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Abstract

This dissertation introduces a new evaluation paradigm for worst-case traversal times

based on aggregation of simulations. As the complexity of real-time networking systems

and applications grows, classical methods face increasing challenges. Oftentimes, analyt-

ical methods that provide guarantees on the maximal end-to-end latencies are not avail-

able, too pessimistic, or too expensive to develop.

The traditional approach to evaluating such systems via simulation requires running

long simulations that apply synchronized node start offsets and randomized clock drifts

to explore the simulation state space. Running long simulations, however, has significant

implications on the design process as they take a long time to be executed, limiting the

variations and number of candidate solutions that the designers of such systems can con-

sider. It is observed in this dissertation that long simulations can be rather inefficient as

a significant portion of the computational effort is typically spent in states of low interfer-

ence between flows, which has a reduced probability of causing high end-to-end latencies.

The paradigm proposed by this dissertation aims to mitigate these shortcomings by

running many short simulations and aggregating their results. In all test cases applied

in this work, end-to-end latencies equivalent to long simulations were observed but for a

fraction of the resources. The speedups observed with these simple techniques reached

up to a factor of 266, without even considering additional speedups that could be gained

via the increased parallelization potential of the approach.

First, the general potential of simply splitting up the long simulations into shorter ones

is evaluated, and both synchronized and uniformly sampled node start offsets for running

and aggregating these short simulations are investigated. Increases in median latency on

a per-flow basis of up to 25.8% are observed for the considered test cases.

To improve the effectiveness and efficiency of the approach, a heuristic to determine

an optimized simulation time that maintains the speedup factor is proposed, together

with an improved method to sample the node start offsets, namely stratified sampling.

The heuristic to select the simulation time is based on a pretest executed on a small

fraction of the total simulation budget. First, half of the budget dedicated to this pretest

is used to determine a reference speedup factor. Then, in increasingly smaller slices of

the other half of the budget, speedups for increasingly shorter simulation times are de-

termined until they drop below a certain threshold with respect to the reference speedup.

This yields the choice of the simulation time.
iii



The improved sampling of node start offsets is based on overlapping stratification over

exponentially growing sampling ranges. This approach allows the exploration of diverse

solutions while also integrating the high initial interferences observed by the solutions

close to the synchronized case, as exploited by the traditional approach. This technique

allows a good trade-off between exploration and exploitation of the search space of start-

ing conditions.

Finally, the maximization of the observed end-to-end delays is modeled as a multi-

objective optimization Pareto problem. NSGA-II, a popular algorithm to address such

problems, is applied. A biased population is initialized based on stratified sampling. The

optimization efficiency and effectiveness are then evaluated on two different optimization

variations. One variation optimizes only the node start offsets and applies changing ran-

dom seeds to each simulation to explore the flow orders. The other variation additionally

optimizes the flow scheduling order by introducing and adjusting very small frame offsets

to control the sending order of flows scheduled simultaneously without impacting the traf-

fic properties.

The evaluation paradigm developed in this dissertation proves to be beneficial for both

generating tighter approximations of worst-case traversal times via simulation and reach-

ing results equivalent to long simulations in a small fraction of the simulation time. Addi-

tionally, the approach enables the use of highly parallel infrastructure, such as HPCs, as

short simulations are independent of each other and can thus be run in parallel.

This opens up paths to exciting future research and applications, including improved

optimization and advanced learning methods. It further allows for more responsive and

effective design paradigms by exploiting the increased efficiency and parallelization po-

tential, significantly reducing the friction in the typically iterative design process.
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Chapter 1

Introduction

1.1 Context

As industrial and consumer systems move closer towards full automation, network com-

munication faces increasing complexity and, thus new challenges. Long gone are the days

when a car could be serviced without the use of a computer, let alone be functional with-

out one. A modern car today has a multitude of sensors, is permanently connected to the

Internet, and may soon be able to drive itself without any intervention of a human being.

All of these advancements come at a cost. In the early days of electronic systems in

consumer vehicles, only a handful of integrated processors were needed to make them

functional, and their capabilities were usually very limited and specialized to one desig-

nated function. Slowly over time, more and more such electronic circuitry was integrated

to make vehicles more efficient and offer better comfort to the driver. These additional

features range from entertainment to safety systems, such as automated driver assistance.

This increased not only the number of options that could be offered to customers but also

the resulting complexity and cost of hardware and software systems.

Over time, the number of integrated electronic control units increased from only a

handful to over 100 in some premium vehicles. Further, with the introduction of Machine

Learning into almost every aspect of our lives and also consumer vehicles, the need for

data processing and transmission reaches needs unseen before.

These two factors contribute to the need for efficient, reliable, and scaleable data trans-

mission between integrated processors. In addition to these requirements, with the electri-

fication required by automated driving, the communication between these control units

is required to adhere to certain timeliness constraints. Those timeliness constraints are

known as real-time requirements and need to be verified at the design time to avoid catas-

trophic failure at run time. Catastrophic failure in this context ranges from the harmless

malfunction of the vehicle to its total destruction and up to the potential cost of life.

It should be obvious that the creation of such complex mission-critical systems can-

not be taken lightly and requires significant resources and validation during the design

process. However, the design process is usually iterative in nature and is thus slow-paced

and resource-hungry due to the increasing complexity of such systems. Small changes can

invoke a large number of necessary validations that need to be repeated for every modifi-
1
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cation.

This is where this dissertation aims to seek improvement by developing a new ap-

proach to approximate worst-case traversal times, an important measure in the timeli-

ness of the system, in a generic, quick and cost-efficient manner compared to previous

approaches.

1.2 Motivation and Vision

The evaluation of hard real-time network systems can be realized by two types of valida-

tion approaches, network simulation and mathematical analysis, like worst-case schedula-

bility analysis, for instance. Analytical methods are typically the preferred option to evalu-

ate and validate real-time networking systems, as they usually provide firm guarantees on

the derived worst-case end-to-end delay upper bounds. However, analytical approaches

are not always an option, as an analysis may not be available or simply overly pessimistic,

which would result in a costly over-dimensioning and under-utilization of the resulting

network architecture. This is particularly undesirable if a higher number of instances of

the system will be built, like, for instance, consumer vehicles.

Further, developing and optimizing analytical approaches is complicated and costly,

and thus not always feasible in practice. In addition, the available analytical approaches

struggle to keep up with the increasing complexity, requirements, and diversity of indus-

trial applications. This explosion in complexity stems, among others, from the contin-

uous increase in automation, like, for instance, automated industrial assembly lines or

autonomously driving vehicles.

Simulation models, on the other hand, do not provide firm guarantees on the worst-

case end-to-end delays but instead produce a lower bound on the actual worst-case de-

lays. The big advantage of simulation approaches is that they are comparably easy to im-

plement for a given system and can closely model the system under investigation without

making overly pessimistic assumptions, particularly when different technologies are com-

bined. Further, it was pointed out in recent literature [26] that simulation gains impor-

tance over analytical approaches as they struggle to model the increased complexity.

Simulation thus represents a crucial tool in the development of time-critical systems,

particularly in industrial applications where the complexity can quickly exceed the scope

of analytical approaches, and a scalable and flexible solution is required. Further, it allows

the investigation of the behavior of the end system and virtual analysis of specific proper-

ties without the need to build a costly prototype first.

In recent years, simulation has gained importance in the design and development of

complex embedded real-time systems. However, one of the downsides of simulation is

that it is typically slow and resource-hungry to achieve reliable estimates, particularly for

increasingly complex systems. Additionally, the traditional approach of running long sim-
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ulations with specific starting conditions to evaluate networking systems is unsuitable for

the highly parallel computing infrastructures widely applied in industry today.

This dissertation addresses both of these shortcomings of simulation for validating

worst-case traversal times in real-time Ethernet networks. This is achieved by a new val-

idation paradigm based on the aggregation of short simulations with optimized starting

conditions. This allows to more effectively explore the simulation state space, increasing

the probability and flexibility to observe higher end-to-end delays more quickly compared

to the traditional approach. This results in a significant improvement in both maximally

observed delays and the reduction of computational efforts.

The original vision of this thesis was to apply Machine Learning to (partially) automate

the design process and assist the human designer of such systems to explore a larger por-

tion of the possible design space and potentially unconventional but improved solutions

a human designer would typically not consider.

Machine Learning was applied successfully in the field of real-time networking before,

but it became obvious early that some preconditions for achieving the original goal were

not met. Specifically, the tools involved in evaluating the configurations generated by the

automated design process would be too slow. This would induce friction and excessive

resource requirements that would impede both the learning process required by Machine

Learning and the design process itself.

Beyond improving the effectiveness of simulation as a validation tool of real-time Eth-

ernet networks, the flexibility introduced by the paradigm developed in this dissertation

further paves the way towards enabling such intelligent and automated architecture de-

sign approaches.

1.3 Objectives and Applications

This dissertation aims to provide a new simulation-based validation paradigm for end-to-

end delays in Ethernet-based real-time networking systems.

The objectives of this paradigm are:

• General applicability that is not constrained to certain traffic types, congestion man-

agement mechanisms, protocols, or other properties. This is achieved by reducing

the embedded expert knowledge to a minimum.

• Support various available features, mechanisms and tools developed for real-time

Ethernet standards like TSN, AFDX and TTEthernet. This is achieved by not relying

on any properties or features exclusive to specific implementations but rather on

the common foundations of real-time Ethernet, typically provided by every network

simulation software supporting real-time Ethernet networks.
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• Offering a scaleable approach to simulation-based evaluation of Ethernet-based em-

bedded distributed real-time systems. This is achieved by the aggregation of the re-

sults of many short simulations that are independent of each other and can thus be

run in parallel.

Some advantages can be derived based on these objectives. As discussed, due to the

nature of the aggregation, the paradigm greatly improves the potential and simplification

of parallelization, and thus the flexibility when validating such systems, as aggregated

short simulations are independent of each other. Concretely, this novel paradigm provides

the following advantages over the traditional simulation approach:

• Improved tightness of observed lower bounds on the worst-case end-to-end delays

under equal simulation budget.

• Generation of equivalent bounds with a fraction of invested simulation budget.

• Greatly improved parallelizability by running many short, independent simulations.

• Targeted evaluation of a subset of flows in the network.

The targeted evaluation of a subset of flows is not explicitly investigated in this the-

sis and will be discussed a bit further in Chapter 6, as it is possible only under certain

conditions and is beyond the scope of this dissertation. Various important practical and

scientific applications from the domain of real-time networks can be addressed by the

presented paradigm:

• Generation of tighter lower-bounds for systems where no or only overly pessimistic

analytical approaches are available.

• Improved evaluation of the pessimism of analytical methods by generating tighter

lower-bounds via simulation.

• Speeding up the evaluation of candidate architectures during the design phase.

• Enabling improvements for Design Space Exploration of real-time systems via the

increased efficiency and flexibility of the aggregation paradigm.

1.4 Summary of the Approach

In this section, a brief outline of the core components of the aggregation approach is pre-

sented. The purpose is to give the reader an early insight into the general functioning such

that the details can be put into relation easily and a logical flow for the dissertation can be

unfolded.

The fundamental idea of the approach is to break long simulations down into shorter

simulations and change the starting conditions for each short simulation to allow a more
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efficient exploration of the simulation space. The main factor to be explored are the node

start offsets, which allow to steer how traffic interacts in the network bridges.

To generate diverse but effective starting conditions, exponentially stratified overlap-

ping sampling ranges should be used to determine the node start offsets. This allows for

balanced exploration and exploitation by enabling the exploration of starting conditions

further away from the synchronous case while also exploiting the high interference pat-

terns as generated by the traditionally applied synchronous case.

The simulation time for these short simulations should be determined depending on

the application goal and, thus, depending on the strategy of choice for setting the node

start offsets, such as random sampling or optimization. If the goal is to achieve represen-

tative end-to-end delays as quickly as possible, random sampling is the preferred strategy

to determine the node start offsets. In that case, the simulation time should be chosen as

short as possible while maintaining a reasonable speedup factor, which depends primarily

on the simulation software and the complexity of the use case.

When maximizing the observed end-to-end delays is the primary goal, the aggregation

approach using multi-objective optimization has shown to be superior, based on an opti-

mization algorithm like NSGA-II, for instance. As observed in this dissertation, it can be

beneficial in that case to apply simulation times in the millisecond range to further in-

crease the exploration potential required for optimization. When several flows originate

from the same node and no frame scheduling order is prescribed, as is typically the case,

it can be beneficial to additionally optimize this order. In the context of this dissertation,

this is achieved by applying minimal frame offsets that allow breaking ties in scheduling

without significantly impacting the traffic characteristics.

1.5 Research Question Overview

Three chapters represent the scientific core content of this dissertation. They are devel-

oped and based on three different publications ( [56], [54], [55]) that have been prepared

and/or published. Each chapter describes and answers a set of research questions accord-

ing to a certain goal, incrementally analyzing and developing the aggregation approach

further. An overarching research question to summarize the goals of this dissertation

could be formulated as follows:

• Is there a viable and efficient alternative to the traditional approach of evaluating

flow WCTT in real-time Ethernet networks by running long singular simulations from

synchronized node start offsets and randomized clock drifts?

The answer to that question is, in fact, ”yes” and is embodied by the approach of aggre-

gating short simulations while using and optimizing individual starting conditions. The

efficiency and effectiveness of approximating worst-case traversal times can be improved

when these starting conditions are adjusted in a meaningful manner, as will be explored

throughout this dissertation.
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To develop and evaluate the aggregation approach, three incremental chapters ana-

lyze the efficiency and effectiveness of different variations and extensions. Chapter 3 in-

troduces the most basic version of the aggregation approach using node start offsets that

are either synchronized, or uniformly sampled from a fixed range. The two variants to

select the starting conditions of the short simulations that are aggregated are compared

and evaluated based on five configurations derived from industrially relevant use cases.

Chapter 4 explores and evaluates how the approach can be improved by applying strati-

fied sampling to determine the node start offsets and by selecting a simulation time that

maintains a reasonable speedup factor. Finally, Chapter 5 investigates how optimization

of node start offsets and flow scheduling order can be used to further push the bound-

aries of the observed WCTT using a significantly reduced simulation time, regardless of

the speedup factor.

The different research questions according to these chapters can be summarized, in

order, as follows:

• Does the aggregation of short simulations with synchronized node start offsets, like

done by the traditional approach, yield comparable results?

• Does the aggregation using node start offsets uniformly sampled from a fixed range

yield any benefits over synchronized node start offsets?

• What is the importance of simulation time and node start offset range in the aggre-

gation approach?

• What criteria should be considered when selecting the short simulation time?

• How can we improve the choice for node start offsets in order to maximize the per-

formance of the aggregation?

• How well do the proposed methods to determine simulation time and node start

offsets work when applied to the test cases?

• How effective is the simulation aggregation approach when minimizing the simula-

tion time regardless of the speedup factor?

• Can the observed traversal times be increased by applying optimization algorithms,

like NSGA-II, to optimize node start offsets with and without additionally optimizing

the flow scheduling order?

• What is the overhead cost of minimized simulation time and optimization, respec-

tively?

Chapters 3, 4 and 5 address three of those research questions each. They are designed to

incrementally develop, improve and evaluate the performance of the proposed simulation

aggregation approach variations.
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1.6 Contributions

The core contributions of this dissertation can be summarized as follows:

• In-depth understanding of the effects of important simulation parameters.

• Insights into the potential of evaluating WCTT via different variations of the simula-

tion aggregation paradigm.

• Analysis of the advantages of the aggregation approach variations with uniform sam-

pling, stratified sampling, and optimization of the starting conditions of the aggre-

gated simulations.

• Insights that help implement efficient validation of WCTT via simulation in practice,

depending on the primary application metric, such as resource-friendly quick eval-

uation, or increased quality of the determined bounds.

• Aggregation approach as a simple methodology to make the best use of highly par-

allel infrastructures such as HPCs to increase the versatility and applicability of net-

work simulation in industrial settings.

• A foundation for promising future research directions that may enable the develop-

ment of modernized and automated design systems for hard real-time distributed

cyber-physical systems.

1.7 Outline of the Dissertation

This chapter provided an introduction to the topic, applications, and research goals of

the dissertation, a short overview of how the developed methods can be applied, and a

summary of the findings and contributions.

Chapter 2 will introduce the network model, relevant terminology and methodology,

which serves as a foundation for the dissertation. The following three chapters will each

introduce an incremental step in the research evolution of this dissertation, each corre-

sponding to a publication prepared to address each variation.

Chapter 3 introduces and evaluates the performance of the general approach of ag-

gregating short simulations without optimizing any parameters and will give significant

context knowledge about insights leading to the development of the approach.

Chapter 4 focuses on understanding the relevance of simulation time and node start

offsets, two central parameters to influence the effectiveness of the approach. Methods

are proposed to determine these starting conditions based on factors relevant to practical

and scientific scenarios.

Chapter 5 investigates the implications of minimizing the simulation time of short sim-

ulations and applying optimization algorithms to determine the node start offsets and, op-

tionally, the flow scheduling order. The aim is to exploit shared traffic patterns between
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flows that lead to overall high end-to-end delays. The potential of optimizing the flow

scheduling order in addition to the node start offsets is investigated.

Chapter 6 concludes the results and findings of the dissertation and suggests promis-

ing directions for future research based on these findings. Options to further improve the

performance of the aggregation approach are discussed and potential ways to improve

design automation based on the new paradigm are proposed.



Chapter 2

Performance Evaluation of TSN Networks

This dissertation focuses on modern switched Ethernet-based communication networks

that host traffic that is subject to timeliness and high bandwidth requirements.

Classical real-time network communication was primarily based on bus systems. These

bus systems usually function such that all nodes communicate through a single inter-

connected channel, or multiple channels divided by function and criticality. In these sys-

tems, only one node can communicate at a given time on a channel, while the others

listen. To increase the bandwidth provided by this approach, more channels and, thus,

more cables had to be added. This would result in increased weight and cost.

Popular bus systems include CAN-bus, LIN and FlexRay. Those bus systems are rather

simple and, thus, comparatively easy to verify. However, they do not scale well to complex

modern systems with high numbers of nodes and high bandwidth requirements induced

by technological advances in industry and consumer applications. Particularly, the suc-

cess of machine learning and automation in many different industries has led to increased

bandwidth requirements of such systems.

In this chapter, the technologies and methods relevant to this dissertation will be intro-

duced together with details, assumptions and context of the network model.

2.1 Ethernet-based Communication in Real-Time Embedded Sys-
tems

Ethernet-based communication was introduced in real-time embedded systems when re-

quirements began to exceed the limitations of bus-based systems like CAN. These tech-

nologies could no longer meet the data-rate requirements of increasingly complex real-

time systems.

Before the introduction of Ethernet in real-time embedded systems, available data-

rates were limited by bus technologies from 20 kbit/s for LIN, 1 Mbit/s for CAN up to

a maximum of 10 Mbit/s for FlexRay. In the search for a solution to increase the avail-

able data-rates, Ethernet became an attractive candidate to consider as it provides data-

rates up to 1000 times higher than the fastest available bus technology. In addition, as it
9
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was developed for general computer networks, it provides a flexible, simple, and scalable

solution for growing network complexities, and affordable off-the-shelf components are

widely available.

The original Ethernet standard defined as IEEE 802.3 was developed in the 1980s for

the application in general computer networking. Despite the lack of mechanisms to guar-

antee timely communication, Ethernet supports a high bandwidth and provides a strong

platform for realizing real-time systems. This led to the development of various Ethernet-

based standards for real-time networking.

The first emerging real-time standards were proprietary and originally developed for

very specific narrow applications. Namely, those standards were AFDX and TTEthernet,

which aim to extend the original Ethernet standard with real-time capabilities. These will

be discussed in more detail subsequently. Later, a more open and flexible set of standards,

known as Time-Sensitive Networking (TSN), was derived from a set of standards, known

as Audio-Video-Bridging (AVB). AVB was originally designed to synchronize and improve

professional audio-video applications over Ethernet.

In this dissertation, the experiments will be run based on the TSN technology as it

can arguably be considered the most flexible and open standard for Ethernet-based real-

time networking, and will be described in more depth in this chapter. The aggregation

approach proposed in this dissertation does not rely on any properties or features exclu-

sive to a specific Ethernet-based real-time standard.

All of these standards co-exist to this day, and each has its unique advantages, disad-

vantages, and applications. Additionally, due to their similarities and shared foundation,

the technologies can, in principle, be combined together into a single Ethernet network.

Finzi et al., for instance, suggest in [41] an integration of TSN/BLS into AFDX.

2.1.1 Avionics Full-Duplex Switched Ethernet Standard

Avionics Full-Duplex Switched Ethernet (AFDX), also known as ARINC 664 part 7 [8], is

a proprietary Ethernet-based communication standard. Airbus originally developed it for

reliable and deterministic communication inside avionic applications to enable electronic

control of airplanes via fly-by-wire. Due to the complexity and requirements of the applica-

tion, this was not possible with bus-based technology used in previous applications. The

approach was later standardized and patented.

The goal in the development of AFDX was to enable hard time-critical communica-

tion and reliability via redundancy, while reducing weight and cost. The Ethernet technol-

ogy provided a significant improvement in data throughput and thus allowed for reduced

weight by reducing the wiring needs compared to previous technologies. In addition, Eth-

ernet could be realized by applying mature off-the-shelf components widely available for

general computer networks as a foundation. This allowed to maintain a low hardware cost.
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To make the Ethernet standard fit for real-time communication, AFDX applies a rate-

constrained traffic paradigm. Data transmissions are partitioned into virtual links, each

with a dedicated bandwidth to achieve deterministic transmission behavior by traffic polic-

ing and Quality-of-Service mechanisms. To support the full AFDX capabilities, for in-

stance, redundancy, specialized hardware needs to be implemented. More in-depth in-

formation on the evolution of AFDX is provided by Fuchs et al. in [42].

2.1.2 TTEthernet Standard

Time-Triggered Ethernet or TTEthernet, standardized as SAE AS6802 in [9], was developed

by TTTech Computertechnik AG. Its primary goal is to implement mixed-criticality traf-

fic on Ethernet networks, allowing for traffic that is subject to real-time constraints and

efficient transmission of non-critical or best-effort traffic.

As the name suggests, the core principle behind Time-Triggered Ethernet is to synchro-

nize traffic across the network by using time-triggered release to guarantee the timeliness

and predictability of critical traffic. TTEthernet can support three types of traffic, time-

triggered critical traffic, rate-constrained critical traffic and best-effort traffic, which is

served according to available resources. The rate-constrained traffic can be understood

as an equivalent of how AFDX traffic is handled.

This approach offers some advantages over AFDX but also comes at a certain over-

head cost in terms of the requirements for synchronization, increased hardware require-

ments and implications on traffic properties. The main downside of TTEthernet is that it

requires specialized hardware capabilities to synchronize nodes and thus adding another

layer of complexity and cost. More in-depth information on TTEthernet is provided in the

whitepaper [7] by TTTech Computertechnik AG.

Whether time-triggered or rate-constrained approaches are preferential is a discussion

that is beyond the scope of this thesis and was investigated, for instance, by Hotescu et al.

in [51].

2.1.3 IEEE 802.1 Time-Sensitive Networking Standard

Time-Sensitive Networking, or TSN for short, is another standard to enable deterministic

and reliable real-time networking based on Ethernet technology and is standardized by

the IEEE. More precisely, TSN is a set of standards that can be dynamically combined to fit

the needs and requirements of the application specifically.

The core set of standards belonging to TSN [2] were originally developed to improve au-

dio and video transmission over Ethernet for professional audio-video applications, such

as conference systems and multimedia. The original aim of this set of standards, known as

audio-video-bridging (AVB), was to address the lack of a qualitative unified solution across

various multi-media domains and applications.

The original standards belonging to AVB include clock synchronization via the gPTP
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protocol (802.1AS), traffic shaping via credit-based scheduling (802.1Qav) and VLAN tags

allowing the introduction of priority levels to traffic (802.1Q), and a stream reservation pro-

tocol (802.1at) to reserve resources for the traffic. As the scope of use cases was widened,

the original AVB working group was renamed into TSN, and continued improving and ex-

tending the standards for more general purpose real-time applications.

8/4/2023
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More on TSN standards and ongoing projects at: https://www.ieee802.org/1/tsn

Figure 2.1: Overview on standards and profiles defined by IEEE 802.1 TSN.
The figure divides the standards according to their role for synchronization, la-
tency, reliability or resource management. Standards that are colored purple or
whose acronym starts with a P are still in ongoing development. The figure is pro-
vided by the official TSN task group website in [2].

TSN, like AFDX and TTEthernet, is thus an extension to the original switched Ether-

net IEEE 802.3 standard. The standards defined by the TSN task group aim to provide

reliable, deterministic and time-bounded communication over Ethernet and can be inte-

grated with standard switched Ethernet networks. For that purpose, the set of standards

was extended to be applicable to a wide variety of use cases. The core features of TSN

include using Ethernet as a transport medium, traffic shaping and synchronization, inher-

ited from the AVB standard it was build upon.

As the TSN standard is based on the Ethernet standard technology that has been de-

veloped for decades prior, cost-efficient off-the-shelf hardware is available to build such

systems. However, to support certain TSN standards, specialized hardware that provides

the necessary capabilities may be required and is consequently more costly. Due to the

flexibility of the TSN standards design, the specialized hardware often only needs to be

used for the sections of the network where the functionality is required.
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TSN today includes a variety of optional standards that can be selected according to the

needs of the application and allow tailoring a flexible solution that fits its specific needs

while limiting the additional hardware cost to a minimum. Figure 2.1 gives an overview

of the available standards divided into four different categories according to their role,

such as synchronization, latency, reliability, and resource management. Further, the TSN

task group defined several profiles for specific applications, which recommend a subset

of standards and configurations. TSN allows for the precise selection and combination of

standards as needed for a specific application.

It should again be highlighted that TSN allows to mix hardware that supports certain

TSN capabilities as locally required, including Ethernet hardware not specifically devel-

oped for TSN, if certain capabilities are not needed in some part of the network. This

allows tailoring a very cost-efficient and specialized solution to the needs of an applica-

tion. In 2021, Seol, Hyeon, Min, Kim, and Paek published a large-scale survey [91] on TSN

where they analysed the state-of-the-art developments and trends.

In this dissertation, the focus is on TSN as it arguably provides equivalent capabilities

as AFDX and TTEthernet, while providing higher flexibility and potentially less expensive

hardware setups. However, even though the simulation experiments are conducted using

TSN, the aggregation paradigm does not explicitly rely on TSN-exclusive properties and

can thus also be applied to AFDX and TTEthernet.

2.1.4 Ethernet Bus 10Base-T1S

Despite the advantages and general simplicity that Ethernet brings as a network technol-

ogy, bus-based communication is still required for certain functionality. Consider, for in-

stance, the scenario of connecting ultra-sonic park distance control sensors (PDC) to an

automotive TSN network. These sensors have low data-rate requirements and connecting

each sensor individually via a 100Mbit/s link would not be a cost-efficient solution.

