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General Abstract

Living organisms, from Archaea to Bacteria and Eukarya, are primarily composed of a fixed
set of small molecules known as metabolites. Metabolism encompasses the biochemical interac-
tions of these metabolites to maintain cellular functions of producing energy and synthesizing
new molecules. The rise of genome sequencing in the 90s revolutionized molecular biology
research from investigating individual disconnected entities such as enzymes into studying bi-
ology at a systems level of interconnected entities. This systems approach, called Systems
Biology, aims to integrate entities at different scales, including networks of metabolites, genes,
cells, tissues, and even networks of organisms in an ecosystem. Due to the well-annotation of
the enzymatic biochemical interactions, metabolic networks were the first reconstructed bio-
logical networks representing the collective interactions of metabolites, genes, and reactions.

Metabolic network modeling is one of the Systems Biology tools with many applications,
such as improving industrial metabolite yield, analysis of interspecies interactions, biomarker
discovery, and drug repurposing. Metabolic network modeling extends to discovering new hy-
potheses by analyzing inconsistencies between experimental results and predictions. Like other
Systems Biology approaches, metabolic network modeling is scalable from core-metabolism
networks into genome-scale metabolic models (GEMs), multi-cellular GEMs, and whole-body
multi-tissue GEMs. Regardless of the GEMs’ scalability, they are built using generic recon-
structions that are species-specific, disease-agnostic GEMs that compromise all possible reac-
tions in this species. Generic reconstructions are routinely used to construct disease-specific
GEMs, known as context GEMs, with model-building tools such as (r)FASTCORMICS. These
context GEMs allow target identification and drug repurposing, redirecting approved drugs
to new diseases. Drug repurposing is a cost and time-effective alternative to traditional drug
discovery to escape phase I toxicity clinical trials. In addition to computational drug repur-
posing, experimental drug repurposing usually involves high-throughput screenings (HTS) of
approved drugs in vitro or in vivo. While many computational drug repurposing approaches
have been developed, metabolic modeling-based drug repurposing stands out for its interpre-
tation and holistic method.

In this thesis, we showed the applications of metabolic modeling for drug repurposing in
glioma, melanoma, breast cancer, and COVID-19. With a focus on glioma, we started with a
review of GEMs in the brain that define valuable resources for our work in glioma metabolic
modeling. The rationale for focusing on glioma is the limited preclinical models for low-grade
glioma and the extremely poor survival in glioblastoma. Continuing the work in our depart-
ment by Tamara Bintener for melanoma metabolic modeling, we benchmarked the predicted
drugs against the approved and other preclinical drugs in nitric oxide metabolism under var-
ious metastasis, drug resistance, and BRAF/NRAS mutation conditions. In the four studied
diseases, we evaluated the predicted drugs to approved drugs in the respective diseases using
in vitro HTSs, xenografts HTSs, and clinical trials. Aside from drug repurposing, metabolic
modeling identified different metabolic exchanges in the glioma subtypes and Covid19 consis-
tent with metabolomics studies and radiotracers uptake.



At least a third of the predicted drugs in glioma, melanoma, and Covid19 tested in clinical
trials showed comparable or improved survival compared to the approved drugs. Notably,
predicted TXNRD1 vulnerability by fotemustine in melanoma and glioma was found to be
approved in some countries for melanoma and showed comparable survival to an approved
drug in glioma. Exceeding the largest combination HTS by more than 20 folds, combination
prediction for glioma predicted 17 combinations out of > 124,000 possible combinations, of
which two combinations matched known vulnerabilities in the respective glioma subtypes.

Overall, this thesis provides an overview of how metabolic modeling can be used to detect
biomarkers and repurpose drugs, where metabolic modeling was competitive with preclinical
methods and could predict new drugs.
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Chapter 1

Synopsis

1.1 Introduction

Besides the various historical pharmacopeias, the rigorous search for treatments has evolved

steadily from compound isolation from natural products (NPs) and chemical synthesis in the

19th century to biotechnologically-derived drugs since 1935 [1]. In the latter phase, also known

as the Golden Age of drug discovery, many antibiotics and cardiovascular drugs, among others,

were discovered, transforming the top deadliest diseases of the early 20th century into pre-

ventable or treatable rare diseases [1]. Preclinical models have been the gold drug discovery

standard, including cell lines, animal models, xenografts, and organoids [2]. Despite their im-

portance, preclinical models face many challenges that reduce the candidate drugs’ success in

clinical trials [2]. For instance, preclinical models fail to capture the complexity of human pa-

tients [3], some disease models are hard to culture, such as oligodendroglioma (ODG) [4], and

infection disease models may require extensive biosafety measures [5]. Consequently, half of

phase II clinical trials between 2005 and 2015 failed to exceed the predetermined primary out-

comes [6]. Similarly, the overall probability of success to pass from phase I to approval is 13.8%,

with oncology drugs having the lowest 3.4% probability of success [6]. These challenges lead to

a time-consuming and costly drug discovery process [7] that is less efficient in multi-factorial

diseases such as neurodegeneration and cancer [8] and rare diseases with a small population [9].

While drug discovery is still increasing the arsenal of approved drugs with new mode-of-

actions and improved affinity, the plateau of newly approved drugs in the last three decades is

forcing the drug industry to utilize these previously approved drugs [10]. Drug repurposing,

redirecting approved drugs to other target diseases, contributes increasingly to drug approvals,
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escaping years of phase I safety trials [11]. Once preclinical efficacy is established for the new

target disease, drug repurposing redirects approved drugs to phase II trials [11]. Besides ap-

proved chemotherapies, repurposing non-cancer drugs to cancer is gaining more momentum,

either as combined with chemotherapies or as monotherapy preventive drugs to reduce cancer

incidence [12]. Among the most successful repurposed non-cancer drugs is the immunosuppres-

sant rapamycin, approved for a kidney transplant, which was later repurposed and approved

for renal cancer [13]. Most preclinical drug discovery and repurposing approaches utilize small

compounds to reverse the disease phenotype or inhibit the disease target. Meanwhile, ex-

perimental high-throughput drug screening (HTS) allowed automated screening of thousands

of approved and investigational drugs on the preclinical models using robotics [14]. Various

types of HTS assays evolved both drug discovery and repurposing, such as target inhibition,

cellular viability reduction [14], and reversing pathogen-host molecular hijacking [15]. Still,

the preclinical model’s limitations constrain experimental drug repurposing, and exhaustive

drug combination screening is infeasible.

Complementary to preclinical models, computational drug discovery advanced the ap-

proval of new drugs through two phases: structure-based drug design and genome sequencing.

In 1981, captopril became the first drug to be approved employing a computer-aided drug

design based on the angiotensin-converting enzyme (ACE) protein structure [16]. In 2003,

the first human reference genome and the subsequent commercially available next-generation

sequencing advanced drug discovery through a systematic association between genotype and

phenotype [17]. Notably, two-thirds (n=33) of the 50 Food and Drug Administration (FDA)-

approved drugs in 2021 were supported by human genetic evidence using structure and genome

data [18]. Unlike previous associations of single genes to the target disease, Systems Biology

integrates the complex interactions of the different genomic levels [17], [19]. Systems Biology

application in medicine, or Systems Pharmacology, allowed associating drug response with

genetic biomarkers or transcriptomic signatures, changed clinical trial randomization, and in-

troduced new targeted therapies and diagnoses [20]. For example, finerenone was approved in

2021 based on a Systems Biology analysis linking an NR3C2 variant to chronic kidney disease

using genome-wide associations and functional genomics [21]. Still, signature- and genome-

based drug discovery lacks mechanistic interpretation [22]; meanwhile, structure-based drug

discovery fails with multi-factorial complex diseases [23]. While the annotation quality is lack-

ing or non-existent for non-metabolic genes and their interactions, metabolic genes and their

biochemical reactions are by far the most well-annotated [24].
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Of the computational drug discovery approaches, metabolic network modeling is a qualita-

tive method that simulates the physiological cellular metabolism or the pathological metabolic

rewiring [25]. The publication of the human genome reference allowed the building of the first

human generic reconstruction facilitating metabolic network modeling for human diseases [26].

A generic reconstruction is a species-specific, phenotype-agnostic, mathematical representa-

tion of the biochemical network that incorporates metabolites, reactions, and genes on a

genome-scale [26]. Each reaction is defined by a Boolean rule (gene-protein-reaction rules,

GPR rules) of gene isoforms, using "AND" or "OR" rules [26]. The mathematical representa-

tion of metabolic modeling depends on constraints distinguishing it from kinetic models [27].

The constraints of metabolic modeling consist of linear equalities of mass balance and in-

equalities of upper and lower boundaries. The equalities come from the metabolic network’s

representation as a sparse stoichiometric matrix S of m metabolites in rows and n reactions in

columns [25]. The values of the S matrix are the stoichiometric coefficients of the interacting

metabolites in each reaction, while the sign of these stoichiometric coefficients represents the

directionality of the metabolites in each reaction [25]. Most of the S matrix contains zero

coefficients that represent no reactions of the related metabolites [25]. In addition to the S

matrix, the rates of the reaction turnover are represented by a flux vector v that has n length.

Under the steady-state assumption, the metabolic production and consumption are balanced

in mass and charge, and thus, the multiplication of S matrix and v equals zero.

S ∗ v = 0 (1.1)

To simulate the metabolic process of interest, an objective function (OF) is assigned based

on the biological question and set to be maximized, such as ATP production or biomass growth,

or minimized, such as in unneeded byproducts [25]. The allowable flux search space for the

OF is reduced using the constraints of balances and boundaries. Among the permissible flux

distributions, the most optimal solution is determined by the Flux Balance Analysis (FBA) to

achieve the selected OF [28]. Meanwhile, the flux range of specific reactions is defined by the

Flux Variability Analysis (FVA) to achieve the OF, for example, determining if a metabolic

exchange is an uptake, efflux, or both [29]. Since the different metabolic reactions vary across

phenotypes, tissues, and diseases, building genome-scale metabolic models (GEMs) out of

the generic reconstruction is crucial for drug repurposing. FASTCORMICS [30] and rFAST-

CORMICS [31] are for context model-building workflows using microarray and RNA-Seq,

respectively, in addition to a generic reconstruction. Both workflows utilize the FASTCORE
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algorithm that takes a set of core reactions as input and searches for the minimal set of non-

core reactions to obtain a flux-consistent subnewtork [32]. FASTCORMICS was benchmarked

against other model-building algorithms, where it retrieved the highest fraction of core reac-

tions and the lowest fraction of non-core reactions [33].

The interpretability and the scalability of metabolic modeling advanced many industrial

applications, such as improving microbial metabolite yield [34] and ex vivo tissue genera-

tion for cultivated meat [35]. In human health, metabolic modeling’s applications extend to

disease target identification [31], drug repurposing [36], biomarker prediction [37], modeling

in-born metabolism errors [38], and understanding microbiome-host interactions [39]. Similar

to genome-scale CRISPR gene knock-out (KO), in silico gene deletion can predict disease-

specific essential genes of the context GEMs whose KO would reduce the OF but on only

metabolic genes [40]. Moreover, the drug deletion pipeline simulates the multi-gene KO by

the drug targets similar to the HTS [31]. While metabolic modeling applications in microbial

engineering are enormous, few drugs predicted by metabolic modeling went into clinical tri-

als [41], [42]. Similar to finerenone approval that was supported by functional genomics [21],

drug repurposing using metabolic modeling could advance drug approval with improved inter-

pretation, especially for multi-factorial diseases such as cancer and newly emerging infections.

In the United States (U.S.) between 2013 and 2019, five-year relative survival for melanoma

and breast cancer (BRC) were 93.5% and 90.8% [43]. Meanwhile, the five-year relative survival

of glioma patients — a type of brain cancer that originates from the glial cell— varies among

the glioma subtypes (6.2% for glioblastoma multiforme (GBM) and 45.9% for astrocytoma

(AST)) [43]. On the other hand, by using the five-year incidence rate per 100,000, breast cancer

has a much higher incidence rate (127) than melanoma (21) and glioma (0.8-3.2) [43]. Despite

the variations in survival and incidence, the discovery of many cancer type-specific oncogenes

and biomarkers transformed cancer diagnosis and treatment, such as estrogen receptor (ER),

HER2, and BRCA1/2 in BRC [44], BRAF and NRAS mutation in melanoma [45], and IDH1/2

mutation and 1p/19q co-deletion in glioma [46]. Generally, approved chemotherapies by the

U.S. FDA for these cancer types are either cell cycle inhibitors (CCIs) or targeted therapy

inhibiting signaling pathways. Among the targeted therapies, immune checkpoint inhibitors

(ICIs) were the first drug class to enhance advanced melanoma survival and are currently

approved in melanoma and BRC, especially for BRAF-wiltype and non-V600E mutants [47].

Meanwhile, more than half of melanoma patients, 3% GBM and 2-5% low-grade glioma (LGG),

possess BRAF V600E mutation [45]. Consequently, the RAF/MEK inhibitor combination was
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approved by the FDA for BRAF-mutant cancers firstly for melanoma [48] and recently in June

2023 for LGG [49]. Still, BRAF-mutant melanoma shows resistance to RAF/MEK inhibitor

combination and high relapse rate [50].

Similarly, the PI3K/AKT/mTOR signaling pathway is dysregulated in the three can-

cers [51], which is targeted by approved drugs in BRC and glioma. Despite these advances,

alkylating agents of the CCIs, such as temozolomide (TMZ) and dacarbazine, are the most com-

monly prescribed drug class in melanoma patients lacking BRAF V600E mutation and glioma

patients, with low efficacy and high resistance. Additionally, only a fraction of melanoma

and BRC patients respond to ICIs with unclear response biomarkers, unlike the well-defined

RAF/MEK inhibitors for the BRAF V600E mutant [52]. Additionally, approved combinations

inhibit redundant targets for the same pathway, leading to preventable toxicity [53]. The high

incidence of BRC, the low survival rate and approved drugs for glioma, and the high relapse

of melanoma encourage the search for new preventive drugs for BRC and the repurposing of

previously approved drugs for glioma and melanoma.

Unlike cancer, emerging infections usually lack any approved treatment, and the incidence

rate increases dramatically if they develop into a pandemic like COVID-19. COVID-19 is

a highly proliferating viral infection of the human respiratory system that hijacks the host

molecular pathways [54] to enhance viral replication and infectivity rising to the 2020 global

pandemic. The host hijacking starts with viral entry via ACE2, an essential protein for

oxidative stress, then initiates RNA synthesis, mRNA translation, viral assembly, and exocy-

tosis [55]. While cancer showed prolonged immune evasion that requires ICIs to reactivate the

immune system, COVID-19 is often characterized by an acute immune response leading to

an inflammatory cytokine storm [54]. In 2020, searching for new effective treatments against

COVID-19 was pivotal but slow due to the biosafety requirements for viral experiments. In

2023, in addition to vaccination, approved treatments for COVID-19 are either immunomodu-

lators targeting host immune response or antivirals targeting viral entry or replication mecha-

nisms [55]. Acknowledging the host metabolic hijacking by COVID-19 in the early pandemic,

many approved drugs have been tested in clinical trials for COVID-19 to modulate the host

metabolism [56]. Still, none of the metabolic-modulating drugs have passed the phase IV

clinical trials [56].

Besides the dysregulated ACE2 system in COVID-19, metabolic rewiring plays a cru-

cial role in cancer, from dysregulation of oxidative stress in LGG [57], ER in BRC, and
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lipid metabolism in melanoma. Additionally, few approved drugs in GBM, drug resistance in

melanoma, and high incidence in BRC and COVID-19 motivate the repurposing of new drugs

and combinations to address the disease-induced metabolic rewiring. Despite the scale of HTS,

combination HTS requires brute-force the squared number of drug experiments that limit the

options of tested drugs [58]. Meanwhile, computational drug repurposing allows faster drug

prioritization, especially with the prediction of drug combinations [23] and hard-to-cultivate

cell lines such as ODG [4]. Similarly, computational drug repurposing of infectious diseases is

crucial due to the in vitro biosafety restrictions and the urgency to cope with new emerging

variants [59]. Thus, the need for computational drug repurposing through metabolic modeling

for these diseases with proper interpretation as quality control is pivotal.

In this synopsis, we cover four papers on metabolic modeling applications in drug repurposing

and evaluate the strengths and limitations given the proposed aim. These aims are:

• Prediction of essential genes and FDA-approved repurposable drugs for COVID-19 [60] and

glioma [61].

• Ranking NPs with potential anti-BRCs effect [62].

• Evaluating predicted drugs for melanoma under metastasis, drug resistance, and BRAF/N-

RAS mutation. [63].

Post-publication evaluation includes ranking predicted to approved drugs in xenografts,

cross-study comparison of the predicted essential genes and drugs, and how the variations

in predicted genes and drugs are consistent with literature and clinical trials. Finally, we

will discuss the limitations in each paper and perspectives on drug repurposing in pan-cancer

stratification and multi-organ infectious diseases. These perspectives could enhance drug re-

purposing for cancer or new COVID-19 variants into clinical application.

1.2 Methods

1.2.1 Data and model building

rFASTCORMICS [31] was fed with RNA-Seq from glioma subtypes’ patients [64], melanoma

cell lines and tissues, and SARS-CoV-2 infected lung cells [65], [66] to build consensus GEMs

for every disease with various ReconX generic reconstructions and medium constraining (see

Table 1.1 for details). Meanwhile, FASTCORMICS [30] was fed with NP- and DMSO-treated

BRC microarray data [67] with Recon3D [68] as input reconstruction. The ReconX generic
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reconstructions used from the COVID-19 model building were curated with the viral biomass

objective function (VBOF) of SARS-CoV-2-infected alveolar macrophage model (BioModels:

MODEL2003020001) [69]. Unlike the in vitro medium of melanoma and BRC models, glioma

models were built with a biofluid medium (cerebrospinal fluid, CSF [70], [71]) because our

previous review defined CSF as the commonly used medium for brain GEMs [72]. The de-

fault growth function (biomass_reaction) in ReconX was used as an OF for the three cancers.

Meanwhile, the VBOF was set as OF for COVID-19 GEMs while ensuring the host OF and

VBOF carry flux simultaneously by setting the host OF’s upper bounds to 10% of its maximal

flux.

Table 1.1: Summary of the aim, data, model building algorithm, and generic
reconstruction used for the four studied diseases.

Disease Motivation Input ex-
pression
data

Model
building
algorithm

Generic
recon-
struction

Medium
data

Glioma
• Our review on brain GEMs indi-

cated the absence of LGG GEMs
and GBM GEMs are either built
non-genome scale or lack manual
curation [72].

• IDH-mutation in LGG induces
metabolic rewiring [57].

• GBM patients suffer from poor
survival, which increases clinical
trial failure [73].

• Preclinical models in LGG are
limited [57], [74].

• Few drugs are approved for
glioma.

Patient RNA-
Seq data for
glioblastoma
(TCGA-
GBM) and
LGG (TCGA-
LGG) [64]

rFASTC-
ORMICS
[31]

Recon3D
[68]

CSF
[70], [71]

Melanoma
• RAF/MEK inhibitors are ineffec-

tive for melanoma patients lack-
ing BRAF V600E mutation and
show resistance in BRAF mutant
patients [47].

• Approved immune-checkpoint in-
hibitors are only effective in a
sub-population with poorly de-
fined biomarkers [52].

• Resistant melanoma shifts to
oxidative phosphorylation and
deregulated lipid biosynthe-
sis [75].

Various RNA-
Seq data from
melanoma pa-
tients and cell
lines.

rFASTC-
ORMICS

Recon2 [76] RPMI

8



Chapter 1- Synopsis

Breast
cancer • Many natural products (NPs),

some of which are part of the
daily diet, have a phytoestrogen
effect that could modulate the
hormone response in BRC [77].

• More than 60% of approved anti-
cancers and 23.8% of all approved
drugs originate from NPs [78],
[79].

Microarray
data of NP-
treated BRC
cell line [67]

FASTC-
ORMICS [30]

Recon3D MEM/-
EBSS

COVID-
19 • ACE2 is the viral entry receptor

into the host cell and is crucial in
oxidative stress [55].

• The required biosafety labora-
tories for handling infected cell
lines emphasize the need for in
silico drug repurposing [5].

• SARS-CoV-2 infected lung is a
highly proliferating cell with an
active glycolysis profile as can-
cer [80].

RNA-Seq
data from
lung cell lines
infected with
SARS-CoV-
2. [65], [66]

rFASTC-
ORMICS

Recon2 and
Recon3D

No
medium

1.2.2 Prediction of essential genes and drugs

Single gene deletion from the COBRA Toolbox v.3.0 [40] was used to predict essential genes

in glioma, melanoma, and COVID-19, whose KO would reduce the viral/cancer proliferation.

Due to the small number of samples in DMSO BRC GEM, single-gene deletion was excluded

for BRC. Genes whose KO is predicted to reduce the OF by at least 50% were considered

essential genes.

To predict single drugs, the drug deletion pipeline [81] was run with FDA-approved drugs

(>2300 drugs) for glioma, melanoma, and COVID-19 GEMs. Meanwhile, the NPs and ap-

proved anti-BRCs were used for BRC GEMs. Drug-target interactions were extracted from

databases such as DrugBank [82] in the drug deletion pipeline. Due to the small number of ap-

proved combinations and their redundant target pathways in glioma, drug deletion was applied

to the glioma GEMs to predict new combinations using FDA-approved drugs combined with

investigational anti-glioma drugs (IAGs). Similar to essential genes, drugs, and combinations

whose multi-gene KO are predicted to reduce the OF by at least 50% were considered candi-

date single drugs and combinations, and due to the absence of target information for 56% of

the NPs, drug prioritization in NP GEMs (n=102) employed various steps to define potential

anti-BRC even without target information. The drug prioritization in NP consisted of four

steps: 1) drug deletion with NP targets, 2) dissimilarity to the DMSO GEM, 3) similarity to

approved anti-BRC GEMs, and 4) metabolic pathway alternation. This multi-step approach
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ensured ranking for NPs without target information.

1.2.3 Drug prioritization and essential genes evaluation

Predicted drugs, their targets, and essential genes were evaluated against approved drugs

and their targets in vitro, in xenografts and clinical trials in melanoma and glioma. This

analysis was extended to melanoma to identify if the predicted drugs and their targets would

maintain their efficacy in resistance, metastasis, and BRAF/NRAS mutation.

1.2.3.1 Evaluation of metabolic exchanges from literature

Differences between the glioma subtype GEMs in metabolic exchanges can help to evaluate

the model quality using known metabolic exchanges from the literature. The minimum and

maximum fluxes for the uptake and export reactions for the three glioma GEMs were com-

puted using FVA in the COBRA Toolbox v.3.0 [40]. Metabolic exchanges with narrow bounds

were selected as mandatory uptake or export reactions and were compared to known metabolic

variations in the glioma subtypes in literature. Due to the lack of metabolic exchange studies

on COVID-19 in 2020, predicted essential genes and their pathways in COVID-19 were com-

pared to a metabolomics [83] and a multi-omics [84] studies.

1.2.3.2 In vitro drug HTS

To evaluate predicted drugs in glioma and melanoma against approved, in vitro pan-cancer

and glioma-specific HTS databases were used. Viability reduction from two databases [85], [86],

IC50 measures from four databases [86]–[88] and literature allowed retrieving these two mea-

sures for predicted and approved drugs. Median viability reduction and IC50 measures were

calculated for each drug across the cancer cell lines. Due to the high relapse rate in melanoma

patients treated with RAF/MEK inhibitors’ resistance, predicted drugs for melanoma were

compared to approved drugs using three analyses: metastatic, anti-melanoma resistant, and

BRAF/NRAS mutant cell lines.
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1.2.3.3 Pan-cancer CRISPR dependency data

To evaluate the predicted essential genes and drug targets of glioma and melanoma against

approved drug targets’ performance in reducing cancer cell growth, a genome-scale pan-cancer

CRISPR-Cas9 dependency data (Cancer Dependency Map, DepMap) [89] was used. The de-

pendency probabilities (the likelihood that the KO of a gene reduces cell growth or induces cell

death) were retrieved for essential genes, predicted, and approved drug targets from DepMap

22Q1. The median dependency probabilities were calculated for each gene across the respec-

tive cancer cell lines.

1.2.3.4 Xenograft data

Three GBM patient-derived xenograft (PDX) HTS [90], [91] allowed ranking predicted

drugs for glioma against approved drugs. Median growth reduction was calculated across the

GBM PDXs for each drug.

1.2.3.5 Clinical trial data

Predicted drugs in glioma and melanoma were searched for phase I/II or higher clinical

trials in beta.clinicaltrials.gov [92] and Cochrane Library [93] in their respective cancer

indication. If available, priority was given in order of network meta-analysis, systematic re-

views, and two-arm randomized controlled trials (RCT) where one arm is an approved drug

and the 2nd arm is a predicted drug. Due to the limited clinical trials in melanoma for the

predicted drugs, the search was expanded to skin cancer.

1.2.4 Post-publication drug prioritization

Previous evaluations of predicted drugs and essential genes were limited in BRC and

COVID-19 due to the scarcity of HTS screening for NPs and SARS-CoV-2-infected human

cells in 2020. In this section, we extend the published evaluations to include more HTS screen-

ing databases, xenograft data for melanoma and BRC, and clinical trial data for COVID-19,

BRC, and melanoma. Moreover, we compare the predicted NPs from the microarray to the
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remaining NPs excluded from our analysis (hereafter will be referred to as "Excluded").

1.2.4.1 In vitro drug HTS

In addition to IC50 measures from literature, PharmacoGx R package [94] was used to

retrieve IC50 measures for predicted and approved drugs across the three cancers from 14

pan-cancer and cancer-specific HTS databases [86]–[88], [95]–[103]. Additionally, the median

viability reduction from 23Q2 PRISM database [86] was retrieved for the predicted and ap-

proved drugs in the respective cancer indication. Meanwhile, most in vitro HTS in COVID-19

are limited due to the required biosafety laboratories and mainly applied to non-human cell

lines [104]. Among the various HTS against COVID-19, cytopathic effect (CPE) reduction

assay indirectly monitors the ability of drugs (or genes in case of knock-down/CRISPR) to

decrease live viral replication and infection through reversing the hijacked host molecular mech-

anisms [105]. Most in vitro CPE HTS in COVID-19 are tested using the non-human primate

kidney Vero/Vero E6 cell lines that have metabolic profiles from human cells [106]. Across 15

in vitro CPE HTS in COVID-19, none was tested on human lung cells, so we choose Ellinger

et al. 2021 [107] as it was tested on human Caco-2 cell line. Predicted and approved (including

FDA/EMA-authorized for approval by Oct 2023) [55] drugs in COVID-19 were ranked based

on their CPE scores.

1.2.4.2 Pan-cancer CRISPR dependency data

Similar to drug target ranking in melanoma and glioma, predicted essential genes for

COVID-19 were compared against approved drug targets using a CRISPR screen on five

SARS-CoV-2-infected cells (four human cells and Vero E6 cell) [108].

1.2.4.3 Xenograft data

To identify the candidate drugs with potential in vivo cytotoxicity, in vivo PDX reduction

effect was extended from glioma to melanoma and BRC. Predicted and approved drugs for

melanoma and BRC were ranked using two PDX screening for melanoma [109] and BRC [110],

respectively. Across the three cancers, median IC50 for each drug was compared to the median

PDX score (growth reduction in glioma, DSS in melanoma, and AUC in BRC) to define which
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predicted drug maintained in vivo efficacy.

1.2.4.4 Clinical trial data

In addition to the collected clinical trial data in melanoma and glioma, beta.clinicaltrials.

gov was searched for the predicted drugs in BRC and COVID-19. Other retrospective studies

were included due to the scarcity of clinical data for NPs.

1.3 Results

In this synopsis, the predicted essential genes of three diseases (glioma, melanoma, and

COVID-19) were compared to disease-specific vulnerabilities in literature and evaluated against

approved drug targets in CRISPR screen dependency. The drug deletion pipeline results were

further assessed for the four studies (glioma, melanoma, BRC, and COVID-19), precisely over

three drug development phases in vitro, in xenografts, and clinical trials. This evaluation was

extended in melanoma into metastatic, drug-resistant, BRAF/NRAS mutant cell lines. In

BRC, predicted NPs were compared to both approved BRC drugs and NPS excluded from the

101 NPs.

1.3.1 Disease-specific essential genes match literature-retrieved dependen-

cies in glioma, melanoma, and COVID-19

Before drug repurposing, model quality was evaluated to verify the predicted essential

genes’ consistency with known vulnerabilities in the literature. Single gene analysis predicted

25, 35, and 23 essential genes (whose single KO reduced viral/cancer proliferation to at least

50%) for glioma, melanoma, and COVID-19 (see Table 1.2). Pathway analysis of the three

gene sets identified similar essential genes, especially between melanoma and glioma, and dif-

ferences indicative of disease-specific dependencies (see Figure 1.1). Six essential genes were

shared between the three diseases participating in nucleotide interconversion (CMPK1 and

GUK1), fatty acid uptake (SLC27A4), amino acid uptake (SLC7A5), sphingomyelin synthesis

(SGMS1), and cardiolipin synthesis (CRLS1). Lipid and cholesterol synthesis essential genes

were unique for melanoma. Meanwhile, cholesterol esterification was shared between glioma
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and melanoma. These differences agree with the role of lipid and cholesterol synthesis in resis-

tant melanoma cell lines [75]. On the other hand, glioma, especially GBM, bypass cholesterol

synthesis through CSF uptake, and cholesterol can be only targeted via uptake inhibition,

efflux activation [111] or esterification [112]. Additionally, six of the 25 glioma essential genes

have been previously tested in vitro KO or KD studies glioma, where five genes (TXNRD1,

RRM1-2, SPLTC1, and SLC27A4) decreased proliferation, and only one gene (PCYT2) in-

creased proliferation (see Figure 3.2).

Despite the shared metabolic essential genes, COVID-19 showed distinct vulnerabilities in

cysteine synthesis (CTH and SLC7A11), glycine synthesis (AGXT and PEPD), one-carbon

cycle by folate (OCCF: TYMS and DHFR), and sphingolipid salvage (GLTP). SAR-CoV-2

hijacking of OCCF has been validated in vitro [113]. Cysteine and glycine synthesis are crucial

for glutathione (GSH) synthesis and biomarkers for ferroptosis, an iron-dependent programmed

cell death that selenium can inhibit. Unlike the de novo sphingolipid synthesis predicted es-

sential in glioma and melanoma, COVID-19 is predicted to utilize sphingolipid via the salvage

pathway. All in all, predicted essential genes accurately matched literature-identified vul-

nerabilities such as ribonucleoside interconversion, cholesterol/lipid synthesis, and OCCF in

glioma, melanoma, and COVID-19, respectively.

1.3.2 Glioma and COVID-19 GEMs correctly captured biomarkers consis-

tent with patient data

The model quality was further evaluated based on consistency with literature in metabolic

exchanges. The three glioma subtype GEMs showed differential metabolic exchanges, of which

six out of seven reactions agreed with the literature (see Figure 3.1). Notably, high glutamate

uptake predicted by the LGG models was consistent with the LGG-specific glutamate deple-

tion in cell lines [114] due to IDH mutation-induced metabolic rewiring. Meanwhile, high

thymidine uptake predicted by the GBM GEM was consistent with GBM-specific thymidine

uptake in patients compared to AST [115] and ODG [116] patients.

Due to the lack of such metabolic uptake studies in COVID-19 in 2020, a metabolomics study

of SARS-CoV-2-positive and negative patients [83] was compared to the enriched pathways of

the predicted essential genes for COVID-19. Significant high serum ferroptosis biomarkers were

found in SARS-CoV-2-positive patients of the metabolomics study [83] such as kynurenines,

methionine sulfoxide, cystine, and free polyunsaturated fatty acids. Similarly, a cross-sectional
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Figure 1.1: Predicted essential genes in glioma, melanoma, and COVID-19
showed variations in nucleotide uptake/synthesis, lipid synthesis, sphingolipid sal-

vage/synthesis, and one-carbon cycle, respectively.

Single gene deletion was applied to glioma, melanoma, and COVID-19 to predict genes whose
KO would reduce viral/cancer proliferation. 25, 35, and 23 essential genes were predicted
for glioma, melanoma, and COVID-19. Six essential genes were shared between the three
diseases in five pathways: nucleotide interconversion (CMPK1 and GUK1), uptake of fatty
acids (SLC27A4) and amino acids (SLC7A5), and synthesis of sphingomyelin (SGMS1) and
cardiolipin (CRLS1). Notable disease-specific dependencies were ribonucleoside interconver-
sion and nucleotide uptake for glioma, de novo lipid synthesis and pyrimidine synthesis for
melanoma, and one-carbon cycle and cysteine synthesis for COVID-19. Six of 25 glioma
essential genes have been previously tested for in vitro KO or KD, where five genes of ri-
bonucleoside interconversion (RRM1 and RRM2), sphingolipid synthesis (SPLTC1) and fatty
acid uptake (SLC27A4) reduced glioma proliferation, meanwhile PCYT2 increased prolifer-
ation. Similarly, one-carbon cycle and lipid synthesis were dysregulated in COVID-19 and
melanoma, respectively. In summary, predicted essential genes accurately captured disease-
specific glioma, melanoma, and COVID-19 vulnerabilities. Abbreviations: THF: tetrahydro-
folate; TXN: thioredoxin; GSH: reduced glutathione; GSSG: oxidized glutathione.
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Table 1.2: Summary of the model statistics and model predictions in essential
genes and drugs in the four studied diseases.

Disease Number of con-
sensus models

Number of sam-
ples per model

Median num-
ber of reactions

Number of pre-
dicted drugs

Number of
predicted
essential
genes

Glioma
• Cancer: 3
• Control: 1

• Cancer: 117-140
• Control: 4

3269
• Single drugs:

33
• Combinations:

17

25

Melanoma
• Cancer: 33
• Control: 24

• Cancer: 28-8792
• Control: 3-740

1773
• Single drugs:

28

35

Breast can-
cer • NP-treated MCF-

7: 102
• DMSO-treated

MCF-7: 1

• NP-treated MCF-
7: 2-4

• DMSO-treated
MCF-7: 6

1895
• Single drugs:

23

Not predicted

COVID-19
• Infected: 28
• Control: 22

• Infected: 2-4
• Control: 2-4

2456
• Single drugs:

85
• Combinations:

52

23

study compared COVID-19 survivors to non-survivors, where selenium level was found higher

in tissue samples from COVID-19 survivors [117], which was further confirmed later in a meta-

analysis [118]. These serum COVID-19-specific biomarkers are consistent with the ferroptosis-

based predicted essential glycine and cysteine synthesis genes. Predicted GEMs in glioma

and COVID-19 accurately predicted metabolic exchanges in glioma patients and SARS-CoV-

2-positive high serum metabolites, respectively.

