no modification of the underlying progression of pathology, e.g., for acetylcholinesterase 

inhibitors (J. Lee et al., 2022). On the contrary, a new generation of medication, monoclonal 

antibodies, aims at clearing β amyloid plaques, specifically leaning on the amyloid cascade 

hypothesis of AD. Recent trials suggest slower disease progression in terms of cognitive 

decline after 18 months by reduction of amyloid burden in the brain (Ackley et al., 2021; 

Avgerinos et al., 2021; Cummings, 2023; Pang et al., 2023; van Dyck et al., 2023). However, 

lacking longitudinal follow-up or validation in severe AD, and sporadically occurring adverse 

events (e.g., amyloid related imaging abnormalities), as well as the magnitude of estimated 

costs associated with screening and delivery of this new treatment group challenge their 

benefit for society at large at this point in time (Bradshaw et al., 2024; Jönsson et al., 2023; 

Villain et al., 2022; Wimo et al., 2023). Still, future trials may reveal characteristics of better 

responders, or observe more pronounced benefits of combination therapies with longer 

follow-up to meet criteria for clinical relevance levelling risk (Villain et al., 2022). 

Furthermore, randomised controlled trials (RCT) investigating potential for 

prevention so far mainly focussed on single drugs targeting a specific step in the amyloid 

cascade, e.g., with monoclonal antibodies, or vascular risk factors, e.g., with metformin (J. 

Lee et al., 2022). Critically, alternative pathways (e.g., vascular) are likely contributing to 

cognitive impairment and risk of subsequent dementia. This is backed by observational 

research, which further suggests modifiable risk and protective factors to be involved in the 

pathogenesis of dementia (Ajnakina et al., 2020; Livingston et al., 2020; N. Zhang et al., 



 

 

21 

2021). As an example, cardiometabolic multimorbidity at midlife is associated with increased 

dementia risk in later life, suggesting interventions to lower the risk of cardiometabolic 

diseases may reduce dementia risk (Dove & Xu, 2023; Jin et al., 2023). Critically, face 

validity of an association of lifestyle factors e.g., physical activity or nutrition with 

cardiometabolic conditions and those of cardiometabolic conditions with dementia is greater, 

and supported by aetiological theories, opposed to an association of lifestyle factors with 

dementia, for which causal evidence is frequently challenged (Ciria et al., 2023; Desai et al., 

2023; Kuźma et al., 2018; Seblova et al., 2021). However, lowering the burden of individual 

cardiometabolic conditions or their accumulation by intervening on e.g., lifestyle, even in 

absence of direct causal links of lifestyle factors with the pathology underlying dementia, 

would likely improve the quality of life for people living with dementia, and may extend to 

prolonging the time to dementia onset or prevent cases altogether (Livingston et al., 2020). 

Against this background, an extension of existing theories of cognitive ageing including 

environmental, social, and behavioural factors is imperative to improve dementia prevention 

frameworks. 

I.4.2 Alzheimer’s Disease Exposome 

Conceptual frameworks such as the AD Exposome allow the highly granular and at 

the same time holistic examination of cognitive ageing as a process involving genetic and 

environmental (i.e., complementary to genome, non-genetic) factors (Finch & Kulminski, 

2019; Wild, 2012). The AD Exposome postulates exogenous macrolevel (e.g., air pollution), 

as well as exogenous individual (e.g., diet) and endogenous factors (e.g., gut microbiome) 

relevant to AD pathogenesis (Finch & Kulminski, 2019).  

Evidence about risk and protective factors of dementia, especially exogeneous 

macrolevel and individual factors mainly stems from large-scale observational studies. This is 

in part due to ethical limitations evolving around intervention on modifiable risk factors 
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and/or social determinants of health (SDoH) as exposures of interest. SDoH reflect structural 

and societal components shaping opportunities to healthy aging over the life course, e.g., 

formal and informal sources of support reflected in access to healthcare (Marmot & 

Wilkinson, 2005). Since they are generally specified as superordinate, higher level factors, 

they resonate with external macrolevel factors, as per the AD Exposome (Finch & Kulminski, 

2019).  

SDoH-related health inequalities may be based on occupation, education, or income 

(Marmot & Wilkinson, 2005). As such, previous research suggests determinants of cognitive 

functioning such as education to be conferred by compulsory schooling, denoting education 

as an in part external macrolevel factor (Glymour et al., 2008; Leist et al., 2021; Schneeweis 

et al., 2014). As a result, alteration of e.g., education as SDoH with consequences for later 

life cognitive function may require policy intervention. Of note, despite the definition of 

SDoH as structural components, factors such as education may require ascertainment on an 

individual level, e.g., when investigating individual-level dementia risk.  

The report of Livingston et al. (2020) suggested twelve potentially modifiable social 

and behavioural risk factors to account for up to 40% of dementia cases. Livingston et al. 

(2020) acknowledge variation in the degree of modifiability and underlying risk propagation 

mechanisms by categorising risk factors as early, mid, or late life risk factors. Identified risk 

factors include sociodemographic (less education), health (obesity, depression, diabetes, 

hypertension, hearing impairment, traumatic brain injury), lifestyle-related (smoking, 

physical inactivity, low social contact, alcohol consumption) as well as environmental (air 

pollution) indicators (Livingston et al., 2020).  

Despite limited knowledge about the causality of identified factors, a large body of 

evidence suggests significant reduction of the burden of dementia by targeting e.g., lifestyle-

related risk factors (Kivipelto et al., 2018; Licher, Ahmad, et al., 2019). Frequently discussed 
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working mechanisms linking risk factors to cognitive impairment or dementia, involve but 

are not limited to neurodegeneration and vascular damage, inflammation, or oxidative stress 

(Grande et al., 2021; Kivipelto et al., 2018).  

Following the AD Exposome, the different domains are further assumed to interact in 

a synergistic manner (Finch & Kulminski, 2019). This is supported by observational studies, 

reporting interindividual differences in cognitive decline, even in high genetic risk groups, 

i.e., suggesting potential amplification of a genetic predisposition to dementia (e.g., in 

carriers of the ε4 allele of the apolipoprotein E gene [APOE; OMIM:107741]) by behavioural 

or environmental factors (Ajnakina et al., 2020; Lourida et al., 2019; Solomon et al., 2018; N. 

Zhang et al., 2021). Further, exogenous individual risk factors (i.e., sleep deprivation) may 

interact with microbial communities in the gastrointestinal tract conferring 

pathophysiological alterations in mouse models. As an example, reduced butyrate secretion 

may mediate downregulation of inflammatory response and neuronal apoptosis and 

consequent memory impairment via a gut-brain-axis (Finch & Kulminski, 2019; C. Wang et 

al., 2022; X. Wang et al., 2023). These examples reinforce the potential of interventions, not 

only by directly intervening on theoretically modifiable risk factors, but also on the 

biological, endogenous mechanisms conferring cognitive impairment, e.g., by providing 

butyrate (C. Wang et al., 2022).  

Of note, estimation of the combined contribution of the twelve risk factors reported by 

Livingston et al. (2020) to the global number of people living with dementia may not 

necessarily reflect real world preventive potential, considering outstanding causal evidence 

and likely bounded efficacy of interventions targeting theoretically modifiable risk factors. 

However, even modest delays regarding onset of dementia would result in significant 

decreases in incidence and thus prevalence across the globe (Brück et al., 2022; Kivipelto et 

al., 2018; Licher, Darweesh, et al., 2019; Livingston et al., 2020). 
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While the AD Exposome categorises (notably not rigid but fluid) non-genetic factors 

regarding exogeneity (and further macrolevel versus individual) or endogeneity, it inherently 

acknowledges an exposure history across the life course, and as such, time-varying effects 

(Finch & Kulminski, 2019; Wild, 2012). Of note, VaD and other subtypes of dementia are 

not formally constituting the AD Exposome (Finch & Kulminski, 2019). However, synergies 

between subtypes are acknowledged as are shared risk factors, and the notion of an exposure 

history (Livingston et al., 2020). As an example, for time-dependent effects, carrying an 

APOE ε4 allele may reflect a genetic predisposition to and hence elevated risk of dementia, 

determined at birth. In the same group of individuals, vascular damage may occur due to 

lifestyle-related risk factors in midlife, such as limited physical activity. In turn, this could 

explain a potentially reinforced cognitive decline in later life compared to other individuals 

with a similar genetic predisposition. Consequently, adopting a life course risk model of 

dementia is imperative to deepen our understanding of the disease progression and fostering 

identification of individuals at risk to deliver tailored prevention interventions in-time. 

I.4.3 Life Course Model of Risk and Protective Factors of Dementia 

Adopting a life course perspective of dementia risk, mechanistic questions arise about 

how risk propagates over time (Kuh et al., 2003). Livingston et al. (2020) acknowledged time 

dependency of risk factors, distinguishing early life (e.g., less education), from midlife (e.g., 

obesity) and later life risk factors (e.g., air pollution). Of note, a thorough description of risk 

propagation with regard to accumulation, critical, or sensitive periods (e.g., in childhood) is 

beyond the scope of this thesis (e.g., Kuh et al., 2003). However, grouping in Livingston et al. 

(2020) resonates with critical, (i.e., air pollution would affect brain health only in later life) or 

sensitive periods (i.e., air pollution would affect brain health more profoundly in later life). 

As an example of a sensitive period in later life, air pollution may reinforce impaired 

cognition given pre-existing neurodegeneration, by increasing downstream vascular damage. 
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Alternatively, risk may accumulate over the life course (i.e., air pollution and resulting 

vascular damage may affect brain health and cognitive decline uniformly over time), 

challenging sensitive or critical period formulation. Presupposing accumulating exposure to 

air pollution over the life course, impaired cognition may manifest and be observed in later 

life only after a critical level of damage has emerged (Abolhasani et al., 2023; Livingston et 

al., 2020; Peters, Ee, et al., 2019).  

While life course epidemiology may offer opportunities to formulate and examine 

how later life health depends on risk propagation from birth to later life, real-world 

limitations may interfere with testing life course models of risk aiming to inform public 

health efforts and prevention design. As an example, follow-up required to observe exposure 

to risk factors over a lifespan is excessive and likely not feasible in large-scale representative 

cohort studies. Consequently, investigators frequently need to rely on retrospective self-

reports, studies with extensive, yet limited, follow-up periods (usually less than 20 years), or 

combine studies conducted across different periods in life, e.g., by mapping participants’ 

health records to surveys conducted during their respective adolescence (Mullin et al., 2023; 

Zuber et al., 2023). While previous findings suggest validity of assessing e.g., retrospective 

anthropometry, through self-report, interindividual variability in reporting subjective 

measures raises concerns about the validity of such approaches to examine risk factor 

outcome relationships across the lifespan, especially for less salient exposures (De Rubeis et 

al., 2019; Gorber et al., 2007).  

In order to investigate life course models of risk in spite of these limitations, 

theoretical or evidence-based assumptions about the flow of causality over time need to be 

formulated, at best prior to decisions about the strategy of data analysis, e.g., by application 

of directed acyclic graphs (Tennant et al., 2020). Previous findings suggest early 

physiological changes, indicated by biomarkers associated with amyloid deposition and 
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neurodegeneration, up to two decades prior to dementia diagnosis (Zetterberg & Bendlin, 

2021). Similarly, accumulation of cardiometabolic multimorbidity is faster in preclinical 

dementia, already two decades prior to impaired cognition (Guo et al., 2024). Such findings 

deliver crucial insights for interpreting models examining risk propagation. As an example, 

higher Body Mass Index (BMI) in midlife is associated with higher dementia risk in later life 

(J. Li et al., 2021). Conversely, lower BMI in later life is associated with higher dementia risk 

in later life (J. Li et al., 2021). This goes to show that the same exposure may reflect a risk 

factor in midlife but capture reverse causation in later life. As such, later life BMI would be 

affected by early pathological alterations associated with dementia without yet clinical 

symptoms and thus diagnosis of dementia (Brenowitz, 2021; Brenowitz et al., 2021; 

Kivimäki et al., 2018; Kivipelto et al., 2018; J. Li et al., 2021). Similarly, cardiometabolic 

conditions relate to dementia risk inconsistently over time, with earlier onset denoting higher 

excess risk (Dove et al., 2023; van Gennip et al., 2024). Hence, interventions may only yield 

efficient reduction of excess dementia risk if delivered in midlife (targeting higher BMI, 

reduction of cardiometabolic burden) rather than later life (targeting lower BMI). 

Recapitulating, synthesis of models describing normative human development as well 

as adaptation to exogenous risk and protective factors with an ageing perspective is 

imperative to improve prevention efforts across the lifespan (Kuh et al., 2003). In case of 

dementia, a growing body of evidence increasingly emphasises lifelong biological, but also 

psychological and social processes that may not only propagate risk, but also alleviate 

presence of co-occurring risk factors or increase resilience towards existing pathology (Kuh 

et al., 2003; Livingston et al., 2020). In line with assumed accumulation of risk, protective 

factors such as education may manifest in early life, and proceed to alter resilience or lifestyle 

choices over the life course (Lövdén et al., 2020).  
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In sum previous observations signal the need for early intervention, but also denote 

the methodological challenges arising from required follow-up periods, or interrelations of 

exposures over the life course. Given discussed findings, effective prevention models for 

dementia may require targeting individuals at risk prior to clinical manifestations associated 

with the syndrome (i.e., primary prevention), or prior to the development of risk factors (i.e., 

primordial prevention, Gillman, 2015). More generally, working mechanisms of risk 

propagation require further research. 

I.4.4 Cognitive Reserve, Brain Reserve and Brain Maintenance 

The biological underpinnings of dementia have been extensively researched. With 

hypothesised aetiologies such as the amyloid cascade underlying e.g., AD, or vascular 

pathways leading to cognitive impairment and dementia, prevention research often focussed 

on reducing neurodegeneration or preventing vascular damage (J. Lee et al., 2022).  

As such, many of the potentially modifiable social and behavioural risk factors 

consolidated by Livingston et al. (2020) are assumed to alter risk of dementia by causing or 

relating to neurodegeneration and damage, e.g., amyloid/tau-mediated, vascular, or 

inflammatory (e.g., air pollution, obesity, diabetes, hypertension, smoking, traumatic brain 

injury). Such risk factors may be targeted for dementia prevention. However, excess 

dementia risk may result from accumulated exposure over longer periods of time before 

measurement, e.g., with obesity, or smoking, and thus windows of opportunity for prevention 

are of question. Still, a consequent approach to prevention may target the reduction or 

restoration of a disease-free state in individuals that are identified at-risk, given risk factors.  

Other factors such as engaging in social contact or physical activity could increase or 

maintain cognitive function by protecting against cognitive decline. Such protective factors 

may thus denote potential for resilience and reflect targets for secondary prevention in mid- 

or later life (Livingston et al., 2020; Stern et al., 2020). Of note, the concept of resilience 
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likely reflects multiple underlying reserve-related processes (Stern et al., 2020). While 

working mechanisms are still under investigation, protective effects may be conceptualized 

with cognitive reserve (CR), brain reserve (BR) and brain maintenance (BM). In that, CR, 

BR, and BM allow inclusion of SDoH and individual-level modifiable social and behavioural 

risk factors into life course risk and resilience models of dementia, within the AD Exposome 

(Finch & Kulminski, 2019).  

The concept of CR may be defined as adaptability of cognitive processes leading to 

maintained functioning and thus increased protection against the consequences of brain 

ageing, pathology, or insult (Stern et al., 2020). In addition to CR, the concept of BR has 

emerged characterising structural brain differences to explain interindividual variability in 

responses to brain ageing and neuropathology (e.g., number of neurons) at a specified point 

in time (Stern et al., 2020). Contrasting BR from CR, BR does not imply active adaptation of 

cognitive processes but is assumed to reflect a buffering quantity individuals may lose prior 

to experiencing impairment (Stern et al., 2020). Contrary to BR, BM is conceptualised 

longitudinally, in terms of a reduced development of brain changes and pathology (Stern et 

al., 2020).  

Functional or cognitive brain processes constituting CR, are theoretically defined 

constructs opposed to BR reflecting neurobiological capital (Stern et al., 2020). As such, CR-

related processes and interindividual differences in CR may be targeted with functional MRI 

(e.g., via mapping of resting state or task-related functional activation brain networks). As an 

example, given a cognitive task one could measure activation in functional brain networks to 

determine efficiency (minimum level of activation necessary for task completion) or capacity 

(maximum level of activation possible given increasing demands) to operationalise the neural 

implementation of CR (Stern et al., 2020). In contrast to CR, BR may be operationalised with 

structural MRI measures. Critically, measures of brain structures, e.g., cortical thickness, may 
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reflect a combination of (concurrent) BR and (longitudinal) BM (Stern et al., 2020). As such, 

longitudinal assessments are necessary to differentiate e.g., those with preferable premorbid 

cortical thickness (i.e., BR) from those experiencing less volume loss (i.e., BM). Further 

candidates for measurement of BR involve grey matter volume, or cortical surface area (Stern 

et al., 2020).  

Alternatively, proxy measures such as education, or engagement in social activities 

may be used to operationalise CR. However, candidate CR-proxies may be associated with 

cognitive test performance but not reflect CR. Residual methods, i.e., regressing cognitive 

function on brain pathology associated with dementia such as amyloid burden or white matter 

hyperintensities (WMH) and using the residuals as measure of CR, have been proposed to 

overcome this issue (Elman et al., 2022). Similarly, BM may be operationalised with a 

residual approach regressing brain status on age (Stern et al., 2020). However, residual 

methods are under debate regarding limited validity. More precisely, given collinearity of 

residuals with the outcomes of interest, a more valid approach to operationalising CR or BM 

may be the investigation of effect modification by proxies, i.e., of the association of brain 

pathology and cognitive impairment (Elman et al., 2022).  

CR-proxies may impact BM over time. As an example, education may influence 

lifestyle choices and subsequently the likelihood of experiencing stroke and subsequent 

vascular damage. In such a scenario, education would relate to BM but not necessarily BR 

(Stern et al., 2020). Factors such as hearing impairment could be interpreted as CR-proxy if 

you would consider treatment of hearing loss as means to maintain functioning despite an 

apparent damage (Livingston et al., 2020). Other factors such as depression, physical activity, 

or alcohol consumption may reflect CR, BR, or BM. As an example, by intervening you 

could limit damage or target CR, but current evidence about working mechanisms does not 

yield a clear classification (Livingston et al., 2020). 
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CR is not fixed but assumed to be modifiable by lifetime exposures (Stern et al., 

2020). In an alternative framework, the concept of resilience is extended by incorporating 

factors imposing a detriment to CR. As such, a more holistic inclusion of risk factors such as 

depression is possible assuming factors contribute to neural resource enrichment or to its 

depletion (revised Scaffolding Theory of Aging and Cognition, Oosterhuis et al., 2023). 

Critically, CR-proxies are assumed to covary or contribute to CR, without necessarily 

reflecting a functional mechanism (Stern et al., 2020). In addition to that, reverse causation 

may drive associations of CR-proxies such as engagement in social activities or physical 

activity with dementia risk. Sophisticated methodologies involving Mendelian 

Randomisation have been applied to uncover the potential causal contribution of typical CR-

proxies to dementia risk by introducing genetic instruments for exposures of interest. 

However, independence assumptions underlying Mendelian Randomisation may not hold 

when applied to factors constituting in part individual-level exposures but also SDoH such as 

education, and e.g., survivor bias may obscure findings (Desai et al., 2023; European 

Alzheimer’s & Dementia Biobank Mendelian Randomization Collaboration et al., 2023; 

McMartin & Conley, 2020). 

Despite advantages in measurement and examination of CR, BR, and BM, discussed 

challenges impose limitations for prevention research. Critically, linkage of CR and BR or 

BM on a biological level (i.e., level of molecules, cells, and systems) needs to be established 

to fully exploit prevention potential (Stern et al., 2020).  

I.5 Key Challenges for Dementia Prevention 

To conclude the theoretical background, the following sections will recapitulate the 

relevance of modifiable social and behavioural risk factors for dementia prevention and 

allude to three key challenges for dementia prevention research. 
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I.5.1 Updated Relevance for Dementia Prevention 

Firstly, the lifetime risk of dementia is estimated to be 1 in 3 for women, and 1 in 5 

for men (Licher, Darweesh, et al., 2019). While projections about future dementia prevalence 

by design reflect a reduction of real-world complexities, it is highly uncertain if past 

improvements (e.g., increasing levels of education) will continue to decrease dementia 

incidence, if a plateau will be reached, or if widespread worsening of health, e.g., as indicated 

by increasing AD risk in hypertension, or increases in prevalence of hypertension and type 2 

diabetes, may counteract or even overturn potential reductions in dementia incidence 

(Adesuyan et al., 2023; Brück et al., 2022; Mills et al., 2020; Ong et al., 2023). Researchers 

have argued that improvements in e.g., lifestyle and healthcare may contribute to decreasing 

age-specific dementia incidence (Livingston et al., 2020). However, current trends, e.g., an 

increasing prevalence of early and midlife risk factors of dementia are not well represented in 

models projecting future dementia prevalence, and bias may emerge from period, or cohort 

effects (WHO, 2021). High costs for healthy nutrition and widespread availability of ultra-

processed food may contribute to socioeconomically patterned increases in the prevalence of 

obesity and type 2 diabetes, and related dementia (Delpino et al., 2022; Henney et al., 2024; 

Marmot, 2020). Furthermore, the increasing transition of social interactions to online spaces, 

or a modern lifestyle including sedentary behaviour, e.g., in the workplace, may affect further 

risk factors such as loneliness or physical activity, with likely detrimental contributions to 

dementia risk (Guthold et al., 2018; Lei et al., 2024). Without clear evidence of declining 

age-specific rates of dementia, the number of people living with dementia will most likely 

continue to increase due to population ageing and growth (Bussel et al., 2017; Prince et al., 

2016; Y.-T. Wu et al., 2016). Moreover, dementia remains a severe condition conferring an 

outrageous challenge for those affected by the syndrome and societies at large. Loss of 

autarchy and impaired cognition mark major limitations to participation of individuals in 
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everyday life, increasingly so given the complexity and pace of modern-day developments. 

As such, every individual living with dementia counts, and each year without impairment is 

precious. Detriments are multiplicated by unmet needs and inequalities in care, as well as 

psychosocial, financial and health consequences for the surrounding of those living with the 

syndrome, including informal carers, friends, and families (Bond et al., 2005; Lindeza et al., 

2020).  

Secondly, synergies among modifiable risk factors may be most efficiently addressed 

with personalised multi-domain interventions, which is also acknowledged in WHO 

guidelines for evidence-based dementia risk reduction (Barbera et al., 2023; Stephen et al., 

2021; WHO, 2019). Of note, current evidence on modifiable risk factors for dementia is still 

based largely on cohort surveys with limited follow-up, and variation in operationalisations 

of risk factors or analytical strategies may contribute to reduced comparability across studies 

(Peters, Booth, et al., 2019). Further, causality of the twelve most established modifiable 

social and behavioural risk factors of dementia is under debate (e.g., Desai et al., 2023; 

Kuźma et al., 2018). However, combined evidence from previous studies suggest a dose-

response relationship of modifiable risk factors with higher late life dementia risk and 

consequently potentials to prevention, aiming at a reduction of exposure (Peters, Booth, et al., 

2019). Of note, targeting of prevention efforts may be conducted on a continuum of 

proximity towards the individual. As one example, the Finnish Geriatric Intervention Study to 

Prevent Cognitive Impairment and Disability suggested improvements in cognitive function 

and secondary outcomes such as lower risk of decline, particularly in carriers of an APOE ε4 

allele, which denotes elevated risk of AD (Solomon et al., 2018). More generally, beneficial 

effects of multi-domain interventions for global cognition and cognitive domains relevant for 

functional abilities have been shown (e.g., executive functioning, processing speed), 

especially when focussing on at-risk populations (Andrieu et al., 2017; Espeland et al., 2017; 
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Hafdi et al., 2021; Kivipelto et al., 2018; Kulmala et al., 2019; Ngandu et al., 2015; Yaffe et 

al., 2024).  

Thirdly, the emergence of disease modifying therapies is accompanied by discussion 

relating to lacking infrastructure necessary for screening of eligible patient subgroups and 

related cost, also for the provision of therapeutics (Jönsson et al., 2023; Wimo et al., 2023). 

As an example, amyloid positivity determined with PET scans reflects the most established 

biomarker for AD. Due to the short half-life of amyloid PET tracers and the scarcity of 

cyclotron-equipped production facilities, screening is hampered even in countries with 

widespread PET scanner infrastructure (Zetterberg & Bendlin, 2021). Moreover, despite the 

aim to ensure equitable access, costs of treatment will supposedly be high and may reinforce 

socioeconomic disparities in health care within countries but also globally (Bradshaw et al., 

2024; The Lancet Neurology, 2024; Wimo et al., 2023). While recent developments in 

treatment may denote a new era, related challenges regarding equitable access, feasibility 

constraints and costs may exceed health care systems’ budgets (Jönsson et al., 2023; Wimo et 

al., 2023). 

In sum, more research on potentially modifiable risk factors is necessary to capture 

and unleash the full potential of prevention for society at large. Even in a best-case scenario, 

assuming the introduction of feasible screening of individuals at-risk, e.g., based on fluid 

biomarkers, improvements in overall population health and exposure to risk factors, the 

number of people living with dementia may increase due to secular trends (Brück et al., 

2022). Given well-established importance of theoretically modifiable risk factors for 

dementia, related risk factors and overall health and constraints to disease modification by 

treatment, targeting modifiable risk factors reflects a fruitful entry point for dementia 

prevention and related research (Stephen et al., 2021; WHO, 2019).  
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I.5.2 Socioeconomic Disparities in Health 

Economically patterned inequalities in dementia risk denote a sensitive gap in the 

research landscape so far and likely limit individuals to flourish to their full potential. 

Previous findings suggest stronger associations with dementia risk for SDoH, or modifiable 

risk factors such as socioeconomic status (SES), air pollution or education compared with 

e.g., genetic predisposition (Weiss et al., 2020). Moreover, risk factors captured with the 

LIfestyle for BRAin health score (LIBRA; considers health status [coronary heart disease, 

type-2 diabetes, hypercholesterolemia, hypertension, depression, obesity, renal disease]; 

lifestyle-related factors [smoking, physical inactivity, alcohol use, high cognitive activity, 

diet]) have been shown to partially mediate the association of SES with higher dementia risk 

(Deckers et al., 2019; Livingston et al., 2020). Given the notoriously complex interrelations 

of theoretically modifiable risk factors of dementia, individual contributions of candidate risk 

and protective factors to dementia incidence are not easily disentangled, which is however 

necessary to investigate prevention potential by targeting said factors. Critically, exposure 

histories and the potential accumulation of detrimental effects of e.g., a less favourable SES, 

to cognition cannot be randomly allocated or manipulated in RCTs and require further 

attention in statistical analyses. In a life course model of risk and resilience for dementia, the 

importance of baseline genetic predisposition to dementia, as well as its potential interaction 

with exogenous risk factors further complicates observational research (Solomon et al., 

2018). Against this background, it is crucial to consider exposures holistically and to identify 

at-risk populations to efficiently reduce apparent socioeconomic disparities in health.  

In a first step, levers for prevention need to be identified. As alluded to, SES may 

exert its effect on dementia risk through differential exposure to cardiovascular and related 

lifestyle factors (Deckers et al., 2019; Geraets & Leist, 2023). As a multidomain intervention, 

involving diet, physical activity, cognitive training, and vascular risk monitoring, previous 
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findings reinforce the potential to reduce socioeconomic disparities in dementia risk by 

targeting modifiable risk and protective factors that promote cardiovascular health (Kivipelto 

et al., 2018; Livingston et al., 2020; Ngandu et al., 2015; Qiu & Fratiglioni, 2015).  

SES may be linked to selection into areas or neighbourhoods with fewer 

socioeconomic resources as well. Importantly, higher area-level deprivation has been linked 

to AD neuropathology, previously (Powell et al., 2020). To identify potentials to intervention 

in well-defined target groups, individual-level characteristics thus need to be examined 

simultaneously with area-level indicators, thereby dissecting contributions of environmental 

exposures over individual-level exposures. This imposes challenges for researchers largely 

due to the availability of longitudinal measures of exogenous macrolevel and individual 

modifiable social and behavioural risk factors, accompanied by genetic assessments and 

clinical follow-ups. 

I.5.3 Examining Biological Working Mechanisms 

Education, as a constituent of SES is mainly acquired in early life. In later life, lower 

education reflects a risk factor of cognitive decline and dementia (Livingston et al., 2020). 

Previous findings suggest higher education to exert its protective effect primarily through 

increasing levels of cognitive abilities in early life, rather than affecting cognitive decline 

(Lövdén et al., 2020). Of note, formal education and related educational attainment is 

frequently assessed as e.g., highest degree obtained, or total years of schooling. Suggested 

resilience mechanisms may not generalise to different operationalisations of education, e.g., 

capturing socioeconomic position (Chapko et al., 2018; Lövdén et al., 2020; UNESCO 

Institute for Statistics, 2012). While I will proceed to examine education in this thesis, I 

adhere to a definition of education as formal education, i.e., years of schooling accumulated 

in early life. As such, education is assessed on an individual level and participants vary in 
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educational attainment, despite partial dependence on e.g., policy. I will thus further discuss 

education as exogenous individual risk factor. 

While a comprehensive overview of the current landscape of resilience research and 

related methodological challenges is beyond the scope of this thesis, physiological working 

mechanisms or neurological correlates, relating e.g., education to BR continue to be 

investigated (Bocancea et al., 2021). Higher educated people living with dementia are on 

average older at the time of diagnosis and show a higher pathological burden linked to 

dementia, suggesting higher BR (Chapko et al., 2018; Lövdén et al., 2020). As such, a recent 

study identified brain connectivity (i.e., node degree operationalised as average number of 

connections of the structural connectome) as potential neurological correlate of resilience in 

the brain, supporting the notion of BR (DeJong et al., 2023). With implied critical or sensitive 

periods, it is unclear whether intervention on education in later life would alter risk of 

cognitive impairment. Previous research further suggests that education may relate to 

dementia risk indirectly. Mediation could follow through occupational status or complexity, 

lifestyle-related exposures, or reflect education as indicator of prolonged periods of extensive 

cognitive stimulation  (Lövdén et al., 2020; Oosterhuis et al., 2023). Alternative pathways 

have been suggested by previously identified associations of SES and related, education, with 

gut microbiome alterations, that are in turn linked to later life health (Bowyer et al., 2019; 

Ding & Schloss, 2014; G. E. Miller et al., 2016). More specifically, the gut microbiome, i.e., 

the collection of microbes residing in the gut may relate to cognitive impairment via the gut-

brain-axis (Morais et al., 2021; Saji, Niida, et al., 2019). Importantly, such pathways point to 

potentially modifiable intervention targets in later life. 

I.5.4 Limited Access to Diagnosis and Risk Prediction 

Risk prediction is crucial to identify and target individuals benefiting most from 

interventions and to tackle socioeconomic inequalities translating into dementia risk (WHO, 
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2022a). Moreover, risk profiling may allow improved recruitment strategies for cohort 

studies and drug trials. Despite advancement in large-scale data collection, predictive 

algorithms, identification of biomarkers, and harmonisation of large-scale survey designs, 

individual risk prediction remains challenging. This is in part due to inherent feasibility 

constraints of representative cohort surveys.  