Previously, to solve this issue, the sensors would be connected via a legacy bus-based

zonal network like CAN and communicate to the Ethernet backbone via a gateway. To

move towards more homogeneous all-Ethernet networks and away from legacy bus sys-

tems, 10Base-T1S (IEEE 802.3cg) was developed. The standard defines a single-pair half-

duplex Ethernet bus system that allows to seamlessly integrate with TSN Ethernet net-

works. It provides a data-rate of up to 10Mbit/s and is thus competitive with the fastest

legacy bus systems like FlexRay. In [79], Min et al. describe the functioning and some of

the challenges faced by 10Base-T1S.

2.2 Network Model

The network model describes the different components a network consists of and their

properties. The scope of this dissertation specifically aims at switched Ethernet networks

supporting real-time communication based on the set of TSN standards. Figure 2.2 shows
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an example of a simple network architecture composed of seven end-nodes and three

switches connected via nine links. The different network components and their role and

relevant properties will be discussed in more detail next.

Figure 2.2: A sample TSN Ethernet network.
The network connects seven end-nodes denoted by E1 to E7 via three switches
denoted by S1, S2 and S3. The end-nodes are displayed as orange squares and
the switches are displayed as blue squares. The blue lines represent links that
connect end-nodes and switches to each other. Further, the routing of a flow ”v1”
is highlighted by a red dashed line with arrows that show the flow direction. The
flow is sent from end-node E1 and travels via switches S1 and S3, and is received
by end-node E6.

2.2.1 End-Nodes

An end-node is a network-connected device that communicates with other end-nodes

connected to the same network. They typically include a processing unit and a network

interface, and provide computing, sensing, and/or actuation capabilities. The end-nodes

are depicted in Figure 2.2 as orange squares, denoted with names starting with ”E” in the

showcased example network.

Depending on the context and their specific role in the system, end-nodes are known

under a multitude of different names. In this dissertation, they will typically be referred

to as ”end-nodes” or simply ”nodes”. Other names that can frequently be encountered

in the literature, depending on the specific field and type of network, include ”network

node”, ”device”, ”user device”, ”network device”, ”endpoint”, ”client”, ”host”, ”server”, ”ac-

cess point”, ”station”, ”peer”, ”terminal” or ”workstation”.

The terms ”node” and ”network node” can refer to either end-nodes or switches. The

term is usually applied when speaking of something that can be either of them. For in-

stance, a switch is connected to other network nodes, which can be end-nodes or other

switches. When an end-node or switch is referred to specifically, it is denoted as such.
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Node Clock Drifts

End-nodes contain a processor clock or a dedicated hardware clock that runs at a certain

speed. This clock is usually imperfect and runs slower or faster than the reference system

clock. Over time, the node clock drifts away from the reference clock and the relative ve-

locity is known as clock drift. This effect is demonstrated in Figure 2.3 on a periodic flow

that is sent from a node, where each trace represents a different (exaggerated) clock drift

of -20, 0, and +20 percent.

Clock drifts are influenced by various sources, such as hardware imperfections, aging,

temperatures and other environmental factors. While clock drifts are often considered in

simulation, some of the factors impacting the drift can change over time, which is typi-

cally not considered. Instead, clock drifts are usually modeled as a constant difference in

velocity relative to a reference clock.

Figure 2.3: A sample TSN simulation trace of a flow to demonstrate the effect of
node clock drifts.
Three variations of the same periodic flow trace are shown (on the y-axis) for iden-
tical network configurations except for changing clock drifts of the sender node.
It can be seen that the traffic generated in the same time frame (x-axis) differs
for the different clock drifts. To more clearly visualize the effect of clock drifts,
extreme clock drifts of -20, 0, and +20 percent were chosen, which is far beyond
what is observed in reality. It can be observed that the -20% clock drift causes
the clock to run slower and thus produce packets less frequently, while the +20%
clock drift version causes the clock to run much faster and thus produce signifi-
cantly more traffic in the same time frame.

Node Start Offsets

An effect of end-nodes that occurs at the bootup of a system is known as node start offset

or NSO for short. It defines a temporal offset from the origin of time, which marks the start

of the network system. This offset describes when an end-node is ready, at the earliest, to

start sending data. This effect is demonstrated in Figure 2.4, where all end-nodes except

for E1 start sending data at time t=0ms, while E1 start sending only at t=0.5ms.

Dataflows originating from an end-node are subject to its node start offset and can

only start scheduling and sending data as soon as the starting time has elapsed. In a real

system, these node start offsets are subject to different factors and fluctuations and can-
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not be controlled or determined precisely in general.

These NSOs are an element of major interest in this thesis and will be one of the core

parameters that will be explored in order to generate high traversal times in short simula-

tions.

Figure 2.4: A partial sample TSN trace showing the effect of node start offsets and
frame offsets.
The trace shows traffic of the network presented in Figure 2.2. The trace is limited
to the first hops of flows v1, v3, v4, v7 and v8. Flow v3 is sent from end-node E1
to switch S3, flow v4 from E4 to S2 and flows v1, v7 and v8 from E1 to S1. All node
start offsets are zero except for the node start offset for end-node E1, which is set
to 0.5ms. The frame offsets for all flows are set to zero, except for the frame offset
of flow v8, which is set to 0.5ms. It can be seen that the initial packets of flows
v3 and v4 are instantly released at t=0ms. The initial packets for flows v1 and v7
on end-node E1 are only scheduled after the NSO(E1) of 0.5ms has elapsed. The
packet of flow v7 is transmitted first, while the initial packet of v1 has to wait until
v7 is done transmitting. The initial packet of flow v8 is only released at time 1.0ms,
which is composed of NSO(E1)=0.5ms and FO(v8)=0.5ms.

2.2.2 Network Topology

The network topology defines which end-nodes and switches are connected together. Dif-

ferent physical characteristics and constraints of the system must be considered when

designing a network topology. For instance, sensors and cameras must be placed in spe-

cific locations when building an autonomous car, introducing certain non-functional con-

straints about the required bandwidth and how they can be physically connected to the

network. The aim is generally to develop topologies that minimize the cost of the overall

network, thus minimizing the number of end-nodes, links and switches, while fulfilling

other requirements like extensibility, safety and reliability. While the physical locations

are often abstracted by models, the physical closeness to a switch can be a deciding factor

in the topology design to reduce wire length and, with it, cost and weight.
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Links

Links are depicted in Figure 2.2 as blue lines that connect nodes. For nodes to be able

to communicate with each other, they need to be connected directly or by transitivity.

All links encountered in this dissertation are considered to be full-duplex Ethernet links,

meaning communication can travel in both directions simultaneously without affecting

either direction. Typical transmission speeds of Ethernet links are 100 Mbit/s, 1Gbit/s and

higher.

Network Bridges / Switches

The other important component to interconnect multiple end-nodes is network bridges

that allow to connect different parts of a network. Different types of network bridges ex-

ist, but in this dissertation, the focus is on multi-port wired store-and-forward Ethernet

switches, which are generally referred to as ”switches”. These Ethernet switches are in

charge of receiving data packets on an ingress port, performing Quality-of-Service man-

agement, storing them in queues if necessary, and forwarding them accordingly to the

egress port designated for that data packet. Typically, an end-node is connected to a sin-

gle switch, and switches are typically connected to at least three components, which are

either end-nodes or other switches. There are no restrictions to creating circular topolo-

gies, like a ring of switches connecting to various end-nodes, for instance. The switches

are depicted in Figure 2.2 as blue squares and their names start with ”S” in the shown

example.

Switches contain multiple ports that allow them to connect to end-nodes or other

switches. Typically, ports on which data is received are referred to as ingress port, while

ports on which data is sent are referred to as egress port. In the context of this work, since

we are investigating full-duplex systems, every port fulfills both roles, ingress and egress.

However, sometimes, ports may be referred to as ingress or egress specifically, depending

on their role regarding the routing of a specific flow under investigation. In that context, an

port is denoted as ingress if data packets are received by it in the routing of that flow, and

denoted as egress port when it is used by flow packets to exits the switch in the forwarding

direction.

2.2.3 Data Traffic

Data transmitted on a network is typically analyzed in the unit of a data frame. A data

frame is a sequence of bits of a certain length that represents one piece of information

bundled with a header that contains meta-information on the packet. Data frames are

often also referred to as data packets. Data frames in transmission are depicted in Fig-

ures 2.3 and 2.4 as filled colorful rectangles. A data frame typically consists of one or

multiple headers and a payload, which represents the data content that is supposed to

be transmitted to the receiver. The header contains meta-information about the packet,

such as its bit length or priority, and is used to identify, process and transmit the packet to
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its correct destination.

The action of a data frame passing from one network segment via a network bridge

to the next segment is known as a hop. During a hop, data packets face multiple delays,

including transmission, propagation, processing and queueing delays.

(Worst-Case) Delays / Traversal Times

End-to-end delays, or end-to-end latencies, describe the time a data frame takes from the

moment it is scheduled for transmission at the sender node until the moment it is fully

received by the destination end-node. Such an end-to-end delay is composed of the sum

of local hop delays, or traversal times, that result from different processing steps that occur

when traversing a network bridge. Such hop traversal times are composed of transmission,

propagation, processing and queueing delays:

• The transmission delay is the time it takes for the sender to completely transmit the

packet data to the link. This sender can be an end-node or a preceding switch on the

route of the packet.

• The propagation delay is the time the electrical current needs to travel through the

cable from the sender to the receiving switch or end-node.

• The processing delay is the time the switch needs to process the meta-information

contained in the packet header and to decide how it is handled, queued and for-

warded.

• Queueing delays occur when a packet must be queued and cannot be forwarded di-

rectly to the next node because the egress port is busy. How the queueing is handled

depends on the specific quality-of-service mechanism that is employed, which de-

pends on the network design and will be discussed later in this section.

The maximal time a flow packet may need to be transmitted from the sender to its

receiver is referred to as the worst-case end-to-end delay, also known as worst-case traver-

sal times (WCTT) in the literature. The term WCTT refers to the actual precise maximal

end-to-end delay that can be observed for a given flow. Approximations of the WCTT are

typically referred to as upper bound or lower bound, depending on the direction of the

approximation.

The term ”traversal time” in the literature is often used to refer to local delays occurring,

for instance, inside a switch, spanning multiple network segments or also end-to-end de-

lays. In this work, the term is generally used synonymous with end-to-end latencies and

end-to-end delays. This is done to remain consistent with the term worst-case traversal

times (WCTT), which also describes end-to-end delays rather than local delay.
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Data Flows

The traffic of networks investigated in this work is considered to be known at design time

and is typically described by entities that precisely define its characteristics and behavior.

These traffic entities are streams of data frames and are known under various names, such

as ”data flow”, ”packet flow”, ”traffic flow”, ”frame flow”, ”data stream”, ”packet stream”,

”traffic stream” or ”data transmission”. Sometimes, these entities are also specifically de-

noted by the type of data that is transmitted, for instance, ”media stream” or ”event stream”.

In packet trace illustraction, such as Figures 2.3, 2.4 and 2.5, data flows are depicted as

rows, representing a sequence of transmitted data frames. For simplicity, ”data flow” and

”traffic flow” are the names of choice in this work.

Data flows define the specific traffic characteristics and properties of the data transmis-

sion, such as flow type and deadline. The real-time property of a flow is described as the

deadline, which defines the maximal acceptable end-to-end delay of a data packet. Other

flow characteristics include the data type and the corresponding parameterization for the

assigned data flow type.

Figure 2.5: Illustration of flow type transmission patterns.
The illustration shows individual packet traces of example flows that are not im-
pacted by other traffic. It can be observed that the periodic flow v p and peri-
odic burst flow v pb have regular transmission patterns. In comparison, the spo-
radic flow v s has a variable spacing between packet transmissions. For the (com-
pound) TFTP flow consisting of TFTP Req, TFTP Data, and TFTP Ack, it can be
observed that the flow uses a conversational model. The ”Data” and ”Ack” pack-
ets are produced as a response when the ”Req” and ”Data” flows are received,
respectively. In the illustrated example, the TFTP flow is configured such that a
processing time of 0.2ms elapses before a response packet is produced.
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Flow Types

The flow types considered in this work include periodic, periodic burst, sporadic, and

protocol-based flows, as shown by the example of TFTP. These different flow types have

different properties:

• Periodic flows send data packets of a fixed or variable size up to a set maximum.

These packets are scheduled for transmission at a fixed interval known as ”period”.

This type of flow is typically used for data that is transmitted at a regular interval,

for instance, reading sensor information. In Figure 2.5, the flow v p illustrates the

transmission pattern of a periodic flow sending a single packet every 1ms.

• Periodic burst flows are flows that emit a series of packets for a combined fixed size.

Bursts of packets spaced by a minimal delay are scheduled periodically. This flow

type is used, for instance, to transmit video frames subdivided into multiple packets.

The flow v pb in Figure 2.5 illustrates the transmission pattern of a periodic burst flow

sending bursts of five packets every 1ms.

• Sporadic flows send data packets of a variable or fixed size. Frame emissions are

temporally spaced by a minimal delay. In AFDX, this minimal delay is known as

bandwidth-allocation-gap (BAG) and is used to steer the maximal resources a flow

can consume. A sporadic flow is represented in Figure 2.5 under the identifier v s
and illustrates the irregular distance between packets with a minimum distance of

1ms. An example of a sporadic flow is, for instance, external input such as opening

the passenger door of a car.

• Request-Reply Protocol flows create a compound dialog-style communication be-

tween end-nodes. First, a request packet is sent from a sender to a receiver, which

then replies once the request packet is received and processed. These types of flow

differ from periodic and sporadic flows in that there is a precedence constraint be-

tween subsequent packets of a conversation round as response packets are triggered

by a preceding reception.

One such type of flow investigated in this dissertation is ”Trivial File Transport Proto-

col” (TFTP), used to transmit data files. The protocol is initiated by a request packet

and is then concluded by reply-acknowledgment rounds, that are repeated until the

file is completely transferred. Figure 2.5 illustrates the transmission pattern of such

a compound TFTP flow in the form of three flow components TFTP Req, TFTP Data
and TFTP Ack. It can be observed that the transmission is induced by the ”Req”

packet, triggered every 5ms and is answered by four ”Data”-”Ack” rounds to com-

pletely submit the requested file.

Further flow types that are not considered in this dissertation exist and may be used to

model more specialized behavior depending on the use case. The flow types introduced

above are the most prominent and should cover most use cases.
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Frame Offsets

Frame offsets (FO), are a feature that can be used to control the scheduling of frame pack-

ets between different flows, by setting an offset with respect to the clock of the sender

node (local clock) or with respect to the reference clock (global clock). By setting a frame

offset, the initial scheduling of a flow, and thus the start of the periodicity, is shifted by the

specified time.

The effect of frame offsets (with respect to a local clock) is demonstrated in Figure 2.4,

where all flows except for flow v8 have a frame offset FO(f)=0 and start sending data as

soon as the sender node is ready to send data (i.e. after the NSO time has expired). Flow

v8 has a frame offset of 0.5ms, and it can be observed that flow v8 starts sending data only

at time t=1ms, which is composed of 0.5ms NSO of the sender end-node E1 plus the frame

offset of flow v8.

Frame offsets are usually used in the context of synchronization and it usually requires

specialized hardware or software to control these offsets. In this dissertation, synchroniza-

tion is not considered and frame offsets are applied as a means to control the sending or-

der of flows originating from the same sender. Consequently, the frame offsets considered

in this work are always assumed to be relative to the local clock of the sender nodes.

Routing

Routing defines one or multiple paths from a flow sender node to its receivers through the

network topology. An example route for a flow v1 is depicted in Figure 2.2 highlighted by

the dashed red line.

Typically, there is a path from a sender to each receiver. In the case of multi-cast flows,

it is generally preferred to share as much of the route to different receivers as possible to

reduce the network load. The packet is only sent once by the sender node and is replicated

by a switch and forwarded via different egress ports once the route splits toward different

receivers.

In the case of redundancy to increase the reliability of the communication, a single flow

can also have multiple paths from the sender to the same receiver and can be replicated

at the endpoints of the route or along the route in switches according to the TSN 801.2CB

standard, also known as ”Frame Replication and Elimination for Redundancy”.

To be able to draw conclusions about the latencies and other measures of the network,

the routing of the data flows through the network needs to be known and remain constant.

In the context of this work, the routing is static and defined at design time.

2.2.4 Network Characteristics

Different network characteristics can be of interest when modeling a system. Generally,

these characteristics include end-to-end latencies, link loads, switch queue length, and

potentially many others like packet loss, depending on the model’s level of detail. This dis-

sertation focuses on end-to-end transmission delays, but the aggregation approach may
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be useful to investigate other characteristics, too. Network characteristics can be observed

in a specific system state or as a statistical measure over a period of time.

p
ro

b
a
b

il
it

y

end-to-end delay

Figure 2.6: Statistical measures of an end-to-end delay PDF.
The illustration annotates different measures of interest for a probability density
function (PDF) for end-to-end delays of a flow. The x-axis shows the magnitude
of the observed end-to-end delay and the y-axis represents the probability of ob-
serving such a given magnitude. The observable end-to-end delays of a flow are
always located in the interval between the minimum and maximum (WCTT) val-
ues. The annotated upper bound is a value superior to the WCTT, as typically
given by analytical methods, while the lower bound is an approximation as given,
for instance, by simulation. Quantiles indicate the value at which a percentage of
observations in a dataset fall below the quantile threshold. For instance, we de-
note a quantile Q6 (1−10−6 quantile) as the value that is exceeded by, on average,
one in a million observations. The curve displayed is a log-normal distribution
and does not represent real data. In a real case, the PDF of flow delays can vary
significantly but the annotated statistical measures retain their properties as de-
scribed.

The distribution of end-to-end delays of a flow observed over a certain time span can

be represented as a probability density function. Statistical measures of interest include

minimum, maximum, average, median, and different quantiles. As the exact value of the

worst-case traversal time (WCTT) of a flow is unknown, it is typically investigated in terms

of lower and upper bounds. Another measure to analyze end-to-end delays and other

network characteristics, are quantiles. A quantile describes a value below which a certain

portion of the observation falls. As rare events are of high importance in real-time net-

working, very large quantiles are typically considered. For instance, the quantile Q3, or

1 − 10−3 = 99.9% quantile, describes the value which is exceeded by one in 103 observa-
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tions. These measures are illustrated based on an example probability density function in

Figure 2.6. Quantiles and PDFs are discussed in more detail in Appendix A.2 and A.3.

End-to-end Latencies

End-to-end latencies have already been briefly introduced in the delays section. Even

though end-to-end latencies and traversal times are related concepts, and are often used

interchangeably, they differ in certain details. End-to-end latencies are also known as end-

to-end delays. The end-to-end delay describes the time it takes for a data packet to be

transmitted to its designated receiver end-node after it has been scheduled for transmis-

sion by the sender. Traversal times, on the other hand, are often used to refer to local

delays when analyzing latencies that occur in certain components or segments of the net-

work. In the context of bursty traffic flows, the end-to-end latencies describe the time be-

tween the scheduling of the first packet of a burst and the reception of the final packet. For

the TFTP flows in this dissertation, however, the end-to-end latencies are considered per

component-flow, which means the delays of ”Req”, ”Data” and ”Ack” flows are considered

individually.

The term worst-case traversal time (WCTT) refers to the maximal end-to-end latency

that can occur in the given network and does not refer to local delays. In this work, the

terms end-to-end latencies, end-to-end delays and traversal times will be used interchange-

ably. Local delays will generally not be considered unless explicitly stated.

Real-Time Property

The real-time property is defined by a deadline for the end-to-end delays of flows. Real-

time systems (RTS) are categorized into hard, firm, and soft real-time, depending on their

requirements as described by Kopetz in [60].

In hard RTS, the deadline is considered strict, and the transmission must be completed

within that time frame. If a deadline is missed in hard real-time systems it may lead to

catastrophic failures. An example of a hard RTS is, for instance, the brakes on a car where

the actuation must take place within a guaranteed deadline after the activation.

In contrast, in a firm RTS, missing a deadline does not lead to catastrophic failure, but

the lateness of the transmission may render the results useless or degrade their worth. An

example of such a system is the measurement of the temperature in an industrial furnace.

If the temperature result data arrives late, it may not be as precise or correct anymore, but

it would still remain in the close range of the actual value and thus not lead to an instant

critical failure of the system.

Soft RTS are designed to meet deadlines most of the time, but occasional deadline

misses can be tolerated and do not lead to a direct system failure. An example of such a

system could be a camera surveillance system. If a camera frame is delivered late occa-

sionally, it may result in some stuttering of the recorded or observed video, but it does not



24 CHAPTER 2. PERFORMANCE EVALUATION OF TSN NETWORKS

lead to a failure of the system as long as the deadlines are met most of the time.

Schedulability in real-time systems is the property that expresses whether all flow dead-

lines can be met in all possible scenarios according to the system model and configuration.

If this property holds true, as real-time systems is then said to be schedulable.

Quality-of-Service

Quality-of-Service mechanisms (QoS) are employed to manage traffic and avoid conges-

tion. Many different QoS have been developed for different applications and needs. The

most basic QoS that are employed are first-in-first-out (FIFO) and fixed-priority (FP/FIFO)

scheduling.

As the name suggests, the FIFO mechanism forwards packets in the order of their re-

ception. This can quickly lead to congestion as traffic of low importance can significantly

delay traffic of higher importance, which typically has shorter deadlines. To address this is-

sue, fixed priorities (FP/FIFO) were introduced as a QoS mechanism. The traffic of higher

priority can overtake the lower priority traffic queued for transmission in switches. When

a packet of high priority arrives at a switch, it is transmitted before the packets of lower

priority that are queued in the switch but needs to wait for same or higher priority traffic if

present in the queue. Traffic of equal priorities is processed according to the FIFO mech-

anism, which is expressed by the acronym FP/FIFO. It should be noted that in this dis-

sertation, frame preemption is not considered as it requires specialized hardware. Frame

preemption (IEEE 802.1Qbu) is the ability of a switch to interrupt the sending of a frame

currently in transmission. When preemption is not supported, it leads to an effect known

as ”priority inversion”, and describes the fact that a packet of lower priority can delay a

packet of higher priority in a switch if that packet’s transmission started before the higher

priority packet was fully received and processed by the switch.

Other QoS mechanisms that are introduced by TSN include Credit-Based Shaping (CBS)

and Time-Aware Shaping (TAS). CBS functions by allocating a certain credit to each flow,

which is used up during transmission. If a flow runs out of credits, other flows are prior-

itized, and the flow has to wait until enough credit is accumulated again. TAS is a QoS

mechanism that requires node clocks across a network to be synchronized and allocates

a sending time slot for each flow. In contrast to the mechanisms presented earlier, which

implement rate-constrained traffic management, TAS implements time-triggered traffic.

QoS mechanisms impact how different flows interact with each other in switches and

thus react to the effects of the starting conditions differently. QoS mechanisms can neutral-

ize the effect of node start offsets to a certain extent. TAS, for instance, shifts the complex-

ity towards generating time schedules for flows and synchronizing node clocks instead.
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2.3 Analytical Methods

Analytical methods employ a mathematical model to compute certain properties of real-

world systems, such as the end-to-end delays. These methods are typically preferred to

assess delays in hard real-time networks since they give firm guarantees if the assumptions

made by the model hold true. Important limitations of analytical methods include the

possibility of extensive pessimism, limited scalability, and availability.

Many different analytical approaches to evaluate real-time systems have been devel-

oped over the years, each with its advantages, disadvantages, and use cases.

2.3.1 Holistic Method

An early approach to evaluate distributed hard real-time systems, known as holistic method,

was proposed in 1994 by Tindell in [99] and extended by Tindell and Clark in [100]. A

window-based analysis approach by summing local delays is developed to compute an

upper bound on the worst-case response times in a preemptive environment with shared

resources. The approach was later extended for non-preemptive scheduling on uniproces-

sor systems in [43].

In 2005, Martin and Minet applied the approach to real-time networks in [73] and

showed that it generates pessimistic upper bounds. In 2012, Gutiérrez, Palencia and Har-

bour applied the approach to AFDX networks in [46].

2.3.2 Model Checking

Model checking [32] typically uses a timed automaton to model and verify real-time sys-

tems [63]. A model checker generally considers all valid automaton states and can thus

compute the exact worst-case end-to-end delays. However, this precision typically comes

at a high computational cost and does not scale to practically relevant use cases as the

complexity explodes for larger network configurations, as discussed in [31], for instance.

Model checking cannot only be used to compute exact worst-case traversal times but also

allows verification of various other properties relevant to Ethernet networking, such as the

correctness of a protocol.

Many model checkers are available that allow to model and verify real-time systems,

such as UPPAAL [20], Promela/SPIN [49], [101] and others. For instance, in 2010 Adnan et

al. have developed a UPPAAL-based model to compute AFDX worst-case delays that uses

a port-by-port analysis to reduce the search space in [11]. Model checking in the domain

of Ethernet-based networks was applied in a number of use cases, including computation

of worst-case delays [17], [31], [10], and properties such as reliability, correctness and oth-

ers [14], [52], [44], [70].

Despite efforts to reduce the search space for model checking and thus improve scal-

ability, for instance, in [13], [12], [64], model checking remains non-practical for large

industrial use cases.
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2.3.3 Network Calculus

Network Calculus (NC), originally developed by Cruz in [33] and [34] served as a basis for

analytical approaches to evaluate network performance described by Chang in [28] and

Le Boudec in [65], [66].

Network Calculus is a mathematical framework built on (min,+) algebra that models

all network components as arrival and service curves. Using these curves, the incoming

and outgoing traffic can be modeled to analyze the behavior and performance of com-

puter networks. Specifically, the framework aims to analyze properties such as flow delays,

data throughput, and link capacity.

Network Calculus has remained one of the most popular methods to evaluate network

delays as it gives firm guarantees on the WCTT and scales rather well compared to many

other formal methods. In fact, Network Calculus is used for certification as described

in [71]. However, due to the over-approximation of the traffic function by the service and

arrival curves, Network Calculus is generally pessimistic to an unknown degree. The pes-

simism of Network Calculus has been investigated in various works, for instance, by Navet

et al. in [80].

In [31] Charara, Scharbarg, Ermont and Fraboul compare simulation, network calculus

and model checking for bounding end-to-end delays in the case of an AFDX network.

2.3.4 Trajectory Approach

The trajectory approach (TA) was developed by Martin and Minet to analyze delays in net-

works. It was proposed in 2005 as an improvement over the holistic approach in [73] and

further developed for first-in-first-out (FIFO) [74], fixed priorities with FIFO (FP/FIFO) [75]

and fixed priorities with earliest deadline first (FP/EDF) [76]. The approach is based on the

principle of determining the impact of other packets that can delay the packet of interest

along each node in its trajectory from sender to receiver. Iteratively and starting at the

last node, packets are then placed according to the scheduling rules to maximize the busy

period and thus the encountered delays across all nodes.