1.3.3 Predicted drugs in melanoma and glioma target cholesterol/pyrimi-

dine synthesis and oxidative stress/cell cycle, respectively

While predicted essential genes represent single-gene KO, drug deletion simulates the si-

multaneous multi-gene KO of the drug targets. The mode-of-action (MOA) of the predicted

single drugs varied between glioma and melanoma, indicative of the dysregulated pathways in

each cancer (see Figure 1.2.A-B). Antimetabolites and lipid-lowering were the most predicted

MOAs among glioma and melanoma, respectively. Among the four predicted antimetabolites

for melanoma, two targeted nucleotide interconversion (gemcitabine and cladribine) similar to

glioma: meanwhile, teriflunomide and leflunomide de novo pyrimidine synthesis. Additionally,

predicted melanoma-specific antifungals target lipid synthesis, while glioma-specific antivirals
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and TXNRD1-inhibitors target cell cycle, respectively. This increases the predicted drugs tar-

geting cell cycle in glioma to 23 and drugs targeting lipid synthesis in melanoma to 19.

Due to the small number of approved combinations in glioma, drug deletion was applied

to predict new synergistic combinations targeting alternative reactions. Seventeen predicted

combinations for glioma consisting of 19 individual drugs (see Figure 1.2.C) were found to

target hypoxia (12 carbonic anhydrase inhibitors, CAi), GSH exchange (rifamycin), cell cycle

(fluorouracil and zidovudine), synthesis of polyamine (eflornithine), glutamate (adapalene),

and GSH (cannabidiol and resveratrol). Fifteen combinations were predicted for all glioma

subtypes. Meanwhile, eflornithine/rifamycin and cannabidiol/adapalene were predicted com-

binations for GBM and LGG, respectively (see Figure 3.3). Targeting glutamate and GSH

synthesis in LGG with cannabidiol/adapalene is consistent with glutamate depletion due to

IDH-mutant-induced rewiring [114]. Among the eflornithine/rifamycin targets, an ABC trans-

porter (ABCG2) is responsible for heme byproducts efflux [119]. A literature search found

heme synthesis to be impaired to LGG compared to GBM, which is consistent with the pre-

dicted specificity of eflornithine/rifamycin. Targets of the predicted single drugs and combi-

nations for glioma are summarized in Figure 3.7.

Unlike the approved drugs predicted for glioma and melanoma, Most NPs in BRC are pre-

clinical compounds with multiple MOAs or undefined targets. The 23 predicted NPs consisted

of seven antioxidants, six ER inhibitors, and three toxins, among others (see Figure 1.2.D).

The predicted ER inhibitors among NPs are consistent with MCF-7 BRC cell line dependency

on estrogen activation [120]. Meanwhile, predicted drugs for COVID-19 targeted once carbon

cycle (DHFR, TYMS, ATIC, and TYMP), nucleotide interconversion (GUK1 and CMPK1),

cysteine synthesis (SLC7A11 and ANPEP), glycine synthesis (SLC15A1 and SLC15A2), and

lactate efflux (SLC16A1). Unlike lipid-lowering predicted for melanoma that targeted choles-

terol synthesis, rosuvastatin, and pravastatin were predicted for COVID-19 to target cysteine

synthesis (SLC7A11) and lactate efflux (SLC16A1), respectively. Similarly, glycine synthesis

was targeted by ACE inhibitors of the viral entry protein.

In summary, predicted single drugs favored cell cycle, de novo pyrimidine/lipid synthesis,

ER, and glycine/cysteine synthesis for glioma, melanoma, BRC, and COVID-19, respectively,

that agree with dysregulated pathways or known vulnerabilities in the corresponding diseases.

Additionally, GBM and LGG-specific combinations are consistent with upregulated heme syn-

thesis and glutamate depletion, respectively.
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Figure 1.2: Antimetabolites and lipid-lowering drugs are the most repurposed
single drugs to glioma melanoma, respectively.

1.3.4 Predicted drugs in glioma, melanoma, and BRC showed improved,

comparable, and reduced IC50 than approved drugs, respectively

To rank candidate drugs for testing, predicted drugs in the three cancers were compared to

approved drugs using viability reduction in PRISM 23Q2 and IC50 across 14 HTS databases

in their respective cancer cell lines (see Figure 1.3). Predicted antimetabolites (red triangles)

in glioma and melanoma showed improved and comparable potency to approved antimitotics

(blue triangles) and RAF/MEK inhibitors (green squares), respectively. Unlike low potency

and viability reduction of the RAF/MEK inhibitors in glioma, RAF/MEK inhibitors showed

stronger viability reduction in melanoma in agreement with the small prevalence of RAF/MEK

mutations in glioma. In melanoma, in-depth drug ranking showed three drugs (gemcitabine,

18



Chapter 1- Synopsis

cladribine, and fluvastatin) exceeding approved drugs in potency and viability reduction, re-

gardless of metastasis, drug resistance, and BRAF/NRAS-mutant status [63] (see Chapter

4). Variations in drug rank between viability reduction and IC50, such as CDK inhibitors

(magenta triangles), indicate non-linear dose response. Despite three predicted NPs in BRC

(hypaconitine, daidzin, and narciclasine) showing high potency below 1 µM, overall predicted

NPs in BRC showed comparable potency to the excluded NPs and reduced potency to ap-

proved drugs. Four excluded NPs showed IC50 below 1 µM (arenobufagin, bufalin, bufotaline,

and isoalantolactone), of which the first three belong to cardiotoxins called bufanolides. Simi-

larly, the top excluded NP (cinobufatolin) belongs to bufanolides with 100% viability reduction

exceeding all approved drugs. None of the submicromolar excluded NPs have a metabolic tar-

get in the Recon3D model, which could explain their absence from drug ranking. Among

others, bufanolides possess anti-cancer action through apoptosis and epigenetics modulation

that could be missed with metabolic modeling [121], [122]. In summary, compared to approved

drugs, predicted antimetabolites in glioma and melanoma showed improved and comparable

potency, respectively. While predicted NPs showed lower potency than approved drugs, pre-

dicted toxin and ESR1-inhibitor NPs showed submicromolar potency.

1.3.5 Predicted essential genes in glioma and melanoma showed higher de-

pendency than approved targets in a CRISPR screening

While drug HTSs allowed ranking candidate drugs for further testing, these drugs usually

act by multi-gene KO, and drug HTSs are unable to identify which gene has a higher de-

pendency. Pan-cancer, genome-scale CRISPR screens such as DepMap identify vulnerability

genes whose individual KO will reduce cell growth or induce cell death. DepMap was used to

rank essential genes and drug targets in the three cancers to identify highly dependent genes.

In melanoma and glioma, predicted essential genes (in purple) showed higher dependency than

predicted drug targets (in green) and approved drug targets (in blue), as the latter usually

depends on multi-gene KO. Similarly, in glioma, predicted single drug targets (in green) had

higher dependency than combination targets (in orange). In melanoma, further ranking of

the targets of predicted and approved drugs found that predicted RMM1 and RRM2 have

higher dependency probability than approved targets in both metastatic and drug-resistant

cell lines (see Figure 4.4- 4.5). Moreover, 42% and 43% of the predicted essential genes

in glioma and melanoma showed more than 50% dependency, respectively (see Figure 1.4).

High dependency of HMGCR in glioma cell lines could be attributed to differences between in
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Figure 1.3: Predicted antimetabolites in melanoma and glioma showed strong
viability reduction and IC50 comparable to approved drugs.

To rank the predicted drugs in the three cancer types, viability reduction and IC50 mea-
sures were retrieved from the PRISM database and 14 HTS databases, respectively. Each
drug set was ranked in their respective cancer cell lines. Excluded NPs from the BRC drug
ranking were added to compare predicted versus excluded. Across the three cancers, alky-
lating agents (yellow triangles) showed small viability reduction, matching their high clinical
dosage. Meanwhile, predicted antimetabolites and approved topoisomerase inhibitors showed
the strongest viability reduction and IC50. Due to the prevalence of BRAF mutation in
melanoma, RAF/MEK inhibitors showed strong IC50 and viability reduction in melanoma.
Being mostly preclinical compounds, only half of the predicted NPs were found in the PRISM
database, with emodin having the highest viability reduction of 38%. Three predicted NPs
and four excluded NPs belonging to cardiotoxic bufanolide showed submicromolar potency
in BRC. Overall, predicted drugs in glioma and melanoma showed improved and comparable
potency to approved drugs, respectively, while predicted NPs in BRC failed to show improve-

ment to excluded NPs and approved drugs.
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vitro medium and in vivo CSF that shifts glioma cell lines to cholesterol synthesis. Overall,

in glioma and melanoma, predicted essential genes and drug targets showed improved and

comparable gene dependencies to approved targets, respectively.

Figure 1.4: 42% of predicted essential genes in melanoma and glioma showed at
least 50% gene dependency probability in high-throughput CRISPR screening.

Predicted essential genes and targets of approved and predicted drugs were ranked by their
dependency probability (the likelihood that the KO of a gene reduces cell growth or induces cell
death) in DepMap pan-cancer genome-scale CRISPR screen. Predicted essential genes showed
higher dependency probability than approved and predicted drug targets, as predicted drugs
depend on multi-gene KO. Predicted drug targets with high dependency involve nucleotide
biosynthesis and lipid metabolism in glioma and melanoma, respectively.

1.3.6 Predicted antimetabolites in melanoma and glioma showed compara-

ble growth reduction to approved drugs in xenografts

To assess if any of the predicted drugs in the three cancers would maintain their effi-

cacy in vivo, PDX HTS were retrieved for the three cancers to compare predicted versus
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approved drugs. Unlike the well-established pan-cancer in vitro HTS, PDX HTS are mostly

cancer-specific, or even sub-population-specific, with smaller drug panels. Three PDX HTS

studies on GBM [90], [91], a PDX HTS on NRAS-mutant melanoma [109] and BRC [110]

were retrieved where the median growth reduction score was calculated for each drug (growth

reduction% in GBM, DSS in melanoma, and AUC in BRC). Among the available tested drugs,

predicted antimetabolites in melanoma (gemcitabine) and glioma (gemcitabine, clofarabine,

and cladribine) showed comparable growth reduction to approved drugs (blue dots) (see Fig-

ure 1.5.A-B). A clear separation is observed between alkylating agents and other approved

drugs in melanoma and glioma, where alkylating agents had the lowest growth reduction. In-

terestingly, trametinib (MEK-inhibitor) showed high growth reduction in GBM PDXs despite

the low prevalence of BRAF mutation in GBM (3%) [45]. In BRC, only one predicted NP

(narciclasine) was retrieved, and none of the excluded NPs. Narciclasine exceeded all ap-

proved BRC drugs in growth reduction while showing moderate potency (see Figure 1.5.C).

Other in vivo animal screening that screened NPs, such as "DTP NCI In Vivo Antitumor As-

says" (https://wiki.nci.nih.gov/display/NCIDTPdata/In+Vivo+Antitumor+Assays) in-

cluded only narciclasine of the 101 NPs in BRC models. In summary, in FDA-approved drug

repurposing, predicted antimetabolites with comparable growth reduction to approved reduc-

tion affirm the comparability metabolic modeling ability to in vivo cancer models.

1.3.7 Predicted drugs for COVID-19 targeting one-carbon cycle have higher

cytopathic effect reduction than approved drugs

Similar to cancer HTS and DepMap, predicted drugs for COVID-19 were ranked against

approved drugs using a CPE reduction assay in Cacao-2 cell [107]; meanwhile, predicted es-

sential genes were ranked using a CRISPR screen in five cells [108] against approved drug

targets. The CPE reduction screen retrieved five approved drugs (hydrocortisone, ritonavir,

tofacitinib, dexamethasone, and baricitinib) for COVID-19 (see Figure 1.6.A). Meanwhile, the

CRISPR screen retrieved the targets of five approved immunomodulators (hydrocortisone,

dexamethasone, baricitinib, tofacitinib, tocilizumab, and anakinra) (see Figure 1.6.B). Six

predicted drugs exceeded 50% CPE reduction, outperforming all approved drugs. These six

drugs are predicted to target OCCF (gemcitabine, tioguanine, and pyrimethamine), cystine

uptake (thimerosal), nucleotide uptake and interconversion (azathioprine), and lactate efflux

(salicylic acid). On the other hand, eight essential genes involved in nucleotide interconver-

sion (GUK1, CMPK1, and CRLS1), sphingolipid salvage (GLTP), OCCF (DHFR), cystine
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Figure 1.5: Predicted antimetabolites in glioma and melanoma showed compara-
ble in vivo-to-in vitro potency to approved drugs, while the predicted NP narci-

clasine exceeded approved drugs in breast cancer xenografts.
To evaluate if in vitro potent predicted drugs would maintain their in vivo efficacy, xenograft
data across the three cancers (x-axis) [90], [91], [109], [110] were used against the median IC50

from 1.3.B (y-axis). The predicted antimetabolite gemcitabine showed comparable growth
reduction in glioma and melanoma to approved drugs. Interestingly, the predicted NP narci-
clasine exceeded the approved BRC drugs in growth reduction. Approved alkylating agents
showed the lowest growth reduction across the three cancer types. Meanwhile, MEK inhibitors
and doxorubicin (topoisomerase inhibitor) showed the strongest growth reduction in melanoma
and glioma, respectively.

uptake (SLC3A2), and myo-inositol synthesis (ISYNA), showed higher dependency than all

approved immunomodulators’ targets in the CRISPR screen. Except for nucleotide inter-

conversion genes, the remaining five essential genes are predicted exclusively for COVID-19.

Similarly, CTH involved in cysteine synthesis showed moderate dependency higher than nine

approved immunomodulatory targets. In summary, predicted drugs and essential genes in-

volved in OCCF and cysteine synthesis surpassed the approved drugs and their targets in the

SARS-CoV-2-infected CPE reduction assay and CRISPR screen, respectively.
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Figure 1.6: Predicted drugs and essential genes for COVID-19 involved in the one-
carbon cycle and cysteine synthesis exceeded approved drugs and their targets in
SARS-CoV-2-infected CPE reduction assay and CRISPR screen, respectively.

To benchmark predicted drugs for COVID-19 against approved drugs, a drug cytopathic effect
(CPE) assay of SARS-CoV-2 infected human Caco-2 was used. Similarly, essential genes were
compared to approved drug targets using a CRISPR screening of five SARS-CoV-2 infected
cells. CPE assays measure the effect of a drug (or gene KO) on host genes to reduce viral
infection and replication. Five approved drugs and the targets of six approved drugs were
retrieved from the drug CPE assay and the CRISPR screening, respectively. Six predicted
drugs outperformed approved drugs with 50% CPE inhibition that target one-carbon cycle
(gemcitabine, tioguanine, and pyrimethamine), cystine uptake (thimerosal), nucleotide uptake
and interconversion (azathioprine) and lactate efflux (salicylic acid). Meanwhile, eight essential
genes showed higher dependency on approved drug targets that involve, among others, the one-
carbon cycle (DHFR) and cystine uptake (SLC3A2).
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1.3.8 Targeting TXNRD1 in glioma and melanoma, glioma-specific polyamine

metabolism and melanoma-specific cholesterol synthesis improved pa-

tient survival in clinical trials

Translation of preclinical drug experiments to clinical trials mostly shows high failure rates,

especially in phase II and III, due to differences in drug toxicity and efficacy for the target

disease. To identify which of the predicted drugs had positive or adverse clinical outcomes,

clinical data (meta-analysis, phase I/II clinical trials, and retrospective studies) were collected

for the predicted drugs from PubMed, beta.clinicaltrials.gov [92], and Cochrane Li-

brary [93]. Overall clinical data results are summarized in Table 1.3.8 while detailed survival

data for glioma’s predicted drugs are detailed in Figure 3.6.

Two predicted drugs targeting polyamine metabolism in glioma, valganciclovir [123]–[125]

and eflornithine [126], improved median overall survival (mOS) combined with the standard-of-

care (SOC) compared to the SOC arm. Fotemustine, a predicted drug for glioma’s TXNRD1

target, ranked best in effectiveness as mOS in a network meta-analysis of eleven approved and

investigational drugs in recurrent GBM (rGBM) [127]. Although TXNRD1 was the predicted

essential gene in melanoma, fotemustine was missed from the predicted drugs due to the ab-

sence of the target information in the DrugBank v5.1.3 compared to DrugBank v5.1.9 used for

glioma. Nevertheless, fotemustine is approved in some countries for melanoma brain metasta-

sis, the most aggressive form of melanoma [128]. In skin cancer clinical trials, drugs targeting

cholesterol synthesis (statins in two retrospective studies [129], [130]) and both cholesterol syn-

thesis and lipid peroxidation (tamoxifen in a meta-analysis of nine clinical trials [131]) improved

survival when combined with the SOC. Meanwhile, in two non-melanoma skin cancer clinical

trials, itraconazole targeting lipid peroxidation only showed stable disease in a sub-population.

Four antimetabolites (gemcitabine [132], cladribine [133], mercaptopurine [134] and fluo-

rouracil [135]), and an alkylating agent (melphalan [136]) failed in clinical trials in glioma. De-

spite two predicted antimetabolites for melanoma (leflunomide and gemcitabine) failing in skin

cancer clinical trials, gemcitabine [137] showed stable disease in 35% of non-melanoma skin can-

cer patients. All clinically failed antimetabolites and alkylating agent in glioma and melanoma

are ABC transporter substrates, which could induce their drug resistance and efflux. All in

all, metabolic modeling predicted vulnerabilities that improved glioma and melanoma patient

survival in clinical trials, such as glioma-specific polyamine metabolism, melanoma-specific

cholesterol synthesis, and targeting TXNRD1 with fotemustine in glioma and melanoma. On
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the other hand, targeting melanoma-specific pyrimidine synthesis with leflunomide and tar-

geting cell cycle with antimetabolites in glioma and melanoma failed in clinical trials.

Table 1.3: Summary of positive and negative clinical outcomes of the predicted
drugs in the four diseases.

Disease Positive clinical trial outcomes Negative clinical trial outcomes

Glioma
• In a network meta-analysis of eleven approved and investiga-

tional drugs in recurrent GBM, fotemustine ranked best in
effectiveness as mOS [127].

• In two-arm, phase I/II trials, two single drugs (fotemus-
tine [138] and valganciclovir [123]–[125]) and two combination
drugs (eflornithine [126] and celecoxib [139]) improved the pri-
mary survival outcome compared to the control arm.

• Gemcitabine [132], melphalan [136]
and cladribine [133] failed in single-arm
phase II glioma trials.

• When combined with carmustine,
both mercaptopurine and fluorouracil
showed an antagonistic [134] and a
non-additional [135] effect, respec-
tively.

Melanoma
• Fotemustine, an inhibitor for the predicted essential gene

TXNRD1, is approved in some countries against melanoma
brain metastasis [128].

• Tamoxifen in a meta-analysis of nine clinical trials [131]
in advanced melanoma in combination with chemotherapies
showed improved overall complete and partial response with-
out improvement in 1-year survival.

• A case-control retrospective study identified statins use is
linked to reduced melanoma incidence [129].

• A retrospective study of concomitant medications on ICIs’
response in melanoma identified statins to improve ICIs’ ob-
jective response rate significantly [130].

• Gemcitabine and itraconazole showed
no response in non-melanoma skin can-
cer phase II trials, but as stable dis-
ease in a subset of the treated pa-
tients (35% [137] in gemcitabine and
21% [140] to 91% [141] in itraconazole).

• Leflunomide combined with ve-
murafenib in phase I/II clinical
trial in BRAF-mutant metastatic
melanoma failed due to adverse effects
(NCT01611675) [142].

Breast
cancer • A case-control study found dietary resveratrol intake from

grapes, not wine, to reduce breast cancer risk [143] signifi-
cantly.

COVID-
19 • Two meta-analysis of eight RCTs in sofosbuvir (CMPK1-

inhibitor) [144] and three RCTs in acetylcysteine (SLC7A11-
inhibitor) [145] found both drugs to significantly reduce mor-
tality and severity in COVID-19 patients compared to control
arm.

• Three predicted drugs (icatibant (ANPEP-inhibitor) [146],
quercetin (SLC16A1-inhibitor) [147] and probenecid
(SLC16A1-inhibitor) [148] were tested in three phase II
RCTs, where they enhanced severity/survival in COVID-19
outpatients compared to placebo/SOC.

• Sulfasalazine (SLC7A11-inducer), a ferroptosis-inducer,
showed increased risk COVID-19 severity and death in three
cohorts with autoimmune diseases [149].

• A retrospective study of 3.9 million COVID-19 outpa-
tients identified rosuvastatin (SLC7A11-inhibitor) to decrease
COVID-19 hospitalization rate [150].

• A phase II RCT in hospitalized
COVID-19 patients found ACE-
inhibitors (ten predicted SLC15A1-2
inhibitors) [151] showed no improve-
ment in survival and likely worsened.
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1.3.9 In COVID-19 clinical trials, drugs targeting cysteine synthesis com-

bined with SOC reduced mortality/severity, unlike glycine synthesis

Clinical trial data in COVID-19 (Table 1.3.8) covered mostly GSH synthesis genes through

cysteine synthesis (ANPEP and SLC7A11) and glycine synthesis (SLC15A1-2). All predicted

drugs tested in clinical trials were combined with the SOC except for probenecid, which was

tested as monotherapy. Additionally, targeting nucleotide interconversion with sofosbuvir in a

meta-analysis of eight RCTs [144] and lactate efflux with quercetin [147] and probenecid [148]

in RCTs enhanced severity/survival in COVID-19 patients compared to SOC. SLC7A11 in-

hibitors, acetylcysteine in a meta-analysis, and rosuvastatin in a retrospective study decreased

mortality and hospitalization rates, respectively. Similarly, icatibant, an ANPEP inhibitor, en-

hanced severity and survival in COVID-19 outpatients compared to SOC. On the other hand,

sulfasalazine, a SLC7A11-inducer, increased the risk of COVID-19 severity and death in three

cohorts [149]. These results highlight the importance of ferroptosis in COVID-19 severity.

In summary, predicted vulnerabilities of cysteine synthesis and lactate efflux in COVID-19

consistently reduced patients’ mortality or severity. Meanwhile, targeting glycine synthesis

increased COVID-19 hospitalized mortality.

All in all, metabolic modeling predicted drug candidates in clinical trials with an effective-to-

ineffective ratio of 33% in melanoma and COVID-19 and 44% in glioma. Moreover, metabolic

modeling allowed interpretation of the target genes consistent with literature on the disease-

specific vulnerabilities.

1.4 Discussion

Metabolic rewiring is a hallmark of cancer and COVID-19-specific host hijacking. Glioma,

melanoma, and BRC patients suffer from low survival, high relapse, and high incidence, re-

spectively, which motivate the repurposing of new drugs and combinations. Similarly, the

COVID-19 pandemic and its needed biosafety laboratories forced researchers to repurpose ef-

fective drugs computationally. In this work, we summarized the predicted drugs and essential

genes from metabolic modeling in three cancers and COVID-19. We compared the results to

in vitro HTS, xenografts, and clinical data. In addition to biomarker identification, metabolic

modeling allowed the repurposing of approved drugs for glioma, melanoma, and COVID-19,

the prediction of new combinations for glioma, and the repositioning of preclinical compounds

in BRC. Metabolic modeling showed consistency between the predicted essential genes and
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disease-specific vulnerabilities in the literature, such as TXNRD1 for glioma and melanoma,

ER in BRC, and cysteine synthesis in COVID-19. These vulnerabilities were consistent with

clinical data from meta-analyses, clinical trials, and retrospective studies. Notably, TXNRD1

was predicted in glioma and melanoma, which is inhibited by fotemustine, approved in some

countries for melanoma brain metastasis and showed comparable survival as monotherapy to

approved bevacizumab in glioma. Metabolic modeling extends beyond single drugs into combi-

nation prediction in glioma with glioma-subtype specific combinations matching vulnerabilities

in LGG and GBM. Moreover, metabolic modeling of the post-treatment expression data of

NPs ranked NPs in BRC, which showed comparable in vitro efficacy to approved drugs. Sim-

ilarly, the predicted NP narciclasine exceeded approved drugs in xenografts, and resveratrol

dietary intake reduced BRC risk in a retrospective study. Nevertheless, of the clinically tested

drugs, a third of predicted drugs in melanoma and COVID-19 and 44% of predicted drugs

in glioma enhanced patients’ survival. The clinically failed drugs may be attributed to ABC

transporter resistance in glioma and the absence of an in vivo interstitial fluid medium for

lung and melanoma cells.

1.4.1 Target identification via metabolic modeling correctly predicted es-

sential genes with reaction precision in the glioma subtypes and melanoma

Beyond shared essential genes, a comparison between predicted essential genes in glioma,

melanoma, and COVID-19 identified disease-specific dependencies such as polyamine synthesis

in glioma, pyrimidine, cholesterol, and lipid synthesis in melanoma, and OCCF, glycine and

cysteine synthesis in COVID-19. Additionally, both glioma and melanoma shared sphingolipid

synthesis, cholesterol esterification, and TXNRD1. Despite the consistency between disease-

specific vulnerabilities and literature, less than half of the essential genes are druggable due

to the limited targets of the approved drugs. Metabolic modeling allowed the prediction of

metabolic biomarkers for the glioma subtypes and COVID-19, consistent with the literature

(see Table 1.4). Compared to approved drugs, targeting some of the disease-specific pathways

showed stronger or comparable in vitro efficacy, such as antimetabolites in glioma, statins in

melanoma, and inhibitors of OCCF and cysteine synthesis in COVID-19. Similarly, the speci-

ficity of cholesterol esterification, not synthesis, in glioma dependencies precisely agrees with

the literature [111], [112]. Additionally, the predicted drug targets RRM1 and RRM2 show

stronger dependency probability in DepMap than approved targets in melanoma and glioma

cell lines (see Figure 1.5). Even in drug-induced resistance and metastatic melanoma cell lines,
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RMM1 and RRM2 exceeded all approved targets (see Figures 4.4- 4.5 [81]). RMM1, RRM2,

and TXNRD1 are predicted in glioma and melanoma drug targets and are the crosslink be-

tween GTH detoxification and nucleotide interconversion. All in all, despite the undruggable

essential genes, metabolic modeling accurately predicted disease-specific essential genes.

Table 1.4: Clinical trial data showed three out of the five predicted disease-specific
dependencies have positive clinical outcomes.

Disease Target
pathway

Clinical ev-
idence

Repurposed
drugs

Clinical outcome Refer-
ences

Glioma Polyamine
synthesis

Phase II
and III
RCT

Eflornithine
and valgan-
ciclovir

Improved survival combined with
approved drugs.

[123]–
[126]

Melanoma Cholesterol
/lipid syn-
thesis

Retrospec-
tive study

Statins Improved survival combined with
immune therapy.

[129],
[130]

Melanoma Pyrimidine
synthesis

Phase I/II
RCT

Leflunomide Failed combined with immune ther-
apy.

[142]

COVID-
19

Cysteine
synthesis

Meta-
analysis,
Retrospec-
tive study

Acetylcyste-
ine and ro-
suvastatin

Reduced mortality and severity
combined with standard of care.

[145],
[150]

COVID-
19

Glycine
synthesis

Phase II
RCT

ACE-
inhibitors

Showed no improvement in survival
and likely worsened.

[151]

Glioma
and
melanoma

Oxidative
stress
through
TXNRD1

Approved/
Meta-
analysis

Fotemustine Ranked best in effectiveness among
eleven approved and investigational
drugs in recurrent GBM. Approved
in some countries for melanoma
brain metastasis.

[127],
[128],
[138]

1.4.2 Clinically efficacy of predicted drugs in glioma and melanoma is linked

to ABC transporter affinity

Inspection of the commonality between clinically ineffective drugs in melanoma and glioma

identified all of the clinically ineffective drugs, except itraconazole, are ABC transporter sub-

strates or inducers. ReconX reconstructions have 28 ABC transporter genes that participate

in the efflux of toxic byproducts, but none is curated for drug efflux. The efflux of lipid perox-

idation byproducts (with ABCC1 and ABCC11) is predicted as a vulnerability in all glioma

subtypes and melanoma; meanwhile, the efflux of heme synthesis byproducts (with ABCG2) is

only predicted in GBM. These variations are in line with the literature signature of melanoma-

specific [152] and pan-glioma [153] lipid peroxidation and GBM-specific heme synthesis [119].

Further analysis of the clinically effective drugs found that celecoxib in glioma and tamoxifen
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in melanoma are ABC transporter inhibitors. In addition to drug efflux and resistance, ABC

transporters in glioma control drug BBB permeability and diffusion to the core tumor[154]. In

summary, metabolic modeling was able to predict drugs for ABC transporters’ role in byprod-

uct efflux, but the lack of drug efflux role in the GEMs resulted in clinical trial inactivity.

1.4.3 Clinical data of targeting lipid synthesis support predicted its efficacy

in melanoma compared to GBM

In addition to targeting cholesterol esterification and lipid peroxidation, targeting lipid

synthesis was predicted by single drugs in melanoma and only by cannabidiol/eflornithine

combination in glioma. While our review [72] highlighted the debated effect of lipid-lowering

drugs such as statins on glioma cell lines, more in-depth investigation into the clinical data

found their inefficacy in GBM. More recently, cholesterol was found to be targeted in glioma

via uptake inhibition, efflux activation [111], or esterification inhibition [112]. A meta-analysis

of five prospective observational studies found no statistically significant benefit of statins on

prolonging GBM survival [155]. Similarly, a phase II clinical trial of atorvastatin combined

with RT and TMZ (NCT02029573) in GBM failed to achieve the primary outcome compared to

the historical control with 80% of patients discontinued because of disease progression [156].

On the other hand, in two retrospective studies, statin use is linked to reduced melanoma

risk [129] and enhanced melanoma survival combined with approved ICIs [130]. All in all,

predicted melanoma-specific lipid synthesis is supported by statins efficacy in melanoma and

no improvement in GBM.

1.4.4 Metabolic modeling allows drug combination prediction on a larger

scale than HTS, and on difficult-to-culture ODG

While HTS can screen thousands of drugs and predict cancer-type-specific drugs, their

scalability for drug combinations is limited. Drug combination prediction in glioma screened

124,762 possible combinations (53 investigational anti-glioma and approved anti-brain cancer

against 2354 FDA-approved) over three models to predict 17 combinations. Computationally,

the drug combination prediction took under 8.5 hours using an average laptop (MacBook Pro,

2.4 GHz Quad-Core Intel Core i5, 16 GB RAM). Meanwhile, NCI ALMANAC, the largest pri-

mary combination HTS in cancer, has 5,232 screened combinations over 60 cancer cell lines,

30



Chapter 1- Synopsis

mostly anti-cancers [157]. While experimental combination HTSs could define combination

hits beyond metabolism, the staggering variation and scalability of metabolic modeling-based

combination prediction and the number of screening combinations allow testing more diverse

targets to enhance potential synergism. Similarly, due to high oxidative stress, ODG can-

cer cell lines are hard to culture [4], and LGG has limited animal models [74]. Meanwhile,

metabolic modeling enabled drug prediction on LGG and accurate prediction of metabolic

exchanges in LGG patients. To summarize, metabolic modeling allowed scale combination

prediction and predicting biomarkers in hard-to-culture cell lines.

1.4.5 Clinical drug repurposing depends on defining interstitial fluid rather

than in vitro medium

Across the four studies, in vitro medium was used for melanoma and BRC, while in vivo

CSF was used in glioma, and no medium was used for COVID-19. Variations in drug response

between in vitro and vivo were more noticeable in melanoma than glioma, possibly due to

using in vitro medium in melanoma model building. Similar observations were found for RAF

inhibitors in melanoma. In vivo mediums such as the CSF are better defined and allow avoid-

ing synthesis pathways that only exist in vitro as vulnerabilities, such as cholesterol synthesis

in glioma. A challenge in in vivo medium defined from metabolomics studies is their inability

to distinguish between tissue export metabolites or true biofluid composition. Nevertheless,

the medium constraining, in turn, improved the prediction of single drugs and synergistic

combinations acting on alternative pathways. While other biofluid mediums might be poorly

defined compared to the CSF, using clinically defined radiotracers [158], metabolite concen-

tration from metabolomics studies, and exo-metabolomic data [159] could help fine-tune the

model building. In summary, comparing in vitro-to-in vivo drug responses in HTSs provides

a quality assessment of the used medium in the translational application.

1.4.6 Metabolic modeling of post-treatment expression data predicts new

investigational drugs with comparable potency to approved drugs

While diseased expression data is the most widely used for model building, cell line post-

treatment expression data becomes a cornerstone in repositioning new investigational drugs

such as the LINCS database. Post-treatment expression data of the MCF-7 cell line allowed
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the ranking of 23 NPs among 101 NPs. While the predicted NPs showed no improvement

to excluded NPs, the predicted NPs showed comparable in vitro drug efficacy. The highly

potent excluded NPs belong to a cardiotoxin with non-metabolic MOA, such as apoptosis and

epigenetic modulation. Moreover, two NPs- narciclasine and resveratrol- exceeded approved

drugs in PDXs and reduced BRC risk in a retrospective study, respectively. Generally, post-

treatment expression data of patients have been increasingly used to predict disease response

and define biomarkers for responders.