In general, clinically valid dementia ascertainment in longitudinal studies would 

require resource intensive testing procedures. One potential solution to this caveat is the 

application of dementia classification algorithms, determining ‘probable dementia’ based on 

readily available cognition or function measures. However, cross validation of such 

algorithms is scarce, and different study setups may lead differential performance of 

classification algorithms. To advance the availability, reliability, and stability of dementia 

ascertainment across data silos, research on the generalisability of dementia classification 

algorithms is needed, given restrictions to data collection.  

I.6 Aims of the Thesis 

This cumulative thesis responds to key challenges in the field of dementia prevention 

regarding social and behavioural risk factors, potential mechanisms conferring cognitive 

impairment, and risk prediction to classify ‘probable dementia’ status. This section will 

formulate the research questions evolving around identified challenges of the field. 

To recapitulate, the number of people living with dementia will likely proceed to 

grow despite potential overestimation in previous prevalence projections (Brück et al., 2022; 

Nichols et al., 2022). Moreover, recent findings suggest availability of biomarker-guided, 

early diagnosis and disease modifying treatments in a foreseeable future, albeit current 

discussion regarding feasibility constraints and levelling of a risk/benefit ratio for the treated 

(Ackley et al., 2021; Avgerinos et al., 2021; Bradshaw et al., 2024; Cummings, 2023; Pang et 

al., 2023; van Dyck et al., 2023; Zetterberg & Bendlin, 2021). Besides, contributions of 
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modifiable social and behavioural risk factors to dementia risk may be underestimated due to 

not sufficiently accounting for synergies, communalities and clustering (Deckers et al., 2019; 

Livingston et al., 2020; Welberry et al., 2023). Against this background, prevention remains 

the most important aim in the race against dementia, and a focus on modifiable risk factors is 

paramount to lower the burden of dementia globally.  

Firstly, the AD Exposome postulates interactions of exogenous and endogenous 

factors contributing to dementia risk (Finch & Kulminski, 2019). As such, exogenous 

macrolevel factors, such as neighbourhood deprivation opposed to exogenous individual 

factors such as wealth may interact with endogenous predisposition to develop dementia 

(Ajnakina et al., 2020). Identification of such interactions, contrasting exogenous macrolevel 

and individual domains, would allow to assess potential for prevention and in turn more 

accurate risk prediction and subsequent provision of targeted interventions. Additionally, 

explorative observations may point to mechanisms leading to increased dementia risk. This is 

investigated in paper 1. How are socioeconomic indicators of the environment in which 

people reside associated with individual dementia risk given potential interaction with 

endogenous risk factors? 

Secondly, prevention efforts depend in part on knowledge about working mechanisms 

through which identified risk factors are associated with dementia risk. As an example, 

education is assumed to relate to BR, and thus resilience to neuropathology, associated with 

cognitive impairment (Lövdén et al., 2020). However, previous research mainly focussed on 

formal education accumulated in early life. Examining potentially modifiable biological 

mediators of a likely protective effect of education regarding cognitive health may offer new 

directions for the development of effective prevention strategies, extending to later life. One 

such avenue is reflected in previous findings concerning gut microbiome alterations relating 

to SES and later life health (Bowyer et al., 2019; Ding & Schloss, 2014; G. E. Miller et al., 
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2016). This is investigated in paper 2. What are potential working mechanisms linking 

education with the risk of cognitive impairment in later life? 

Thirdly, dementia case ascertainment is hampered in large-scale observational studies, 

in turn limiting statistical power and analysis of dementia as an outcome. Previous findings 

suggest validity of classifying dementia status with algorithms using minimal predictor sets 

based on available cognitive test records (Gianattasio et al., 2019). Given previously 

established classification algorithms, the question arises if applicability to cross-national 

contexts is given (Crimmins et al., 2011). Critically, dementia is a global burden and 

generalisability of findings is crucial. This is investigated in paper 3. How can information 

collected in representative cohort surveys be used to classify ‘probable dementia’ status 

given cross-national differences and absence of clinically validated cognitive assessments? 

The following chapters, cover three individual studies (Chapters II to IV) responding 

to the three research questions. They are followed by a synthesis of findings and a discussion 

of implications for the field as well as future directions for research.  
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Chapter II – Identification of Risk Factors: Socioeconomic Deprivation, 

Genetic Risk, and Incident Dementia 

Klee, M., Leist, A. K., Veldsman, M., Ranson, J. M., & Llewellyn, D. J. (2023). 

Socioeconomic Deprivation, Genetic Risk, and Incident Dementia. American Journal 

of Preventive Medicine, 64(5), 621–630. https://doi.org/10.1016/j.amepre.2023.01.012 

  



 

 

42 

Abstract 

Socioeconomic factors and genetic predisposition are established risk factors for 

dementia. It remains unclear whether associations of socioeconomic deprivation with 

dementia incidence are modified by genetic risk. 

Participants in the UK Biobank age 60 years and older, of European ancestry without 

dementia at baseline (2006-2010) were eligible to the analysis, with main exposures area-

level deprivation based on the Townsend Deprivation Index, individual-level socioeconomic 

deprivation based on car and home ownership, housing type and income, and polygenic risk 

of dementia. Dementia was ascertained in hospital and death records. Analysis was conducted 

in 2021. 

In this cohort study, N=196 368 participants (M [SD] age=64.1 [2.9] years, 52.7% 

female) were followed-up for 1 545 316 person-years (median [interquartile range] follow-

up=8.0 [7.4 to 8.6] years). In high genetic risk and high area-level deprivation 1.71% (95% 

CI, 1.44%, 2.01%) developed dementia compared to 0.56% (95% CI, 0.48%, 0.65%) in low 

genetic risk and low-to-moderate area-level deprivation (hazard ratio=2.31 [95% CI, 1.84, 

2.91]). In high genetic risk and high individual-level deprivation 1.78% (95% CI, 1.50%, 

2.09%) developed dementia compared to 0.31% (95% CI, 0.20%, 0.45%) in low genetic risk 

and low individual-level deprivation (hazard ratio=4.06 [95% CI, 2.63, 6.26]). There was no 

significant interaction between genetic risk and area-level (p=.77) or individual-level (p=.07) 

deprivation. An imaging substudy including 11 083 participants found greater burden of 

white matter hyperintensities associated with higher socioeconomic deprivation.  

Individual-level and area-level socioeconomic deprivation were associated with 

increased dementia risk. Dementia prevention interventions may be particularly effective if 

targeted to households and areas with fewer socioeconomic resources, regardless of genetic 

vulnerability.  
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II.1 Introduction 

The risk of AD and other subtypes of dementia is determined by multiple pathways 

including genetic, environmental and lifestyle factors (Livingston et al., 2020). Most cases 

occur in older adults and risk is linked to multiple common genetic variants, with PAF for 

single nucleotide polymorphisms (SNPs) of up to 8% or 27.3% for APOE ε4 allele (Lambert 

et al., 2013). Many studies have therefore employed polygenic risk scores (PRS) to quantify 

genetic risk of dementia suggesting almost two times higher incidence in high versus low 

polygenic risk (Ajnakina et al., 2020; Jansen et al., 2019; Lambert et al., 2013; Licher, 

Ahmad, et al., 2019; Lourida et al., 2019). 

Moreover, individuals with fewer socioeconomic resources are at higher risk of 

dementia (Ajnakina et al., 2020; Cadar et al., 2018; Powell et al., 2020). Socioeconomic 

deprivation has been measured before, using both individual-level indicators such as income 

or wealth, and area-level indices like the Townsend Deprivation Index that captures 

unemployment rates, car and home ownership, and household overcrowding (Ajnakina et al., 

2020; Cadar et al., 2018; Lourida et al., 2019; Townsend, 1987). Despite lower PAFs of risk 

factors related to socioeconomic deprivation (air pollution, 2.3%; education, 7.1%) recent 

findings suggest higher importance of wealth-related compared to genetic risk factors 

(Livingston et al., 2020; Weiss et al., 2020). While low area-level socioeconomic deprivation 

has been linked to CR and lower rates of cognitive decline in some studies, others found area-

level deprivation no longer significant after adjustment for individual-level wealth (Cadar et 

al., 2018; Clarke et al., 2012, 2015). This suggests previous studies captured potentially 

distinct drivers of associations such as access to green space or air pollution, which are yet to 

be fully understood (de Keijzer et al., 2020; Peters, Ee, et al., 2019).  

Cross-sectional findings link higher area-level deprivation to AD neuropathology 

(Powell et al., 2020). Further, a recent study found higher socioeconomic deprivation, 
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amongst others, associated with higher brain age (de Lange et al., 2021). Longitudinally, 

cognitive decline and accelerated degeneration in signature regions of AD including the 

medial temporal lobe were associated with higher area-level socioeconomic deprivation 

(Hunt et al., 2021). Additionally, links of WMH to a more rapid cognitive decline in MCI 

patients have been established before (Tosto et al., 2014).  

No study has yet investigated the interplay of said factors jointly. Consequently, net 

associations of area-level above individual-level socioeconomic deprivation and their 

potential mechanisms have not been fully elucidated. While polygenic scores quantify a 

diathesis for dementia, it is yet to be examined if genetic predisposition may exacerbate 

associations of area-level and individual-level socioeconomic deprivation with incident 

dementia. Earlier research found interactions of polygenic risk with wealth and educational 

attainment and of APOE genotype with smoking (Ajnakina et al., 2020; N. Zhang et al., 

2021). Findings show improved resilience to AD-related neurodegeneration, but there is also 

evidence suggesting more complex interactive pathways involving inflammation, which are 

not well understood yet (Ajnakina et al., 2020; Mole et al., 2020; Pan et al., 2020; Y. Zhang 

et al., 2021). Identifying potential interaction effects is crucial since they may point to risk 

factors and population groups that are most effective to target in dementia risk reduction 

interventions. 

The purpose of this study was to use data from a large population-based cohort to 

investigate the hypothesis that associations between individual- and area-level socioeconomic 

deprivation and dementia may be modified by genetic risk. Complementary to previous 

research, the UK Biobank study offers unique opportunities. With over 500 000 participants 

analyses are well-powered to detect potentially small interactions. Additionally, information 

on genetics, imaging, area-level and individual-level socioeconomic deprivation is provided. 
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Lastly, linkage to health records and death registries allows extensive follow-up and dementia 

ascertainment (Wilkinson et al., 2019).  

II.2 Methods 

II.2.1 Study Sample 

Data was provided by the UK Biobank, a population-based cohort study in the UK 

(Sudlow et al., 2015). Participants completed baseline assessments between 2006 and 2010 

hosted in 22 centres (Sudlow et al., 2015). Of 502 536 participants, N=196 368 were eligible 

to analysis excluding participants below 60 (n=285 037), of other than European ancestry or 

without genetic data (n=20 969), with dementia at baseline (n=147) or discontinued consent 

before time of analysis (n=15). Follow-up continued until the date of first diagnosis, death, 

dropout, or last hospital admission. Participants without technical exclusion criteria (e.g., 

metal implants, discontinued consent, high movement) were reinvited for imaging between 

2014 and 2020 (Littlejohns et al., 2020; S. Smith M. et al., 2020; Sudlow et al., 2015). A 

neuroimaging substudy included 11 083 eligible participants with imaging data.  

II.2.2 Measures 

Area-level socioeconomic deprivation was assessed with the Townsend Deprivation 

Index including information on employment, home ownership, car ownership and household 

overcrowding, based on baseline assessments and the preceding national census output areas 

(Townsend, 1987). Area-level socioeconomic deprivation categories distinguish low-to-

moderate (quintiles 1-4) and high (quintile 5) deprivation, as exploratory analyses suggested 

no significant differences in the associations of quintiles 1-4 with dementia risk (Appendix II 

Figure S1). 

Individual-level socioeconomic deprivation was based on a weighted composite score 

including home (own home without mortgage; other/not disclosed) and car ownership (one or 

more; none/not disclosed), housing type (house/flat; other/not disclosed) and annual 
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household income before tax (>£31 000; £18 000 to 30 999; <£18 000; not disclosed). For 

comparison, the median equivalised net household income in the UK in 2010/11 (end of 

baseline) was ~ 22 000£. The coefficients of a Cox proportional-hazards regression, with 

time to incident dementia as outcome, were used to compute individual-level socioeconomic 

deprivation (Appendix II Table S1). The score sums the product of indicators and their 

regression coefficient and divides it by the total sum of coefficients. Categories distinguish 

low (quintile 1), intermediate (quintiles 2 to 4) and high (quintile 5) individual-level 

socioeconomic deprivation. Previous research suggests systematic differences between 

participants disclosing socioeconomic indicators like income and those that do not (Kim et 

al., 2007). Therefore, and due to group sizes, not disclosed information was merged with less 

favourable categories except for income where it was kept as a separate category. A 

sensitivity analysis excluded participants who did not disclose socioeconomic information 

yielding similar results (Appendix II Table S1). 

The PRS quantifies AD and dementia risk (Lourida et al., 2019). Polygenic risk was 

operationalised as the z-standardised weighted sum of the number of prevalent alleles at each 

AD-related SNP, including APOE genotype. Weights are based on their association with AD 

determined in a meta-analysis of genome-wide association studies of individuals of European 

ancestry (Lambert et al., 2013). Therefore, analyses were restricted to participants of self-

identified European ancestry (British, Irish, other white). In total 249 273 SNPs met the p 

value threshold for inclusion, i.e., p<.50 (Lourida et al., 2019). Polygenic risk groups 

distinguish low (quintile 1), intermediate (quintiles 2 to 4) and high (quintile 5) risk. 

Participants’ all-cause dementia status was derived from hospital inpatient data 

(England: Hospital Episode Statistics, Scotland: Scottish Morbidity Record, Wales: Patient 

Episode Database) and death records (England & Wales: National Health Service Digital, 

Scotland: Information and Statistics Division), coding ICD-9/10 denoted primary/secondary 
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dementia diagnosis or dementia-related cause of death (WHO, 1992). ICD codes are 

presented in the supplementary material of a previous publication (Lourida et al., 2019). 

Previous research suggests high validity of this protocol, balancing a positive predictive value 

of 84.5% with reasonable case ascertainment (Wilkinson et al., 2019). 

The six imaging-derived phenotypes (WMH, whole brain, grey matter, white matter, 

left and right hippocampal volume), were generated by an image-processing pipeline 

developed and run on behalf of UK Biobank (Alfaro-Almagro et al., 2018; Brugulat-Serrat et 

al., 2020; Cox et al., 2019; Lyall et al., 2020; K. L. Miller et al., 2016; Nobis et al., 2019; S. 

Smith M. et al., 2020; Wardlaw et al., 2015).  

All models were adjusted for baseline characteristics including age in years, education 

(high: College/university degree; medium: higher secondary; low: lower secondary; other: 

degrees not covered in response options/non-response), sex, marital status (living with 

husband/wife/partner; joint category other/not disclosed), ancestry (20 first principal 

components) and in-sample third-degree relatedness (UNESCO Institute for Statistics, 2012). 

Models including PRS were additionally adjusted for the number of alleles included during 

computation. Potential mediators presence of depressive symptoms in the last 2 weeks and a 

healthy-lifestyle score (favourable; intermediate; unfavourable) were included in the main 

analysis (Lourida et al., 2019; VanderWeele, 2011). 

II.2.3 Statistical Analysis 

Missing data were assumed missing at random and addressed using multiple 

imputation by chained equations with five imputations (Donders et al., 2006). The imputation 

procedure employed recursive partitioning which is beneficial in the presence of nonlinear 

relations (Doove et al., 2014). Dementia incidence, survival times, variables relating to 

genetic risk or imaging, age, sex, and housing type were complete in eligible participants 

(Appendix II Figure S2). 
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Cox proportional-hazards regressions were applied to investigate the relationship of 

individual-level and area-level socioeconomic deprivation with time to incident all-cause 

dementia. Time at risk of dementia was modelled from baseline until diagnosis, loss to 

follow-up, death, or end of hospital admissions (England: 31/03/2017, Wales: 29/02/2016, 

Scotland: 31/10/2016). Main exposures were introduced stepwise to confirm main 

associations. Interaction terms between socioeconomic deprivation and polygenic risk were 

tested to investigate moderation. The assumption of proportional hazards was confirmed 

using Schoenfeld residuals, i.e., p=.71 in first imputed data set (Schoenfeld, 1982).  

For the main analysis, socioeconomic deprivation categories were combined with 

polygenic risk groups, with low genetic risk and lower socioeconomic deprivation as 

reference categories, to investigate variation in the associations of socioeconomic deprivation 

with dementia incidence for different levels of genetic risk. Absolute risk was calculated as 

percentage of cases based on the first imputed data set. Incidence rates per 1,000 person-years 

were calculated accordingly. 

For the exploratory imaging substudy, potential imaging-related confounders were 

entered in the multivariable linear regressions as predictors for imaging-derived phenotypes, 

including site-specific derivatives capturing (squared) age, sex, age-sex interactions, head 

size, (squared) days since scanner start-up and two dummy variables coding site. In a second 

step, scaled residuals were used as dependent variables in multivariable linear regressions 

including main exposures, covariates and inverse probability weights based on logistic 

regression models with selection into the imaging subsample as dependent variable (Alfaro-

Almagro et al., 2021; Bradley & Nichols, 2022; Cole & Hernán, 2008). WMH burden was 

log-transformed.  

Sensitivity analyses comprised replication in complete-case data and subsamples 

stratified by polygenic risk and sex. For the imaging substudy, a less conservative set of 
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potential imaging-related confounders including age, sex, age-sex interactions, head size and 

site was applied (Alfaro-Almagro et al., 2021). 

Results were pooled across five imputed data sets according to Rubin’s rules (van 

Buuren & Groothuis-Oudshoorn, 2011). Significance was assessed two-sided with p<.05. 

Analyses were performed in R version 4.0.3 (R Core Team, 2022; Therneau, 2021; van 

Buuren & Groothuis-Oudshoorn, 2011). Analysis code is available on the GitHub page of the 

first author (https://github.com/makleelux). 

The UK Biobank study received approval from the North West Multi-centre Research 

Ethics Committee (MREC), the National Information Governance Board for Health & Social 

Care (NIGB) and the Community Health Index Advisory Group (CHIAG). All participants 

signed informed consent at baseline. 

II.3 Results 

In total, N=196 368 (M [SD] age=64.1 [2.9] years) participants (52.7% female) were 

followed up for 1 545 316 person-years (median [interquartile range] follow-up=8.0 [7.4 to 

8.6] years). During follow-up, n=1,769 participants developed dementia (Table 1). In 

complete-case data, median age at dementia diagnosis was 72.0 for low-to-moderate and 71.7 

for high area-level socioeconomic deprivation, and 71.6 for low, 72.0 for intermediate and 

71.7 for high individual-level socioeconomic deprivation. 
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Table 1 Baseline Characteristics (Study 1) 

Characteristic Total No. (%) 
 Incident Dementia (n=1,769) No Dementia (n=194 599) 

Age, Years, M (SD) 65.8 (2.7) 64.1 (2.8) 
Sex   
  Female 790 (44.7) 102 644 (52.8) 
  Male 979 (55.3) 91 955 (47.2) 
Educationa,b   
  High 317 (17.9) 49 493 (25.4) 
  Medium 472 (26.7) 59 160 (30.4) 
  Low 255 (14.4) 30 939 (15.9) 
  Otherc 725 (41.0) 55 007 (28.3) 
Married or in a Relationshipb 1,586 (89.7) 179 256 (92.1) 
Depressive Symptoms in Last 2 Weeksb 411 (23.2) 32 942 (16.9) 
Healthy Lifestyleb,d   
  5 (Favourable) 251 (14.2) 39 022 (20.1) 
  2 to 4 (Intermediate) 1,049 (59.3) 116 772 (60.0) 
  1 (Unfavourable) 469 (26.5) 38 805 (19.9) 
Individual-Level Socioeconomic Deprivationb,d,e   
  1 (Low) 174 (9.8) 39 100 (20.1) 
  2 to 4 (Intermediate) 1,037 (58.6) 116 784 (60.0) 
  5 (High) 558 (31.6) 38 715 (19.9) 
Area-Level Socioeconomic Deprivationb,d,f   
  1 to 4 (Low-to-Moderate) 1,266 (71.6) 155 829 (80.1) 
  5 (High) 503 (28.4) 38 770 (19.9) 
Genetic Risk Groupd,g   
  1 (Low) 247 (14.0) 39 027 (20.1) 
  2 to 4 (Intermediate) 1,038 (58.7) 116 783 (60.0) 
  5 (High Genetic) 484 (27.4) 38 789 (19.9) 

Note. Percentages may not sum to 100 because of rounding. aEducation was grouped based on the UNESCO 

ISCED 2011(UNESCO Institute for Statistics, 2012) classification system. bMissing values have been imputed. 

Reported values are averaged across 5 imputed datasets. cThe response level other summarised options prefer 

not to answer and none of the above. dCategories based on continuous scores. Numbers indicate quintiles from 

lowest (one) to highest (five). eIndividual-level socioeconomic deprivation summarises information on home 

and car ownership, housing type and income. fArea-level socioeconomic deprivation based on the Townsend 

deprivation index (Townsend, 1987). gGenetic Risk based on a polygenic risk score for dementia (Lourida et al., 

2019). 
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Dementia risk was higher in participants living in areas with fewer socioeconomic 

resources. Of participants in high area-level socioeconomic deprivation, 1.28% developed 

dementia (95% CI, 1.17%, 1.40%; Appendix II Table S2) versus 0.81% (95% CI, 0.76%, 

0.85%) in low-to-moderate area-level socioeconomic deprivation (adjusted hazard ratio=1.47 

[95% CI, 1.32, 1.63]; Table 2). Inclusion of genetic risk resulted in an adjusted hazard ratio 

of 1.47 (95% CI, 1.32, 1.64), indicating that area-level socioeconomic deprivation is 

independent of genetic risk. Additional inclusion of individual-level socioeconomic 

deprivation resulted in an adjusted hazard ratio of 1.28 (95% CI, 1.14, 1.43), suggesting that 

the association between area-level socioeconomic deprivation and dementia risk is partially 

accounted for by individual-level socioeconomic deprivation. 



 

 

52 

Table 2 Risk of Incident Dementia According to Area-Level Socioeconomic Deprivation 

 Model 1 Model 2a Model 3b 

Area-Level Socioeconomic 
Deprivationc 

Low-to-Moderate 
(n=157 095) 

High 
(n=39 273) 

Low-to-Moderate 
(n=157 095) 

High 
(n=39 273) 

Low-to-Moderate 
(n=157 095) 

High 
(n=39 273) 

No. of Dementia Cases / 
Person-Yearsc 1,266 / 1 240 516 503 / 304 799 1,266 / 1 240 516 503 / 304 799 1,266 / 1 240 516 503 / 304 799 

HR (95% CI) 1 [Reference] 1.47 (1.32, 1.63) 1 [Reference] 1.47 (1.32, 1.64) 1 [Reference] 1.28 (1.14, 1.43) 

p  <.001  <.001  <.001 

Note. All Cox proportional-hazards regressions were adjusted for the 20 first principal components, third degree relatedness, age, sex, education, and marital status. 

HR=Hazard ratio. aModel 2 additionally included polygenic risk and the number of alleles used to compute the polygenic risk score. bModel 3 included adjustments of model 

2 and individual-level socioeconomic deprivation. cReported results are based on the first imputed data set. 
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Dementia risk also increased monotonically across individual-level socioeconomic 

deprivation categories. Of participants with high individual-level socioeconomic deprivation, 

1.41% developed dementia (95% CI, 1.29%, 1.53%; Appendix II Table S3) versus 0.44% 

(95% CI, 0.38, 0.51%) with low individual-level socioeconomic deprivation (adjusted hazard 

ratio=2.57 [95% CI, 2.14, 3.08]; Table 3). Inclusion of genetic risk resulted in an adjusted 

hazard ratio of 2.57 (95% CI, 2.14, 3.09) for high individual-level socioeconomic 

deprivation, indicating that individual-level socioeconomic deprivation is independent of 

genetic risk. Additional inclusion of area-level socioeconomic deprivation resulted in an 

adjusted hazard ratio of 2.38 (95% CI, 1.98, 2.87) for high individual-level socioeconomic 

deprivation, suggesting that the association between individual-level socioeconomic 

deprivation and dementia risk is independent of area-level socioeconomic deprivation. 
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Table 3 Risk of Incident Dementia According to Individual-Level Socioeconomic Deprivation 

 Model 1 Model 2a Model 3b 

Individual-Level 
Socioeconomic 

Deprivationc 

Low 
(n=39 274) 

Intermediate 
(n=117 821) 

High 
(n=39 273) 

Low 
(n=39 274) 

Intermediate 
(n=117 821) 

High 
(n=39 273) 

Low 
(n=39 274) 

Intermediate 
(n=117 821) 

High 
(n=39 273) 

No. of Dementia 
Cases / Person-
Yearsc 

174 / 309 221 1,042 / 929 551 553 / 306 541 174 / 309 221 1,042 / 929 551 553 / 306 541 174 / 309 221 1,042 / 929 551 553 / 306 541 

HR (95% CI) 1 [Reference] 1.63 (1.38, 1.93) 2.57 (2.14, 3.08) 1 [Reference] 1.63 (1.38, 1.93) 2.57 (2.14, 3.09) 1 [Reference] 1.62 (1.37, 1.92) 2.38 (1.98, 2.87) 

p  <.001 <.001  <.001 <.001  <.001 <.001 

p of Trendd   <.001   <.001   <.001 

Note. All Cox proportional-hazards regressions were adjusted for the 20 first principal components, third degree relatedness, age, sex, education, and marital status. aModel 2 

additionally included polygenic risk and the number of alleles used to compute the polygenic risk score. HR=Hazard ratio. bModel 3 included adjustments of model 2 and 

area-level socioeconomic deprivation. cReported results are based on the first imputed data set. dp for trend was assessed using the continuous score of individual-level 

socioeconomic deprivation.  
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In models adjusted for socioeconomic deprivation, intermediate (adjusted hazard 

ratio=1.37 [95% CI, 1.19, 1.58]) and high (adjusted hazard ratio=1.91 [95% CI, 1.63, 2.23]) 

genetic risk were significantly associated with dementia risk. When genetic risk and 

socioeconomic deprivation categories were combined there was a consistent pattern of 

increasing dementia risk (Figure 1). Of participants with high genetic risk and high area-level 

socioeconomic deprivation, 1.71% (95% CI, 1.44%, 2.01%; Appendix II Table S4) 

developed dementia versus 0.56% (95% CI, 0.48%, 0.65%) with low genetic risk and low-to-

moderate area-level socioeconomic deprivation (adjusted hazard ratio=2.31 [95% CI, 1.84, 

2.91]). There was no significant interaction between area-level socioeconomic deprivation 

and genetic risk (p=.77; Appendix II Figure S3), indicating that the association with area-

level socioeconomic deprivation did not vary substantially based on genetic risk. Of 

participants with high genetic risk and high individual-level socioeconomic deprivation, 

1.78% (95% CI, 1.50%, 2.09%; Appendix II Table S5) developed dementia versus 0.31% 

(95% CI, 0.20%, 0.45%) with low genetic risk and low individual-level socioeconomic 

deprivation (adjusted hazard ratio=4.06 [95% CI, 2.63, 6.26]). There was no significant 

interaction between individual-level socioeconomic deprivation and genetic risk (p=.07; 

Appendix II Figure S4), indicating that the association with individual-level socioeconomic 

deprivation did not vary substantially based on genetic risk.  
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Figure 1 Risk of Incident Dementia for A Area-Level and B Individual-Level Socioeconomic Deprivation With Genetic Risk.  

A Area-level Socioeconomic Deprivation 
Deprivation Total No.a No. Dementia Cases / Person-Yearsa HR (95% CI)  

 

p 
Low Genetic Risk  

Low-to-Moderate  31 648 177 / 249 647 1 [Reference]  

High  7,626 70 / 59 124 1.30 (0.99, 1.73) .06 
Intermediate Genetic Risk  

Low-to-Moderate  94 316 744 / 744 724 1.39 (1.18, 1.64) <.001 
High  23 505 294 / 182 389 1.72 (1.41, 2.08) <.001 

High Genetic Risk  

Low-to-Moderate  31 131 345 / 246 144 1.96 (1.63, 2.35) <.001 
High  8,142 139 / 63 285 2.31 (1.84, 2.91) <.001 

     

B Individual-level Socioeconomic Deprivation 
Deprivation Total No.a No. Dementia Cases / Person-Yearsa HR (95% CI)  

 

p 
Low Genetic Risk  

Low  8,110 25 / 63 790 1 [Reference]  

Intermediate  23 624 134 / 186 093 1.50 (0.97, 2.30) .07 
High  7,540 88 / 58 887 2.69 (1.71, 4.24) <.001 

Intermediate Genetic Risk  

Low  23 417 103 / 184 307 1.42 (0.92, 2.20) .12 
Intermediate  70 774 614 / 558 529 2.24 (1.50, 3.36) <.001 
High  23 630 321 / 184 276 3.12 (2.06, 4.74) <.001 

High Genetic Risk  

Low  7,747 46 / 61 124 1.95 (1.20, 3.17) .01 
Intermediate  23 423 294 / 184 928 3.24 (2.14, 4.89) <.001 
High  8,103 144 / 63 377 4.06 (2.63, 6.26) <.001 
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Note. Coefficients correspond to combined groups of socioeconomic deprivation and genetic risk. All Cox proportional-hazards regressions were adjusted for the 20 first 

principal components, third-degree relatedness, number of alleles used to compute polygenic risk score, age, sex, education, marital status, healthy lifestyle, and depressive 

symptoms in the last 2 weeks. In addition, adjustments for (A) individual-level and (B) area-level socioeconomic deprivation were included. The number of dementia cases 

and dementia cases per person-years are based on the first imputed data set. HR=Hazard Ratio. 
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The imaging substudy comprised 11 083 participants (M [SD] age at imaging 

assessment=72.0 [3.2] years; 46.4% female) with available neuroimaging data. Total burden 

of WMH was higher in participants with high, compared with low-to-moderate, area-level 

socioeconomic deprivation (standardised coefficient=0.08 [95% CI, 0.01, 0.15]). Total 

burden of WMH was also higher in participants with high (standardised coefficient=0.10 

[95% CI, 0.01, 0.19]) or intermediate (standardised coefficient=0.05 [95% CI, 0.00, 0.10]), 

compared with low, individual-level socioeconomic deprivation. In participants with high 

area-level socioeconomic deprivation, grey matter volume was lower (standardised 

coefficient=-0.11 [95% CI, -0.18, -0.04]). There were no significant associations with 

hippocampal, white matter or whole brain volumes (Appendix II Table S6 to Appendix II 

Table S11).  

In complete-case data, participants with high genetic risk and high individual-level or 

area-level socioeconomic deprivation were at higher risk of dementia (Appendix II Table 

S12, Appendix II Table S13). Analysis in subsamples stratified by polygenic risk indicated 

that participants with high area-level or intermediate individual-level socioeconomic 

deprivation had higher risk of dementia in intermediate and high but not in low genetic risk 

(Appendix II Table S14, Appendix II Table S15). Participants with high individual-level 

socioeconomic deprivation had higher risk of dementia in all genetic risk groups. Analysis in 

subsamples stratified by sex yielded a similar pattern of results (Appendix II Table S16, 

Appendix II Table S17). Stroke may be on the causal path between socioeconomic 

deprivation and dementia and was therefore not included in the analyses; however, including 

history of stroke led to practically identical result patterns. 