An improvement to the trajectory approach to compute end-to-end delays in AFDX

networks together with a heuristic to generate unfavorable optimistic scenarios, also known

as unfavorable scenario analysis, was developed by Bauer, Scharbarg and Fraboul for FIFO

traffic in [18] and for FP/FIFO traffic in [19]. This unfavorable scenario approach has the

advantage that it allows the generation of an actual realistic packet trace. These unfavor-

able scenarios stringently follow the rules of the system model and traffic management

mechanisms, and could thus be observed in simulation. The approach yields tight lower

bounds on the exact worst-case end-to-end delays. The effectiveness of the approach to

approximate WCTT was investigated by Boyer et al. in 2012 in [24].

The pessimism of the trajectory approach is analyzed by Li, Scharbarg and Fraboul in

2011 in [68] and also in 2012 in [78] by Medlej, Martin and Cottin for FIFO scheduling.

Medlej further aims to improve the pessimism and scalability of the approach in [77].
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On the other hand, the trajectory approach was found to be optimistic in some corner

cases. These corner cases for FIFO scheduled traffic are discussed in [57] and [58] by Ke-

mayo, Ridouard, Bauer and Richard in 2013. Li, Cros and George propose a solution to this

optimism in [67] without formal proof.

In 2019, Tang, Li, Lu and Xiong proposed a revised trajectory approach in [94] to reduce

pessimism while also eliminating the optimistic corner cases.

2.3.5 Real-Time Calculus

Real-Time Calculus (RTC), proposed in 2000 by Thiele, Chakraborty and Naedele in [97], is

based on the principles of Network Calculus [28] combined with schedulability concepts.

They further derive a polynomial algorithm for feasibility analysis and optimal priority

assignments.

In 2006 Wandeler, Thiele, Verhoef and Lieverse proposed in [105] an approach based on

RTC using a high abstraction level with the aim to enable early design space exploration

in the development of such systems.

A probabilistic real-time calculus is proposed in [89] and [90] by Santinelli and Cucu-

Grosjean with the aim to analyze systems that are non-deterministic but defined in terms

of random variables.

In 2019, Zhang, Liu, Shi, Huang and Zhao proposed in [110] a framework to compute

feasibility of TSN networks using RTC.

2.3.6 Compositional Performance Analysis

In 2012, Diemer, Rox and Ernst proposed in [37] a Compositional Performance Analysis

(CPA) based on RTC, specialized to analyze AVB traffic. In [38], Diemer, Thiele and Ernst

generalize the approach to AVB and strict-priority Ethernet traffic. CPA was extended to

strict-priority scheduling in 2015 by Thiele, Axer and Ernst in [95]. Efforts to exploit flow

correlations to improve the tightness of bounds generated by CPA were made in [96] in

2014 by Thiele, Axer, Ernst and Seyler. A Python implementation for the CPA approach is

provided in [36] by Diemer, Axer and Ernst.

CPA performs the analysis by first transforming the system into a timing analysis model

via model transformation. The model transformation converts the network into a CPA

model that consists of a directed graph in which nodes represent tasks and edges describe

their dependencies. Event arrival curves are then used to describe the timing of task ac-

tivations. Event models are then derived and propagated among dependent tasks until a

fixed point is reached.
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2.3.7 Forward Analysis

Forward end-to-end delay Analysis (FA) was originally proposed in [59] by Kemayo, Ri-

douard, Bauer and Richard for AFDX networks with only FIFO traffic. It was later improved

and formally proven in 2017 by Benammar, Ridouard, Bauer and Richard in [23]. The first

variant was aimed at FIFO scheduling only, which was extended to FP/FIFO scheduling

in [22]. The FA approach is optimized using a flow serialization approach that has proven

effective in other methods. In 2018, the approach was extended to support credit-based

shapers for AVB networks in [21].

Generally, FA is performed by iteratively analyzing the worst-case scenario for each

node along the flow route from sender to receiver. For each of these nodes, the maxi-

mum backlog is computed to determine the local worst-case waiting time. This delay is

propagated until the receiver end-node to determine the worst-case delay and is repeated

for each flow in the network. In 2020, Xu and Yang proposed an optimization to FA con-

sidering the serialization effect of packets in [109] and evaluate the performance gain on

example and industrial AFDX Networks.

2.4 Network Simulation

Network simulation aims to investigate the communication behavior based on a model of

a real system. This is done by modeling the state of the underlying components, such as

links, switches and end-nodes. The traffic that constitutes the communication is modeled

as data packets that are generated based on abstract definitions of the communication

needs or even by simulating or running the actual end-node software if available.

Simulation is necessary in developing and designing critical embedded real-time sys-

tems for industrial applications. It allows for quick approximation and assessment of dif-

ferent properties of the architecture, starting at the early stages of the development pro-

cess when not even all specifications may be precisely defined. As the architecture evolves,

the simulation can be refined with more precise constraints and can even be integrated

with partial prototype testbeds. It allows for the quick assessment of the effects of differ-

ent topologies, mechanisms, protocols, hardware, and software options. Many different

properties of the system can be analysed this way, from link loads and memory require-

ments to end-to-end communication delays. This enables the designer to make informed

choices to develop an architecture that is suitable to the requirements and constraints of

the system.

In contrast to analytical methods, simulation produces lower bounds on the WCTT, as

observing the absolute worst-case is very unlikely but technically possible if the model

is correct. End-to-end delays observed in simulations are subject to probabilistic effects.

Scenarios leading to very high end-to-end delays are typically rare and can require much

simulation effort.
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Another advantage of network simulation is that it enables the computation of quan-

tiles from the observed distributions of the different network properties. This is particu-

larly interesting when developing fault-tolerant systems that can recover from a certain

frequency of errors in transmission, for instance.

Simulation models are also generally more flexible to be adjusted to new technologies,

as extensions can be implemented according to specifications. Developing and optimiz-

ing analytical methods, on the other hand, is usually more complicated and cost-intensive

as it requires expert knowledge in the domain of the analytical approach, like Network

Calculus, for instance. Simulation further gains importance as industries strive towards

implementing ”Digital Twins” [61], [29], [84], enabling a continuous evolution and valida-

tion of systems.

The remainder of this section will discuss Discrete-Event Simulation, the predominant

method to implement network simulators, different open-source and commercial simula-

tion softwares, and will give an overview on simulation parameters and metrics.

2.4.1 Discrete-Event Simulation

Discrete-Event Simulation (DES) is the predominant method to simulate network behav-

ior [83]. It allows the simulation to be limited to only certain states of the system, during

which relevant events that change the state of the simulated system occur. These system

states will be referred to as ”simulation states”.

For instance, instead of modeling every instant of the continuous transmission of every

bit of a packet as electrical current, Discrete-Event Simulation abstracts this as an event

of transmitting a whole packet over a link and computes certain properties of that event

and the effects it has on the state of the involved components of the network. Properties

of such a transmission event could be, for instance, the time at which the packet starts to

be transmitted, the time at which it is fully received by the switch, and the change in the

switch is recorded where the packet is now located after transmission. The processing of

this event then creates a new one, which would constitute the forwarding of the packet

from the switch as a future step. After processing one event, the time of the simulator is

then advanced to when the next event is due. This abstraction allows to efficiently simu-

late many packet flows with differing properties traversing complex network architectures.

Alternatives to Discrete-Event Simulation are Discrete-Time Simulation and continu-

ous simulation. Discrete-Time Simulation progresses the time of the system in fixed time

increments rather than skipping to the next event. Consequently, it is less efficient than

Discrete-Event Simulation while maintaining the same general working principle. An-

other down-side of discrete time simulation is that events in the system may not perfectly

align with the granularity of the chosen time-step, which would thus add additional com-
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plexity or imprecision.

Continuous simulation, on the other hand, constitutes a significantly different paradigm

that relies on differential equations to model system behavior and is typically used to

model analogous and physical systems, that can continuously change their state. In [16]

discrete and continuous simulation approaches are defined and compared in more detail.

2.4.2 Parallel Discrete-Event Simulation

Discrete-Event Simulation is typically sequential and can not be easily parallelized as sim-

ulation states depend on their preceding states. This is an important limitation as today’s

computing infrastructures rely on scaling via parallel computing resources such as multi-

core CPUs, GPUs and HPCs. As a consequence, research was conducted to overcome this

limitation in many fields where Discrete-Event Simulation is applied. Some parallelization

challenges that are faced across various research areas, including network simulation, are

discussed in [83].

The general goal of Parallel Discrete-Event Simulation (PDES) is to achieve results that

are equivalent, or ideally identical, to the results achieved from sequential simulations. To

that end, two main types of parallelization are considered: spatial and temporal decompo-

sition. Hybrid approaches that aim to combine both have also been researched.

Spatial parallelization is the most prominent approach and is typically concerned with

decomposing the model into multiple local elements that are then simulated in temporal

order and are then aligned on the decomposition boundaries to lead to overall conver-

gence.

Temporal decomposition aims at parallelizing the simulation in the time domain, which

is challenging due to the dependency of simulation states on their predecessors. Approaches

to achieve temporal parallelization include synchronizing computing entities, predicting

and rollback of simulation states, or relaxation of precision requirements. Many different

techniques to achieve either variant have been developed and are discussed widely in [81].

2.4.3 Simulation Time vs. Simulation Duration

Two types of time will be considered when discussing different reference systems, namely

the simulation time and the simulation duration. Both terms can be used to refer to differ-

ent properties of a simulation, and are defined and explained below.

Simulation Time

The ”simulation time” or ”simulated time” describes the time that passes inside of the sim-

ulated system, with respect to its reference clock. Another way to think of it is virtual time

that passes inside of a closed system. The simulation time defines the global reference

clock introduced earlier and acts as the time reference for the simulation states. As dis-
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cussed in the section about Discrete-Event Simulation, this time can be fast-forwarded to

the next event during simulation. It is the time that is attached to simulation events or

simulation traces inside the simulator.

Simulation Duration

The term ”simulation duration”, on the other hand, refers to the time that passes outside

of the simulation, respectively, in the physical world. It is the time needed to execute the

simulation and generate the simulation results. It refers to the time that passes for the user

waiting for the simulation to be performed by the host machine. It is the time that passes

outside of the simulation. This represents the ”real” time that passes in the physical world,

oftentimes referred to as wall-clock time in the literature.

2.4.4 Speedup Factor Variants

Three different types of speedup factors will be differentiated in this dissertation. Those

three factors will be referred to as parallelization speedup factor Speeduppar, aggregation

speedup factor Speedupagg, and simulation speedup factor Speedupsim. The naming of the

different speedups indicates their respective sources. The different speedup factor vari-

ants will be defined next and are independent of each other, which means they can be

impacted separately and combined to increase the overall speedup achieved by the aggre-

gation approach.

Parallelization Speedup Factor

The parallelization speedup factor results from the parallelization of a portion of a task or

program and as given by Amdahl’s Law [48] and defined as

Speeduppar =
1

(1 − f ) + f
n

where f is the parallelized fraction of the task, and n is the number of available processor

cores or, more precisely, the parallelization factor.

Even though not explicitly researched in this dissertation, this factor is important as

the aggregation approach unlocks additional parallelization potential as discussed in Sec-

tion 3.4.3 and must not be confused with aggregation or simulation speedup.

Aggregation Speedup Factor

As will be observed in Chapter 4 and Chapter 5, the aggregation approach allows the pro-

duction of equal overall traversal time bounds to long simulations with a significantly re-

duced total aggregated simulation time in many cases. That is, fewer short simulations

need to be run amounting to a lower total aggregated simulation time compared to long
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simulation for achieving equal bounds. This can be represented as an aggregation speedup

factor

Speedupagg =
tlong
tagg

where tlong represents the simulation time budget of the long simulation and tagg repre-

sents the aggregated simulation budget for which the bounds of the long simulation are

matched or exceeded by the bounds generated via aggregated short simulations. In Chap-

ter 4 and Chapter 5 these delay bounds will be represented via the AMTT metric intro-

duced later in Section 4.2.4.

It is important to note that the aggregated simulation budget is expressed as the sum of

the simulation times of the aggregated simulations and is thus considered non-parallelized.

Therefore this speedup factor exists independently of the parallelization speedup factor

and simulation speedup factor, which will be introduced next. It is important to differenti-

ate the aggregation speedup and the simulation speedup as they are impacted by different

factors. For instance, the simulation speedup is impacted by the host machine’s computa-

tion speed, which does not impact the aggregation speedup. On the other hand, both are

impacted indirectly by the chosen simulation time.

Simulation Speedup Factor

The simulation speedup factor defines the relative factor of how the simulation time evolves

compared to the simulation duration. As a reminder, the simulation time is the time that

elapses inside of the simulated system, while the simulation duration is the time it takes

to run the simulation in the physical world. It is directly impacted by the computation

speed of the host machine as processing the simulation faster results in a reduction of the

simulation duration. The simulation speedup factor SP can be defined as

Speedupsim := tsim
tdur

where tsim is the simulation time and tdur. This factor is expressed as a non-parallelized

measure, so the simulation time and duration are both expressed in relation to a single

simulation or an aggregation of simulations run sequentially.

If a speedup factor is smaller than one, it means the simulation takes longer to be sim-

ulated than it would take to run the modeled system. Depending on the complexity of

the system, the speedup factor may also be larger than one, which means we can simulate

multiple hours of functioning of the simulated system in just one hour of computation

time.

The speedup factor plays an important role when applying the findings of this disserta-

tion to practical cases, as reducing the simulation time can negatively impact the speedup

factor and thus reduce the efficiency of the simulation aggregation approach.

Another important aspect of the speedup factor is that it represents an average speedup

across the whole simulation duration. The time it takes to simulate a certain portion of



2.4. NETWORK SIMULATION 33

the simulation trace depends on the number of simulation events that occur during that

portion. The simulation time is thus not linearly correlated with the simulation duration.

It also means that the simulation duration can vary for simulations of equal simulation

time of the same system if parameters that influence the traffic are changed, such as, for

instance, the random seed.

2.4.5 Simulation Traces and Statistical Measures

The data that is produced during a simulation can be used by the simulator to compute sta-

tistical measures as introduced earlier, or it can be stored as simulation traces containing

all sorts of information depending on the specific simulation model and the simulation

parameters. Such simulation traces regarding the local traversal times are depicted, for

instance, in Figures 2.3, 2.4, 2.5 and 4.2.

When storing the simulation traces, large amounts of data are collected quickly, which

can significantly slow down the simulation. For this reason, some simulators allow to con-

figure what specific information is stored. The simulation software used in this disser-

tation, RTaW-Pegase, allows setting whether all traces should be stored, only traces that

represent the worst observed scenario or no traces at all, in which case only statistical

measures like quantiles, minimum, and maximum are stored.

2.4.6 Simulation Software

Different software products are available to perform network simulations. Each of them

has its specific advantages and applications. In this dissertation, all simulation experi-

ments have been performed using RTaW-Pegase [25], a commercial toolbox designed to

evaluate real-time networking systems. It provides an optimized simulation engine specif-

ically developed to run simulations for bus-based and Ethernet-based systems. The tool-

box offers state-of-the-art support for most TSN standards and bus systems, and provides

capabilities to run analytical methods based on Network Calculus and unfavorable sce-

nario analysis for sporadic FIFO traffic.

All experiments around the simulation aggregation paradigm presented in this disser-

tation were implemented as a combination of Python and Java programs. Python was used

to implement the experiment and optimization logic, and Java to run the simulations us-

ing the Java API library provided by RTaW-Pegase to run simulations and schedulability

analysis.

Besides RTaW-Pegase [25], network simulators that are used in real-time networking

research are OMNet++ [104], OPNet [30] and ns-3 [86]. In [107], Wehrle, Günes and Gross

provided an in-depth introduction to general network simulation and described the im-

plementation fundamentals of two popular network simulators, OMNet++ and ns-3.

A more recent comparative survey from 2020 on network simulators, with a focus on TSN,
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is provided by Xie, Li and Gao in [108].

OMNet++ is a core framework for network simulation frequently used in the literature

to simulate and analyze Ethernet-based networks. It is implemented in C++, uses its own

domain-specific language called NED to compose simulation models and offers various

tools to interact with the simulation. It uses a GPL-like license that makes it free to use

for non-commercial purposes. To support Ethernet networks in OMNet++, the INET [6]

framework is required.

To support TSN, a simulation framework called TSimNet was developed by Heise, Geyer

and Obermaisser in [47] in 2016. It focuses on non-synchronization-based elements of

TSN and is built on top of the INET framework. In 2018, Jiang et al. proposed a frame-

work [53] to support the IEEE TSN standards 802.1Qbv (time-aware traffic scheduling)

and 802.1AS (time synchronization). It is not openly available and builds on top of the

Core4INET [1] framework (which did not support TSN at the time).

Yet another TSN framework, called NeSTiNg, was developed by Falk et al. in [40] in

2019. It is based on the INET framework and aims to additionally support the time-based

features of TSN in comparison to TSimNet [47]. The INET framework in version 4.4.0 [3]

released in May 2022 integrates TSN features into Core4INET.

OPNET [4], now known as Riverbed [5], is written in C and C++ and was originally de-

veloped for military needs. It is a commercial network simulator applicable to many use

cases. In 2018, Pahlevan and Obermaisser proposed a framework based on OPNET to sup-

port TSN in [82].

The simulation software ns-3 [86] is open source and written in C++. It is less popular

in the real-time Ethernet research domain. In 2020, Credit-Based Shaping (CBS) for ns-3

was implemented by Krummacker and Wendling in [61] as a first step to support TSN.

In 2020, Campanile et al. provided a systematic literature review [26] of papers refer-

ring to the ns-3 simulator to investigate its adaptation in the scientific domain. They con-

clude the high flexibility and success of the simulator. However, it appears that the promi-

nence has not yet carried over for TSN research.

It can be concluded that OMNet++ is currently the most popular open-source tool [15]

for the simulation in TSN network research and the only openly available alternative to

commercial tools.



Chapter 3

Aggregation Approach using Random
Search on NSOs

This chapter will introduce the general approach of aggregating many simulation results

to evaluate worst-case traversal times. Random search via uniform sampling is applied

throughout this chapter to explore the search space of specific starting conditions to inves-

tigate the potential of simulation aggregation. The effectiveness of this simple approach

is evaluated based on five diverse network configurations derived from relevant industrial

use cases.

First, an overview of the applications and goals targeted by the approach will be given

as a reminder. Then, the intuition behind it will be explored and demonstrated by ob-

serving simulation result packet traces. The next step will be to describe and analyze the

role of the different free simulation parameters that can be controlled. These free parame-

ters include simulation time, node start offsets, flow scheduling order, frame offsets, clock

drifts, and random seeds. Once we have gained an understanding of the involved param-

eters, the architecture of the aggregation approach will be described. After defining the

overall architecture of the approach, the experiment design that was employed to answer

the questions is described. Finally, the results are discussed and conclusions are drawn.

Some of the results shown in this chapter were presented in a related publication [56].

The content of this chapter is built around that work but gives extended context for an

improved understanding, which would have exceeded the publication’s scope. The results

taken from this publication will be indicated accordingly.

3.1 Motivation and Context

The original motivation for developing the approach was to increase the flexibility of us-

ing simulation results in the context of machine learning and to increase the potential of

exploring node start offsets close to the synchronized case. During the development of the

thesis, the exposed potential of the approach enabled further interesting applications and

research avenues beyond this original aim.

35
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The possible applications of the aggregation approach are many-fold and include:

• Tighter approximation of worst-case traversal times via simulation
Approximating WCTT via simulation is an increasingly relevant problem in practi-

cal applications. With the growing complexity of cyber-physical real-time systems,

practitioners face challenges of increasing magnitude in evaluating the correctness

and safety of such systems. The simulation aggregation approach, combined with

optimization approaches presented in the following chapters, achieves tighter lower

bounds on the WCTT than the traditional simulation approach, given equal resources.

• Better evaluation of the pessimism of analytical approaches
Analytical approaches such as, for instance, schedulability analysis based on Net-

work Calculus are often known to be pessimistic. However, in the general case, it is

not precisely known how pessimistic they are with respect to the actual worst-case

traversal times. Simulation provides an upper bound on the pessimism of these ap-

proaches. Consequently, achieving tighter lower bounds on the WCTT via simula-

tion simultaneously enables a better evaluation of the pessimism of analytical ap-

proaches.

• Improved scalability via massive parallelization
The aggregation approach is highly parallelizable, representing a type of problem

known as ”embarrassingly parallel”. Individual short simulation instances are in-

dependent of each other and can be run in parallel to achieve a high speedup by

making use of highly parallel computing infrastructures, such as HPCs. This sig-

nificant speedup potential not only allows for improved scalability but also enables

new types of interactive design systems. Achieving a shorter evaluation cycle allows

the system designer to consider more candidate solutions and could enable a semi-

automated design approach based on Artificial Intelligence (AI). Such an AI-driven

system could, for instance, generate and suggest variations of candidate solutions

that a human designer would typically not consider. These variations could then

be evaluated quickly in parallel using the aggregation approach and provide prelimi-

nary information to the human designer, creating a more interactive iterative design

loop.

• Optimization and learning methods
Running many short simulations instead of long ones allows for additional flexibil-

ity while exploring the simulation state space. It means that optimization algorithms

can be applied to optimize the specific starting conditions to increase the probability

of observing higher traversal times, leading to significant improvements. This will be

investigated further in Chapter 5, dedicated to optimizing the starting conditions for

evaluating the WCTT. The investigated starting conditions include node start offsets

and flow scheduling order.
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Contributions

The contributions of this chapter are:

• An introduction of the general architecture of the simulation aggregation paradigm.

• The definition of applications and goals.

• An overview of the closely related work on simulation aggregation.

• A definition of the system model used throughout this dissertation.

• A discussion of the relevant simulation parameters and their effects on the observed

end-to-end delays.

• An empirical analysis of the potential of aggregation of short simulations, comparing

synchronized to uniformly sampled NSO.

The results of the empirical analysis will be used to answer the first three research ques-

tions, which aim to investigate the potential of simulation aggregation with synchronized

and varying NSO, respectively.

3.1.1 Related Prior Work

This section will discuss fundamental prior work directly related to this chapter and par-

tially represents a brief recap of the broader related work extensively presented in Chap-

ter 2.

Approximation of Worst-Case Response Times via Simulation

The work by Samii et al. on the approximation of process worst-case response times

(WCRT) in bus systems in [88] is closely related to the approach developed in this disser-

tation. Their work aims to efficiently approximate the WCRT of specific tasks in real-time

systems. They propose a method to prune the search space and combine it with various ex-

ploration strategies based on genetic algorithms. The different optimization approaches

are then evaluated on applications distributed over CAN and FlexRay networks. The pro-

posed approach differs from the work developed in this thesis as it targets a fundamentally

different system model. In addition, the approach proposed by Samii et al. relies heavily

on expert knowledge, which limits the applicability to specific scenarios, and relies on dif-

ferent methods such as pruning of the search space. On the other hand, the paradigm

proposed in this thesis avoids expert knowledge where possible and is thus applicable to

a large variety of use cases.
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Parallelization of Network Simulation

As discussed in Chapter 2, the literature differentiates between two main types of paral-

lelization for networking simulation: spatial and temporal parallelization. Some works

combine those two approaches to form hybrid parallelization solutions.

Spatial parallelization typically subdivides the network to perform simulations on

parts of the network in parallel. The results of these partial simulations are then aggre-

gated to approximate general simulation results for the whole system. Riley et al. [87] pro-

posed a generic framework for spatial parallelization, which was integrated into the ”ns”

open-source simulation software package [27].

Temporal parallelization. An alternative approach is known as temporal paralleliza-

tion. It aims at subdividing the simulation in the temporal domain rather than the spatial

domain. This is done by running the simulation parts starting from certain temporally

spaced simulation states. Typically, the current simulation state in discrete event sim-

ulation depends on the previous state, making precise temporal parallelization hard to

achieve.

To solve this problem Wang et al. [106] describe the starting conditions for these tem-

porally spaced simulation states by approximation. They show that this approximation

generally produces results that are different from those obtained with a single long simu-

lation.

To a certain extent, the aggregation approach proposed in this dissertation could be

categorized as a temporal parallelization, as the effect of modifying NSOs and other start-

ing conditions for short simulations is approximately similar to skipping to a simulation

state that is temporally spaced by an unknown amount.

Hybrid parallelization. Gupta et al. [45] propose a hybrid approach that shows certain

commonalities to the work developed in this thesis. The work describes a combination of

spatial and temporal parallelization methods, aiming to process very large networks using

heavily parallel infrastructure.

Pessimism in Analytical Methods

Network calculus is a well-researched analysis method for verifying performance guaran-

tees in real-time networks, as introduced in Chapter 2.2. It is known to be generally pes-

simistic, but the extent of pessimism is not known precisely. The pessimism may differ de-

pending on the concrete implementation and optimizations of the analysis and the char-

acteristics of the network configuration of interest. Many works that analyze and extend

the effectiveness and applications of network calculus have been derived to this day.

In [80], Navet et al. explain the limitations of worst-case analysis based on Network

Calculus for complex industrial applications and determine an upper bound on the pes-

simism. They further present simulation experiments that suggest the efficiency of explor-

ing clock drifts and node offsets to maximize the observed WCTT, serving as one of the

motivational foundations of the work developed in this dissertation.
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Charara et al. [31] propose an analysis based on network calculus and evaluate its pes-

simism in the context of an AFDX network. They observe significant imprecisions on the

evaluations of the pessimism of their method, a task that this dissertation aims to improve.

More recently, in 2022, a library was developed by Zippo and Stea in [111], with the

aim to parallelize network calculus. It demonstrates the continued importance of the ap-

proach and the relevance of methods that can exploit parallelism.

An alternative type of worst-case analysis is proposed by Bauer, Scharbarg and Fraboul

in a 2010 study [18] based on the trajectory of data flows. It aims to generate concrete trans-

mission scenarios that yield high latencies. The approach yields tight lower bounds on the

actual WCTT, in contrast to network calculus which yields upper bounds. The approach

yields promising results with a high quality but is not widely applicable due to the strong

limitation of requiring sporadic traffic that uses FIFO. The same authors’ later publica-

tion [19] extends the approach to work with fixed priorities (FP/FIFO) but is still limited

to sporadic flows only. The analysis is not straightforward to implement, and it requires a

significant amount of expert knowledge to adjust it to other applications.

3.1.2 Problem Formulation

The general problem is observing the WCTT for every flow via simulation. However, it is

unlikely to observe the actual WCTT of a flow in simulation. Thus, to be precise, the goal

pursued in this dissertation is to maximize the observed end-to-end delays for every flow

and every receiver end-node. Subsequently, the event of an end-node receiving a flow

transmission will be referred to as a flow reception. Since our system model allows for

multi-cast flows, each flow can be received by multiple end-nodes and thus travel along

differing routes. Therefore, the maximal delays for different flow receptions of the same

flow are likely to be observed at different time instants and for different starting condi-

tions.