1.4.7 Lack of clinical trial database with survival information hinders de-

veloping or repurposing new drugs

Unlike in vitro and in vivo HTS databases, clinical trials are poorly curated, and few

publish their results [160], [161]. In this work, we collected two-arm phase I/II clinical trials, if

available, and retrospective studies of drug relationship to disease incidence/survival. Clinical

trial registries such as ClinicalTrials.gov only record clinical trials’ metadata, such as phase

and recruitment, but they mostly miss survival outcomes and reasons for trial failure. The

absence of survival outcomes challenges the systematic search of predicted drugs for possible

survival data and requires a literature search for published results [161]. Additionally, adverse

clinical outcomes such as failed trials due to toxicity or no improvement in the treatment arm

are routinely unreported. Despite these challenges in clinical trial data, the collected clinical

data provided enough validation for some of the disease-specific vulnerabilities, such as lipid

synthesis and TXNRD1 in melanoma and glioma and cysteine synthesis in COVID-19.

1.5 Conclusion

Metabolism is the part of the cellular system responsible for generating energy and syn-

thesizing new molecules needed for cell growth or maintaining normal functions. Cancers

and viral infections hijack the healthy metabolism for high proliferation and increasing repli-

cation, respectively, which can be simulated by metabolic modeling. This work aimed to

evaluate the extent of metabolic modeling compared to preclinical and clinical approaches in

three cancers and COVID-19 by benchmarking predicted drugs and essential genes. Metabolic

modeling correctly predicted biomarkers in glioma and COVID-19 in agreement with patients’

serum metabolome and radiotracers’ uptake, respectively. Moreover, predicted essential genes
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and drugs showed disease-specific differences coherent with preclinical and clinical data. No-

tably, targeting TXNRD1 in melanoma and glioma, polyamine metabolism in glioma, and

cysteine synthesis in COVID-19 have shown enhanced survival. Despite the lack of distinction

between predicted and excluded NPs, the predicted narciclasine surpassed approved drugs

in xenografts’ growth reduction, and resveratrol dietary intake reduced BRC incidence in a

retrospective study. These results affirm metabolic modeling as a precise and effective tool

for biomarker prediction and drug repurposing fitting for clinical trials. This work warrants

fotemustine as both pan-glioma and melanoma monotherapy and eflornithine/rifamycin and

cannabidiol/adapalene as promising new combinations for GBM and LGG, respectively.

1.6 Contribution

I carried out the work and wrote the manuscripts for COVID-19, glioma, and the review

of brain GEMs. In addition to collecting clinical data, I carried out and wrote only in silico

drug evaluation in metastatic, drug-resistant, and mutant melanoma cell lines. I helped plan,

carry out, and write the manuscript for NP drug ranking in breast cancer.

Following from the motivation and outline, the specific aims of this thesis are:

Aim 1: Defining the published works for metabolic modeling in the brain and advancing on

it for drug repurposing of the glioma subtypes.

Here, we start with a review of metabolic models in the brain to identify their strengths and

limitations. Using resources and lessons from the review, we built three glioma subtype GEMs

to repurpose single and combination drugs. The study included identifying subtype-specific

biomarkers and benchmarking of predicted drugs in vitro, in xenografts, and clinical trials.

Aim 2: Evaluation of previously predicted drugs in melanoma compared to approved anti-

melanoma drugs under metastasis a, drug resistance, and BRAF/NRAF mutation conditions.

A previous study in our department repurposed drugs for melanoma using metabolic mod-

eling. We expanded on this study by benchmarking the repurposed drugs against approved

anti-melanoma drugs and drugs targeting the nitric oxide pathway under three conditions:

metastasis a, drug resistance, and BRAF/NRAF mutation.

Aim 3: Drug prioritization of natural products for anti-breast cancer activity using drug-

treated expression data.

To rank candidate natural products (NPs), many are part of the diets for anti-breast cancer

activity using drug-treated expression data. As drug-treated expression data is increasingly
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crucial in personalized medicine, this work employed various metabolic modeling techniques

to define candidate NPs without target information.

Aim 4: Drug repurposing for a newly-discovered COVID-19.

To repurpose candidate drugs and predict essential genes for a newly discovered infection

disease, COVID-19, whose needed biosafety measures for drug screening are limited globally.

This work was based on expression data from COVID-19-infected lung cell lines. The pathways

of predicted essential genes were compared to a metabolomics study of severe COVID-19

patients.
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Introduction to the paper

The cost of brain disorders rose to 800 billion euros by 2010 and affected 169 million

Europeans by 2019. Of these brain disorders, neurodegeneration disease incidence is rapidly

growing due to the increase in the aging population. Neurodegeneration has no cure and ap-

proved drugs mostly treat symptoms despite decades of research. Similarly, there are multiple

poorly defined subtypes of central nervous system cancers, with only a handful of approved

drugs. In this work, we aim to define the established studies for genome-scale metabolic models

in the brain, focusing mainly on neurodegeneration diseases and brain cancer to define their

strengths and limitations. We also compare the various studies based on the multi-cellular

interactions, curation of the biomass, and used experimental validations.

Contribution: I carried out the literature review, co-wrote the manuscript, and prepared the

figures.

Abstract

Brain disorders represent 32% of the global disease burden, with 169 million Europeans af-

fected. Constraint-based metabolic modeling and other approaches have been applied to pre-

dict new treatments for these and other diseases. Many recent studies focused on enhancing,

among others, drug predictions by generating generic metabolic models of brain cells and on

the contextualization of the genome-scale metabolic models with expression data. Experi-

mental flux rates were primarily used to constrain or validate the model inputs. Bi-cellular

models were reconstructed to study the interaction between different cell types. This review

highlights the evolution of genome-scale models for neurodegenerative diseases and glioma.

We discuss the advantages and drawbacks of each approach and propose improvements, such

as building bi-cellular models, tailoring the biomass formulations for glioma, and refining the

cerebrospinal fluid composition.

2.1 Introduction

In Europe, 169 new million cases of brain disorders were reported in 2019 [1]. Neurological

disorders, brain and central nervous system (CNS) cancer, strokes, and mental disorders are

all examples of brain disorders [2]. The high toll on the life quality of patients suffering from

neurodegenerative diseases (NDD) and the societal burden that are increasing with the aging
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of the Western population. Alongside cardiovascular diseases and cancer, NDD are a major

health care challenge, with dementia being the most expensive disease to manage [3]. While the

annual cost of dementia is 1.5 times more than cancer in the UK, research funding for dementia

is only 30% of cancer [4]. Brain cancers can be considered rare diseases with an estimated

308,000 new cases and 251,000 new deaths worldwide in 2020 [5] of which glioblastoma (GBM)

accounts for more than half of malignant CNS cancers [6]. However, unlike NDD, which

develops over decades, the life expectancy of GBM patients is 5% survival over five years [7].

However, both NDD and GBM are incurable, age-related (the median age of diagnosis for

GBM is 65 years old [6]), and show metabolic deficiencies or rewiring that could be exploited

as potential drug targets [8].

Lower grade gliomas (LGG), a less aggressive glioma form than GBM, is more heterogeneous

in prognosis and response to treatment and is characterized by lower proliferation speed [9].

More than 80% of LGG have mutations in isocitrate dehydrogenases that play a central role

in metabolism as catalyzing reaction in the Krebs cycle, redox homeostasis, biosynthesis of

lipids, and glutamine metabolism [9] [10]. These LGG are classified into astrocytoma (AST)

and oligodendroglioma (ODG) based on the glial cell type they originated from. GBM and

LGG also have different preferred energy sources. Glucose, the main fuel of neurons [11], and

glutamine, required for the biosynthesis of neurotransmitters [12], are abundant in the brain

microenvironment and have been linked to GBM invasion [13], [14]. The Warburg effect is

a hallmark of GBM with a shift from oxidative phosphorylation (OXPHOS) and TCA cycle

to glycolysis for energy production [15]. The upregulation of glycolysis and downregulation

of OXPHOS and TCA is linked to poor survival in GBM [16]. This increased glycolysis rate,

even under hyperoxia, increases GBM chemoresistance [17]. Furthermore, this metabolic shift

allows the channeling carbon and nitrogen fluxes into the biosynthesis of nucleotides via the

pentose phosphate pathways (PPP) [18]. The PPP also permits reducing NADP+ to NADPH

and hence maintains oxidative homeostasis [18]. A lesser-known GBM subtype, mitochondrial

GBM, was identified by multi-omics analysis with decreased glycolysis and increased OXPHOS

(reverse Warburg effect) [19]. This reverse Warburg effect occurs in late tumor formation and

is characterized by sensitivity to OXPHOS inhibitors [19]. Neuron-glioma metabolic interac-

tions through neurotransmitters can change glioma progression [20]. Mainly, dysregulation

in neurotransmitter exchange, such as of glutamine and gamma-aminobutyric acid (GABA),

emerges as part of the GBM metabolic remodelling [20]. Glutamine, a neurotransmitter pre-

cursor, is required in glycolytic cells to fuel the TCA cycle and the biosynthesis pathways.

Unlike GBM, LGG shows low glycolysis [21], which may explain their relatively decreased

proliferation, and ODG growth is robust to glutamine starvation [22]. Similarly, GABA may
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be linked to increased GBM stemness [23] where the pharmacological inhibition of GABA

release of the GBM cells reduced GBM growth [24]. The main astrocyte-neuron metabolic in-

teractions under healthy conditions in addition to glioma and NDD are summarised in Figure

2.1.

Figure 2.1: Dysregulated metabolic reactions between astrocytes and neurons in
healthy conditions, NDD, and glioma.

Under healthy conditions, astrocytes provide metabolic support with nutrients to neurons and
carry out neurotransmitter and ROS detoxification [25]. As glial cells are becoming malignant
in glioma, they shift from OXPHOS to glycolysis [16] and FAO [26] for energy generation.
Moreover, astrocytic glutamine transport to the neuron is disrupted [27] in glioma, and glu-
tamine uptake by the glial cell is increased [12]. Meanwhile, in NDD, neurons shift to reduced
glycolysis and OXPHOS to decrease the produced energy [25]. In some NDD, the bi-cellular
transport from astrocytes to neurons of both GSH and glutamate are decreased [25], with the
former accumulating ROS and peroxidized fatty acids from the neuronal activity [28]. The per-
oxidized fatty acids are exacerbated by the deceased astrocytic FAO. Because of the difference
in astrocytic glycolysis between glioma and NDD, astrocytic lactate transport to the neuron
is increased in glioma [29]; meanwhile, it is decreased in NDD [25]. Other cellular interactions
were excluded for simplification, such as astrocyte–glioma cell interactions [30], oligodendro-
cytes, microglia, and the different neuron cell types. FAO: fatty acid oxidation, GLUT1/3: glu-
cose transporter 1/3, GSH: glutathione, MCT: monocarboxylate transporters, OXPHOS: ox-
idative phosphorylation, ROS: reactive oxygen species. Parts of the figure were drawn by using
pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative
Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).

Besides glycolysis and neurotransmitter metabolism, deregulation of the lipid metabolism, no-

tably cholesterol metabolism, was shown to accumulate in GBM due to an increase in uptake
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and a downregulation of the efflux pathway. Cholesterol accumulation is a hallmark of can-

cer [31]. Due to the role of cholesterol in signaling and membrane plasticity, the deregulation

of cholesterol pathways often leads to uncontrolled proliferation, cell invasion, and migration.

Cholesterol can scarcely pass through the brain–blood barrier (BBB) [32]. This limits the

pool of cholesterol in the brain, which is synthesized mainly by the astrocytes. The effect of

cholesterol biosynthesis on GBM is debated, and the results are not consistent between stud-

ies. Cholesterol biosynthesis was found upregulated in GBM neurospheres, tumor-initiating

cells, cell lines, and patient samples, and a factor related to decreased patient survival and

tumor growth [33]–[36]. This upregulation allowed statins (cholesterol biosynthesis inhibitors)

to reduce the growth of GBM tumor-initiating cells [35]İn another study, cholesterol biosyn-

thesis has reduced expression in GBM cell lines [37]. The reduced cholesterol biosynthesis in

GBM cell lines is supported by GBM resistance to statins [38]. On the other hand, AST cells

with an upregulation in this pathway are sensitive to atorvastatin [39]. Besides cholesterol

deregulation, an upregulation of fatty acid synthesis, and beta-oxidation has been described in

GBM [26]. In a nutrient-rich microenvironment, beta-oxidation channels fatty acids to cancer

cell proliferation. Meanwhile, in lower nutrient levels, fatty acids are diverted to OXPHOS

to produce ATP and precursors for amino acids and nucleotide synthesis. Inhibition of fatty

acid oxidation (FAO) and carnitine transport show synergistic effects in GBM cell lines’ sur-

vival [40]. Moreover, the transporter of very long fatty acids SLC27A3 is upregulated in glioma

but not in the healthy brain and are linked to patient survival. Genetic knockout of SLC27A3

decreased stearic acid uptake and reduced the GBM cell line U87MG growth [41]. Recently,

some GBM xenografts were found to be resistant to glycolysis inhibitors with upregulation of

OXPHOS and dependency on FAO [42]. The combination of glycolysis and FAO inhibitors

synergistically decreased the growth of these resistant xenografts [42]. These studies show

GBM’s ability to shift energy dependency from glycolysis to FAO and the potential of FAO

pathway that could be exploited for drug repurposing [41].

Besides neurons and astrocytes that play a central role in gliomas, other glial cell types, oligo-

dendrocytes, and microglia, were described to play a role in tumor progression [43]. Oligo-

dendrocytes are cells engulfing the neuron axon with the myelin sheath to maintain neuronal

signal [44]. Similar to astrocytes, oligodendrocytes provide metabolic support of nutrients to

neurons such as lactate and pyruvate [44]. In addition to ODG and mixed glioma originating

from oligodendrocytes, oligodendrocytes increase the invasiveness of GBM [45]. Microglial cells

are the resident immune cells of the CNS, dedicated to the maintenance of CNS homeostasis.

These cells are implicated in numerous processes essential for tissue development and mainte-

nance, remodeling, and repair of the neural environment [46]. Microglia play important roles
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in the adult brain but also earlier during brain development [47]. These cells are able to elim-

inate extra synapses (synaptic pruning) but also to eliminate dying neurons by phagocytosis.

Microglia are also devoted to rapidly reacting to any kind of pathological insults (pathogens,

debris, dying cells, aberrant proteins) [48]. Similar to macrophages, microglia generate an

immune response to pathogens or any insults [49]. An excessive microglial reactivity can play

a critical role in the development and progression of brain diseases.Microglia can switch from

a quiescent state to pro-inflammatory or anti-inflammatory phenotypes and vice-versa [50].

This change of phenotype is often accompanied by metabolic shifts [51]. Pro-inflammatory

microglia are known to quickly release a large panel of pro-inflammatory compounds such as

cytokines, chemokines but also reactive oxygen and nitrogen species (ROS/RNS) [51]. Anti-

inflammatory microglia will be important in order to calm down the inflammation and to

favour tissue repair [51]. For this purpose, anti-inflammatory microglia produce high levels of

anti-inflammatory cytokines. The expression of anti-inflammatory phenotype biomarkers can

be used to differentiate between grade 2 and 4 astrocytoma [52]. In addition, GBM subtypes

show significant percentages of microglia cells in the microenvironment, with the mesenchymal

subtype having the highest percentage and lowest survival [53]. Microglia, monocytes, and

macrophages make up nearly 30–50% of the GBM tumor weight [54]. Little is known about

the exact metabolic role of the two microglia phenotypes in GBM [29]. While both phenotypes

are expressed in the different stages of GBM, more pro-inflammatory microglia are activated

in early glioma development using glycolysis and OXPHOS for energy [29]. In a second stage,

the pro-inflammatory microglia depend on glycolysis mainly due to inflammation-induced hy-

poxia. This second stage is characterized by nitric oxide formation and lactate production [29].

Lastly, the high concentration of lactate in the microenvironment and lack of oxygen favor the

anti-inflammatory phenotype. The overrepresentation of anti-inflammatory macrophages in

glioma induces immunosuppression, increasing glutamine uptake and angiogenesis through

vascular endothelial growth factor (VEGF) expression [29].

Despite the diversity of NDD pathologies, including Parkinson’s (PD), Alzheimer’s (AD),

Huntington’s and amyotrophic lateral sclerosis, they share several metabolic hallmarks. Cell

death of neurons in many NDD has been observed due to protein misfolding and accumu-

lation [55]. Aging, oxidative stress, and mutations are the main factors for protein misfold-

ing [56]. The pathological protein accumulation can be either intra- or extracellular depending

on the disease [57]. This in turn causes malfunctions with membrane receptors and further

distribution in the neural signalling [57]. Moreover, protein accumulation increases lipid oxi-

dation and mitochondrial dysfunction [28]. Glial cells such as astrocytes and oligodendrocytes

show a supportive rule in alleviating the cellular damage and redistributing metabolites to
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neurons in NDD [58]. Similar to neurons, cellular damage in astrocytes and oligodendrocytes

occurs due to protein accumulation that causes loss of normal functions such as the distribution

of neuronal lactate uptake from glial cells and gain of toxic functions [59], [60]. Hypomyeli-

nation of oligodendrocytes induced by protein accumulation is further accelerating neuron

damage [60]. Microglia protect from neurodegeneration by maintaining synaptic remodelling

and phagocytosis of dead cells. Similar to neuron cells, intracellular protein accumulation may

cause loss of the astrocytes and microglia normal functions that may aggravate NDD [59], [61].

An increase in microglial phagocytic activity has been shown concomitant to an increase in

the production of anti-inflammatory mediators and a decrease of pro-inflammatory media-

tors [62]. Balance between pro-inflammatory/anti-inflammatory microglia activation shows

improved prognosis and treatment of NDD [63]. Mainly, shifting from pro-inflammatory to

anti-inflammatory activation decreased neuroinflammation in some NDD [64]. In most NDD,

neuronal glucose uptake is downregulated and glucose metabolism is impaired [65]. The al-

teration in glucose metabolism and the downregulation of GLUT transporters lead, together

with the mitochondria dysfunction, to lower energy levels that aggravate the pathologies. Mi-

tochondrial dysfunction does not only impair cellular energy, but as mitochondria play a key

role in calcium and redox homeostasis, they also contribute to redox stress. Furthermore, dys-

function in OXPHOS increases the production of ROS that will further increase mitochondrial

damage and eventually initiate apoptosis [66]. Lipid peroxidation is another hallmark of many

NDDs in early development due to mitochondrial damage and increased ROS [28]. Some by-

product metabolites of lipid peroxidation are potential biomarkers for different NDDs such as

isoprostanes in AD and malondialdehyde in PD [66]. Lastly, metabolism of polyamines such

as spermidine and spermine is also deregulated in NDD. Both metabolites are antioxidants

and have antiapoptotic properties with expression in neurons and glial cells. Deregulated

polyamine metabolism was detected in AD, and PD and was accompanied with mitochondrial

damage and apoptosis [67].

Constraint-based metabolic modelling (CBM) and genome-scale metabolic models (GEM) are

commonly applied to study metabolism and, notably in cancer, where it was used to under-

stand rewiring strategies and predict repurposable drugs [68] and drug off-targets [69]. GEM is

an in silico representation of the metabolism where the interactions between metabolites and

the biochemical reactions are formulated in a sparse stoichiometric matrix and the relation-

ship between genes and reactions by Boolean rules (GPR rules). Moreover, GEM is used to

simulate the role of the microbiome in the development of PD [70], [71] or to study psychiatric

diseases [72] and AD [73] in humans and PD-like phenotypes in mice [74]. However, brain

metabolism has specific properties that must be considered before applying CBM. The brain
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is protected by the BBB that controls the exchange of metabolites between cerebrospinal fluid

(CSF) and the blood [75]. The permeability of the BBB can be altered in numerous diseases,

which also impacts the CSF composition and the brain microenvironment [76], a feature that

can be further used to constrain metabolic models. Furthermore, the metabolism of neurons

and glial cells is interconnected and numerous exchanges between glial cells, notably astrocytes

that are part of the BBB, have been described. For instance, glial cells store glucose in the

form of glycogen, and, when required, glycogen fuels glycolysis [77]. The produced lactate

can then be taken up by surrounding neurons [78]. Hence, for the study of some diseases, a

bi-cellular or multicellular model is more suitable than an averaged brain model that lacks the

required resolution.

In this review paper, we survey brain GEMs that could be used to study brain cancer, NDD

or other brain disorders. We focus mainly on the modeled cell type, the type of model (single

versus bi-cellular models), the curation level and the overall quality of the model in terms

of the gene, metabolite and reaction annotations. We further consider the type and quality

of data used to support the inclusion of reactions in the models as well as the validation

used in the different studies. The model size, the inclusion of cell type-specific pathways and

the optimisation function were also used to assess the models’ completeness and specificity.

We further compare the metabolite composition in models with a biomass function to assess

their specificity in the investigated system. Finally, we highlight the strengths of the different

GEMs, in terms of applied constraints, data utilized for model-building and validation that

could be incorporated in future models and suggest some improvements.

2.2 Materials and Methods

2.2.1 Literature Search for Manually Curated Brain GEMs

An extensive literature review was performed to gather brain GEMs. To distinguish between

the different curation levels, we classified the metabolic models into three classes: curated,

semi-curated, and automatically generated (AG). In this review, we focused mostly on curated

and semi-curated models. Curated: models built starting from a list of biochemical reactions

collected from literature or databases to which reactions were then added to fill the gaps or

add the missing information. Alternatively, the starting point can also be an automatically

generated GEM. However, most pathways have been carefully checked to eliminate reactions

with no or low support from the literature that is not required for modelling purposes and

to add missing reactions but are known to be present in the studied system. Semi-curated:
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models built using a generic reconstruction or an automatically generated model that was

curated via the addition of constraints, modifications (addition and removal of reactions) in

key pathways or required to combine two models in a bi-cellular model.

Automatically generated: models built automatically using a model-building algorithm such as

FASTCORE [79], FASTCORMICS [80], rFASTCORMICS [68], GIMME [81], mCADRE [82],

PRIME [83], iMAT [84], RegrEX [85], and tINIT [86] from a GEM, and expression data

(transcriptomic or proteomic) without or with limited manual curation.

2.2.2 Inclusion and Exclusion Criteria of Publications

Publications focusing on building curated and semi-curated GEMs for the human brain and

using CBM were included. In addition to curated and semi-curated models, only one AG

GEM was included for relevance to GBM. Five types of brain GEMs were excluded from

this review: (1) AG GEM without validation, (2) curated GEM with a follow-up included

in the present review, (3) dynamic metabolic models in the brain, (4) publications with no

publicly available model files in the supplementary files or BioModels, and (5) Non-human

GEM. Dynamic metabolic models were excluded as they are out of the scope of the current

review, and they were already covered in a previous review [87]. We also focused on human

GEM as being more relevant for personalised medicine. Due to missing abbreviated names for

some GEM, we referred to each model by the last name of the first author and the date of the

publication.

2.2.3 Metadata Gathering for Determining the Extensiveness of the Manual

Curation

After selecting brain GEM publications, basic information was retrieved from each publication

regarding the model used as template, cell type, diseases, and data used during model building

or validation. Moreover, the detailed types of the different omics and experimental data were

collected with the number of samples to identify the extensiveness of the manual curation of

the model.

2.2.4 Determining Model Sizes and Common Genes

The model files were imported using the COBRA Toolbox V3 [88], and the number of reactions,

genes and metabolites were determined. The median, minimum and maximum numbers were
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computed for publications with more than two GEM. Since some reactions may not be able to

carry a flux at all, the number of flux-consistent reactions were identified using FASTCC [79].

Moreover, the brain GEMs’ model genes were mapped to ENTREZ IDs to compare the overlap

between the different models using the UpSet plot in R. Two generic models, Recon3D and

Human1, were used in the gene overlap analysis. The intersection and the union of the model

genes were retrieved for publications with more than two GEM.

2.2.5 Determining the Level of Completeness and Specificity of the Brain

GEM

To evaluate the specificity and the completeness of the human brain GEM, tissue gene cate-

gories were retrieved from the Brain Atlas [89] of the Human Protein Atlas (HPA) [90]. HPA

classifies the protein-coding genes into five categories according to the expression level in a

target tissue compared to other tissues. These categories were retrieved for the human brain

and mapped to the ENTREZ identifiers. The five categories were grouped for simplification

into two types: Supported (which includes “Elevated in brain”, “Elevated in other but ex-

pressed in brain” and “Low tissue specificity but expressed in brain”), and unsupported (which

includes “Not detected in brain” and “Not detected in any tissue”). The different HPA data

were mapped to the genes of the brain GEM, and to two generic models, Recon3D and Hu-

man1, to assess the fraction of genes of each model that are supported or unsupported in the

brain by the HPA protein data. Two scores were calculated for each brain GEM, specificity

and completeness. Model specificity (indicated as two numbers) is the number of supported

or unsupported genes in each GEM. In contrast, model completeness is the ratio of the model-

supported or unsupported genes to the total count of genes in each category.

2.2.6 Evaluation of Objective Function and Validation Used in the Brain

GEM

The brain GEMs were further evaluated by their objective function (OF) and used validation

data to determine the strengths and limitations of these GEMs. Different brain GEMs include

different OFs depending on the diseases of interest. These OFs were categorized into tailored

or generic based on the manual curation. In addition, the rationale for choosing a specific

OF according to the research question was summarised. The OFs of the GBM GEMs were

compared using their metabolite composition. Moreover, the data used for validation in the

brain GEMs were outlined and their importance for the research question was discussed.
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Finally, the limitations and the strengths of the brain GEMs were summarised based on the

choice of the template model, model-building technique, study design, use of constraints data,

presence of sink reactions, heuristic thresholds in the discretization of the expression data, and

applying standard identifiers.

2.3 Results

In this review, we discuss nine publications that focus on reconstructing GEMs that could

be employed for NDD, brain cancer, and other brain diseases. The selection of these models

was based on their public availability (see Supplementary File S1 Table S1), the curation

level, and/or the pertinence to GBM. By curation, we understand the contextualization of the

models with constraints retrieved from literature or published experimental data, the addition

of reactions specific to the cell type of interest, the choice of the OF, and if the OF was

tailored to the cell type of interest. Finally, we discussed the validations used in the different

publications and the strengths and limitations of these GEMs.

2.3.1 Selected Brain Metabolic Models Could Be Potentially Reused for

NDD and Glioma

The main difference between the curated and semi-curated is the extension of the curation. For

example, Thiele2020, considered curated, defines 578 core reactions (reactions supported by

literature in the brain) and added 43 metabolites to the list of metabolites passing BBB. While

Baloni2020 completed the list of BBB metabolites with an additional 372, no core reactions

were added. Five curated, three semi-curated and one AG GBM GEM were selected. Most

of these GEMs integrated transcriptomic and proteomic data for model-building, while only

two GEMs used metabolomics data to define exchange reactions (see Supplementary File S1

Table S2).

2.3.2 Lewis2010 (iNL403)

Lewis2010 [91] is a bi-cellular GEM of a neuron and an astrocyte with 1073 reactions and 987

metabolites [91]. This GEM was built by extracting the reactions of glycolytic, mitochondrial,

and transport pathways from the generic reconstruction Recon 1 [92]. The presence of each

of these reactions in the brain was determined based on expression from different sources.

Lewis2010 was curated by adding brain cell type-specific (astrocyte and neuron) biochemical
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reactions [91]. The models were then contextualised using manually selected neuron cell type-

specific reactions to build glutamatergic, GABAergic, and cholinergic neurons. In addition,

the model bounds were constrained using uptake rates obtained from the literature.

2.3.3 Sertbaş2014 (iMS570) from Tunahan Çakır Lab

Sertbaş et al., 2014 [93] expanded the brain reconstruction of Çakır et al., 2007 to obtain

a bi-cellular astrocyte and neuron model with 630 reactions and 530 metabolites from the

literature [93]. ATP production and glutamineglutamate exchange were added as OF, whereas

GABA exchange was included to ensure the coupling of the exchange reactions between the

astrocyte and the neuron model.

2.3.4 Özcan2016 (iMS570g) from Tunahan Çakır Lab

Since the curated Sertbaş2014 only includes non-cancerous OFs, Özcan et al., 2016 [94] added

29 reactions to integrate a tailored growth OF [94]. Among the 29 reactions, 25 are biomass-

related and four reactions are linked to glutamine metabolism in GBM. The tailored OF was

formulated based on the contribution of both the astrocyte and the neuron to the dry weight

of the white matter.

2.3.5 MartínJiménez2017

A curated astrocyte GEM [95] was reconstructed using the Human Metabolic Atlas (HMA) [96]

and microarray data of foetal cortical astrocytes. The completeness of the model was assessed

by identifying gaps that were filled by adding astrocyte-specific reactions based on enzymes

present in the HPA [90]. Lastly, experimental constraints specific to hypoxia were used to

compare the activated reactions under normal and hypoxic conditions.

2.3.6 Thiele2020

Thiele et al., 2020 [97], built two sex-specific multi-tissue models (Harvey and Harvetta for male

and female, respectively) of 26 organs with > 80,000 reactions [97]. Reactions for the protein

and drug metabolism pathways were removed initially from the Recon3D model [98], before

assembling according to the connections of the different organs. The two multi-tissue models

were built using FASTCORE [79] from the assembled reconstructions and organ-specific core
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reactions from omics data and literature. Exchange reactions of the organs and extracellular

fluid such as the CSF were constrained by metabolomics data from the Human Metabolome

Database [99]. Meanwhile, the exchange reactions between the extracellular fluid of the dif-

ferent organs and the systemic blood circulation were obtained from the literature. Moreover,

organ-specific models were further extracted from the two multi-tissue models as standalone

consistent GEMs. The man and woman brain GEMs will be referred to as Thiele2020_Harvey

and Thiele2020_Harvetta.

2.3.7 Baloni2020

Baloni et al., 2020 [100] built seven brain region-specific GEMs using the Recon3D model [98]

and transcriptomic data from different brain regions of healthy and AD patients with the

mCADRE algorithm [82]. The reactions of the drug metabolism pathway were removed from

the Recon3D model. Then, the transcriptomic data were discretized using the top 25th per-

centile cut-off to obtain a set of reactions used as input for mCADRE. After the building, the

model was constrained using metabolites passing the BBB from Thiele2020, bile acid metabo-

lites from targeted metabolomics of brain samples, uptake rates obtained from Lewis2010 and

other literature sources were integrated. Furthermore, gap filling was performed using HPA

expression [90] to determine gene presence. Finally, the OF of Sertbaş2014 was integrated into

the GEM.

2.3.8 EcheverriPeña2021 Neuro−Glia_GEM

EcheverriPeña et al., 2021 [101] integrated two AG GEMs [102], to build a bi-cellular neuron-

glia metabolic model. These models were obtained using Recon 2 [102] and HPA [90] as

input for the MinMax algorithm [103]. To identify the metabolic pathways changes related to

Arylsulphatase A (ARSA) deficiency, EcheverriPeña et al., 2021 added reactions of sulfatide

degradation from the myelin band. The added reactions made the glial cellular compartment

more specific for oligodendrocytes.

2.3.9 Lam2021

Lam et al. [104] analysed telomeric ageing in AD and PD compared to healthy controls by

aggregating gene expression data from six sources via batch correction. The combined AD

and PD samples were stratified into three subclasses using unsupervised clustering. Four semi-

curated GEMs were built from the expression of the three clusters in addition to the control
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samples using tINIT [86] from the RAVEN Toolbox [105]. The template model for model-

building was an adipocyte GEM, iAdipocytes1850 [106], after mapping the gprRules from

the generic reconstruction HMR3 [107] and constraints from Baloni2020 [100]. Flux balance

analysis and reporter metabolite analysis were applied to define the different pathways and

metabolites between the three combined AD-PD GEMs and the control GEM. These pathways

and metabolites were validated using semi-curated zebrafish GEMs built from normal and

enhanced aging. The zebrafish GEMs were built from zebrafish expression data of wildtype

and mutant TERT gene responsible for telomere maintenance.

2.3.10 Larsson2020

Larsson2020 [108] merged 139 patient-derived AG GEMs to build a GBM model using tINIT [86].

These 139 AG GEMs were built by Uhlén et al. [109] using the generic reconstruction HMR2 [107]

and the RNA-Seq data of GBM from the TCGA-GBM dataset [110]. Furthermore, single-

gene deletion was performed on both the patients and the generic GBM models using Fast-

GeneSL [111]. Then, the genes whose in silico knockout might affect healthy tissues were

excluded by evaluating the effect of a knock-out on 77 pre-defined metabolic tasks (defined as

metabolites that must be produced from a defined minimal media or a set of metabolites) on

an AG healthy brain model from the HMA [96]. The different data used by the brain GEMs,

their curation status, and cell types are summarised in Table 2.1.

Table 2.1: Curated, semi-curated, and automatically generated human GEMs in
the brain and their associated phenotypes.

The list of metabolic models in the human brain was classified as curated, semi-curated, or
AG according to the level of manual curation after model-building. The detailed omic types
for the “Data” column and the number of samples are summarised in Supplementary File S1

Table S2.