For the imaging substudy, result patterns were replicated, using a less conservative set 

of potential imaging-related confounders, except for a non-significant association of 

intermediate individual-level socioeconomic deprivation with WMH and a significant 
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association with grey matter volume. In complete-case data, the association of high 

individual-level and high area-level socioeconomic deprivation with WMH burden, and the 

association of high area-level socioeconomic deprivation with grey matter volume were not 

significant (Appendix II Table S6 to Appendix II Table S11).  

II.4 Discussion 

Individual-level and area-level socioeconomic deprivation were associated with risk 

of incident all-cause dementia, regardless of genetic risk. Participants with high genetic risk 

and area-level socioeconomic deprivation had a significantly higher risk of incident dementia 

compared with low genetic risk and low-to-moderate area-level socioeconomic deprivation, 

respectively. Similarly, participants with high genetic risk and individual-level 

socioeconomic deprivation had a significantly higher risk of incident dementia compared 

with low genetic risk and individual-level socioeconomic deprivation.  

Previous studies had established that both area-level and individual-level 

socioeconomic deprivation were associated with an increased risk of dementia (Ajnakina et 

al., 2020; Cadar et al., 2018; Powell et al., 2020). Likewise, a prior meta-analysis of genome-

wide association studies had established that a large proportion of the risk of developing late-

onset AD is genetically determined (Lambert et al., 2013). Risk was highest in high 

socioeconomic deprivation and genetic risk. This finding is in line with a previous study, 

which however additionally found a significant interaction of lower wealth with polygenic 

risk of dementia accelerating the time to diagnosis, possibly owing to differences in genetic 

risk assessment and strategy of data analysis (Ajnakina et al., 2020; Leonenko et al., 2021). 

This study therefore extends prior findings by confirming pre-established associations and 

establishing that socioeconomic deprivation does not interact with genetic risk. In comparison 

the present study is considerably larger, incorporates a more comprehensive measure of 
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genetic risk, potential mediators, and tests moderation of socioeconomic deprivation more 

comprehensively. 

Individual-level socioeconomic deprivation was more robustly associated with 

dementia risk in comparison with area-level socioeconomic deprivation. Components of 

individual-level socioeconomic deprivation such as low income may increase dementia risk 

through reduced access to healthcare, poor-quality nutrition and reduced cognitive 

stimulation that cannot be as effectively accounted for by area-level measures. Although 

there was a monotonic trend for individual-level socioeconomic deprivation, no such trend 

was found for area-level socioeconomic deprivation. This is in line with previous findings 

suggesting detrimental associations of neighbourhood socioeconomic deprivation with health 

outcomes at the highest levels (Hunt et al., 2021). 

Contrary to earlier findings, area-level associations remained associated with 

increased dementia risk after adjusting for individual-level socioeconomic deprivation (Cadar 

et al., 2018). Area-level socioeconomic deprivation may capture dementia risk factors that are 

not fully explained by individual-level socioeconomic deprivation. Indeed, recent research 

suggests potential causal paths through cognitive stimulation at large, access to residential 

green space or air pollution (Clarke et al., 2012; de Keijzer et al., 2020; Peters, Ee, et al., 

2019). As such, area-level socioeconomic deprivation may reflect environments with limited 

opportunities for cognitive stimulation, healthy nutrition, or physical exercise. 

The imaging substudy explored measures of brain health that might underlie increased 

dementia risk associated with socioeconomic deprivation. Higher area-level and individual-

level socioeconomic deprivation were associated with greater WMH burden. WMHs are a 

well-established indicator of cerebral small vessel disease, double the risk of dementia and 

are associated with more aggressive cognitive decline in MCI patients (Debette et al., 2019; 

Tosto et al., 2014). These results suggest a vascular pathway to dementia that might include 
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both individual-level vascular risk factors, such as blood pressure, and area-level risk factors 

such as air pollution. Importantly, these risk factors are modifiable (Livingston et al., 2020). 

High area-level socioeconomic deprivation was further associated with lower grey matter 

volume, suggesting additional, potentially neurodegenerative pathways. Although the results 

for hippocampal volume are inconclusive, lacking associations with other markers of brain 

health typically associated with dementia risk suggest global effects of area-level 

socioeconomic deprivation that might represent accelerated brain aging.  

II.4.1 Limitations 

Some limitations should be considered. First, individual-level and area-level 

socioeconomic deprivation are correlated (r=.33). Second, residual confounding may exist 

despite careful confounder adjustment. Third, reverse causation cannot be ruled out, despite a 

median follow-up of 8 years. Fourth, one in 71 participants above age 65 was ascertained 

with dementia compared to one in 14 in the general population, suggesting a healthy 

volunteer bias (Prince et al., 2014). Representativeness is further limited due to a low 

response rate to the invitation to participate in the UK Biobank study. Nonetheless, previous 

findings suggest health hazards correspond to findings in representative samples (Batty et al., 

2020; Stamatakis et al., 2021; Sudlow et al., 2015). Fifth, without case finding, sensitivity 

cannot be tested, and dementia may have not been detected in all cases. Additionally, 

ascertainment in hospital and death records may select more severe cases, potentially biasing 

estimates (Wilkinson et al., 2019). Sixth, estimates may be biased since the competing risk of 

death can precede dementia diagnosis (Rojas-Saunero et al., 2021; Weuve et al., 2015). 

Seventh, analyses were restricted to age 60 years and older, limiting cases, and to European 

ancestry, limiting generalisability. Finally, some associations were not replicated in 

complete-case data, likely due to disproportionally missing data in higher socioeconomic 

deprivation (Appendix II Table S18). 
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II.4.2 Conclusions 

In older adults without dementia, area-level and individual-level socioeconomic 

deprivation and genetic risk were significantly and independently associated with a higher 

risk of dementia. Dementia prevention interventions may be particularly effective if targeted 

to people living in households and areas with fewer socioeconomic resources, regardless of 

genetic vulnerability. 
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Chapter III – Examination of Mechanisms: Education and Mild Cognitive 

Impairment: The Role of the Gut Microbiome 

Klee, M., Aho, V. T. E., May, P., Heintz-Buschart, A., Landoulsi, Z., Jónsdóttir, S. R., Pauly, 

C., Pavelka, L., Delacour, L., Kaysen, A., Krüger, R., Wilmes, P., Leist, A. K., 

NCER-PD Consortium. (2024). Education as Risk Factor of Mild Cognitive 

Impairment: The Link to the Gut Microbiome. The Journal of Prevention of 

Alzheimer’s Disease, 11, 759-768. https://doi.org/10.14283/jpad.2024.19 
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Abstract 

With differences apparent in the gut microbiome in MCI and dementia, and risk 

factors of dementia linked to alterations of the gut microbiome, the question remains if gut 

microbiome characteristics may mediate associations of education with MCI. We sought to 

examine potential mediation of the association of education and MCI by gut microbiome 

diversity or composition. 

We analysed data from control participants of the Luxembourg Parkinson’s Study, a 

cross-sectional study in Luxembourg and the Greater Region (surrounding areas in Belgium, 

France, Germany). Main measures were gut microbiome composition, ascertained with 16S 

rRNA gene amplicon sequencing, differential abundance, assessed across education groups 

(0-10, 11-16, 16+ years of education), and alpha diversity (Chao1, Shannon and inverse 

Simpson indices). Mediation analysis with effect decomposition was conducted with 

education as exposure, MCI as outcome and gut microbiome metrics as mediators. 

After exclusion of participants below 50, or with missing data, N=258 participants 

(n=58 MCI) were included (M [SD] Age=64.6 [8.3] years). Higher education (16+ years) was 

associated with MCI (Odds ratio natural direct effect=0.35 [95% CI, 0.15, 0.81]. 

Streptococcus and Lachnospiraceae-UCG-001 genera were more abundant in higher 

education. 

Education is associated with gut microbiome composition and MCI risk without clear 

evidence for mediation. However, our results suggest signatures of the gut microbiome that 

have been identified previously in AD and MCI to be reflected in lower education and 

suggest education as important covariate in microbiome studies. 
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III.1 Introduction 

Modifiable social and behavioural risk factors of AD and related dementias convey 

potential to delay or prevent a substantial rate of cases, if targeted effectively (Livingston et 

al., 2020). This entails interventions to be delivered early in the disease trajectory, informed 

by knowledge on working mechanisms. With respect to timeliness, research on biomarkers 

suggests AD-related pre-clinical pathophysiological changes occurring as early as midlife 

(Zetterberg & Bendlin, 2021). At a later stage, MCI reflects early, subtle changes in thinking 

and memory (Alzheimer’s Association, 2022). While potentially due to a variety of 

underlying diseases or disorders, MCI is a markedly strong risk factor for AD. Furthermore, 

synergies in risk factors of MCI and AD exist, e.g., related to education and consequentially 

lifestyle (Alzheimer’s Association, 2022).  

Education itself reflects a well-established early-life risk factor for AD. As such, 

higher education is associated with lower dementia risk in later life (Livingston et al., 2020). 

Lower dementia risk may result from education increasing cognitive abilities in early 

adulthood and consequent build-up of CR, BR or BM, protecting against neurodegeneration 

(Livingston et al., 2020; Lövdén et al., 2020). Moreover, risk factors such as obesity or 

smoking frequently cooccur, and vary in prevalence according to SES (Alzheimer’s 

Association, 2022; Deckers et al., 2019). Higher exposure to lifestyle-related risk factors 

according to education, an indicator of SES, may further contribute to a vascular pathway 

linking education to dementia risk. To date, there is no consensus about working 

mechanisms. However, recent studies suggest education, which influences life histories and 

in part constitutes SES, to be associated with differences in microbial community types 

across multiple body sites, which may be in turn associated with MCI risk (Bowyer et al., 

2019; Ding & Schloss, 2014; G. E. Miller et al., 2016; Saji, Murotani, et al., 2019).  
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The gut microbiome refers to a collection of microbes within the gastrointestinal tract. 

The gastrointestinal tract, reflecting the largest ecosystem of the human body, is composed of 

bacteria, archaea, eukaryotes, and other microbes. Composition of the gut microbiome, for 

instance differential abundance of specific taxa, is subject to interindividual variation, e.g., 

across the life-course or geographical locations (Greenhalgh et al., 2016). Factors affecting 

the microbiome over a lifetime are for instance linked to SES and early childhood conditions 

(e.g., mode of delivery, breast feeding) resulting in variation in consequent gut colonisation 

and microbiome maturation, which may in turn continue to affect microbiome composition in 

later life (Greenhalgh et al., 2016; Heck et al., 2006; S. A. Lee et al., 2015; Milcent & Zbiri, 

2018; Wampach et al., 2018). 

Gut microbiome alterations have been observed, e.g., associated with ageing, or 

health. As such, ageing-related changes may result from the ageing processes (changing 

hormonal levels), changing health conditions (associated use of medication) or age-related 

behavioural changes, e.g., dietary deficiency (Greenhalgh et al., 2016). Moreover, recent 

findings suggest a link of the gut microbiome to MCI or AD, and lifestyle-related risk factors 

such as diet or physical activity (Alkasir et al., 2017; Cabrera et al., 2021; Saji, Murotani, et 

al., 2019; Saji, Niida, et al., 2019). Potential working mechanisms along the gut-brain-axis 

likely involve complex pathways, e.g., triggering low-grade systemic inflammation by 

altering gut permeability or by synthesis of metabolites with neuroendocrine functions 

(Morais et al., 2021). Due to the likely involvement of specific molecules, the low resolution 

of marker gene-based microbiome analyses precludes further specification of molecular 

pathways. 

The association of education to gut microbiome alterations and MCI risk motivate the 

investigation of the role of the gut microbiome in the relationship of education and MCI. 
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Thus, we sought to examine potential mediation of the association of education and MCI by 

the gut microbiome in the present study. 

III.2 Methods 

III.2.1 Study Sample 

We analysed data of participants, specifically the control subjects, from the 

Luxembourg Parkinson’s Study of the National Centre of Excellence in Research on 

Parkinson’s disease, which received approval from the National Ethics Board (CNER Ref: 

201407/13) and Data Protection Committee (CNPD Ref: 446/2017) and was conducted 

according to the Declaration of Helsinki (Hipp et al., 2018). Eligibility criteria for analysis 

were age above 50, absence of Parkinson’s disease, celiac disease, and chronic inflammatory 

bowel disease, availability of stool samples and non-missing data. All participants provided 

written informed consent. 

Participants collected stool samples at home and sent them to the Integrated Biobank 

of Luxembourg (Baldini et al., 2020). Sampling, processing, and sequencing of stool samples 

were done as previously described (Baldini et al., 2020; Wilmes et al., 2022). The 16S rRNA 

gene amplicon sequencing data was processed using the dadasnake workflow, a Snakemake 

pipeline to process amplicon sequencing data, based on DADA2 (Callahan et al., 2016; 

Mölder et al., 2021; Weißbecker et al., 2020). Amplification primers were removed using 

cutadapt, allowing 20% mismatches and no indels (Martin, 2011). Quality filtering, amplicon 

sequence variant (ASV) generation and chimera removal were performed in DADA2. Reads 

were truncated at positions with less than 10 Phred score quality, or at 240 bp. The quality 

filtering kept only sequences with a maximum expected error of 2 and 240 bp length. 

Downsampling was performed to 25 000 reads using seqtk (https://github.com/lh3/seqtk: 

RRID:SCR_018927) and samples with smaller library sizes were removed from the 

downstream analysis. ASVs were generated in pooled mode for the whole study using 
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DADA2 default parameters. For merging forward and reverse ASVs, a minimum overlap of 

12 bp was required. Chimeric sequences were removed based on the consensus algorithm. 

Taxonomic classification was performed against SILVA v138 using the naïve Bayesian 

classifier implemented in mothur (Quast et al., 2013; Schloss et al., 2009). Clinical and 16S 

rRNA gene amplicon sequencing data are available on request from 

https://www.parkinson.lu/research-participation. 

III.2.2 Measures 

Clinical assessments were conducted by neurologists, neuropsychologists, or trained 

study nurses. MCI classification was based on the MoCA, a brief measure for assessing 

cognitive function (Nasreddine et al., 2005). MoCA scores below 26 led to MCI classification 

(Nasreddine et al., 2005). 

Education was assessed in years. For analysis, years of education were grouped (0-10 

[reference], 10-16, 16+ years of education) based on the ISCED classification scheme, group 

sizes, and differences in compulsory schooling duration in Luxembourg for participants of 

different age (Honig, M. S. & Bock, 2017; UNESCO Institute for Statistics, 2012). 

Alpha diversity captures the diversity of the microbiome within individuals. Alpha 

diversity will be greater in individuals with a greater number of different taxa (=richness) 

and/or similar abundances of prevalent taxa (=evenness). Alpha diversity is subject to 

variation over the life-course and higher alpha diversity has been related to better health in 

older age (Cabrera et al., 2021; Greenhalgh et al., 2016). Three measures for alpha diversity 

were computed after rarefication: Chao1, Shannon and inverse Simpson (Appendix III 

Diversity Measures). Beta diversity reflects differences of the microbiome between 

individuals. In that, dissimilarity indices reflect pairwise distances between individuals based 

on taxa abundance. In a sample-by-sample distance matrix, a greater value in a given cell 

indicates a larger dissimilarity between two individuals. This information can be used to 



 

 

69 

compare similarity of variance and composition of the gut microbiome between groups of 

individuals. Two measures for beta diversity were computed: Bray-Curtis dissimilarity and 

Jaccard distance (Appendix III Diversity Measures). 

Additional measures included sociodemographic indicators age, sex/gender, first 

language (French/Luxembourgish/German versus other), partnership status (PS; 

married/domestic partnership versus widowed/never married/divorced/separated), BMI, mild 

depressive symptoms based on the Beck Depression Inventory I (BDI-I; >9), use of antibiotic 

medication in the last 6 months (ATB; yes versus no), and APOE ε4 (at least one versus no ε4 

allele) status (Beck et al., 1961).  

III.2.3 Statistical Analysis 

All analyses were performed in R version 4.2.0 (R Core Team, 2022). Analysis code 

is available online at https://github.com/makleelux/edu_biome_mci (Appendix III R Session 

Info Excerpt). Differences of descriptive characteristics in presence or absence of MCI were 

tested with Fisher’s Exact Test for categorical and Student’s t-Test for continuous 

characteristics. Differences in beta diversity were tested across education groups with 

betadisper [vegan] and adonis2 [vegan] with 999 permutations. In short, betadisper compares 

average distances, i.e., the dispersion or homogeneity, across groups, while adonis2 tests 

multivariate differences in microbiome compositions (Oksanen J. et al., 2022). 

Differential abundance analysis (DAA) was conducted across education groups, 

adjusting for age, sex/gender, BMI, and ATB. DAA was repeated additionally adjusting for 

first language, PS, BDI-I, and APOE, as robustness check. Two commonly used functions 

(ancombc [ANCOMBC]; DESeq [DESeq2: RRID:SCR_000154]) were employed (H. Lin & 

Peddada, 2020; Love et al., 2014). Both methods identify differentially abundant taxa with 

estimates of statistical significance adjusted for false discovery rates (Appendix III 
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Description of Differential Abundance Analysis). For DAA, taxa with nonzero counts in less 

than 25% of samples were not tested. 

Mediation analysis was specified with MCI as outcome and groups of education as 

exposure, adjusting for age, sex/gender, first language, PS, BDI-I, APOE and ATB. For alpha 

diversity as mediator, a regression-based, counterfactual approach to mediation was 

employed for which continuous mediator models (i.e., alpha diversity as outcome) and a 

logistic outcome model (i.e., MCI as outcome), were specified (Appendix III R Code 

Mediation Analysis With CMAverse; cmest [CMAverse]), including interaction terms for 

education and alpha diversity (Shi et al., 2021). Total effects of education on MCI were 

decomposed into a controlled direct effect (CDE) for alpha diversity fixed at the sample 

mean, a natural direct (NDE, Appendix III Direct and Indirect Effects), and a natural indirect 

(NIE, Appendix III Direct and Indirect Effects) effect (Valeri & VanderWeele, 2013; 

VanderWeele, 2014; VanderWeele & Vansteelandt, 2014). Proportion eliminated (PE) was 

calculated, indicating the proportion of the effect due to either mediation, interaction, or both, 

that would be eliminated by fixing the mediator to a specific level, i.e., the sample mean of 

the z-standardised alpha diversity measures (VanderWeele, 2014). As a sensitivity check, 

mediation analysis was repeated without interaction terms in the outcome model. 

For beta diversity as mediator, a previously described inverse-regression-based 

approach to mediation was employed at genus level (Yue & Hu, 2022a, 2022b). In short, this 

approach specifies regressions for potentially mediating taxa at genus level on education, and 

MCI adjusted for education, in turn utilising resulting p values to test mediation. Two 

functions were used, allowing to estimate mediation by abundance of specific taxa or by the 

overall composition of the microbiome (Appendix III R Code Mediation Analysis With Ldm 

and PermanovaFL, ldm [LDM]; permanovaFL [LDM]), while controlling for false discovery 

rates (Hu & Satten, 2020; Yue & Hu, 2022a, 2022b). Ldm suggests mediation if education 
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affects the microbiome and consequentially the outcome. This can be tested globally 

(community contains any mediating taxa) and locally (mediation by specific taxa). 

PermanovaFL is a distance-based procedure, and suggests mediation if education affects 

some part of the community and some potentially different part of the community proceeds to 

affect MCI, thus being less conservative. For ldm an omnibus test was conducted combining 

analysis at three scales, i.e., relative abundance, arcsin-root transformed relative-abundance, 

presence-absence (Zhu et al., 2022). For permanovaFL individual and omnibus tests were 

conducted combining analysis at two scales, i.e., relative abundance, presence-absence (Zhu 

et al., 2022). 

III.3 Results 

From 524 participants without Parkinson’s disease or Parkinsonism diagnosis, N=258 

participants were eligible for analysis (M [SD] Age=64.6 [8.3] years) after exclusion of 

participants below age 50 (n=93), with celiac disease (n=6) or chronic inflammatory bowel 

disease (n=5), missing data (n=11) or without stool samples and microbiome data (n=149, 

and n=2 after pruning of samples with library size <10 000). Participants with MCI (n=58) 

were older, more likely male, had fewer years of education and a higher BMI (Table 4). A 

total of 1,150 taxa at seven taxonomic ranks were identified after trimming of ASVs 

occurring in <10% of samples and pruning of samples with library size <10 000.  
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Table 4 Baseline Characteristics (Study 2) 

Characteristic NC (n=200) MCI (n=58) p Test 

Age, Years 63.76 ± 7.84 67.6 ± 9 .005 t 

Sex/Gender     

  Female 87 15 
.022 Fisher 

  Male 113 43 

Years of Education      

  0-10 24 16 

.018 Fisher   11-16 110 24 

  16+ 66 18 

First Language      

  FR / LU / DE 182 52 
.798 Fisher 

  Other 18 6 

Living With Partner      

  No 61 17 
1 Fisher 

  Yes 139 41 

BDI-I (>9)     

  Yes 23 9   

  No 177 49 .497 Fisher 

APOE     

  At least one ε4 54 19 
.410 Fisher 

  No ε4 146 39 

Antibiotics (Last 6 Months)     

  No 179 49 
.351 Fisher 

  Yes 21 9 

BMI 27.04 ± 4.37 29.74 ± 5.91 .002 t 

Alpha Diversity     

  Chao1 311.56 ± 64.96 295.05 ± 86.37 .181 t 

  Shannon 3.99 ± 0.38 3.93 ± 0.46 .415 t 

  Inverse Simpson 27.75 ± 11.46 26.79 ± 11.66 .580 t 

Note. Numbers refer to means ± standard deviations for continuous, n for categorical characteristics. 

NC=Normal Cognition; MCI=Mild cognitive impairment; T=Student’s t-Test; Fisher=Fisher’s Exact Test; 

BMI=body mass index; BDI-I=Beck Depression Inventory I; APOE=Apolipoprotein E ε4 status; FR=French; 

LU=Luxembourgish; DE=German.  
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Alpha diversity as per Chao1 was lower in but not significantly associated with MCI. 

Education groups did not differ significantly in beta dispersion, tested with anova (p=.17), 

thus meeting the assumption of homogeneity of variances for adonis2. Education groups did 

not differ significantly regarding multivariate analyses with adonis2 (p=.20 adjusting for 

sex/gender, age, ATB, BDI-I, first language, PS, and APOE), suggesting similar composition 

of the microbiome. However, alpha diversity was lower in lower education (Appendix III 

Figure S1) and was significantly lower in older age but only in lower education (Figure 2).   
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Figure 2 Alpha Diversity Across Age and Education Groups 

 

Note. Chao1, Shannon and Inverse Simpson indices denoting alpha diversity stratified by age and education 

groups with 0-10, 11-16 and 16+ years of education. Reported p values result from Student’s t-Tests with 0-10 

years of education as reference group. InvSimpson=Inverse Simpson.   
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Beta diversity differed significantly across education groups (betadisper: p=.048; 

adonis2: p=.04; Figure 3), when restricting to age 65 and older.  

 

Figure 3 Ordination Plots for Education Groups 

 

Note. Ordination using NMDS based on Bray-Curtis dissimilarity for A the full sample and B a subset age 65 

and older. Analysis with adonis2 was adjusted for sex/gender, age, use of antibiotic medication in the last 6 

months, mild depressive symptoms based on the Beck Depression Inventory I, first language, partnership status, 

and apolipoprotein ε4 status. NMDS=Non-metric Multidimensional Scaling. Authors MK and VTEA. 

 

There were no significant differences in beta diversity between MCI or age groups 

(Appendix III Figure S2). As Chao1 likely reflects an underestimate of richness with ASVs 
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based on DADA2, analyses were repeated with observed richness as measure of alpha 

diversity. These analyses yielded analogous findings (results not shown). 

DAA suggested higher relative abundance of Bacilli (class), Actinobacteria (class), 

Lactobacillales (order), Streptococcaceae (family), Streptococcus (genus), with DESeq2 and 

Lachnospiraceae UCG 001 (genus) and two ASVs with ancombc in higher compared to 

lower (0-10 years) education, adjusting for age, sex/gender, BMI, and ATB (Table 5).  

 

Table 5 Taxonomic Analysis Across Groups of Education 

Level Taxon DESeq2 ANCOMBC 

  11-16 16+ 11-16 16+ 

Class Bacillia,b,c  **   

 Actinobacteriaa  *   

Order Lactobacillalesa,b,c **    

Family Streptococcaceaea,b,c *    

Genus Streptococcusa *    

 Lachnospiraceae UCG 001a,b,c    ** 

ASV ASV 000053a    * 

 ASV 000508a    * 

Note. Significant differences in abundance across education groups 11 to 16 and 16+ years of education. Grey 

fill indicates higher relative abundance in higher education compared with lower education (0-10 years). 

aAdjusted for age, sex/gender, BMI, and use of antibiotic medication in the last 6 months. bAdjusted for age, 

sex/gender, BMI, use of antibiotic medication in the last 6 months, mild depressive symptoms based on the 

Beck Depression Inventory I, first language, and partnership status. cAdjusted for age, sex/gender, BMI, use of 

antibiotic medication in the last 6 months, mild depressive symptoms based on the Beck Depression Inventory I, 

first language, partnership status and Apolipoprotein E ε4 status. ASV=amplicon sequence variant; BMI=body 

mass index. *p<.05. **p<.01. ***p<.001 referring to lowest identified p values across individual tests. 

 

Sensitivity analysis with additional adjustments for BDI-I, first language, PS, and/or 

APOE replicated findings, except for Actinobacteria and Streptococcus with DESeq2, and the 

two ASVs with ancombc. There was no overlap between DESeq2 and ancombc (of note, 
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padj=.07 for Lachnospiraceae UCG 001 with DESeq2). Visual inspection of relative 

abundance plots suggests dose-response relationships of increasing years of education and 

increasing relative abundance Lachnospiraceae UCG 001 (Appendix III Figure S3). 

With 0-10 years of education as reference, higher education was associated with 

higher Chao1 (11-16 years=0.42 [95% CI, 0.07, 0.77]; 16+ years=0.38 [95% CI, 0.00, 0.76]; 

Appendix III Table S1). With an interaction term for education and Chao1 in the outcome 

model, higher education was associated with lower likelihood of MCI (11-16 years=-1.24 

[95% CI, -2.12, -0.35]; 16+ years=-1.26 [95% CI, -2.22, -0.30]) whereas greater Chao1 was 

not significantly associated with MCI (coefficient=-0.14, [95% CI, -0.76, 0.44]). Interaction 

terms were not significant (11-16 years of education:Chao1=-0.02 [95% CI, -0.80, 0.79]; 16+ 

years of education:Chao1=-0.20 [95% CI, -1.00, 0.62]). With Chao1 as mediator, NDE (16+ 

years of education) was 0.35 (95% CI, 0.15, 0.81, p=.02, Table 6) and NIE (16+ years of 

education) was 0.89 (95% CI, 0.68, 1.14, p=.33) suggesting an association of education to 

lower MCI risk, not mediated by Chao1 (total effect=0.31 [95% CI, 0.14, 0.72], p=.008; 

CDE=0.33 [95% CI, 0.14, 0.78], p=.02). PE=0.22 (95% CI, 0.00, 0.59, p=.049), suggests 

most of the association of education on MCI risk being due to a direct effect of education but 

also a significant amount due to interaction, mediation, or both. 
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Table 6 Mediation Analysis With Chao1 as Mediator 

Estimand Comparing 0-10 to 11-16 Years of Education Comparing 0-10 to 16+ Years of Education 
 With Interaction Without Interaction With Interaction Without Interaction 
 Estimate (95% CI) p Estimate (95% CI) p Estimate (95% CI) p Estimate (95% CI) p 

RCDE 0.33 (0.15, 0.76) .012 * 0.34 (0.16, 0.74) .010 * 0.33 (0.14, 0.78) .018 * 0.33 (0.15, 0.76) .015 * 
RPNDE 0.33 (0.15, 0.73) .012 * 0.34 (0.16, 0.74) .010 * 0.35 (0.15, 0.81) .016 * 0.34 (0.15, 0.76) .015 * 
RTNDE 0.33 (0.15, 0.77) .011 * 0.34 (0.16, 0.74) .010 * 0.33 (0.15, 0.79) .016 * 0.34 (0.15, 0.76) .015 * 
RPNIE 0.95 (0.70, 1.19) .647  0.92 (0.77, 1.07) .284  0.95 (0.71, 1.17) .662  0.93 (0.78, 1.06) .316  
RTNIE 0.94 (0.71, 1.33) .693  0.92 (0.76, 1.07) .284  0.89 (0.68, 1.14) .334  0.93 (0.77, 1.07) .316  
RTE 0.31 (0.15, 0.68) .006 ** 0.32 (0.15, 0.68) .006 ** 0.31 (0.14, 0.72) .008 ** 0.31 (0.14, 0.71) .008 ** 
ERCDE -0.53 (-0.74, -0.17) .012 * - -  -0.53 (-0.76, -0.14) .018 * - -  
ERINTREF -0.14 (-0.32, 0.05) .114  - -  -0.11 (-0.28, 0.10) .218  - -  
ERINTMED 0.03 (-0.23, 0.31) .792  - -  0.01 (-0.25, 0.25) .966  - -  
ERPNIE -0.05 (-0.30, 0.19) .647  - -  -0.05 (-0.29, 0.17) .662  - -  
ERCDE(P) 0.77 (0.42, 0.99) .008 ** - -  0.78 (0.41, 1.00) .010 * - -  
ERINTREF(P) 0.20 (-0.09, 0.56) .115  - -  0.17 (-0.20, 0.49) .216  - -  
ERINTMED(P) -0.04 (-0.52, 0.41) .796  - -  -0.01 (-0.41, 0.45) .964  - -  
ERPNIE(P) 0.07 (-0.32, 0.53) .651  - -  0.07 (-0.29, 0.52) .668  - -  
PM 0.03 (-0.15, 0.28) .694  0.04 (-0.04, 0.25) .288  0.06 (-0.06, 0.38) .340  0.03 (-0.04, 0.24) .321  
INT 0.16 (-0.05, 0.40) .104  - -  0.16 (-0.02, 0.38) .082  - -  
PE 0.23 (0.01, 0.58) .043 * - -  0.22 (0.00, 0.59) .049 * - -  

Note. Results of mediation analysis with or without interaction terms of education and Chao1 in the outcome model. Standard errors were estimated with 5,000 bootstraps. 

RCDE=controlled direct effect odds ratio (referring to CDE); RPNDE=pure natural direct effect odds ratio (referring to NDE); RTNDE=total natural direct effect odds ratio; 

RPNIE=pure natural indirect effect odds ratio; RTNIE=total natural indirect effect odds ratio (referring to NIE); RTE=total effect odds ratio; ERCDE=excess relative risk due 

to controlled direct effect; ERINTREF=excess relative risk due to reference interaction; ERINTMED=excess relative risk due to mediated interaction; ERPNIE=excess 
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relative risk due to pure natural indirect effect; ERCDE(P)=proportion ERCDE; ERINTREF(P)=proportion ERINTREF; ERINTMED(P)=proportion ERINTMED; 

ERPNIE(P)=proportion ERPNIE; PM=overall proportion mediated; INT=overall proportion attributable to interaction; PE=overall proportion eliminated. Cells with – 

indicate n/a. *p<.05. **p<.01. ***p<.001. 
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Given the moderately rare outcome (~22.5% MCI), CDE, NDE and NIE reported on 

the odds-ratio scale may be overestimated. As a sensitivity analysis, estimation was repeated 

on the risk-ratio scale using a multinomial log-linear link for the outcome model, resulting in 

a similar pattern of findings but without significant PE, results not shown (Valeri & 

VanderWeele, 2013). 