Consequently, a solution to this problem can be represented as a set of simulation

states in which the highest end-to-end delays were observed for a packet of a flow recep-

tion. These simulation states will be formally introduced later in this chapter and can

be considered to be the state of the system after an event has occurred in the context of

Discrete-Event Simulation as introduced in Chapter 2.4.1. To illustrate the problem from

a simulation state perspective, a dummy example of such a state space is depicted in Fig-

ure 3.1, together with different possible simulation traces on that state space. It should

be noted that this example only serves for illustration purposes and does not correspond

to an actual simulation system. The simulation space of real applications is significantly

more complex and can comprise infinitely many simulation states. However, as long as the

WCTT are finite, a subset of simulation states exists at which all WCTT can be observed.

When applying the traditional approach of running long simulations to evaluate the

WCTT, we rely on a property known as ergodicity. In a simplified manner, the ergodic-
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ity property can be understood as the ability of simulation to visit every simulation state

when run for long enough, independently of starting conditions like node start offsets and

clock drifts.

Figure 3.1: A dummy simulation state space example.
Every circle corresponds to one simulation state where an end-to-end latency for
a flow is observed. Probabilistic transitions are displayed as multiple outgoing
edges. In states ”e” and ”c”, the WCTT for flows v1 and v2 are observed, respec-
tively. Simulation traces A-D represent possible simulations with different start-
ing conditions. When considering the trace A, both WCTTs are only discovered
after 11 simulation steps, while for trace B both WCTTs are observed after 4 steps
already. If traces C and D are aggregated, both WCTT can be observed already
after only two simulation steps.

Expressing the problem in terms of simulation states is not very practical as simula-

tion states are typically not directly exposed by the simulator but rather the results (such

as observed end-to-end delays) over a series of simulation states traversed during the sim-

ulation time. The problem to be solved is then generating multiple simulation scenarios

or traces that, given a limited simulation time, in aggregation, maximize the observed end-

to-end delays for every flow reception. A metric to evaluate the quality of an aggregation

of a set of simulations will be defined in Section 4.2.4.

Adjusting the starting conditions of the simulation allows for an impact on the order in

which simulation states are visited. For instance, the traditional approach of running long

simulations relies on synchronized node start offsets to increase the likelihood of visiting
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simulation states that yield high end-to-end latencies early.

a)

b)

Figure 3.2: Worst case flow traces highlighting the competitive nature of flows.
The two worst-case flow traces for flows v3 (a) and v4 (b) show mostly identi-
cal properties, except for packets v3 and v4 being ordered differently in switch
S2. This example shows that no single set of starting conditions can generate the
WCTT for all flows simultaneously in general. Reordering packets in switch S2
has a significant impact on the observed WCTT. This reordering can be achieved
by modifying the node start offsets of nodes e3 and e4, such that one is strictly
smaller than the other, allowing to steer which one arrives first at switch S2.

In practice, a solution thus consists of a set of starting conditions such that the re-

sulting simulation scenarios would yield maximized observations of end-to-end delays. A

starting condition in this context consists of a set of free parameters for the simulator that

fully define the simulation behavior and thus allow the reproduction of the exact simula-

tion results based on these parameters. These free simulation parameters are introduced
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and described in more detail later in this chapter and typically include a simulation seed

to achieve reproducibility of the probabilistic elements during simulation.

In general, finding a single set of starting conditions that simultaneously maximizes

the observed end-to-end latencies for all flows is usually impossible in the context of lim-

ited simulation time. As a consequence, mathematically speaking, a solution in the con-

text of simulation aggregation thus consists of a subset of the set of all possible sets of

starting conditions. To illustrate the necessity for a solution to consist of multiple such

sets in general, Figure 3.2 shows two worst-case packet traces based on a very simple net-

work, each using a different set of starting conditions. The packets of flows v3 and v4 in

switch S2 must be reordered to generate their respective WCTT and cannot occur at the

same time. As flows v3 and v4 have the same priority, this reordering can be achieved by

two different means in this example. One possibility is to rely on randomness integrated

into the simulator, which is steered by the random seed. The other possibility is to choose

node start offsets for end-nodes e3 and e4 such that either the packet of flow v3 or flow v4

arrives marginally earlier, generating the worst-case scenario for flow v4 or v3, respectively.

If flows v3 and v4 would originate from the same end-node, adjusting the node start offsets

would not allow observing both scenarios, as both would be impacted by the same offset

and instead, the random seed would be one means to adjust the reordering. Yet another

possibility to control the flow scheduling order more deterministically is via frame offsets,

which will be discussed in more detail later.

Further, there may not be a unique simulation state that maximizes the observed end-

to-end delays for a specific flow and receiver end-node but rather a set of equivalent so-

lutions, which are said to be non-dominated. This can easily be seen when considering a

node from which no flow originates that interferes, directly or by transitivity, with the flow

of interest. Independently of the node start offset of this node, the observed delays of the

flow of interest will not change, thus rendering the solution non-unique.

3.1.3 The Traditional Approach to Evaluate WCTT via Simulation

The previously known most effective approach to approximate WCTT via simulation in-

volves running one or multiple very long simulations starting from synchronized node

start offsets (NSO) and randomized node clock drifts. In the following, this approach will

be referred to as ”baseline solution”, ”traditional approach”, or ”synchronized case”. The

labeling ”synchronized case” stems from the fact that the node start offsets are equal and

typically set to zero. It means that all end-nodes start sending data at the exact same in-

stant, which is very unlikely to be observed in the real world.

The idea behind this approach is that it creates scenarios, known as ”critical instants”,

that yield high interferences of flows in switches and thus generate high traversal times.

In fact, when all nodes start sending data at the same time, it is probable that at the first

switch connected to the node, many packets arrive at the same time, which then need

to be queued and cause increased delays of the packets placed lower in the queue. For
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example, looking at Figure 3.2 a), packet v3 arrives at switch S3 slightly after packets v5

and v1 and is thus delayed by the time it takes for those two packets to be fully transmitted

before packet v3 can be forwarded.

The randomized node clock drifts help to break the hyper-period of the system and

thus allow exploring the simulation search space as the simulation progresses causing the

relative sending instants across the different nodes to slowly drift apart, as demonstrated

in Chapter 2 Figure 2.3.

3.2 Research Questions

For this chapter, which aims to evaluate the effectiveness of the aggregation approach us-

ing random search on a fixed node start offset range, a total of three research questions

were designed. They have been addressed in the publication [56], which served as a foun-

dation for this chapter. The research questions are as follows:

RQ1. Does simple aggregation of shorter simulations with synchronized node start offsets

yield optimization potential in terms of observing large frame latencies?

RQ2. Does randomization of node start offsets in aggregated short simulations enable op-

timizations beyond the synchronized case?

RQ3. Is the short simulation duration an important factor in the efficiency of the aggrega-

tion approach?

These research questions aim to evaluate whether aggregating short simulations can yield

benefits over long simulations. Two aggregation alternatives were investigated per net-

work configuration, and a total of five different network configurations were considered.

One aggregation variant considers synchronized node start offsets, that is, all node start

offsets are set to zero, and only the random seed is modified for each short simulation. The

other variant uses different node start offsets uniformly sampled from a fixed range. The

experiments serve to investigate whether either of these methods can yield improvements

over the baseline solution of running a single long simulation. The system model will be

explicitly described in detail in the following, and the experiment’s setup and evaluation

performed in the related publication will be presented subsequently.

3.2.1 System Model

This section will define the system model based on the networking concepts introduced

in Chapter 2.2. The system model will defined to the degree that it can be reused in Chap-

ters 4 and 5 without changes.

The core elements of the system model and simulation will be formalized to provide a

complete understanding of the problem statement. However, the more intricate elements

involved in the simulation, like, for instance, packet headers and the functioning of the
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QoS mechanisms, will not be formalized as these details are not relevant for the under-

standing of the aggregation approach. These parts of the simulation will be treated as a

black-box to keep the approach as generic as possible and avoid confusion.

A system model can be defined as a tuple

M := (N,L,F,R,C)

where,

• N is the set of nodes, composed of the set of end-nodes Eand the set of switches B

• L is the set of links that connect nodes from N

• F is the set of data flows f that define the traffic characteristics of communications

generated by a sender and received by one (uni-cast) or multiple (multi-cast) end-

nodes of the system

• R is the set of routes re ∈ Rwhich define, for each traffic flow f , the path that packets

generated for flow f and reception by an end-node e ∈ RECV(f ) travel through the

network

• CM is the system clock defining a continuous global time

A traffic flow f represents a sequence of packets { px(f ) | x ∈N } generated based on the flow

properties, where x denotes a running sequence number that allows to uniquely identify

each packet of a data flow. SEND(f ) ⊂ Edenotes the set containing the sender end-node

from which packets of flow f are sent. RECV(f ) ⊂ Edenotes the set of end-nodes that re-

ceive packets sent by flow f .

Assumptions and Constraints

• The network topology and the routing of the flows remain static throughout the sys-

tem’s operation span. This is typical in the case of hard real-time systems as it is

imperative to allow the analysis of the system behavior at design time.

• The packets generated by the traffic flows adhere to one of the flow types introduced

in Chapter 2.2, periodic, sporadic, sporadic burst or dialog-based. All scheduling

times are determined based on the local time of the sender node but expressed in

terms of global reference time. Thus, the absolute generation times depend on the

node clock drifts and other factors like node start offsets and frame offsets.

• The size of generated packets is fixed or upper-bounded.
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• Local clocks of end-node are subject to a constant clock drift, determined in a range

of up to 200ppm, determined as an acceptable bound in automotive applications in

[80]. Clock drifts that vary over time as potentially encountered in real systems are

not considered.

• The QoS mechanisms that determine how packets are handled in network bridges

are a combination of FIFO, FP/FIFO or Credit-Based Shaping, as defined in Chap-

ter 2.2.

• No component failures or transmission errors occur.

Concept of Time and Simulation States

The system time is given by a system clock CM, an absolute clock in the Newtonian sense.

This means that we do not consider relativistic or spatial effects. The clock is defined as

an ordered set of instants CM := { t | t ∈ R } with the unit of one second and arbitrary

precision. Every end-node possesses its own local time, given by a clock that can progress

independently and at a pace relative to the system clock. This relative pace is described in

terms of clock drifts as introduced in Chapter 2.2 and formalized later in this chapter. The

start of the system denotes the origin of time t0 = 0 and all times are expressed in terms of

the global clock to avoid confusion.

The progression of real-time networking systems in terms of simulation can be de-

scribed as a (possibly infinite) set of simulation states of modelM as

S = { S(M, t) | ∀t ∈ CM }

where

• S(M, t) is the simulation state of modelM at time instant t.

As discussed in chapter 2, discrete-event simulation only considers discrete changes

that happen to the state of the network in the form of events. Consequently, for the set of

simulation states S, multiple time instants t ∈ CM may lead to equal simulation states.

Worst-Case End-to-End Latencies (WCTT)

End-to-end latencies of a flow packet p, send by an end-node s ∈ SEND(f ) received by an

end-node e ∈ RECV(f ) are denoted by

TT(p, e) := trecv(p, e) − tsched(p, s)

where

• p := px(f ) is a packet with sequence number x ∈ N generated according to a flow

f ∈ F
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• trecv(p, e) ∈ CM is the instant of reception of packet pby receiver end-node e ∈ RECV(f )
according to the system clock CM

• tsched(p, s) ∈ CM is the instant when the packet is scheduled to be sent by the sender

node s ∈ SEND(f ) according to the system clock CM

If there is a packet in transmission from the sender node, it may happen that the schedul-

ing time tsched and the actual send time tsend differ from each other. It generally holds true

that tsched ≤ tsend ≤ trecv. While the computation of the end-to-end latencies only involves

tsched and trecv, it implicitly integrates different delays as detailed in Chapter 2.2 caused by

transmission mechanisms and other simultaneous traffic that delays the packet and can

influence tsend and to a greater effect trecv.

To compute the worst-case end-to-end latency WCTT(f , e), also known as worst-case

traversal time (WCTT), for a flow f and a destination end-node e ∈ RECV(f ), which is

caused by one or multiple traffic scenarios that maximize the end-to-end delayTT(px(f ), e),
we can derive the following formula:

WCTT(f , e) := max( TT(px(f ), e) | ∀x ∈N)

where f ∈ F is a flow of the system and e ∈ E is an end-node that receives packets px(f ) of

flow f .

Thus, a solution Swctt ⊂ S(M, t) to the problem of maximizing observed end-to-end

delays, as introduced earlier, can be formalized as finding the subset which contains the

simulation states that maximize the observed end-to-end delays TT(px(f ), e) for all flows

f ∈ F and for all destination end-nodes e ∈ RECV(f ). Each such simulation state is ob-

served at a time instant t ∈ CM at which a packet px(f ) is received for which the observed

end-to-end latency TT(px(f ), e) is maximal.

A solution can thus be formalized as:

Swctt := { S(M, tmax(f , e) ) | ∀f ∈ F,∀e ∈ RECV(f ) ∃x ∈N :
tmax(f , e) = trecv(px, e) ∧ TT(px(f ), e) = WCTT(f , e) }

where tmax(f , e) ∈ CM is the time instant at which a packet of flow f is received by end-

node e ∈ RECV(f ) that yields a maximized delay.

3.2.2 Free and Fixed Parameters Impacting the WCTT

This section will analyze the effects of different parameters on the observed flow traversal

times and which other factors contribute to it. In the general case, some of these param-

eters are considered free and can be controlled without breaking the simulated model’s

validity, while others are fixed and dictated by the system that is modeled. The parameters
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have been introduced conceptually in Chapter 2.2. Next, they will be formalized in the

context of the system model, and their effects on the WCTT will be discussed.

The free parameters include, for instance, node start offsets and clock drifts. They can

be adjusted within certain constraints to help explore the simulation space more effec-

tively, which is the essential underlying idea of this thesis.

The fixed parameters include things like flow properties, link speed, routing, etc. These

parameters define the properties of the system under simulation and must not be changed

to maintain the validity of the simulation model.

Node Start Offsets

The node start offsets (NSO), as introduced in chapter 2.2, are free simulation parameters

and define an offset for each end-node e ∈ E with respect to the origin of time t0 ∈ CM.

These offsets define when an end-node is ready initially to start sending data. The node

start offset for a node e is a time instant and is denoted by NSO(e) ∈ CM.

In real systems, these node start offsets are typically non-deterministic and can not be

controlled. As a consequence, it makes sense to explore these node start offsets to achieve

representative simulation results with respect to the system that is simulated.

Node start offsets implicitly impact how flow packets interact with each other during

transmission from their sender to the receiver end-node and can thus be exploited in sim-

ulation to indirectly influence the observed end-to-end latencies of flows. Additionally,

explicitly controlling them can be helpful in generating specific unfavorable scenarios.

Node Clock Drifts

Node clock drifts (CD) are free parameters used to model imperfections of clocks in real

systems, as introduced in Chapter 2.2. We formally denote clock drifts as CD(e) for each

end-node e ∈ E. They represent a scalar value that describes the difference in velocity of

the local clock Ce of an end-node e in comparison to the system clock CM. The local time

instants can be converted to a global reference clock time as follows:

tCe = tCM ∗ (1 + CD(e))

where tCe is the time instant expressed according to the local node clock and tCM is the

time instant according to the global system clock.

Clock drifts do not have a direct impact on the traversal times. However, they cause

the temporal alignment of different nodes to drift apart from each other over time. This

means even if a system of nodes that is supposed to send data periodically in the same

interval, the relative sending times of packets originating from different nodes may drift

apart over time due to the clock drifts, as observed in Figure 2.3.
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Clock drifts can impact the hyper-period of the system and can significantly influence

the order in which simulation states are explored. They can further break the ergodicity

property if chosen in a specific manner, harming the ability to explore all relevant simu-

lation states from a single simulation. Proving or disproving ergodicity of simulation is

beyond the scope of this thesis and will be assumed to be true as empirically observed in

previous work by Navet, Seyler and Migge in [80].

Frame Offsets

Frame offsets (FO), as introduced in Chapter 2.2, allow to shift the instant tsched at which

the first frame of a flow f ∈ F is scheduled with respect to the starting time NSO(s) of the

sender node s ∈ SEND(f ). The frame offsets of a flow f ∈ F are denoted by FO(f ) ∈ R. The

scheduling time of the first packet of a flow f ∈ F can thus be expressed as

tsched(p0(f ), s) = t0 +NSO(s) + FO(f )

While, in general, frame offsets change the traffic characteristics of the system, in sim-

ulation, they can also be used to control the scheduling order of flows that are scheduled

at the time instant. When steering the frame scheduling order is the goal, selecting very

small frame offsets is essential to avoid impacting the traffic characteristics in a significant

manner. In this dissertation, the frame offsets will be used for that purpose in Chapter 5

where the potential of intentionally exploring and optimizing the flow scheduling order

will be investigated.

Simulation Random Seed

The random seed of simulators is a technical means to make stochastic effects during the

simulation process deterministic and allows the generation of reproducible results. The

effects of the random seed of the simulation software may indeed vary depending on the

software implementation and how the seed is used internally. It can thus not be reason-

ably formalized without also formalizing the complete inner functioning of the simulation

software.

One typical effect of the random seed is determining the sending order of packets

scheduled on a node or the queueing order of packets received by a switch at the exact

same time. Another application is the generation of varying delay components contribut-

ing to the switching delay inside the network bridges. Further, it is used for certain traffic

types like sporadic flows, where the delay between sending two consecutive packets is ran-

domly generated from a certain distribution.

In the context of this work, the random seed is used to explore different simulation

trace variations based on these effects. For instance, the random seed must be changed

when running multiple long simulations with equal starting conditions, like node start

offsets and clock drifts. Otherwise, the results would be equal for all simulation instances.
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3.3 Experiments

The setup behind the experiments is based on a simulation service that provides the ability

to load a certain network configuration and run simulations in parallel based on differing

sets of input variables. The network configuration is only loaded once after the simulation

engine is initialized, as the fixed configuration parameters remain constant, and only free

parameters are adjusted for each simulation instance.

The input variables applied in this chapter comprise the simulator random seed, and

the node start offsets (NSO) and clock drifts (CD) for each node. The outputs of the sim-

ulation service are the maximal traversal times observed during the simulation for every

flow and receiver end-node. The experiment script generates a set of randomized node

start offsets from the node start offset range, which was chosen to explore the close NSO

region around the synchronized case. The node clock drifts are drawn randomly from a

[0,200]ppm range but remain constant across all simulation instances in this chapter.

3.3.1 Simulation Host

The host machine on which all experiments of this dissertation were performed features

an AMD Ryzen 5950X 16-core CPU @4600Mhz, 128GB DDR4 RAM and an NVMe hard drive

to store the data. The operating system used for the experiment host machine is Ubuntu

22.04 LTS. The Java virtual machine used is provided by OpenJDK 18.0.2.

3.3.2 Test Cases

Five network configurations based on three different topologies from industrially relevant

applications were used to evaluate the aggregation approach. The different topologies and

their corresponding configurations have the following properties:

• Space Launcher:
The design of the space launcher topology is shown in Figure 3.3. It uses a highly

connected grid-like structure and is constructed of a total of 18 nodes, 18 switches,

which are integrated with an end-node each and are connected by a total of 24 links

or 42 links when considering the hop between the switches and the integrated end-

node. For the space launcher, a single configuration that uses 4 fixed priority levels

(FP/FIFO) for traffic management is considered. The configuration includes a total

of 100 multi-cast frame flows, that result in a total of 985 flow receptions.
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Figure 3.3: Space launcher system topology. Illustration as presented in publication [56].

• Automotive:
The topology illustrated in Figure 3.4 represents an embedded network from an auto-

motive application. It is comprised of 14 end-nodes that are connected to 5 switches

via a total of 18 links. The configurations on this topology each include 58 flows that

result in a total of 70 receptions. Two different configurations on this topology are

considered, one configuration applying 4 fixed priorities (FP/FIFO) and the other

configuration including Credit-Based Shaping (FP/FIFO + CBS) in addition to the

4 priorities. The traffic flows are categorized into 19 periodic ”Command&Control”

flows, 10 periodic ”Audio” flows, 11 periodic burst ”Video” flows, 6 periodic ”Best Ef-

fort” flows, and 4 TFTP flows where each flow is subdivided into a request flow (RRQ),

a response data flow (DAT) and an acknowledgment flow (ACK). For the TFTP traf-

fic, the DAT flow is triggered as a response to the request flow, and the ACK flow is

triggered as a response to the reception of a DAT packet, as described in Chapter 2.2.
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Figure 3.4: Automotive system topology. Illustration as presented in publication [56].

• Avionics:
The configurations for the avionics use case are based on the medium-sized ring

topology shown in Figure 3.5. This topology is based on 52 nodes that are connected

via 4 switches with a total of 57 links. Each configuration on this topology features

453 multi-cast flows, resulting in a total of 3214 flow receptions. For this topology,

one configuration that uses first-in-first-out traffic management (FIFO) has been de-

fined, and one configuration that uses 5 fixed priorities (FP/FIFO). The traffic con-

sists exclusively of sporadic flows.

Figure 3.5: Avionics system topology. Illustration as presented in publication [56].
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The data of the different configurations described above is summarized in Table 3.1 for

simple side-by-side comparison. Further details on the distributions of flow receptions,

frame sizes, periods/BAG and deadlines are given in Appendix B.

3.3.3 Experiment Design

To address the three research questions defined in section 3.2, a total number of twelve

experiments were conducted across the previously presented network configurations. Ta-

ble 3.2 gives an overview of the experiments that were conducted. The performance of

aggregated short simulations is compared to long simulations for each network configu-

ration. For each comparison, a total of 100 hours of simulation was generated. It means

that a total of 100 hours of short simulations are aggregated and compared to a single long

simulation of 100 hours of simulation time. To achieve a statistically representative result,

many such simulation pairs are generated.

The experiment flow is divided into the following steps:

1. Generate a set of many short simulations.

2. Applying bootstrapping (see Appendix A.1) to resample from the set of short simula-

tions and create aggregations each of 100 hours of total simulation time.

3. Run several 100-hour-long simulations.

4. Generate all combinations of aggregations and long simulations.

5. For each pair, compute the per-flow difference between long and aggregated simula-

tion results.

6. Compute the per-flow average over all short-long pair differences.

7. Represent the distribution of relative performance between long and aggregated short

simulations by plotting the data as a box plot for evaluation.

Following this workflow, for each experiment instance, one hundred aggregations of

100 hours of simulation time were resampled and pairwise combined with a total of 16

long simulations of 100 hours of simulation time each. So, each reported experiment is

based on 1600 sets of comparisons.

For each network configuration, two sets of experiments were performed. One set of

short simulations is run using synchronized node start offsets. The other set of short sim-

ulations is run by sampling the node start offsets from a continuous uniform distribution

over a fixed range with a selected upper bound of 0.1ms to achieve NSO close to the syn-

chronized case. For each short simulation, the random seed of the simulator is changed

to enable the exploration of different flow scheduling orders for flows originating from the

same node, as described before. Randomized clock drifts were applied, which remained

constant across all experiment simulations to exclude clock drifts as an impacting factor.
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Table 3.2: Experiment parameter settings.
QoS stands for Quality of Service. ST stands for simulation time tsim. NSO stands
for Node Start Offsets. FIFO stands for first-in-first-out. FP/FIFO stands for fixed
priorities using FIFO management among packets of the same priority. A NSO
range of 0.0 denotes offsets synchronized to zero. Table 3.1 shows the number of
priorities used. CBS stands for Credit-Based Shaping. The table is based on the
publication [56].

ID Topology QoS ST[s] NSO range [ms]

EX1
Space Launcher FP/FIFO

30 0.0
EX2 30 [0.0,0.1]
EX3

Avionics
FIFO

30 0.0
EX4 30 [0.0,0.1]
EX5

FP/FIFO
30 0.0

EX6 30 [0.0,0.1]
EX7

Automotive

FP/FIFO + CBS
30 0.0

EX8 30 [0.0,0.1]
EX9

FP/FIFO

30 0.0
EX10 30 [0.0,0.1]
EX11 120 0.0
EX12 120 [0.0,0.1]

The simulation time of 30 seconds and the node start offset range of [0.0,0.1] millisec-

onds were empirically determined to return reasonable results from the automotive con-

figuration with FP/FIFO and applied without further modification to the other test cases.

The experiments in this chapter were designed to observe how well simulation aggrega-

tion would perform without optimizing hyper-parameters, like simulation time and node

start offset range. After observing that 30 seconds of simulation time performed the worst

on the automotive FP/FIFO case, the decision was taken to repeat this experiment with

120 seconds of simulation time for comparison.

For each experiment, a set of short simulations is generated and resampled using boot-

strapping simulation to one hundred different aggregations of 100 hours of short simula-

tions, and sixteen long simulations with a 100-hour simulation time are run. Each aggre-

gation is combined pairwise with each long simulation to yield a total of 1600 simulation

pairs. Additional information on bootstrapping and how it was used in the experiments

can be found in Appendix A.1 and in [56].

3.3.4 Results

The results of the experiments are shown in Figures 3.6, 3.7, 3.8, 3.9 and 3.10 as boxplots,

and are discussed categorized per research question in the following. The results are pre-
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sented in a slightly different structure here but are recited from the findings in publica-

tion [56], where also the figures originate from. Appendix A.4 explains how boxplots dis-

play information and how they can be interpreted.

Figure 3.6: Results for RQ1 and RQ2 - Space Launcher topology with FP/FIFO.
Results for experiments EX1 and EX2. The y-axis shows the relative difference
(as a decimal fraction) between the maximal observed end-to-end delays with
short and long simulations over all flows (averaged over all experiment instances).
Short simulations here clearly outperform long simulations in both, synchro-
nized (median +21.3%) and non-synchronized (median +25.8%) cases. Figure as
presented in publication [56].

Results for RQ1: Performance of synchronized NSO aggregation

To answer research question RQ1, experiments EX1, EX3, EX5, EX7, EX9 and EX11 were

conducted. The research question addresses whether aggregating short simulations us-

ing synchronized NSO, like done by the baseline approach can yield any improvements

over long simulations. Each of these experiments aggregates short simulations of 30 sec-

onds simulation time (120 seconds for EX11) based on synchronized node start offsets

and compares the per-flow distribution with the results of long simulations according to

the baseline solution.

The results of these experiments are shown in the boxplots denoted by ”syncXs” on the

x-axis of the result Figures 3.6, 3.7, 3.8, 3.9, and 3.10 for each of the configurations, where

X is either 30 or 120 for the corresponding simulation time in seconds. The y-axis of each

plot describes the distribution of the per-flow differences between the aggregated short

simulations and the long simulations.