Model Goal Model used
as template

Curation
status

Cell type Diseases Data
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Lewis2010
(iNL403 ) [91]

Building
a curated
bi-cellular
human brain
metabolic
model to
study AD

Recon 1 [92] Curated Astrocyte-
Neuron

AD
• Human Pro-

tein Reference
Database [112]

• HINV [113]
• HUPO brain pro-

teome project [114]
• Literature informa-

tion for transport
reactions between
compartments

• Constraints for neu-
ron cell types

• Microarray data of
AD

Sertbaş2014
(iMS570 ) [93]

Identifying
biomarker
metabolites
for six NDD

Çakır et al.,
2007 [115]

Curated Astrocyte-
Neuron

Six
NDD • Microarray of the six

NDD
• Literature-derived

constraints for a
healthy brain

Özcan2016
(iMS570g) [94]

Metabolic
rewiring
pathways in
three GBM
subtypes

Sertbaş2014 Curated Astrocyte-
Neuron
(gluta-
matergic,
GABAer-
gic,
choliner-
gic)

Three
GBM
sub-
types

• Curated growth ob-
jective function

• Literature-derived
constraints for 26
reactions for GBM

• Microarray data of
the three GBM cell
lines

MartínJiménez
2017 [95]

Building an
astrocyte
model recon-
struction

HMA [96] Curated Astrocyte Hypoxia
• Microarray data of

foetal cortical astro-
cytes

• Literature-derived
constraints for
healthy astrocyte
exchange reactions

Thiele2020 [97] Building
sex-specific,
multi-organ,
whole-body
model

Recon3D
Model [98]

Curated Whole-
brain • Human Proteome

Map [116]
• HPA [90]
• CSF metabo-

lites from Hu-
man Metabolome
Database [99] and
other resources

• Organ-specific reac-
tions from literature
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Baloni2020 [100] Analyzing
the effect of
bile acid syn-
thesis in AD
in different
brain regions

Recon3D
Model [98]

Semi-
curated

Seven
brain
regions

AD
• RNA-Seq data for

brain regions from
post-mortem of nor-
mal and AD patients

• Metabolomics of pri-
mary and secondary
bile acids from the
post-mortem brain
samples

• BBB reactions from
Thiele2020

• Constraints from
Lewis2010

• Human Protein Atlas

EcheverriPeña-
2021 (Neuro-
Glia_-
GEM ) [101]

Building a
bi-cellular
neuron-glial
model to
identify
pathways
linked to
ARSA defi-
ciency

Two tissue
AG models
from Recon
2 [102] (Glia:
MODEL1310-
110064,
neuron:
MODEL1310-
110033)

Semi-
curated

Neuron-
Glia

Metachr-
omatic
leukodys-
trophy

• Reactions of the
sulfatide degradation
from the myelin band

Lam2021 [104] Analyzing
telomeric
aging in AD
and PD

iAdipocytes-
1850 [106]
with
gprRules
from
HMR3 [107]

Semi-
curated

Whole-
brain

AD,
BD • RNA-Seq of healthy

brain from HPA [90]
& GTEx [117]

• CAGE expression
of healthy brain
samples from FAN-
TOM5 [118]

• RNA-Seq of AD
and PD brain
samples from Ra-
jkumar dataset [119]
and Zhang/Zheng
dataset [120], [121]

• Single-cell RNA-
Seq of AD and PD
brain samples from
ROSMAP [122]

• Constraints from
Baloni2020 [100]

Larsson2020
[108]

Predicting
non-toxic es-
sential genes
for GBM &
identifying
metabolic
pathways for
GBM low &
high overall
survival

139 AG
patient-
derived
models [109]
using HMR2
generic
reconstruc-
tion [107]

AG GBM
• RNAseq of TCGA-

GBM [110]
• Healthy brain GEM

from HMA [96]
• CRISPR-Cas9 data

for GBM [123]
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2.3.11 Manual Curation Included Tissue-Specific Constraints, Added Re-

actions, and Compartments

A curation can either be a refinement of a curated or an AG GEM by the addition or removal

of reactions, metabolites, and flux rates. Four models incorporated experimental flux rates

to contextualize their models to represent healthy brain cell models (Sertbaş2014, Lewis2010

and MartínJiménez2017 ), and GBM (Özcan2016 ). Most experimental flux rates are specific

to a cell type (mostly glial or neuronal), while others, such as glucose uptake, are measured

at the BBB. While Sertbaş2014 assumed equal glucose consumption for the glial and neuron

model, Özcan2016 divided the overall brain glucose, oxygen, and glutamine uptakes based on

the neuron and glial proportion in the white matter mass.

Four models included a compartment to simulate the exchange between the models and the

BBB, Lewis2010, MartínJiménez2017, Thiele2020, and Baloni2020. Furthermore, metabolites

that cannot cross the BBB were defined in Thiele2020, and the respective transporters were

removed. Overall, to better model the physiology of the studied diseases, the models have to be

adapted by adding or removing reactions or by applying the constraints based on experimental

measurements obtained from diseased patients or cell lines. Besides whether there is binary

information if a metabolite passes or not passes the BBB, or what metabolites can be uptaken

by a specific cell type, experimental rates can be used to validate and constrain the model

prior to the reconstruction. Sertbaş2014 and MartínJiménez2017 collected 14 and 23 flux rates

corresponding to hypoxia in astrocyte and healthy astrocyte–neuron models, respectively (see

Supplementary File S2 Tables S6–S8).

The second type of manual curation of brain GEMs consists of the addition of new brain-

specific reactions. For example, Lewis2010 added manually-curated reactions for the acetyl-

choline synthesis, which is decreased in the neurons of AD patients. These reactions were

identified by flux balance analysis on the generic reconstruction Recon 1. Meanwhile, reac-

tions linked to the ARSA gene, which is responsible for the degradation of the sulfatides in

the myelin sheath, were added in EcheverriPeña2021.

2.3.12 The Completeness Is Highly Variable between the Models While Having a Sim-

ilar Specificity

The size of the models in terms of the number of reactions, metabolites, and genes varies

greatly between the models and ranges from 639 to a median of 5942 reactions for Baloni2020

(see Table 2.2), and only 35 genes were shared among the models after the conversion of
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the model gene identifiers to ENTREZ gene identifiers (Supplementary File S1 Figure S1).

This low overlap results to some extent from the comparison between bi-cellular glial-neuron,

astrocyte, and whole-brain models. However, the low overlap also results from the strategy

used during the model building. Two bottom-up models (Sertbaş2014 and Özcan2016 ) were

smaller and focused mainly on the central brain metabolism. The size of the remaining seven

models correlated with the size of the reconstruction used as a template for the building process

that varies between 2469 consistent reactions for Recon 1 to 10,600 for Recon3D.

Table 2.2: Model statistics for the brain GEMs.

The curated and semi-curated models were retrieved as explained in Supplementary File S1
Table S1. For studies with more than two models (Larsson2020, Baloni2020, and Lam2021 ),

the median sizes and range were computed. The number of reactions was determined for
consistent models of these studies using FASTCC [79]. Since the models used different gene

identifiers, the identifiers were mapped to ENTREZ genes.
∗ Brain GEMs with more than two models per study.

Model Reactions Consistent
Reactions

Metabolites Genes Gene Field
Format

Number of
ENTREZ
Genes

Lewis2010 1073 727 987 403 ENTREZ
Gene

403

Sertbaş2014 630 589 523 570 Gene Sym-
bol

532

Özcan2016 659 644 548 569 ENTREZ
Gene

569

MartínJiménez2017 5659 4848 5007 3765 Ensembl
Gene

3674

Thiele2020_Har-
vey

3602 3510 2201 1836 ENTREZ
Transcript

1548

Thiele2020_-
Harvetta

3602 3508 2203 1843 ENTREZ
Transcript

1551

Baloni2020∗ 5942
(5341–6328)

5327
(4870–5696)

3784
(2808–3926)

1684
(1524–1846)

ENTREZ
Transcript

1409
(1292–1559)

EcheverriPeña2021 3831 3622 2473 1375 ENTREZ
Transcript

1148

Lam2021∗ 3283
(3274–3334)

2774
(2658–2815)

2122
(2118–2138)

1523
(1478–1572)

Ensembl
Gene

1516
(1478–1572)

Larsson2020∗ 3917
(2226–4877)

2951
(1382–3276)

1649
(1178–2086)

1840
(1103–2034)

Ensembl
Gene

1838
(1102–2031)

MartínJiménez2017 has 948 genes that were not included in any of the other brain models

(Supplementary File S1 Figure S1) but also has the highest number of supported and unsup-

ported genes by the HPA protein data in the brain according to the HPA (Figure 2.2). Simi-

larly, Thiele2020 and Baloni2020 share 2762 (26.1%) and a median of 5110 (48.2%) reactions,

respectively, with the Recon3D model. The ratio between the supported and unsupported

genes in the brain is rather conserved across the brain models and generic GEMs (Figure

2.2A), showing that, to include more supported genes in the brain, inactive reactions in the
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brain had to be included. In terms of completeness, MartínJiménez2017 included a higher

percentage of the supported and unsupported genes in the brain. Taken together, two strate-

gies were used, bottom-up (Sertbaş2014 and Özcan2016 ) and top-down (MartínJiménez2017,

Thiele2020, Baloni2020, EcheverriPeña2021, Lam2021, Larsson2020 ), that do not dictate the

quality of the model but rather have an impact on their size. Lewis2010 used a compromise

between the two approaches by reconstructing a subnetwork using GIMME and expression

data. While focusing mainly on three pathways and the fulfillment of metabolic tasks associ-

ated with the synthesis and metabolism of acetylcholine, the inclusion of transcriptomic data

allowed us to obtain a larger model than the ones using the bottom-up approach. Regarding

specificity and completeness, increasing the number of brainspecific reactions causes the inclu-

sion of genes that are considered unsupported by the HPA [90].

Figure 2.2: Completeness of the human brain metabolic reconstructions is linked
to less specificity according to the Human Protein Atlas brain-specific category.

A) The genes of the brain reconstructions in addition to the Recon3D model and Human1
were classified into five categories based on differential tissue expression of the brain. These
five categories were grouped into supported (in blue) and unsupported (in red). Model genes
outside the HPA coding genes were coloured in blue. B) Since the total number of genes in
each category differs, completeness was computed as the ratio of model genes in a category
and the total number of genes in that category. The number and completeness of supported
and unsupported genes are higher in MartínJiménez2017 than in Human1, which indicates
the loss of brain specificity by increasing the completeness of the model.
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2.3.13 Glutamine/Glutamate/GABA Exchange Is a Brain-Specific Objec-

tive Function for Non-Glioma Models

The choice of the OF and its formulation should be tailored to the modeled cell type and

condition. Thus, we compared the OFs used for non-glioma and glioma models to evaluate

their relevance to brain functions (see Table 2.3). The OF is a reaction with the set of

metabolites needed for a cell to carry out a specific task. The main task of the neuron cells is

resetting the action potential by Na+/K+ ATPase, which is costly in energy [124]. This energy

generated as ATP comes from either glycolysis or tricarboxylic acid cycle and OXPHOS. Many

hypotheses have been proposed for the specific roles of glial and neuronal cells in the transport

of energy substrates, such as the astrocyte–neuron lactate shuttle theory (ANLS) [78]. The

ANLS theory states that the glucose is transported from the blood vessels to the astrocyte and

then metabolized through glycolysis to produce lactate supplied to neurons. Hence, lactate

production could be used as OF. However, for non-glioma, like for other healthy tissues,

ATP production or maintenance is more commonly chosen. In the whole-brain Thiele2020,

two maintenance OFs were used: biomass_maintenance and biomass_maintenance_noTrTr

in normal and fasting conditions, respectively. In the brain bi-cellular models, glutamate,

glutamine, and GABA cycles are used as an additional OF to ensure a coupling between

the two models. Furthermore, MartínJiménez2017 used only glutamate uptake and glutamine

release for their role in the detoxification of neurotransmitters from the CSF. In summary, ATP

production, biomass maintenance, glutamate, glutamine, GABA cycles, and neurotransmitter

exchange reactions can be used as OFs for non-glioma brain models depending on the cell

type.

2.3.14 GABA and Ornithine Were Included in the Biomass Formulation of

a GBM-Specific Biomass Function

Only Özcan2016 and Larsson2020 are modeling high proliferative cells, and, accordingly, they

used the biomass reaction as an OF. While Larsson2020 used the generic biomass function

included in all HMR reconstructions, Özcan2016 built a tailored biomass function for glioma

that could be adapted to future GBM models. Özcan2016 added to the healthy Sertbaş2014

24 pseudo reactions and a final biomass reaction for which the coefficients were adjusted in

function of the contribution of each cell type of the white matter (94% in glial and 6% in

neuron). By comparing the metabolite composition of the two OFs, we identified some differ-

ences between the two models, notably, GABA and ornithine present uniquely in Özcan2016
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Table 2.3: Objective Functions for Various Models.

Objective functions used in the brain-specific models and the
rationales for using these objective functions. [m]: mitochondria, [x]: extracellular, [c]: cytosol.
Model Objective Function(s) Rationale for choosing the OF
Lewis2010 ATP demand for both astrocyte and

neuron cell: DMatp(c) : atp[c] +
h2o[c] → adp[c] + h[c] + pi[c]

Production of the cholinergic neuro-
transmitter is ATP-dependent.

Sertbaş2014 1- Maximization of the sum of gluta-
mate/glutamine/GABA cycles. 2-
Setting the value of the sum of
the three-cycle fluxes to the optimal
solution, then minimizing the Eu-
clidean norm of fluxes.

The 1st OF ensures compact cou-
pling of the intercellular exchange
between the astrocyte and neuron.
The 2nd OF ensures fluxes with
minimal utilization of metabolic en-
zymes.

Özcan2016 Curated biomass growth reactions:
2.9404protein + 0.9074lipidWM +
0.1091RNA+24ATP → biomass+
24ADP

Adjusting the contribution of neu-
rons and astrocytes of macro-
molecules based on their percentage
in the white matter and the macro-
molecule composition of the white
matter.

MartínJiménez2017 (A) ATP production: ADP [m] +
4H + [c] + Pi[m] → ATP [m] +
3H + [m] + H2O[m] (B) Gluta-
mate uptake and glutamine release:
Glutamate[x] + Glutamine[c] →
Glutamate[c] +Glutamine[x]

The 1st OF ensures the consump-
tion of different metabolites for en-
ergy production. The 2nd OF
resembles the astrocyte’s role in
detoxification of the extracellular
glutamate produced by neurons and
secretion of glutamine needed by the
neuron.

Thiele2020 The brain model didn’t have a de-
fault OF; rather, the model included
different OFs for different scenarios:
1- Biomass maintenance 2- Biomass
maintenance with no transcription
and translation

Biomass maintenance didn’t include
DNA molecules (dgtp[n], dctp[n],
datp[n], dttp[n]) as the brain cells
don’t replicate. The 2nd OF resem-
bles a fasting condition.

Baloni2020 Equal to MartínJiménez2017
EcheverriPeña2021 ATP synthesis Modeling the highly oxidative state

of the excited neuron releasing neu-
rotransmitters

Lam2021 ATP synthesis
Larsson2020 Growth OF of the generic recon-

struction HMR2
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and, glycogen, cysteine, proline, and tryptophan (included in the generic biomass function

of Larsson2020 ) (Figure 2.3). In addition, Larsson2020 ’s OF shows a higher diversity of

phospholipids than Özcan2016, as the former is reconstructed from the generic HMR2 that

covers the lipid metabolism exhaustively [107]. The neurotransmitter GABA, which is missing

in the Larsson2020 ’s OF, was shown to control the proliferation and growth of glioma [24].

Meanwhile, glycogen, which is absent in Özcan2016 ’s OF, 16 of 28 is required for cancer cell

survival [125] and optimal glucose utilisation under hypoxia conditions [126]. As a result,

GABA and glycogen should be potentially added to future GBM OFs.

2.4 Figure 3

Figure 2.3: GABA, ornithine, and some phospholipids are different between the
tailored glioblastoma and the generic OFs.

Two brain GEMs have a biomass function: Özcan2016 and Larsson2020. Both models’ OFs
share 26 metabolites, mostly amino acids, cholesterol, and phospholipids. While Özcan2016 ’s
OF has six unique metabolites, notably GABA and ornithine, Larsson2020 ’s OF has 20 unique
metabolites such as cysteine, glycogen, proline, tryptophan, nucleotides, and fatty acids.
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2.4.1 CRISPR-Cas9 screens, experimental fluxes and simulating metabolic

dysregulation are used as validation

Validation of the various in silico predictions produced with the metabolic models is crucial

for ensuring the quality of the curated, semi-curated, or AG models. Validation methods ap-

plied in the different publications are summarised in Table 2.4. Sertbaş2014 and Özcan2016

compared the predicted and measured flux rates for healthy and GBM, respectively. Also,

Lewis2010 validated the predicted cholinergic neurotransmission and ATP production rates

with experimental data. Larsson2020 compared the predicted essential genes for GBM, against

high-throughput CRISPR-Cas9 data [123]. While MartínJiménez2017 collected the dysreg-

ulated metabolic reactions (up- or down-regulations) in metachromatic leukodystrophy from

literature to compare the predicted dysregulated reactions. Flux rates can thus be employed

for either model contextualization or validation, as long as the same data is not used for both.

Furthermore, in the absence of experimental data, information on the up- and down-regulation

of metabolic pathways of a disease retrieved from different literature can be used as an alter-

native for validation.

Table 2.4: Some advantages and drawbacks in the brain GEMs.

Model Strengths Drawbacks
Lewis2010

• Inclusion of a compartment for BBB
(EndotheliumAndBlood) with 55
metabolites that can bypass through it
(Supplementary File 2, Table S3)

• Adding brain cell type-specific reactions
from literature (Lewis et al., 2010, Sup-
plementary Table 1)

• Comparison with experimental data of
cholinergic neurotransmission rate

• The generic reconstruction used
as input is outdated and has lots
of shortcomings

Sertbaş2014
• Constraining with literature-derived

constraints.
• Comparison with experimental flux ra-

tios for healthy brain cells (Supplemen-
tary File 2, Table S6-S7).

• Using non-standard reaction
identifiers in the model

• Missing metFormula field that
prevents evaluating the stoichio-
metric consistency

Özcan2016
• Constraining with literature-derived

constraints.
• Comparison with experimental flux ra-

tios for GBM (Supplementary File 2,
Table S9).

• Using non-standard reaction
identifiers in the model

• Missing metFormula field that
prevents evaluating the stoichio-
metric consistency
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MartínJiménez2017
• Constraining with literature-derived

constraints (Supplementary File 2, Ta-
ble S8)

• Validation with dysregulated reactions
in ischemia (MartínJiménez et al.,
2017 [95], Table 4)

• High rate of included genes that
are unsupported in brains

• The discretization method used
for the expression data is not ex-
plained

• Missing metFormula field that
prevents evaluating the stoichio-
metric consistency

Thiele2020
• Extracting core reactions from litera-

ture and other expression data (Supple-
mentary File 2, Table S5)

• Defining permeable and impermeable
metabolites across the BBB (Supple-
mentary File 2, Table S3)

• Defining CSF metabolic composition
from different metabolomics data (Sup-
plementary File 2, Table S4)

• Discretization of the Human Pro-
teome Map using a heuristic
threshold

Baloni2020
• Updating the list of Thiele2020 for

metabolites passing the BBB (Supple-
mentary File 2, Table S3)

• Inclusion of constraints from Lewis2010
and OF from MartínJiménez2017

• Discretization of the expression
data using a heuristic threshold

• Manual curation on the AG
models after model-building with
mCADRE.

• Gap filling with 389 sink reactions

EcheverriPeña2021
• Adding reactions of myelin sheath

degradation in oligodendrocyte
• Individual AG models [102] used

for integrating into a neuron-glial
model, were built using the out-
dated MinMax algorithm

• Manual curation by adding reac-
tions after integrating the two AG
models

• Missing metFormula field that
prevents evaluating the stoichio-
metric consistency

Lam2021 Using an adipocyte GEM with
gprRules of the generic HMR3 in-
stead of using the genetic recon-
struction itself

Larsson2020
• Removing essential toxic genes using

predefined tasks for a healthy cell.
• Validation of the predicted GBM essen-

tial genes against CRISPR-Cas9 data.

• AG reconstruction only
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2.5 Discussion

2.5.1 Limitations in the brain models include non-standard reaction iden-

tifiers and the use of outdated model-building algorithms

This review focused on human brain metabolic models summarising the different resources

used for building better brain models. These models resembled differences in cell type from

uni- and bi-cellular models, whole-brain, and region-specific models. While the previous nine

models gather information and data which can be employed for reconstructing future brain-

specific models, the models themselves have some limitations that restrict their future use (see

the summary of the strengths and drawbacks in Table 2.4). EcheverriPeña2021 only used

the unchanged flux of neurotransmitters after ARSA knockout as a quality check and would

require a more thorough validation before any future use. Because the link between TERT

mutation and AD is still debated [127], using TERT mutation of zebrafish in Lam2021 as

a validation of telomeric ageing in AD and PD may be insufficient. The two curated mod-

els (Sertbaş2014 and Özcan2016 ) use non-standard reaction identifiers, making modifications

or comparisons to databases or other models more difficult [128], [129]. Moreover, Echever-

riPeña2021 integrated two AG models built by MinMax [103], an algorithm published in 2008

and no longer considered to conform to the state-of-the-art, from tissue-specific expression data

and Recon2 [102]. While Baloni2020 was built using the Recon3D model, a heuristic threshold

of the top 25-percentile was used to discretise the transcriptomic data, which strongly affects

the quality of the models as shown by Opdam et al., 2017 [130]. Further, unlike Thiele2020,

manual curation with constraints and added reactions in Baloni2020 were applied after the

building by mCADRE. This resulted in blocked reactions in Baloni2020 that were solved using

398 sink reactions. Likewise, in EcheverriPeña2021, manual curation was mostly applied to

combine two AG models. Instead of using the generic model HMR3 itself, Lam2021 was built

from an adipocyte-specific GEM after mapping the gprRules from HMR3, which may not be

directly relevant to brain function. Lewis2010 was based on Recon1 (2007) [92], which has nu-

merous shortcomings. The metFormulas field, which determines the chemical elements of each

metabolite, was missing in four models (Sertbaş2014, Özcan2016, MartínJiménez2017, Echev-

erriPeña2021 ). This missing field prevented evaluating the mass balance of these models with

MEMOTE [131]. Some brain GEMs incorporated boundary constraints from previous GEMs,

without the required recalculation due to the use of different input reconstructions and biomass

formulations. Despite the drawbacks of these reconstructions, the resources employed by these

models can be reused (see Table 2.4). Finally, among the nine brain models, Thiele2020 and
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MartínJiménez2017 are the most curated models and, unlike Sertbaş2014 and Özcan2016, use

standard annotations and are larger. Thiele2020 was built using state-of-art context-specific

algorithms and reconstructions [88]. Furthermore, constraints and brain-specific reactions ob-

tained from literature were fed to FASTCORE [79] already as input, allowing for building of

higher quality models. MartínJiménez2017, in the pursuit of completeness, might have also

lost specificity. Generally, using AG or semi-curated models with only a few refinements built

by older algorithms and input reconstruction should be avoided. Instead, it would be advis-

able to rebuild the models using Recon3D [98] or Human1 [132] and more recently published

building algorithms, while integrating the resources of the previous models as input for the

algorithms (Table 2.4).

2.5.2 A high completeness is obtained at the cost of the specificity

The selected models presented in this review follow two different approaches. The first is a

bottom-up approach that aims to build a model around a few brain-specific pathways. The

second is a top-down approach that aims to remove inactive pathways in the brain from

a generic reconstruction, a database or an expression data. While bottom-up approaches

were less comprehensive and often not genome-scale, the top-down strategies were lacking in

the review paper in specificity, with the ratio of highly versus unsupported in brain models

comparable to the generic GEM used as input. An enrichment of tissue-specific genes and

reactions is expected in context-specific models compared to their input reconstruction [133].

This lack of specificity could have resulted from the choice of the low expression threshold

and/or the use of data from different brain regions with different metabolisms that blurred

the specificities of each area. Thus the balance between completeness and specificity should

be observed during building brain models.

2.5.3 Using standard identifiers and confidence scores are required for model

comparison and improvement

Furthermore, using non-standardized identifiers for reactions and metabolites renders the reuse

of Sertbaş2014 and Özcan2016 more difficult. In general, GEMs should be built with Ensembl

transcript identifiers over ENTREZ gene identifiers as different transcripts might code for

different isoforms that are not all functional [128], [134]. Added reactions should highlight

the number of supporting literature. They should preferably have at least two supporting

publications that prove experimentally that a reaction occurs in the tissue of interest. For
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semi-curated and AG models, it is advisable to use the gathered information from these stud-

ies, and reconstruct new models with a state-of-the-art model-building algorithm [133] and

a recent generic reconstruction such as Recon3D and Human1, rather than using the models

directly. Moreover, heuristic thresholds for discretization during model-building should be

avoided. These thresholds affect the quality of the output models [130], as the number of

included genes, and by extension, reactions, is highly dependent on these thresholds. Con-

fidence scores and supporting literature identifiers for manually added reactions are absent

for some models. Therefore, confidence scores and supporting PubMed identifiers should be

clarified and included as fields in the model file as SBML XML or MAT files. This confidence

field should highlight if the manually added reactions are from literature, expression data, or

for modeling purposes (i.e. gap-filling). Also, several models could not be included in these

studies, as being not available or in a non-standard format such as excel files renders their use

more difficult.

2.5.4 The application of constraints to the generic model prior to the context-

specific model reconstruction increases predictability

The quality and extensiveness of the manual curation of these brain models varied strongly

among the studies. Generally, the tailoring and inclusion of OF, adding core reactions from

literature, and medium constraint exchange reactions to the BBB should be applied to the

generic input model before the reconstruction with an algorithm and forced to be included in

the output model. This tailoring might require some adjustment in the code of some algorithms

but would avoid extensive post-reconstruction curation. After reconstruction, some refinement

will still be required to include some reactions or pathways lacking support from the input

transcriptomic and literature data. GEMs should be flux consistent or include the number of

non-blocked reactions in the main text, as blocked reactions and reactions that can only carry

a flux due to sink reactions, would need to be removed for most modeling purposes. Reporting

these blocked reactions would help any future manual curation replace these sink reactions

based on recent biochemical evidence.

2.5.5 Constraining with flux rates should be adjusted to the generic model

Medium constraints can either be binary, such as adding a BBB compartment or continuous

such as flux rates or exo-metabolomics data. While the most updated list of metabolites that

can bypass the BBB is used in Baloni2020, Thiele2020 also compiled a list that cannot pass this

61



Chapter 2- Review of brain GEMs

barrier, which can filter drugs and metabolites and predict blood biomarkers for brain diseases.

Due to various diseases’ alterations in the BBB function, metabolites bypassing the BBB may

need to be updated in the models according to the diseases under study by either metabolomics

data of the CSF or based on literature search. For instance, metabolomics of the LGG identified

dysregulated metabolites in the CSF [135], that can be used to update the healthy CSF

composition from Thiele2020 for medium constraining of LGG. In GBM, tumor cells infiltrate

and disrupt the BBB. Infiltrating GBM cells produce VEGF, downregulating the tight-junction

proteins, and promoting angiogenesis and hypoxia [136]. Similarly, metabolomic analysis of

NDD identified increased metabolites in the CSF such as kynurenine, ceramide, nitric oxide,

neopterin, and other dysregulated metabolites that differ between NDDs [137]. Exo-metabolite

data can be used to fine-tune medium constraining. The uptake and production rates of 213

metabolites of 60 cancer cell lines of NCI-60 [138] include two GBM and three astrocytoma

cell lines. These flux rates were used to calculate the fluxes using a core cancer reconstruction

from Recon 2, and the boundaries were then adjusted to Recon 2 (Zielinski et al., 2017 [139],

Supplementary Data, “FBA constraints” sheet). > 99% of the carbon demand of the cancer

cells is met by these 23 metabolites. The calculated boundaries would need to be recalculated

but could allow refining the boundaries of future models. Similarly, differences in the generic

models and the units of flux rates should be considered while employing constraints from one

model to another.

2.5.6 Metabolic tasks of brain cell functions could be employed in addition

to tailoring the OF

The previous brain models’ OFs are condition-specific, either for a healthy brain or glioma.

Instead of applying the same OF for both neuronal and glial cells, the OF should be tailored

to the cell type. In addition to neurotransmitter detoxification and ATP production, the OFs

of glial cells could include lactate production and glutamate uptake. The OFs of the neu-

rons may include the production of the various neurotransmitters and the uptake of lactate,

glutamine, and pyruvate [140]. Rather than using optimization functions, defining tasks that

should be fulfilled at a given flux rate would often make more sense. Additionally, enforcing

the biomass maintenance, lactate secretion and others to have a non-zero baseline reaction

could be used to model the low proliferation of healthy glial cells compared to gliomas. Even

with the above-mentioned brain GEM, manually curated GEMs for LGG, microglia and other

relevant cell types are still missing, and only an AG GEM for LGG has been built so far [133].

Microglia GEM can be built from expression data of microglia with the OFs taken from a
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curated macrophage GEM (ATP production, redox maintenance, NO production, production

of extracellular matrix precursors, and polyamines production) [141]. Microglia GEM may

then be further integrated into a multicellular GEM of GBM in order to understand cellular

interactions between the microglia, astrocytes, neurons and GBM cells. Dendritic cells are

another immune cell resident in the brain that increases tumor proliferation upon activation

via glycolysis shift [142]. Other peripheral immune cells such as macrophages, monocytes,

regulatory T cells, and cytotoxic T lymphocytes penetrate the BBB after damage of tumor

growth [142], [143]. Modeling these immune cellular interactions, especially the resident cells,

with glioma GEM can help in understanding the metabolic modeling of the immune microen-

vironment. In general, generic biomass OF forces the addition of pathways that might not

be active in some brain cells. Therefore, tailoring at least the metabolite composition of the

biomass OF with the biochemical knowledge of the glioma would improve the predictions and,

notably, the prediction of essential genes that are not predicted due to the inclusion of alter-

native pathways that are inactive in the brain.

2.5.7 Bulk regional expression data of the brain may serve as an alternative

for capturing cellular heterogeneity

Despite the recent developments of single-cell expression in capturing intercellular heterogene-

ity, robust and rigorously benchmarked tools for integrating single-cell expression into the

metabolic model-building at genome-scale are non-existent for now. In the future these tools

might help in building accurate multicellular brain GEMs without the need for intensive man-

ual curation. Besides, brain disorders being influenced by many cells of a specific region, they

can also be affected by the impairment of other regions, e.g. cellular damage in NDD and

conditioning in glioma extends to the nearby regions [144]. Regional expression profiling of

the brain outweighs conventional bulk expression in capturing the regional vulnerability for

different diseases [145]. Previous brain reconstructions tried to simulate brain heterogeneity

through multicellular models (Özcan2016 ), independent regional brain models (Baloni2020 ),

or multicellular, independent regional models (Lewis2010 ). The connection information (i.e.

exchange reactions) of the different brain regions can help in building an interconnecting multi-

regional model similar to multi-tissue models [97], [146]. Similarly, a multi-regional model can

be extended from the healthy brain to GBM. Regional expressional profiling using isolated

GBM samples based on histomorphological features identified regional heterogeneity in five

regions (infiltrating tumor, cellular tumor, pseudo-palisading cells around necrosis, leading-

edge, and microvascular proliferation) [147]. These five regions were mapped recently to a
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proteomic model of three pathways (KRAS-, MYC-, and hypoxia). The KRAS-, MYC-, and

hypoxia pathways were identified with three main phenotypes: migration, proliferation, and

altered metabolism, respectively [148]. Consequently, building a multi-regional reconstruction

for GBM could identify the metabolic regional heterogeneity and vulnerability.

Taken together the choice of the brain model depends on the focus of the study. To study

the NDD a bi-cellular model might be more suitable than a whole-brain model that would

be more relevant for the interplay between different organs and the brain. The brain models

Thiele2020 and MartínJiménez2017 can be further contextualized using a context-specific al-

gorithm, expression data, and additional constraints to obtain more specific models. Finally,

the data collected in these studies can be included in the reconstruction process of new models.

2.6 Summary and Outlook

Previous GEMs of the brain suffer from many drawbacks that would limit their applica-

tions. Nevertheless, the brain tissue GEMs of the whole-body model (Thiele2020_Harvey and

Thiele2020_Harvetta) can be used for building other brain disorder models [97]. While the

review covered two works on GBM (Larsson2020 and Özcan201), GEMs of the LGG are still

to be built. Other GEMs for GBM were published after the submission of our review, such as

Tomi-Andrino2022 [149] and Shen2023 [150]. While Tomi-Andrino2022 [149] aimed at repo-

sitioning preclinical drugs by defining essential reactions, Shen2023 [150] aimed at defining

essential genes correlated with GBM survival. Future GEMs built from temporal or single-cell

RNA-Seq could avoid manually defining the various glial and neuron cells, but still, manual

curation of the OFs is crucial.

Supplementary Figure and Table Legends

Supplementary File 1 Table S1: Public availability of brain genome-scale metabolic mod-
els Supplementary File 1 Table S2: Detailed type of OMICs for the data used in the brain
metabolic models and the number of samples. Supplementary File 1 Figure S1: Low over-
lap between the genes included in the brain genome-scale metabolic models. To evaluate the
overlap between the genes of the brain models, the intersection of these genes was counted
in an UpSet plot. Brain models were retrieved as explained in Supplementary 1, Table S1,
in addition to two consistent generic models (Human1 and Recon3D). For studies that have
more than two models (Baloni2020, Larsson2020 and Lam2021 ), the intersection and the
union of all the model’s genes were appended into two gene lists. The y-axis represents the
number of intersected genes between different sets on the x-axis, and the “Set Size” represents
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the total number of genes in that set. Supplementary File 2 Table S3: Identified metabolites
bypassing the blood-brain barrier in four brain reconstructions from Thiele et al., 2020, Table
EV9 and Baloni et al., 2020, Table S12 Supplementary File 2 Table S4: The metabolic com-
position of the cerebrospinal fluid used in Thiele2020 model from Thiele et al., 2020, Table
EV8 Supplementary File 2 Table S5: Brain-specific core and absent reactions used to build
Thiele2020 model with FASTCORE from Thiele et al., 2020, Table EV1 Supplementary File
2 Table S6: Experimental flux rates used in the astrocyte of Sertbaş2014 model from Sertbaş
et., al 2014, Table 1 Supplementary File 2 Table S7: Experimental flux rates used in the
neuron of Sertbaş2014 model from Sertbaş et., al 2014, Table 1 Supplementary File 2 Table
S8: Experimental flux rates used in the MartínJiménez2017 hypoxic astrocyte model from
MartinJimenez et al., 2017, Table 1 Supplementary File 2 Table S9: Constraints used in the
Özcan2016 glioblastoma model from Ozcan et al., 2016, Table 1
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Introduction to the paper

The lack of animal models in low-grade glioma (LGG) and the aggressiveness of glioblas-

tomas call for alternate approaches that allow integrating patient data to identify metabolic

vulnerabilities and suggest drug candidates. Approved anti-brain cancer chemotherapies tar-

get mostly hypoxia and angiogenesis with targeted therapies or cell cycle with alkylating

agents, among others. Moreover, the two approved combinations inhibit redundant pathways,

limiting any potential synergism. We present genome-scale metabolic models (GEMs) of the
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Graphical abstract

three well-defined glioma subtypes that predicted repurposable FDA-approved single drugs

and combinations for gliomas. We confirmed our predicted drugs using published in vitro and

xenograft drug screenings and found that antimetabolites and TXNRD1-inhibitors induced a

growth reduction comparable to anti-brain chemotherapies in vitro and in xenografts. Further-

more, fotemustine, showed a higher effectiveness in glioblastoma clinical trials than AntiBCs.