Analyses without interaction terms led to similar result patterns in regression models 

(Appendix III Table S1). Comparison of 0-10 to 11-16 years of education led to similar result 

patterns in effect decomposition (Table 6). BMI was hypothesised as a potential mediator of 

education and MCI, or microbiome diversity and MCI, and thus not included in the main 

analyses but considered for robustness checks. Inclusion of BMI led to attenuated 

associations of education with Chao1 in the mediator, and of Chao1 with MCI in the outcome 

model. This in turn led to attenuated NIE and a similar, but no longer significant estimate of 

PE (results not shown).  

Analyses with Shannon or inverse Simpson as mediator suggested similar findings but 

no significant PE. Analyses with inverse Simpson as mediator suggested similar findings 

except for no significant association of education with alpha diversity in the mediator model 

and a significant proportion of the total effect of education due to (additive) interaction, when 

comparing 0-10 to 11-16 years of education (regression models: Appendix III Table S2, 

Appendix III Table S3, effect decomposition: Appendix III Table S4, Appendix III Table S5).  

Ldm suggested no significant mediation by individual taxa or by the composition of 

the microbiome (p=.99 for N=48 000 completed permutations with ldm.omni3). Likewise, 

permanovaFL suggested no significant mediation by the composition of the microbiome, on 

the relative abundance (Bray-Curtis dissimilarity, p=.70), or presence-absence scale (Jaccard 

dissimilarity, p=.35), or overall (p=.54 for N=600 completed permutations with 
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permanovaFL.omni). Robustness checks (with BMI) yielded a similar pattern of findings 

(results not shown). 

III.4 Discussion 

Higher education was associated with a lower risk of MCI, with most of this 

association not being due to mediation by the gut microbiome. Despite differences in 

taxonomic signatures and gut microbiome composition between education groups, our 

findings suggest no significant mediation of the association of education with MCI by 

measures of alpha diversity or individual taxa. However, effect decomposition indicated 

potential additive interaction between education and alpha diversity.  

In this study, MCI risk was highest in the group with 0-10 years of education. Higher 

education groups did not differ in their association with MCI. This reflects earlier findings 

suggesting that education is related to reserve capacity, and thus lower MCI risk, by in 

particular increasing levels of cognitive skills in early life which then persist until old age 

(Lövdén et al., 2020). 

Critically, more than 16 years of education likely reflect education beyond the end of 

adolescence, with positive effects levelling off and thus, no linear association of education 

with MCI. 

Further analyses suggested a dominating direct effect of education. While education 

was associated with microbial diversity, no indicator of diversity was significantly associated 

with MCI, although less clear so for Chao1, reflecting richness, in models without interaction 

terms. Nonetheless, one fifth of the association of education on MCI could be removed (i.e., 

PE) by intervening to fix Chao1 at the sample mean. Four-way decomposition suggests this 

to be most likely attributable to an additive interaction of education and Chao1, such that 

their association with lower MCI risk increases with increments in education (VanderWeele, 

2014). Of note, this finding reinforces most of the association of education with MCI to be 
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flowing through a direct causal path, which is also supported by sensitivity analysis on the 

risk-ratio scale.  

A potential explanation for the absence of statistically significant mediation would be 

that lower education may proxy higher MCI risk due to factors which are not associated with 

the gut microbiome, such as cognitive stimulation. In that case, the observed variation in gut 

microbiome diversity and composition across education groups would not be causally related 

to MCI risk. 

However, our findings highlight education-related gut microbiome diversity and 

composition reflecting those found in MCI and AD. Given MCI as a strong risk factor and 

AD as the most common cause of dementia, similarities in the gut microbiota of individuals 

with low education – who are at higher risk of dementia – and of people living with AD may 

indicate further mechanisms contributing to the disease. These may involve nutritional 

choices and chronic low-grade inflammation or the synthesis of metabolites leading to 

modulation of nerve signalling via the enteric nervous system. A previous study found 

reduced richness as well as a distinct composition of the gut microbiome in terms of beta 

diversity in participants with AD compared to healthy controls (Vogt et al., 2017). In line 

with a hypothesised neurodegenerative pathway involving education and the gut-brain-axis, 

our findings suggest that lower education is associated with reduced richness and a distinct 

gut microbiome composition. Conversely, another study found increasing richness with AD 

progression, which may be explained by an apparent gradient of education from lowest, in 

unimpaired cognition, to highest, in moderate AD (L. Chen et al., 2022). Considering our 

findings lower education may not only have altered the likelihood of belonging to patient or 

control groups but may also have resulted in different taxonomic signatures. 

Previous findings suggest similar alterations with respect to reduced alpha diversity in 

lower income and area-level SES settings (Bowyer et al., 2019; G. E. Miller et al., 2016). 
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Education is related to income and wealth, and consequently with selection into areas with 

fewer socioeconomic resources. As such, education may capture community-level or spatial 

exposures affecting gut microbiome composition (Bowyer et al., 2019).  

Critically, we found Chao1 to be lower in older age, but only in participants with 

lower education. Additionally, compositional differences by education were only significant 

in older age. This extends on earlier reports of interindividual variability and reduced 

biodiversity in later life by suggesting education as a key modifier (Biagi et al., 2013). 

Moreover, our finding of lower alpha diversity in lower education, suggests a putative 

association with a dysbiotic state. While lower alpha diversity has been discussed previously 

as a possible indicator of AD, to date, no concrete link has been established between 

education and dysbiosis and consequently AD or MCI (Cabrera et al., 2021; Z. Li et al., 

2022). This may be due to the relatively limited depth and linked resolution of sequencing or 

the breadth of education measures (Cabrera et al., 2021). 

Extending on mediation results with alpha diversity metrics, ldm and permanovaFL 

did not identify mediating taxa or compositional changes translating into decreased MCI risk 

(Hu & Satten, 2020; Yue & Hu, 2022a, 2022b). However, DAA results suggest differential 

abundance in line with an MCI or AD phenotype and consequentially a potential 

communality of lower education and AD pathology. Bacilli (class), Actinobacteria (class), 

Lactobacillales (order), Streptococcaceae (family), Streptococcus (genus), Lachnospiraceae 

UCG 001 (genus) and two ASVs were depleted in lower education. 

Contrary to our findings given a hypothesised link of education to MCI via the gut, 

previous studies showed an increased ratio of Firmicutes to Bacteroidetes, and an increased 

relative abundance of Lactobacillales in AD, and of Firmicutes in MCI (Nagpal et al., 2019; 

Saji, Niida, et al., 2019). However, earlier findings were likely driven by depleted 

Bacteroides; increases in Firmicutes were not statistically significant (Nagpal et al., 2019; 
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Saji, Niida, et al., 2019). Other studies found increased Bacteroidetes in MCI without AD 

and, in line with our findings, depletion of Firmicutes in AD and amnestic MCI (Liu et al., 

2019; Saji, Murotani, et al., 2019; Vogt et al., 2017). Increased Bacteroides may relate to 

impaired cognition potentially through cerebral small vessel disease and resulting WMH and, 

in line with our findings, education may alter BR to such damage via increased node degree 

(DeJong et al., 2023; Saji, Murotani, et al., 2019).  

Lachnospiraceae UCG 001 were earlier found to be depleted in participants with 

more severe depressive symptoms, implying impaired synthesis of short-chain fatty-acids, 

such as butyrate and other depression-related neurotransmitters (Radjabzadeh et al., 2022). 

Recent findings further suggest lower cognitive performance due to decreased levels of 

butyrate following stool transplantation of sleep deprived to control mice (X. Wang et al., 

2023). Depletion of Lachnospiraceae UCG 001 in lower education may be associated with 

lower cognitive performance and MCI classification in line with a phenotype related to 

depressive symptom severity. Since we adjusted for BDI-I, education and depressive 

symptom severity may share a common neuroendocrinal pathway to impaired cognition, e.g., 

via nutritional choices, involving Lachnospiraceae UCG 001 and metabolites synthesised by 

gut microbiota.  

Moreover, two differentially abundant ASV were identified, one classified as 

Lachnospiraceae UCG 001, the other as NK4A214 group, albeit classification comes with 

some uncertainty (Species unidentified, Appendix III Table S6). 

One study found Actinobacteria and Streptococcus enriched in mild and moderate 

AD, potentially explained by higher educational attainment in AD-groups compared to 

controls, given our findings of higher abundance of Actinobacteria and Streptococcus in 

higher education (L. Chen et al., 2022). Consequently, both depleted Actinobacteria and 

Streptococcus in lower education may reflect an AD phenotype but the alternative 
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explanation that their alteration reflects educational differences cannot be ruled out. Of note, 

Actinobacteria was earlier found depleted in AD compared to healthy controls suggesting 

e.g., detriments to intestinal barrier integrity in both AD and lower education (Vogt et al., 

2017). 

III.4.1 Limitations 

In this study, we extensively triangulated potential mediation in a large cohort and 

point to potential interaction of education and gut microbiome diversity regarding MCI risk. 

Despite careful adjustment, residual confounding may bias results. Effect decomposition 

assumes no unmeasured (i) exposure-outcome, (ii) mediator-outcome, or (iii) exposure-

mediator confounding, and (iv) that (ii)-confounders are not affected by the exposure. 

However, PE and CDE do not require (iii) or (iv), and NDE is robust to (iv), assuming 

monotone associations (Pearl, 2001; Tchetgen & VanderWeele, 2014). MCI classification 

was based on a screening instrument. Differences in causes underlying MCI classification 

may bias DAA, which we could not formally assess (Alzheimer’s Association, 2022). 

Moreover, SES was not formally addressed in the present analyses and may reflect a common 

cause of or indirect causal path variable of educational differences and MCI risk. However, 

DAA was carefully adjusted for different confounder sets, including lifestyle-related 

variables and risk factors of impaired cognition, such as BMI, depressive symptoms, or PS. 

Grouping of education may bias estimates, although the associations of years of education 

with MCI is likely non-linear. Further, compulsory schooling years vary across birthyears 

(Honig, M. S. & Bock, 2017). Grouping by less than 10 years of education selects older 

participants or those that immigrated. However, analysis was adjusted for age and first 

language as proxy for immigration. Limited diversity and sample size in this cohort prevented 

subgroup analysis and hampers generalisability (Appendix III Table S7). Further analysis 
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regarding functional categories and diversity are necessary to fully elucidate implications of 

distinct taxonomic signatures (Heintz-Buschart & Wilmes, 2018). 

III.4.2 Conclusions 

Our results suggest signatures of the gut microbiome that have been identified 

previously in AD and MCI to be reflected in lower education. We show that most of the 

association of education with MCI is of a direct nature and stress the importance of 

considering SDoH, specifically education, as key modifiers in microbiome studies. Our 

findings underline the potential of the gut microbiome as a biomarker and intervention target 

regarding MCI, which is promising, considering its modifiability until later life. Future 

research with longitudinal survey designs is required to further investigate potential 

interaction of education and the gut microbiome and their implication for neurodegenerative 

diseases. 
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Chapter IV – Towards Risk Prediction: ‘Probable Dementia’ Classification 

With Country-Level Variation in Prevalence in Europe 

Klee, M., Langa, K. M., & Leist, A. K. (2024). Performance of probable dementia 

classification in a European multi-country survey. Scientific Reports, 14(1), 6657. 
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Abstract 

Feasibility constraints limit availability of validated cognitive assessments in 

observational studies. Algorithm-based identification of ‘probable dementia’ is thus needed, 

but no algorithm developed so far has been applied in the European context. The present 

study sought to explore the usefulness of the Langa-Weir (LW) algorithm to detect ‘probable 

dementia’ while accounting for country-level variation in prevalence and potential 

underreporting of dementia.  

Data from 56 622 respondents of the Survey of Health, Ageing and Retirement in 

Europe (SHARE, 2017) aged 60 years and older with non-missing data were analysed. 

Performance of LW was compared to a logistic regression, random forest and XGBoost 

classifier. Population-level ‘probable dementia’ prevalence was compared to estimates based 

on data from the Organisation for Economic Co-operation and Development.  

As such, application of the prevalence-specific LW algorithm, based on recall and 

limitations in instrumental activities of daily living (IADL), reduced underreporting from 

61.0% (95% CI, 53.3%, 68.7%) to 30.4% (95% CI, 19.3%, 41.4%), outperforming tested 

machine learning algorithms. Performance in other domains of health and cognitive function 

was similar for participants classified ‘probable dementia’ and those self-reporting physician-

diagnosis of dementia.  

Dementia classification algorithms can be adapted to cross-national cohort surveys 

such as SHARE and help reduce underreporting of dementia with a minimal predictor set. 

  



 

 

89 

IV.1 Introduction 

The WHO considers dementia, a condition characterised by memory and other 

cognitive impairments severe enough to cause the loss of independent function, to be a public 

health priority as the syndrome represents one of the main causes of death and dependency 

among older people (ADI et al., 2012). Dementia causes significant economic, health and 

social care burden for those living with dementia and their informal caregivers. The number 

of people affected by dementia is expected to increase in the coming decades (Nichols et al., 

2022). Due to resource intensity of systematic dementia ascertainment in representative 

cohort studies, algorithmic classifications of dementia are needed to inform research and 

reduce potential underreporting.  

Dementia classification algorithms determine participants’ dementia status based on 

cognitive tests or sociodemographic variables that are readily accessible in cohort surveys 

such as the Health and Retirement Study (HRS) in the U.S. (Alzheimer’s Association, 2010; 

Crimmins et al., 2011; Herzog & Wallace, 1997; Hurd et al., 2013; Manly et al., 2022; Q. Wu 

et al., 2013). Existing algorithms frequently rely on (regression-based) prediction models or 

composite scores with an a priori cutoff for classification. In general, score cutoff based 

approaches facilitate interpretation, primarily due to a lower number of indicators and straight 

forward computation compared with regression-based classification. Langa, Kabeto and Weir 

developed a widely applied and previously validated score cutoff based algorithm (LW) to 

infer ‘probable dementia’ (Alzheimer’s Association, 2010; Crimmins et al., 2011; Gianattasio 

et al., 2019). However, established dementia classification algorithms have not been 

systematically tested in the European, cross-national context, yet (Alzheimer’s Association, 

2010; Crimmins et al., 2011).  

The SHARE is a sister study to HRS. Nevertheless, direct application of well-

established dementia classification algorithms is hindered due to differences in assessment 



 

 

90 

protocols. Furthermore, cutoffs are not directly transportable since sample demographics, 

cognitive performance, indicator-outcome relationships, or reporting styles may vary across 

countries (Bond et al., 2005; d’Uva et al., 2011; Formánek et al., 2019).  

We sought to examine the potential of the LW classification to detect ‘probable 

dementia’ using a minimal predictor set, with the aim of compensating for underreporting of 

dementia in cohort studies in the European context. Thus, we investigate the performance of a 

range of algorithms to detect ‘probable dementia’ and to adjust for country-level variation in 

underreporting of dementia in SHARE (Börsch-Supan et al., 2013). For this purpose, we 

adapted the LW classification to available indicators in SHARE, defining country-specific 

cutoffs. Performance was compared to a set of benchmark ML algorithms to test for possible 

improvements with larger predictor sets and higher model complexity, specifically, a 

weighted logistic regression model (GLM), a random forest (RF) and an XGBoost (XGB) 

classifier (T. Chen & Guestrin, 2016). Validity of classifications was assessed (a) on the 

population level by comparing country-specific (‘probable’) dementia prevalence before and 

after application of the algorithms to projections based on data from the Organisation for 

Economic Co-operation and Development (OECD) and a population representative study in 

Israel, and (b) on the individual level by assessing performance of those classified ‘probable 

dementia’ in further domains of health and cognitive function (Kodesh, 2019; OECD, 2018). 

IV.2 Methods 

IV.2.1 Study Sample 

SHARE is a representative, multi-country cohort study with over 140 000 participants 

aged 50 years and biennial follow-up from 2004 to 2021 (Bergmann, Kneip, et al., 2019; 

Bergmann, Scherpenzeel, et al., 2019; Börsch-Supan, 2022; Börsch-Supan et al., 2013). 

Activities of the SHARE-European Research Infrastructure Consortium related to human 

subjects research are guided by international research ethics principles such as the Respect 
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Code of Practice for Socio-Economic Research (professional and ethical guidelines for the 

conduct of socio-economic research) and the ‘Declaration of Helsinki’ (a set of ethical 

principles regarding human experimentation developed for the medical community by the 

World Medical Association, last revised at the 64th WMA Meeting held in Fortalezza/Brazil 

in October 2013). SHARE waves 4 and following were reviewed and approved by the Ethics 

Council of the Max Planck Society (https://share-eric.eu/data/faqs-support). The SHARE data 

collection procedures are subject to continuous ethics review. 

We used data from SHARE wave seven (2017 to 2019) due to its large sample size 

across 26 European countries and Israel (Börsch-Supan, 2022). Data from countries with at 

least five participants self-reporting physician-diagnosis of dementia were eligible for 

analyses. Although we further address class imbalance, a cutoff of five was enforced to avoid 

biases in performance comparisons emerging from countries with outlying, extremely low 

dementia case numbers. Participants aged 60 years and older, with non-missing data on 

relevant sociodemographic, health or cognitive items were included in our analytic data set. 

All participants provided informed consent. 

IV.2.2 Measures 

Participants self-report physician-diagnosis of dementia with a single item question; 

‘Has a doctor ever told you that you had/Do you currently have Alzheimer's disease, 

dementia, […]’ (CentERdata, Institute for data collection and research & SHARE Central, 

Munich Center for the Economics of Aging, 2024). 

The LW algorithm classifies participants based on their performance in cognitive tests 

or based on items characterising participants’ cognitive status that are provided by proxy 

respondents (Alzheimer’s Association, 2010; Crimmins et al., 2011). Proxy respondents 

answer on behalf of the main respondent in case of physical or cognitive limitations. The LW 

algorithm classifies participants with three groups: ‘normal’, ‘probable dementia’, i.e., 
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‘demented’ in original LW, and ‘cognitive impairment without dementia’ (CIND), i.e., 

‘cognitive impairment, not demented’ in original LW (Alzheimer’s Association, 2010; 

Crimmins et al., 2011; Langa et al., 2005).  

LW classifications for self-respondents are based on immediate (0 to 10) and delayed 

(0 to 10) recall, Serial 7’s (0 to 5) and backwards counting (0 to 2) tasks (Alzheimer’s 

Association, 2010; Crimmins et al., 2011). LW classifications for proxy respondents are 

based on proxy-rated memory (0 to 4), interviewer-perceived quality of cognition (0 to 2) and 

five IADL (0 to 5) limitations (Alzheimer’s Association, 2010; Crimmins et al., 2011). 

Cutoffs were defined so that the prevalence of categories resulting from classification 

of the full HRS sample match the population-level prevalence of CIND and dementia 

identified in the population-representative Aging, Demographics, and Memory Study, with 

equipercentile equating (Alzheimer’s Association, 2010; Crimmins et al., 2011; Langa et al., 

2005). 

Distinctive features of SHARE and HRS hamper direct application of LW to SHARE, 

despite similar assessment protocols. First, there are no proxy-reported cognitive function 

measures available in SHARE wave seven. Second, nine limitations with IADLs are available 

in SHARE wave seven, but self-reported. Third, the backwards counting task is not available 

in SHARE wave seven. Fourth, the Serial 7’s is only available for a subset of 12 countries 

and was thus only used to assess validity of classifications in SHARE wave seven.  

To examine the impact of including self-reported IADLs in classification, two LW 

adaptations were derived. LW (Recall) is based on immediate (0 to 10) and delayed (0 to 10) 

recall. LW (Recall & IADL) is based on LW (Recall) and nine IADLs (0 to 9) limitations 

(Appendix IV Table S1). 
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With a smaller number of items, sum score ranges are narrower, and hence pre-

established cutoffs prone to misclassification. This motivated updating cutoff definitions for 

SHARE. 

First, since there is no measure for CIND, we defined cutoffs for classifying ‘probable 

dementia’, but not CIND. However, definition of cutoffs with the equipercentile equating 

approach is hampered in absence of neuropsychological assessment informing about 

representative prevalence of dementia in SHARE. We thus introduced externally validated 

prevalence estimates from a national representative study in Israel and projections published 

by the OECD, which are based on data from the World Alzheimer Report 2015 and 

population structure estimates from the United Nations (Kodesh, 2019; OECD, 2018; United 

Nations, Department of Economic and Social Affairs, Population Division, 2017).  

Second, comparison suggested varying degrees of underreporting across countries, 

defined as discrepancy in prevalence estimates based on OECD data and self-report 

physician-diagnosis of dementia in SHARE (Kodesh, 2019; OECD, 2018; Prince et al., 2015; 

United Nations, Department of Economic and Social Affairs, Population Division, 2017). In 

example, some countries with similar dementia prevalence in SHARE vary in prevalence 

according to OECD data (Kodesh, 2019; OECD, 2018). Moreover, cross-national differences 

in mean recall performance and the number of reported IADLs indicate that cutoffs need to 

be defined within countries (Kodesh, 2019; OECD, 2018; Prince et al., 2015). 

Consequently, two sets of cutoffs for LW (Recall) were defined, based on percentiles 

reflecting prevalence estimates reported by the OECD (i.e., equipercentile equating approach) 

or based on the 2.5th percentile. With equipercentile equating, the cutoff reflects external 

information on country-level dementia prevalence (Kodesh, 2019; OECD, 2018). With the 

2.5th percentile, the cutoff is in line with the average population weighted dementia 

prevalence across countries in SHARE (M=2.2%) and reflects an outlier definition, two 
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standard deviations below the mean (for a normally distributed variable). Scores below either 

cutoff led to LW (Recall) classification ‘probable dementia’. 

For LW (Recall & IADL) a naïve IADL cutoff was defined to reflect outliers, one and 

a half interquartile ranges above Q3. In countries with Q3 equal to zero the cutoff was set to 

1. Scores above this cutoff led to LW (Recall & IADL) classification ‘probable dementia’ if 

LW (Recall) was classified ‘probable dementia’, too.  

Consequently, two LW algorithms were specified, i.e., based on Recall (LW 

[Recall]), or Recall and IADLs (LW [Recall & IADL]) with two alternative cutoffs for Recall 

(LW [Recall]P – prevalence-based; or LW [Recall] – outlier based). For LW (Recall & IADL) 

and LW (Recall & IADL)P the same naïve IADL cutoff was used, irrespective of the cutoff 

used for Recall. 

To examine performance of different specifications we compared the four LW 

algorithms with different sets of indicators (based on cognitive tests and IALDs) and cutoffs 

(based on prevalence or outlier definitions). Additionally, we compared the four LW 

algorithms to three functions commonly classified as ML algorithms, GLM, RF, and XGB, 

both latter relaxing parametrical assumptions and allowing for non-linear higher-order 

interactions (T. Chen & Guestrin, 2016; Leist et al., 2022). RF classifier aggregate 

information of individual decision trees, created with random subsets of predictors following 

the concept of bootstrapping (Leist et al., 2022). XGB classifier are based on a sequential 

ensemble of individual decision trees used to minimise the prediction error in final data 

partitions (T. Chen & Guestrin, 2016; Leist et al., 2022).  

ML algorithms included immediate and delayed recall, individual ADLs/IADLs, and 

sociodemographic indicators age, education (tertiary/upper secondary/lower secondary), and 

sex/gender (male/female). Additionally, interviewer-rated variables were included 

comprising provided reading assistance (yes/no), willingness to answer (good/bad), 
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clarification/comprehension questions (6-step Likert Scale from Never to Always). In rare 

circumstances proxies that were present during the interview reported IADLs on behalf of 

(0.7% of full sample), or together with the respondent (1.7% of full sample). Information on 

the presence and type of proxy was thus included in ML algorithms (No, Partner, Relative, 

Helper/Other). The outcome (class) used for model training was self-report physician-

diagnosis of dementia.  

To address class imbalance (i.e., majority of participants without self-report 

physician-diagnosis of dementia), three training sets were defined, by random split, 

downsampling the majority class, or the synthetic minority oversampling technique 

(SMOTE; Chawla et al., 2002). With SMOTE, new cases are created based on the k-nearest 

neighbours of the minority class (Chawla et al., 2002).  

Hyperparameters of RF and XGB models were tuned using grid search in five-fold 

cross validation with the area under the receiver operating characteristic curve (AUC) as 

criterion for selection of the best specification. Sampling weights were derived for GLM 

based on the inverse of the country-specific prevalence (or 1 minus the country-specific 

prevalence) for the minority (or majority) class (Kodesh, 2019; OECD, 2018).  

Consequently, LW algorithms were compared to three (GLM, RF, XGB) x three 

(random split, downsampling, SMOTE) + one GLM (weighted) benchmark ML-based 

algorithms. We will only discuss GLM weighted, RF SMOTE and XGB SMOTE in the 

following sections. 

IV.2.3 Statistical Analysis 

Descriptive characteristics of the three training sets (random split, downsampling, 

SMOTE) and test set were assessed at baseline with Student’s t-Tests for continuous and Chi-

squared Tests for categorical characteristics.  
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Model performance for all specifications was assessed in the same test set. In a first 

step, ML-based algorithms were trained and cutoffs for LW were defined in the training set. 

Second, classifications for LW and ML-based algorithms were computed for the test set, and 

performance was assessed comparing self-report physician-diagnosis of dementia to 

‘probable dementia’ with multiple indicators (e.g., AUC, F1, sensitivity, specificity).  

Then, country level variation in population-weighted ‘probable dementia’ prevalence 

was compared to previously reported estimates. First, per-country prevalence estimates were 

plotted according to observed dementia status in SHARE and previously reported figures. 

Then, underreporting across countries when applying classification algorithms was 

computed. Underreporting for individual countries was calculated as denoted in (1). NSHARE 

is the number of dementia cases in the test set, based on the population-weighted prevalence 

according to each algorithm. NOECD is the number of dementia cases in the test set, based on 

prevalence estimates reported by the OECD.  

 

𝑢𝑛𝑑𝑒𝑟𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 = 1	–	/
𝑛!"#$%
𝑛&%'(

0 (1) 

 

Prevalence estimates were mapped, to explore geographical patterns. Mean values in 

further domains of health and cognitive function were compared in ‘probable dementia’ and 

self-reported physician-diagnosis of dementia to assess validity of classifications. Finally, 

performance metrics were stratified by country to inspect fairness of classifications. All 

analyses were performed in R version 4.2.0 (R Core Team, 2022). 

IV.3 Results 

Of 77 202 participants in SHARE wave seven, a total of N=56 622 (M [SD] age=71.7 

[8.1] years; 56.3% female) from 26 countries were eligible to our analysis of which 2.1% 
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reported physician-diagnosis of dementia (Figure 4). Baseline characteristics are provided in 

Table 7. 

 

Figure 4 Flow Chart Illustrating Sample Size According to Eligibility Criteria 

 

Note. Numbers refer to sample size after application of the eligibility criteria, denoted in bold font. 

 

Table 7 Baseline Characteristics (Study 3) 

Characteristics Test Set Training Set 

  
(n=28 312) 

Random Split 
(n=28 310) 

DOWN 
(n=1,170) 

SMOTE 
(n=4,095) 

Age, M (SD) 71.7 (8.05) 71.7 (8.08) 75.4 (8.89) 73.9 (8.72) 

Gender     

  Female 15 937 (56.3%) 15 931 (56.3%) 682 (58.3%) 2,321 (56.7%) 

  Male 12 375 (43.7%) 12 379 (43.7%) 488 (41.7%) 1,774 (43.3%) 

Education (ISCED 1997)     

  Lower secondary 11 418 (40.3%) 11 376 (40.2%) 589 (50.3%) 1,864 (45.5%) 

  Upper secondary 9,563 (33.8%) 9,512 (33.6%) 332 (28.4%) 1,280 (31.3%) 

  Tertiary 7,331 (25.9%) 7,422 (26.2%) 249 (21.3%) 951 (23.2%) 

Dementia     

  Yes 591 (2.1%) 585 (2.1%) 585 (50.0%) 1,170 (28.6%) 

  No 27 721 (97.9%) 27 725 (97.9%) 585 (50.0%) 2,925 (71.4%) 

Note. Reported p values are based on Student’s t-Tests for continuous and Chi-squared Tests for categorical 

characteristics. DOWN=training set created with downsampling; SMOTE=training set created with the 

synthetic minority oversampling technique.  



 

 

98 

Model performance was assessed regarding (balanced) accuracy, sensitivity, 

specificity (Figure 5), precision, F1 and AUC (Leist et al., 2022). All models accurately 

predicted ‘probable dementia’ (accuracy=0.83 to 0.98). However, performance varied for 

metrics that are more robust in imbalanced data (balanced accuracy=0.50 to 0.81; F1=0.01 to 

0.30). Discrimination was moderate to good overall (AUC=0.63 to 0.90). For LW, sensitivity 

was higher with prevalence-based compared to statistically informed Recall cutoffs 

(Appendix IV Table S2). IADL inclusion in LW (Recall & IADL)P increased specificity and 

combined good balanced accuracy (0.70), moderate AUC (0.70) and the best F1 across all 

algorithms (0.30).  
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Figure 5 Sensitivity and Specificity of Classification Algorithms in the Test Set. 

 

Note. LW (Recall)=Langa-Weir algorithm with a Recall-cutoff reflecting the 2.5th percentile; LW 

(Recall)P=Langa-Weir algorithm with a Recall-cutoff reflecting country-level dementia prevalence; LW (Recall 

& IADL)=Langa-Weir algorithm based on LW (Recall) with an IADL cutoff reflecting 1.5 IQR above Q3; LW 

(Recall & IADL)P=Langa-Weir algorithm based on LW (Recall)P with an IADL cutoff reflecting 1.5 IQR above 

Q3; GLM weighted=weighted Logistic Regression, RF SMOTE=Random Forest trained in data created with the 

synthetic minority oversampling technique; XGB SMOTE=XGBoost trained in data created with the synthetic 

minority oversampling technique; IADL=Instrumental Activities of Daily Living. 
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For ML-based algorithms, GLM (weighted), RF SMOTE and XGB SMOTE showed 

the best performance combining good balanced accuracy (0.75 to 0.77), good AUC (0.86 to 

0.89) and the best F1 within their algorithm type (0.26 to 0.30).  

Regarding country-level variation in dementia prevalence, estimates based on SHARE 

with self-reported physician-diagnosis of dementia, or ‘probable dementia’ were compared to 

earlier reported country-specific prevalence (Figure 6). LW (Recall & IADL)P ‘probable 

dementia’ prevalence was more similar to previous findings, suggesting less underreporting. 

A steeper slope of the linear fit further suggests less variation in underreporting across 

countries.  
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Figure 6 Dementia Prevalence Across Countries 

 

Note. Population-weighted dementia prevalence across countries based on projections from the OECD and a 

population-based study in Israel (Kodesh, 2019; OECD, 2018) on x-axis and SHARE on y-axis. Red rectangles 

reflect estimates for self-reported physician-diagnosis of dementia. Blue triangles reflect estimates for LW 

(Recall & IADL)P ‘probable dementia’. Vertical dotted lines reflect the discrepancy between (probable) 

dementia prevalence estimates in SHARE. The diagonal dotted line reflects perfect overlap of estimates in 

SHARE and OECD. Solid lines and shaded areas reflect linear models and confidence limits for (probable) 

dementia prevalence-based on self-report physician-diagnosis (red) or LW (Recall & IADL)P (blue). See ISO 

alpha 2 country codes in Appendix IV Table S3. SHARE=Survey of Health, Ageing and Retirement in Europe; 

OECD=Organisation for Economic Co-operation and Development; LW (Recall & IADL)P=Langa-Weir 

algorithm with a Recall-cutoff reflecting country-level dementia prevalence and an IADL cutoff reflecting 1.5 

IQR above Q3; IADL=Instrumental Activities of Daily Living.   
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Underreporting with a prevalence estimate based on self-report physician-diagnosis of 

dementia was 61.0% (95% CI, 53.3%, 68.7%) on average. Underreporting with a prevalence 

estimate based on LW (Recall & IADL)P ‘probable dementia’ was reduced to 30.4% (95% 

CI, 19.3%, 41.4%) on average (Figure 7, Appendix IV Table S3).  