To summarize, for RQ1, we observe that for all, except the 30-second experiment on the

automotive configuration with FP/FIFO, the aggregated short approach, on average, im-
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Figure 3.7: Results for RQ1 and RQ2 - Avionics topology with FIFO.
Results for experiments EX3 and EX4. As seen by the position of the boxes (i.e.,
interquartile range), short simulations perform better than long simulations on
average. The median of the synchronized case shows an improvement of about
+15.2% and the uniform sampling of NSO shows an improvement of +17.4%. The
results figure was presented in [56].

proved over the baseline approach using long simulations. The concrete mean differences

for aggregated short simulations compared to long simulations are as follows:

• +21.3% median improvement for the space configuration (EX1).

• +15.2% improvement for the avionics configuration with FIFO (EX3).

• +10.4% improvement for the avionics configuration with FP/FIFO (EX5).

• +4.0% median improvement for the automotive configuration with FP/FIFO + CBS

(EX7).

• -1.6% median decline for the automotive configuration with FP/FIFO (EX9) with 30

seconds simulation time.

• a slight improvement of +0.04% for the automotive configuration with FP/FIFO (EX11)

with 120 seconds of simulation time.

Overall, the results are overwhelmingly positive for simply breaking down the long simu-

lations into shorter ones. This indicates the potential of exploring flow scheduling orders

as the random seed was the main component that differed between the short and long

simulations in these experiments.
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Figure 3.8: Results for RQ1 and RQ2 - Avionics topology with FP/FIFO.
Results for experiments EX5 and EX6. Short simulations again outperform long
simulations as the medians are +10.4% higher for the synchronized case and
+14.9% higher for the uniformly sampled NSO. Results figure as presented in [56].

Figure 3.9: Results for RQ1 and RQ2 - Automotive topology with FP/FIFO+CBS.
Results for experiments EX7 and EX8. Aggregation of short simulations performs
better for about 57.1% (synchronized case) and 72.9% (non-synchronized case)
of the flows. Figure as presented in [56].

Results for RQ2: Further improvements via randomized node start offsets

This research question aims to evaluate whether randomizing node start offsets of short

simulations in the range of [0.0,0.1]ms can further improve the observed performance

over using synchronized NSO. To evaluate the performance difference of using the ran-
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Figure 3.10: Results for RQ1 and RQ2 - Automotive topology FP/FIFO.
Results for experiments EX9, EX11, EX10 and EX12. The difference between short
and long simulations is small here, as all medians are around zero. A small in-
crease in the relative performance of short simulations can be observed across
the four experiments. Figure and description as presented in [56].

domized node start offsets, the result Figures 3.6, 3.7, 3.8, 3.9 and 3.10 are consulted again.

This time, the box plots denoted by ”randXs” on the x-axis are considered. They represent

the experiment results of the simulation aggregation with randomized node start offsets.

To summarize, for RQ2, we observe that, for all test cases, the mean performance of

the aggregated simulations using randomized node start offsets increased. This is true in

comparison to the long simulations but also in comparison to the aggregated simulations

using synchronized NSO. The concrete mean differences for aggregated short simulations

with randomized NSO are as follows:

• +25.8% median improvement over long simulations for the space configuration (EX2).

This is an improvement of 4.5% over the aggregation with synchronized NSO (EX1).

• +17.4% improvement for the avionics configuration with FIFO (EX4). This is an im-

provement of +2.2% over the aggregation with synchronized NSO (EX3).

• +14.9% improvement for the avionics configuration with FP/FIFO (EX6). This repre-

sents an improvement of +4.5% over the aggregation with synchronized NSO (EX5).

• +8.8% median improvement for the automotive configuration with FP/FIFO + CBS

(EX8), which represents again a +4.8% improvement over the aggregation with syn-

chronized NSO (EX7).

• +1.3% median improvement for the automotive configuration with FP/FIFO (EX10)
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with 30 seconds of simulation time. This is an improvement of +2.9% over the aggre-

gation with synchronized NSO (EX9).

• A slight improvement of +0.86% for the automotive configuration with FP/FIFO (EX12)

with 120 seconds of simulation time. This represents a relative improvement of +0.82%

over the aggregation with synchronized NSO (EX11).

Overall, these results represent a significant improvement for applying a method as simple

as uniformly sampling node start offsets from a fixed range, which, in addition, was not

optimized in any way.

Results for RQ3: Significance of simulation time and NSO range

This research question aims primarily to observe whether simulation time plays an im-

portant role in the specific performance of the aggregation approach. The results related

to this research question are found in Figure 3.10. This figure enables the comparison

of experiments with similar starting conditions but differing simulation times, concretely

30 seconds and 120 seconds per short simulation. It needs to be recalled that both types

of experiments were accumulated for a total of 100 hours of simulation time. Thus, the

number of simulations at 120 seconds per experiment is accordingly smaller, reducing the

exploratory power of the aggregation method.

For the synchronized node start offsets, the median performance compared to long

simulations increases from -1.6% to +0.04% for 30-second simulations, thus a relative im-

provement of 1.64%. For the randomized node start offsets, however, the median perfor-

mance difference slightly decreases from +1.3% down to +0.86%, thus a relative decrease

of -0.44%.

An interesting effect to observe is the shift of the overall bulk of the distributions across

the different experiments. For the longer 120-second simulations, the overall performance

across the distribution of flows goes up for both the synchronized and randomized NSO

experiments compared to their 30-second counterparts.

3.4 Conclusion

Considering the results of the experiments for RQ1, it can be concluded that simply split-

ting the long simulations into shorter ones while retaining synchronized node start offsets

already yields a significant improvement over running long simulations. This suggests the

importance of exploring different flow scheduling orders, which is the primary effect of

changing random seeds for the aggregated short simulations while clock drifts and node

start offsets remained constant for these experiments. Additionally, the aggregation ap-

proach allows for a substantially increased parallelization, which is not the primary focus

of this dissertation but a beneficial side-effect that can have highly important implications
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and will be discussed subsequently.

The research question RQ2 of whether randomizing the node start offsets is beneficial

can also be answered positively. In fact, the sampling range was not optimized in any

manner, but the observed improvements were significant and provided insight into the

untapped potential of the aggregation approach. This potential will be further explored

in the two following chapters. In Chapter 4, the effects and settings of simulation time

and node start offset selection will be investigated more systematically, and in Chapter 5,

simulation time will be minimized to increase the exploratory power of the aggregation

approach, and node start offsets and flow scheduling order will be optimized.

Regarding RQ3, the results are inconclusive as the median performance did not show

a consistent improvement. However, it could be observed that the longer simulations,

together with randomized node start offsets, were beneficial for the overall performance

distribution of the flows, even though the median performance slightly decreased. At the

time of publishing, some effects of parameters were poorly understood and were left for

further investigation in future research. Consequently, based on more recent insights, it

can be said that the simulation was mostly limited by the chosen node start offset range in

this chapter.

The fact that the same randomly determined clock drifts were applied for all short sim-

ulations in this experiment further decreased the exploratory potential of the aggregated

short simulations as the applied simulation times were still significantly larger than the

simulation times explored in Chapter 5. It appeared reasonable to limit the effects of the

clock drifts for the experiments conducted in this chapter so as to reduce the number of

free variables. As a consequence, the exploratory effect of clock drifts on longer simula-

tions was not carried over to the short simulations in this case. Thus, by randomizing the

clock drifts for each short simulation, the results of the aggregations could likely have been

improved further.

3.4.1 Intuition on the Effectiveness of Simulations Aggregation

The intuition behind the effectiveness of simulation aggregation with differing starting

conditions is based on the observation that during simulation, instants with high traffic

are generally sparse causing a reduced number of interferences. This means that many

computational resources are spent in areas of the simulation space that often will not al-

low moving closer to the actual worst-case traversal times of the flows. While it is assumed

that randomized node clock drifts allow us to explore the whole simulation state space via

ergodicity, they only allow doing so slowly with progressing simulation time. To increase

the chances of observing higher end-to-end delays for a flow, it is imperative to cause sce-

narios where as many flows as possible interfere with the transmission inside the switches

on the flows route.
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Figure 3.11: Simultaneous traffic for 100ms simulation of the synchronized NSO
baseline solution on the automotive topology with FIFO traffic.
The x-axis shows the simulation time. The y-axis represents the stacked height
of traffic simultaneous in transit in the network. The contribution of each flow is
determined by the end-to-end delay of the packet in transit. As can be seen, the
accumulation of simultaneous traffic peaks at the start and shows some lower
peaks later, with a lot of sparse low-traffic areas in between.

To illustrate the effects of the synchronized NSO case, Figure 3.11 shows the stacked

simultaneous traffic of a simulation trace of 100 milliseconds simulation time. As can be

observed, the most simultaneous traffic, hence roughly speaking, the highest probability

of observing overall high traversal times, lies at the start of the trace where all flows start

scheduling packets simultaneously. However, high simultaneous traffic does not neces-

sarily translate exactly to the highest traversal times for all flows. For that purpose, in Fig-

ure 3.12, observed traversal times for a selection of flows from the same trace are shown.

As can be observed in that figure, many flows experience the highest delays during the

initial instants of high simultaneous traffic. However, it can also be seen that some flows

experience higher delays at later instants. This motivates the exploration of node start

offsets distant from the synchronous case.
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Figure 3.12: Per-flow traversal times for 100ms simulation of the synchronized NSO
baseline solution on the automotive topology with FIFO traffic.
The x-axis shows the simulation time. The y-axis represents the traversal time of
a packet flow. Since this test case includes 58 flows, a selection of 6 randomly se-
lected flows is shown; otherwise, the lines would be impossible to discern. Over-
all, it can be observed that most flows generate their highest traversal times dur-
ing the first few milliseconds, and after the observed traversal times fall off for the
most part.

While the traditional approach, as discussed in the previous section, manages to cause

a good amount of flow interferences in their first switches, it also reduces the chance to

observe higher interferences at later switches on the routing path. To increase the proba-

bility of this, we can slightly shift the node start offsets of the nodes, which causes other

flow packets to arrive sooner or later at the switches through which our flow of interest

travels.

An alternative way of understanding the potential benefits of simulation aggregation

via node start offsets and flow scheduling order is illustrated in a dummy example of a sim-

ulation state system in Figure 3.1. This example aims to illustrate how the starting state

and trajectory of simulation traces can change with different starting conditions, yielding

scenarios where higher end-to-end delays are observed earlier or later. When starting con-
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ditions are chosen carefully, the number of visited simulation states required to observe

higher end-to-end delays can be reduced, particularly in simulation aggregation.

3.4.2 Unreported Exploratory Experiments

As discussed in this chapter, the effects and relation between simulation time and node

start offset range were investigated empirically by various preliminary exploratory exper-

iments. The results of these exploratory experiments are not reported here as they were

not deemed conclusive enough, but they helped inform a deeper understanding of the

parameters and properties of flows that are reported in this work. For instance, some ex-

periments were conducted to explore the effects of randomizing clock drifts instead of

node start offsets. In some cases, these experiments yielded similar results to randomiz-

ing the node start offsets but at diminishing effectiveness the shorter the simulation time.

This stems from the fact that clock drifts do not allow to cause an immediate impact on

the interferences generated in the switches but need time to develop their effect. By using

node start offsets, on the other hand, we can more precisely steer how flows interact in

switches at the beginning of a simulation as observed in Section 3.4.1.

Another type of exploratory experiment was conducted to determine the effects of the

simulation time. Specifically for the prioritized cases higher traversal times could be ob-

served for certain flows by shorter simulations, while other flows would display higher

traversal times with longer simulations. No exact patterns could be identified to consis-

tently observe this effect. It could be an indication that the chosen node start offset range

was not appropriate and needed to be supported by the exploratory effect of clock drifts

over time. In the following chapter, strategies to determine reasonable simulation times

and node start offsets are derived and evaluated.

3.4.3 Parallelization Potential

In this chapter, it was concluded that the aggregation approach yields a significantly in-

creased potential for parallelization as a beneficial side effect. Even though the increased

potential is not formally researched in this dissertation, it is important to discuss and in-

vestigate this significant advantage.

To illustrate the achievable parallelization speedup, a thought experiment is conducted.

Let’s assume we can run a long simulation of 100 hours of simulation time for a duration

of 10 hours, and a 1-hour simulation of the same configuration for a duration of 6 min-

utes. This would represent the same simulation speedup factor of 10 and may be realistic

according to Figure 4.1. Now if assuming perfect parallelism, the aggregation of 100h to-

tal simulation time composed of 1-hour simulations can effectively be run in a duration

of about 6 minutes instead of 10 hours by running all 100 simulations in parallel. This

would represent a parallelization speedup factor of 100. It needs to be considered, how-

ever, that the speedup factor drops when the simulation time is reduced too much, as will
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be explored in the next Chapter.

Further, since there is always some non-parallelizable overhead, the actual possible

parallelization speedup factor would be reduced by this portion as defined in Section 2.4.4.

The portion of the aggregation approach that can not be parallelized is difficult to deter-

mine as it involves multiple factors:

• The overhead of generating diverse starting conditions.

• The overhead of aggregating the simulation results.

• Potential difference in simulation duration due to diverse traffic scenarios, causing

synchronization losses.

• The reduction of the simulation speedup factor for shorter simulation times, which

essentially can be seen as a non-parallelizable overhead cost.

Conducting an empirical study that investigates the different components may be helpful

to shed light on the true parallelization potential of the aggregation approach as presented

in this dissertation and may help derive strategies to reduce each of the contributing over-

head factors. This work is retained as a potential future work.

It needs to be emphasized though, that this parallelization speedup is separate from

the aggregation speedup concluded in Chapter 4 and Chapter 5, as these speedup factors

will represent the reduced number of (sequential) simulations required to produce similar

WCTT bounds than long simulation. That means that those aggregation speedups and the

speedup gained from parallelization can essentially be multiplied.

As the reduction of the simulation speedup factor is a result of simulation initialization

overhead, it would be beneficial to develop network simulation software that is optimized

for running very short simulations. As a result, this would significantly increase the effi-

ciency of the aggregation approach even further, as running extremely short simulations

allows for a greatly improved exploration potential as demonstrated in Chapter 5.



Chapter 4

Improved Parameter Choice for Simu-
lation Aggregation

Setting the short simulation time and the node start offset range was left open in the pre-

vious chapter. It was concluded that the choice of simulation time and node start offsets

play an important role in unlocking the potential of simulation aggregation. Thus, this

chapter proposes and evaluates methods for setting the simulation time of short simula-

tions in aggregation such that the simulation speedup factor is roughly maintained. This

allows for a trade-off of exploring the simulation state space by considering different start-

ing conditions and exploration resulting from clock drifts in longer simulations.

A meaningful choice of the starting conditions for the aggregated short simulations ap-

pears even more important, as explored and discussed in the previous chapter. To that

end, an overlapping stratified sampling approach for node start offsets is proposed to im-

prove the exploration of the starting condition space. The choice of overlapping stratified

sampling will be presented, motivated, and evaluated based on test cases, which are sim-

ilar or identical to those investigated previously. The methods proposed in this chapter

are designed to be beneficial and easily applicable for practitioners who seek to apply the

aggregation approach to their use cases.

Some of the material presented in this chapter is part of a paper ready for publica-

tion [54] and will be referenced accordingly. Several illustrations of results not present in

the paper have been added.

4.1 Motivation and Context

As was concluded in the previous chapter, the simulation time and the node start offset

range are imperative parameters to unlock the effectiveness and efficiency of the aggre-

gation approach. While it was observed that longer simulation time naturally allows for

observing higher traversal times due to the exploration based on the randomized clock

drifts, empirical evidence has shown that leveraging the exploratory power of shorter sim-

ulation times can be preferential.
65
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Generally speaking, the aim is to reduce the simulation time as much as possible in

order to increase the exploration of starting conditions and thus cover a larger portion

of the simulation state space, increasing the likelihood of observing higher end-to-end

delays. There are, however, limitations to reducing the simulation time. These limitations

have both theoretical and technical roots.

The theoretical limitation of the simulation time is defined by the minimal simulation

time required to obtain an end-to-end delay value for every flow reception. The technical

limitation is more implicit and is caused by a loss of efficiency due to decreasing simula-

tion speedup with decreasing simulation time. When reducing the simulation time, the

initialization cost of the simulation gains increasing significance in comparison to the re-

sources spent on generating simulation data. The details of these limitations will be dis-

cussed in more detail in a dedicated section.

The contributions of this chapter are twofold. On one hand, an approach is described

that allows to determine a minimized short simulation time, which roughly maintains the

computational speedup factor of longer simulations while allowing for increased explo-

ration at the same time. This method can be adjusted according to the constraints and

requirements of the application. On the other hand, a stratified sampling approach is de-

veloped, which improves overall performance by better balancing the exploration of larger

node start offset ranges and exploitation of the knowledge that narrow ranges around the

synchronized case yield decently high traversal times in many cases, as observed in Chap-

ter 3. Applying this sampling method allows to explore larger node start offsets that may be

necessary to observe the highest end-to-end delays, without missing out on the benefits

of the near-synchronous offset region.

4.1.1 Related Prior Work

The work presented in this chapter represents a direct continuation of the foundations

provided by the previous Chapter 3. This section only focuses on the closest relevant prior

work, as the broader context was already presented extensively in Chapter 2.

The improved approach for sampling the node start offsets (NSO) will be introduced

later in this chapter. It relies on overlapping stratified sampling and was inspired by the

insights on the general structure of unfavorable scenarios as observed on the trajectory ap-

proach proposed by Bauer, Scharbarg and Fraboul in [18] and [19], which was discussed in

detail in Chapter 2. The approach they proposed in these works aims to generate transmis-

sion scenarios leading to ”critical instants” that yield high traversal times. However, their

approach is limited to only sporadic flows, and was developed for FIFO and fixed priority

(FP/FIFO) traffic only. To generate these unfavorable scenarios, flow scheduling instants

are shifted and sorted according to heuristics informed by certain properties of the traffic

management mechanisms. To be able to move the flows around, the work relies on the
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bandwidth allocation gap (BAG), which defines a minimal time between two consecutive

emissions of packets of a flow, a core property of sporadic flows. As sporadic flows do

not have a fixed periodicity, these exact moments when a flow is scheduled are adjusted

by the analysis, to produce unfavorable scenarios leading to high interferences along the

flow path.

The underlying philosophy of the approach presented in this dissertation is similar.

The node start offsets are used to control the movement and order of flow scheduling in-

stants, aiming to increase the probability of observing scenarios that yield high end-to-end

latencies. As node start offsets do not allow to impact the ordering of flows originating

from the same node, as discussed before, the scheduling order will additionally be con-

trolled via the means of minimal frame offsets in Chapter 5.

Moreover, within the existing body of literature, such as the work by Sifakis and David

in [92], there is a prevalent consensus that the growing complexity of industrial systems,

especially due to the continuous movement toward automation, necessitates the use of

simulation as the primary means of validation for industrially relevant scenarios. In these

applications, precise analytical approaches are often not available, or they are too pes-

simistic and thus not cost-efficient. This motivates the further exploration of enhanced

validation methods based on simulation, such as the approach proposed in this disserta-

tion.

4.1.2 Limitations in the Reduction of the Simulation Time

The simulation time of short simulations can reasonably only be reduced to a certain point

without a significant loss of performance. However, two different limits need to be consid-

ered in practice: hard and soft limits.

The hard limit can be defined as the point below which the simulation time is too short

to produce traversal times for every flow. While this may be desirable in some exceptional

cases, for instance, when only focusing on a specific subset of flows, the usual case is to

collect data on all flows. It is rather simple to define this limit theoretically, but it is practi-

cally difficult or often impossible to determine it precisely as it involves the true worst-case

traversal times, which are unknown.

The lower limit for the simulation time can be defined as the maximal time it takes for

each flow to transmit at least one packet (or burst of packets) after the system start by

tmin := max(NSO(SEND(f )) + FO(f ) +WCTT(f , e) | ∀f ∈ F,∀e ∈ RECV(f ))

where:

f ∈ F is a flow from the set Fof all flows of a configuration

NSO(SEND(f )) is the node start offset of the sender node of flow f
FO(f ) is the node start offset of the sender node of flow f
WCTT(f , e) is the actual worst-case traversal time of flow f reception in node e
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This formula describes the time instant when the latest first packet (or burst) of a flow

arrives at its destination, based on the flow sender’s corresponding node start offset, frame

offset, and worst-case delay. In this chapter, the frame offsets FO(f ) are assumed to be

zero. As the node start offsets are generally not bounded, this formula is not very practical

unless we define an upper limit on the possible node start offsets.

Additionally, since WCTT(f , e) is generally not known, this exact minimal simulation

time can usually not be determined in practice. However, this is not necessary for practical

applications and does usually not yield the preferred simulation time either, as will be

discussed next.

Instead of applying this exact value, we can use a practical approximation by replac-

ing the WCTT(f , e) with an upper bound computed by an analytical method or based on

maximal values observed in previous simulations, thus creating an adaptive approach to

determine a more precise value as new information is gathered. As it is often not desir-

able to adjust the simulation time for every simulation instance, NSO(SEND(f )) can be

replaced by the maximum range determined for the node start offsets as done in the ex-

periments.

Now that the theoretically possible minimal simulation time has been defined, its prac-

tical relevance needs to be assessed. This lower limit on the simulation time gives us

a good way of evaluating the maximum possible parallelization factor for a given simu-

lation budget. However, this theoretical boundary does not consider the added cost of

initializing the simulation process, which remains constant independently of the simula-

tion time. The simulation speedup factor of increasingly shorter simulations drops con-

tinuously with the reduction in simulation time, as the fraction between computational

resources spent on initialization and resources spent on simulation increases. When the

initialization portion gains significance in comparison to the time spent on the simulation

itself, the overall simulation may no longer be efficient as a non-negligible portion of the

simulation duration is spent on initialization alone. This effect can be observed from Fig-

ure 4.1.

On the other side of the spectrum, for increasing simulation times, the speedup factor

generally tends to drop, too. This can happen due to the technical properties of the simula-

tion software. Concretely, the simulation process generates data and needs to accumulate,

evaluate and store results. This can lead to memory management that costs additional

resources, thus reducing the speedup factor as work is spent on operations not related to

traversing simulation states. As discussed in Chapter 2, the simulation software employed

in this work runs in constant memory, and a drop-off of the speedup factor for longer sim-

ulation should thus not be expected in a significant capacity.
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4.2 Research Questions

The following research questions are defined to derive methods on how the simulation

time and node start offsets should be chosen. Their effectiveness is evaluated on an up-

dated set of test cases as presented next. The research questions investigated in this chap-

ter can be formulated as follows:

RQ4. How should the simulation time be set in order to maximize the efficiency of aggre-

gated short simulations?

RQ5. How can we determine suitable node start offsets that maximize the benefits of ag-

gregated short simulations?

RQ6. How well does the simulation aggregation perform on our test cases in comparison

to the classical approach when applying the methods derived in RQ4 and RQ5.

These research questions aim to evaluate how well the simulation time determined by

the heuristic developed in this chapter works in comparison to the baseline solution pre-

sented in the previous chapter. Additionally, the research questions are designed to eval-

uate the effectiveness of the stratified sampling of the node start offsets in combination

with the derived simulation times.

4.2.1 Approach to determine Simulation Time

A pretest is proposed to determine the optimal simulation time tsim, which implicitly de-

termines the average simulation speedup factor of short simulations. The pretest is per-

formed by allocating a certain portion of the simulation budget to evaluating the speedup

of simulation times of different lengths. This portion should be selected such that half of it

yields a representative simulation speedup factor comparable to longer simulations. This,

again, can depend on the specific simulation software, network configuration, and total

available simulation budget.

In the context of this work, a portion of one percent of the simulation budget is selected

and could generally be applied as a rule of thumb, given the overall budget is appropriately

large. A reference speedup factor is then generated by running a simulation for half of the

portion we dedicated to determining tsim. The other half is then used to determine the

speedup factors of gradually decreasing simulation times, starting by dividing the remain-

ing pretest budget repeatedly by two until the resulting simulation speedup falls below a

certain threshold. For instance, a reasonable threshold could be below 50 to 70 percent of

the reference value.

It should be noted that the hardware and software environment can have a significant

impact on the results of this pretest. Further, the specific simulation parameter choices

for the experiments can have an important impact, too.
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To illustrate this, a speedup experiment based on randomized node start offsets was

conducted, and its results are shown in Figure 4.1. The results shown allow to observe

the general behavior of speedups for different simulation times. This experiment was exe-

cuted on a different machine using a different software environment and differing param-

eters, compared to the remaining experiments run in this chapter. It can be observed that

the simulation times tsim that would be determined according to this plot would be lower

compared to the simulation times that were determined for the experiments as presented

in Table 4.2.

In comparison, this simulation speedup experiment used randomized node start off-

sets, which favor speedup in shorter simulations, as the initial traffic peak (as observed in

Figure 3.11) is far smaller, thus leading to a higher speedup. It can also be observed from

Figure 4.1 that the results can fluctuate to a certain degree, depending on the network

characteristics and parameters. Consequently, it may be beneficial to repeat the evalua-

tion of the simulation speedup factors multiple times. They could be evaluated in parallel,

for instance, and the simulation time choice could be made on an observed average, par-

ticularly if the simulation budget is very large.

Figure 4.1: Evolution of simulation speedup factors in relation to the simulation
time.
This experiment shows the behavior of the speedup factor in relation to the simu-
lation time. The reported speedups are evaluated on a single simulation for each
simulation time. It can be observed that the speedup factor drastically decreases
when the simulation time is minimized. The illustration serves for illustration
purposes only and does not directly correlate to the results reported in Table 4.2
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The simulation times determined for the evaluation experiments reported below were

conducted using synchronized node start offsets for all simulations to create a more con-

servative choice of simulation times, as the stratified sampling can generate close to syn-

chronized NSO configurations that yield higher traffic and lower simulation speedups. Ad-

ditionally, the evaluations of the speedup factors were parallelized and chosen based on

the average speedup observed.

4.2.2 Stratified Sampling of the Node Start Offsets

As discussed in the previous chapter, the baseline solution to approximating WCTT via

simulation traditionally involves running long simulations with synchronized node start

offsets. This leads to high interferences in the switches, but can be far from the opti-

mal solution as demonstrated by the unfavorable scenario simulation trace shown in Fig-

ure 4.2. In the illustrated simulation trace, packet ”AD2” needs to be released only around

t = 1.04ms, which would be the node start offset of end-node ”Display1” to generate the

illustrated traffic scenario. Further, it was discussed in the previous chapter that the explo-

ration based on clock drifts can be slow and inflexible.