Additionally, we predicted 17 drug combinations mostly to be efficient on all three subtypes,

with eflornithine/rifamycin and cannabidiol/adapalene being glioblastoma- and LGG-specific,

which is coherent with the known LGG-specific glutamate and glutathione depletion. This

work presents the first GEMs that go beyond glioblastoma into the glioma subtypes, accu-

rately capture the intra-heterogeneity, and further predict repurposable combinations.

Contribution: I carried out the literature review, wrote the manuscript, and prepared the

figures.

Abstract

Gliomas are the most common type of malignant brain tumors, with glioblastoma (GBM)

having a median survival of 15 months due to drug resistance and relapse. The treatment

of gliomas relies on surgery, radiotherapy, and chemotherapy. Only 12 anti-brain tumor

chemotherapies (AntiBCs), mostly alkylating agents, have been approved so far. Glioma

subtype-specific metabolic models were reconstructed to simulate metabolite exchanges, in

silico knockouts, and the prediction of drug and drug combinations for all three subtypes. The
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simulations were confronted with literature, high-throughput screenings (HTS), xenograft, and

clinical trial data to validate the workflow and further prioritize the drug candidates. The three

subtype models accurately displayed different degrees of dependencies toward glutamine and

glutamate. Furthermore, 33 single drugs, mainly antimetabolites and TXNRD1-inhibitors, as

well as 17 drug combinations were predicted as potential candidates for gliomas. Half of these

drug candidates have been previously tested in HTSs. Half of the tested drug candidates re-

duce proliferation in cell lines and two-thirds in xenografts. Most combinations were predicted

to be efficient for all three glioma types. However, eflornithine/rifamycin and cannabidiol/ada-

palene were predicted specifically for GBM and low-grade glioma (LGG), respectively. Most

drug candidates had comparable efficiency in preclinical tests, cerebrospinal fluid bioavailabil-

ity, and MOA to AntiBCs. However, fotemustine and valganciclovir alone and eflornithine

and celecoxib in combination with AntiBCs improved the survival compared to AntiBCs in

two-arms, phase I/II and higher glioma clinical trials. Our work highlights the potential of

metabolic modeling in advancing glioma drug discovery, which accurately predicted metabolic

vulnerabilities, repurposable drugs, and combinations for the glioma subtypes.

Keywords

Glioma, Metabolic modeling, Drug repurposing, Cancer

3.1 Introduction

Gliomas account for 50% of the deaths in cases with primary malignant brain and d central

nervous system (CNS) tumors in the United States [1]. The 2021 World Health Organization

(WHO) CNS classification [2] stratifies adult gliomas into three subtypes based on the mu-

tation status of the Isocitrate dehydrogenase 1/2 (IDH1/2) and the co-deletion of the short

arm of chromosome 1 (1p) and the long arm of chromosome 19 (19q) (1p/19q co-deletion)

into: astrocytoma (AST), IDH-mutant; oligodendroglioma (ODG), IDH-mutant and 1p/19q-

codeletion; and glioblastoma, IDH-wildtype (glioblastoma multiforme; GBM). GBM shows

poor 7% five-year survival that also limits the success rate of clinical trials, compared to 32%-

53% in AST and 66%-84% in ODG [1].

The standard of care for GBM treatment is surgery, and radiotherapy, followed mainly by

temozolomide (TMZ) chemotherapy [3]. Current approved anti-brain chemotherapies (An-

tiBCs) consist of eight monotherapies (cell cycle inhibitors and anti-hypoxic agents) and two
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combinations: procarbazine/lomustine/vincristine (PCV) and dabrafenib/trametinib [4]. The

monotherapy AntiBCs targeting the cell cycle are mostly alkylating agents (TMZ, lomustine,

carmustine, and cyclophosphamide) and only doxorubicin targets topoisomerase, meanwhile

three anti-hypoxic agents reduce angiogenesis by targeting the mTOR/HIF-1α/VEGF path-

way: everolimus (mTOR), belzutifan (HIF-1α), and bevacizumab (VEGF). The recently ap-

proved dabrafenib/trametinib combination for BRAF-mutant low-grade glioma (LGG) is the

only targeted ABC inhibiting the RAF/MEK pathway. Whether targeting the RAF/MEK by

dabrafenib/trametinib or the cell cycle by PCV combination, both combinations show redun-

dancy of the target pathways, which is another potential cause for inefficacy of positive phase

II drugs in phase III GBM trials [5]. Despite these treatments, glioma patient survival stays

poor, with a high recurrence rate. The need for efficacious drugs and combinations targeting

alternative pathways is therefore pivotal.

Drug repurposing, i.e., redirecting approved drugs to other diseases, has been proven as a

critical element to shorten the lengthy toxicity trials in cancer drug discovery. However, cur-

rent preclinical drug repurposing approaches in glioma have been mainly limited to GBM [6],

[7], with a high failure rate in clinical trials due to non-efficacy, poor cerebrospinal fluid

(CSF) bioavailability, drug resistance, and toxicity [3]. While the exact biological role of

1p/19 co-deletion is still unclear, IDH mutation in most LGG dysregulates the nicotinamide

adenine dinucleotide phosphate (NADPH) balance and glutamate biosynthesis, depleting the

glutathione, activating oxidative metabolism and increasing the reactive oxygen species (ROS)

sensitivity [6].

The role of metabolic rewiring in IDH-mutant glioma encouraged the use of metabolic mod-

elling for the study of gliomas, notably AST and ODG. Metabolic modelling is commonly

applied to model the metabolism of cancer cells and to select among all FDA-approved drugs,

the ones that target specifically cancer vulnerabilities appearing from metabolic rewiring [8].

Whole-brain and brain cell models were reconstructed to study alterations in the metabolism

in neurodegenerative disease and GBM. These published genome-scale brain metabolic models

were extensively covered in our previous review [9]. In the present study, we reconstructed

three glioma subtype models using patient data from the TCGA, predicted drug and drug

combinations, as well as the predicted essential genes in the different subtypes. Extensive lit-

erature review and comparison against HTSs, especially against AntiBCs, allowed confirming

the model’s prediction and further prioritizing the drug candidates.
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Importance of the Study

Due to high relapse and drug resistance rates, the three glioma subtypes suffer from poor

survival rate, calling for new therapies. We present genome-scale metabolic models (GEMs) of

the three well-defined glioma subtypes that predicted repurposable FDA-approved single drugs

and combinations for gliomas. We confirmed our predicted drugs using published in vitro and

xenograft drug screenings and found that antimetabolites and TXNRD1-inhibitors induced a

growth reduction comparable to AntiBCs in vitro and in xenografts. Furthermore, fotemustine,

showed a higher effectiveness in GBM clinical trials than AntiBCs. Additionally, we predicted

17 drug combinations mostly to be efficient on all three subtypes, with eflornithine/rifamycin

and cannabidiol/adapalene being GBM- and LGG-specific, which is coherent with the known

LGG-specific glutamate and glutathione depletion. This work presents the first GEMs that go

beyond GBM into the glioma subtypes, accurately capture the intra-heterogeneity, and further

predict repurposable combinations.

3.2 Materials and Methods

3.2.1 Model building

Two types of models were built using rFASTCORMICS [10]: sample models to assess the sub-

type intra- and inter-heterogeneity and consensus models for the three glioma subtypes used

for essential gene and drug prediction (see Supplementary Methods for more details). rFAST-

CORMICS was thereby fed with RNA-Seq data (116 GBM samples and 257 LGG samples)

from The Cancer Genome Atlas Program (TCGA) data [11], stratified based on the 2021 WHO

CNS classification [2], with the generic model Recon3D [12] as input reconstruction and the

composition of CSF [13] as medium constraint. Other models and data formats were tested,

but this setting allowed better separation between the sample models of the three glioma sub-

types (see Supplementary Methods, Figures S 7.1 7.2 7.3 7.4 and Table S 7.1) matching to

literature-retrieved metabolic exchanges (Figure S 7.5), and balanced capturing of common

essential genes (Figure S 7.6). To confirm the models’ predictions in terms of metabolite ex-

changes, essential gene, and drug predictions were compared with literature and databases,

notably DepMap [14].
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3.2.2 Prediction of metabolite exchanges

Different uptake and release reactions in the glioma subtype models allowed for assessing the

model quality by comparing the exchange reactions with literature evidence. The minimum

and maximum fluxes for the input and output reactions of the three consensus subtype mod-

els were computed using the fluxVariability function of the COBRA Toolbox v.3.0 [15] while

maximizing for biomass production (biomass reaction). Narrow-bounded exchange reactions

were selected as any perturbation is predicted to alter the cell growth of the models.

3.2.3 Prediction of essential genes

Single gene deletion from the COBRA Toolbox v.3.0 [15] was used with biomass optimization

to predict essential genes. Only genes whose knockout (KO) is predicted to reduce the growth

by at least 50% were selected and compared to a list of common essential genes (defined by

the Cancer Dependency Map, DepMap, as genes found to be essential in >90% of cell lines in

pan-cancer CRISPR-Cas9 screens), retrieved from DepMap 22Q1 [14].

3.2.4 Prediction of anti-glioma drugs and drug combinations

To predict potential single drugs and drug combinations, the drug deletion pipeline [16]

was run and hence every target of the FDA-approved drugs and drug combinations was

knocked out to assess the predicted effect on cell growth. Single drugs were restricted to

FDA-approved drugs (2387 drugs defined by Drug Repurposing Hub [17]) due to the high

failure rate in glioma clinical trials of preclinical compounds. For the drug combinations,

AntiBCs and investigational anti-glioma drugs (IAGs) were tested in concert with FDA-

approved drugs. Only single drugs and combinations that reduced the growth by at least

50% were considered for further analysis. Single drugs predicted to shut down the biomass

production completely were not further tested in combination with other drugs. The drug

targets were retrieved from DrugBank [18], PROMISCUOUS2 [19], and Drug Repurposing

Hub [17]. Information on the IAGs (41 drugs) was gathered from the orpha.net database

(ORPHA:182067), and AntiBCs (12 drugs) were retrieved from a review [4] and the NIH web-

site (https://www.cancer.gov/about-cancer/treatment/drugs/brain).
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Table 3.1: Summary of selected samples and model statistics for the consensus
glioma subtype and control models.

Model Selected samples Reactions Metabolites ENTREZ
Genes

iAST 116 3269 2460 1273
iGBM 140 3526 2621 1302
iODG 117 3331 2504 1305
iCTRL 4 3407 2585 1603

3.2.5 Drug prioritization and benchmarking

Different clinical, xenograft, in vitro, and pharmacokinetics (PK) data in brain cancer were

collected to rank the predicted drugs based on their efficacy (see Supplementary Methods for

details) and classify them into effective, ineffective, and untested. Most compiled clinical trial

data were on phase I/II or higher clinical trials in brain cancer (n = 50) and two-arm trials

in glioma (n = 8). Two metrics were considered: overall survival (OS) and progression-free

survival (PFS, duration between treatment and symptom worsening). The xenograft data in-

cluded in/ex vivo drug high-throughput screenings (HTSs) in GBM patient-derived xenografts

(PDXs) and in vivo drug screening from literature. in vitro data combined two cellular met-

rics: IC50 and viability reduction, and hence a median IC50 across brain cancer cell lines

was calculated for each drug as a potency measure. If available, PK data corresponding to

CSF bioavailability was prioritized over blood-brain barrier (BBB) permeability as the latter

cannot capture the efflux rates of the brain. Single drugs that induced proliferation in vitro

or cofactors to the target genes were excluded from further ranking. CSF bioavailability data

was collected as logBB, (logarithm of the drug’s CSF-to-plasma concentration ratio).

3.3 Results

Glioma sample models were reconstructed from TCGA-GBM and TCGA-LGG to assess if the

metabolism of the 2021 WHO classification glioma subtypes was sufficiently different to be

captured by qualitative metabolic models. The subtype models (iGBM, iAST, iODG) include

between 32% and 35% of the reactions of the generic metabolic reconstruction Recon3D (Ta-

ble S 3.1), accurately detected metabolic variations between the IDH-mutant and -wildtype

samples and allow for a clear separation between both types (Figure S 7.3).
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3.3.1 LGG and GBM models correctly predict high glutamate and thymi-

dine uptake rates

Input and release rates of metabolites were predicted for the three consensus subtype models

and compared to the literature (Table S 7.2). Forty metabolites of the predicted 101 metabolite

exchanges had narrow-bounded fluxes (with a maximum of 10% of the maximal range) and are

predicted to affect cell growth directly. Four of them (Figure S 7.7) matched known differences

between the subtypes in cell line uptake, patient biomarkers, and MR radiotracers (Figure 3.1,

in cyan). High glutamate uptake was predicted in the LGG models (iAST and iODG), con-

cordant with the known glutamate depletion due to IDH-mutant-induced rewiring [20]. iGBM

predicted the highest thymidine uptake, in agreement with an elevated 18F-FLT radiotracer

uptake in GBM patients’ scans compared to AST [21] and ODG [22]. Finally, the reduced

glutamine uptake in iODG conforms to the low ODG-specific glutamine dependency [23].

Together, predicted glutamate and thymidine uptake variations followed known IDH-based

differences in the three subtypes. In one instance, the predicted lactate uptake is inconsistent

with the literature [24] (Figure 3.1, in magenta). The lactate exchange inconsistency could

be attributed to the inactivity of lactate exchange reactions during iGBM model building and

their exclusion from the consistent subnetwork. Meanwhile, variations within the subtypes

matching metabolomics data in L-phenylalanine and myo-inositol were considered minor val-

idations (Figure 3.1, in gray). For the remaining exchanges, no data could be found in the

literature. Notably, octadecenoate and pyruvate could serve as potential biomarkers between

the glioma subtypes, but they still require validation (see Figure S 7.7). These experiments

were repeated with 90% and 95% of maximation. However, the lowering of the threshold

turned most exchanges to become unbounded, due to the high degree of freedom and hence

could no longer capture the observations gathered from the literature. For example, glutamine

exchange in iGBM was irreversible with 90% maximization, wide uptake range with 95%, and

high narrow-bounded with 100% maximization. 100% maximization of glutamine exchange in

iGBM was the only setting matching high glutamine uptake in GBM (Figure S 7.8).

Taking together, the metabolic models mostly captured not only metabolic variations between

the subtypes but also recapitulated experimental observations.
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Figure 3.1: The predicted input and release rates of metabolites match the liter-
ature and experimental observations.

Flux Variability Analysis allowed calculating flux ranges that guarantee an optimal growth and
hence allowed finding critical metabolite exchanges (narrow-bounded fluxes). Forty out of 101
predicted exchanges were narrow-bounded, and four of the five exchange reactions matched
literature and data from radiotracers for three subtypes (see Figure S 7.7 for all reactions).
Two exchange reactions matching metabolomics data were considered minor validation due
to the unclear metabolic flux. Metabolite names on the y-axis with cyan, magenta and gray
correspond to literature matching, contrary to literature and minor validation (Table S 7.2),
respectively.

3.3.2 Thioredoxin detoxification and nucleotide interconversion are poten-

tial targets for all three subtypes and arginine uptake for GBM

We further predicted vulnerabilities (essential genes) that could be exploited to reduce tumor

progression. Twenty-five genes were predicted to be essential (Figure 3.2.A) with 100% growth

reduction (Figure S 7.9). iODG yielded the highest number (n=22), matching its known high

survival rate and vulnerability [25]. Ten of these genes were identified as common essential

genes by DepMap [14], suggesting pan-cancer vulnerabilities. A literature search further found

82



Chapter 3- Drug repurposing for glioma subtypes

five genes (TXNRD1, RRM1-2, SPLTC1, SLC27A4) to reduce viability with in vitro knock-

down (KD) or KO. The KO of thioredoxin reductase (TXNRD1) reduced proliferation and

migration in drug-resistant GBM [26]. Moreover, TXNRD1 expression significantly correlated

with poorer diagnosis in AST [27] and ODG [28] patients. Due to their radical-scavenging

activities, thioredoxin and glutathione (GSH) control oxidative homeostasis and counter mi-

tochondrial oxidative stress. Similarly, KD of SPLTC genes involved in sphingolipid synthesis

reduced the viability of GBM cell lines [29]. Likewise, the KD of RRM1 and RRM2, involved

in nucleotide interconversion, caused cell death and sensitized GBM to TMZ, respectively (Ta-

ble S 7.3). However, one predicted essential gene: PYCT2, was described to increase GBM

proliferation in a KD experiment [30].

Besides the potential vulnerabilities, 33 FDA-approved drugs could, according to our models,

be considered repurposable for glioma (Table S8). The 33 predicted drugs include 14 non-

brain anti-cancer drugs (anticancers), 10 antivirals, 6 hormones/cofactors, 2 psychoactive,

and 1 lipid-lowering agent. The 14 anticancers are 10 antimetabolites, an ANPEP-inhibitor,

2 TXNRD1-inhibitors (such as fotemustine, also being an alkylating agent) and an alkylat-

ing agent. These drugs target 12 essential genes and 48 non-essential genes (Figure 3.2).

Among them, TXNRD1 is targeted by arsenic-trioxide and fotemustine (approved in some

countries against melanoma brain metastasis [31]), and RRM1–2 by seven antimetabolites.

RRM1–2 showed higher dependency probability (the likelihood that the KO of a gene re-

duces cell growth or induces cell death) than AntiBCs’ targets in the glioma cell lines (Figure

S 7.10). Furthermore, we predicted valganciclovir that affects arginine transporter SLC6A14

as a GBM-specific single drug. The drug target genes differ among the three subtypes for the

same drugs due to differences between the subtype models in gene and reaction compositions

during model building. Some of the various targets of several drugs were included in some

models and excluded in other based on the expression data. The glioma subtype model genes

were compared to other brain metabolic models discussed in our previous review [9] using the

Human Protein Atlas [32] brain-specific gene categories. The glioma subtype models showed

comparable completeness and specificity to curated and semi-curated brain metabolic models

(Figure S 7.11). Taken together, metabolic modeling accurately captured pan-glioma single

vulnerabilities, such as thioredoxin detoxification and nucleotide interconversion. Additionally,

metabolic modelling proposes arginine uptake as a druggable vulnerability for GBM.
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Figure 3.2: Thioredoxin detoxification and nucleotide interconversion are pre-
dicted as potential drug targets for glioma. (A) Twenty-five genes were predicted

to reduce tumor growth in silico knockout KO.
Six of the 25 essential genes have been previously tested in in vitro KO or KD studies glioma
(literature, Table S 7.3), where five genes lowered proliferation (down-arrows), and only one
(PCYT2) increased proliferation (up arrows). Genes with no support in the literature are
marked as dots. Moreover, 10 of the 25 predicted essential genes are common essentials
(found essential genes in most cancer cell lines from CRISPR screens) and are marked as a
big dot or arrow in (A). (B) Thirty-three FDA-approved drugs were predicted to reduce cell
growth and could hence be repurposable for glioma. The 33 single drugs have 60 targets, of
which 12 are essential genes (‘Essential drug targets’). Classifying the drugs based on approved
indication and mode-of-action (MOA) (see color code of the font) showed that nearly a third are
antimetabolites and fotemustine (with *) has both TXNRD1-inhibitor and alkylating MOA.
For example, in (B), cladribine is marked as ‘C’ letter in gray box, while its approved indication
and MOA is represented in red in the drug name color.
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3.3.3 Glutamate and polyamine biosynthesis are predicted suitable target

pathways for drug combinations in LGG and GBM, respectively

FDA-approved drugs were tested in silico in combination with a set of 53 AntiBCs and IAGs

to find meaningful synergistic drug combinations. Seventeen combinations (Figure 3.3.A) com-

posed of 19 drugs (hereafter will be referred to as combination drugs), including one anticancer

antimetabolite (fluorouracil), antiviral antimetabolite (zidovudine), 13 carbonic anhydrase in-

hibitors (CAi) (Table S 7.4 and Tables S9-10), and two herbal antioxidants (cannabidiol and

resveratrol) with multi-target actions. As every two drugs in the combinations have inde-

pendent targets, Bliss combination index was selected to find synergistic, antagonistic, and

additive combinations [33] using growth reduction (1-grRatio, see Materials and Methods for

details) as drug effect. Fifteen combinations with CAi were predicted to be synergistic in

the three subtypes. CA converts CO2 to bicarbonate and is matching the known anti-glioma

action of CAi by decreasing extracellular acidosis responsible for drug resistance. Besides

CA, zonisamide and resveratrol target MAOA and MOAB genes, which convert oxygen and

water into hydrogen peroxide, thereby increasing intracellular hypoxia, with MAOA inhibi-

tion found to decrease glioma proliferation and angiogenesis [34]. Two combinations displayed

subtype-specific synergism (eflornithine/rifamycin for GBM and cannabidiol/adapalene for

LGG), achieved 100% growth reduction in their corresponding subtypes, and did not affect

ATP production and biomass maintenance in the healthy model iCTRL (Figure S 7.12). Eflor-

nithine (also known as α-difluoromethylornithine or DFMO) inhibits ornithine decarboxylase

(ODC1), coding for an enzyme of the polyamine biosynthesis pathway, while rifamycin tar-

gets SLCO genes associated with GSH exchange reduction (Figure 3.3.B). Meanwhile, adapa-

lene inhibits glutamic-oxaloacetic transaminase 1 (GOT1) that governs glutamate biosynthesis

from alpha-ketoglutarate, while cannabidiol increases ROS by depleting glutathione produc-

tion. Both glutamate and GSH biosynthesis depletion align with the known LGG-specific

vulnerabilities [20]. Among the combinations drug targets, ABCC1 and ABCG2 of the ATP-

binding cassette (ABC) transporters predicted to remove the toxic byproducts of lipid per-

oxidation (4-hydroxy-2-nonenal) and heme biosynthesis (protoporphyrin), respectively. The

predicted GBM-specific protoporphyrin is consistent with impaired heme biosynthesis in LGG

cell line [35]. Similarly, 4-hydroxy-2-nonenal was detected in GBM and AST samples affirming

the predicted pan-glioma profile of the lipid peroxidation [36]. Altogether, metabolic modeling

predicted combinations targeting alternative reactions for potential synergism, many of these

reactions match known subtype-specific biosynthesis vulnerabilities. Of these combinations,
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the combined targeting of glutamate and GSH biosynthesis is a potentially druggable combi-

nation in LGG; meanwhile, targeting polyamine synthesis combined with GSH exchange is a

potentially druggable combination in GBM.

Figure 3.3: Eflornithine/rifamycin and cannabidiol/adapalene are predicted safe
synergistic combinations for GBM and LGG, respectively.

(A) Drug combination predictions were performed between two drug sets: (a) FDA-approved
drugs after excluding predicted single drugs with a predicted lethal on the models and (b)
approved AntiBCs and IAGs (marked with *). Combinations with growth reduction above
50% are depicted. All combinations, but two, reduce tumor growth across glioma subtypes (top
two). (B) Analysis of the targets from the 17 synergistic combinations showed that dual KO
of ODC1-SLCO (SLCO1A2, SLCO1B1, SLCO2A1 and SLCO2B1) genes are GBM-specific,
while GOT1 and cannabidiol targets are LGG-specific. The drug names are colored based on
the targeted pathway. Abbreviations: GSH; glutathione. biosyn, biosynthesis.

3.3.4 Gemcitabine, cladribine, and decitabine have better CSF bioavailabil-

ity and in vitro potency than AntiBCs

To select the most promising drugs and drug combinations, we ranked the drugs from HTS

and literature data using IC50, viability reduction, BBB permeability, CSF bioavailability,
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ABC transporter affinity, in/ex vivo xenograft testing, main MOA, phase I/II clinical trials or

higher, and possible drug-drug interactions, aggregated from HTS and the literature (see Sup-

plementary File 2, Tables S8-S16, Supplementary Methods on data gathering and drug ranking

and Table S 7.5 for the screening databases). Ten single drugs were excluded for being cofac-

tors to the target genes or induced proliferation in vitro (Table S8). As expected, the CSF

bioavailability of AntiBCs is inversely correlated with potency (Figure 3.4 and Figure S 7.13).

Many single drugs, such as fotemustine, arsenic-trioxide, and hydroxyurea, showed comparable

balanced outcomes to AntiBCs. In contrast, three antimetabolites (decitabine, gemcitabine,

and cladribine) achieved good potency and bioavailability. These three antimetabolites, espe-

cially gemcitabine, notably reduced cell viability compared to most AntiBCs (Figure S 7.14).

Some drugs showing high potency, such as clofarabine (predicted) and doxorubicin (AntiBC),

however, had poor bioavailability. Taken together, most drug candidates achieved comparable

results (TXNRD1-inhibitors) or outperformed (antimetabolites) AntiBCs drugs in terms of

potency and bioavailability.

3.3.5 Cladribine and clofarabine reduced growth in GBM PDXs, while fote-

mustine reduced xenograft growth (data from literature)

Three drug HTS in GBM PDXs [37], [38] (Figure 3.5.A) and PDXs data from the litera-

ture (Figure 3.5.B and Table S12) were used to test the drugs in biological contexts closer to

in vivo. Four non-alkylating AntiBCs (vincristine, trametinib, everolimus and doxorubicin)

(Figure 3.4), surpassed 25% PDXs growth reduction. Correspondingly, three antimetabolites

(gemcitabine, cladribine, and clofarabine) induced a growth reduction comparable to or higher

than these four AntiBCs. However, decitabine showed non-conclusive results between the drug

screenings and the literature (Table S12). Fotemustine, which was not tested in HTS PDXs

experiments, reduced growth in vivo in literature [39]. However, several drugs that showed

low growth reductions in the GBM PDXs were predicted only by the LGG subtypes consensus

models. Four combination drugs (fluorouracil, celecoxib, resveratrol, and acetazolamide) (Ta-

bles S12 and S13) sensitized glioma to TMZ in vitro and in vivo. Of these, celecoxib caused

a moderate in vivo growth reduction (with a median of 9%-22%). In summary, the three an-

timetabolites presented steady in vitro potency and in vivo growth reduction, and clofarabine

outperformed two-thirds of the AntiBCs in PDXs.
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Figure 3.4: Gemcitabine, cladribine, and decitabine showed stronger in vitro
potency and CSF bioavailability than AntiBCs.

Potency (y-axis) and CSF bioavailability (x-axis) data were collected from the literature and
screening databases (see Figure S 7.13 for detailed potency per database). Potency (median
IC50 across the brain cancer cell lines) was calculated for single and combination drugs and
the AntiBCs. Similarly, CSF bioavailability was collected in logBB, which is the logarithm of
the CSF-to-plasma concentration ratio. Rightward on the x-axis and upward on the y-axis
represent increasing potency and CSF bioavailability, respectively. Drugs without potency or
logBB data are on the top and right-sides separated by the red dashed lines, respectively.

3.3.6 Fotemustine alone and eflornithine, celecoxib, and valganciclovir in

combination improved median OS compared to AntiBCs in phase II

glioma trials, while antimetabolites showed no improvement

Drugs were classified into effective, ineffective, and untested for in vitro and xenografts using

the criteria in Table S 7.6. All single and combination drugs except rifamycin were tested in

vitro, while only half were tested in xenografts. Of the tested drugs, half and two-thirds were

found effective in in vitro and xenografts, respectively (Figure 3.6.A). Among the two-arm,

phase I/II trials (Table S11), two single drugs (fotemustine and valganciclovir) and two com-

bination drugs (eflornithine and celecoxib) improved the primary survival outcome compared

to the ABC arm (Figure 3.6.B). On the other hand, three predicted single drugs show no or

minimal activity as monotherapy in single-arm, phase II trials: gemcitabine [40] (AST and
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Figure 3.5: Clofarabine has a more robust growth reduction than two-thirds of
the AntiBCs in GBM PDXs.

Xenograft data were collected from HTS tested in GBM PDXs (A) and literature tested in
brain cancer generally (B). Clofarabine, gemcitabine and cladribine attained a more robust or
comparable growth reduction than half of the AntiBCs in the HTS. Additionally, some drugs
not predicted by iGBM (in light green) showed moderate growth reduction in the GBM PDXs.
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GBM), cladribine [41] (AST and ODG) and melphalan [42] (AST and GBM). Additionally,

when combined with carmustine, mercaptopurine, and fluorouracil showed an antagonistic [43]

and a non-additional [44] effect, respectively. The five drugs which failed in phase II trials

are either substrate or inducer to the ABC transporters (Table S15), which might cause drug

resistance, and all are cell cycle inhibitors.

Beyond cell cycle inhibitors, of the four clinically effective drugs (fotemustine, valganciclovir,

eflornithine and celecoxib), only valganciclovir reached statistical significance in the primary

outcome in newly diagnosed GBM (nGBM) [45] and recurrent GBM (rGBM) [46], [47]. After

the first-line treatment of TMZ and radiotherapy, fotemustine monotherapy slightly exceeded

bevacizumab by 1.3 months achieving 8.7 months median OS in a phase II trial in rGBM [48].

Eflornithine added to the PCV combination improved the median OS (mOS) in recurrent

LGG with about two and a half years against the PCV combination alone [49]. To a lesser ex-

tent, celecoxib combined with TMZ increased median PFS by 3 months in nGBM versus TMZ

alone [50] and is the only known ABC transporter inhibitor of the four clinically effective drugs.

While none of the 17 predicted combinations had been tested in brain cancer, three combina-

tions (fluorouracil/zidovudine, fluorouracil/celecoxib, and fluorouracil/resveratrol) were found

synergistic in non-brain cancer in vitro, however, the last two failed as a combination in vari-

ous clinical trials (Table S 7.7). Eflornithine/rifamycin and cannabidiol/adapalene were ranked

first and second for GBM- and LGG-specific subtypes, respectively. Despite the clinical ac-

tivity of celecoxib in GBM, fluorouracil/celecoxib was ranked fourth due to predicted major

drug-drug interaction (DDI) by DrugBank (Table S16) and the absence of an additional effect

of the combination in phase III colon cancer trial [51]. Meanwhile, zonisamide showed the

strongest in vitro potency among the combination drugs, and the fluorouracil/zonisamide was

predicted with minor DDI of increased arrhythmia; hence, this combination was ranked third.

All in all, metabolic modeling predicted drug candidates with a steady effective-to-ineffective

ratio in in vitro (49%), in xenografts (64%) and in clinical trials (44%). Unlike the redundancy

of the AntiBCs combinations’ target pathways, predicted combinations covered multiple al-

ternative pathways, increasing potential synergism, of which three combinations were tested

in non-brain cancer.

90



Chapter 3- Drug repurposing for glioma subtypes

Figure 3.6: Among the tested predicted drugs, half and two-thirds were effective
in vitro and xenografts, respectively, with four drugs showing comparable survival

to AntiBCs in two-arm, phase II clinical trials.
(A) Predicted single and combination drugs were classified into effective, ineffective, and
untested against AntiBCs using the criteria in Table S 7.5. (B) Two-arm, phase II clinical
trials in gliomas were selected to compare the predicted drugs to the ABC arm as monother-
apy or in combination. Among the single drugs, fotemustine monotherapy and valganciclovir
in combination improved median OS. Likewise, eflornithine and celecoxib improved mOS and
median PFS, respectively. Only valganciclovir achieved statistical significance versus the ABC
arm. On the other hand, two antimetabolites (gemcitabine and cladribine) and melphalan
failed in single-arm trials with no reported survival, while mercaptopurine and fluorouracil
reduced and kept mOS when combined with carmustine, respectively. Statistical significance
of the predicted drug arm versus the AntiBCs arm was reported independently for each trial.
Abbreviations: rGBM: recurrent GBM, nGBM: newly diagnosed GBM, rLGG: recurrent LGG,
TMZ: temozolomide, SOC: standard-of-care, PCV: Procarbazine/lomustine/vincristine com-
bination.
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3.4 Discussion

We have built GEMs (iGBM, iAST and iODG) for the three glioma subtypes based on the

2021 WHO classification and have predicted new repurposable, single drugs and combinations.

While the sensitivity of essential gene predictions of the metabolic models remains low, the

specificity is high [52], [53]. The low sensitivity is often attributed to the fact that in sil-

ico single gene KOs only capture essentiality related to metabolism and most specifically to

the optimization function and fail capturing essentiality to other processes such as regulatory

processes. But also to some extent to limitations of the metabolic models. The large efforts in-

vested in the curation and standardization of genome-scale metabolic reconstruction, notably

MEMOTE [54], and MetaNetX [55] as well as the benchmarking of context-specific model

algorithms [56]–[58], and the curation of GPR rules [59] and improvement of biomass formu-

lation [53] are likely to further improve the accuracy the predictions [52], [60]. Furthermore,

unlike some other computational drug repurposing approaches, metabolic modeling allowed

understanding the effect of a KD or KO on a system level and confronting it to the earlier

knowledge. Various sanity checks allowed for biologically relevant predictions that included:

model selection based on subtype separation, matching metabolic exchanges and gene KD/KO

with literature, and evaluation against AntiBCs in vitro, in xenografts and in clinical trials.

While model-building used the rFASTCORMICS algorithm [10], a member of the FASTCORE

family that were benchmarked by us and other in various studies [57], [58], data collected of

gene KD/KO and metabolic exchanges were kept only for validations as recommended in this

review [61]. The models recapitulated metabolite exchanges and subtype-specific uptake for

radiotracers in patients and medium metabolites measured in vitro. Similarly, IDH-mutant

models (iAST and iODG) accurately predicted vulnerabilities consistent with the known 2HG-

induced NADPH depletion, such as targeting glutamate and GSH biosynthesis [20] with the

cannabidiol/adapalene combination, which would aggravate the depletion. Cell cycle and hy-

poxia are the two common target pathways for glioma chemotherapy, with both AntiBCs

combinations targeting redundant pathways, diminishing a potential synergism. However, cell

cycle inhibitors are ABC transporter substrates, and hence are transporting the drugs out

of the tumor causing drug resistance [62], [63] (Figure 3.7). Meanwhile, all anti-hypoxic An-

tiBCs, except belzutifan, are ABC transporter inhibitors. Despite poor CSF bioavailability,

only non-alkylating AntiBCs surpassed 25% growth reduction in xenograft experiments at 10

µM or lower, which is coherent with the mediocre performance in improving the OS in glioma

patients. The subtype models allowed predicting single drugs and drug combinations that

could enlarge the panel of therapeutic options in glioma. The single drug candidates predicted
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in this study principally target oxidative stress through the KD of TXNRD1, and arginine

uptake and nucleotide interconversion (antimetabolites).