 

Figure 7 Mean Underreporting Across Countries With Classification Algorithms 

 

Note. Points indicate mean underreporting (error bars indicate 95% CI) when the number of people living with 

‘probable dementia’ is compared to previously reported estimates (Kodesh, 2019; OECD, 2018). Solid vertical 

line indicates perfect overlap of the number of people living with ‘probable dementia’ in the test set when 

applying classification algorithms and the number of people living with dementia in the test set calculated 

based on previously reported population-level prevalence estimates (Kodesh, 2019; OECD, 2018). The dashed 

vertical line indicates mean underreporting (light grey fill indicates 95% CI) when the number of people living 

with self-reported physician-diagnosis of dementia is compared to previously reported estimates (Kodesh, 

2019; OECD, 2018). LW (Recall)P=Langa-Weir algorithm with a Recall-cutoff reflecting country-level 

dementia prevalence and an IADL cutoff reflecting 1.5 IQR above Q3; GLM weighted=weighted Logistic 

Regression; RF SMOTE=Random Forest trained in data created with the synthetic minority oversampling 

technique; XGB SMOTE=XGBoost trained in data created with the synthetic minority oversampling 

technique; IADL=Instrumental Activities of Daily Living.  
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Prevalence estimates based on GLM (weighted) suggested higher variation in 

underreporting and a negative linear trend (results not shown) despite a better reduction in 

underreporting (M [95% CI] underreporting=-8.7% [-34.8%, 17.4%]). Other ML algorithms 

drastically overestimated prevalence. 

Prevalence estimates were further mapped to explore geographical patterns (Figure 8). 

Whereas previously reported estimates and SHARE estimates based on self-reported 

physician-diagnosis of dementia suggested overall differences in magnitude, previously 

reported estimates indicated low variation between neighbouring countries. Prevalence was 

overall higher with LW (Recall & IADL)P ‘probable dementia’ compared to self-reported 

physician-diagnosis of dementia but lower compared to OECD projections. Differences in 

prevalence between neighbouring countries were smaller with LW (Recall & IADL)P 

‘probable dementia’ compared to self-reported physician-diagnosis of dementia but higher 

compared to previously reported estimates. GLM (weighted), RF SMOTE and XGB SMOTE 

reinforced discrepancies between some neighbouring countries and exceeded previously 

reported prevalence estimates.  
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Figure 8 Dementia Prevalence Maps 

 

Note. Population weighted dementia prevalence across countries based on A projections from the OECD and a 

population-based study in Israel (Kodesh, 2019; OECD, 2018), B self-reported physician-diagnosis of dementia, 

or C-F ‘probable dementia’ classification. Grey fill indicates prevalence > 10%. LW (Recall)P=Langa-Weir 

algorithm with a Recall-cutoff reflecting country-level dementia prevalence and an IADL cutoff reflecting 1.5 

IQR above Q3; GLM weighted=weighted Logistic Regression; RF SMOTE=Random Forest trained in data 

created with the synthetic minority oversampling technique; XGB SMOTE=XGBoost trained in data created 

with the synthetic minority oversampling technique; IADL=Instrumental Activities of Daily Living.  
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Validity was further assessed comparing mean values in further domains of health and 

cognitive function between ‘probable dementia’ and self-reported physician-diagnosis of 

dementia in complete cases (Figure 9). Results suggest good fit overall for depressive 

symptoms, verbal fluency, and numeracy performance (Prince et al., 1999). Grip strength 

aligned best with LW (Recall), LW (Recall)P, and XGB SMOTE, just like age. Regarding 

orientation to date, only LW ‘probable dementia’ algorithms with statistically informed 

Recall cutoffs and GLM (weighted) overlap with self-reported physician-diagnosis of 

dementia.  
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Figure 9 Validity assessment in further domains of health and cognitive function 

 

Notes. Means with 95% CIs for in (probable) dementia. Labels refer to the number of participants with 

(probable) dementia and complete data. LW (Recall)=Langa-Weir algorithm with a Recall-cutoff reflecting the 

2.5th percentile; LW (Recall)P=Langa-Weir algorithm with a Recall-cutoff reflecting country-level dementia 

prevalence; LW (Recall & IADL)=Langa-Weir algorithm based on LW (Recall) with an IADL cutoff reflecting 

1.5 IQR above Q3; LW (Recall & IADL)P=Langa-Weir algorithm based on LW (Recall)P with an IADL cutoff 

reflecting 1.5 IQR above Q3; GLM weighted=weighted Logistic Regression; RF SMOTE=Random Forest 

trained in data created with the synthetic minority oversampling technique; XGB SMOTE=XGBoost trained in 

data created with the synthetic minority oversampling technique; IADL=Instrumental Activities of Daily Living. 

*p<.05. **p<.01. ***p<.001. ****p<.0001.  
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Performance metrics were stratified by country to inspect fairness of algorithms 

(Appendix IV Figure S1). Variation in performance is higher for LW (Recall & IADL)P 

compared to ML-based algorithms for AUC, F1, precision, and sensitivity, but for balanced 

accuracy, variation is similar. For accuracy and specificity LW (Recall & IADL)P shows the 

least variation. 

IV.4 Discussion 

In this study, we adapted the LW dementia classification algorithm and tested its 

ability to detect ‘probable dementia’ in the European context. LW proved useful to detect 

‘probable dementia’ compared to when classification is based entirely on self-report of a 

physician-diagnosis. In validity checks on the population level, we found that LW based on 

immediate recall, delayed recall and IADLs with a prevalence-based recall cutoff (LW 

[Recall & IADL]P) performed best in reducing underreporting across countries. On the 

individual level, performance profiles in other domains of health and cognitive function such 

as numeracy in ‘probable dementia’ matched those in participants who self-report physician-

diagnosis of dementia in a subset of countries. Despite higher complexity and a larger 

number of indicators, ML-based classifiers performed less consistent across countries 

reinforcing the superiority of the adapted LW classification to help identify ‘probable 

dementia’ with a minimal predictor set.  

A previous study suggested validity of LW classifications in the US context and 

performance in line with algorithms additionally incorporating demographic characteristics 

(Gianattasio et al., 2019). We found similar sensitivity and high specificity of the adapted 

LW (Recall & IADL)P in the European context, despite a smaller set of indicators 

(Gianattasio et al., 2019). More recently, other ML-based algorithms classifying ‘probable 

dementia’ were evaluated in the European context (Cleret de Langavant et al., 2018, 2020; 

Gharbi-Meliani et al., 2023; Twait et al., 2023). In line with our findings, a recent study 
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suggested limited surplus in performance over logistic regression models when using 

complex ML-based algorithms, and only so with survival analyses (Twait et al., 2023). As an 

alternative to supervised learning, where models are trained on an a priori labelled class, a 

recent study applied a previously established unsupervised ML approach to clustering in 

SHARE, longitudinally (Cleret de Langavant et al., 2018; Gharbi-Meliani et al., 2023). AUC 

and sensitivity of LW (Recall & IADL)P classification were in line with the clustering based 

classification in SHARE wave seven, although being marginally lower (Gharbi-Meliani et al., 

2023). This suggests similar classification performance with the score cutoff based algorithm. 

LW (Recall & IADL)P application requires no longitudinal follow-up and hence, compared 

with longitudinal algorithms, we were able to classify more data points from more countries 

at a given wave, which however precluded direct comparison, e.g., of the number of newly 

identified ‘probable dementia’ (Gharbi-Meliani et al., 2023). Nonetheless, including external 

information on population-level dementia prevalence suggested that LW (Recall & IADL)P 

identified an expected additional number of ‘probable dementia’, thus suggesting reduced 

potential underreporting, while maintaining high specificity (Kodesh, 2019; OECD, 2018). 

We found variation in classification performance across countries. Such variation was 

also apparent in a recent study in SHARE, and may be due to descriptive differences across 

countries, emerging e.g., from differences in population structures (Gharbi-Meliani et al., 

2023). As an example, sensitivity was lowest in countries with lower mean recall 

performance, especially with LW (Recall & IADL)P, suggesting floor effects during cutoff 

definitions. Furthermore, prevalence in countries with distinct distributions of antecedents to 

dementia, was systematically overestimated with ML-based classifiers, e.g., for Eastern 

compared to Northern European countries (Alzheimer Europe, 2019). Another reason for 

country-level variation may be differential association of included indicators with dementia 

risk, e.g., depending on welfare regimes, or policy across countries. Although we cannot rule 
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out that emerging biases reduce performance for some countries, inspection of performance 

metrics when excluding data from one country at a time during training and testing did not 

alter main findings (results not shown). 

Compared with benchmark ML-based algorithms, LW (Recall & IADL)P suggested 

higher and more consistent specificity across countries. When using ML-based classifiers 

such as RF/XGB SMOTE to detect ‘probable dementia’, our results suggest a lack of 

consistency in prevalence estimates of neighbouring countries. More dramatically, ML-based 

‘probable dementia’ prevalence exceeded population-based projections and GLM (weighted) 

introduced a negative association between SHARE-based prevalence estimates and those 

informed by previous findings (Kodesh, 2019; OECD, 2018; Prince et al., 2015). Contrary, 

with LW (Recall & IADL)P, prevalence in neighbouring countries was more homogeneous 

and more similar to previously reported estimates, leading to a positive association between 

prevalence estimates based on SHARE and previously reported estimates.  

Critically, projected prevalence estimates used to assess validity of classifications 

come with considerable uncertainty stemming from oversimplification (e.g., assuming 

constant age-specific prevalence), varying operationalisations or lacking knowledge about 

future developments in medicine or policy (Schwarzinger & Dufouil, 2022). Further, 

estimates of the OECD reflect projections for 2018 based on data from 2015. However, time 

lag was low and OECD prevalence estimates were generally higher than those based on self-

report physician-diagnosis in SHARE. Still, prevalence may be understated due to healthy 

volunteer bias, or lacking representativeness in underlying studies, or systematic 

underdiagnosis in low- and middle-income countries (Cleret de Langavant et al., 2020). 

Critically, receiving a diagnosis given dementia may depend on the severity of symptoms, 

lacking access to screening tools, or lacking knowledge of or access to treatment and care 

(Bond et al., 2005). Moreover, stigma evolving around dementia may result in longer times 
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until diagnosis, with apparent variation in such stigma across European countries, aligning 

with the availability of specialised care (Vernooij-Dassen et al., 2005). In any case, self-

reporting a dementia diagnosis may amplify such biases (Mullin et al., 2023). It is crucial to 

interpret our findings acknowledging absence of a gold-standard measure of dementia 

prevalence and thus discrepancies between the number of people living with dementia with or 

without a diagnosis to self-report. As such, we refer to underreporting resulting from multiple 

processes encompassing but not limited to failure to self-report a present diagnosis or absence 

of a diagnosis despite presence of dementia. In absence of clinically valid assessment of 

dementia inclusion of external information allowed employing the equipercentile equating 

approach to SHARE and a consequent exploration of mechanisms leading to differences 

between data sources (Alzheimer’s Association, 2010; Crimmins et al., 2011). As such, our 

findings suggest that LW (Recall & IADL)P efficiently reduced underreporting defined as 

discrepancy between previously reported estimates and SHARE-based estimates, uniformly 

across countries. 

Internal validation further suggested that LW (Recall & IADL)P ‘probable dementia’ 

was similar to self-reported physician-diagnosis of dementia regarding further domains of 

health and cognitive function in a subset of countries with available markers. GLM 

(weighted), and LW adaptations including IADLs overstated age and understated grip 

strength, both reflecting risk factors of dementia (Bai et al., 2021). Our findings suggest these 

algorithms classify older, physically more impaired participants irrespective of potentially 

underlying or absent dementia thus increasing noise and deteriorating fairness with respect to 

ageism. Inclusion of IADLs, conveying information on worsening physical health but not 

dementia, specifically, may explain this. Interestingly, IADL inclusion had a positive effect 

on specificity, possibly by accounting for floor effects in recall measures. Whereas XGB 

SMOTE and GLM (weighted) ‘probable dementia’ fit well to self-reported physician-based 
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dementia diagnosis, prevalence estimates were highly overstated with XGB SMOTE, and 

biased across countries with GLM (weighted). Our findings further suggest calibration may 

be negatively affected in algorithms trained with SMOTE (van den Goorbergh et al., 2022). 

Verbal fluency, depressive symptoms, and numeracy performance were similar in self-report 

physician-diagnosis of dementia and ‘probable dementia’ across algorithms (Alzheimer’s 

Association, 2010; Crimmins et al., 2011; Sutin et al., 2019). Critically, depressive symptoms 

may play a role as early sign or risk factor of dementia, or relate to recall performance (r=-

.28, p<.001) and IADL reporting (r=.37, p<.001) irrespective of dementia (Demnitz et al., 

2020; Livingston et al., 2020). Orientation to date was not well reflected by LW 

classifications with a prevalence-based recall cutoff, or RF/XGB SMOTE, potentially due to 

the categorical operationalisation. In sum, our results support similarity of ‘probable 

dementia’ and self-reported physician-diagnosis of dementia in most algorithms.  

IV.4.1 Limitations 

This study systematically investigated a range of dementia classification algorithms to 

adjust for underreporting of dementia in a large European ageing survey, using internally 

derived and externally validated prevalence estimates. Some limitations need to be 

considered when interpreting our findings. First, we could not train models on CIND 

classification and thus participants with mild limitations may be misclassified ‘without 

probable dementia’. Second, dementia rates were lower in our sample than in previous 

studies reducing statistical power to detect ‘probable dementia’. Further, a smaller number of 

participants self-reporting dementia limits generalisability of the validation procedure 

(Gianattasio et al., 2019). Third, discrepancies in dementia prevalence which we interpreted 

as potential underreporting may be due to selection bias, or due to diagnoses being based on 

self-reports, both of which could lead to misclassification following stricter cutoff definitions. 

Related, models trained on self-reported physician-diagnosis of dementia, which is less 
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reliable than formal diagnosis, may miss prevalent cases due to reduced statistical power 

during training (Cigolle et al., 2018). Fourth, participants self-reporting limitations may 

systematically differ from those not disclosing such information impeding generalisability of 

our findings (Gamble et al., 2022). Fifth, LW was adapted to a reduced set of indicators and 

self-reported IADLs reducing discriminatory power. However, recall scores contributed most 

to LW (20/27 points) and mean Serial 7’s scores for LW (Recall & IADL)P ‘probable 

dementia’ and self-report physician-diagnosed dementia did not differ significantly in a 

subset of the data, suggesting limited added value of including Serial 7’s for classification. 

Sixth, a previous study suggested the need for model stratification (Gianattasio et al., 2020). 

However, class imbalance, sample size and lacking diversity prohibited fairness evaluation of 

classifications in stratified samples. Seventh, discussed algorithms were applied to cross-

sectional data, and may misclassify participants with outlying low performance. Further, LW 

(Recall & IADL)P cannot differentiate prevalent or incident ‘probable dementia’. Eighth, 

participants in our study were younger (age 60 and older) compared to the Aging, 

Demographics, and Memory Study (age 70 and older), likely healthier (complete case, 

community-dwelling) and proxy-ratings were not available, which potentially reduced power 

to detect cases and yielded more conservative cutoffs (Langa et al., 2005). We thus call for 

the inclusion of proxy assessments to bolster research relating to cognitive ageing and 

dementia. 

IV.4.2 Conclusions 

In absence of clinically validated dementia assessment in observational studies, 

classification algorithms such as LW can be adapted to cross-national cohort surveys such as 

SHARE to reduce underreporting of dementia. In this study, LW (Recall & IADL)P identified 

‘probable dementia’ with high validity compared to ML-based classifiers. Many large ageing 

surveys provide recall items or IADLs (Banks et al., 2021; HCAP Network, 2024). We thus 
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provide a transparent and transportable classification with a minimal predictor set, based on 

the pre-established LW algorithm. While ‘probable dementia’ does not reflect a diagnosis, we 

hope to empower dementia researchers in several ways. First, the present work may facilitate 

uptake of dementia classification algorithms for research in SHARE. Additionally, we 

provide knowledge to transport classifications into other applications, since cutoffs used for 

classification are directly interpretable and adaptable across settings. Second, classifications 

may be used to inform sampling strategies. Finally, a ‘probable dementia’ indicator may 

improve statistical power, offering means to assess sensitivity in a multitude of research 

applications. Future research may offer opportunities to validate our findings with the 

Harmonized Cognitive Assessment Protocol and compare performance across sister studies 

of SHARE and HRS (HCAP Network, 2024). This may also yield the potential to investigate 

algorithm performance in subgroups for fairness evaluations and disparities research. 
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General Discussion 
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Chapter V – Discussion of Main Findings 

V.1 Summary of Findings 

This thesis covered three individual studies investigating potentially modifiable risk 

factors, theoretically derived underlying mechanisms, as well as the application of a 

classification algorithm for 'probable dementia' to a multi-country ageing survey. The 

following section summarises the main findings.  

Building on the AD Exposome, which provides a framework for interactive paths of 

exogenous (macrolevel or individual) and endogenous factors associated with the aetiology 

of dementia, we investigated how living environments characterised by fewer socioeconomic 

resources may capture individual dementia risk (Finch & Kulminski, 2019). In doing so, we 

additionally considered individual genetic predisposition and varying degrees of individual-

level socioeconomic resources. Our findings suggest that individuals living in areas with 

fewer socioeconomic resources are at greater risk of developing all-cause dementia, even if 

their individual socioeconomic resources are considered (Figure 10). Extending on previous 

findings that suggested lower dementia risk when following a lifestyle characterised by e.g., 

engagement in physical activity, we could show that even if genetic risk of dementia was 

intermediate or high, fewer socioeconomic resources in the neighbourhood were associated 

with increased risk of dementia (Lourida et al., 2019). While there was no interaction of 

exogenous macrolevel area-level socioeconomic deprivation with endogenous polygenic 

dementia risk, highest dementia incidence in those that lived in areas with fewer 

socioeconomic resources and had high genetic risk suggested additivity of detrimental factors 

towards risk of dementia.  
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Figure 10 Directed Acyclic Graph Summarising Main Findings Reported in Chapter II 

  

Note. Area- and individual-level socioeconomic deprivation were associated with time to incident all-cause 

dementia independent of polygenic risk. Note that this summary does not illustrate observed/unobserved 

confounding considered in the formal analysis and discussion of findings. Interaction terms were depicted 

according to a proposal of Attia et al. (2022). PRS=Polygenic risk score quantifying risk of dementia; 

DIndi=Individual-level socioeconomic deprivation; DArea=Area-level socioeconomic deprivation; 

x=Multiplicative interaction. 

 

Further proceeding to investigate potential mechanisms that link SES to cognitive 

function in later life, we examined direct and indirect effects of a marker of SES, namely 

years of education, on MCI risk that would be mediated by metrics of another endogenous 

characteristic, the gut microbiome. Results were in line with previous reviews on the 

association of education and cognitive function across the life course in that they suggested 

higher MCI risk in lower education (Lövdén et al., 2020). However, results reported in 

Chapter III suggest that gut microbiome features (alpha diversity, composition) do not 

significantly mediate the association of lower education (i.e., 0-10 years of education) with 

higher MCI risk (Figure 11). Instead, there was an association of higher education, defined as 

more than ten years of formal education, with alpha diversity, a metric indicating richness of 

microbes, as well as an education-related taxonomic signature in line with a previously 

identified AD-related signature. However, as in Chapter II, the simultaneous expression of 
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endogenous characteristics and exogenous risk factors were associated with the risk of 

cognitive impairment in an additive manner.  

 

Figure 11 Directed Acyclic Graph Summarising Main Findings Reported in Chapter III 

 

Note. The association of years of education with mild cognitive impairment was neither mediated by A specific 

microbes nor B metrics of alpha diversity. Note that this summary does not illustrate observed/unobserved 

confounding considered in the formal analysis and discussion of findings. EDU=Education operationalised as 

groups of self-reported years of education (0-10, 11-16, 16+); MCI=Mild cognitive impairment; 

M1…n=Abundance of individual microbes; α=Alpha diversity metric.  

 

While the examination of risk factors and biological mechanisms linking individual 

modifiable risk factors and SDoH to dementia aetiology was the scope of Chapters II and III, 

delivery of prevention programmes targeting said factors requires accurate and early 

identification of individuals at-risk. Critically, dementia case ascertainment is resource 

demanding in cohort surveys and further biased by individual socioeconomic factors 

determining access to healthcare and consequent likelihood of diagnosis. In Chapter IV we 

investigated the validity of predictive algorithms based on readily available cognitive test 

items and reported limitations regarding IADL across multiple European countries. We 
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adapted an existing ‘probable dementia’ classification algorithm and tested its predictive 

ability against benchmark ML-based algorithms. We could show that the application of 

country-level cutoffs for reported IADL and word list recall performance based on externally 

validated dementia prevalence estimates helped to identify ‘probable dementia’ with high 

specificity and reasonable sensitivity (Figure 12). This transparent and transportable approach 

performed similar to ML-based approaches and suggested less country-specific bias. 

Importantly, those classified with ‘probable dementia’ performed similar to those that self-

reported physician-diagnosis of dementia in related domains of health and cognitive function.  

 

Figure 12 Graph Summarising Main Findings Reported in Chapter IV 

 

Note. Algorithmic classification of ‘probable dementia’ reduced underreporting defined as discrepancy between 

prevalence estimates reported by the Organisation for Economic Co-operation & Development (left panel) and 

prevalence estimates based on self-reported physician-diagnosis of dementia (middle panel) or algorithmically 

classified ‘probable dementia’ status (right panel) in SHARE. Darker colours indicate higher prevalence. 

SHARE=Survey of Health, Ageing and Retirement in Europe. 
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V.2 Contributions to the Research Field 

The following section will discuss how the presented findings can be integrated into 

the current dementia prevention research landscape given key challenges concerning 

dementia prevention, identified in section I.5. 

V.2.1 Dementia (Precision) Prevention in Areas With Fewer Socioeconomic Resources 

The first aim of the thesis was to extend on research suggesting health disparities 

regarding dementia risk along a socioeconomic gradient.  

To conceptualise the impact of SDoH and individual-level modifiable factors on 

dementia risk, the theoretical framework of the AD Exposome allowed us to examine 

interactions of risk factors embedded in different levels of proximity, i.e., exogenous, and 

endogenous (Finch & Kulminski, 2019). As such we extended on previous investigations of 

exogenous macrolevel (area-level) and exogenous individual (individual-level) 

socioeconomic deprivation by modelling interactions with endogenous genetic predisposition 

for AD. Our findings underline the existence of socioeconomic patterns of dementia risk, in 

line with a vast research landscape encompassing epidemiological evidence suggesting 

constituents of socioeconomic standing to be associated with dementia risk (Livingston et al., 

2020; Ranson et al., 2020; Weiss et al., 2020). Causal paths linking SDoH and other SES-

related theoretically modifiable risk factors to dementia, are still challenged. However, some 

researchers have argued that assumptions underlying Mendelian Randomisation, frequently 

considered as source of causal evidence, are not easily satisfied for complex exposures such 

as education (Anderson et al., 2024; European Alzheimer’s & Dementia Biobank Mendelian 

Randomization Collaboration et al., 2023; McMartin & Conley, 2020). Generally, broader 

SDoH, or related factors such as SES or sex/gender, reflect categories in which other 

modifiable risk factors are clustering. As such, a higher prevalence of risk factors may drive 

differences in dementia risk observed across e.g., SES strata (Deckers et al., 2019; Geraets & 
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Leist, 2023; Peters, Booth, et al., 2019). Importantly, ADRD incidence in later life could be 

driven by SDoH even if the nature of the association with dementia risk was indirect. We 

identified associations of area-level socioeconomic deprivation with WMH burden, even after 

controlling for individual-level socioeconomic deprivation. In fact, associations of 

socioeconomic deprivation with greater WMH burden did apply to both operationalisation 

strategies and suggest vascular contributions to increased dementia risk. In line with previous 

findings, this reinforces a perspective on SDoH contributing to dementia risk indirectly, by 

altering cardiometabolic disease burden (Kivimäki et al., 2019).  

We further showed that associations of socioeconomic deprivation with dementia risk 

did not vary based on the underlying genetic risk. Despite the importance of targeted 

interventions, e.g., aiming at behaviour change in at-risk populations, our findings (indicating 

no interaction with polygenic risk) do not support individualised (e.g., genetically informed) 

approaches to dementia prevention regarding socioeconomic deprivation. This is in line with 

previous findings relating e.g., to lifestyle, education, or cardiometabolic multimorbidity, 

albeit some ambiguity stemming from a previous study suggesting no association of lifestyle 

with dementia risk given less favourable genetic predisposition (Finch & Kulminski, 2019; 

Licher, Darweesh, et al., 2019; Lourida et al., 2019; Ranson et al., 2020; Tai et al., 2022). In 

absence of an interaction, reported explorative findings suggested global detriments to brain 

health in higher area-level socioeconomic deprivation, e.g., reflected in lower grey matter 

volume, rather than alterations in signature regions of AD such as hippocampal volume. 

Reported associations may be due to the employed area-level measure capturing detrimental 

environmental features. As an example, air pollution may confer brain damage not 

necessarily along a causal path involving a genetic predisposition but via exposure to 

particulate matter (Peters, Ee, et al., 2019). Further, features (e.g., walkability) may pertain 
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generalisable associations with dementia in terms of similar association strengths across 

individuals with different endogenous diatheses (Yu et al., 2023).  

Hence, our findings suggest delivery of preventive measures may yield reduced ADRD 

incidence if applied on a neighbourhood or area-based scale. It could be argued that for 

efficient improvement of public health, more emphasis should be put on altering living 

environments for communities in addition to more targeted interventions (Walsh et al., 2023). 

This is especially important in light of intricacies, invasiveness, agency, and resource 

intensity entailed in e.g., risk modification through lifestyle changes, as well as an increasing 

need to accommodate demographic and environmental changes and their economic impact on 

health care systems worldwide (Wimo et al., 2023). However, Chapter II also calls for a 

careful evaluation of associations of SDoH with dementia risk considering employed 

operationalisation strategies, especially when deducing potential working mechanisms, and 

related prevention efforts. Of note, previous observational findings suggest limited effect 

modification of the relationship of modifiable social and behavioural risk factors with 

dementia across e.g., broader categories such as sex/gender, or SES (Geraets & Leist, 2023). 

Conversely, other studies suggest potentially greater detriments to brain health conferred by 

depression or hypertension, depending on constructs such as ethnicity or social deprivation 

(Hofbauer & Rodriguez, 2023; Mukadam et al., 2023). In general, individualised approaches 

to prevention entail adaptation of contents, delivery, or timing to populations and individuals, 

and are thus likely to improve dementia risk reduction efforts on a population-level, even in 

absence of effect modification (Stephen et al., 2021).  

Of note, the provision of individualised preventive measures informed by 

quantifications of an individual’s risk, may be more, or less important depending on the level 

of proximity to the individual, in which operationalisations of SDoH were embedded. So far, 

we have discussed mainly factors constituting, or behaviours interacting with physical 
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features of the living environment, i.e., conceptualised as individual exposure rather than 

structural determinant. For more specific behaviours however, e.g., smoking, previous 

findings suggest interaction with endogenous factors, such as known AD-related risk alleles 

(i.e., in APOE ε4 carriers), supporting individualised, precision prevention efforts (N. Zhang 

et al., 2021). Of note, neither area-level nor individual-level socioeconomic deprivation 

reflect narrowly defined risk behaviours. Still, we argue that individual behaviours may relate 

to individual- and area-level socioeconomic deprivation and thus reinforce potentials to 

prevention efforts on a greater scale. In example, one’s living environment characterised by 

fewer socioeconomic resources may alter the likelihood of individuals to engage in certain 

activities and behaviours, e.g., according to descriptive norms, neighbourhood disamenities, 

or perceptions thereof (Sevi et al., 2024; Yu et al., 2023). As such, individual risk behaviours, 

e.g., associated with downstream vascular damage, may be affected by contextual factors 

limiting opportunity space or one’s ability to engage in a physically active lifestyle, thus 

indirectly impeding cardiovascular health. As another example, even when providing targeted 

information and assistance in helping individuals to alter their diet, limited socioeconomic 

resources or availability of adequately priced stores may render compliance almost irrational. 

Findings from the UK suggest that in the lowest income decile, following the Eatwell Guide 

would reflect spending over 70% of the disposable income (Marmot, 2020).  

Our findings underline the need for a holistic approach to dementia prevention, 

combining individualised and structural approaches. Critically, higher dementia risk in higher 

socioeconomic deprivation does not necessarily translate into preventive potential. While 

microsimulations indicate decreasing dementia prevalence in high income countries, possibly 

due to increasing access to healthcare, improved management of chronic diseases, or 

educational opportunities, these models simplify complex living environments and only alter 

specific components (Brück et al., 2022). To adequately address broad SDoH, social roles 



 

 

123 

and systemic differences in, as well as options to adhere to a healthy lifestyle need to be 

considered. Further, emphasis needs to be put on disentangling contributions of co-occurring 

risk factors, e.g., when investigating racial or SES-related disparities. This is especially 

important for estimating total contributions of certain risk factors to dementia incidence. 

However previously applied methods to adjust for clustering of risk factors, may 

underestimate total contributions and do not consider sequential manifestation times 

(Welberry et al., 2023). More complex modelling strategies and longitudinal follow-up data 

are required to estimate population-level absolute contribution of risk factors to dementia 

incidence, which may then be used to inform policy or public health decision making (Allore 

et al., 2015). 

In sum, our findings transport a positive message for public health research in the 

domain of dementia. As such, Chapter II suggests features of the environment to capture risk 

factors associated with dementia risk that may be intervened on, irrespective of the 

genetically determined predisposition or individual socioeconomic standing. This reinforces 

the implicit assumption that dementia risk may be systemically, at least partly modifiable by 

intervening on SDoH. The first aim consisted in elucidating the socioeconomic gradient of 

health disparities in a more comprehensive setting. Incorporating endogenous and their 

potential interactions with exogenous characteristics, allowed us to update our hypotheses 

about working mechanisms potentially underlying observational findings of increased 

dementia risk in less favourable SDoH strata. More precisely, area-level socioeconomic 

deprivation suggested to combine an aggregated association of individual-level 

socioeconomic deprivation with WMH burden alongside an environmental association of 

global detriments to brain health. These findings suggest that the efficacy of preventive 

actions will require varying degrees of personalisation, depending on the precisely defined 

exposure and the related working mechanisms. 
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V.2.2 Preventing Cognitive Impairment by Targeting Underpinnings of Resilience 

The second aim was to identify working mechanisms of the association of an 

exogenous individual risk factor, education, with the risk of cognitive impairment, to further 

elucidate potential targets for dementia risk reduction in later life.  