As a consequence, it is desirable to use a larger range to randomly sample the node

start offsets from. However, the drawback of increasing this range is that it significantly

reduces the chances of generating configurations where the node start offsets for all end-

nodes are close to the synchronized case. For instance, to give an intuition of the proba-

bilities involved, if we sample from a [0.0, 10.0]ms range, the probability that a node start

offset of a node falls within the range of [0.0,0.1]ms is 0.1/ 10.0 = 0.01 assuming uni-

formly distributed sampling. Consequently, the probability that the sampled offsets for

all nodes fall within this range exponentially decreases with the number of nodes. For in-

stance, assuming only ten nodes, the chance of generating a configuration where all start

offsets for all nodes fall in the desired range of [0.0,0.1] is 0.0110 = 10−20. This implies

that generating a node start offset configuration that is close to the synchronized case is

practically impossible when uniformly sampling from a [0.0, 10.0]ms range.

As observed in Chapter 3, the aggregation with NSO configurations close to the syn-

chronous case yields high traversal times in general. As a consequence, we still would like

to explore the range closer to the synchronous case. At the same time, we would also like

to explore the solutions at a further distance from the synchronized case. Essentially, this

can be considered an exploration-exploitation dilemma as known from Reinforcement

Learning. We want to ”exploit” the knowledge that the synchronous case can yield high

traversal times but simultaneously allow the exploration of more diverse node start offset

configurations.

A possible solution to integrate this exploration and exploitation in a single sampling
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method is to equally distribute the samplings to n ranges of different sizes defined by

{[(NSOmax − si)/2, (NSOmax + si)/2] | i ∈ {0 .. n−1}}

where NSOmax is the upper limit for the node start offset range, si := NSOmax ∗ 10−i is the

size of the band i around the center of the maximal node start offset range and n is the

number of ranges to consider. The parameter n further describes how close to the syn-

chronized case the generated sampling ranges will be, as the resulting ranges become nar-

rower the higher n is. It is suggested to equally distribute the number of samples taken to

all ranges, thus sample count/ n samples will be taken from each range. This sampling ap-

proach distributes the efforts to multiple, exponentially growing, and overlapping ranges.

This allows the exploitation of narrow search ranges around the synchronized case and

simultaneously provides exploration opportunities which can be balanced by the choice

of the number of ranges n.

In this dissertation, we chose n = 5, and the sample count is determined by the chosen

short simulation time and total simulation budget by

sample count := tsim/ ttotal

where ttotal denotes the total simulation time budget. Determining the maximal node offset

range NSOmax will be discussed next.

4.2.3 Determining the Maximal Node Start Offset Range

To apply the stratified sampling for the node start offsets as presented in the previous sec-

tion, a maximal range NSOmax needs to be defined. Indeed, there is no technical limit to

setting this value but a reasonable range can be motivated. In fact, a suitable value here is

the maximal WCTT of all flows. The idea behind this choice is that a flow can only be im-

pacted by other flows during its transmission from sender to receiver, which is bounded by

the WCTT. Technically speaking, a flow can be impacted by other flows indirectly via tran-

sitivity. However, this effect would be observed as a delay of flows that directly impact the

flow of interest and would be indiscernible from a directly impacting flow that is delayed

by a certain node start offset. The maximal NSO range can thus be defined as:

NSOmax := max(WCTT(f , e) | ∀f ∈ F,∀e ∈ RECV(f ))

In practice, as discussed before, the WCTT is generally not known. A possible ap-

proximation to this value would again be to use an upper bound derived by an analytical

method, if available. Alternatively, if no analytical method that gives a reasonable upper

bound can be applied, a simulation can be run to determine the highest observed traver-

sal time. A margin can be added to this value to achieve an actionable approximation for

selecting the NSO range and simulation time, or the value could be scaled up by a certain

percentage instead, for instance, 30, 50, or 100 percent.
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An empirically determined simulation time value could, in fact, be too short to allow

the generation of a traversal time for every packet. Luckily, this can be detected easily as

the simulation software would not produce an end-to-end delay value for this flow recep-

tion. For practical usage, this can be implemented as an adaptive method to approximate

the value gradually. As soon as a simulation that does not yield a value for one flow is de-

tected, the simulation time and maximal range value are updated, and the simulation is

repeated. This process can be repeated, and the values can be adjusted gradually until the

flow yields a traversal time value.

In the stratification experiments run in this chapter, NSOmax is chosen based on the

highest observed end-to-end delay of all flow receptions during the pretest to determine

tsim. As suggested earlier, this observed maximal delay is then scaled up by +50 percent to

set NSOmax. This maximal range value is used together with a stratification factor of 5 for

the experiments using stratification, which is reasonable to attain configurations that are

close to the synchronized case for the test cases considered in this chapter.

TheNSOmax values determined by this heuristic are too large to yield satisfactory results

with simple uniform sampling, which was tested in unreported experiments. An alterna-

tive pretest was thus performed to determine a more suitable value for the uniform sam-

pling range. This pretest did not yield satisfactory results in all cases, as observed from the

results of the avionics configuration with FP/FIFO, which are reported in Table 4.2. This

pretest dedicated another fraction of the simulation budget to evaluate the AMTT of differ-

ent NSO ranges while applying the determined tsim. The ranges determined by this pretest,

and applied to the ”fixed range” experiments, are reported in the ”NSO range” row of the

”fixed range” experiment section in Table 4.2.

4.2.4 Evaluation Metric (AMTT)

Evaluating the observed end-to-end delays individually is not practical as the number of

flow receptions can grow very large. Consequently, a metric that captures the maximal

observed delays for every flow reception across multiple simulation instances is desirable.

Such a metric can be defined as

AMTT(S) :=
∑
f∈F

∑
e∈RECV(f )

max(TT(px, e) | ∀px ∈ s ∈ S)

where S is a set of simulations s, represented by a set of all packets px transmitted during

the simulation s, and TT(px, e) represents the observed end-to-end delay of a packet px for

reception e of flow f .

This metric will be referred to as ”aggregated maximal traversal times” (AMTT) and

represents the sum of the highest observed end-to-end delay per flow reception over a set

of simulations, as formalized above. It will be used for evaluating the performance of the
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experiments conducted in this chapter and in Chapter 5. The maximal observed delays

will be determined per flow reception across multiple simulation results and once the per-

flow-reception maximum is determined it is summarized to return the AMTT metric. The

result figures reported in the following will typically display the AMTT metric on the y-axis

to show the magnitude of the end-to-end delays for simulations aggregated up to a certain

summed simulation time or simulation duration reported on the x-axis.

4.3 Experiments

The foundations for answering the first two research questions, RQ4 and RQ5, were pro-

vided by sections 4.2.1 and 4.2.2, where the methods to determine the simulation time and

sampling the node start offsets were derived. For these two research questions, no further

experiments are necessary. Instead, the corresponding result sections below will recapitu-

late the derived methods and provide some additional insights and motivations.

To address research question RQ6 with the aim of evaluating the performance of these

methods, two types of experiments have been conducted. One type of experiment evalu-

ates the performance gain of the aggregation approach based on a fixed node start offset

range, as done in the previous chapter, while using the simulation times determined by the

heuristic presented for RQ4. The other type of experiment applies the same determined

simulation times but instead samples the node start offsets from stratified ranges rather

than a uniform distribution in a fixed range.

For each experiment, a fixed simulation budget in the form of simulation time is given.

This budget is equal for all experiments and is fixed at 100 hours of simulation time. How

to dimension the simulation budget depends on the specific use case and is beyond the

scope of this work.

In the first step of the experiments, the pretest introduced in Section 4.2.1 is run to

determine the speedup factors of different simulation times. As a reminder, this is done

by using a certain portion of the simulation budget. Half of this portion is used to deter-

mine a reference speedup value comparable to long simulations. For the experiment, one

percent of the simulation budget is allocated to the pretest, as suggested before. After de-

termining the speedup factors of different simulation times, the shortest simulation time

tsim is chosen such that the resulting speedup factor lies above 90% of the determined ref-

erence speedup factor.

The aggregation experiments with NSO uniformly sampled from a fixed range and

NSO sampled from stratified ranges are performed based on these determined simulation

times. Each experiment was repeated at least 10 times, and the results were averaged over

these repetitions to achieve statistically significant and robust results. The reference value

reported for the long simulations represents the average over 16 repetitions.
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4.3.1 Test Cases

The test cases used for the evaluations in this chapter are mostly equal to the cases pre-

sented in Chapter 3.3.2. The topologies remain the same for all configurations, and the

traffic configurations remain the same, too, except for one change. For this chapter, the

automotive configuration using FP/FIFO+CBS is replaced by a FIFO-only configuration.

The motivation to replace this configuration was to enable the usage of the results of the

unfavorable scenario analysis as a reference value for comparison and to increase the con-

figuration diversity, as the configurations using FP/FIFO and FP/FIFO+CBS were rather

similar.

As they remain unchanged, the topologies depicted in Figures 3.3, 3.4 and 3.5 are still

applicable for the current test cases. The updated overview for the configurations ap-

plied in this chapter is provided in Table 4.1, showing the automotive configuration us-

ing FP/FIFO+CBS replaced by the configuration using FIFO. As for the unchanged config-

urations, Appendix B provides further details on the added configuration, including the

distributions of flow receptions, frame sizes, periods/BAG and deadlines.

Table 4.1: Characteristics of the updated network configurations for the simula-
tion time and NSO stratification experiments.
The table summarizes the configurations which are equal to the configurations
presented in Chapter 3 in Table 3.1 with one changed configuration. The automo-
tive configuration with ”FP/FIFO+CBS” was substituted by a configuration using
only FIFO and with TFTP flows removed to increase test case diversity and en-
able the use of analytical methods to provide a reference value. The table is as
presented in publication [54] with adjustments.

Topology Space Launcher Avionics Automotive

# nodes 18 52 14
# switches 18 4 5
# links 24 57 18
# flows 100 453 58 46
# receptions 985 3214 70 58

QoS FP/FIFO (4) FP/FIFO (5) FIFO FP/FIFO (4) FIFO

flow types
99 periodic

1 periodic burst
453 sporadic

35 periodic
11 periodic burst

4 TFTP
46 sporadic

4.3.2 Results

In this section, the experiment results will be presented and analyzed according to the

different research questions. As there are no further experiments to be conducted for RQ4

and RQ5, the corresponding sections will provide some context and motivation for the

methods developed as a response to either research question, derived in sections 4.2.1 and

4.2.2, respectively.
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Results for RQ4: Determining the simulation time

This research question, aimed at developing a heuristic to determine a short simulation

time tsim that optimizes the efficiency of the aggregation approach, was implicitly answered

in Section 4.2.1. It was discussed before in this work that shorter simulation times offer a

greater opportunity for exploration of the simulation state space and increase the proba-

bility of observing critical instants. However, reducing the simulation time is subject to

certain limitations.

For illustration purposes, an experiment based on the automotive configuration us-

ing FP/FIFO is run to demonstrate how increasingly shorter simulations can improve the

exploration potential. The experiment performs and aggregates sets of simulations with

simulation times of 0.1s, 1.0s, 10.0s, and 100.0s each, for a total simulation budget of one

hour each. All node start offsets are uniformly sampled from a fixed range of [0.0,20.0]ms.

The results of this experiment are shown in Figure 4.3. It illustrates the beneficial explo-

ration potential of shorter simulations. It is important to emphasize that the experiment

compares simulation time, not the actual simulation duration.

Figure 4.3: Exploration potential of shorter simulations demonstrated on the auto-
motive configuration with FP/FIFO.
The figure shows that for aggregations using shorter simulation times (repre-
sented by the different curves), the aggregated simulations yield a higher aggre-
gated maximal traversal time (AMTT, y-axis, in ms) for a given simulation time
budget (x-axis, in s). Figure as presented in [54].

The results of this short experiment encourage the reduction of the simulation time for

short simulations in aggregation. When determining an efficient minimized simulation



78 CHAPTER 4. IMPROVED PARAMETER CHOICE FOR SIMULATION AGGREGATION

time, the simulation speedup factor appears to be a limiting factor, as discussed before,

which motivated the design of the proposed approach to determine tsim. The proposed

approach aims to provide a trade-off between increasing the exploratory potential of the

aggregation approach and maintaining a reasonable speedup of the simulations.

Results for RQ5: How to determine suitable node start offsets

This research question aims to improve the sampling of node start offsets by exploiting

starting conditions close to the synchronized case while also exploring more complex in-

teraction scenarios using larger offsets. As we have observed in this work so far, the node

start offsets, respectively their sampling range, can significantly impact the effectiveness

and efficiency of the simulation aggregation approach.

In Figure 4.2 it was observed that the synchronized case does not necessarily generate

scenarios that are anywhere close to the worst-case for some flows, while it may be an

acceptable approximation of the WCTT for other flows. Thus, it is desirable to allow both,

exploration of configurations distant to the synchronized case, while also exploiting the

known and understood properties of configurations in close proximity to it.

When uniformly sampling from a fixed sampling range, however, it was demonstrated

in a simple example in Section 4.2.2 that the probability of observing a configuration close

to the synchronized case quickly becomes very unlikely with increasing maximal node off-

set range NSOmax and increasing node count. The stratified sampling approach presented

in the same section is directly designed to address this issue and thus answers this research

question.

Results for RQ6: Evaluation of simulation time and stratified node start offsets

In the context of research questions RQ4 and RQ5, methods have been motivated and de-

rived to determine efficient simulation times, and to solve the shortcomings of node start

offsets uniformly sampled from a fixed range. Research question RQ6 aims to evaluate

these methods based on the updated test cases presented in Section 4.3.1. For each test

case, two types of experiments were conducted, as described in this section. The results

of these experiments are shown in Figures 4.4, 4.5, 4.6, 4.7, 4.8 and the important informa-

tion are summarized in Table 4.2.

The results will be discussed subsequently per test case. The long simulations run ac-

cording to the traditional approach will be denoted as ”single long” in the figures and in

the table. The aggregation with NSO sampled from a fixed range will be denoted as ”fixed

range”, and the aggregations experiment with NSO sampled using the stratification as pre-

sented in Section 4.2.2 are denoted as ”stratified range”. Further, the results of the unfavor-

able scenario analysis (denoted as ”unfavorable bounds”) and the schedulability analysis

(denoted as ”schedulability bounds”) based on Network Calculus will be reported where

applicable or otherwise be shown as ”N/A”.
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For each experiment, the AMTT metric (see Section 4.2.4) will be reported and for the

aggregation experiments (”fixed range” and ”stratified range”) the crossing time (if appli-

cable) will be reported, which marks the simulation time after which the AMTT value of

the long simulation (”single long”) was surpassed. For convenience, we additionally re-

port the percentage of by how much the AMTT of long simulation was surpassed (denoted

as ”difference to long” in the table).

For the avionics configuration with FIFO traffic management, the following results can

be observed in Figure 4.4:

• Uniformly sampled NSOs (”fixed range”) produced an AMTT of 5844.00ms on aver-

age, while the result of long simulations (”single long”) was surpassed after only 4050

seconds (about 67.5 minutes) of simulation time. Over the total length of the exper-

iment, the improvement of the AMTT metric is +16.90% over the 4999.07ms of long

simulations.

• Sampling from the stratified NSO ranges (”stratified range”) helped improve the AMTT

to 6116.37ms, which represents a 22.35% improvement over the long simulation. It

surpasses the long simulation AMTT slightly later after 1575 seconds.

• The reference values from unfavorable scenario analysis available for this case is

9376.10, so the stratified experiment is still about 34.7% away from that result.

• The upper-bound provided by schedulability analysis for this case is 9665.98ms and

stratified results are thus 36.92% lower.

Overall, a significant improvement can be observed for both determining the NSO via uni-

form sampling and via stratified sampling. The stratified approach allowed a total average

improvement of 22.35% over long simulation and reached an equivalent result after only

0.44% of the total simulation budget, thus representing an aggregation speedup of 228.6.



80 CHAPTER 4. IMPROVED PARAMETER CHOICE FOR SIMULATION AGGREGATION

Figure 4.4: Results for RQ6 - Avionics configuration with FIFO.
The plot shows the evolution of the aggregated maximal traversal times (AMTT,
see Section 4.2.4) on the y-axis over the simulation time of the aggregation (x-
axis). The simulation aggregation using a stratified node start offset range (”strat-
ified range”) is compared to the simulation aggregation with a fixed node start
offset range (”fixed range”), and long simulations run according to the baseline
solution (”single long”). All variants use a total simulation time budget of 100h.
The data of each variant represents the average of at least 10 executions. The
long simulation value is plotted as a horizontal line as long simulation does not
provide the progression of the traversal times over time. Bounds computed via
scheduling analysis and unfavorable scenario analysis are included (where avail-
able) for reference. Additionally, on this plot, core information summarized in
Table 4.2 is annotated for easy reference. This plot is based on [54] and was up-
dated for clarity.

For the avionics configuration with FP/FIFO, the following results are observed in Fig-

ure 4.5:

• Uniformly sampled NSOs produced an AMTT of 3701.25ms on average, while the

result of long simulations was not surpassed. Over the total length of the experiment,

this represents a loss of about -9.14% over the 4073.57ms of long simulations.

• Sampling from the stratified NSO ranges helped improve the metric to 4660.83ms,

which represents an improvement of 14.42% over the long simulation. The stratifica-

tion approach surpasses the long simulation results after 4500 seconds (75 minutes).

• The unfavorable scenario analysis is not available for this case.
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• The upper-bound provided by schedulability analysis for this case is 7011.02ms

The results of the experiment using uniform sampling of the NSO were very bad for this

configuration, which may be related to the determined fixed NSO range of 0.05ms, which

is extremely narrow. The stratified sampling, however, yielded an important improvement

over long simulations. An average improvement of 14.42% was observed, and the equiv-

alent result was achieved after only 1.25% of the simulation time budget, representing an

aggregation speedup factor of 80.

Figure 4.5: Results for RQ6 - Avionics configuration with FP/FIFO.
The plot shows the evolution of the AMTT (see Section 4.2.4) on the y-axis over
the aggregated total simulation time (x-axis) for the experiments using uniform
and stratified sampling ranges for the NSO. See Figure 4.4 for further details and
annotations.

Figure 4.6 shows the results for the automotive topology with FIFO. The following results

are observed:

• Uniform sampling of the NSO (”fixed range”) produces an AMTT of 28.32ms on av-

erage. The result of long simulation of 24.41ms is thus surpassed after only 1125

seconds. The overall improvement is +16.02%.

• Sampling from the stratified NSO ranges (”stratified range”) helps to improve the

sum to 28.44ms, which represents an additional 16.51% over the long simulation.
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The stratification surpasses the long simulation result slightly later after 1575 sec-

onds (26.25 minutes).

• The reference values provided by unfavorable scenario analysis available for this case

is 35.85ms, so the stratified experiment is about 20.6% away from that result.

• The upper-bound provided by schedulability analysis for this case is 41.98ms

The improvements of the stratified approach over long simulations are 16.51% and the

equivalent result is reached after only 0.43% of the simulation time budget, representing

an aggregation speedup of about 228.5.

Figure 4.6: Results for RQ6 - Automotive configuration with FIFO.
The plot shows the evolution of the AMTT (see Section 4.2.4) on the y-axis over
the aggregated total simulation time (x-axis) for the experiments using uniform
and stratified sampling ranges for the NSO. See Figure 4.4 for further details and
annotations.

For the automotive topology with FP/FIFO, the results are depicted in Figure 4.7:

• Uniformly sampled NSOs (”fixed range”) produced only surpasses the long simula-

tion results of 257.18 by only 1.38% and takes 70987 seconds (19.7 hours) of simula-

tion to produce an equivalent result.

• Sampling from the stratified NSO ranges (”stratified range”) does not yield a great im-

provement either and only surpasses long simulation by about 1.73% and surpasses

long simulation AMTT slightly earlier after 54956 seconds (15.3 hours) of simulation

time.
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• The unfavorable scenario analysis is not available for this case.

• The upper-bound provided by schedulability analysis is not available for this case

either as best effort flows and TFTP traffic are not supported by the applied analysis.

For the other flows, the bound is about 111.58ms.

The results of the experiments for this configuration do not show a significant improve-

ment. The AMTT observed in long simulations is only surpassed by 4.45ms or 1.73% by

the stratified experiment. However, the equivalent result of long simulations is reached

after only 15.3hours, or 15.3% of the simulation budget, which still represents a speedup

of a factor 6.55.

Figure 4.7: Results for RQ6 - Automotive configuration with FP/FIFO.
The plot shows the evolution of the AMTT (see Section 4.2.4) on the y-axis over
the aggregated total simulation time (x-axis) for the experiments using uniform
and stratified sampling ranges for the NSO. The displayed schedulability bounds
are lower as they exclude TFTP and Best-Effort flows, which are not supported by
the applied analysis. See Figure 4.4 for further details and annotations.

The final experiment results to analyze belong to the space launcher topology and are

shown in Figure 4.8:

• The long simulations (”single long”) give an average sum of 662.6ms, which is sur-

passed after 22950 seconds (6.375 hours) by the uniformly sampled NSO experiment

(”fixed range”). The improvement is about 10.01%
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• Sampling from the stratified NSO ranges (”stratified range”) improves even further

up to 774.0ms, which is an improvement of 16.94% over the long simulation. It also

surpasses it much sooner, after only 1350 seconds (22.5 minutes) of simulation time.

• Unfavorable scenarios analysis is once again not available for this case.

• The upper-bound provided by schedulability analysis for this case is 1874.5ms, which

is 142% over the result of the stratified sampling experiment.

For this configuration, the improvements are again very significant as the results surpass

long simulations after only 1350 seconds or 0.375% of the simulation time budget, this

represents an aggregation speedup of a factor (3600s/ h ∗ 100h)/ 1350s ≈ 266.

Figure 4.8: Results for RQ6 - Space Launcher configuration with FP/FIFO.
The plot shows the evolution of the AMTT (see Section 4.2.4) on the y-axis over
the aggregated total simulation time (x-axis) for the experiments using uniform
and stratified sampling ranges for the NSO. See Figure 4.4 for further details and
annotations.
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Table 4.2: Result summary for RQ6 - Experiments with uniform and stratified sam-
pling of NSO.
The columns represent the different test configurations, identified via topology
and applied Quality-of-Service (QoS) mechanism. Rows correspond to the result
values as annotated in Figure 4.4. The simulation time tsim was applied for both
the ”fixed range” and ”stratified range” experiments. It was determined using the
pretest presented in Section 4.2.1. The ”single long” row provides the long simula-
tion experiment results as a reference based on the aggregated maximal traversal
times (AMTT) metric presented in Section 4.2.4. The following two blocks in the
table represent the experiments using uniform sampling from a fixed range (de-
noted as ”fixed range”) and the experiments using stratified sampling (denoted as
”stratified range”). The ”NSO range” and ”NSOmax” were determined as explained
in Section 4.2.3. The ”cross time” denotes the aggregated simulation time when
the AMTT of long simulation is exceeded, respectively crossed. The relative dif-
ference of AMTT between the long simulation and aggregation experiments is
denoted as ”diff. to long”. The bounds generated by schedulability analysis and
unfavorable scenario analysis are provided for reference where available. This ta-
ble is an extended version of the result table presented in [54].

Topology Space Avionics Automotive
QoS FP/FIFO FIFO FP/FIFO FIFO FP/FIFO

tsim [s] 450 450 900 225 56.25
single long AMTT [ms] 662.6 4999.07 4073.57 24.41 257.18

fixed
range

NSO range [ms] 1.48 1.04 2.99 0.05 3.26
AMTT [ms] 729.0 5844.00 3701.25 28.32 260.74
diff. to long +10.01% +16.90% -09.14% +16.02% +01.38%
cross time [s] 22950 4050 N/A 1125 70987

stratified
range

NSOmax [ms] 6.99 4.90 4.92 1.13 15.36
AMTT [ms] 774.9 6116.37 4660.83 28.44 261.63
diff. to long +16.94% +22.35% +14.42% +16.51% +01.73%
cross time [s] 1350 1350 4500 1575 54956

unfavorable bounds [ms] N/A 9376.10 N/A 35.85 N/A
schedulability bounds [ms] 1874.5 9695.98 7011.02 41.98 N/A

4.4 Conclusion and Discussion

It can be concluded that the combination of applying a speedup-maintaining simulation

time and the stratification approach yields great benefits over the traditional approach of

running long simulations in most cases. Further, the stratified sampling strategy is pre-

ferred over uniform sampling from a fixed range as it yields improvements in all cases.

It was observed that the equivalent results compared to the baseline solution could be

achieved in a fraction of the time, reaching from 15.3% in the worst and 0.375% in the best

test scenario. This means that within the same simulation time budget, we could evalu-

ate from 6 to 266 configurations to an equivalent result using the same simulation budget

compared to the traditional long simulation approach.
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Overall, it can be concluded that the overlapping stratified sampling of the NSO yields

a significant improvement at virtually zero added cost besides determining the upper limit

NSOmax of the NSO range, which can be chosen based on the highest observed end-to-end

delay of all flows, as discussed in Section 4.2.3. To maintain constant simulation times for

all aggregated simulations, this upper limit was determined by applying a simple scaling of

1.5 to the maximal traversal time observed during the pretest to determine the simulation

time tsim, described in Section 4.2.1. In practice, the simulation time (and thus the NSO

maximal range) could alternatively be adjusted dynamically throughout the experiment

according to the previously observed maximal end-to-end latencies.

As further discussed in Section 4.2.3, determining a reasonable fixed range for the uni-

form sampling approach is difficult. It can thus be concluded that the stratified sampling

approach is generally preferred as it shows equal or better results in all experiments com-

pared to uniform sampling, and the choice of its maximal range NSOmax is more practical.

When evaluating many similar variations of configurations whose traffic characteris-

tics do not change significantly, it may be sufficient in practice to run the pretest to de-

termine the simulation time tsim for only a single configuration. The simulation time de-

termined by the heuristic presented in this chapter is usually much larger than the min-

imal simulation time required to achieve at least one reading of traversal times for every

flow. Consequently, some efficiency may be lost in terms of simulation speedup, but the

simulation time should still be reasonably dimensioned. In general, if the simulation bud-

get is defined strictly, the simulation aggregation can be stopped as soon as the budget is

exhausted. Fluctuations in the simulation speedup can thus be counter-balanced by run-

ning additional or fewer simulations to meet the exact simulation budget.

Further, as discussed in the previous chapter, the aggregation approach enables a sim-

ple and effective way to parallelize WCTT evaluation via simulation. These parallelization

properties are maintained when applying the improvements presented in this chapter, as

no significant changes in the approach structure are introduced besides the pretest to de-

termine tsim.

In the following chapter, the increased exploratory potential of reducing the simula-

tion time to the minimum, regardless of the speedup factor, will be explored. Further, the

selection of node start offsets will be improved by applying optimization algorithms with

an initial population based on the stratification approach presented in this chapter.