Figure 3.7: Predicted drugs target the same genes as the AntiBCs or downstream
genes, mainly covering four biological pathways: hypoxia, oxidative stress, cell

cycle and polyamine biosynthesis.

TXNRD1 is predicted to be a vulnerability present across all glioma subtypes and its expression

was shown to highly correlate to AST [27] and ODG [28] patients’ survival. Moreover, fotemus-

tine (TXNRD1-inhibitor and alkylating agent) monotherapy displayed comparable survival to

bevacizumab in a two-arm, phase II clinical trial in rGBM [48]. In a network meta-analysis

of 11 AntiBCs and IAGs in rGBM, fotemustine ranked best in effectiveness as mOS [67]. An-

other TXNRD1-inhibitor, arsenic-trioxide, was tested as local interstitial monotherapy in a

single-arm, phase I/II GBM trial with the first promising results [68], outperformed alkylating

AntiBCs in vivo and in vitro, and an ABC transporter inhibitor. The antiviral valganciclovir,

one of our drug candidates, is predicted to target arginine uptake in GBM. in vitro, arginine

deprivation reduced GBM invasiveness [69] and currently the arginine-degrading agent, ADI-

PEG20, has been tested in a phase I GBM trial (NCT04587830) [70]. While valganciclovir
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AntiBCs mainly affect hypoxia and cell cycle via growth factors and unselective alkylation, re-
spectively. Meanwhile, the predicted CAis and antimetabolites selectively target DNA biosyn-
thesis and CA, respectively. The transcription factor NRF2, a target of AntiBCs, regulates
a third of predicted targets in the oxidative stress pathway (in olive green) [64]–[66]. Fur-
thermore, predicted drugs and AntiBCs share common targets such as glutathione reductase
(GSR) between cannabidiol and carmustine, monoamine oxidase A/B (MAO-A/B) are com-
mon between procarbazine, zonisamide and resveratrol and SLC22A6/8 between dabrafenib
and zidovudine. Most predicted drugs and cell cycle inhibitor AntiBCs that were shown to be
clinically inefficient are ABC transporter substrates, while clinically effective predicted drugs
are either non-substrate (eflornithine), inhibitor (celecoxib) or have an unknown effect (fote-
mustine and valganciclovir) on ABC transporter. Unlike clinically ineffective antimetabolites
(cladribine, gemcitabine, mercaptopurine and fluorouracil), fotemustine targets both cell cycle
and TXNRD1. Meanwhile, polyamine synthesis is targeted uniquely by the clinically effec-
tive drugs predicted for GBM (valganciclovir and eflornithine), the phase I/II ADPI-PEG20
IAG. Furthermore, cannabidiol, rifamycin, celecoxib and others inhibit the ABC transporters
(ABCC1 and ABCG2) responsible for AntiBCs resistance as well as byproducts detoxification
such as the efflux of lipid peroxidation (4-hydroxy-2-nonenal) and heme biosynthesis (protopor-
phyrin) byproducts. 4-hydroxy-2-nonenal and protoporphyrin predicted for pan-glioma and
GBM, respectively, matching the literature in the predicted subtypes. Abbreviations: GSH: re-
duced glutathione, GSSG: oxidized glutathione, TXN: thioredoxin, αKG: alpha-ketoglutarate.

significantly enhanced mOS when combined with the AntiBCs in both nGBM and rGBM phase

II trials, its hypothetical cytotoxic link to arginine uptake inhibition has yet to be proven.

While antimetabolites have been successful in cancer treatment and despite the high in vitro

potency and viability reduction, four antimetabolites (cladribine, gemcitabine and mercaptop-

urine from the single drugs and fluorouracil from the combinations drugs) failed in phase II

glioma trials. Another predicted antimetabolite, clofarabine showed in vivo growth reduction,

but has not been tested clinically. While BBB permeability and CSF bioavailability infer

drug penetrance, ABC transporter affinity was found to be more crucial for drug diffusion

into core tumor regions, even under leaky BBB [71]. Similarly, ABC transporter substrates

are more likely to possess low serum concentration due to drug metabolism. Both clinically

ineffective predicted drugs and cell cycle inhibitors AntiBCs are ABC transporter substrates

which might explain their inefficacy to due to limited drug distribution to the core tumor [71].

Finally, despite having the highest potency, CSF bioavailability and ABC transporter inhibitor

affinity, decitabine presented moderate in vitro viability and weak xenograft growth reduction.

Nevertheless, decitabine prodrugs are currently in two phase II trials for IDH-mutant glioma

(NCT03666559 and NCT03922555). Overall, predicted single drugs implicated in oxidative

stress and polyamine metabolism pathways are more target-specific than AntiBCs’ transcrip-

tion factors, of which fotemustine, arsenic-trioxide and valganciclovir represent repurposable

single drugs for glioma with a clinical profile comparable to AntiBCs.

We further searched for drugs that could increase the potency of AntiBCs and IAGs to pre-

dict drug combinations that allow targeting pathways characterized by many isozymes and

alternative reactions that must be inhibited simultaneously, avoiding pathway redundancy of
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the AntiBCs combinations. The predicted drug combinations allowed targeting CA, GSH

exchange, glutamate, polyamine, and GSH biosynthesis. In addition to inhibiting ABC

transporters, anti-hypoxic AntiBCs reduce angiogenesis through mTOR/HIF-1α/VEGF or

RAF/MEK pathways, while anti-hypoxic combination drugs target their downstream CA and

MAO-A/B genes. The relatively high potency and xenograft growth reduction of anti-hypoxic

AntiBCs compared to alkylating AntiBCs, is clinically consistent with the superior median

overall response rate of anti-angiogenic agents compared to alkylating agents (6.1%) in rGBM

phase II trials [72]. CA2, CA9 and CA12 are highly expressed in GBM, especially CA9, which

is not expressed in a healthy brain [73] and is significantly correlated with poor survival in

GBM [73] and the AST grade [74]. The proposed 17 drug combinations include pairs of a total

of 19 drugs. In brain cancer, 18 out of 19 combinations drugs (except rifamycin) have been

tested individually. However, none of the 17 proposed combinations has been assessed in vivo

or in vitro for brain cancer, which warrants their testing. Even though three combinations

had synergistic effects in vitro in non-brain cancer, two failed in clinical trials. Among the 17

predicted combinations, three IAGs: cannabidiol, eflornithine and fluorouracil, were predicted

to have a synergistic effect with adapalene (GOT1-inhibitor), rifamycin (SLCO-inhibitor),

and zonisamide (CAi), respectively. With cannabidiol and rifamycin being ABC transporter

inhibitors, cannabidiol/adapalene and eflornithine/rifamycin combinations present potential

combinations for relapsed glioma from AntiBCs resistance. Additionally, iGBM accurately

predicted ABCG2 transporter responsible for efflux activity against protoporphyrin, as GBM-

specific vulnerability, matching the impaired heme biosynthesis in IDH-mutant glioma [30].

Among the 19 combination drugs, zonisamide (selective CA9-inhibitor, approved for seizures)

had the highest potency and CSF bioavailability and target additionally MAOA/B increasing

its anti-hypoxic action like procarbazine. While adapalene has poor CSF bioavailability, the

recent nanoparticle formulation of adapalene increased its CSF bioavailability [75]. Similarly,

the lack of survival of eflornithine monotherapy in GBM but not AST in a phase II clinical

trial [49] highlights the importance of testing the eflornithine/rifamycin combination in GBM.

Some of the shared genes between Recon3D reconstruction and DepMap’s common essential

genes are enriched for other functions unrelated to growth (Table S17). As the formulation of

the biomass was shown to impact essential gene predictions [53], a tailored biomass formula-

tion should improve accuracy. Besides, curating the biomass growth formulation and updating

GPR rules, disease specific reactions could be added before model building to improve essential-

ity analysis and drug prediction [53]. For example, adding IDH-mutant biochemical reactions

would allow more accurate modeling of the LGG. Similarly, formulating evaluation tests of
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predicted essential genes on the DepMap scores would allow reproducible predictions and eval-

uations between studies. Moreover, Flux Variability Analysis of metabolic exchanges could be

improved using random sampling especially for reactions with a wide flux range [76]. While

the iCTRL model was built from four healthy brain samples from TCGA-GBM, building a

healthy brain model from the GTEx expression data [77] with CSF medium or using the brain

model from the whole-body model [13] could advance evaluating the safety of the predicted

drugs. In summary, metabolic modeling predicted combinations that overcome the target

redundancy of the AntiBCs combinations with alternative, accurate glioma subtype-specific

targets. The top two combinations present a safety profile and ABC substrate inhibition for

one of the two drugs, with variations in subtype-specificity that call for further testing.

3.5 Conclusion

GBM and LGG suffer from poor patient survival and accurate preclinical models, respectively,

that hinder new therapies’ discovery. Moreover, AntiBCs lack either adequate potency or CSF

bioavailability. In addition, two-thirds of AntiBCs are ABC transporter substrates, increasing

their drug resistance and core tumor diffusion. In this work, we present glioma subtype-specific

GEMs to predict single drugs and combinations that are promising candidates to be trans-

lated into clinical trials. Among others, LGG GEMs accurately predicted glutamate and GSH

biosynthesis vulnerabilities, while GBM GEM accurately predicted glutamine dependency and

heme biosynthesis. Unlike the target redundancy of the combination AntiBCs, predicted com-

binations target alternative reactions, potentiating their synergism. Of the predicted 33 single

drugs (19 combinations drugs), half were effective in vitro, and 17 (8) were tested against

GBM PDXs, of which 11 (5) were effective. Similarly, predicted drugs show comparable or

improved CSF bioavailability to AntiBCs. Despite five cell cycle inhibitors failing in phase II

glioma clinical trials due to conceivably being ABC transporter substrates, two single drugs

(fotemustine and valganciclovir) and two combination drugs (eflornithine and celecoxib) ex-

ceeded the primary survival outcome alone or combined with AntiBCs in phase I/II clinical

trials. Our work warrants fotemustine as pan-glioma monotherapy and eflornithine/rifamycin

and cannabidiol/adapalene as promising new combinations for GBM and LGG, respectively.
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Introduction to the paper

Melanoma is the most aggressive type of skin cancer that originates from melanocytes due

to ultraviolet light exposure. Nearly half and 9% to 29% of melanoma patients possess BRAF

and NRAS mutations, respectively, that activate the RAF/MEK pathway, increasing prolifer-

ation and metastasis. The other half of melanoma patients have either BRAF-wiltype or other

non-hotspot BRAF mutations. The RAF/MEK inhibitors combination of dabrafenib/trame-

tinib was approved in 2018 for BRAF-mutant melanoma patients, while immune-checkpoint

inhibitors (ICIs) and alkylating agents are the mainstays for BRAF-wildtype. Despite these

approved drugs, melanoma patients taking RAF/MEK inhibitors have a high relapse rate;

meanwhile, the biomarkers of ICIs responders are ill-defined. In this paper, we evaluate drugs

and essential genes for melanoma that were predicted as part of Tamara Bintener’s PhD thesis.

Additionally, a group of investigational and approved drugs targeting nitric oxide (NO-based

drugs) have been suggested for their anticancer activity. Both approved anti-melanoma and

NO-based drugs were compared to the predicted drugs under three conditions: metastasis,

drug resistance, and BRAF/NRAS mutation.

Contribution: I carried out the drug evaluation (Supplementary Figures 11-17) and data

collection of clinical trials, wrote this section of the manuscript that was revised by co-authors,

and prepared the figures.

4.1 Drug prioritisation

The effect of a knock-out of the essential genes, predicted targets, main targets of anti-

melanoma drugs, and genes implicated in NO metabolism (NO-related genes) retrieved from

the Drug Repurposing Hub [1] and literature [2], [3], were compared based on the median

dependency probabilities (the likelihood that the knock-out of a gene reduces cell growth or

induce cell death) in the CRISPR-Cas9 Cancer Dependency Map (DepMap) database [4] across

melanoma primary, metastatic and uncategorized melanoma cell lines. Likewise, drug-induced

resistance melanoma cell lines were used to rank these drug targets and essential genes. The

resistance information was extracted from the "depmap_public_comments" column in the

cell line metadata.

The viability reduction against DMSO for predicted, anti-melanoma and NO-based drugs

was assessed using the Primary PRISM database [5] for primary and metastatic cell lines

and resistant versus sensitive. Resistant cell lines were defined as cells with at least 50%
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proliferation to anti-melanoma drugs (-50% viability reduction). The anti-melanoma drugs

consisted of nine approved anti-melanoma in the Drug Repurposing Hub [1] in addition to the

CDK4/6-inhibitor palbociclib that showed modest efficacy in a phase 2 melanoma trial [6].

The NO-based drugs were retrieved from different sources [1] and covered four mode-of-actions

(see Supplementary File 2).

While the primary PRISM database covers a wide range of tested drugs (4606), these drugs

were tested using a narrow range of concentrations (2.5-5 µM). On the other hand, cell vi-

ability databases with more tested concentrations allow determining more precise potency

(such as IC50) but on a smaller drug set. The three sets of drugs (predicted, NO-based,

and anti-melanoma) were compared using the IC50 measures in high-throughput pan-cancer

cell viability databases. Four databases with IC50 values were merged: Secondary PRISM

(19Q4) [5], GDSC1000 (Release 8.4) [7], GDSC2000 (Release 8.4) [7], and Genentech Cell Line

Screening Initiative [8]. As fotemustine was the only anti-melanoma missing in the merged

IC50 database, fotemustine IC50 in melanoma cell lines were added manually from the lit-

erature. The melanoma cell lines in the secondary database were further classified based on

the BRAF and NRAS mutation status to identify sensitive candidate drugs regardless of the

cell line mutation profile. Mutation status retrieved from the DepMap website ("Binary Calls

for Copy Number and Mutation Data") was used to classify the melanoma cell lines in the

secondary PRISM database based on BRAF and NRAS mutations.

4.1.1 Predicted drugs and their targets show higher viability reduction and

dependency, respectively, than anti-melanoma drugs and their tar-

gets, in both resistant and metastatic melanoma cell lines

The viability reduction was retrieved for 25 predicted, nine anti-melanoma, and 29 NO-based

drugs from the primary PRISM database. Aminomethyltransferase enzyme

(https://clue.io/repurposing-app?q=Name:aminomethyltransferase) was mislabeled as

a compound in the Drug Repurposing Hub; thus, it was discarded from the NO-based drugs.

Three predicted drugs (cladribine, fluvastatin, and gemcitabine) ranked higher than anti-

melanoma drugs in both metastatic (Supplementary Figure S 4.1) and resistant cell lines

(Supplementary Figures S 4.2 and S 4.3). Among the 29 NO-based drugs, diphenyleneiodonium

is the only drug with a median viability reduction higher than 50% in either metastatic or

resistant cell lines. The high ranking of the non-anti-cancer drug, fluvastatin, among the

predicted anti-cancers (gemcitabine and cladribine) in both metastatic and resistant cell lines

underlines fluvastatin as a potential anti-melanoma drug.
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In both metastatic and resistant cell lines, predicted drug main targets have stronger depen-

dency than anti-melanoma targets, with RRM1 and RRM2 scoring the highest; see Supple-

mentary Figures S 4.4 and S 4.5. Main drug targets (anti-melanoma and predicted drugs)

were selected from the drug targets using the Drug Repurposing Hub [1] for its highly manual

curation. Unlike the primary PRISM database, DepMap offers eight drug-induced resistance

cell lines corresponding to four wildtype cell lines. ASS1 was the highest NO-related gene with

a 30% dependency probability in metastatic cell lines. As DepMap shows the effect of single

gene knock-out in vitro in cell lines, the potential combination effect of NO-related genes with

other targets is beyond this database and would need further testing.

4.1.2 Gemcitabine and cladribine show low IC50 under 0.4 µM as seven

of the ten anti-melanoma drugs in melanoma cell lines from high-

throughput drug viability databases.

The merged IC50 database included 1804 drugs and 1490 cell lines. The merged IC50 database

retrieved ten anti-melanoma, 13 predicted, and four NO-based drugs with variant numbers of

melanoma cell lines per drug ranging from one to 63. Ranking with the median IC50 showed

seven of the nine anti-melanoma drugs were below 0.4 µM, see Supplementary Figure S 4.6.

Gemcitabine and cladribine of the predicted drugs and only diphenyleneiodonium of the NO-

based drugs were below the 0.4 µM threshold. Moreover, two predicted statins (pitavastatin

and fluvastatin) were below 1 µM median IC50. Some anti-melanoma drugs, especially BRAF-

inhibitors (encorafenib dabrafenib), showed higher resistance in BRAF-wildtype and NRAS-

mutant. Meanwhile, for the predicted drugs, especially cladribine, the median IC50 remained

unaffected regardless of the BRAF or NRAS mutation, see Supplementary Figure S 4.7.

4.1.3 Tamoxifen and lovastatin showed positive clinical outcomes, while

gemcitabine and itraconazole showed only stable disease in the sub-

population of non-melanoma skin cancer

Furthermore, tamoxifen was found to improve overall complete and partial response in com-

bination with chemotherapies without improving one-year survival in advanced melanoma in

a meta-analysis of nine clinical trials [9]. On the contrary, melatonin (NO-based drug) com-

bined with dacarbazine failed to show an additive effect compared to dacarbazine alone in an
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Figure 4.1: Cladribine, fluvastatin, gemcitabine, and the NO-based drug
diphenyleneiodonium rank better than anti-melanoma drugs in viability reduc-

tion assays.
The viability reduction relative to DMSO for our 28 predicted, anti-melanoma and NO-based

drugs was gathered from the primary PRISM database for metastatic, primary, and
uncategorized cell lines. The drugs were ranked by their median viability reduction in

metastatic cell lines. The X-axis represents the median viability reduction relative to DMSO
(%) for metastatic (left), primary (middle), and uncategorized (right) cell lines. The rank of
each drug out of the 4606 tested drugs in the primary PRISM database was printed beside

each bar.
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Figure 4.2: Over a quarter of the melanoma cell lines displayed resistance to anti-
melanoma drugs in the primary PRISM database. Effect of drugs ranges from viability
reduction (in blue) to increase of proliferation (up to more than 2-fold increase, in red). Cell
lines with at least 50% increased proliferation (-50% viability reduction) to any anti-melanoma
drug were considered resistant cell lines (names highlighted in red) for visualization in Figure
S 4.3. The x-axis represents the anti-melanoma drugs, and the y-axis represents the melanoma

cell lines. Missing drug-cell line experiments are marked in grey tiles.
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Figure 4.3: Fluvastatin, gemcitabine, and cladribine outperformed anti-melanoma
and NO-drugs on anti-melanoma drug-resistant cell lines. Cell lines annotated as
resistant to anti-melanoma drugs in the primary PRISM database (with viability reduction >-
50%, names highlighted in red) were used to rank all drugs by their median viability reduction
(black dot). The violin plot represents the viability reduction for different drugs across all
melanoma cell lines of the primary PRISM database. Predicted, anti-melanoma and NO-based
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and the marker color indicates the drug the cell line is resistant to.
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Figure 4.4: The knockout of the predicted drug targets and essential genes in-
duced a stronger viability reduction than the melanoma targets and NO-related
genes. Predicted drug targets and essential genes were compared to both the anti-melanoma
targets and NO-related genes based on gene dependency probability scores (probability to
induce cell death or stop cell growth upon knock-out) from DepMap in metastatic melanoma
cell lines. The X-axis represents the median dependency probability across three types of
melanoma cell lines (metastasis, primary, and uncategorized). Essential genes are highlighted
in bold, and the non-druggable essential genes (according to DrugBank v5.1.3) have yellow
bars. Genes are ranked on the y-axis by the median dependency probability in the metastatic

cell lines, with the gene rank displayed on the right of each bar.

109



Chapter 4- Drug repurposing for Melanoma

A375 HT144 RVH421 UACC62

0 30 60 90 0 30 60 90 0 30 60 90 0 30 60 90
PLA2G4A

CA4
GUCY1A2

ARG1
PDE1A

CA6
CYP1B1

CA5B
EBP

UGT1A1
ANPEP

SLCO2B1
SPTLC3
CYP2C9
NSDHL

SLCO1A2
CYP2D6

PNLIP
CYP2B6

ARG2
CYP2E1

SLC15A1
CYP26A1

MSMO1
CYP11B1

TUBB1
CYP1A2

RAF1
SQLE

SLC27A4
UGT2B7
CYP2C8

CA14
ABCB11

SLCO1B1
ASL

CYP2A6
NOS3
NOS2

CYP2C19
CYP3A4

NOS1
LIMK1

PDE5A
NEK11

CYP1A1
CA2
CA1

CYP51A1
CA3
LSS

HSD17B4
LIPA
LIPF
CA9

CYP3A7
RRM2B

CYP19A1
SGMS1

CYP21A2
CYP4F12

FDFT1
CYP3A5
DHCR7

CA12
TM7SF2

CA7
CYP11A1

SPTLC2
LCAT

PDE4A
MAP2K2

TYMS
ACACA

ASS1
FASN
KDSR

DHODH
CRLS1

CDK6
CDK4

TXNRD1
MAP2K1

CAD
FDPS
CA5A
PMVK
PGS1
UMPS
BRAF

PTPMT1
GGPS1

MVK
MVD

SPTLC1
PGD

SLC7A5
CMPK1
HMGCR
POLA2
GUK1
TUBB
RRM1
RRM2

Dependency probability per gene (%)

D
ru

g 
Ta

rg
et

s

Gene_type

a
a
a
a
a

Predicted drug main target

Predicted drug off−target

Predicted non−druggable essential

Anti−melanoma target

NO−related genes

cell_line_name

A375

A375 SKIN CJ1

A375 SKIN CJ2

A375 SKIN CJ3

HT144

HT144 SKIN FV1

HT144 SKIN FV2

HT144 SKIN FV3

RVH421

RVH421 SKIN FV1

UACC62

UACC62 SKIN CJ1

Resistance

SCH772984

Dabrafenib and Roxadustat

Dabrafenib and Trametinib

Dabrafenib

Wildtype

Sensitivity analysis using DepMap dependency probability for the predicted drug targets and
essential genes in the drug−resistant melanoma cell lines
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Figure 4.6: Gemcitabine, cladribine and diphenyleneiodonium had comparable
IC50 value data to known anti-melanoma drugs in melanoma cell lines in the

secondary PRISM database.
Four databases (Secondary PRISM, GDSC1000, GDSC2000, and gSCI) of cell viability in
cancer cell lines with IC50 values were merged for the tested drugs across melanoma cell

lines. Black dots represent the median IC50. Green, blue, and red dashed lines correspond to
0.4, 1, and 10 µM, respectively. Seven of the ten anti-melanoma drugs have median IC50

below 0.4 µM (green line), whereas gemcitabine and cladribine have their median IC50 below
this threshold of 0.4 µM.

early terminated phase II trial of metastatic melanoma [10]. Interestingly, a phase II placebo-

controlled preventive trial found that lovastatin may decrease the incidence of melanoma with-

out reducing melanoma biomarkers [11]. Gemcitabine and itraconazole in non-melanoma skin

cancer phase II trials show no response but stable disease in a subset of the treated patients

(35% in gemcitabine [12] and 21% [13] to 91% [14] in itraconazole the disease remained stable)

(see Supplementary File 2). While cladribine is still untested in a clinical trial for melanoma,

it can be administered subcutaneously for cancer [15]. Using IC50 values and prior knowledge

as criteria, we selected 12 out of the 28 predicted drugs (three FDA-approved non-melanoma

anticancer and nine FDA-approved for other diseases) for experimental validation. Two pre-

dicted drugs (gemcitabine and cladribine) and one NO-based drug (diphenyleneiodonium) have

a reported median IC50 below 0.4 µM in melanoma cell lines, this being comparable to known

anti-melanoma drugs (Supplementary Figure S 4.6.A). Unlike targeted anti-melanoma drugs
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Figure 4.7: The IC50 values of cladribine and other predicted drugs, unlike anti-
melanoma drugs, are independent of the BRAF or NRAS mutation status. IC50

(Supplementary Figure S 4.6.A) were classified based on the mutation status in BRAF and
NRAS genes. Transparent and opaque box plots correspond to wildtype and mutants, respec-

tively.

that tend to be more effective for either BRAF-mutant or NRAS-wildtype cell lines (Supple-

mentary Figure S 4.7), cladribine and other predicted drugs show good efficacy regardless of

the mutation status with narrow IC50 ranges (see Supplementary File 2 for the IC50 values

found in the databases and the literature and additional information on clinical trials).
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4.2 Summary and Outlook

In addition to the previous clinical trials, other clinical data collected in the synopsis (see Ta-

ble 1.3.8) support the efficacy of statins but not the pyrimidine synthesis inhibitor leflunomide.

Statins: Two retrospective studies found concurrent statins with ICIs [17] and statins use [18]

improved immune checkpoint inhibitors (ICIs) response and reduced melanoma incidence,

respectively.

Leflunomide: Combining leflunomide with vemurafenib[19] failed in a phase I/II clinical trial

in BRAF-mutant metastatic melanoma.

A limitation in this work is the absence of the approved ICIs in the HTS databases.
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Introduction to the paper

Natural products have been used for medicinal purposes for centuries, with isolated com-

pounds now comprising half of approved chemotherapies. Despite there being over 30 approved

chemotherapies for breast cancer in women, approximately one in eight women will be diag-

nosed with the disease. This high incidence rate calls for the search for new compounds with

anti-breast cancer properties, as well as for compounds with potential preventative effects

found in common diets. The chemopreventive properties of many NPs have been studied in

retrospective studies. However, the systematic search for chemopreventive NPs compounds

faced hurdles due to the focus on whole herbs, the multi-target effect of NPs, and the absence

of mechanistic understanding. Nevertheless, recent preclinical compounds-treated expression

data provide an unbiased investigation of various NPs. Here, we built genome-scale metabolic

models of breast cancer cell lines pre-treated with 101 NPs to rank them for potential anti-

breast cancer activity. This ranking includes similarity to approved anti-breast cancer drugs,

dissimilarity to the control model, pathway analysis, and drug deletion. Out of the 101 NPS,

23 were predicted as candidate drugs, of them, nine NP were selected and tested in a 2D

cell viability assay. Bruceine D, emodin, and scutellarein inhibited MCF-7 and Hs 578T cell

proliferation in a dose-dependent manner with IC50 values ranging from 0.7 to 65 M.

Contribution: I carried out the literature review, wrote the manuscript, and prepared the

figures.

Abstract

The multi-target effects of natural products allow us to fight complex diseases like cancer

on multiple fronts. Unlike docking techniques, network-based approaches such as genome-

scale metabolic modeling can capture multi-target effects. However, the incompleteness of

natural product target information reduces the prediction accuracy of in silico gene knockout

strategies. Here, we present a drug selection workflow based on context-specific genome-scale

metabolic models, built from the expression data of cancer cells treated with natural products,

to predict cell viability. The workflow comprises four steps: first, in silico single-drug and

drug combination predictions; second, the assessment of the effects of natural products on

cancer metabolism via the computation of a dissimilarity score between the treated and control

models; third, the identification of natural products with similar effects to the approved drugs;

and fourth, the identification of drugs with the predicted effects in pathways of interest, such
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as the androgen and estrogen pathway. Out of the initial 101 natural products, nine candidates

were tested in a 2D cell viability assay. Bruceine D, emodin, and scutellarein showed a dose-

dependent inhibition of MCF-7 and Hs 578T cell proliferation with IC50 values between 0.7

to 65 µM, depending on the drug and cell line. Bruceine D, extracted from Brucea javanica

seeds, showed the highest potency.

Keywords

natural products; bruceine D; emodin; scutellarein; drug prediction workflow; metabolic mod-

eling

5.1 Introduction

Breast cancer is one of the leading cancers in women, with around 2.26 million cases worldwide

in 2020, representing an incidence of 11.7% and a mortality of 6.9% of all diagnosed cancers [1].

Breast cancer is a heterogeneous disease with various molecular features, clinical outcomes,

and degrees of chemotherapy resistance. In order to provide a tailored treatment, breast car-

cinomas can be subdivided into five different molecular subtypes based on the presence of

hormone receptors (HR, corresponding to estrogen receptor, ER, and progesterone receptor,

PR), human epidermal growth factor receptor 2 (HER2), and the protein Ki-67, which serves

as a marker for cellular proliferation: luminal A, normal-like (similar to luminal A, but with a

slightly worse prognosis), luminal B, HER2-enriched, and triple-negative, which is also referred

to as basal-like [2]. Typically, the luminal A subtype has a better prognosis, whereas the triple-

negative subtype has the worst 5-year survival rate [3]. Breast cancer can further be clinically

classified as a function of its size, location, and invasiveness. This classification comprises

stage 0 (carcinoma in situ), and then ranges from stage I to stage IV, with the latter corre-

sponding to invasive cancer that has propagated to distant sites of the body [4]. Besides the

inter-tumor heterogeneity between patients, the clonal heterogeneity of a single breast tumor

can cause therapies to fail to eradicate the whole tumor; hence, residual tumor cells tend to de-

velop chemoresistance and metastasis [5]. The multi-target and heterogenous pharmacological

mechanisms of action of natural products—and thus, their more ubiquitous efficiency—help to

counteract cancer heterogeneity and prevent drug resistance [6]. Natural products, extracted

from plants or animals, have been used to treat many diseases in various regional traditional

medicines [7]. Nowadays, natural products including isolated herbal compounds and botanical
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mixtures containing a plethora of plant ingredients, as well as semi-synthetic derivatives and

mimics, are being studied extensively for the treatment of different diseases, including cancer.

To date, only two botanicals have been reviewed and approved by the FDA (sinecatechins and

crofelemer) [8]. On the other hand, more single herbal compounds are used in clinical practice,

such as paclitaxel and cabazitaxel for cancer treatment. These single herbal compounds are

either extracted from plants or produced at an industrial scale in a semi-synthesis or total

synthesis process, such as paclitaxel. Notably, some studies on breast cancer cell lines have

shown synergistic effects following combined treatment with natural products and estrogen

receptor modulators such as genistein and ormeloxifene [9], or equol and tamoxifen [10]. in

silico metabolic models allow the simulation of the metabolism of a whole cell or an organ-

ism [11], both for different metabolic phenotypes [12] and diseases, such as cancer [13]–[15].

Metabolic models were recently used to speed up the process of identifying possible new ap-

plications for existing drugs [15], [16]. In the present study, we present a new drug prediction

and analysis pipeline (https://github.com/sysbiolux/Herbal_drug_prediction accessed

date 14 December 2021) tailored to the complex mode of action of natural products and the

lack of the complete knowledge of their targets. The pipeline requires the gene expression

data of cells treated with natural products and a genome-scale reconstruction such as Re-

con3D as an input in order to build context-specific metabolic models via FASTCORMICS or

rFASTCORMICS [15], [17]. The models are then used to simulate the effects of the natural

products on the metabolism of cancer cells, and to prioritise the natural products based on

their predicted efficacy. Here, microarray gene expression data of the MCF-7 breast cancer cell

line treated with 101 natural products [18] were used as the input for the pipeline. Out of 101

single natural products, and one mixture of natural products, nine products were identified as

promising candidates with anticancer activity, and were subjected to experimental validation

via a 2D cell viability test, which is commonly used in the drug discovery process. Among the

nine candidates, emodin, scutellarein, and bruceine D caused a decrease in the proliferation of

MCF-7 and Hs 578T cells at low IC50 values, indicating the good performance of the devel-

oped drug prediction pipeline.

5.2 Results

In order to assess the potential effect of natural products on the metabolism of breast cancer

cells, and to identify promising drug candidates, a microarray expression dataset composed

of the expression data of MCF-7 cells treated with 101 natural products, one mixture of

natural products (salvianic acid A sodium, salvianolic acid B, protocatechuic aldehyde and
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Table 5.1: Summary of the 103 context-specific models (101 natural products,
one mixture of natural products, and one DMSO model) in terms of the median

number of reactions, metabolites, and genes.

Reactions Metabolites Genes
Median 1895± 87 1593 2169

Min 1593± 66 1353 1790
Max 1036± 49 908 1128

tanshinone IIA), and the control—dimethyl sulfoxide (DMSO) [18]—was used to reconstruct

context-specific metabolic models (102 natural product models and a control model) via the

FASTCORMICS workflow [17]. The median, minimal and maximal number of reactions,

metabolites, and genes of the models are displayed in Table 5.1. The size of the models

varies between 1593 and 2169 reactions, with a median of 1895 reactions. An in silico drug

prediction and analysis workflow composed of (i) the drug prediction of growth by natural

products’ target deletion, (ii) the assessment of the dissimilarity of the included reactions

compared to the DMSO (control) model reactions, (iii) the assessment of the similarity of the

predicted flux ranges carried by the reactions of natural product models and the DMSO model

constrained by the approved breast cancer drugs, and (iv) a pathway analysis, which was used

on these 103 models to predict 23 potential candidates. The model statistics for all of the 102

conditions (101 natural products + one mixture) are available in Table S1 of Supplementary

File S1. However, in order to facilitate the representation of the data, only the data of the

predicted 23 drugs are shown in the main text.

5.2.1 Ferulic Acid, Resveratrol, Capecitabine, and Methotrexate Are Predicted to Re-

duce the Growth of MCF-7 Cells

Among these 101 natural products, human targets for only 44 drugs were found in DrugBank

V5 [19], PROMISCUOUS 2.0 [20], and NPASS [21]; 35 drugs thereof targeted metabolic

genes (see Supplementary File S1, Table S2 for the detailed drug–target interactions, and

Supplementary File S2, Table S3 for the summary of the number of interactions). The effect

of these 35 natural products on the growth of MCF-7 cells was simulated in silico by setting the

bounds of all of the target reactions in the control DMSO model to zero. After the knockout

of the targets of ferulic acid and resveratrol, the DMSO model could not produce biomass

anymore. As a quality control, 26 approved breast cancer drugs (see Supplementary File S1,

Table S4 for the list of breast cancer drugs, and Supplementary File S1, Table S5 for the

detailed drug–target interactions) were tested using the same approach on the DMSO model.