To investigate the impact of modifiable social and behavioural risk factors on later 

life health, the adoption of a life course perspective incorporating resilience as a key 

determinant of healthy ageing has been proposed previously (Finch & Kulminski, 2019; Kuh 

et al., 2003; Oosterhuis et al., 2023). However, criteria for positive trials investigating 

dementia prevention by intervening on modifiable risk factors most often still are 

operationalised as prolonged times to reach a clinical endpoint or deceleration of cognitive 

decline. As such, build-up of pathology preceding but ultimately leading to cognitive decline 

or dementia are rarely targeted. As an example, instead of targeting distal cognitive decline 

one may measure e.g., alpha diversity or other candidate features, potentially preceding and 

associated with later life cognitive health. Barriers may be associated with the resource 

intensity of collecting life course follow-up data, or technical limitations to measurement of 

and evidence supporting biological antecedents of dementia. Still, interventions are 

frequently tested in individuals at-risk (e.g., defined by age above 65 or presence of genetic 

risk markers/exposure to risk factors such as lower education), which likely have been 

exposed to less favourable living conditions or risk behaviours and thus accumulated 

disadvantage over decades.  

Such accumulated exposure to risk factors resulting in detriments to health in later life 

is implied by the high intercorrelation of different age-related diseases. Age-related disease 

clusters have e.g., been identified by application of machine-learning methods to large-scale 

electronic health records and could be examined to identify communalities and shared 

aetiological processes (Kuan et al., 2021). Such observations underline the necessity to 
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understand how and which factors collectively drive the pace of ageing (Ferrucci et al., 

2020). Conceptualising the ageing process contrasting accumulation of damage and potential 

to resilience, with accelerated ageing denoting greater risk of dementia and other age-related 

non-communicable diseases, may help to inform and update theories on how modifiable 

social and behavioural risk factors interfere with health in later life.  

As a recapitulation, our findings presented in Chapter II extended on previous 

literature suggesting increased dementia risk in those living with fewer socioeconomic 

resources, likely due to downstream vascular damage which could be interpreted as an 

increased pace of ageing. Unfortunately, we did not have retrospective data on 

socioeconomic deprivation, which is a common caveat in observational or registry-based 

studies, and hence we could not differentiate participants’ time exposed to more, or less 

favourable area-level or individual-level socioeconomic characteristics. However, it would be 

less plausible to assume WMH burden had led to varying area-level socioeconomic 

deprivation. It would rather be likely, that pathological alterations in brain health resulted 

from continued exposure to detrimental environmental characteristics.  

Given wide agreement to prioritise intervention in later life and in individuals at 

greatest risk, working mechanisms of risk propagation still at play in later life require further 

investigation (Livingston & Costafreda, 2023). In that, assuming the pace of ageing to alter 

times to dementia diagnosis or other age-related diseases, windows of opportunity for 

intervention need to be identified. Moreover, given a multifactorial process determining 

dementia risk, trials investigating single-domain interventions targeting modifiable social and 

behavioural risk factors will likely be of limited efficacy, especially with ADRD as clinical 

endpoint (WHO, 2022a). This is reinforced by findings from recent dementia prevention 

trials targeting e.g., diet, hearing loss, or physical activity in later life (Barnes et al., 2023; 

Buckinx & Aubertin-Leheudre, 2021; Ciria et al., 2023; Dawes & Völter, 2023; Yeo et al., 
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2023). More holistic, multi-domain interventions were more effective in altering cognitive 

function, albeit low specificity and more pronounced associations with secondary outcomes 

such as quality of life, e.g., decreasing depressive symptoms (Hafdi et al., 2021; Ngandu et 

al., 2015; Wittmann et al., 2024). Mechanistically, one may assume prevention efforts 

targeting modifiable risk factors to exert their impact via (a) prevention of downstream 

vascular damage or neurodegeneration, discussed in Chapter II, (b) slowing of or recovery 

from pre-existing vascular damage or neurodegeneration and related clinical symptoms, or (c) 

reinforcement and build-up of resilience to vascular damage or neurodegeneration.  

Regarding (a), the likelihood of or the time until dementia may depend on exposure to 

modifiable social and behavioural risk factors, themselves conferring vascular damage, or 

exacerbating neurodegeneration (Bir et al., 2021; Cermakova et al., 2015). As such, primary 

prevention via intervening on e.g., nutrition or lifestyle, would lead to reduced dementia risk 

if delivered prior to the manifestation of vascular damage or by reducing its extent early in 

the trajectory. Notably, this assumed mechanism is implied by increased rates of AD in 

hypertension, suggesting vascular contribution to AD risk, and supported by clinical trials 

suggesting reduced dementia risk when providing antihypertensive medication (Adesuyan et 

al., 2023; J. R. Smith et al., 2023; Thunell et al., 2021). Critically, under (a), proving efficacy 

of early intervention on modifiable risk factors may require follow-up starting in midlife 

since dementia-related pathological changes may occur as early as two decades prior to 

clinical diagnosis (Zetterberg & Bendlin, 2021). Our findings presented in Chapter III support 

orientation towards primary prevention with intervention in early life. We found associations 

of gut microbiome characteristics with years of formal education, as well as associations of 

education with MCI risk, but no significant mediation. Identified overlap in gut microbiome 

signatures of AD or MCI, and lower (0-10 years) education suggest education to relate to 
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early life gut microbiome maturation and development, with limited potential to modifying 

MCI risk by intervention on gut microbiome diversity in later life.  

(b) and (c), i.e., reflecting recovery or resilience, aim at secondary or tertiary prevention 

via intervention on modifiable risk factors. Our findings presented in Chapters II and III 

suggest that intervention on environmental features or education may reduce the risk of 

cognitive impairment – if delivered prior to damage – but do not necessarily extend to 

suggested recovery or effective reinforcement of resilience – if delivered in later life. 

Critically, factors such as education may reinforce resilience only when translating into e.g., 

higher income or socioeconomic position, which may require policy intervention (Lövdén et 

al., 2020; Seblova et al., 2021). Given the findings presented in Chapter II one may argue that 

area-level socioeconomic deprivation may proxy such manifest socioeconomic position. 

(b), specifically thrives on the idea of a feedback loop between risk factors and 

antecedents to dementia risk, with potential recovery along a causal path. This presupposition 

is challenged empirically, e.g., reflected in limited efficacy of targeting modifiable dementia 

risk factors in later life (Hafdi et al., 2021). In line with previous findings, results presented in 

Chapter III did not provide evidence for a biological mechanism linking years of education to 

cognitive impairment (i.e., via gut microbiome composition or diversity). More generally 

however, intervention in later life may still extend to reducing risk of more sever IADL 

limitations, e.g., by maintaining global cognition (Ngandu et al., 2015; Rosenberg et al., 

2018). While potential working mechanisms are less intuitive compared to (a), one could 

reason that e.g., engaging in physical activity or caloric restriction in later life may improve 

neuroplasticity or neurogenesis, in turn lowering dementia risk in line with (b) or (c), 

respectively (Bettio et al., 2017; Bieri et al., 2023; Cotman et al., 2007; Piscopo et al., 2022; 

Witte et al., 2009). This would implicate potential for secondary or tertiary prevention, by 

intervention on modifiable risk factors.  
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Likely, risk reduction efforts targeting SDoH, or individual-level modifiable risk 

factors require long periods to detect potentially conferred beneficial effects. Targeting 

primary prevention, lifestyles may have manifested in earlier life and continued to contribute 

to dementia risk for longer periods throughout an individual’s life history (Lövdén et al., 

2020; Seblova et al., 2021). Critically, feasibility constraints limit follow-up periods of 

(multi-domain) trials targeting modifiable risk factors. As such, research as in Chapter III, 

targeting late-life risk factors exacerbating, adding to, or mediating detrimental and beneficial 

associations of SDoH and individual-level modifiable risk factors with i.e., MCI risk, may be 

more pragmatic and relevant for interventions in later life, at-risk populations (Livingston & 

Costafreda, 2023). Our study showcased how working mechanisms such as mediation may be 

investigated in cross-sectional data, by application of counterfactual imputation (Valeri & 

VanderWeele, 2013; VanderWeele, 2014).  

Results reported in Chapter III suggested a pattern of microbial taxa that were less 

abundant in lower education, and previously identified less abundant in MCI and dementia. 

Further, we found that counterfactual intervention on gut microbiome diversity eliminated 

~20% of the association of higher education with MCI, in a cross-sectional study. While our 

findings suggest only a small portion of the total effect of years of education not being of a 

direct nature, one may argue that biological correlates of increased or reduced dementia risk 

are associated with individual modifiable risk factors and SDoH. While it is less clear, if a 

potential reduction in the total effect (i.e., suggested by PE) points to an additive, or 

interactive (resilience) mechanism, our findings underline the importance of considering 

SDoH and related individual risk factors in studies targeting biological pathways associated 

with AD pathogenesis.  

In Chapters II and III, we were able to investigate potential interaction of exogenous 

risk factors, with endogenous factors relating to later life health and the risk of cognitive 
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impairment. Both results further elucidated the potential role of SDoH and related individual 

modifiable risk factors for the risk of adverse outcomes such as MCI and dementia, pointing 

to early intervention and (a). Viewing dementia as an age-related disease belonging to a 

cluster of other age- and lifestyle-related diseases is supported by the fact that despite the 

application of increasingly complex prediction models and utilising deeply-phenotyped data, 

age remains the most important risk factor and hence predictor of dementia (Marinescu et al., 

2021). As such, age likely reflects an exposure history relating to increased dementia risk, 

e.g., via neurodegeneration, vascular damage or resilience to such (Ferrucci et al., 2020). 

In sum, the investigation of working mechanisms of the association of education with 

cognitive function in later life, suggested that there are synergies in taxonomic signatures of 

lower education and those identified in AD and MCI. In absence of significant mediation of 

the association of years of education with cognitive impairment, lessons learned may be 

subsumed in (a) the importance of early delivery of prevention to effectively shape health 

trajectories throughout the life course and (b)/(c) the need to further elucidate biological 

mechanisms underlying the associations of SDoH and individual-level modifiable risk factors 

with the risk of cognitive impairment in later life. 

V.2.3 Upscaling ‘Probable Dementia’ Classification 

The third aim was to facilitate classification of ‘probable dementia’ based on a 

minimal predictor set, in cohorts without linkage to health records, or clinical case 

ascertainment. 

Recent prevention research focussing on e.g., hearing aids, or multi-domain 

interventions, suggests protective effects in high risk groups rather than the whole population 

(F. R. Lin et al., 2023; Livingston & Costafreda, 2023). Consequently, targeting of individual 

risk factors may not aid the overall population or in other terms, not every individual may 

equally benefit from a specific intervention. Associations may not be identifiable in 
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convenience samples or low-risk populations, but only in those with diatheses (e.g., APOE ε4 

carriers) or those with a less favourable lifestyle (e.g., sedentary lifestyle) to begin with. This 

reinforces the need to identify at-risk populations and to deliver targeted approaches to 

dementia prevention. 

The need for risk stratification is further reflected in the continued efforts of the 

scientific community to develop easily accessible, transportable and transparent algorithms to 

quantify dementia risk (e.g., CAIDE, LIBRA), or ascribe ‘probable dementia’ status based on 

cognitive and function data (Crimmins et al., 2011; Deckers et al., 2019; Herzog & Wallace, 

1997; Hurd et al., 2013; Pekkala et al., 2017). To arrive at generalisable conclusions about the 

contribution of modifiable risk factors of interest to dementia risk, one further needs to 

consider that roles and SDoH reflecting broader categories may vary in their association with 

dementia risk globally. As an example, SES or obesity, associated with increased dementia 

risk in high income countries, may not or even inversely relate to dementia risk in low- and 

middle-income countries (Daran et al., 2023). With risk prediction as a crucial task to stratify 

dementia prevention efforts, our findings presented in Chapter IV showcased strong variation 

in sensitivity and specificity of examined ‘probable dementia’ classification algorithms across 

European countries. While some proposed dementia classification algorithms consider e.g., 

demographic characteristics, our results suggest cross-country variation in related social 

roles, reporting behaviour or task difficulty to yield differences in predictive accuracy, even if 

classification is based on standardised cognitive tests and IADL limitations, and if cutoffs 

used for classification are stratified by country (Crimmins et al., 2011; Herzog & Wallace, 

1997; Hurd et al., 2013; Q. Wu et al., 2013). 

One potential application for dementia classification algorithms is oversampling of at-

risk individuals for large cohort surveys. Our findings add to existing literature showcasing 

that baseline differences in sample structure may not be fully addressed by inclusion of 
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sociodemographic characteristics and that fair classification across countries is at stake 

(Gianattasio et al., 2020). Findings of Chapter IV instead support classification based on 

objective cognitive test scores and functional limitations to achieve high specificity across 

samples from different populations. 

Such classification is in line with a clinical approach to testing individuals rather than 

prediction of risk based on relative measures of association strength, e.g., for macrolevel 

socioeconomic standing. However, broader SDoH categories, e.g., reflected in educational 

profiles or gender roles may bias seemingly objective measures of physical limitations (i.e., 

IADLs) that were utilised in our adapted classification algorithm (Bishop et al., 2016). In this 

regard other items, assessing e.g., mobility limitations, such as climbing a flight of stairs are 

related to IADL, but operationalise more serious disablement, i.e., physical limitations, while 

not being as dependent on environmental factors, access to assistive technology or adopted 

social roles (Bishop et al., 2016). Moreover, such items are more sensitive to early 

deterioration in physical limitations and resulting autarchy, thus being better suited for 

identifying at-risk populations for primary prevention early in the disease trajectory and 

reflecting quality of life as a patient-centred outcome. 

Still, we could show that inclusion of functional limitations increases specificity, 

underscoring that distribution-based thresholds for cognitive function may in part capture 

normative ageing and that further information is necessary to approach classification of a 

‘probable dementia’ phenotype. This is in line with conceptualising normative ageing with 

regard to maintaining dual functionality and underscores the utility of evaluating cognitive 

health with more patient-centred outcomes that additionally capture meaningful detriments to 

quality of later life (Ferraro et al., 2023). 

While ‘probable dementia’ classification as presented in Chapter IV is not reflecting 

clinical diagnosis, application of such algorithms in longitudinal cohort surveys may allow 
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researchers to classify participants in line with diagnostic criteria proposed by the National 

Institute on Aging – Alzheimer’s Association (NIA-AA) workgroups on diagnostic 

guidelines for AD (McKhann et al., 2011). As such, insidious onset of cognitive symptoms as 

well as a history of worsening cognitive function may be detected when applied 

longitudinally. Of note, exhaustive testing, i.e., across multiple cognitive domains, over time 

is limited by survey designs and available instruments. Such real-world limitations owing to 

resource intensity of dementia case ascertainment in representative cohort surveys hamper the 

opportunity to formally assess validity of existing classification algorithms in absence of a 

‘ground truth’ dementia status. Still, our findings presented in Chapter IV show that utilising 

a minimal predictor set with a threshold-based classification allows a reduction of eligibility 

criteria (i.e., availability of data over time) and hence to classify the complete sample, 

opposed to more sophisticated algorithms drawing on individual follow-up over a large 

number of indicators to apply prediction algorithms, or unsupervised clustering methods 

(Gharbi-Meliani et al., 2023). 

In sum, the third aim examining classification of ‘probable dementia’ led to an 

adapted, previously established classification algorithm that is transparent and transportable. 

The presented algorithm may swiftly be adapted to other data, granted availability of a 

minimal set of predictors and availability of snapshots of cognitive performance and 

functional limitations for individuals. Applications may extend to inform oversampling of at-

risk individuals or testing sensitivity of risk factor research, by reducing class imbalance with 

‘probable’ versus self-reported dementia status. Furthermore, the classification presented, 

based on cutoffs for interpretable scales allows prompt assessment of fairness and 

performance variation in sample. Given utmost importance of accurate risk prediction, these 

findings enable research to account for underreporting or underdiagnosis of dementia in 
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observational cohorts and to maximise utility of cognitive function measures complying with 

real world limitations relating to case ascertainment and data collection. 

V.3 General Limitations 

Despite thorough design of the individual studies constituting Chapters II to IV, some 

limitations need to be considered interpreting the collection of findings presented. 

First, low response rates, limited representativeness, and selective attrition (e.g., drop-

out due to worsening cognitive function and related institutionalisation) may affect 

generalisability of findings in terms of a healthy volunteer bias. Of note, this limitation is 

ubiquitous to observational research, and potential biases were thoroughly investigated with a 

broad range of sensitivity analyses. 

Second, investigation of biological mechanisms, i.e., with volumetric measures in 

MRI data, polygenic risk scores, or metrics of gut microbiome diversity and taxonomic 

signatures, may inflate type II errors given likely involvement of specific genes, molecules, 

or biomarkers for neurodegeneration.  

Third, reverse causation cannot be ruled out given early pathophysiological alterations 

of dementia as well as early-life or innate abilities likely not fully captured by available 

follow-up. Hence, the associative nature of reported findings needs to be considered, 

implying the need to further test efficacy of prevention efforts targeting discussed risk factors 

and mechanisms.  

Fourth, sensitivity of dementia/MCI case ascertainment may vary e.g., depending on 

person-level characteristics, available resources, access to healthcare, or mode (e.g., self-

reported/health records). Cross-sectional dementia/MCI ascertainment further violates 

clinical diagnostic criteria presupposing deterioration of cognitive function over time, which 

may lead to differential misclassification.  
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Fifth, despite an increasing understanding of the complex intertwining of somatic 

conditions (e.g., cardiovascular disease burden), individual risk factors/SDoH and aetiologies 

of dementia subtypes, the individual studies focussed on ADRD and MCI. In absence of e.g., 

biomarker-informed differential diagnosis, interpretation of findings is not necessarily 

generalisable to individuals living with a specific subtype of dementia. 

Sixth, limited diversity precluded formal assessment of fairness in prediction models 

and the generalisability of findings across subgroups characterised by race/ethnicity. 

Critically, distributions of antecedents to dementia risk as well as varying association strength 

coupled with potential structural racism and related access to healthcare may affect reported 

associations.  

V.4 General Strengths 

This thesis entails three individual studies jointly providing strong evidence for 

socioeconomically patterned dementia risk profiles, elucidating potential working 

mechanisms linking modifiable risk factors and risk of cognitive impairment, and potentials 

to identify ‘probable dementia’ across countries. This section will point to key strengths of 

the conducted studies. 

Individual studies were drawing on large data sets with comprehensive assessments of 

risk factors, and cognitive function, including deeply-phenotyped cohorts characterised by 

linkages to health records, death registries, clinical assessments, and biological markers 

involving MRI scans, genetic and microbiome data. This allowed a holistic approach to 

investigating the role of modifiable social and behavioural factors for dementia risk on three 

levels of proximity, as well as potential interactions denoting targets for personalised 

prevention efforts. Moreover, reported findings are based on application of sophisticated 

modelling paradigms to test mechanistic hypotheses and properties of predictive models 

entailing a wide array of risk factors. As such, a triangulation of evidence was performed, 
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informed by methodological approaches from fields of epidemiology, medicine, computer 

science as well as causal inference.  

More specifically, Chapter II examined effect modification across a comprehensive 

set of individual- and area-level socioeconomic characteristics, additionally considering 

individual genetic predisposition in over 200 000 individuals. ADRD was ascertained in 

clinical records and death registry data, reflecting gold standard diagnostic and near-complete 

follow-up. Moreover, exploration of imaging markers in a large subset informed discussion 

of potential underlying working mechanisms. 

Chapter III added to an in-depth investigation of potential mechanisms linking 

education, to MCI via potentially modifiable, biological mechanisms and applied two sets of 

mediation analysis allowing a distinction of statistically, as well as biologically defined 

mediational mechanisms. Again, clinically informed MCI ascertainment established internal 

validity of analyses.  

Chapter IV adapted and validated a previously established algorithm to classify 

‘probable dementia’ in a multi-country ageing survey with over 50 000 individuals, drawing 

on externally validated country-level prevalence estimates. Performance to reducing 

underreporting of dementia was compared against a broad set of well-performing ML-based 

models with algorithms to improve class imbalance. Comprehensiveness of the large panel 

survey allowed extensive cross-validation and enriched inspection of internal validity 

regarding the identified phenotype. 

In sum, this thesis responded to major challenges in the field of dementia prevention 

research, adds to the nomological network of interactions and working mechanisms 

underlying contributions of SDoH and theoretically modifiable social and behavioural risk 

factors to individual dementia risk, provides actionable means to classifying cognitive 

phenotypes in line with ‘probable dementia’ in observational data, and delivers important 
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leads to future research projects with respect to modifiable risk factors and their role for 

individual dementia risk and related precision prevention efforts, which will be discussed in 

the following sections. 

V.5 Reflection, Outlook, and Avenues to Future Research  

Findings presented in Chapters II to IV respond to key challenges in the field of 

dementia prevention. The following sections present outlooks and avenues for future 

research, based on reported findings and focussing on deepening our understanding of 

modifiable risk factors and their life course contribution to dementia risk. 

V.5.1 Outlook Chapter II:  

Findings presented in Chapter II suggest delving deeper into examining dementia risk 

patterns characterised by individual- and area-level socioeconomic deprivation and are based 

on explorative findings.  

First, the association of individual-level socioeconomic deprivation with incident all-

cause dementia was more pronounced than for area-level socioeconomic deprivation. 

Explorative findings however suggested detriments to brain health to be conferred via greater 

burden of WMH, with both area-level and individual-level socioeconomic deprivation. 

Previous findings suggested socioeconomically patterned dementia risk in part due to 

increased exposure to and prevalence of less healthy lifestyles, and related cardiovascular 

diseases (X. Chen et al., 2022; Deckers et al., 2019; Geraets & Leist, 2023; Yu et al., 2023). 

As such, our findings may point to both environmental/structural and individual-level 

socioeconomic resources to be associated with dementia risk, e.g., along a cardiovascular 

pathway involving cerebrovascular insult. Drawing on the rich UK Biobank, a next step 

would be to investigate potential mediation of identified associations of area-level and 

individual-level socioeconomic deprivation with dementia by cardiovascular disease burden. 

Related, follow-up imaging data is becoming increasingly available for a subset of the UK 
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Biobank, which would allow to investigate mediating paths not only with respect to dementia 

as a clinical endpoint, but also revisiting assumed directions of reported explorative findings. 

Importantly, when refining analysis based on the UK Biobank, one may use sampling 

weights to overcome a frequently discussed limitation of the UK Biobank data, the low 

response rate, presented in a recent study (van Alten et al., 2022). 

Second, a recent twin study suggested that genetic predisposition may underlie the 

association of cardiometabolic multimorbidity with dementia (Dove et al., 2023). 

Interestingly, we also report a limited role of socioeconomic deprivation for the time to 

incident all-cause dementia in low polygenic risk. As such, a more focussed interaction 

analysis, e.g., with APOE ε4 status (e.g., involved in cholesterol metabolism and Aβ 

clearance), or other fine grained genetic markers relating to the association of 

cardiometabolic conditions and dementia may further elucidate the potential to personalised 

approaches for ADRD prevention by intervention on socioeconomic factors (Martins et al., 

2006). 

Lastly, our findings regarding area-level socioeconomic deprivation and dementia risk 

motivate future studies to examine potential causal paths as well as involved exposures 

captured with area-level opposed to individual-level indices of socioeconomic deprivation. In 

that, differential associations identified across operationalisations of socioeconomic 

characteristics suggest the existence of geographically patterned, or community-specific 

dementia risk. Extending on previously discussed environmental exposures such as air 

pollution or structural barriers to engagement in a healthy lifestyle, one may investigate the 

role of descriptive norms for health behaviours (X. Chen et al., 2022; Peters, Ee, et al., 2019). 

Such norms could be assessed in qualitative studies or via proxy measures, e.g., how likely 

are participants engaging in health-related activities depending on their residency/community, 

or analytical approaches such as network analyses.  
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V.5.2 Outlook Chapter III:  

Findings reported in Chapter III suggest education-related taxonomic signatures in 

line with an AD-related phenotype, but no significant mediation by gut microbiome diversity 

or individual taxa. One potential explanation may be that lower education denotes higher 

MCI risk and is thus more prevalent in the MCI subgroup. Consequently, identified synergies 

in taxonomic signatures may not indicate pathophysiological alterations but be due to 

neglecting systematically different levels of education in AD/MCI groups in previous studies 

(e.g., L. Chen et al., 2022). In line with outlooks presented for Chapter II, longitudinal 

assessments of the gut microbiome composition could be leveraged to ascertain temporality. 

As such, future studies may examine differential abundance of AD/MCI-related microbes 

across education groups over time. This will allow revisiting the identified communality 

investigating if evolutions align with education, and if those are in turn associated with 

decreasing cognitive function. Prospective longitudinal designs to observe age-related 

changes in gut microbiome signatures (in older adults at risk of developing dementia), 

targeting mediational mechanism, are needed and have been proposed recently (Koblinsky et 

al., 2023; Phillips et al., 2022).  

Future studies may further measure lifestyle-related behaviours at the intersection of 

SES, education, and health-related outcomes more comprehensively, e.g., with Food 

Frequency Questionnaires to test assumed causal paths involving specific behaviours likely 

mediating associations of SES-related modifiable risk factors with endogenous factors. In 

that, researchers may take advantage of technological advancements in the analysis of omics 

(i.e., metagenomics, metabolomics, metaproteomics, metatranscriptomics) and related 

availability of meta-omic datasets (Heintz-Buschart & Wilmes, 2018). Such data allows more 

granular investigation of assumed mechanisms and to e.g., dissect functional pathways from 

gut microbiome metrics to health-related phenotypes (Heintz-Buschart & Wilmes, 2018). 
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Research targeting biological pathways is necessary to explain why observed education-

related gut microbiome signatures did not translate into altered risk of impaired cognition in 

Chapter III and thus to assess potential for prevention by intervention targeting the gut 

microbiome.  

V.5.3 Outlook Chapter IV:  

With respect to findings reported in Chapter IV, recent developments provide 

potential to updating and further testing the adapted dementia classification algorithm. Cross 

validation of provided algorithms is yet to be conducted and given collaborative proceedings 

to curate and harmonise data on cognitive function in later life globally, a next step would be 

to replicate our study in such harmonised data to be available for SHARE (Gross et al., 2023; 

Kobayashi et al., 2024; Langa et al., 2019). Moreover, the now available SHARE wave eight 

encompasses a more extensive battery of cognitive tests which may be leveraged to increase 

sensitivity of algorithmic classifications and a better differentiation of normative cognitive 

decline from dementia-related phenotype. In doing so, application of a normative sampling 

approach which has been proposed recently, could be utilised to increase internal validity of 

the threshold derivation procedure (Manly et al., 2022). Furthermore, wave eight may be 

leveraged to assess re-test reliability of classifications at wave seven. 

Moreover, differentiating underreporting from underdiagnosis is of utmost interest. In 

example, we operationalised underreporting as discrepancy between externally validated and 

in-sample self-reported dementia prevalence estimates. We could thus not distinguish 

underreporting, i.e., participants not reporting a present diagnosis, from underdiagnosis, i.e., 

participants not having received a diagnosis despite cognitive impairment. While 

harmonisation of data provides the opportunity to validate algorithms in extraneous data, 

replication in data sources encompassing medical claims or consensus diagnosis of experts 

would allow to test performance of the dementia classification algorithm given near-
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complete, clinically validated dementia ascertainment. Alternatively, one may apply the 

provided algorithms in data sources that entail neurological markers relating to hallmark 

indicators of e.g., AD, which would allow to investigate specificity of classifications further. 

Since we proposed application of dementia classification algorithms to inform e.g., 

sampling, evaluation of fairness regarding apparent racial or gender biases resulting from 

pronounced data health gaps are still outstanding. Critically, biases in data bases used to train 

algorithms, e.g., driven by a gender-health gap or lacking diversity are likely reflected in 

predictive algorithms and further problematise their implementation in diagnostic and care 

settings, but also in research (Gianattasio et al., 2020). In pursuit of precision prevention, 

one-size-fits-all cutoffs for diagnosis may hamper accurate risk stratification. As such, a 

further avenue for research may be to adopt the country-level thresholding procedure to 

meaningful subgroups and to revisit classification performance and bias in nationally 

representative data. 

V.5.4 Further Outlooks – Updating the Scope 

Investigating theoretically modifiable social and behavioural risk factors was at the 

core of the thesis. Conducting the individual studies however, the scope grew broader, and 

additional challenges were identified, which were not restricted to a priori formulated 

research questions. These avenues are related to questions of causality, working mechanisms 

and risk factors, but extend to quantification of the contribution of risk factors to dementia 

incidence on a population level, and to modelling the accumulation of risk with respect to a 

life course perspective. This section aims to point to further avenues emerging from Chapters 

II to IV but exceeding the initial scope of the thesis. 

Findings presented in Chapters II and III were based on SDoH and individual 

modifiable risk factors such as education and socioeconomic deprivation, which are related to 

SES inherently. While previous findings suggest that e.g., education manifests in early life (in 
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part transmitted at birth) and may contribute to build up of resilience or exposure to risk 

throughout the life course, there is ambiguity with regard to the efficacy of education-related 

interventions, which may be explained by timing (Gutierrez et al., 2023; Lövdén et al., 2020; 

Marden et al., 2017; Rogers et al., 2009; Seblova et al., 2021). As such, windows of 

opportunity for potential interventions are of question and relevance of exposures at a 

specific time or during a specified period require further attention. As an example, within a 

life course approach to risk propagation, cognitive function batteries (i.e., used to classify 

‘probable dementia’ in Chapter IV) capture current performance but fail to uncover processes 

(being detrimental/beneficial) and developments that have led to the levels measured in later 

life. Critically, some exposures (e.g., income/wealth) may vary over the life course and thus, 

exposure histories need to be modelled explicitly to examine risk propagation and relevance 

of risk factors over time. 

Recently proposed models allow to specify the accumulation of exposure to risk 

factors with functional regression, thereby accounting for conventional, discrete measurement 

protocols, and to probabilistically test competing hypothesis of life course models of risk, i.e., 

accumulation versus critical/sensitive periods (Bodelet et al., 2024; Chumbley et al., 2021; 

Madathil et al., 2018). Such models could be used to test potential accumulation of 

disadvantage, conferred e.g., by time-varying exposure to depressive symptoms (Klee, 

Bodelet, et al., Manuscript in preparation). 

Moreover, with recent advancements in distinguishing chronological age from the 

biological underpinnings of an ageing process, build-up of pathophysiological alterations 

may be observed at an earlier stage and in turn, the detection of windows of opportunity for 

the provision of respective preventive measures may be facilitated. Biological underpinnings 

of dementia are acknowledged e.g., in the research framework provided by the NIA-AA, 

illustrating opportunities to investigate the impact of risk factors on biologically defined AD, 
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with respect to amyloid deposition, pathologic tau, and neurodegeneration (Jack et al., 2018). 

With this biological definition proposed, testable theoretical models may be derived to 

investigate early pathological markers and distinct pathways, and as such intervention targets. 

While beyond the scope of this thesis, the research framework is translated into 

recommendations for diagnosis and staging at the time of writing (Alzheimer’s Association 

Workgroup, 2023; The Lancet Neurology, 2024). In line with the updated 2018 NIA-AA 

Research Framework, future research may be able to examine potentially causal paths, e.g., 

by ascertaining imaging or fluid biomarkers (Aβ deposition, pathologic tau, 

neurodegeneration), to identify subgroups with specific pathophysiological alterations (Jack 

et al., 2018, 2024). As such, working mechanisms, relating modifiable risk factors to build-up 

of pathology could be investigated early in the disease trajectory, prior to later cognitive 

impairment likely due to mixed neuropathology, or even distinct pathways e.g., associated 

with depression, or fatigues. As an example, ascertaining blood-based biomarkers of 

neurodegeneration in adolescents with less favourable lifestyles, or areas with fewer 

socioeconomic resources (in line with geographical patterning of dementia risk alluded to in 

the outlook for Chapter II), could be leveraged to examine associations of SDoH and 

individual modifiable risk factors with life course risk. Thus, accumulation of risk may be 

investigated mechanistically, albeit current limitations in individual risk prediction based on 

fluid biomarkers (Jack et al., 2024). Using different biological operationalisations, this was 

aimed at in a previous study investigating allostatic load, a quantification of stress-induced 

biological risk, in area-level socioeconomic deprivation (Gustafsson et al., 2014; Szanton et 

al., 2005). 