Chapter 5

Improving Starting Conditions via Multi-
Objective Optimization

In this chapter, the problem of maximizing the observed end-to-end delays will be remod-

eled as an optimization problem. More specifically, the problem of finding a set of starting

conditions that maximize the observed end-to-end delays for each individual flow recep-

tion can be represented as a Pareto problem, as discussed in Chapter 3. Such problems are

often solved using an algorithm class known as multi- or many-objective optimization al-

gorithms. The optimization technique employed in this chapter is NSGA-II, a simple and

popular multi-objective evolutionary algorithm (MOEA).

Another important change that will be investigated in this chapter is the reduction of

the simulation time to the minimum to evaluate the exploratory potential of such short

simulations. This will cause the simulation speedup factor (see speedup variants in Sec-

tion 2.4.4) to be reduced substantially, as described in the previous chapter. On the other

hand, the reduction in simulation time enables the optimization algorithm to explore the

search space further with the given resources and increase the effectiveness of the opti-

mization.

Further, the results of Chapter 4 serve as a foundation for designing a biased initializa-

tion for the optimization algorithm to boost the initial starting conditions and, thus, the

overall optimization potential of this variation. The effectiveness and efficiency of this ap-

proach will be analyzed again based on the five network configurations presented in the

previous chapter in Section 4.3.1.

Most of the material presented in this chapter is part of publication [55] and will be

referenced accordingly.

5.1 Motivation and Context

As high end-to-end delays are a consequence of the interaction of many flows during their

transmission, it is reasonable to hypothesize that multi-objective optimization may be

suitable to exploit and improve these interaction patterns of this high-dimensional prob-
87
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lem. As discussed and investigated in the previous chapters, the observed end-to-end de-

lays can be influenced by adjusting the scheduling instants of different flows, which can be

achieved by adjusting node start offsets and scheduling orders. In this chapter, it is asked

whether it is possible to learn interaction patterns incrementally to shift the scheduling in-

stants so that even higher traversal times can be observed. As was illustrated in Figure 3.2,

reordering two node start offsets can be sufficient to generate the WCTT of two respective

flows that share a certain transmission pattern.

In the previous chapter, sampling from stratified node start offset ranges was further

demonstrated to be beneficial as it allows interaction patterns resulting from both syn-

chronized node start offsets and more distant offsets. Consequently, for the sake of opti-

mization, it appears reasonable to also start from such a stratified biased population to

raise the general end-to-end latencies observed in the initial population. Additionally, it

may enable an improved evolution between different solutions, as they are more diverse

and provide patterns that can be recombined to potentially yield even higher traversal

times. Without a biased initialization, the optimization algorithm would otherwise need

to invest significant resources to discover such synchronized patterns first, which was

proven difficult in Section 4.2.2.

5.1.1 Related Prior Work

The most relevant prior work related to this topic has already been discussed in the previ-

ous chapters. The general research landscape concerning the dissertation topic was dis-

cussed in-depth in Chapter 2. In Chapter 3 and Chapter 4 more specific related work tar-

geting the respective chapter topic was discussed. The related work presented next serves

as a brief recap and extends this scope to give an overview of the field of multi-objective

optimization.

A similar approach, which focuses on bus systems, was published by Samii, Rafiliu,

Eles and Peng in [88] in 2008. Their approach applies and compares various optimization

algorithms in order to observe worst-case response times for specific processes of a sys-

tem. The systems investigated in the paper are based on CAN-Bus and FlexRay, and the

approach relies heavily on expert knowledge of the underlying bus systems to prune the

search space.

The approach proposed in this chapter is different in many regards, as it considers

all flow traversal times simultaneously by exploiting the shared interactions of the many

flows. Further, the system models are not comparable since Ethernet and bus systems

exhibit vastly different properties and behaviors. Finally, the approach presented in this

thesis minimizes the use of expert knowledge and does not prune any of the design vari-

able search space explicitly.

The overlapping stratified sampling technique used to determine node start offsets,
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as presented in the previous chapter, draws inspiration from the research conducted by

Bauer, Scharbarg, and Fraboul in [18] and [19], published in 2010 and 2011, respectively. In

their work, unfavorable scenarios are generated based on flow trajectories within Ethernet-

based real-time networks. The applicability of this analytical method is limited to sporadic

flows, and systems limited to first-in-first-out (FIFO) and fixed priorities (FP/FIFO) QoS

mechanisms. The effectiveness of this approach in approximating worst-case latencies

was demonstrated in a subsequent study conducted by Boyer et al. in 2012 [24].

This understanding of how scenarios that yield high latencies can be systematically

generated played a pivotal role in motivating the development of the stratified approach.

Specifically, as observed in Figure 3.2, unfavorable offset configurations can be very simi-

lar. These observations served as a basis for the optimization methodology developed in

this chapter, as they suggest that optimization strategies could potentially be applied as

a generic means of adjusting starting conditions and, thus, the instants when frames are

scheduled, to generate unfavorable scenarios in a broader context.

The literature on multi-objective optimization and multi-objective evolutionary algo-

rithms is extensive as these algorithms have been successfully applied to many different

fields and applications for decades. Due to their popularity and the variety of problems

they can be applied to, a multitude of specialized and improved algorithms were devel-

oped. In a survey [98] about MOEAs, published in 2021, Tian et al. give an overview on the

topic. They introduce the state-of-the-art algorithms, discuss their respective strengths

and weaknesses, and provide insights on the benchmarking landscape for such algorithms.

NSGA-II, the algorithm of choice in this chapter, was developed in 2002 by Deb, Pratap,

Agarwal and Meyarivan in [35]. The algorithm represents an improved version of the orig-

inal NSGA algorithm proposed by Srinivas and Deb in [93]. For completeness, the NSGA-

II algorithm will be introduced and discussed in more detail in a separate section. The

work [50] by Hort and Sarro from 2021 concludes that the efficiency of NSGA-II can po-

tentially be improved by selecting a smaller offspring size. These findings were applied to

select the offspring size in our experiments.

5.1.2 Biased Initialization

As shown in the previous chapter, higher end-to-end delays across the flows can be ob-

served when sampling from stratified ranges rather than a uniform distribution over a

fixed range. It is desirable to apply these benefits to the optimization approach as well.

Translating the stratification sampling approach to optimization could potentially be done

in multiple different ways. One method could be to introduce constraints into the opti-

mization problem to limit the valid ranges of the design variables. This could be used

to mimic the effects of the stratified sampling approach presented in the previous chap-

ter. However, introducing such constraints could potentially limit the flexibility of the
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optimization algorithm and could restrict it from rapidly exploring beyond the narrower

ranges.

An alternative method of embedding the stratification approach into the optimization

chosen for this work is to generate a biased initial population based on the stratification

sampling. In multi-objective optimization research many different sampling methods to

generate an initial population have been developed. If no beneficial distribution is known,

popular sampling methods include random sampling or Latin Hypercube Sampling (LHS).

However, if structural knowledge about the problem is available, biased initialization can

be used to speed up the discovery and evolution of the optimization process and can thus

improve the convergence towards the optimum.

As the overlapping stratification sampling presented in the previous chapter has shown

high effectiveness, it appears useful for generating such a biased initial population. The

resulting population is proposed to include the synchronized case, where all offsets are

equal. For the remaining population, five overlapping strata of exponentially growing size

are generated, as done in Chapter 4. The population of the chosen size is equally dis-

tributed across these strata. The choice of the population size depends on the problem

complexity induced by the network configuration under investigation and is typically se-

lected relative to the number of objectives, which, in this case, is the number of individual

flow receptions.

5.1.3 Pareto Problems and Multi-Objective Optimization

Adjusting starting conditions to observe maximized end-to-end latencies can be repre-

sented as a Pareto problem. This means that there is no single optimal solution to the

problem, as there are competing objectives in the form of end-to-end delays of different

flows, as was demonstrated in Figure 3.2. The objectives are the result of a certain set of

design variables, which, in this case, are the starting conditions of the simulation. The fit-

ness function of the optimization problem is given by the network simulation. For these

problems, multiple solutions that each maximize individual objectives can be found. So-

lutions that maximize a certain objective are known as non-dominated or Pareto-optimal

solutions. By finding the non-dominated solutions for all objectives, a Pareto front can be

defined where each solution is not better or worse than other solutions that belong to this

front but merely optimize different objectives.

Usually, Pareto fronts are used to select a solution based on the preferences of the de-

signer or decision-maker of the problem. In the context of maximizing observed end-to-

end latencies, however, the goal is to maximize all objectives. Consequently, the goal is

to find all Pareto-optimal solutions. The set of all Pareto-optimal solutions would yield all

the actual worst-case traversal times for all flow receptions of the network configuration.
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Multi-objective optimization (MOO) is usually designed to gradually generate and im-

prove one or multiple Pareto fronts for such problems. Many different MOO algorithms ex-

ist that are designed to solve different problems with specific properties. One category of

such multi-objective optimization algorithms is multi-objective evolutionary algorithms

(MOEA). For the sake of this work, a simple MOEA known as ”non-dominated sorting ge-

netic algorithm 2” or NSGA-II was chosen. It is a well-established algorithm in the field

of multi-objective optimization, and due to its simplicity and effectiveness, it is very pop-

ular and has been applied successfully to many different research problems. Due to this

popularity, many optimized and mature implementations of this algorithm are available

in most libraries that support multi-objective optimization. However, the choice of NSGA-

II is not the exclusive reasonable choice for the application with simulation aggregation.

It was merely chosen for its simplicity and popularity, and other optimization algorithms

may, in fact, be more suitable to address the problem and should be investigated in future

work. The functioning of the NSGA-II algorithm will be described in more detail next.

5.1.4 NSGA-II

The original ”Non-dominated Sorting Genetic Algorithm”, or NSGA, was developed by

Srinivas and Deb in [93]. It was later improved as NSGA-II by Deb et al. in [35] by im-

proving the efficiency, effectiveness and robustness of the algorithm. The original NSGA

featured a computational complexity ofO(MN3) where M is the number of objectives and

N is the population size. In the second version, this complexity was improved to O(MN2)
by applying an improved sorting strategy. Another improvement over the original NSGA al-

gorithm is the introduction of an elitism method, which selects the best individuals from

the current generation and carries their advantages over to the next generation, which

improves the convergence towards the optimal Pareto-front. The elitism mechanism con-

siders a crowding-distance and the front rank to carry over the best solutions from the

previous generation to the next. The front rank basically describes for each objective a

ranking for the quality of a solution. The crowding distance on the other hand is used to

retain a possibly high diversity, improving the robustness of the approach as it helps avoid-

ing local maxima.

The NSGA-II algorithm starts by generating an initial population, based on a selected

initialization heuristic. This population’s fitness is then evaluated and sorted according

to the non-dominated sorting criterion and the crowding-distance is computed. After

these initialization steps, until a certain termination criterion is met, the algorithm iterates

through 5 different main steps. First, offsprings are generated using the standard genetic

algorithm, then the offspring fitness is evaluated, the non-dominated sorting is updated

including the offsprings, and finally their crowing-distance is computed and the elitism is

performed to retain the best individuals of the highest ranked Pareto fronts according to
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the population size.

Various termination criteria can be used, such as the number of fitness evaluations, the

number of generations, or the execution time. In the context of this work, the number of

evaluations is used as a termination criterion as it is directly correlated to the simulation

budget as a limiting factor, due to the constant simulation time applied for all simulations.

The standard genetic algorithm itself is composed of three different steps again, tour-

nament selection, crossover and mutation. There are different variations for each of these

steps that are independent of the NSGA-II algorithm and can be specified upon initializa-

tion of the algorithm. The role of the tournament selection is to select preferred individ-

uals to form offsprings by applying some variation of cross-over. The cross-over is used

to recombine the select parent solutions into a new solution that retains certain features

of either of its parents. Finally, some mutation operator appropriate to the problem is ap-

plied to introduce feature modifications with respect to the parents of the offspring and

allow it to obtain new unique properties that may not have been observed in the popula-

tion before.

Relations between the exploration-exploitation dilemma that was discussed before in

this thesis and the genetic algorithm can be made. The crossover can be considered an

exploitation strategy, as it retains the features of solutions that are known to perform well,

thus exploiting these features. On the other hand, mutation can be considered an explo-

ration strategy, as it allows the modification of features that have proven effective before

and thus enables the exploration and discovery of new areas of that feature space.

5.2 Research Questions

Three research questions have been devised to evaluate the effectiveness of the minimized

simulation time and the optimization approach. They investigate the effectiveness of the

minimized simulation time in isolation, and in combination with the optimization of node

start offsets with and without frame scheduling order. Stratification sampling is applied

to determine the node start offsets in all cases. Finally, the overhead cost introduced by

the optimization and the shortening of the simulation time is investigated. The following

research questions are investigated:

RQ7. Can we leverage the exploratory power of shorter simulation by minimizing the sim-

ulation time beyond a threshold that would maintain the simulation speedup factor?

RQ8. Can multi-objective Pareto optimization algorithms improve the exploration of the

node start offset search space in the approach of aggregating short simulations for

approximating worst-case traversal times via simulation?

RQ9. What is the overhead cost of performing the optimization compared to resources

invested in simulations?
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The research questions and results presented in this chapter were developed in the context

of the related paper [55].

5.2.1 Formulating WCTT Approximation as an Optimization Problem

The task of maximizing the observed traversal times by adjusting node start offsets and

flow scheduling order can be easily modeled as a Pareto multi-objective optimization prob-

lem. To do so, the node start offsets and, optionally, the frame scheduling order via frame

offsets, are used as the design space parameters, while the end-to-end latency for each

flow reception defines a separate objective. As a reminder, a flow can have multiple recep-

tions in the case of multi-case flows and refers to each individual node that receives a copy

of a packet emitted by a flow.

The limitations of the design space parameters are set in the range from zero to the

maximal NSO limit NSOmax as described in Section 4.2.3. For the frame offset parameters,

the valid range is set from zero to the number of flows in nanoseconds. This guarantees

that the chosen frame offsets cannot significantly impact the traffic characteristics.

To improve the starting population diversity and, thus, the optimization potential, a

biased initial population is drawn according to the stratification sampling as described

in Section 5.1.2. When flow scheduling order is optimized in addition, the flows are sim-

ply enumerated, yielding integer nanosecond values, which are randomly permutated for

each generated individual of the biased population.

5.2.2 Reordering Flow Scheduling Order via Frame Offsets

While the ordering of the flows that are scheduled at the same time was previously steered

indirectly via the simulation random seed, it can be desirable to control and optimize this

order explicitly. As has been observed from the packet trace generated by the unfavor-

able scenario analysis that was shown in Figure 4.2, the sending order of packets can be

essential for observing unfavorable scenarios resulting in higher traversal times. At the

time of writing, the simulation software of choice does not offer an explicit way to define

the packet scheduling order of simultaneously scheduled packets on the same node and

is exclusively steered by the random seed. We can, however, make creative use of frame

offsets as introduced in Section 2.2 to explicitly steer the frame scheduling order. This fea-

ture allows the creation of a scheduling gap between packets that belong to different flows

originating from the same end-node. In the general case, a system naturally has implicit

frame offsets because the packets are generated by certain tasks running on the end-nodes.

Unless those tasks are run in parallel, they usually define the sending order, which can be

considered random in real systems to a certain extent. Task scheduling is a complex topic

of its own and beyond the scope of this dissertation.

As this work aims to remain as generally applicable as reasonably possible, no specific

order for the flow scheduling is assumed and can be considered a free variable. Experi-
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ments were conducted to investigate the potential of optimizing the flow scheduling or-

der in addition to the node start offsets. As it is important to avoid significantly impacting

the traffic characteristics of the configuration, the frame offsets are chosen at the scale of

nanoseconds. The effects of such small frame offsets are, in the context of the applied test

cases, insignificant compared to the effects of other variables like switching delays or clock

drifts.

In some special cases, a specific frame scheduling order for flows originating from the

same node may be known. Given such a case, this knowledge can be integrated into the op-

timization approach in the form of constraints and can help to vastly reduce the possible

search space, effectively reducing the complexity of the optimization problem. However,

such an ordering is not assumed or given in the context of this dissertation.

5.3 Experiments

Various experiments have been conducted to evaluate the core effectiveness of minimized

simulation time on its own and in combination with optimization of node start offsets

with and without frame offsets, as proposed in this chapter. The following experiment

variations have been conducted for every test case configuration:

• Uniformly sampled NSO (no optimization) with stratified ranges and minimized sim-

ulation time (denoted as ”random minimized” in figures and tables).

• Optimizing only NSOs with a biased initial population using stratified sampling and

minimized simulation time (denoted as ”opti. NSO”).

• Optimizing NSOs and FOs with a biased initial population using stratified sampling

and minimized simulation time (denoted as ”opti. NSO+FO”).

Further, the data of the long simulation experiments and of the short simulation experi-

ments using stratified sampling from the previous chapter have been reused as a reference.

The results of the long simulations will be denoted as ”single long” and the results of the

short aggregations with stratified node start offsets are denoted as ”random short”.

5.3.1 Test Cases

The exact same configurations as presented in Section 4.3.1 are used as test cases to per-

form the experiments. These test cases are suitable as they are diverse and of different

complexities, with the avionics configurations amounting to as many as 3214 objectives,

each represented by every individual flow reception. For these configurations, the design

variable space has 52 dimensions for the case where no frame offsets are optimized and

as many as 453 × FO + 52 ×NSO = 505 dimensions for the experiments that additionally

apply frame offsets for controlling the frame sending orders.
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Reusing the same test cases as for the previous chapter further allows us to compare

the data of optimization-related experiments to the data gathered in the context of the

previous chapter, giving the reader an understanding of the relative improvements that

optimization can yield.

5.3.2 Experiment Parameterization

Each experiment was run for a total sum of two hours of simulation time, and all exper-

iments were repeated 10 times. For the experiments with minimized simulation time,

clock drifts were set to zero to remove the effect of exploration via clock drifts with the

intention of creating a more direct relation between design variables and fitness function

value. This effect should be minimal anyway because the extremely short simulation time

significantly reduces the effects of clock drifts on the observed results.

A new random seed was applied for every simulation instance. The simulation time

and maximal node start offset range for each configuration were empirically determined

based on previous observations. The simulation times were chosen as small as possible to

allow the experiments to focus on the exploratory power of minimized simulation times.

As discussed in the previous chapter, the maximal node start offset range and the min-

imal simulation time can be set according to the WCTT, or an observed (and upscaled)

lower or upper bound.

5.3.3 Results

In this section, the results of the experiments will be summarized and discussed. The

provided illustrations for RQ7 and RQ8 were generated for the related publication [55],

while some figures had to be omitted from the paper for brevity. All relevant results are

therefore summarized again in Table 5.1, which was also part of the publication. Table 5.2

provides the overhead experiment results for RQ9 and was also part of the paper.

Results for RQ7: Minimized simulation time without optimization

This research question investigates the effects of minimizing the simulation time with

stratified node start offsets without applying any optimizations yet. We can observe the

following results, as shown in Figures 5.1, 5.2, 5.3, 5.4 and 5.5, and summarized in Table 5.1

under the experiment identifier ”random minimized”:

• An improvement over long simulation (denoted as ”single long”) for the automotive

configuration with FIFO traffic of +29.37% was observed for only an increased simu-

lation duration cost of +6.81%.

• A moderate improvement over long simulation for the automotive configuration with

FP/FIFO of +1.23% was observed for a 7.5 times shorter overall simulation duration.
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• In the case of the space launcher topology, an improvement over long simulations of

+19.61% was observed for an increased total simulation duration of +67.40%.

• In the case of the avionics topology with FIFO, an average improvement of +25.82%

could be observed for a +1.76% longer overall simulation duration.

• For the avionics topology with FP/FIFO, an average improvement of +17.35% over

long simulation was observed, at an additionally decreased overall simulation dura-

tion of about -3.9%.

Overall, the observed average improvements in the aggregated maximal traversal times

metric (AMTT) is substantial.

Figure 5.1: Results for RQ7 and RQ8 - Automotive topology with FIFO.
The y-axis shows the ”aggregated maximal traversal times” metric (AMTT, see
Section 4.2.4) over the simulation duration of the experiments (up to 10 hours)
on the x-axis. The results are shown for the experiments with minimized sim-
ulation time (denoted as ”random minimized”), and optimization of node start
offsets (”opti. NSO”) and, optionally, flow scheduling order (”opti. NSO+FO”).
The result of long simulations (”single long”) and aggregation with stratified NSO
(denoted as ”random short”) from Chapter 4 are included for reference.
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Figure 5.2: Results for RQ7 and RQ8 - Automotive topology with FP/FIFO.
The y-axis shows the AMTT metric over the simulation duration of the experi-
ments (up to 2 hours) on the x-axis. Further details in Figure 5.1 caption.

Figure 5.3: Results for RQ7 and RQ8 - Space Launcher topology with FP/FIFO.
The y-axis shows the AMTT metric over the simulation duration of the experi-
ments (up to 20 hours) on the x-axis. Further details in Figure 5.1 caption. This
Figure is presented in publication [55].
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Figure 5.4: Results for RQ7 and RQ8 - Avionics topology with FIFO.
The y-axis shows the AMTT metric over the simulation duration of the experi-
ments (up to 40 hours) on the x-axis. Further details in Figure 5.1 caption.

Figure 5.5: Results for RQ7 and RQ8 - Avionics topology with FP/FIFO.
The y-axis shows the AMTT metric over the simulation duration of the experi-
ments (up to 40 hours) on the x-axis. Further details in Figure 5.1 caption.
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Results for RQ8: Optimizing NSOs and optionally FOs

This research question aims to analyze the benefits of optimizing the node start offsets,

with and without optimizing the flow sending order. Optimizing the flow sending order

is controlled by optimizing minimal frame offsets in the nanosecond range that do not

measurably impact the traffic characteristics. In this research question, the overhead of

optimization is not considered and will be addressed by RQ9 separately.

The results are included in Figures 5.1, 5.2, 5.3, 5.4 and 5.5, and summarized in Ta-

ble 5.1. The results are summarized in the table under the identifiers ”opti. NSO” for the

optimization of node start offsets only and ”opti. NSO+FO” for the additional optimized

flow scheduling orders.

The results can be summarized as follows:

• An improvement over long simulation (denoted as ”single long”) for the automotive

configuration with FIFO of +41.79% was observed for a reduced simulation duration

of -2.1% when optimizing only NSOs. Optimizing scheduling order in addition, im-

proved by another +4.63%.

• A moderate improvement over long simulation for the automotive configuration with

FP/FIFO of +4.12% was observed for an eight times shorter overall simulation dura-

tion. Optimizing flow scheduling order in addition, improved by another +0.41%.

• When optimizing only NSOs, in the case of the space launcher topology, an improve-

ment over long simulation of +27.73% was observed for an increased total simulation

duration of +40.09%. Optimizing scheduling order in addition, improved by another

+5.35%.

• In the case of the avionics topology with FIFO, optimizing NSOs only yielded an

average improvement of +33.43% for an additionally -14.7% shorter overall simula-

tion duration. Optimizing frame scheduling order in addition, improved by another

+8.97%.

• For the avionics topology with FP/FIFO, an average improvement of +24.70% over

long simulation was observed, at an additionally decreased overall simulation dura-

tion of about -16.5%. Optimizing the frame scheduling order in addition, improved

by another +3.45%.

We observe a consistent improvement at virtually no added cost in simulation duration

when optimizing the flow scheduling order in addition to node start offsets. Overall, the

optimization (”opti. NSO” and ”opti. NSO+FO”) yields better results than randomized

stratified sampling (”random short” and ”random minimized”). It should be noted that

the optimization itself comes at an added cost that was not considered in this research

question and will be evaluated separately by the next one.
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Results for RQ9: Analyzing Optimization Overhead Cost

This research question evaluates the additional overhead cost of the optimization algo-

rithm and efficiency losses caused by diminished speedup due to the reduced simulation

time. The results of this evaluation are summarized in Table 5.2. The reported effective

parallel simulation duration (denoted as ”PSD” in Table 5.2) is computed by considering

the total simulation duration (denoted as ”SD”) spent on generating the simulation results

and is then divided by 12, which was the parallelization factor applied when running the

simulations. By doing this, the returned value is comparable to the total experiment du-

ration (denoted as ”ED”) which was tracked from start to finish of an experiment. Thus,

dividing the sum of simulation durations by the parallelization factor gives us (approx-

imately) the linear portion of the wall-clock time that was spent to run the simulation.

Since there is some minimal synchronization losses from the parallelization, this impact

is attributed to the optimization algorithm and the values reported thus give a slightly pes-

simistic evaluation.

Table 5.2: Optimization overhead evaluation results for RQ9.
Table similarly presented in [55].

Configuration experiment EDa[h] PSDb[h] SDc[h] overheadd

Automotive FIFO
opti. NSO 0.706 0.432 5.18 +63.55%
opti. NSO+FO 0.729 0.445 5.34 +63.82%

Automotive FP/FIFO
opti. NSO 0.093 0.071 0.85 +31.29%
opti. NSO+FO 0.092 0.070 0.84 +31.43%

Space Launcher
opti. NSO 1.903 1.325 15.9 +43.62%
opti. NSO+FO 1.830 1.250 15.0 +46.40%

Avionics FIFO
opti. NSO 8.121 2.418 29.0 +235.93%
opti. NSO+FO 7.983 2.418 29.0 +230.22%

Avionics FP/FIFO
opti. NSO 7.364 2.367 28.4 +211.15%
opti. NSO+FO 7.255 2.367 28.4 +206.55%

a ED: experiment duration
b PSD: parallel simulation duration, time to run in parallel on 12 cores
b SD: simulation duration, time to run all accumulated simulation sequentially
d overhead: time spent on optimization rather than simulation := (ED− PSD)/PSD

For the automotive and space launcher topologies, moderate but significant optimiza-

tion overheads of 31.29% to 63.82% are observed. In the case of the avionics configura-

tions, the overhead is much more extensive and more than two-thirds of the time is spent

on optimization alone, representing an overhead of up to 235.93%. This observation is not

surprising as the NSGA-II algorithm’s complexity grows linearly with the number of objec-

tives and quadratically with the population size, which is typically chosen in function of

the number of objectives, as discussed above.
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It can be observed further that the overhead cost is not larger when additionally op-

timizing the frame offsets. This may seem surprising at first, but it makes sense as the

frame offset increases the number of design variables while the number of objectives re-

mains unchanged, which is one of the main driving factors behind the complexity of the

NSGA-II algorithm.

5.4 Conclusion and Discussion

Regarding RQ7, it can be concluded that minimizing the simulation time is generally ben-

eficial despite the additional cost of a decreased simulation speedup factor. In all cases,

higher total traversal times could be observed. Additionally, in some cases, the total simu-

lation duration was even shorter compared to long simulation (”single long”) or aggrega-

tion of short simulations in the seconds range (”random short”).

In the context of RQ8, it can be consistently observed across the different experiments

that optimizing frame scheduling order (by means of frame offsets) in addition to node

start offsets is very beneficial at a negligible or no additional cost over only optimizing

node start offsets. It can thus be concluded that optimizing the frame scheduling order for

the sake of observing higher traversal times is superior to randomly exploring scheduling

orders via the unpredictable effects of the random seed.