Capecitabine, a precursor of the drug fluorouracil [22], and methotrexate, an antagonist of
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folic acid [23], were predicted to stop the growth of cancer cells. The other 24 tested breast

cancer drugs had a predicted growth ratio of more than 0.998, suggesting that the other 24

breast cancer drugs have modes of action that do not target the metabolism of cancer cells,

or target pathways that are not directly related to growth. In order to assess whether the

other 24 breast cancer drugs could have a combined effect with natural products, two different

experiments were performed. First, the targets of every combination of natural product and

breast cancer drug in the DMSO model were set to zero, in order to assess whether the

combination of the two drugs caused a stronger reduction of the growth than each natural

product or cancer drug individually. Second, in order to verify that the natural products do

not have undescribed targets that might result in synergies when used in combination with

breast cancer drugs, the targets of the breast cancer drugs were set to zero in the reconstructed

102 natural product models (101 single drugs and one mixture of four drugs). However,

there was no significant reduction of the growth when we compared the cancer drug deletion

on the DMSO model and the natural product model. The single-gene deletion was applied

to ferulic acid, resveratrol, methotrexate, and capecitabine in order to determine which of

these drug targets can decrease the biomass individually. Single-gene deletion did not predict

any single essential genes for ferulic acid or resveratrol but identified three single essential

genes for methotrexate (Thymidylate synthase (TYMS), Dihydrofolate reductase (DHFR),

5-Aminoimidazole-4-Carboxamide Ribonucleotide Formyltransferase (ATIC)) and one single

essential gene (TYMS) for capecitabine.

5.2.2 Bruceine D, Narciclasine, Hydroxysafflor Yellow A, Ferulic Acid, and Salviano-

lic Acid B Are Predicted to Show the Strongest Perturbations of the Metabolism

of MCF-7 Cells

As mentioned before, no metabolic target information could be found in DrugBank V5 [19],

PROMISCUOUS 2.0 [20], or NPASS [21] for 66 out of the 101 natural products, and the

list of targets of the 35 listed drugs is likely to be incomplete, as these drugs have multiple

targets. Hence, in order to further identify candidate natural products that might affect the

metabolism of MCF-7 cells, the structure of the reconstructed natural product models in terms

of the included reactions in the natural product models was compared to the DMSO control

model. A dissimilarity score was computed for each natural product model against the DMSO

model (using 1-Jaccard Index J, where J is the number of shared reactions between a natural

product and the DMSO model divided by the total number of reactions). A dissimilarity score

of 1 means that the natural product model does not share any reaction with the DMSO model;
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hence, the associated drug has a strong effect on the metabolism of MCF-7 cells. On the other

hand, a score of 0 means that the two models are identical; hence, the effect of the natural

product drug on the MCF-7 metabolism is negligible in terms of its network structure. The

calculated dissimilarity score ranged from 0.19 to 0.44 for ephedrine hydrochloride and narci-

clasine, respectively. The group of the top five natural product models (narciclasine, bruceine

D, hydroxysafflor yellow A, ferulic acid, and salvianolic acid B) with the highest dissimilarity

scores in the DMSO model (ranging from 0.44 to 0.40) were retained for further analysis. Fig-

ure 5.1 shows the dissimilarity values for the 23 drugs predicted as potential candidates by at

least one of the steps of the drug prediction workflow (Table 5.2), and Supplementary Figure

S1 contains the complete results. The fifth and sixth top-ranked drugs, salvianolic acid B

and nitidine chloride, have dissimilarity scores of 0.40 and 0.37, respectively, which are larger

differences compared to the drugs higher ranks (Supplementary Figure S1).

Figure 5.1: Dissimilarity scores between the breast cancer models reconstructed
from the expression data of MCF-7 cells treated with natural products and the

DMSO model (control model).

Natural products that alter the metabolism of breast cancer cells to a large extent (in bold)
have a high dissimilarity to the control DMSO model. A dissimilarity score (D) was
computed based on the Jaccard Similarity index (J, where J is the number of shared

reactions between two models divided by the total number of reactions), where D is equal to
1-J. The dissimilarity score represents the fraction of reactions that are different between the

two models.
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Table 5.2: Summary table of the 23 candidate natural products for potential
anticancer action based on four in silico analysis steps.

Highlighted in green are the drugs that were predicted in two steps; in blue are the drugs
predicted in only one step, but that were additionally supported by data from the Dr. Duke
Database and the Drug Repurposing Hub Database. Both sets were submitted for experimen-
tal validation. Highlighted in red is the drug strychnine, which was eliminated due to toxicity;
highlighted in orange is the drug narciclasine, which was removed due to a large amount of
published data. In yellow are the drugs that were predicted by one step and not retained for
validation. The background colors correspond to the different NP selection criteria, which are

mentioned in the main text as (Table 2, COLOR).

Natural
Product

Drug
Dele-
tion

Dissimilarity
to DMSO
model

Similarity
to cancer
drug mod-
els

Pathway
analysis

Anticancer
activity
(Dr. Duke
Database)

Mode of ac-
tion (Drug
Repurpos-
ing Hub
Database)

Clinical
Phase

Ferulic Acid 1 1 1 antioxidant Phase 2
Glycyrrhizic
acid

1 1

Resveratrol 1 1 Antitumor,
Antioxidant,
Apoptotic,
Antiangio-
genic

cytochrome
P450 in-
hibitor, SIRT
activator

Launched

Scutellarein 1 Antioxidant,
Cancer-
preventive

Strychnine 1 Antioxidant acetylcholine
receptor an-
tagonist

Preclinical

Narciclasine 1 1
Hydroxysafflor
yellow A

1 1 anti-tumor
agent

Preclinical

Salvianolic
Acid B

1 1 EGFR in-
hibitor, met-
alloproteinase
inhibitor

Phase 2

Daidzin 1 Antioxidant,
Cancer-
preventive

antioxidant Phase 1

Macrozamin 1
Chelerythrine 1 Antimitotic
Chenodeoxycholic
acid

1 11-ß hy-
droxysteroid
dehydroge-
nase inhibitor,
FXR agonist

Launched

Emodin 1 Antitumor,
Immunosup-
pressant

11-ß hy-
droxysteroid
dehydroge-
nase inhibitor

Preclinical

Tetrahydropalmatine 1
Bacopaside I 1
Ethyl caf-
feate

1

Ginsenoside
Rb1

1

Hypaconitine 1
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Salidroside 1 beta-amyloid
protein neu-
rotoxicity
inhibitor

Preclinical

Salvianic
acid A
sodium

1 matrix metal-
loprotease in-
hibitor

Schizandrin 1 Antioxidant
Bruceine D 1 glycine recep-

tor antagonist
Preclinical

Osthole 1 Calcium chan-
nel blocker

Preclinical

5.2.3 13 Natural Products Are Predicted to Affect the Metabolism of MCF-7 Cells

Similarly to the Breast Cancer Drugs Capecitabine and Methotrexate

With a high dissimilarity score for a natural product model compared to the DMSO model

does not necessarily imply that the associated natural product is efficient against breast can-

cer, but rather that the metabolic changes induced by the natural products are different from

the ones induced by DMSO. However, selecting natural products that have a similar effect

to known breast cancer drugs on the metabolic models increases the likelihood of the iden-

tification of efficient drug candidates. As a first step, and in order to quantify the effect

of all 26 breast cancer drugs, the dissimilarity score between the DMSO model constrained

by the cancer drug targets (cancer drug models) and the unconstrained DMSO model was

computed based on flux ranges obtained using Flux Variability Analysis (FVA). Models that

included reactions that maintained the same flux range between two models have a dissimilar-

ity score of 0, whereas models that have very different flux ranges will receive a score close to

1. Methotrexate and capecitabine had the highest dissimilarity scores with the DMSO model

(Figure 5.2A), which is consistent with the strong effect of these drugs in the growth predic-

tion step above. Then, the similarity score (1, dissimilarity score) between the natural product

models and two DMSO models constrained by methotrexate and capecitabine (cancer drug

models) were calculated. The combined top-ten natural product models which were similar

to methotrexate and capecitabine (resulting in 13 unique natural products) were selected as

candidate anticancer drugs. The results for these 13 natural product models are shown in

(Figure 5.2B).
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Figure 5.2: Dissimilarity and similarity of the natural products to the control
model and the approved drugs’ models, respectively.

(A) Dissimilarity of the flux ranges between the DMSO models constrained with breast cancer
drugs and the unconstrained DMSO model. Breast cancer drugs that significantly alter the
metabolism of MCF-7 cells have a high dissimilarity to the control DMSO model. With low
dissimilarity scores suggests that the main targets of some drugs are non-metabolic, that
these drugs have indirect effects on growth, or that the drugs cause cancer death by affecting
pathways that are unrelated to growth. The dissimilarity score was computed based on the
flux ranges of the reactions included in the models. If both models maintain similar ranges,
the dissimilarity score is close to 0. (B) Similarity scores between the reconstructed natural
product models and the DMSO model constrained with capecitabine and methotrexate. The
target deletion of these two drugs is predicted to stop the growth of MCF-7 cells. Hence,
natural product models with a high similarity with DMSO constrained with these drugs are
more likely to have a similar effect on the metabolism. The similarity score was computed
based on the flux ranges of the reactions included in the models. If both models maintain
similar ranges, then the similarity score tends to 1. The natural products were sorted by the
average similarity score to methotrexate and capecitabine, with the ten natural products with
the highest similarity to capecitabine and the ten drugs with the highest similarity score to
methotrexate are highlighted in bold.

5.2.4 Narciclasine, Emodin, Scutellarein, Strychnine, Resveratrol, Chenodeoxycholic

Acid, Chelerythrine, Tetrahydropalmatine, Osthole, and Glycyrrhizic Acid Are

Predicted to Alter the Androgen and Estrogen Synthesis and Metabolism Path-

way

In order to determine which metabolic pathway should be preferably targeted in order to re-

duce the growth of breast cancer, and which pathways are targeted by natural products, the
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drug targets of natural products and breast cancer drugs were mapped to the reaction–gene

matrix (rxnGeneMat field) of Recon3D [24], the input reconstruction which was used to build

the natural product models. The number of breast cancer drugs targeting the same pathway

was plotted against the number of natural products (Figure 5.3). Most breast cancer and

natural products target eight pathways: androgen and estrogen synthesis and metabolism,

arachidonic acid metabolism, drug metabolism, bile acid synthesis, steroid metabolism, cy-

tochrome C metabolism, linoleate metabolism, and extracellular transport pathways. The

color code on the plots represents the size of the pathway (the number of reactions under gene

control in this pathway, which can therefore be targeted). Larger pathways such as extracel-

lular transport and drug metabolism, which have 332 and 55 associated genes, respectively,

are expected to be targeted by a higher number of drugs than smaller pathways. In order to

verify whether the metabolism of these pathways was significantly altered by the natural prod-

ucts, the difference in the active reactions (the reactions present in the models) between each

natural product model and the DMSO model was computed. Among the eight pathways that

are targeted by most approved breast cancer drugs (Figures 5.3 and 5.4), the androgen and

estrogen synthesis and metabolism pathway had the lowest rate of reactions that were shared

between the natural product models and the DMSO model, i.e., reactions that were active in

the DMSO model tended to be inactive in the natural product models, and vice versa. Hence,

this suggests that natural product models more strongly impact this pathway. The same anal-

ysis was performed on all of the pathways in Recon3D. Among the pathways with the highest

rate of altered reactions are pathways with a low overall number of reactions. For pathways,

with less than or equal to five reactions, the activation or inactivation of a single reaction will

result in a rate of altered reactions that is above or equal to 0.2, whereas for larger pathways

the alteration of one reaction would have a more modest effect (see the color code for the size

of the pathways). The choice of the androgen and estrogen synthesis and metabolism pathway

as the pathway of interest for breast cancer treatment is consistent with three facts. First,

the inhibition of Estrogen Receptor α (ERα) by fulvestrant was shown to prevent invasion by

MCF-7 cells, which are ER-positive, in a xenograft experiment [25]. Second, genistein, which

also targets ERα, inhibits the proliferation of MCF-7 cells and induces apoptosis [26]. Third,

estrogen- and androgen-based therapeutics are used for breast cancer treatment [27].

In total, 12 natural products were described to have targets in the androgen and estrogen

synthesis and metabolism pathway. However, only ten out of these twelve showed a difference

in the fraction of reactions present per pathway when compared to the DMSO model (see

Supplementary File S2, Figure S4): narciclasine, emodin, scutellarein, strychnine, resveratrol,
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Figure 5.3: Pathway analysis of the dysregulated pathways by natural product
and approved cancer models.

Androgen and estrogen synthesis and metabolism, arachidonic acid metabolism, cytochrome
metabolism, drug metabolism, bile acid synthesis, steroid metabolism, linoleate metabolism,
and extracellular transport are the most frequently targeted pathways of approved breast
cancer drugs and natural products. The x- and y-axes correspond to the number of breast
cancer drugs and natural products that target Recon3D. The color map represents the total
number of reactions in each pathway under gene control.

chenodeoxycholic acid, chelerythrine, tetrahydropalmatine, osthole, and glycyrrhizic acid.

5.2.5 23 Natural Products with Potential Anticancer Activity Emerged from the Dif-

ferent Stages of Analysis

In total, 23 out of the 101 natural products and one drug mixture were predicted as the top

candidates in at least one of the four in silico analysis steps: (i) the drug deletion prediction

by the natural products’ targets, (ii) the dissimilarity to the DMSO model, (iii) the similarity

to breast cancer drugs, and (iv) pathway analysis. This number was further reduced for the

experimental validation by selecting only those natural products that popped up in more

than one of the in silico steps (Table 5.2, green). Notably, strychnine and narciclasine were

removed from the list due to toxicity (Table 5.2, red) [28], and due to the abundance of

available experimental data (Table 5.2, orange, see Supplementary File S1, Table S6) on breast

cancer cell lines, respectively [29]. Additionally, emodin, salvianic acid A sodium, scutellarein,
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and bruceine D (Table 5.2, blue)—which were predicted by only one analysis step—were

added to the list of drugs for validation due to previous evidence from two databases (Dr.

Duke’s Phytochemical and Ethnobotanical Databases (Dr. Duke Database) and the Drug

Repurposing Hub Database) [30], [31] and from the literature [32]. This resulted in a final list

of nine drugs for experimental validation.

Figure 5.4: Among the pathways that are targeted by most breast cancer drugs,
androgen and estrogen synthesis and metabolism had the lowest fraction of shared

reactions between the natural product and control models.
The fraction of reactions present per pathway for the eight most frequently targeted pathways
of breast cancer drugs was calculated for each natural product by dividing the number of
present reactions in each context model by the total number of reactions in this pathway.
Then, the difference in reactions present per pathway between the natural product models
and the DMSO model was computed. The pathways were sorted by the interquartile range
of the differences in the fraction of present reactions. The color code corresponds to the total
number of reactions in each pathway.

5.2.6 Scutellarein, Emodin, and Bruceine D Decrease the 2D Cell Viability of MCF-7

and Hs 578T Breast Cancer Cells

In order to experimentally validate the in silico predictions, 2D cell viability assays were per-

formed to determine the anticancer activity of the nine selected natural product candidates:

scutellarein, emodin, bruceine D, resveratrol, hydroxysafflor yellow A, salvianolic acid B, sal-

vianic acid A sodium, ferulic acid, and glycyrrhizic acid. Ophiobolin A, which is a natural

product that covalently inhibits calmodulin and has anticancer stemness properties [33], was

chosen as a control compound because of its anti-proliferative effects in different cancer cell

lines [34]. Two breast cancer cell lines were used for these assays: the non-invasive MCF-7

cells, which are ER+ breast cancer cells that were also used for the computational analysis,
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and the highly invasive Hs 578T cells, which are triple-negative breast cancer cells.

The analysis of the cell viability revealed that scutellarein, emodin, and bruceine D inhibited

the cell proliferation of both MCF-7 and Hs 578T cells in a concentration-dependent manner

(Figure 5.5A). Notably, lower drug concentrations were used for bruceine D, as this compound

showed the highest potency. Figure 5.5B shows the DSS3 values as determined using the DSS

pipeline website, BREEZE (https://breeze.fimm.fi/ last accessed on 14 December 2021).

DSS3 values essentially correspond to the normalized area under the curve of dose–response

curves [35], with a higher DSS3 value reflecting a higher potency of the drug. The obtained

DSS3 values point to a higher potency for bruceine D than for the control compound ophiobolin

A in invasive Hs 578T cells, and to a similar potency of bruceine D in MCF-7 cells compared

to Hs 578T cells (Figure 5.5B and Supplementary File S2, Figure S5A). Notably, bruceine D

showed submicromolar IC50 (IC50 = 0.71 ± 0.05 µM) in Hs 578T, and low micromolar IC50

in MCF-7 cells (IC50 = 9.5 ± 7.7 µM) (Supplementary File S2, Table S9), which is in the

same range. The other two candidates—scutellarein and emodin—gave IC50 values ranging

from 28 to 65 µM depending on the compound and the cell line (Supplementary File S2, Table

S9). The IC50 measured for the three natural products is in the same range for MCF-7 as the

one found in the literature (Supplementary File S1, Table S10). No data were found for these

three natural products for Hs 578T. On the other hand, treatment with hydroxysafflor yellow

A, salvianolic acid B, salvianic acid A sodium, ferulic acid, or glycyrrhizic acid did not confirm

the in silico predictions (Supplementary File S2, Figure S5B), as these natural products did

not induce a dose-dependent decrease of 2D cell viability. Only resveratrol showed a minor

dose-dependent effect on Hs 578T cells at high concentrations. Consistently, these six drugs

gave very low DSS3 values, and no IC50 values could be determined (Supplementary File S2,

Table S9). Altogether, our experimental validation indicates that the three natural products

emodin, scutellarein, and bruceine D are promising therapeutic candidates for breast cancer

treatment, as predicted by the computational model, with bruceine D being the top candidate.

5.2.7 Targeting the Androgen and Estrogen Synthesis and Metabolism, as well as the

Accumulation of ROS, Are the Two Main Modes of Action of Emodin, Bruceine

D and Scutellarein

In order to understand how emodin, bruceine D, and scutellarein affect the metabolism of

MCF-7 cells, the difference in the reaction presence rates between the three respective natural

product models and the DMSO model was calculated. The androgen and estrogen synthesis

and metabolism pathway, as well as the pathways required for the biosynthesis of estrogens
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Figure 5.5: Scutellarein, emodin, and bruceine D reduce 2D breast cancer cell
viability.

(A) The natural products scutellarein, emodin, and bruceine D dose-dependently decrease the
2D cell viability of both MCF-7 and Hs 578T breast cancer cell lines after 72 h. The treatment
was performed in a 1:2 dilution series ranging from 160 µM to 0.625 µM for scutellarein (n =
4) and emodin (n = 4), and ranging from 20 µM to 0.078 µM for bruceine D (n = 3). (B) The
2D monolayer DSS3 values as a quantification of the anti-proliferative effects of the natural
products scutellarein, emodin, and bruceine D, and of the control compound, ophiobolin A. The
DSS3 values correspond to the normalized area-under-the-curve values of the dose–response
data, as shown under (A). The results are expressed as the mean ± SEM, n ≥ 3 for natural
products, and n = 2 for ophiobolin A.

such as cholesterol, steroid and squalene, and cholesterol synthesis, had a lower presence rate

in the three natural product models, suggesting that estrogen synthesis is downregulated by

these three drugs (Figure 5.6; the results for all of the pathways are shown in Supplementary

File S2, Figure S6). Furthermore, pathways directly implicated in redox homeostasis—such

as Reactive Oxygen Species (ROS) detoxification (bruceine D), Heme degradation, and NAD

metabolism—and pathways such as purine and pyrimidine, which are required to replenish

the stocks of NAD(P)H, folate metabolism (emodin, scutellarein), and glutathione metabolism

(bruceine D and emodin) were also downregulated. Transporters that indirectly reduce stress

by transporting compounds that might cause redox stress out of the Golgi and endoplas-

mic reticulum are also targeted by the three drugs. Vitamins, phenylalanine, and histidine

metabolismwhich are pathways known to alleviate redox oxidative stresswere activated, sug-

gesting that these pathways are activated in order to reduce the accumulation of ROS in
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MCF-7 cells. The differences in the reactions present per pathway between the natural prod-

uct and the DMSO models were calculated. Only pathways that have at least an absolute

difference of 0.1 in the fraction of present reactions for bruceine D, scutellarein and emodin

are displayed. The pathways are ranked in the y-axis by their absolute differences in reactions

present per pathway for bruceine D. Supplementary File S2, Figure S6 shows the results for

all of the pathways in Recon3D.

Figure 5.6: Androgen and estrogen synthesis and metabolism, and pathways im-
plicated in the maintenance of redox homeostasis, are the main targets of bruceine

D, emodin, and scutellarein.

In order to ascertain which enzymes are most likely targeted by bruceine D, emodin, and

scutellarein, the number of reactions impacted in each pathway was plotted against the known

drug targets for each compound. The size of the dots indicates how many cancer drugs

target the same gene. Bruceine D has no described targets in DrugBank V5 [19] (version

5.1.8), PROMISCUOUS 2.0 [20], or NPASS [21]. Emodin has 24 metabolic targets — notably

CYP3A4, CYP2C9, CYP2C19, CYP2D6-targeting, among others, the androgen and estrogen

synthesis and metabolism pathway. These four genes are also targeted by 21, seven, three
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and two breast cancer drugs, respectively (Figure 5.7A). Scutellarein has nine metabolic tar-

gets, notably CYP1A1 and CYP1B1 in the androgen and estrogen synthesis and metabolism

pathway, which are targeted by toremifene, and by paclitaxel and docetaxel, respectively (Fig-

ure 5.7B). Furthermore, 17 genes of the androgen and estrogen synthesis and metabolism

pathway are targeted by breast cancer drugs. Notably, CYP3A4 is targeted by 21 drugs.

The same gene controls reactions in the steroid, linoleate, drug, cytochrome C, bile acid, and

arachidonic acid metabolism (Figure 5.7C). The 17 target genes in the androgen and estrogen

synthesis and metabolism pathway (including CYP3A4) regulate four reactions that hydrolyse

oestrone, testosterone, and pregnenolone into products that have been described to bind estro-

gen or androgen receptors and induce proliferation in breast cancer cells [36] (Supplementary

File S1, Table S11, Supplementary File S2, Figure S8). In the arachidonic pathway and other

pathways with the reactions controlled by the CYP proteins targeting breast cancer drugs,

none or few reactions were differentially present in the natural product models, suggesting that

these pathways were not targeted by natural product models (Supplementary File S2, Figure

S8).

Besides the androgen and estrogen synthesis and metabolism pathway, emodin targets 12, 10,

nine, six, and five genes in the drug, steroid, vitamin A, linoleic, and arachidonic metabolisms,

respectively, whereas scutellarein targets three genes in the starch and sucrose metabolisms

(Supplementary File S2, Figure S7).

The 26 cancer drugs mainly target CYP proteins, SLC carriers, ATP transporters, and UDP-

glucuronosyltransferases, which are mainly found in the eight following pathways: andro-

gen and estrogen synthesis and metabolism, arachidonic acid metabolism, bile acid synthesis,

cytochrome metabolism, drug metabolism, linoleate metabolism, steroid metabolism, trans-

port, and extracellular pathways. Some of these genes and pathways are also targeted by

emodin. On the other hand, although scutellarein targets two CYP proteins and one UDP-

glucuronosyltransferase, it does not target CYP3A1. Unlike emodin, which shares several

targets with the breast cancer drugs, scutellarein has only a few targets in these pathways,

suggesting a different model of action for this drug (Figure 5.6, Supplementary File S2, Figure

S6).
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Figure 5.7: Target genes and the number of reactions affected by the breast
cancer drugs (A), emodin (B), and scutellarein (C) for the eight most commonly

targeted pathways.
(A) The target genes of the breast cancer drugs were plotted against the eight most commonly
targeted pathways, with the size of the dots indicating the number of cancer drugs targeting a
gene, and the number near each dot and color map indicating the number of reactions under
the control of the gene. (B) The same analysis, but for the targets of emodin. (C) The same
analysis, but for the targets of scutellarein.

5.3 Discussion

In the present work, a drug discovery workflow based on FASTCORMICS, Drug deletion,

and Flux Variability Analysis was used to predict the best breast cancer drug candidates

among 101 natural products, out of which nine were tested in a 2D cell viability assay using

MCF-7 and Hs 578T cells. A dose-dependent decrease of cell viability was observed with the

three natural products emodin, scutellarein, and bruceine D, with the latter showing a low

micromolar IC50 in MCF-7 cells (IC50 = 9.5 7.7 µM), and a submicromolar IC50 in Hs 578T
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cells (IC50 = 0.71 0.05 µM). Metabolic modeling was previously applied, with success, to the

prediction of drug candidates and, more specifically, repurposable drugs [15], [16]. However,

the information for natural products is scarcer than that for conventional breast cancer drugs.

Only 35 of the 101 drugs had target information in DrugBank V5, PROMISCUOUS 2.0, and

NPASS (see Supplementary File S2, Table S3). Furthermore, due to the multi-target mode

of action of natural products, the list of targets for the natural products present in these

databases is probably incomplete. Hence, drug deletion approaches might miss interesting

drug candidates as some of their targets might be missing from databases. Finally, some of

these drugs that might not have direct metabolic targets could nevertheless have a significant

effect on metabolism and cancer cell viability, growth, and migration.

In order to circumvent this issue, we identified natural products that, according to their ex-

pression profiles, affect the metabolism of cancer cells differently than the solvent DMSO alone.

This approach does not necessarily imply that these products reduce growth, but at least it

allows us to eliminate natural products with no or very small effects on the metabolism. We

further selected products that have a similar effect to capecitabine and methotrexate on the

metabolism of MCF-7 cells. These two breast cancer drugs had the strongest dissimilarity to

the flux distribution of DMSO due to the shutdown of all of the reactions that are required

for biomass production, suggesting that they have a strong impact on the metabolism. This

assumption was further validated by the drug deletion that predicted these two drugs to re-

duce growth. Methotrexate has three metabolic targets that are predicted to reduce growth

upon knockout: TYMS, DHFR, and ATIC. The knockout of TYMS was also predicted to stop

growth in the capecitabine-constrained DMSO model. Because it is a rate-limiting enzyme

of nucleotide synthesis, the knockdown of TYMS was previously described to reduce the pro-

liferation of breast cancer cells [37]. The inhibition of TYMS by fluoropyrimidine and folate

analogues was further shown to induce apoptosis through ROS generation [38]. Methotrex-

ate and other DHFR inhibitors deplete the concentration of folates required for the de novo

synthesis of nucleotides and NADP(P)H that regulates oxidative stress by the regeneration

of reduced glutathione. Finally, ATIC is an oncogene that suppresses AMPK activation, and

hence promotes proliferation via mTOR [39].

The knockout of the metabolic targets of the 24 remaining breast cancer drugs did not affect the

growth in the MCF-7 models. Although the cancer drugs had around 82 combined metabolic

targets, the targets responsible for the reduction in proliferation or cell death might be non-

metabolic. These drug targets might, moreover, have an indirect effect on growth; hence, they

would not be captured by constraining the DMSO models by the known targets. Furthermore,

the metabolic impact might not be captured by the biomass formulation, i.e., by causing the
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accumulation of ROS and the death of the cell by apoptosis. Finally, all of the isozymes

described to control a reaction in Recon3D might not be expressed in breast cancer cell lines,

or were missing in the target list. Regarding the targets, ABCB1 and ABCG2—which are

ATP-dependent drug efflux pumps for the xenobiotic compound, and are known to be linked

to multidrug resistance [40]—were targeted by 17 and nine drugs, respectively. More generally,

among the 82 combined targets, eight were ABC transporters, 13 were solute carriers, 16 were

members of the CYP proteins, and six were members of the SLCO family of organic anion-

transporting polypeptides. In Recon3, CYP34A—which is targeted by 21 breast cancer drugs

controls sex hormones and metabolizes 50% of cancer drugs. Hence, the overexpression of this

CYP protein in cancer tissue might also be linked to multidrug resistance.

Among the natural product models, resveratrol and ferulic acid were predicted to decrease

proliferation. However, unlike for methotrexate and capecitabine, the predicted growth re-

duction is not linked to the knockout of one gene, but to the combined effect of the knockout

of multiple targets. In the cell viability assay, nine natural products —scutellarein, emodin,

bruceine D, resveratrol, hydroxysafflor yellow A, salvianolic acid B, salvianic acid A sodium,

ferulic acid and glycyrrhizic acid— were experimentally assessed for their effect on the 2D cell

viability of MCF-7 and Hs 578T cells. Among them, emodin, bruceine D, and scutellarein

dose-dependently decreased the 2D cell viability in both cell lines. Although similar assays

have previously been performed in ER+ MCF-7 cells [41], this cell line was nevertheless chosen

for validation in order to be coherent with the approach taken to build the natural product

models, which was based on MCF-7 cells. On the other hand, the Hs 578T cell line was cho-

sen because of its triple-negative status and high invasiveness. To the best of our knowledge,

the three drugs had not been tested before in Hs 578T, but they had been tested in other

triple-negative cell lines such as MDA-MB-231, MDA-MB-453 or MDA-MB-468 [41]–[45]. Al-

together, our results are in good agreement with the previously published studies. In general,

we obtained higher DSS3 values and lower IC50 values in Hs 578T than in MCF-7 cells (Sup-

plementary File S2, Table S9), indicating a higher potency for the three candidates in the

triple-negative cell line compared to the ER+ cell line. In particular, bruceine D showed a

submicromolar IC50 value in Hs 578T cells (0.71∓ 0.05 µM), suggesting that this compound

might be a valuable drug for triple-negative breast cancer treatment.

Six of the nine predicted drugs did not show clear effects at the tested concentrations, and

their IC50 values could not be determined. Resveratrol treatment decreased the Hs 578T

cell viability only at a concentration of 160 µM, whereas it showed no effect on MCF-7 cells.

This low effect was somewhat surprising, as previous studies have shown a decrease of MCF-7

or MDA-MB-231 survival or proliferation upon resveratrol treatment [46]–[48]. If any effect
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could be observed for the other five drugs, it would be a stimulatory rather than an inhibitory

effect on cell viability, except for salvianolic acid B and salvianic acid A sodium, both of which

decreased MCF-7 viability by 35% at a concentration of 160 µM. Controversial results have

been reported regarding the effects of these natural products on breast cancer cells. Whereas

glycyrrhizic acid has been shown to induce apoptosis via ROS activation in MDA-MB-231

breast cancer cells [49], both stimulatory [50] and inhibitory effects [51] have been described for

MCF-7 cell proliferation. Similarly, contradictory results have been reported regarding ferulic

acid. Indeed, ferulic acid was shown to have anti-proliferative and pro-apoptotic activities in

MCF-7 cells [52], and to reduce proliferation and reverse EMT in MDA-MB-231 cells [53].

In contrast, in another study, it stimulated the proliferation of MCF-7, MDA-MB-231 and

other breast cancer cell lines, with the concomitant upregulation of ERα and HER2 in MCF-

7 cells [54]. Hydroxysafflor yellow A has been shown to reduce the proliferation of MCF-7

cells [55]. Finally, Salvianolic acid B showed a similar inhibition of MCF-7 and MDA-MB-231

cell proliferation with a decrease in cyclin B1 levels [56]. Evidence for the anti-tumor activity

of salvianolic acid B was also provided by an in vivo study, in which the drug decreased the

tumor volume and increased the median survival in mice, possibly by enhancing apoptosis [57].

The observed differences between our experimental results and the literature data could be

due to different experimental settings, and in a subset of the analyses, they could be due to

the differential concentrations used for the treatment. Emodin is an anthraquinone isolated

from different Chinese herbs [58], and is commonly accepted as a protein tyrosine kinase

inhibitor [59]. Emodin has been shown to exhibit anti-proliferation effects in several cancer

types, such as breast, endometrial [60], and renal cancer [61], as well as hepatocarcinoma [62].

Scutellarein is a flavone extracted from the herb Scutellaria baicalensis, which induces mitochondria-

mediated intrinsic apoptosis selectively on multiple myeloma [63], and inhibits the cell prolif-

eration and EMT of hepatocellular carcinoma. Furthermore, scutellarein has been shown to

inhibit the proliferation of MCF-7 and the triple-negative breast cancer cell MDA-MB-468,

whereas it had no notable effect on the viability of healthy MCF-10A cells [42]. Bruceine D is

a quassinoid compound extracted from the seeds of Brucea javanica. Bruceine D was reported

to induce autophagy and apoptosis via the generation of ROS in lung cancer cells [64] and

pancreatic cancer cells [65]. A bruceine D-dependent decrease in cell viability was also found

in the breast cancer cell lines MCF-7 and MDA-MB-231, whereas the proliferation of healthy

mammary epithelial cell MCF-10A was not affected [41]. In addition to the cell viability de-

crease, bruceine D was further shown to reduce the migration and invasion of MDA-MB-231

cells by upregulating the expression of E-cadherin and downregulating vimentin, suggesting
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a bruceine D-dependent reversal of EMT in these cells [43]. More recently, evidence was in-

deed provided that bruceine D treatment led to an upregulation of genes that are negatively

correlated with EMT, and to a downregulation of genes that are positively correlated with

EMT [66].