Given findings presented e.g., in Chapter II, providing information for risk 

stratification and profiling, dementia prevention efforts are inherently tied to efficient 

resource allocation which in addition to timing, should be informed by quantification of 
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population-level absolute contribution of risk factors to ADRD incidence. However, 

modifiable risk factors relating to dementia risk are rarely occurring in isolation and within a 

life course model of risk, estimating their total contribution to dementia incidence requires to 

account for the heterogeneity in co-occurring risk factors as well as their sequential build up 

over time. Methods such as the longitudinal extension of the average attributable fraction 

(LE-AAF) offer means to derive population-level estimates for attributable fractions due to 

an individual or collection of SDoH and related modifiable risk factors, that are valid across 

emerging sequences and account for times at risk (Allore et al., 2016; Murphy et al., 2012). 

LE-AAF may be applied to modelling PAF of e.g., cardiovascular disease combinations, that 

frequently co-occur and denote higher dementia risk (Dove et al., 2023; Guo et al., 2024; 

Klee, Markwardt, et al., Manuscript in preparation). 

Lastly, Chapter III provided insights in how counterfactual imputation can be 

leveraged for causal mediation analysis in observational data (Valeri & VanderWeele, 2013; 

VanderWeele, 2014). Related to the question of windows of opportunities to intervene on 

modifiable risk factors, and absolute contributions to population-level dementia incidence, 

limitations inherent to observational, population-representative studies measuring modifiable 

risk factors and cognitive function over larger time spans, e.g., communality/co-occurrence of 

risk factors, appeal to benefits of novel analytical paradigms. As an example, the target trial 

framework has been proposed, which entails a protocol for comparative effectiveness 

research in observational data, as an alternative to testing causal effects when RCTs with 

sufficient sample sizes, or follow-up periods are not feasible (Hernán & Robins, 2016; 

Hernán & Taubman, 2008). Drawing on the potential-outcomes framework, existing 

repositories may be revisited and analysed with research goals formulated in line with those 

of RCTs but based on observational data.  
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V.6 General Conclusion 

In summary, presented studies confirm pre-established risk factors of MCI and 

dementia, and extend on previous findings by suggesting that environmental and individual 

modifiable risk factors as well as SDoH are associated with brain health, reflect key 

modifiers of endogenous characteristics associated with a phenotype of cognitive impairment, 

and constitute clusters of further risk factors potentially contributing to neurodegeneration, 

vascular damage, and impaired cognition.  

Findings presented in Chapter II suggest considering more thoroughly shaping of the 

living environments in which people live, work, and age as dementia prevention strategy. 

This may entail limiting exposure to risk factors or increasing exposure to protective or 

resilience factors, by reducing barriers to e.g., engaging in more favourable lifestyles. 

Structural efforts to dementia prevention, e.g., applied to areas with fewer socioeconomic 

resources, are likely beneficial in addition to individualised efforts to precision prevention. Of 

note, further research is needed to identify drivers of the reported associations with dementia 

over the life course, reflecting potential intervention targets. Against this background, 

presented findings reinforce the notion of modifiability of individual dementia risk, 

irrespective of the presence of more, or less favourable endogenous characteristics. 

Moreover, findings presented in Chapters II and III emphasise the need to further 

explore endogenous intermediate factors potentially contributing to and thus reflecting an 

entry point to managing individual dementia risk, in addition to environmental and in part 

structural determinants. In that, especially findings reported in Chapter III underline the 

importance of delivering preventive measures early in life but point to potentials in 

leveraging highly granular data to explore windows of opportunity and translational research 

applications.  
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Finally, while the ‘probable dementia’ classification algorithm presented in Chapter 

IV, is by no means intended to reflect a diagnosis, our findings suggest validity of the 

approach to identifying participants that self-report living with dementia as well as those with 

a similar health and function profile. Given the growing importance of identifying at-risk 

populations and individuals, such easily transportable, adaptable, and transparent approaches 

to risk stratification may offer manifold enrichment of endeavours relating to both research 

and prevention applications, e.g., by increasing statistical power, or informing sampling 

schemes. 

In conclusion, reported results emphasise the need to nuancing and contextualising 

targeted or precision prevention efforts. When examining mechanisms of SDoH and related 

individual modifiable risk factors potentially conferring dementia risk, our findings strongly 

emphasise the necessity to critically reflect on operationalisation and analytical strategies, at 

best aiming at a triangulation of evidence with different model specifications, measures, and 

methods, in diverse cohorts. It is of utmost importance to draw on increasingly available 

deeply-phenotyped data and increasingly accessible sophisticated analytical paradigms to 

examine interactive mechanisms linking SDoH and individual modifiable social and 

behavioural risk factors with dementia risk on a societal, behavioural, genetic, and molecular 

level of abstraction. Only then, timely, and fair identification of individuals and populations 

at risk may be followed by the provision of support aiding the collective of stakeholders to 

respond to the challenges imposed by the dementia syndrome, globally.  
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Appendix II – Supplementary Material Chapter II  

Appendix II Table S1 Coefficients Used for Weighting of Individual-Level Socioeconomic Deprivation Scores 

Characteristic Including not Discloseda Excluding not Disclosedb 
 Total No.d Coefficient (95% CI) p Total No.c Coefficient (95% CI) p 

Incomed       
Greater 31 000 53 346 0 [Reference]  53 146 0 [Reference]  
From 18 000 to 31 000 52 834 0.34 (0.18, 0.50) <.001 52 572 0.38 (0.21, 0.54) <.001 
Smaller 18 000 54 866 0.48 (0.31, 0.65) <.001 54 339 0.54 (0.36, 0.71) <.001 
Not disclosed 35 322 0.67 (0.50, 0.85) <.001    
Housing Type       
House or Flat 194 542 0 [Reference]  159 059 0 [Reference]  
Other 1,826 0.45 (0.11, 0.78) .01 998 0.74 (0.33, 1.14) <.001 
Home Ownership       
Own Outright 151 971 0 [Reference]  123 790 0 [Reference]  
Other 44 397 0.35 (0.24, 0.46) <.001 36 267 0.39 (0.26, 0.52) <.001 
Car Ownership       
One or more 179 091 0 [Reference]  146 778 0 [Reference]  
Other 17 277 0.32 (0.18, 0.46) <.001 13 279 0.29 (0.12, 0.45) <.001 

Note. All Cox proportional-hazards regressions were adjusted for the 20 first principal components, third degree 

relatedness, age, sex, education, retirement status and number of people in the household. aCoefficients used to 

compute individual-level socioeconomic deprivation with not disclosed information included in other category 

for housing type, home ownership and car ownership. bCoefficients used to compute individual-level 

socioeconomic deprivation when excluding not disclosed information relating to income, housing type, home 

ownership and car ownership. cReported results are based on the first imputed data set. dIncome assessed in 

Pound sterling (£) based on average total household income before tax. 
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Appendix II Table S2 Incident Dementia Cases in Area-Level Socioeconomic Deprivation Groups 

Area-Level Socioeconomic Deprivation Low-to- Moderate High 
No. of Dementia Casesa 1,266 503 
Absolute Risk, % (95% CI)a 0.81 (0.76, 0.85) 1.28 (1.17, 1.40) 
Incidence Rates per 1,000 Person-Years (95% CI)a 1.02 (0.97, 1.08) 1.65 (1.51, 1.80) 
Total No.a 157 095 39 273 

aReported results are based on the first imputed data set. 
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Appendix II Table S3 Incident Dementia Cases in Individual-Level Socioeconomic Deprivation Groups 

Area-Level Socioeconomic Deprivation Low Intermediate High 
No. of Dementia Casesa 174 1,042 553 
Absolute Risk, % (95% CI)a 0.44 (0.38, 0.51) 0.88 (0.83, 0.94) 1.41 (1.29, 1.53) 
Incidence Rates per 1,000 Person-Years (95% CI)a 0.56 (0.48, 0.65) 1.12 (1.05, 1.19) 1.80 (1.66, 1.96) 
Total No.a 39 274 117 821 39 273 

aReported results are based on the first imputed data set. 

 



 

 

211 

Appendix II Table S4 Total Participants and Incident Dementia Cases According to Area-Level Socioeconomic Deprivation Within Each Genetic Risk Category 

Genetic risk Low Intermediate High 

Area-Level Socioeconomic Deprivation Low-to- Moderate High Low-to- Moderate High Low-to- Moderate High 

No. of Dementia Casesa 177 70 744 294 345 139 

Absolute Risk, % (95% CI)a 0.56 (0.48, 0.65) 0.92 (0.72, 1.16) 0.79 (0.73, 0.85) 1.25 (1.11, 1.40) 1.11 (0.99, 1.23) 1.71 (1.44, 2.01) 
Incidence Rates per 1,000 Person-Years 
(95% CI)a 0.71 (0.61, 0.82) 1.18 (0.92, 1.50) 1.00 (0.93, 1.07) 1.61 (1.43, 1.81) 1.40 (1.26, 1.56) 2.20 (1.85, 2.59) 

Total No.a 31 648 7,626 94 316 23 505 31 131 8,142 

aReported results are based on the first imputed data set. 
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Appendix II Table S5 Total Participants and Incident Dementia Cases According to Individual-Level Socioeconomic Deprivation Within Each Genetic Risk Category 

Genetic risk Low Intermediate High 

Individual-Level Socioeconomic 
Deprivation Low Intermediate High Low Intermediate High Low Intermediate High 

No. of Dementia Casesa 25 134 88 103 614 321 46 294 144 
Absolute Risk, %  
(95% CI)a 

0.31 
(0.20, 0.45) 

0.57 
(0.48, 0.67) 

1.17 
(0.94, 1.44) 

0.44 
(0.36, 0.53) 

0.87 
(0.80, 0.94) 

1.36 
(1.21, 1.51) 

0.59 
(0.44, 0.79) 

1.26 
(1.12, 1.41) 

1.78 
(1.50, 2.09) 

Incidence Rates per 1,000 Person-Years 
(95% CI)a 

0.39 (0.25, 
0.58) 

0.72 (0.60, 
0.85) 

1.49 (1.20, 
1.84) 

0.56 (0.46, 
0.68) 

1.10 (1.01, 
1.19) 

1.74 (1.56, 
1.94) 

0.75 (0.55, 
1.00) 

1.59 (1.41, 
1.78) 

2.27 (1.92, 
2.67) 

Total No.a 8,110 23 624 7,540 23 417 70 774 23 630 7,747 23 423 8,103 

aReported results are based on the first imputed data set. 
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Appendix II Table S6 Coefficients for Multivariable Linear Regressions of White Matter Hyperintensities With Full and Reduced Deconfounding Set 
Characteristic Imputed Data (n=11 035) Complete-Case Data (n=8,131) 

 Full Set Reduced Set Full Set Reduced Set 
 Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p 

Individual-Level Socioeconomic Deprivation 
Low 0 [Reference]  0 [Reference]  0 [Reference]  0 [Reference]  
Intermediate 0.05 (0.00, 0.10) .04 0.04 (-0.01, 0.09) .09 0.06 (0.00, 0.12) .04 0.05 (-0.01, 0.10) .08 
High 0.10 (0.01, 0.19) .03 0.10 (0.01, 0.19) .03 0.06 (-0.06, 0.17) .33 0.06 (-0.06, 0.17) .34 

Area-Level Socioeconomic Deprivation 
Low-to-Moderate 0 [Reference]  0 [Reference]  0 [Reference]  0 [Reference]  
High 0.08 (0.01, 0.15) .03 0.07 (0.01, 0.14) .03 0.07 (-0.03, 0.17) .16 0.07 (-0.03, 0.16) .17 

Note. All imaging derived phenotypes were deconfounded in multivariable linear regressions, either adjusting for the full set including site-specific derivatives capturing 

indicators of age, age squared, sex, age-sex interactions, head size, days since the scanner start-up, days since the scanner start-up squared and two dummy variables coding 

site or the reduced set including age, sex, age-sex interactions, head size and two dummy variables coding site. Residuals were then entered in secondary multivariable linear 

regressions including 20 first principal components, third degree relatedness, number of alleles used to compute the polygenic risk score, education, marital status, healthy 

lifestyle, depressive symptoms in last two weeks, individual-level and area-level socioeconomic deprivation as well as genetic risk.  

  



 

 

214 

Appendix II Table S7 Coefficients for Multivariable Linear Regressions of Hippocampal Volume (right) With Full and Reduced Deconfounding Set 

Characteristic Imputed Data (n=10 838) Complete-Case Data (n=7,999) 
 Full Set Reduced Set Full Set Reduced Set 
 Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p 

Individual-Level Socioeconomic Deprivation 
Low 0 [Reference]  0 [Reference]  0 [Reference]  0 [Reference]  
Intermediate -0.03 (-0.09, 0.02) .18 -0.04 (-0.09, 0.01) .15 -0.04 (-0.09, 0.02) .20 -0.04 (-0.10, 0.02) .16 
High -0.00 (-0.09, 0.09) .94 -0.01 (-0.10, 0.08) .88 0.04 (-0.07, 0.15) .50 0.03 (-0.08, 0.15) .55 

Area-Level Socioeconomic Deprivation 
Low-to-Moderate 0 [Reference]  0 [Reference]  0 [Reference]  0 [Reference]  
High -0.04 (-0.11, 0.03) .26 -0.04 (-0.11, 0.03) .27 0.00 (-0.09, 0.09) .98 -0.00 (-0.09, 0.09) 1.00 

Note. All imaging derived phenotypes were deconfounded in multivariable linear regressions, either adjusting for the full set including site-specific derivatives capturing 

indicators of age, age squared, sex, age-sex interactions, head size, days since the scanner start-up, days since the scanner start-up squared and two dummy variables coding 

site or the reduced set including age, sex, age-sex interactions, head size and two dummy variables coding site. Residuals were then entered in secondary multivariable linear 

regressions including 20 first principal components, third degree relatedness, number of alleles used to compute the polygenic risk score, education, marital status, healthy 

lifestyle, depressive symptoms in last two weeks, individual-level and area-level socioeconomic deprivation as well as genetic risk.  
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Appendix II Table S8 Coefficients for Multivariable Linear Regressions of Hippocampal Volume (left) With Full and Reduced Deconfounding Set 

Characteristic Imputed Data (n=10 920) Complete-Case Data (n=8,056) 
 Full Set Reduced Set Full Set Reduced Set 
 Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p 

Individual-Level Socioeconomic Deprivation 
Low 0 [Reference]  0 [Reference]  0 [Reference]  0 [Reference]  
Intermediate -0.05 (-0.10, 0.00) .06 -0.05 (-0.10, 0.00) .06 -0.03 (-0.08, 0.03) .37 -0.03 (-0.08, 0.03) .32 
High -0.01 (-0.09, 0.08) .91 -0.01 (-0.10, 0.09) .91 0.07 (-0.04, 0.18) .22 0.07 (-0.04, 0.18) .22 

Area-Level Socioeconomic Deprivation 
Low-to-Moderate 0 [Reference]  0 [Reference]  0 [Reference]  0 [Reference]  
High -0.06 (-0.13, 0.01) .07 -0.06 (-0.13, 0.01) .08 -0.05 (-0.14, 0.04) .26 -0.05 (-0.14, 0.04) .29 

Note. All imaging derived phenotypes were deconfounded in multivariable linear regressions, either adjusting for the full set including site-specific derivatives capturing 

indicators of age, age squared, sex, age-sex interactions, head size, days since the scanner start-up, days since the scanner start-up squared and two dummy variables coding 

site or the reduced set including age, sex, age-sex interactions, head size and two dummy variables coding site. Residuals were then entered in secondary multivariable linear 

regressions including 20 first principal components, third degree relatedness, number of alleles used to compute the polygenic risk score, education, marital status, healthy 

lifestyle, depressive symptoms in last two weeks, individual-level and area-level socioeconomic deprivation as well as genetic risk.  
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Appendix II Table S9 Coefficients for Multivariable Linear Regressions of Whole Brain Volume With Full and Reduced Deconfounding Set 

Characteristic Imputed Data (n=11 035) Complete-Case Data (n=8,139) 
 Full Set Reduced Set Full Set Reduced Set 
 Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p 

Individual-Level Socioeconomic Deprivation 
Low 0 [Reference]  0 [Reference]  0 [Reference]  0 [Reference]  
Intermediate -0.03 (-0.08, 0.02) .25 -0.03 (-0.08, 0.02) .30 -0.03 (-0.08, 0.03) .31 -0.02 (-0.08, 0.03) .39 
High -0.03 (-0.12, 0.06) .46 -0.03 (-0.12, 0.06) .49 0.07 (-0.03, 0.18) .17 0.08 (-0.03, 0.18) .15 

Area-Level Socioeconomic Deprivation 
Low-to-Moderate 0 [Reference]  0 [Reference]  0 [Reference]  0 [Reference]  
High -0.05 (-0.12, 0.02) .17 -0.05 (-0.12, 0.02) .19 0.00 (-0.09, 0.09) .99 -0.00 (-0.09, 0.09) .94 

Note. All imaging derived phenotypes were deconfounded in multivariable linear regressions, either adjusting for the full set including site-specific derivatives capturing 

indicators of age, age squared, sex, age-sex interactions, head size, days since the scanner start-up, days since the scanner start-up squared and two dummy variables coding 

site or the reduced set including age, sex, age-sex interactions, head size and two dummy variables coding site. Residuals were then entered in secondary multivariable linear 

regressions including 20 first principal components, third degree relatedness, number of alleles used to compute the polygenic risk score, education, marital status, healthy 

lifestyle, depressive symptoms in last two weeks, individual-level and area-level socioeconomic deprivation as well as genetic risk.  
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Appendix II Table S10 Coefficients for Multivariable Linear Regressions of White Matter Volume With Full and Reduced Deconfounding Set 

Characteristic Imputed Data (n=11 039) Complete-Case Data (n=8,140) 
 Full Set Reduced Set Full Set Reduced Set 
 Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p 

Individual-Level Socioeconomic Deprivation 
Low 0 [Reference]  0 [Reference]  0 [Reference]  0 [Reference]  
Intermediate -0.00 (-0.05, 0.05) .91 0.01 (-0.04, 0.06) .82 0.01 (-0.04, 0.06) .75 0.02 (-0.04, 0.07) .50 
High -0.02 (-0.10, 0.06) .60 -0.02 (-0.10, 0.07) .67 0.06 (-0.05, 0.16) .30 0.06 (-0.04, 0.17) .26 

Area-Level Socioeconomic Deprivation 
Low-to-Moderate 0 [Reference]  0 [Reference]  0 [Reference]  0 [Reference]  
High 0.02 (-0.05, 0.09) .63 0.02 (-0.05, 0.09) .59 0.02 (-0.07, 0.12) .65 0.02 (-0.08, 0.11) .74 

Note. All imaging derived phenotypes were deconfounded in multivariable linear regressions, either adjusting for the full set including site-specific derivatives capturing 

indicators of age, age squared, sex, age-sex interactions, head size, days since the scanner start-up, days since the scanner start-up squared and two dummy variables coding 

site or the reduced set including age, sex, age-sex interactions, head size and two dummy variables coding site. Residuals were then entered in secondary multivariable linear 

regressions including 20 first principal components, third degree relatedness, number of alleles used to compute the polygenic risk score, education, marital status, healthy 

lifestyle, depressive symptoms in last two weeks, individual-level and area-level socioeconomic deprivation as well as genetic risk. 
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Appendix II Table S11 Coefficients for Multivariable Linear Regressions of Grey Matter Volume with Full and Reduced Deconfounding Set 

Characteristic Imputed Data (n=11 018) Complete-Case Data (n=8,128) 
 Full Set Reduced Set Full Set Reduced Set 
 Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p 

Individual-Level Socioeconomic Deprivation 
Low 0 [Reference]  0 [Reference]  0 [Reference]  0 [Reference]  
Intermediate -0.05 (-0.10, 0.00) .07 -0.05 (-0.10, 0.00) .04 -0.06 (-0.12, -0.00) .046 -0.06 (-0.12, -0.01) .03 
High -0.04 (-0.14, 0.05) .39 -0.04 (-0.14, 0.05) .35 0.04 (-0.07, 0.14) .50 0.03 (-0.07, 0.14) .55 

Area-Level Socioeconomic Deprivation 
Low-to-Moderate 0 [Reference]  0 [Reference]  0 [Reference]  0 [Reference]  
High -0.11 (-0.18, -0.04) .004 -0.11 (-0.18, -0.03) .004 -0.04 (-0.13, 0.06) .43 -0.04 (-0.13, 0.06) .43 

Note. All imaging derived phenotypes were deconfounded in multivariable linear regressions, either adjusting for the full set including site-specific derivatives capturing 

indicators of age, age squared, sex, age-sex interactions, head size, days since the scanner start-up, days since the scanner start-up squared and two dummy variables coding 

site or the reduced set including age, sex, age-sex interactions, head size and two dummy variables coding site. Residuals were then entered in secondary multivariable linear 

regressions including 20 first principal components, third degree relatedness, number of alleles used to compute the polygenic risk score, education, marital status, healthy 

lifestyle, depressive symptoms in last two weeks, individual-level and area-level socioeconomic deprivation as well as genetic risk. 
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Appendix II Table S12 Risk of Dementia with Area-Level Socioeconomic Deprivation and Genetic Risk in Complete-Case Data 

Genetic risk Low Intermediate High 
Area-Level Socioeconomic Deprivation Low-to- Moderate High 

 
Low-to- Moderate High Low-to- Moderate High 

Total No. 22 154 3,875 66 516 11 927 21 778 4,055 
No. of Dementia Cases / Person-Years 120 / 173 636 31 / 29 809 488 / 521 545 138 / 92 019 215 / 171 055 50 / 31 449 
HR (95% CI) 1 [Reference] 1.26 (0.85, 1.88) 1.34 (1.10, 1.64) 1.76 (1.37, 2.25) 1.81 (1.45, 2.27) 1.80 (1.29, 2.52) 
p  .25 .004 <.001 <.001 <.001 

Note. The cox proportional-hazards regression model was adjusted for the 20 first principal components, third degree relatedness, number of alleles used to compute the 

polygenic risk score, age, sex, education, marital status, healthy lifestyle, depressive symptoms in last two weeks and individual-level socioeconomic deprivation. 

HR=Hazard ratio. 
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Appendix II Table S13 Risk of Dementia with Individual-Level Socioeconomic Deprivation and Genetic Risk in Complete-Case Data 

Genetic risk Low Intermediate High 

Individual-Level 
Socioeconomic Deprivation Low Intermediate High Low Intermediate High Low Intermediate High 

Total No. 6,849 15 696 3,484 19 790 47 819 10 834 6,554 15 593 3,686 
No. of Dementia Cases / 
Person-Years 23 / 53 656 89 / 122 655 39 / 27 133 84 / 155 026 399 / 374 404 143 / 84 132 39 / 51 460 174 / 122 193 52 / 28 852 

HR  
(95% CI) 1 [Reference] 1.37 

(0.86, 2.17) 
2.29 

(1.36, 3.86) 
1.26 

(0.79, 2.00) 
1.97 

(1.29, 3.01) 
2.75 

(1.75, 4.31) 
1.80 

(1.07, 3.01) 
2.63 

(1.69, 4.08) 
2.89 

(1.75, 4.76) 
p  .18 .002 .33 .002 <.001 .03 <.001 <.001 

Note. The cox proportional-hazards regression model was adjusted for the 20 first principal components, third degree relatedness, number of alleles used to compute the 

polygenic risk score, age, sex, education, marital status, healthy lifestyle, depressive symptoms in last two weeks and area-level socioeconomic deprivation. HR=Hazard 

ratio. 
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Appendix II Table S14 Risk of Dementia According to Area-Level Socioeconomic Deprivation in Subgroups Stratified by Genetic Risk 

Genetic risk Low Intermediate High 

Area-Level Socioeconomic 
Deprivationa 

Low-to-Moderate 
(n=31 648) 

High  
(n=7,626) 

Low-to-Moderate 
(n=94 316) 

High 
(n=23 505) 

Low-to-Moderate 
(n=31 131) 

High 
(n=8,142) 

No. of Dementia Cases / 
Person-Yearsa 177 / 249 647 70 / 59 124 744 / 744 724 294 / 182 389 345 / 246 144 139 / 63 285 

HR (95% CI) 1 [Reference] 1.18 (0.87, 1.61) 1 [Reference] 1.29 (1.11, 1.50) 1 [Reference] 1.32 (1.06, 1.64) 

p  .29  <.001  .01 

Note. All Cox proportional-hazards regressions were adjusted for the 20 first principal components, third degree relatedness, number of alleles used to compute the polygenic 

risk score, age, sex, education, marital status, and individual-level socioeconomic deprivation. aReported results are based on the first imputed data set. HR=Hazard ratio. 
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Appendix II Table S15 Risk of Dementia According to Individual-Level Socioeconomic Deprivation in Subgroups Stratified by Genetic Risk 

Genetic risk Low Intermediate High 

Individual-Level 
Socioeconomic 

Deprivationa 

Low 
(n=8,110) 

Intermediate 
(n=23 624) 

High 
(n=7,540) 

Low 
(n=23 417) 

Intermediate 
(n=70 774) 

High 
(n=23 630) 

Low 
(n=7,747) 

Intermediate 
(n=23 423) 

High 
(n=8,103) 

No. of Dementia 
Cases / Person- 
Yearsa 

25 / 63 790 134 / 186 093 88 / 58 887 103 / 184 307 614 / 558 529 321 / 184 276 46 / 61 124 294 / 184 928 144 / 63 377 

HR (95% CI) 1 [Reference] 1.50 (0.96, 2.35) 2.73 (1.66, 4.50) 1 [Reference] 1.61 (1.29, 2.00) 2.34 (1.83, 2.99) 1 [Reference] 1.72 (1.25, 2.38) 2.31 (1.61, 3.32) 

p  .07 <.001  <.001 <.001  <.001 <.001 

p for Trend <.001 <.001 <.001 

Note. All Cox proportional-hazards regressions were adjusted for the 20 first principal components, third degree relatedness, number of alleles used to compute the polygenic 

risk score, age, sex, education, marital status, and area-level socioeconomic deprivation. aReported results are based on the first imputed data set. HR=Hazard ratio. 
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Appendix II Table S16 Risk of Dementia According to Area-Level Socioeconomic Deprivation in Subgroups Stratified by Sex 

Sex Female Male 

Area-Level Socioeconomic Deprivationa Low-to-Moderate 
(n=82 938) 

High  
(n=20 496) 

Low-to-Moderate 
(n=74 157) 

High 
(n=18 777) 

No. of Dementia Cases / Person-Yearsa 569 / 659 247 221 / 161 207 697 / 581 268 282 / 143 591 

HR (95% CI) 1 [Reference] 1.25 (1.05, 1.48) 1 [Reference] 1.31 (1.12, 1.53) 

p  .01  <.001 

Note. All Cox proportional-hazards regressions were adjusted for the 20 first principal components, third degree relatedness, number of alleles used to compute the polygenic 

risk score, genetic risk, age, sex, education, marital status, and individual-level socioeconomic deprivation. aReported results are based on the first imputed data set. 

HR=Hazard ratio. 
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Appendix II Table S17 Risk of Dementia According to Individual-Level Socioeconomic Deprivation in Subgroups Stratified by Sex 

Sex Female Male 

Individual-Level 
Socioeconomic Deprivationa 

Low 
(n=16 617) 

Intermediate 
(n=65 137) 

High 
(n=21 680) 

Low 
(n=22 657) 

Intermediate 
(n=52 684) 

High 
(n=17 593) 

No. of Dementia Cases / 
Person- Yearsa 

57 / 131 217 467 / 517 550 266 / 171 687 117 / 178 004 575 / 412 001 287 / 134 854 

HR (95% CI) 1 [Reference] 1.51 (1.14, 2.00) 2.29 (1.68, 3.13) 1 [Reference] 1.71 (1.39, 2.10) 2.44 (1.92, 3.11) 

p  .004 <.001  <.001 <.001 

p for Trend <.001 <.001 

Note. All Cox proportional-hazards regressions were adjusted for the 20 first principal components, third degree relatedness, number of alleles used to compute the polygenic 

risk score, genetic risk, age, sex, education, marital status, and area-level socioeconomic deprivation. aReported results are based on the first imputed data set. HR=Hazard 

ratio. 
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Appendix II Table S18 Proportion of Individual-Level Socioeconomic Deprivation Across Lifestyle in Complete-Case and Imputed Data for the Full and Imaging 
Subsample 

Lifestyle Individual-Level Socioeconomic Deprivation – Full Sample Individual-Level Socioeconomic Deprivation – Imaging Subsample 

 Low Intermediate High Missing No. Total No.  Intermediate High Missing No. Total No. 

 Complete-Case Data 

Favourable 19.79% 60.13% 20.08% 79 32 761 29.27% 58.53% 12.20% 8 2,033 

Intermediate 22.94% 61.06% 15.99% 419 98 104 33.68% 58.40% 7.92% 29 6,123 

Unfavourable 20.94% 56.87% 22.19% 282 32 559 37.70% 54.00% 8.30% 8 1,626 

Missing 10.21% 59.79% 30.00% 250 31 914 19.39% 65.46% 15.14% 8 1,248 

 Imputed Dataa 

Favourable 17.44% 64.87% 17.69%  39 273 26.52% 61.94% 11.54%  2,244 

Intermediate 20.90% 60.26% 18.84%  117 821 32.53% 57.05% 10.42%  6,898 

Unfavourable 19.88% 54.35% 25.78%  39 274 36.32% 52.24% 11.44%  1,941 

Note. Percentages are based on the total number of participants without missing data on individual-level deprivation and may not sum to 100 because of rounding. aReported 

results are based on the first imputed data set. 
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Appendix II Figure S1 Risk of Incident Dementia Across Area-Level Socioeconomic Deprivation Quintiles 

 

 

 

 

 

 

 

 

 

 

 

Note. Bars indicate 95% confidence intervals. Hazard ratios are depicted on a log-scale. Cox proportional-

hazards regression was adjusted for the 20 first principal components, third degree relatedness, age, sex, 

education, and marital status. 
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Appendix II Figure S2 Proportion of Missing Data Prior to Imputation 

 

Note. All variable relevant to our analyses were used to impute missing values, including 29 variables were 

complete after application of eligibility criteria. Some variables were considered relevant to all analyses and 

thus used for imputation of all variables: 20 first principal components, third degree relatedness, number of 

alleles used to compute the polygenic risk score, polygenic risk score, age, sex, education, dementia, follow-up 

time, household income, vehicle and home ownership, housing type, Townsend deprivation index, and number 

of people in the household. Further variables used for during imputation were retirement status, marital status, 

depressive symptoms in last two weeks and 24 variables indicating physical activity, diet, smoking behaviour, 

and alcohol intake, used to compute the healthy lifestyle index. PA=Physical Activity; SNP=Single Nucleotide 

Polymorphism; PC=principal component.   
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Appendix II Figure S3 Dementia Risk With Interaction Terms for Area-Level Socioeconomic Deprivation  

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Bars indicate 95% confidence intervals. Hazard ratios are depicted on a log-scale. Colons indicate 

interaction terms. Cox proportional-hazards regression was adjusted for the 20 first principal components, third 

degree relatedness, number of alleles used to compute the polygenic risk score, age, sex, education, marital 

status, healthy lifestyle, depressive symptoms in last two weeks and individual-level socioeconomic deprivation.  
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Appendix II Figure S4 Dementia Risk With Interaction Terms for Individual-Level Socioeconomic Deprivation 

 

 

 

 

 

 

 

 

 

 

 

Note. Bars indicate 95% confidence intervals. Hazard ratios are depicted on a log-scale. Colons indicate 

interaction terms. Cox proportional-hazards regression was adjusted for the 20 first principal components, third 

degree relatedness, number of alleles used to compute the polygenic risk score, age, sex, education, marital 

status, healthy lifestyle, depressive symptoms in last two weeks and area-level socioeconomic deprivation. 
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Appendix III – Supplementary Material Chapter III 

Appendix III Diversity Measures 

Alpha Diversity:  

Chao1 was computed as an indicator of richness, which ignores abundance and 

increases with the number of prevalent species (Chao, 1984). The Shannon and inverse 

Simpson indices were computed as indicators of both richness and evenness. They increase 

with the number of prevalent species and penalise presence of microbes dominating in 

prevalence (Hill et al., 2003). Measures were computed after rarefication (estimate_richness 

[phyloseq]; rarefy_even_depth [phyloseq]) (McMurdie & Holmes, 2013). 