Unfortunately, we have also observed that the impact of the reduced speedup factor of

shortening the simulation time is very dramatic and has dropped by a factor of up to 83.9

from long to minimized simulation time for the space launcher topology.

Another notable thing to observe is that the optimization approach on the automotive

case with FIFO traffic achieved an average observed aggregated maximal traversal time

(AMTT) of 35.74, which is very close to the 35.85 (+0.11ms) generated by unfavorable sce-

nario analysis, known to produce rather tight bounds on the actual WCTT.

It needs to be highlighted that the experiment simulation time budget EST applied

for the aggregations was two hours compared to 100 hours for the reference data (”single

long” and ”random short”). As all optimizations exceeded the AMTT bounds observed

for the reference long simulation, we can conclude an aggregation speedup factor of at

least 50 (see Section 2.4.4). The precise crossing point was not explicitly investigated in

this chapter but seems to follow similar trends to the observations in Chapter 4, as seen in

the figures. This means that, approximately, the actual aggregation speedups in this chap-

ter were about 50 times higher due to the different simulation time budget magnitudes.

Unfortunately, the benefits of these increased aggregation speedup factors were counter-

balanced by the reduction in simulation speedup, which was the reason for reporting the

results in terms of simulation duration rather than simulation time. This, however, pro-

vides strong motivation for developing simulation software that is optimized for running

very short simulations.
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Regarding RQ9, it can be further concluded that the NSGA-II algorithm does not scale

well with the increasing complexity of the configurations, as was observed in Table 5.2.

For the avionics configuration, the overwhelming majority of the time (more than two-

thirds) was spent on optimization rather than simulations. For other configurations, the

optimization overhead was significant but still within reasonable margins, considering the

improvements in the results.

As discussed before, NSGA-II represents a popular choice for multi-objective optimiza-

tion in general but may not be the best-suited choice for the aggregation approach, espe-

cially regarding scaling to more complex configurations. Further, the loss in efficiency in

the form of a reduced simulation speedup, caused by the minimization of the simulation

time, is currently a relevant limiting factor to the efficiency of the aggregation approach

with optimization. Running extremely short simulations is not a typical use case consid-

ered in the development of network simulation software today, thus available simulators

are not optimized for it. There may, however, be technical solutions to reducing the simu-

lation initialization cost for running many short simulations of the same network configu-

ration, thus significantly reducing the impact of this currently limiting factor.

Overall, we can conclude that optimization is able to exploit hidden structural inter-

ference patterns in flows as the maximally observed end-to-end latencies exceeded the

values observed from aggregations without optimizing starting conditions and long sim-

ulations in all cases by a significant margin for a comparable simulation duration and

drastically reduced simulation time. Despite the additional overhead introduced by the

minimized simulation time and optimization, it is observed that the simulation using op-

timization of node start offsets and frame scheduling order outperforms the previously

investigated variants on all considered use cases. It should further be taken into account,

that the closer the actual WCTT is approached, the more unlikely it becomes to observe

higher traversal times, typically requiring exponentially more effort when relying on the

traditional approach.

Parallellization Potential of the Optimization Approach

The optimization can be parallelized to a certain degree and on different levels. One way

to parallelize the optimization process is to parallelize the evaluation of the fitness func-

tion, namely the simulation, of different individuals from the population. This would be

equivalent to how parallelization of the simulations would be realized for the uniform sam-

pling approach. All individuals, once generated by the genetic algorithm, are independent

of each other. This means that the simulations to evaluate the fitness of individuals of a

generation can be run in parallel up to the degree of the size of the offsprings that are gen-

erated at every generation. Compared to running the random search, this means that the

potential for parallelization is reduced, as new solutions are generated in generations and

are not known upon the initialization of the algorithm.
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A different but complementary way to parallelize the optimization is to apply meta-

heuristic or meta-optimization strategies. One type of meta-heuristic optimization appli-

cable to this case is known as ”island models”, which belong to the category of parallel

evolutionary algorithms.

Island models work on the principle of evolving independent populations on different

islands in parallel but regularly exchange or share some of their individuals across islands.

This helps to retain diversity while at the same time allowing for an effective co-evolution,

often resulting in a faster convergence towards the optimum.

The parallelism gained by such island models can be combined with parallelizing the

evaluation of the fitness of the offsprings, thus multiplying the overall parallelism of both

approaches. This strategy could be beneficial when a highly parallel infrastructure is avail-

able, such as cloud-computing or high-performance-computing (HPCs), and the prob-

lems to be solved are of higher complexity. An approach to realize such a parallelization,

using an island model in combination with NSGA-II, is described in [72] by Märtens and

Izzo.



Chapter 6

Conclusion and Perspectives

This chapter will summarize the overall contributions and conclusions. The different parts

will be integrated to form a complete picture and overall conclusion of the work presented

in this dissertation. The chapter will then close by presenting several possible future re-

search directions based on the findings and open questions that remained unanswered.

6.1 Synopsis of Contributions

In this thesis, a novel paradigm to evaluate worst-case traversal times via simulation was

developed. Crucial parameters, such as simulation time, node start offsets, clock drifts,

and frame scheduling order were investigated to maximize the benefits of the approach.

Concretely, a heuristic to set the simulation time is proposed that roughly preserves

a simulation speedup factor comparable to long simulations. The process to determine

this simulation time is run by dedicating a certain percentage of the overall simulation

budget to determine a suitable simulation time for short simulations. Half of this budget,

half a percent of the overall budget, for instance, is used to determine a reference speedup.

An equal portion is then split up to run simulations of increasingly shorter simulation

time and evaluate their corresponding speedup factor. The simulation time is then cho-

sen as soon as the resulting speedup factor drops below a fraction relative to the reference

speedup, for instance, 0.9. This approach allows subdividing long simulations into shorter

ones without a significant loss of computation efficiency, as the gained exploratory power

from aggregated simulations typically outweighs the added overhead significantly, as ob-

served in this work.

Another important contribution to improving the efficiency and effectiveness of the

aggregation approach is to sample the node start offsets from multiple overlapping and

exponentially growing stratified ranges rather than a single fixed range. This yields the ad-

vantage of providing a good balance between the exploration of larger offset ranges and

the exploitation of the narrow ranges close to the synchronous case, which have proven to

yield observations of reasonably high but often not maximal end-to-end delays .

The final contribution of this thesis is the aggregation variant using multi-objective
105
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optimization to determine the starting conditions for short simulations. For the experi-

ments a popular and well-established algorithm from the domain of multi-objective opti-

mization was employed, namely NSGA-II. The thesis has demonstrated how the problem

can be modeled as a multi-objective Pareto problem and be solved by applying this off-the-

shelf optimization algorithm. In addition to optimizing the node start offsets, it was shown

that optimizing the frame scheduling order is generally superior. The frame scheduling or-

der was optimized by applying minimal frame offsets in the nanosecond range to avoid

significantly impacting the traffic characteristics.

As a result, with equal resources, the optimization approach managed to achieve traver-

sal times that exceed what has been observed from long and aggregated short simulations

without optimization. However, the approach also displayed inefficiencies with larger con-

figurations when applying the NSGA-II algorithm out-of-the-box, as it does not scale well

with increasing objectives and population sizes. It is concluded that the optimization ap-

proach yields promising results and offers a lot of pathways for future research and im-

provements.

By applying these improvements, which are mostly simple in nature, impressive re-

source savings or speedups up to a factor of multiple hundreds were observed in some

test cases. These gains in efficiency can be leveraged and translated into novel ways to

approach design automation and further improvements in validation techniques, such as

the development of validation approaches based on machine learning. The results are

promising and open interesting avenues for future research, which could revolutionize

certain aspects of real-time network evaluation and design. Possible applications include

tighter approximations of WCTT via simulation, more responsive and automated design

systems, and better evaluation of the pessimism of analytical methods.

6.2 Directions for Future Work and Research

This section summarizes suggestions made to develop the proposed approaches further

and provides an outlook on exciting future research paths.

6.2.1 Targeted Exploration of the Simulation State Space using NSO

One hypothesis constructed during this work but not directly tested or proven is that

we can ”time travel” in (deterministic) simulation by using node start offsets to jump to

specific simulation states of a long simulation using adjusted starting conditions. As dis-

cussed before, the modification of free variables allows for impacting the visited simu-

lation states, particularly when all non-deterministic effects in the simulations are con-

trolled or predictable.

One experiment that is not reported in this dissertation was conducted where the packet

trace generated by the unfavorable scenario analysis as presented in Figure 4.2 could be

reproduced in as short simulation of five milliseconds simulation time by determining cor-
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responding node start offsets and applying minimal frame offsets to control the flow send-

ing orders. This packet trace was generated by the unfavorable scenario analysis, which

follows the transmission rules induced by QoS mechanism and network model at large.

Consequently, the presented trace could just as well be a packet trace taken from any point

in time from a simulation. By deriving offsets (and packet scheduling order), a short sim-

ulation can be generated that allows the reproduction of this part of the simulation trace.

Assuming the ergodicity property, as discussed in Chapter 2, would render this equivalent

to jumping to the moment at which this interference scenario is observed in a (potentially

infinitely) long simulation trace. Jumping to certain points in the simulation state space is

the essential idea behind exploring different node start offsets and flow scheduling orders,

rather than slowly traversing them via long simulations with randomized clock drifts as

illustrated in Figure 3.1.

At this time, it is not yet well understood in which areas the simulation states that yield

actual worst-case traversal times are located within the simulation state space or how they

can explicitly be reached. This could constitute an interesting topic of future research.

6.2.2 Increased Accessibility via Open-Source Simulation Software

As the simulation software used in this work is not openly available, the findings cannot be

verified by the research community without added efforts of implementing the approach

based on a different simulation software. Thus, one important future task will be to im-

plement and evaluate the approach using open-source simulation software, such as OM-

Net++, which is currently the prominent choice in real-time Ethernet network research.

This would allow us to evaluate the approach in an independent environment, and it can

be made accessible to the entirety of the research community, providing a foundation for

further research on validation approaches based on aggregation of short simulations.

6.2.3 Researching different Sampling Distributions for NSO

In this work, overlapping stratified ranges were proposed for exploring the node start off-

set parameter space via uniform sampling and as a biased initialization of the population

of optimization algorithms. This strategy, in essence, simply represents an alternative dis-

tribution to uniform sampling over a fixed range. The stratified sampling approach pro-

vided an intuitive reasoning behind the observed effectiveness and proved beneficial over

sampling from a uniform distribution.

There may, however, be other distributions that might yield better results. Consequen-

tially, another direction for future research could be to explore other distributions, po-

tentially in the context of different network configuration characteristics and properties.

There may be different characteristics where one distribution may be beneficial over oth-

ers, allowing the creation of adaptive or ensemble methods that improve efficiency by se-

lecting the most appropriate distribution, depending on the specific characteristic of the

system under investigation.
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6.2.4 Approach Evaluation on additional Network Configurations

While the test cases that were used to evaluate the proposed evaluation paradigm were

rather diverse in topology and traffic characteristics, they only covered a small portion of

possible configurations in the domain. One desirable future work would be to evaluate the

approach for other topologies, traffic characteristics, and network complexities. In that

context, the effects of different specific characteristics could be investigated in isolation,

for instance, the average number of hops, packet size, and flow periods. This opens a vast

unexplored research area for develop optimized variations of the aggregation approach.

6.2.5 Analysis and Optimization of the different Speedup Variants

In Section 2.4.4, the different speedup factors involved in the efficiency of the aggrega-

tion approach have been discussed, and the increased parallelization potential was inves-

tigated in Section 3.4.3. The parallelization potential of the approach was not formally

researched in this dissertation which could serve as an important future work. To that

end, it may be beneficial to investigate the different factors contributing to the reduction

of the parallelization speedup, as listed in Section 3.4.3.

6.2.6 Improved Optimization Algorithm for increased Scalability

As discussed in Chapter 5, the choice of NSGA-II as an optimization algorithm does not

scale well to complex network architectures. However, NSGA-II is known to not scale well

to high objective counts and many alternatives and improvements have been proposed to

address this issue since the introduction of NSGA-II. One prospective future work would

thus consist of evaluating state-of-the-art MOO algorithms that scale well to higher objec-

tive counts for their suitability for integration with the aggregation approach.

6.2.7 Applying Learning Methods for Improved Effectiveness

Machine Learning (ML) has proven beneficial in various applications across all domains.

Techniques that have proven particularly effective for optimization problems, such as pa-

rameter tuning of simulation models, include Reinforcement Learning and Transfer Learn-

ing.

Neural Networks, and Deep Reinforcement Learning in particular, exhibit the ability to

learn underlying problem structures inconceivable to humans. They allow the optimiza-

tion of parameter selection to maximize certain metrics. In the context of this work, they

could be used to replace the static distribution applied to sample the starting conditions

by an adaptive ML-based sampler that learns to make better choices depending on the

properties of the network configuration. Also, the optimization algorithm that was applied

could potentially be replaced by an ML-based algorithm such as Reinforcement Learning,

for instance.

Another ML technique worth mentioning is Graph Neural Networks, a specific type of
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Neural Network that has enhanced capabilities of solving problems that exhibit a graph

structure. Network communication is essentially such a graph-based problem, and ML

was indeed successfully applied in the real-time networking domain before. For instance,

Mai and Navet applied Graph Neural Networks to successfully predict the feasibility of

TSN configurations in [69]. These techniques may also be suitable for the problems ad-

dressed in this dissertation and could yield potential future work for further enhancing

the effectiveness of the aggregation approach.
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[72] Marcus Märtens and Dario Izzo. The asynchronous island model and NSGA-II:

study of a new migration operator and its performance. In Proceedings of the 15th

annual conference on Genetic and evolutionary computation, GECCO ’13. ACM, July

2013.

[73] Steven Martin and Pascale Minet. Holistic and trajectory approaches for distributed

non-preemptive FP/DP* scheduling. In International Conference on Networking,

pages 296–305. Springer, 2005.

[74] Steven Martin and Pascale Minet. Schedulability analysis of flows scheduled with

FIFO: application to the expedited forwarding class. In Proceedings 20th IEEE Inter-

national Parallel & Distributed Processing Symposium, pages 8–pp. IEEE, 2006.

[75] Steven Martin and Pascale Minet. Worst case end-to-end response times of flows

scheduled with FP/FIFO. In International Conference on Networking, International

Conference on Systems and International Conference on Mobile Communications

and Learning Technologies (ICNICONSMCL’06), pages 54–54. IEEE, 2006.

[76] Steven Martin, Pascale Minet, and Laurent George. The trajectory approach for the

end-to-end response times with non-preemptive fp/edf. In Software Engineering

Research and Applications: Second International Conference, SERA 2004, Los Angeles,

CA, USA, MAY 5-7, 2004, Revised Selected Papers 2, pages 229–247. Springer, 2006.

[77] Sara Medlej. Scalable Trajectory Approach for ensuring deterministic guarantees in

large networks. PhD thesis, Université Paris Sud-Paris XI, 2013.
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Appendix A

Statistical Tools

A.1 Bootstrapping

Bootstrapping refers to a family of statistical techniques that rely on resampling with re-

placement. They are used to estimate the distribution of a statistic or metric, particularly

when the number of samples is limited. This is often the case when evaluation is costly,

like in simulation for instance. The bootstrapping technique suggests to resample from

the original dataset by sampling with replacements and uses an equiprobable sampling

distribution. By creating many such resamplings, known as ”bootstrap sample”, the dis-

tribution of the statistical measure can be studied, reflecting the statistical distribution of

the original dataset. The bootstrapping technique allows the computation of different sta-

tistical measures and metrics like mean, average, bias, variance, confidence intervals, and

others.

In 1979, ”the bootstrap” was first published by Efron in [39] as a generalization of the

”jackknife”, based on principles introduced by Quenouille in 1951 in [85] and developed by

Tukey in [102]. It is essentially a resampling method based on systematically leaving out

observations to approximate the bias and variance of a dataset. The work by Efron allowed

to alleviate certain limitations of the ”jackknife” method and improve flexibility, accuracy,

and applicability. The improvements include utilization of a large variety of statistical mea-

sures, increased robustness and applicability to larger datasets. A practical introduction

and overview of different bootstrapping variants is given by LaBudde and Chernik in [62].

In this dissertation, bootstrapping is used to estimate the general behavior of short

simulations in comparison to long simulations in Chapter 3. This is done by resampling

with replacement from the dataset of short simulations in order to create ”resampled ex-

periments” and compare them to the set of long simulation experiments. For each ”re-

sampled experiment”, a number of short simulations are sampled such that the total sim-

ulation time budget is equal to the simulation time of a long simulation. This is valid as

all executions of the short simulations are independent of each other, and the starting

conditions are sampled equiprobably. As a consequence, each of the resampled short sim-

ulations could ”naturally” occur when running a short simulation aggregation experiment.
121



122 APPENDIX A. STATISTICAL TOOLS

This way, a large number of virtual aggregation experiments could be produced without

investing extensive simulation efforts. However, one notable limitation of this approach

is that it does not allow the discovery of new data, notably higher or lower end-to-end de-

lays than are present in the original dataset from which it is resampled. This limitation

is not significant in the experiments where resampling was used, as the focus is on the

general performance trend of short simulation aggregation. More details about how the

resampling was carried out can be found in [56].

A.2 Probability Distribution Function (PDF)

Figure A.1: Example PDF, CDF and QF
The figure shows an example of a probability distribution function and the cor-
responding cumulative probability function and quantile functions. Further, an
example value px := 3.5 is annotated, which represents (approximately) the value
of the 90% quantile in this example.
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A probability distribution function (PDF) represents the probability distribution of a ran-

dom variable with respect to its possible values. For instance, Figure A.1 shows a con-

tinuous PDF where the x-axis displays the value of a random variable E and the y-axis

describes the probability of observing a specific value. As the probability of observing all

values is one, the integral (or area under the curve) of the PDF is equal to one.

The cumulative distribution function (CDF) is related to the PDF and describes the

cumulative probability of the variable E being less or equal to the value px. The CDF is

obtained by integrating the PDF from negative infinity to px and represents the probability

of the random variable E taking a value smaller than or equal to px.

The quantile function (QF) is the inverse of the CDF and represents the value of px such

that the quantile portion of the dataset is below or equal to the value px. All three functions

are illustrated in Figure A.1, based on an example log-normal function as the PDF.

A.3 Quantiles

Quantiles are statistical measures that divide a dataset into equally sized contiguous inter-

vals. We can define a p quantile as a value xp with 0 < p <= 1, such that a portion p of the

dataset lies below (or equals) xp and a (1 − p) portion of the dataset lies above xp.

As an example, given a dataset {0,2,4,5,6,8, 10}, the first 50% quantile contains values

{0,2,4,5} and the second 50% quantile contains the remaining values. Figure A.1 illus-

trates a 90% quantile of a continuous dataset represented by a log-normal function and

comprises all the observations up to approximately the value of px := 3.5.

In worst-case delay evaluation, we are typically interested in very rare events. Thus,

rather large quantiles are considered. For instance, a typical quantile of interest is the

99.9999% quantile (1 − 0.16 quantile), which represents events that occur once in one

million observations. We defined these quantiles as exponentials as follows

QE := 1 − 0.1E

where E is the exponent of the fraction. It should be noted there is no standard notation

for quantiles and it can be encountered for other quantiles or quartiles, for instance Q3 is

a popular notation to describe the third quartile or 75% quantile but it can also be encoun-

tered as the 99.9% quantile.

A.4 Boxplot

Boxplots, introduced by Tukey in 1977 in [103], are a representation of statistical data that

display the distribution of the dataset based on its quartiles. A quartile is a quantile of a
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multiple of 25% of the dataset as introduced in the section A.3.

The statistical measures displayed by a box plot include the minimum, the first quantile

(or 25% quantile), the median (or second quartile, 50% quantile), the third quartile (or 75%

quantile), and the maximum. The boxplot extends from the whiskers that extend up to 1.5

times the inter-quartile range (the range between the 25% quantile and the 75% quantile),

and everything above or below these values is considered outliers.

As depicted in Figure A.2, the whiskers are displayed at horizontal lines at the top and

bottom of the boxplot, the inter-quartile range is displayed as a box containing a horizon-

tal line which represents the median and the outliers are typically represented as dots or

small circles. Box plots allow the visualization and comparison of the central tendency of

distributions of datasets, as is done in this dissertation in Chapter 3.

Figure A.2: Example Boxplot
An example boxplot that shows a data distribution in a range from 70 to 135 with 3
outliers. All relevant measures, like minimum, maximum, median, and quartiles,
are annotated accordingly.



Appendix B

Test Case Details

This chapter provides additional information on each use case to improve the reproducibil-

ity of the experiments and provide deeper insights into the diverse configuration charac-

teristics. Each of the following sections will provide plots showing the distribution of flow

receptions, frame sizes, flow periods (or minimum distance between emissions for spo-

radic flows), and reception deadlines.

The following sections present the details of the test cases presented in Chapters 3.3.2,

4.3.1 and 5.3.1. Please note that the automotive FP/FIFO and FP/FIFO+CBS configura-

tions presented in Chapter 3.3.2 are identical as they only differ by the used QoS mecha-

nisms, and their traffic characteristics are shown in Section B.1. In Section B.2 the traffic

characteristics of the FIFO version of the automotive configuration in Chapters 4.3.1 and 5.3.1,

which substitute the CBS version used in Chapter 3.3.2, are presented. In the case of spo-

radic flows, the values reported as period refer to the minimum distance between packet

emissions. The lowest priority flows sometimes represent best-effort traffic and may not

have deadlines for that reason. In that case, they are reported as zero.
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B.1 Automotive Configuration with FP/FIFO traffic

Figure B.1: Automotive FP/FIFO - Flow receptions per flow.
The plot shows the number of receptions (on the y-axis) per flow (on the x-axis).
Flows are sorted and colored by ascending priority and ordered by ascending
number of receptions.

Figure B.2: Automotive FP/FIFO - Frame sizes per flow.
The plot shows the frame sizes in byte (on the y-axis) per flow (on the x-axis).
Flows are sorted and colored by ascending priority and ordered by ascending
frame sizes.
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Figure B.3: Automotive FP/FIFO - Frame periods per flow.
The plot shows the frame periods in milliseconds (on the y-axis) per flow (on the
x-axis). Flows are sorted and colored by ascending priority and ordered by as-
cending periods. The ACK and DATA components of TFTP flows have no periods
as they are dialogue-based and are reported as zero.

Figure B.4: Automotive FP/FIFO - Deadlines per flow reception.
The plot shows the deadline in milliseconds (on the y-axis) per flow reception (on
the x-axis). Flow receptions are sorted and colored by ascending flow priority and
ordered by ascending deadlines. The lowest priority flows are best effort, which
have no deadline, and are reported as zeros in this plot.
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B.2 Automotive Configuration with FIFO traffic

Figure B.5: Automotive FIFO - Flow receptions per flow.
The plot shows the number of receptions (on the y-axis) per flow (on the x-axis).
Flows are ordered by ascending number of receptions.

Figure B.6: Automotive FIFO - Frame sizes per flow.
The plot shows the frame sizes in bytes (on the y-axis) per flow (on the x-axis).
Flows are ordered by ascending frame sizes.
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Figure B.7: Automotive FIFO - Frame periods per flow.
The plot shows the frame periods in milliseconds (on the y-axis) per flow (on the
x-axis). Flows are ordered by ascending periods. The lower blocks represent flows
with 0.33 ms, 0.9 to 1.33 ms and 10 ms periods.

Figure B.8: Automotive FIFO - Deadlines per flow reception.
The plot shows the deadline in milliseconds (on the y-axis) per flow reception (on
the x-axis). Flow receptions are ordered by ascending deadlines. Some best-effort
flows, that have no deadlines, are included and are reported as zero.
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B.3 Avionics Configuration with FP/FIFO traffic

Figure B.9: Avionics FP/FIFO - Flow receptions per flow.
The plot shows the number of receptions (on the y-axis) per flow (on the x-axis).
Flows are sorted and colored by ascending priority and ordered by ascending
number of receptions.

Figure B.10: Avionics FP/FIFO - Frame sizes per flow.
The plot shows the frame sizes in bytes (on the y-axis) per flow (on the x-axis).
Flows are sorted and colored by ascending priority and ordered by ascending
frame sizes.
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Figure B.11: Avionics FP/FIFO - Frame periods per flow.
The plot shows the frame periods in milliseconds (on the y-axis) per flow (on
the x-axis). Flows are sorted and colored by ascending priority and ordered by
ascending periods.

Figure B.12: Avionics FP/FIFO - Deadlines per flow reception.
The plot shows the deadline in milliseconds (on the y-axis) per flow reception (on
the x-axis). Flow receptions are sorted and colored by ascending flow priority and
ordered by ascending deadlines.



132 APPENDIX B. TEST CASE DETAILS

B.4 Avionics Configuration with FIFO traffic

Figure B.13: Avionics FIFO - Flow receptions per flow.
The plot shows the number of receptions (on the y-axis) per flow (on the x-axis).
Flows are ordered by ascending number of receptions.

Figure B.14: Avionics FIFO - Frame sizes per flow.
The plot shows the frame sizes in bytes (on the y-axis) per flow (on the x-axis).
Flows are ordered by ascending frame sizes.
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Figure B.15: Avionics FIFO - Frame periods per flow.
The plot shows the frame periods in milliseconds (on the y-axis) per flow (on the
x-axis). Flows are ordered by ascending periods. The lower blocks represent flows
with periods from 0.3 to 0.33ms, 0.9 to 1.66 ms and 10 ms.

Figure B.16: Avionics FIFO - Deadlines per flow reception.
The plot shows the deadline in milliseconds (on the y-axis) per flow reception
(on the x-axis). Flow receptions are ordered by ascending deadlines. Best-effort
flows, which have no deadline, are shown as zero.
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B.5 Space Launcher Configuration

Figure B.17: Space Launcher FP/FIFO - Flow receptions per flow.
The plot shows the number of receptions (on the y-axis) per flow (on the x-axis).
Flows are sorted and colored by ascending priority and ordered by ascending
number of receptions.

Figure B.18: Space Launcher FP/FIFO - Frame sizes per flow.
The plot shows the frame sizes in bytes (on the y-axis) per flow (on the x-axis).
Flows are sorted and colored by ascending priority and ordered by ascending
frame sizes.
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Figure B.19: Space Launcher FP/FIFO - Frame periods per flow.
The plot shows the frame periods in milliseconds (on the y-axis) per flow (on
the x-axis). Flows are sorted and colored by ascending priority and ordered by
ascending periods.

Figure B.20: Space Launcher FP/FIFO - Deadlines per flow reception.
The plot shows the deadline in milliseconds (on the y-axis) per flow reception (on
the x-axis). Flow receptions are sorted and colored by ascending flow priority and
ordered by ascending deadlines.