Beta Diversity: 

Percentage difference, referred to sometimes as Bray-Curtis dissimilarity, and Jaccard 

distance were computed, which reflect the fraction of the number of unique species between 

individuals and the number of shared, and unique species (vegdist [vegan]) (Faith et al., 1987; 

Legendre & De Cáceres, 2013; Oksanen J. et al., 2022). 
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Appendix III R Session Info Excerpt 

─ Session info ─────────────────────────────────────────────────────────────────── 
 
version  R version 4.3.1 (2023-06-16) 
 os       macOS Ventura 13.5 
 system   x86_64, darwin20 
 ui       RStudio 
 language (EN) 
 rstudio  2023.06.2+561 Mountain Hydrangea (desktop) 
 
─ Packages ─────────────────────────────────────────────────────────────────────── 
  
 ANCOMBC              * 2.2.1     2023-07-06 [1] Bioconductor 
 CMAverse             * 0.1.0     2023-09-09 [1] Github (BS1125/CMAverse@fa8ccab) 
 DESeq2               * 1.40.2    2023-06-25 [1] Bioconductor 
 LDM                  * 6.0       2023-09-04 [1] CRAN (R 4.3.0) 
 phyloseq             * 1.44.0    2023-05-11 [1] Bioconductor 
 vegan                * 2.6-4     2022-10-11 [1] CRAN (R 4.3.0) 
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Appendix III Description of Differential Abundance Analysis 

Since abundance reflects count data that is compositional (i.e., abundance of one 

species directly affects abundance of others), overdispersed and skewed (i.e., high variance 

and frequent zero counts for rare species), traditional approaches to statistical inference may 

lead to inflated false discovery rates and are thus not applicable (Aitchison, 1982; Mandal et 

al., 2015). Multiple methods have been developed to overcome these caveats, but they may 

provide discordant results in complex disease settings. Here applied approaches were the 

analysis of compositions of microbiomes with bias correction (ancombc [ANCOMBC]) and 

moderated estimation of fold change and dispersion (DESeq [DESeq2]). DESeq applies 

negative binomial generalised linear models and ancombc implements bias correction 

inherent to the underlying abundance quantification. For a more detailed description see 

function descriptions in packages DESeq2 and ANCOMBC (Kaul et al., 2017; H. Lin & 

Peddada, 2020; Love et al., 2014; Mandal et al., 2015). 
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Appendix III R Code Mediation Analysis With CMAverse 

do_cmest = function(data,  
 mediator,  
 a, astar = "0-10",  
 mval,  
 yreg = "logistic",  
 int = FALSE,  
 print = F){ 

  set.seed(123) 
  med_analysis_1 <- cmest(data = data,  
                          model = "rb",  
                          outcome = "MCI_bin",  
                          exposure = "Years_of_Education",  
                          mediator = c(mediator),  
                          basec = c("Age",  
                                    "Gender", 
                                    "ATB_in_last_6_months",  
                                    #"BMI", 
                                    "BDI_I_mild",  
                                    "First_Language", 
                                    "Living_With_Partner",  
                                    "APOE4"), 
                          mreg = list("linear"),  
                          yreg = yreg,  
                          EMint = int, 
                          astar = astar,  
                          a = a, 
                          mval = mval, 
                          yval = 1,   
                          estimation = "imputation",   
                          inference = "bootstrap",  
                          nboot = 5000)  
  if(print) {med_analysis_1 %>% summary() %>% print()} 
  return(med_analysis_1) 
} 
 
# function call example 
clin_df = ncer_adiv %>%  
  mutate(Chao1 = as.vector(scale(Chao1))) 
 
res16_Chao1_int = do_cmest(clin_df,  

  mediator = "Chao1",  
  a = "16+",  
  mval = list(0),  
  int = T) 
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Appendix III R Code Mediation Analysis With Ldm and PermanovaFL 

# required formula 
# otu.table | (set of confounders) ~ (set of exposures) + (set of outcomes) 
 
sample_tab = ncer_phyloseqs$Genus %>% sample_data %>% as_tibble %>% as.data.frame 
otu_tab = ncer_phyloseqs$Genus %>% otu_table() %>% t() %>% as.data.frame() 
   
# ldm med 
res.ldm.med <- ldm(formula = otu_tab |  

(Age + Gender + ATB_in_last_6_months + BDI_I_mild + 
First_Language + Living_With_Partner + APOE4) ~ 

                     (Years_of_Education) + # exposure 
                     (MCI), # outcome 
                   data=clin_df,  
                   seed=67817,  
                   n.cores=12,  
                   test.mediation=TRUE,  
                   test.omni3 = T) 
   
# permanova med 
res.perm.med = permanovaFL(otu_tab |  

(Age + Gender + ATB_in_last_6_months + BDI_I_mild 
+ First_Language + Living_With_Partner + APOE4) ~ 
(Years_of_Education) + # exposure 

                     (MCI), # outcome 
                           data=clin_df, seed=82955,  
                           test.mediation = T, 
                           dist.method = c("jaccard", "bray"), 
                           binary = c(TRUE, FALSE)) 
 
 

Note that ldm and permanovaFL preclude effect decomposition. While other 

approaches to mediation analysis with multiple mediators and effect decomposition exist, the 

assumption of multivariate normal distribution among mediators is not met for compositional 

abundance data (Aitchison, 1982). Further, given the large number of mediators, close to 

sample size, regularisation would be required (VanderWeele & Vansteelandt, 2014; Yue & 

Hu, 2022b). 
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Appendix III Direct and Indirect Effects  

We acknowledge that temporality, necessary for causal interpretation, is not given 

with cross-sectional data. However, the cited literature refers to the term ‘effects’ hence this 

statistical terminology is used to avoid misinterpretation. Here, NDE refers to the difference 

in the counterfactual outcome, fixing the mediator to the level it would have taken with 

education 0-10 years, and intervening to change education from 0-10 years to >10 years, i.e., 

pure natural direct effect (VanderWeele, 2014). Hence, NDE describes the effect of education 

on MCI irrespective of alpha diversity (2). Note that CDE describes the effect of education on 

MCI for a specified level of alpha diversity, i.e., the sample mean. The NIE refers to the 

difference in the counterfactual outcome, fixing education to >10 years and intervening to 

change the mediator from the level it would have taken in 0-10 years to the level it would 

have taken in >10 years, i.e., total indirect effect (VanderWeele, 2014). Hence, NIE describes 

the effect of education on MCI only passing through alpha diversity (3) (Richiardi et al., 

2013). Note that NDE and NIE reflect direct and indirect effects obtained using the approach 

of Baron and Kenny in absence of interaction between education and microbiome diversity 

(Baron & Kenny, 1986; Valeri & VanderWeele, 2013).  

 

𝐸4𝑌),+()∗) − 𝑌)∗,+()∗)|𝐶 = 𝑐:	 (2) 

𝐸4𝑌),+()) − 𝑌),+()∗)|𝐶 = 𝑐:	 (3) 

With  

exposure a* at reference level and exposure a at intervention level, 

mediator M observed at a* or a, conditional on covariates C = c 
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Appendix III Table S1 Coefficients of Regression Models With Chao1 

Variable Mediator Model Outcome Model 
    With Interaction Without Interaction 
 Estimate (95% CI) p  Estimate (95% CI) p  Estimate (95% CI) p  

YEDU          
  0-10 [Reference]   [Reference]   [Reference]   
  11-16 0.42 (0.07, 0.77) .018 * -1.24 (-2.12, -0.35) .005 ** -1.21 (-2.07, -0.35) .006 ** 
  16+ 0.38 (0.00, 0.76) .050  -1.26 (-2.22, -0.30) .010 * -1.23 (-2.16, -0.31) .009 ** 
Chao1 - -  -0.14 (-0.76, 0.44) .640  -0.21 (-0.54, 0.11) .198  
YEDU:Chao1 - -     - -  
  11-16:Chao1 - -  -0.02 (-0.80, 0.79) .967  - -  
  16+:Chao1 - -  -0.20 (-1.00, 0.62) .630  - -  

Note. Regression coefficients for mediator and outcome models, used for mediation analysis with alpha diversity metric Chao1. All analyses were adjusted for age, 

sex/gender, use of antibiotic medication in the last 6 months, mild depressive symptoms based on the Beck Depression Inventory I, first language, partnership status and 

Apolipoprotein E ε4 status. YEDU=Years of education. *p<.05. **p<.01. ***p<.001. 
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Appendix III Table S2 Coefficients of Regression Models With Shannon 

Variable Mediator Model Outcome Model 
    With Interaction Without Interaction 
 Estimate (95% CI) p  Estimate (95% CI) p  Estimate (95% CI) p  
Years of Education          
  0-10 [Reference]   [Reference]   [Reference]   
  11-16 0.36 (0.01, 0.71) .042 * -1.31 (-2.18, -0.45) .003 ** -1.26 (-2.11, -0.41) .003 ** 
  16+ 0.37 (-0.01, 0.75) .055  -1.28 (-2.22, -0.36) .007 ** -1.25 (-2.18, -0.34) .007 ** 
Shannon - -  -0.01 (-0.61, 0.59) .985  -0.13 (-0.46, 0.19) .423  
Years of Education:Shannon - -     - -  
  11-16:Shannon - -  0.04 (-0.77, 0.87) .924  - -  
  16+:Shannon - -  -0.38 (-1.19, 0.43) .354  - -  

Note. Regression coefficients for mediator and outcome models, used for mediation analysis with alpha diversity metric Shannon. All analyses were adjusted for age, 

sex/gender, use of antibiotic medication in the last 6 months, mild depressive symptoms based on the Beck Depression Inventory I, first language, partnership status and 

Apolipoprotein E ε4 status. YEDU=Years of education. *p<.05. **p<.01. ***p<.001. 
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Appendix III Table S3 Coefficients of Regression Models With Inverse Simpson 

Variable Mediator Model Outcome Model 
    With Interaction Without Interaction 
 Estimate (95% CI) p  Estimate (95% CI) p  Estimate (95% CI) p  

Years of Education          
  0-10 [Reference]   [Reference]   [Reference]   
  11-16 0.17 (-0.18, 0.52) .342  -1.33 (-2.18, -0.48) .002 ** -1.29 (-2.14, -0.46) .002 ** 
  16+ 0.22 (-0.16, 0.61) .260  -1.30 (-2.23, -0.39) .005 ** -1.28 (-2.21, -0.38) .006 ** 
Inverse Simpson - -  -0.01 (-0.68, 0.63) .975  -0.08 (-0.42, 0.25) .625  
Years of Education:Inverse Simpson - -     - -  
  11-16:Inverse Simpson - -  0.19 (-0.62, 1.02) .649  - -  
  16+:Inverse Simpson - -  -0.50 (-1.41, 0.41) .282  - -  

Note. Regression coefficients for mediator and outcome models, used for mediation analysis with alpha diversity metric Inverse Simpson. All analyses were adjusted for age, 

sex/gender, use of antibiotic medication in the last 6 months, mild depressive symptoms based on the Beck Depression Inventory I, first language, partnership status and 

Apolipoprotein E ε4 status. YEDU=Years of education. *p<.05. **p<.01. ***p<.001. 
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Appendix III Table S4 Mediation Analysis With Shannon Index as Mediator 

Estimand Comparing 0-10 to 11-16 Years of Education Comparing 0-10 to 16+ Years of Education 
 With Interaction Without Interaction With Interaction Without Interaction 
 Estimate (95% CI) p  Estimate (95% CI) p  Estimate (95% CI) p  Estimate (95% CI) p  

RCDE 0.31 (0.14, 0.69) .007 ** 0.32 (0.15, 0.69) .007 ** 0.32 (0.13, 0.74) .012 * 0.33 (0.14, 0.75) .014 * 
RPNDE 0.31 (0.14, 0.69) .007 ** 0.32 (0.15, 0.70) .007 ** 0.36 (0.15, 0.86) .022 * 0.33 (0.14, 0.75) .014 * 
RTNDE 0.31 (0.14, 0.70) .008 ** 0.32 (0.15, 0.70) .007 ** 0.32 (0.14, 0.74) .011 * 0.33 (0.14, 0.75) .014 * 
RPNIE 1.00 (0.80, 1.25) .986  0.96 (0.83, 1.09) .526  1.00 (0.79, 1.26) .985  0.96 (0.81, 1.10) .531  
RTNIE 1.01 (0.79, 1.40) .897  0.96 (0.82, 1.10) .526  0.88 (0.65, 1.09) .260  0.96 (0.81, 1.10) .531  
RTE 0.31 (0.15, 0.67) .005 ** 0.31 (0.15, 0.67) .004 ** 0.32 (0.15, 0.72) .009 ** 0.31 (0.14, 0.71) .008 ** 
ERCDE -0.56 (-0.77, -0.22) .007 ** -  - -0.55 (-0.78, -0.18) .012 * - -  
ERINTREF -0.13 (-0.26, 0.03) .093  - -  -0.09 (-0.21, 0.17) .344  - -  
ERINTMED 0.01 (-0.26, 0.23) .961  - -  -0.04 (-0.37, 0.17) .677  - -  
ERPNIE 0.00 (-0.20, 0.25) .986  - -  0.00 (-0.21, 0.26) .985  - -  
ERCDE(P) 0.81 (0.58, 1.06) .003 ** - -  0.80 (0.56, 1.05) .005 ** - -  
ERINTREF(P) 0.19 (-0.07, 0.46) .094  - -  0.13 (-0.34, 0.34) .336  - -  
ERINTMED(P) -0.01 (-0.43, 0.44) .963  - -  0.06 (-0.28, 0.71) .682  - -  
ERPNIE(P) 0.00 (-0.42, 0.35) .988  - -  0.00 (-0.43, 0.37) .988  - -  
PM -0.01 (-0.21, 0.17) .898  0.02 (-0.06, 0.17) .527  0.06 (-0.05, 0.49) .266  0.02 (-0.05, 0.20) .535  
INT 0.19 (-0.03, 0.45) .070  - -  0.19 (0.00, 0.49) .053  - -  
PE 0.19 (-0.06, 0.42) .107  - -  0.20 (-0.05, 0.44) .089  - -  

Note. Results of mediation analysis with or without interaction terms of education and Shannon in the outcome model. Standard errors were estimated with 5,000 bootstraps. 

RCDE=controlled direct effect odds ratio (referring to CDE); RPNDE=pure natural direct effect odds ratio (referring to NDE); RTNDE=total natural direct effect odds ratio; 

RPNIE=pure natural indirect effect odds ratio; RTNIE=total natural indirect effect odds ratio (referring to NIE); RTE=total effect odds ratio; ERCDE=excess relative risk due 

to controlled direct effect; ERINTREF=excess relative risk due to reference interaction; ERINTMED=excess relative risk due to mediated interaction; ERPNIE=excess 
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relative risk due to pure natural indirect effect; ERCDE(P)=proportion ERCDE; ERINTREF(P)=proportion ERINTREF; ERINTMED(P)=proportion ERINTMED; 

ERPNIE(P)=proportion ERPNIE; PM=overall proportion mediated; INT=overall proportion attributable to interaction; PE=overall proportion eliminated. Cells with – 

indicate n/a. *p<.05. **p<.01. ***p<.001. 
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Appendix III Table S5 Mediation Analysis With Inverse Simpson Index as Mediator 

Estimand Comparing 0-10 to 11-16 Years of Education Comparing 0-10 to 16+ Years of Education 
 With Interaction   Without Interaction  With Interaction   Without Interaction  
 Estimate (95% CI) p  Estimate (95% CI) p  Estimate (95% CI) p  Estimate (95% CI) p  

RCDE 0.31 (0.14, 0.68) .005 ** 0.31 (0.15, 0.67) .005 ** 0.32 (0.13, 0.73) .010 * 0.32 (0.14, 0.73) .009 ** 
RPNDE 0.30 (0.15, 0.66) .004 ** 0.31 (0.15, 0.67) .005 ** 0.36 (0.16, 0.83) .020 * 0.32 (0.14, 0.73) .009 ** 
RTNDE 0.31 (0.15, 0.69) .006 ** 0.31 (0.15, 0.67) .005 ** 0.32 (0.14, 0.75) .010 * 0.32 (0.14, 0.73) .009 ** 
RPNIE 1.00 (0.85, 1.20) .964  0.99 (0.89, 1.08) .832  1.00 (0.83, 1.25) .991  0.98 (0.87, 1.09) .762  
RTNIE 1.03 (0.89, 1.24) .705  0.99 (0.88, 1.08) .832  0.91 (0.67, 1.10) .370  0.98 (0.86, 1.10) .762  
RTE 0.31 (0.15, 0.67) .005 ** 0.31 (0.15, 0.67) .005 ** 0.32 (0.15, 0.73) .009 ** 0.31 (0.14, 0.71) .008 ** 
ERCDE -0.56 (-0.77, -0.24) .005 ** - -  -0.55 (-0.78, -0.20) .010 * - -  
ERINTREF -0.13 (-0.25, 0.00) .055  - -  -0.09 (-0.19, 0.17) .326  - -  
ERINTMED 0.01 (-0.19, 0.18) .966  - -  -0.03 (-0.36, 0.12) .701  - -  
ERPNIE 0.00 (-0.15, 0.20) .964  - -  0.00 (-0.17, 0.25) .991  - -  
ERCDE(P) 0.82 (0.61, 1.02) .004 ** - -  0.81 (0.58, 1.10) .003 ** - -  
ERINTREF(P) 0.20 (0.00, 0.44) .054  - -  0.14 (-0.35, 0.33) .318  - -  
ERINTMED(P) -0.01 (-0.33, 0.33) .965  - -  0.05 (-0.21, 0.67) .705  - -  
ERPNIE(P) 0.00 (-0.34, 0.27) .965  - -  0.00 (-0.40, 0.31) .990  - -  
PM -0.01 (-0.14, 0.07) .705  0.01 (-0.05, 0.09) .833  0.05 (-0.07, 0.41) .375  0.01 (-0.05, 0.12) .764  
INT 0.18 (0.02, 0.40) .039 * - -  0.18 (-0.04, 0.48) .084  - -  
PE 0.18 (-0.02, 0.39) .066  - -  0.19 (-0.10, 0.42) .114  - -  

Note. Results of mediation analysis with or without interaction terms of education and Inverse Simpson in the outcome model. Standard errors were estimated with 5,000 

bootstraps. RCDE=controlled direct effect odds ratio (referring to CDE); RPNDE=pure natural direct effect odds ratio (referring to NDE); RTNDE=total natural direct effect 

odds ratio; RPNIE=pure natural indirect effect odds ratio; RTNIE=total natural indirect effect odds ratio (referring to NIE); RTE=total effect odds ratio; ERCDE=excess 

relative risk due to controlled direct effect; ERINTREF=excess relative risk due to reference interaction; ERINTMED=excess relative risk due to mediated interaction; 
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ERPNIE=excess relative risk due to pure natural indirect effect; ERCDE(P)=proportion ERCDE; ERINTREF(P)=proportion ERINTREF; ERINTMED(P)=proportion 

ERINTMED; ERPNIE(P)=proportion ERPNIE; PM=overall proportion mediated; INT=overall proportion attributable to interaction; PE=overall proportion eliminated. Cells 

with – indicate n/a. *p<.05. **p<.01. ***p<.001. 

  



 

 

244 

Appendix III Table S6 Taxonomic Classification of Identified Taxa 

Taxon Domain Phylum Class Order Family Genus 
Bacilli Bacteria Firmicutes Bacilli NA NA NA 
Actinobacteria Bacteria Actinobacteriota Actinobacteria NA NA NA 
Lactobacillales Bacteria Firmicutes Bacilli Lactobacillales NA NA 
Streptococcaceae Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae NA 
Streptococcus Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 
Lachnospiraceae UCG 001 Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Lachnospiraceae UCG 001 
ASV 000508 Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Lachnospiraceae UCG 001 
ASV 000053 Bacteria Firmicutes Clostridia Oscillospirales Oscillospiraceae NK4A214_group 

Note. Taxonomic classification as identified with DESeq2 and ancombc. ASV=amplicon sequence variant. 
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Appendix III Table S7 First Languages Spoken 

First Language NC (n=200) MCI (n=58) 
Danish 3 0 
Dutch 2 1 
English 7 0 
French 27 5 
German 20 3 
Hungarian 1 0 
Italian 2 2 
Luxembourgish 135 44 
Portuguese 1 3 
Slovene 1 0 
Spanish 1 0 

Note. NC=Normal Cognition; MCI=Mild cognitive impairment.   
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Appendix III Figure S1 Alpha Diversity Across Education Groups 

 

Note. Panels show results stratified by education groups with 0-10, 11-16 and 16+ years of education. Reported p 

values refer to Student’s t-Tests. InvSimpson=Inverse Simpson.  
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Appendix III Figure S2 Ordination Plots for MCI and Age Groups 

 

Note. Ordination using NMDS based on Bray-Curtis dissimilarity for A MCI and B Age groups. Analysis with 

adonis2 was adjusted for sex/gender, education, use of antibiotic medication in the last 6 months, mild 

depressive symptoms based on the Beck Depression Inventory I, first language, partnership status, and 

apolipoprotein ε4 status. A additionally adjusted for age and MCI, and B additionally adjusted for age 

categories. Authors MK and VTEA. NMDS=Non-metric Multidimensional Scaling.  

A MCI Groups 

B Age Groups 
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Appendix III Figure S3 Relative Abundance Across Groups of Education 

 

Note. Y axis shows log10-transformed relative abundance plus 10-3. Bars indicate median and interquartile 

range. Taxa identified with DESeq2 and ancombc. ASV=amplicon sequence variant. Authors MK and VTEA. 
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Appendix IV – Supplementary Material Chapter IV 

Appendix IV Table S1 Comparison of Items Constituting the Langa-Weir Algorithm 

Characteristics HRS Recall Recall & IADL 
Cognitive Function 
  Immediate Recall SR SR SR 
  Delayed Recall SR SR SR 
  Serial 7’s SR - - 
  Backward Counting SR - - 
IADL 
  Preparing Meals Proxy - SR 
  Shopping Groceries Proxy - SR 
  Making Phone Calls Proxy - SR 
  Taking Medication Proxy - SR 
  Managing Money Proxy - SR 
  Using a Map - - SR 
  Doing Housework - - SR 
  Independent Mobility - - SR 
  Doing Laundry - - SR 

Note. Proxy-rated memory and interviewer-perceived quality of cognition are not included. Recall=Langa-Weir 

algorithm based on Recall; Recall & IADL=Langa-Weir algorithm based on Recall and IADL; HRS=Health and 

Retirement Study; IADL=Instrumental Activities of Daily Living; Proxy=Reported by Proxy Respondent; 

SR=Self-Reported. 
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Appendix IV Table S2 Performance of Classification Algorithms in the Test Set 

Classification Accuracy Balanced Accuracy Sensitivity Specificity Precision F1 AUC 
LW (Recall) 0.96 0.64 0.31 0.97 0.18 0.23 0.64 
LW (Recall)P 0.92 0.73 0.53 0.93 0.14 0.22 0.73 
LW (Recall & IADL) 0.97 0.63 0.27 0.98 0.27 0.27 0.63 
LW (Recall & IADL)P 0.96 0.70 0.43 0.97 0.23 0.30 0.70 
GLM 0.98 0.55 0.11 1.00 0.51 0.18 0.88 
GLM weighted 0.95 0.75 0.53 0.96 0.21 0.30 0.89 
GLM DOWN 0.84 0.80 0.76 0.84 0.09 0.17 0.88 
GLM SMOTE 0.93 0.77 0.60 0.94 0.16 0.26 0.88 
RF 0.98 0.52 0.04 1.00 0.70 0.07 0.90 
RF DOWN 0.84 0.81 0.77 0.84 0.10 0.17 0.89 
RF SMOTE 0.93 0.77 0.60 0.94 0.17 0.26 0.88 
XGB 0.98 0.50 0.00 1.00 1.00 0.01 0.89 
XGB DOWN 0.83 0.80 0.77 0.84 0.09 0.16 0.88 
XGB SMOTE 0.93 0.77 0.62 0.93 0.16 0.26 0.86 

Note. AUC=Area under the receiver operating characteristic curve; LW (Recall)=Langa-Weir algorithm with a Recall-cutoff reflecting the 2.5th percentile; LW 

(Recall)P=Langa-Weir algorithm with a Recall-cutoff reflecting country-level dementia prevalence; LW (Recall & IADL)=Langa-Weir algorithm based on LW (Recall) with 

an IADL cutoff reflecting 1.5 IQR above Q3; LW (Recall & IADL)P=Langa-Weir algorithm based on LW (Recall)P with an IADL cutoff reflecting 1.5 IQR above Q3; 

GLM=Logistic Regression, RF=Random Forest; XGB=XGBoost; DOWN=trained in data created with downsampling; SMOTE=trained in data created with the synthetic 

minority oversampling technique; IADL=Instrumental Activities of Daily Living. 
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Appendix IV Table S3 Dementia Prevalence and Number of Expected Dementia Cases 

Country   OECD SR-PD LW (R&I)P GLM (weighted) RF SMOTE XGB SMOTE 
 ISO n Prevalence n Prevalence n Prevalence n Prevalence n Prevalence n Prevalence n 

Austria AT 1,267 7.22 91.52 3.75 47.47 5.10 64.63 4.89 61.99 10.11 128.05 14.37 182.04 
Belgium BE 1,791 7.24 129.73 1.96 35.08 5.02 89.85 5.57 99.73 7.74 138.69 9.32 166.96 
Bulgaria BG 700 4.10 28.68 1.67 11.69 2.11 14.77 7.07 49.49 8.61 60.24 7.02 49.13 
Croatia HR 860 2.83 24.37 2.70 23.25 2.70 23.24 8.33 71.61 9.71 83.48 8.35 71.81 
Cyprus CY 467 5.86 27.38 2.93 13.68 8.96 41.86 9.06 42.31 11.87 55.44 14.70 68.67 
Czech Rep. CZ 1,774 4.16 73.87 1.88 33.35 3.07 54.49 3.73 66.09 4.60 81.67 4.59 81.47 
Denmark DK 1,164 6.45 75.10 0.80 9.35 4.31 50.22 3.07 35.75 4.01 46.69 3.91 45.48 
Estonia EE 1,864 5.78 107.71 1.93 35.93 2.75 51.30 8.39 156.39 9.22 171.89 8.88 165.53 
Finland FI 680 6.67 45.35 2.79 18.97 3.12 21.25 2.86 19.44 7.75 52.73 7.93 53.93 
France FR 1,307 7.69 100.46 1.70 22.25 5.21 68.05 5.07 66.24 6.31 82.53 4.93 64.40 
Germany DE 1,406 7.27 102.21 2.16 30.33 3.35 47.08 3.47 48.82 4.89 68.74 5.03 70.72 
Greece GR 1,263 7.60 96.00 1.73 21.86 5.35 67.57 5.33 67.3 7.69 97.13 7.40 93.44 
Hungary HU 646 4.27 27.60 1.04 6.72 2.41 15.55 4.40 28.44 6.67 43.08 7.48 48.33 
Israel IL 821 6.00 49.26 3.20 26.25 4.69 38.52 9.83 80.67 11.22 92.10 11.47 94.16 
Italy IT 1,710 7.98 136.41 2.38 40.63 8.08 138.24 6.39 109.2 8.66 148.03 7.59 129.76 
Latvia LV 574 5.63 32.29 1.87 10.76 0.92 5.27 6.37 36.57 8.84 50.73 10.81 62.04 
Lithuania LT 668 5.80 38.72 3.12 20.85 3.40 22.73 9.52 63.58 11.85 79.17 14.01 93.59 
Luxembourg LU 404 6.77 27.34 1.50 6.07 2.87 11.61 3.96 16.01 8.23 33.23 9.79 39.56 
Malta MT 468 6.04 28.27 1.28 5.99 5.31 24.83 3.48 16.28 6.36 29.76 7.48 35.02 
Poland PL 1,599 4.16 66.55 2.41 38.59 3.82 61.08 6.84 109.35 9.58 153.14 9.16 146.47 
Portugal PT 489 7.26 35.50 4.02 19.68 4.30 21.03 9.04 44.23 14.61 71.46 12.34 60.34 
Romania RO 714 4.10 29.28 1.49 10.63 3.81 27.23 9.33 66.64 11.35 81.02 9.19 65.62 
Slovenia SI 1,435 4.50 64.62 3.22 46.19 3.76 54.01 6.46 92.75 9.18 131.78 11.88 170.42 
Spain ES 1,827 7.57 138.25 3.66 66.78 7.59 138.70 7.28 132.96 10.59 193.48 9.35 170.81 
Sweden SE 1,407 7.06 99.28 1.33 18.74 3.18 44.69 2.16 30.36 4.32 60.85 6.44 90.57 
Switzerland CH 1,004 7.15 71.76 1.11 11.18 2.64 26.51 1.70 17.09 3.32 33.31 3.28 32.92 
Total  28 309  1,747.51  632.27  1,224.31  1,629.29  2,268.40  2,353.18 
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Note. Population-weighted prevalence and number of cases based on the test set. Numbers are rounded to the second decimal. Three participants excluded due to missing 

sampling weights. OECD=Data from the Organisation for Economic Co-operation and Development and a population-based study in Israel (Kodesh, 2019; OECD, 2018); 

SR-PD=self-reported physician-diagnosis of dementia; LW (R&I)P=Langa-Weir algorithm with a Recall-cutoff reflecting country-level dementia prevalence and a cutoff 

reflecting 1.5 IQR above Q3 for Instrumental Activities of Daily Living; GLM=Logistic Regression, RF=Random Forest; XGB=XGBoost; SMOTE=trained in data created 

with the synthetic minority oversampling technique. 
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Appendix IV Figure S1 Performance Variation in the Test Set Across Countries 

 

Note. AUC=Area under the receiver operating characteristic curve; LW (Recall & IADL)P=Langa-Weir algorithm with a Recall-cutoff reflecting country-level dementia 

prevalence and a cutoff reflecting 1.5 IQR above Q3 for Instrumental Activities of Daily Living; GLM=Logistic Regression, RF=Random Forest; XGB=XGBoost; 

SMOTE=trained in data created with the synthetic minority oversampling technique. 