Taken together, the targets of emodin, scutellarein, and bruceine D, as well as their ex-

act mode of action, are far from being completely elucidated. However, it is nowadays

commonly accepted that these three drugs display anti-proliferative and anti-apoptotic ef-

fects across different cancer types, and that they counteract EMT. They induce the accu-

mulation of ROS and regulate several signaling pathways, including PI3K/Akt/NF-B path-

ways [67], [68]. PI3K/AKT contributes to the regulation of survival, growth, proliferation,

and metabolism [69], whereas NF-B is implicated in cell proliferation, apoptosis suppression,

angiogenesis, EMT induction, and metabolism regulation [70]. Therefore, although emodin,

scutellarein, and bruceine D might not directly target metabolism, they interfere with pathways

that regulate metabolism, and pathways that are related to ROS. ROS production is a double-

edged sword in cancer. Indeed, depending on the concentrations and context, ROS can either

promote tumor initiation and progression or inhibit tumor cell proliferation, induce apoptosis,

and prevent multidrug resistance [71], [72]. Cancer cells have developed strategies—such as

the antioxidant system, the DNA damage repair pathway, and metabolism reprogramming—to

adapt to and alleviate ROS-induced damage. However, if the ROS levels exceed a threshold

level, they will overwhelm these strategies and induce oxidative stress, eventually leading to

cancer cell death. Many anticancer drugs that increase ROS levels—such as fluorouracil, dox-

orubicin, rapamycin, and erlotinib—are used in clinics [72].

In order to obtain a deeper insight into the mode of action of bruceine D, scutellarein, and

emodin, we had a closer look at their results in the four in silico experiments. Among the

pathways that were differentially present in the bruceine D, scutellarein and emodin mod-

els were the androgen and estrogen synthesis and metabolism pathway, as well as pathways

that are required for the synthesis of estrogens, such as cholesterol metabolism, squalene and

cholesterol synthesis, and steroid metabolism. Notably, the ROS detoxification pathways (in

the bruceine D model) and the pathways responsible for the production of antioxidants—such

as folate metabolism (emodin and scutellarein models) and heme degradation (all three mod-

els)—were downregulated, which is consistent with the described accumulation of ROS induced

by the three natural products [64], [65], [73], [74]. In order to alleviate an increase in ROS

due to the lack of antioxidants, pathways that control oxidative stress—such as vitamins,

NADH metabolism, and phenylalanine metabolism—were moreover predicted to be upregu-

lated. Taken together, these three drugs show three predicted main metabolic modes of action:
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the downregulation of the androgen and estrogen pathway, the accumulation of ROS to initi-

ate programmed cell death, and, to some extent, the induction of the biosynthesis pathways

required for proliferation. Increased endogenous levels of androgen and estrogen are associated

with a higher risk of prostate and breast cancer development, respectively [75]. Estradiol has

been shown to induce the proliferation of breast cancer cells, activate anti-apoptotic pathways,

and reduce oxidative stress. Hydroxylated estrogen can further cause mutation in the DNA

and induce tumors [75]. However, the effects of estrogen and estradiol vary in the function of

the type of ERs at the surface of breast cancer cells. Whereas ERα acts as a tumor acceler-

ator, Estrogen Receptor β (ERβ)—which binds to ERα, and by doing so represses ERα—is

generally considered to be a tumor inhibitor. However, it has to be noted that ERβ, which is

expressed in all breast cancer molecular subtypes and in the majority of breast cancer stem

cells, was recently proposed as a novel therapeutic target to specifically hit stem cells [76].

Androgens have a dual and controversial effect on breast cancer development. At physiological

concentrations, androgens can suppress breast cancer cell proliferation. However, at higher

concentrations, androgens can promote breast cancer cell proliferation by augmenting free

estrogen levels, or by regulating the transcription of genes, such as the mitotic gene Ki-67 [75].

The androgen and estrogen synthesis and metabolism pathway is targeted by 24 out of the 26

breast cancer drugs. These drugs target four reactions of this pathway that are present in the

DMSO model and absent in bruceine D, emodin, and scutellarein models. Notably, one of the

reactions that causes the oxidation of estrone into 16α-hydroxy-estrone in the reticulum by

a monooxygenase is under the control of 13 target genes, and notably of the gene CYP3A4.

CYP3A4 is targeted by 21 out of 26 cancer drugs. Hydroxylated forms of estrogen, estradiol,

and testosterone were described to be genotoxic, and hence to initiate tumor formation by

inducing mutations. In addition, 16α-hydroxy-estrone has a strong affinity for ERs, and the

ratio between 2-hydroxy-estrone and 16α-hydroxy-estrone in the urine has, for a long time,

been regarded as a biomarker for breast cancer risk, although this assumption is currently

under debate [77]. Taken together, breast cancer drugs commonly target CYP3A4 and other

genes of the androgen and estrogen synthesis and metabolism pathway. Furthermore, emodin

and scutellarein have known targets in this pathway, including CYP3A4 in the case of emodin.

CYP3A4 expression has been shown to correlate with poor overall survival in breast can-

cer [78], [79]. However, CYP3A4 might not only induce breast cancer via hydroxylated forms

of estrogen but also by the production of epoxyeicosatrienoic acids through the arachidonic

metabolism pathway [79]. Both pathways are under the control of mostly the same CYP

proteins that are also targets of the cancer drugs. However, the action of most of the natural

products did not strongly affect the arachidonic metabolism (reactions present/absent in the
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Table 5.3: Number of replicates for each condition.

Perturbations Number of Replicates
DMSO 6
A mixture of four natural products (tanshinone IIA, sal-
vianic acid A sodium, protocatechuic aldehyde, salvianolic
acid B)

2

101 natural products 2 (except for glycyrrhizic acid that
has 4)

DMSO were also present/absent in the natural product model). Furthermore, no difference

between bruceine D, emodin, scutellarein, and the DMSO was observed for the reactions in-

volved in the production of epoxyeicosatrienoic acids from arachidonic acid. Finally, the high

number of reactions in the steroid and cholesterol pathways present in the natural product

models and absent in the DMSO model, suggests that the production of estrogen might be

downregulated by a depletion in steroid and cholesterol, rather than through the action of one

single enzyme alone.

Taken together, bruceine D, emodin, and scutellarein are predicted to reduce the growth of

MCF-7 cells through the activation of ROS with the induction of oxidative stress, and through

the downregulation of the androgen and estrogen synthesis and metabolism pathway.

5.4 Methods

5.4.1 Data Retrieval

The microarray data published by Lv et al. (GEO ID: GSE85871) [18] was retrieved from Gene

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/ accessed date 20 Septem-

ber 2020) [80]. The dataset is a large data collection of a breast cancer cell line (MCF-7)

treated with natural products. The 103 perturbations consist of 212 replicates (100 duplicates

of single natural products and a duplicate of a mixture of four natural products, i.e., four

replicates of glycyrrhizic acid) and six control replicates incubated with only the solvent of the

drugs, i.e., DMSO (Table 5.3).

5.4.2 Building of Context-Specific Metabolic Models via FASTCORMICS

Gene expression CEL files were read into RStudio (R version 4.0.3) using the ArrayEx-

press package (version 1.50.0) (https://bioconductor.org/packages/release/bioc/html/
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ArrayExpress.html accessed date 3 May 2021) and the ReadAffy function from the Bio-

conductor repository. First, the data were log2-transformed and then normalized using the

Frozen Robust Multiarray Analysis (fRMA) package (version 1.42.0) [81]. The barcode func-

tion from the fRMA package (version 1.42.0) was further run in order to compare the ex-

pression values of the dataset to a vector containing the median and standard variation of

the lowest mode for each probe set for a collection of arrays for the same platform, and

to compute the z-scores. The probe identifiers were converted to Entrez ID using an in-

house pipeline described by [82]. In order to avoid ambiguities, probe IDs matching more

than one Entrez ID were removed. The FASTCORMICS algorithm [17] (https://github.

com/sysbiolux/rFASTCORMICS accessed date 3 May 2021) was used to build the context-

specific models using the microarray gene expression data with the human metabolic model

Recon3D [24] as inputs. In the Recon3D model, the transcript information is encoded in the

model gene identifiers by the addition—i.e., .1, .2, .3—after the Entrez identifiers. As the

transcript information cannot unambiguously be matched to the Ensembl identifiers, the suf-

fixes were removed. As Recon3D is already consistent, FASTCC [83] was not run. However,

for most of the reconstructions, a consistent model first has to be extracted by removing the

blocked reactions identified by FASTCC before running FASTCORMICS. FASTCORMICS

optionally allows us to constrain the models using medium information, and to force the

inclusion of the biomass reaction or any other reactions required for modeling purposes.

As the natural product-treated MCF-7 cell line was cultured in MEM/EBSS medium [18],

only the input reactions for metabolites present in this media were allowed (see Supplemen-

tary File S1, Table S7 for the medium composition). The medium components were re-

trieved from the Cytiva website (https://www.cytivalifesciences.com/en/us/shop/cell-culture-

and-fermentation/media-and-feeds/classical-media/hyclone-minimal-essential-medium-mem-variations-

liquid-p-05698 # related-documents accessed date 1 May 2021), and were converted into the

matching metabolites names via Metabolic Atlas (version 1.7) (https://metabolicatlas.

org/ accessed date 1 May 2021) [84]. Additionally, the inclusion of the biomass function in

the models was forced by its addition to optional_settings.func.

5.4.3 Drug Deletion Prediction

5.4.3.1 Natural Products

In order to predict whether knocking out the natural product targets reduces cell proliferation,

the context-specific models were constrained by setting the bounds of the natural product tar-

get reactions to zero using a modified version of the deleteModelGenes function of the COBRA
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Toolbox, which can be downloaded from https://github.com/sysbiolux/Herbal_Drug_

Repurpusing/blob/main/data/constraining_models/DrugDeletionCombination.m accessed

date 20 March 2021. In order to obtain a list of targets for each drug, drug– target interactions

information was mined from three databases: DrugBank V5 [19] (version 5.1.8), PROMISCU-

OUS 2.0 [20], and NPASS [21] (1.0 version). The three databases were downloaded on 12

March 2021. As UniProt IDs are used across the three databases for the target genes, non-

human targets were excluded by checking the related Taxon ID (the UniProt database version

in bioDBnet was the number 202004, released on 10 September 2020 and updated on 7 Novem-

ber 2020). The UniProt IDs were then converted to Entrez IDs using the db2db tool (bioDBnet:

https://biodbnet-abcc.ncifcrf.gov/db/db2db.php accessed date 20 March 2021 ), from

the biological DataBase network [85] to match the gene IDs in Recon3D. Finally, drugs with

metabolic targets that are present in Recon3D were selected. The deleteModelGenes function

of the COBRA Toolbox V3 [86] was used to set the bounds of the target reactions of natural

products of the DMSO model close to zero (most of the growth rate values were around 1 or

0, with no values in between). Drugs with a grRatio of zero (no growth after drug treatment)

were retained for further analysis.

5.4.3.2 Breast Cancer Drugs

The drug deletion was repeated with the breast cancer drugs. Therefore, a list of 41 drugs ap-

proved for the treatment of breast cancer was retrieved from the NIH (https://www.cancer.

gov/about-cancer/treatment/drugs/breast) on 16 March 2021 (Supplementary File S1,

Table S4). Drug-target information for the breast cancer drugs was retrieved from the three

databases for the drugs, and was mapped to Recon3D. As some cancer drugs were only found

on the three databases as conjugates (megestrol acetate and sacituzumab govitecan), rather

than the parent compound only (megestrol and sacituzumab), conjugates of the 41 cancer

drugs were also retrieved from the three target databases (Table S5). In total, 26 cancer drugs

could be mapped to the genes included in Recon3D. The drug deletion for the cancer drug was

performed as described above, with the bounds of the breast cancer drugs’ target reactions

being set to zero in the DMSO model. The DMSO model with constraints with the cancer

drug targets is referred to as the cancer drug model.

5.4.3.3 Combination of the Natural Product and Breast Cancer Drugs

Two assays were used to assess the potential synergistic effects. First, the control DMSO model

was constrained (as mentioned in the Methods—Natural Products subsection) by setting the
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targets of each natural product and cancer drug couple to zero. The growths obtained for the

drug combinations and the natural product and cancer drug alone were compared, which was

performed using the optimizeCbModel function of the COBRA toolbox [86]. As some natural

product targets might be unknown, the natural product model was constrained with breast

cancer drugs as described in Methods—Breast Cancer Drugs.

5.4.3.4 Single-Gene Deletion

An in silico single-gene deletion was performed via the singleGeneDeletion function from the

COBRA Toolbox in order to determine whether the knockout of one of the target genes could

explain the biomass reduction, or if the knockout of multiple genes was required to see an

effect on growth.

5.4.4 Dissimilarity of the Natural Product Models to the DMSO Model

In order to assess the impact of the natural products on the metabolism of breast cancer cells,

a dissimilarity score D was computed based on the Jaccard Similarity Index J (D = 1-J). The

dissimilarity score is equal to 1 if the number of shared reactions between two models is above

the total number of reactions. Using the dist function inside the proxy package (version 4.0.3)

in Rstudio (version 4.0.3), the Jaccard index was calculated between every natural product

and the DMSO model, and then converted into the dissimilarity score. The natural products

were then sorted by their dissimilarity to the DMSO model reactions and the top-five natural

products were selected, as there was a larger drop of dissimilarity between the fifth and sixth

natural product models.

5.4.5 Similarity between the Natural Product and Breast Cancer Drug Model Fluxes

In order to identify the natural products that have a similar effect on the MCF-7 metabolism

as the breast cancer drugs, a Flux Variability Analysis (FVA) [87] was performed using the

fluxVariability function in the COBRA toolbox. A dissimilarity score was computed between

the flux range of the cancer drug models and the DMSO model (dissimilarity score = 1 SI,

where SI is equal to SI =

mean
(
max(0,min(v1max, v2max)−max(v1min, v2min) + epsilon)

max(v1max, v2max)−min(v1min, v2min) + epsilon

)
(5.1)
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If the reactions in both models have very similar flux ranges (the difference being smaller

than epsilon, which is usually set to 1 × 10−4), then the dissimilarity score is equal to 0. If

the reactions shared by both have very different ranges, the dissimilarity score will tend to

1. In case a reaction was not included in one of the two compared models, the bounds were

considered to be equal to zero. Based on their dissimilarity scores, two breast cancer drugs were

selected: capecitabine and methotrexate (see Figure 5.2. A for cancer drugs with dissimilarity

scores > 1 × 10−4). Then, in a second step, the similarity score (SI) was computed between

the natural product and the capecitabine and methotrexate models (Figure 5.2B).

5.4.6 Pathway Analysis

In order to identify the pathways that are more preferably targeted by breast cancer drugs, the

drug targets were identified as described in Methods—Cancer Drugs. These target genes were

mapped to the gene identifiers of Recon3D, and the target reactions were obtained using the

rxnGeneMat field of Recon3D. These target reactions were then assigned to a pathway using

the subSystem field of Recon3D. The number of cancer drugs targeting a pathway was plotted

against the number of natural products. In order to take into account the size of the pathways,

the number of drugs was normalised based on the number of reactions in the pathway under

gene control, and these rates were represented in the color code of the plot. Eight pathways

that are targeted by the most approved breast cancer drugs were selected for their potential

anticancer action. Among the eight drugs, the drugs that showed the greatest impact on

the metabolism of breast cancer were selected by computing the difference of the rate of the

reaction presence between the natural product and the cancer models (the rate of the reactions

in a pathway that are present in a natural product model and absent in the DMSO model, and

vice versa). First, the rate of reactions present per pathway was calculated for each model and

each pathway by dividing the number of active reactions in the context-specific models by the

total number of reactions in this pathway in Recon3D using the subSystems field. Then, the

difference rate of reaction presence was computed between each natural product model and

the DMSO model. The pathways were then sorted in the function of the interquartile range.

All of the pathways with three reactions or fewer were excluded.

5.4.7 Drug Selection

In total, 23 drugs were predicted by at least one of the four previous steps (drug deletion, the

dissimilarity to DMSO, the similarity to breast cancer drugs, and the pathway analysis). The
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drugs predicted by two or more experiments were in general selected, unless they were toxic

or had already been tested in MCF-7 cells (Table 5.2, green). In order to refine the list of

drugs for the experimental validation, the drugs that passed one test but which had some pre-

clinical and literature information supporting a potential use in cancer, in general, were also

selected. In order to assess whether the drug candidates were already tested for breast cancer

or any other cancer type, the Dr. Duke Database [30] (downloaded on 4 November 2020)

and the Drug Repurposing Hub [31] (downloaded on 24 May 2021) were downloaded, and

clinicalTrials.gov (https://clinicaltrials.gov accessed date 1 June 2021) [88] was mined

(see Supplementary File S1, Table S8). The 102 Chinese natural products were mapped in

the Dr. Duke database. In total, 23 natural products had a phytochemical classification

inside the database, and 44 natural products were mapped to 358 unique activities. The

Drug Repurposing Hub repository was used to find information, e.g., the mode of action for

natural products, and the clinical trials phases were mined to find potential closed or ongoing

trials. The preclinical in vitro testing data for the 23 drugs were retrieved from different

sources; the compiled data, as well as the link to the data source, are found in Supplementary

File S1, Table S6. Based on this data mining, two drugs were removed from the list due to

high toxicity (strychnine) and due to the abundance of existing experimental treatments on

breast cancer cell lines (narciclasine) (Table 5.2, red). However, due to the evidence retrieved

from the data mining and literature search, four drugs (bruceine D, emodin, salvianic acid A

sodium, and scutellarein) that were predicted by only one step were added to the final list of

drugs (Table 5.2, blue). Resveratrol, similar to narciclasine, had already been tested before in

more than three breast cancer cell lines, and it is considered to be one of the most promising

anticancer natural products. Only resveratrol was kept in the final list of drugs as a positive

control, while narciclasine was excluded.

5.4.8 Experimental Validation

5.4.8.1 Natural Products and Inhibitors

Salvianic acid A sodium (# SML0679, Merck KGaA, Darmstadt, Germany) was prepared in

growth medium and ferulic acid (# HY-N0060), glycyrrhizic acid (# HY-N0184), scutellarein

(# HY-N0752), hydroxysafflor yellow A (# HY-N0567), salvianolic acid B (# HY-N1362),

emodin (# HY-14393), bruceine D (# HY-N3014) and resveratrol (# HY-16561) (all from

MedChemExpress, Monmouth Junction, NJ, USA) were prepared in DMSO at an initial con-

centration of 100 mM, and then stored in aliquots at -80 ◦C. A 10 mM stock solution of
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ophiobolin A (# sc-202266, Santa Cruz Biotechnology, Inc., Heidelberg, Germany) was pre-

pared in DMSO, and then stored in aliquots at -20 ◦C. A 100 mM stock solution of benzetho-

nium chloride (# 53751, Merck) was prepared in H2O, andthenstoredinaliquotsat− 20◦C.

5.4.8.2 Cell Culture

The MCF-7 (# HTB-22) and Hs 578T (# ACC 781) cells were obtained from American Type

Culture Collection (Manassas, VA, USA) and from Leibniz Institute DSMZ-German Collection

of Microorganisms and Cell Cultures GmbH (Braunschweig, Germany), respectively. Both cell

lines were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Lonza Group, Basel,

Switzerland) supplemented with 10% fetal bovine serum and 2 mM L-glutamine (complete

DMEM) (Lonza Group). The cells were routinely passaged and grown at 37 ◦C in a 5% CO2,

H2O-saturated atmosphere.

5.4.8.3 2D Cell Viability Assay (2D Cell Proliferation)

The 2D cell viability was assessed using the alamarBlueTM cell viability reagent (# DAL1100,

Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s protocol.

Briefly, MCF-7 or Hs 578T cells were seeded at a density of 3000 cells in 100 µL complete

DMEM medium per well in 96-well flat-bottom culture plates. After a 24 h incubation at

37 ◦C, the cells were treated with DMSO as a vehicle control, with 200 µM benzethonium

chloride (BzCl) as a positive control for cell death, or with natural test products diluted in

complete DMEM. The treatment with natural products was performed in a 1:2 dilution series

ranging from 160 µM to 0.625 µM, or from 20 µM to 0.078 µM for bruceine D. Ophiobolin

A, used here as a control compound for its antiproliferative activities, was used for treatment

in a 1:2 dilution series ranging from 20 µM to 0.078 µM. After a 72 h treatment at 37 ◦C,

alamarBlueTM cell viability reagent was added to each well to a final concentration of 10%,

and the plate reading was performed after a 2.5 h incubation in the dark at 37 ◦C. The

fluorescence intensity (excitation at 530 ± 15 nm and emission at 590 ± 20 nm) was measured

using a CLARIOstar (BMG LABTECH, Ortenberg, Germany) plate reader.

5.4.8.4 Drug Sensitivity Score Determination and Data Analysis

The raw fluorescence intensity values obtained from the cell viability assays were analysed us-

ing the DSS pipeline website BREEZE (https://breeze.fimm.fi accessed date 14 December

2021) [34], [89]. The absolute IC50 and DSS3 values were derived from the data analysis, with
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DSS being a more robust parameter to quantitate drug sensitivity than IC50, corresponding

essentially to the normalized area under the curve (AUC) of dose–response data [35]. Prism

9.2.0 (GraphPad Software, San Diego, CA, USA) was used to establish the dose–response

curves. The results are presented as the mean ± SEM of at least three independent biological

replicates, unless otherwise indicated. Each biological replicate was carried out in three tech-

nical replicates, out of which at least two were considered for evaluation.

5.4.9 Post-Experimental Analysis of the Pathways Affected by Bruceine D, Scutel-

larein, and Emodin

In order to gain insight into the possible mode of action of bruceine D, scutellarein and

emodin, pathway analyses were performed on the three natural product models, which were

then compared against the DMSO model, at a pathway level and a reaction level. Furthermore,

targeted reactions by emodin and scutellarein were compared with reactions targeted with

cancer drugs. First, the differences in the reaction presence rate between the three drugs and

the DMSO model were computed. The pathways with absolute differences below 0.1 were not

plotted in Figure 5.6 but are shown in Supplementary File S2, Figure S6. Second, the target

genes of the 24 cancer drugs, emodin, and scutellarein, were plotted against the eight most

commonly targeted pathways of breast cancer drugs (androgen and estrogen synthesis and

metabolism, arachidonic acid metabolism, bile acid synthesis, cytochrome metabolism, drug

metabolism, linoleate metabolism, steroid metabolism, transport, and extracellular pathways)

(see Figure 5.7 and Supplementary File S2, Figure S7). The size of the dots represents the

number of drugs targeting the genes, and the numbers correspond to the number of reactions in

the pathways under the control of the target gene. Bruceine D was excluded from this analysis

because of the lack of target information. Third, the drug targets were plotted against the

reactions that were differentially present between each natural product model and the DMSO

model for each of the eight most commonly targeted pathways. The reactions present in the

natural product models and absent in DMSO are depicted in red, and vice versa in blue (see

Supplementary File S2, Figure S8).

5.5 Conclusions

In conclusion, our in silico analysis pipeline (https://github.com/sysbiolux/Herbal_drug_

prediction, accessed on 30 December 2021) enabled us to narrow down a list of 101 single

natural products and one mixture of natural products to nine anticancer drug candidates. The
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subsequent experimental validation allowed us to confirm the potency of three out of these

nine candidates, namely emodin, scutellarein, and bruceine D. Finally, our approach led to

the identification of the pathways that are potentially involved in the anticancer activity of

the three candidates.

5.6 Summary and Outlook

Further analysis in the synopsis showed one of the predicted NP, narciclasine, exceeded all

approved breast cancer drugs in growth reduction in xenografts (see Figure 1.6.C). Moreover,

resveratrol intake showed preventive action in reducing breast cancer incidence in a retro-

spective study [90]. While evaluation of the 23 predicted NPs didn’t show differences in

vitro potency compared to the 78 excluded NPs (see Figure 1.3), highly potent excluded NPs

are mostly toxins that induce apoptosis and target epigenetics. Overall, metabolic modeling

allowed the ranking of preclinical compounds with potential anti-breast cancer activity on

metabolism.
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The following supporting information can be downloaded at

https://www.mdpi.com/article/10.3390/ph15020179/s1. Table S1: Detailed model statis-

tics for the 103 context-specific natural product models; Table S2: Natural product target

interactions extracted from DrugBank V5, PROMISCUOUS 2.0 & NPASS; Table S4: List

of approved breast cancer from cancer.gov; Table S5: Breast Cancer drug-target interactions

extracted from DrugBank V5, PROMISCUOUS 2.0 & NPASS; Table S6: Preclinical in vitro

evidence for the candidate natural products; Table S7: Medium composition of the MEM

medium used for context-specific model building; Table S8: Additional clinical evidence for

the candidate natural products; Table S10: Published concentrations and IC50 values for bru-

ceine D, scutarellein and emodin; Table S11: List of reactions targeted by emodin, scutellarein,

bruceine D and the breast cancer drugs in the androgen and estrogen metabolism and syn-

thesis pathway; Figure S1: Dissimilarity score for the 102 natural product models; Figure S2:

Similarity score between the natural product models and methotrexate (blue) and References

capecitabine (red); Figure S3: Chondroitin synthesis, folate metabolism, histidine metabolism,

and androgen and estrogen synthesis and metabolism are the top four pathways showing the

highest difference of reaction presence rate between the natural product and DMSO models

(Highest rate of reaction that is present in natural product models and absent in DMSO and
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vice versa); Figure S4: Ten out of the 12 natural products that target the androgen and estro-

gen synthesis and metabolism pathway, have differences in reaction presence rate between the

natural product and DMSO models; Figure S5: Resveratrol, hydroxysafflor yellow A, salviano-

lic acid B, salvianic acid A sodium, ferulic acid, and glycyrrhizic acid do not notably affect

2D breast cancer cell viability; Figure S7: Target genes and number of affected reactions of

emodin and scutellarein; Figure S8: Natural product models reactions for bruceine D, emodin
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models and that are under the control of breast cancer drugs; Table S3: Number of natural
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S9: DSS3 and IC50 values for the control compound ophiobolin A and each natural product

tested in Hs 578T or MCF-7 cells (mean ± SEM). ND = Not determined.
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Introduction to the paper

The 2019 coronavirus disease (COVID-19) is caused by a virus called severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), leading to a global pandemic with nearly seven million deaths. Despite

previous knowledge of other species, the spread of COVID-19 caused global confinement and self-

isolation. Due to the presence of only symptomatic treatments for SARS-CoV-2 during the start of

the pandemic and high biosafety requirements for drug screening, computational drug repurposing has

become essential. In this work, we build genome-scale metabolic models of the SARS-CoV-2-infected

lung cell lines to repurpose approved drugs and predict essential genes. We show the consistency of

predicted essential genes governing cysteine and glycine synthesis and metabolomics study of serum

biomarkers in COVID-19-positive patients.
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Highlights

• Metabolic modeling of COVID-19 utilized public RNA-Seq of SARS-CoV-2-infected lung

• In silico knockout identified 23 human essential genes for SARS-CoV-2 replication

• Drug repositioning predicted single drugs targeting essential gene pairs

• Among others, pyrimidine metabolism and ferroptosis are candidate druggable pathways

Summary

The 2019 coronavirus disease (COVID-19) became a worldwide pandemic with currently no approved

effective antiviral drug. Flux balance analysis (FBA) is an efficient method to analyze metabolic net-

works. Here, FBA was applied on human lung cells infected with severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) to reposition metabolic drugs and drug combinations against the virus

replication within the host tissue. Making use of expression datasets of infected lung tissue, genome-

scale COVID-19-specific metabolic models were reconstructed. Then, host-specific essential genes and

gene pairs were determined through in silico knockouts that permit reducing the viral biomass produc-

tion without affecting the host biomass. Key pathways that are associated with COVID-19 severity in

lung tissue are related to oxidative stress, ferroptosis, and pyrimidine metabolism. By in silico screen-

ing of Food and Drug Administration (FDA)-approved drugs on the putative disease-specific essential

genes and gene pairs, 85 drugs and 52 drug combinations were predicted as promising candidates for

COVID-19 (https://github.com/sysbiolux/DCcov).

6.1 Introduction

Constraint-based modeling (CBM) approaches have successfully been applied in fundamental research [1]–

[3] especially in cancer research [4]–[7], as well as in microbial engineering [8], [9] among other research

fields. CBM uses data- and prior knowledge-driven constraints to identify feasible metabolic flux

distributions for a given condition [10]. Many communities and collaborative works contributed to

reconstructing organism-specific generic metabolic networks, which serve as starting points for CBM.

Examples of such generic models are Recon 2 [11], Recon 2.2 [3], Recon3D [12], Human1 [13], and

HMR [4]. Other types of metabolic models are context-specific models that are built from tissue- or

disease-specific data. Usually, the context-specific models are draft reconstructions built from the ex-

pression data of this condition by building algorithms such as FASTCORE [14], rFASTCORMICS [6],
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INIT [4], and RegrEX [15]/or manually curated such as for E. coli [16], hepatocyte [17], and Zea

mays [18]. These models are often used as scaffolds for the integration of omics data or more interest-

ing to simulate the metabolic phenotypes of organisms, tissues, or cell lines. Within the CBM methods,

flux balance analysis (FBA) is a linear programming-based approach that maximizes or minimizes an

objective function, often a growth rate, to identify the optimal flux distribution(s) [19], [20]. In silico

knockout studies are common in FBA through gene or reaction deletion. This deletion may be single,

double, or multiple [21]. The goal of single reaction deletion is finding the most critical reactions in

respect to the objective function through brute force removal of each reaction individually and calcu-

lating the ratio of the objective rates between mutated and wild-type models. Gene deletion studies are

taking advantage of Boolean representations of the gene-reaction links known as gene–protein-reaction

(GPR) rules [9]. Gene deletion helps in defining essential genes whose deletion impacts the flux through

the objective function [19]. Essential genes are often used as targets for drug repositioning.

The 2019 coronavirus disease (COVID-19) is caused by a betacoronavirus strain called severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 was declared as a global pandemic

on 11 March 2020 by WHO [22]. Human-to-human infection can be transmitted by droplets [23] or

aerosols [24] by both symptomatic and asymptomatic patients [25]. The virus strain might have origi-

nated from the betacoronaviruses in bats and pangolins [26]. SARS-CoV-2 can cause upper and lower

respiratory infections, increasing its transmissibility and severity. SARS-CoV-2 utilizes the human pro-

tein angiotensin I-converting enzyme 2 (ACE2) for cell entry with its spike protein. ACE2 is expressed

on lung epithelial cells and other organs. The role of ACE2 is converting angiotensin II (AT-II) to

angiotensin-(1,7) (AT-1,7) to negate the inflammatory effect of AT-II [27]. Thus, SARS-CoV-2 infec-

tion decreases the concentration of cellular unbound ACE2 molecules to facilitate the cell entry, causing

an increase of AT-II which eventually increases the oxidative stress ion superoxide [28]. People with

increased COVID-19 risk are patients with cancer [29], chronic kidney disease [30], obesity [31], type 2

diabetes mellitus [32], immunocompromised [33], cardiac diseases [34], chronic obstructive pulmonary

disease (COPD) [34], and sickle cell disease [35].

Acute respiratory distress syndrome (ARDS) is one of the severe symptoms of COVID-19, which may

be attributed to alveolar epithelial cell injury [36]. This ARDS may become unresponsive to invasive

mechanical ventilation and increase lung injury [37]. Severe COVID-19 courses are also associated with

acute injury to heart, kidney, and cerebrovascular diseases [38]. In addition to the previous symptoms,

long-term effects for COVID-19 survivors (or long-haulers) have been emerging. These long-term ef-

fects include new-onset diabetes, increasing severe complications in pre-existing diabetes [39], fatigue,

dyspnea, psychological distress [40], and myocardial inflammation [41]. Metabolic modeling and in

particular FBA were often used to understand the effects of microbes on human cells. Notably, a hu-

man alveolar model was used to assess the metabolic interaction between the host and Mycobacterium

tuberculosis [42]. Lately, a similar approach was applied in the viral genomes to model the impact of

the Chikungunya, Dengue, and Zika viruses on the macrophage [43].

Only a few studies employed FBA on COVID-19 so far. Renz et al. used the viral genome infor-

mation available at that time, to generate a SARS-CoV-2 specific viral biomass objective function

(VBOF) [44]. This VBOF generation from the genome information consisted of six steps on nucleotide,
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and amino acid investment, adenosine triphosphate (ATP) requirements, pyrophosphate liberation,

total viral molar mass, and final construction of the VBOF [44]. Then, the VBOF was added to a

human alveolar macrophage model (iAB-AMØ1410 ) [42] to build a SARS-CoV-2-infected macrophage

model. They identified guanylate kinase (GUK1) as an essential gene through in silico knockout that

allows decreasing the viral biomass without affecting the human biomass maintenance. Several world-

wide collaborative works in computational modeling of COVID-19 were established. Cheng et al. built

context-specific models for different infected cell lines using multiple expression data [45]. They also

predicted drug combinations to remdesivir [45]. Ostaszewski et al. built the COVID-19 Disease Map

to understand the mechanistic interactions between SARS-CoV-2 and human tissues [46]. In another

collaborative study, Gysi et al. applied network analysis for drug repositioning using three different

ranking approaches: network proximity, diffusion, and deep learning-based [47]. With the rising SARS-

CoV-2 variants globally, variant-specific metabolic models were built and found GUK1 as a shared

essential target [48]. Previous methods for metabolic modeling of SARS-CoV-2, either focused on gen-

erating the VBOF from the viral genome [44] or on multiple cell line modeling and drug combination

prediction with remdesivir [45]. To further support the search for an effective treatment for COVID-19,

we employ here FBA to find candidate drugs and drug combinations that target viral-specific essential

genes in SARS-CoV-2-infected lung cells through context-specific models built from expression data

and the VBOF from [44] by the rFASTCORMICS workflow [6] (see Figure 6.1). We also highlight key

pathways of these essential genes that might contribute to COVID-19 severity.

Figure 6.1: Overview of the pipeline of essential gene prediction for SARS-CoV-
2-infected lung cells.

The viral biomass function (VBOF) was added to the generic metabolic models (Recon2.04
and Recon3D_01) (related to STAR Methods 6.6.1.2.1) to build the infected generic models.
Consistent versions of both the control and the infected generic models were obtained. Mock
and infected lung expression data were used to build the context-specific models using rFAST-
CORMICS and the consistent control models as input for the mock-specific models and the
consistent infected models for infected-specific models, respectively. The objective functions
were adjusted (related to STAR Methods 6.6.1.2.2). Then, essential genes and gene pairs were
identified by in silico gene knockout before mapping to DrugBank V5 for drug repositioning
to drugs and drug combinations.
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6.2 Results

The main goal of the present study is to understand metabolic changes induced by COVID-19 in

several lung cell lines, at various severity of infection, and at different time points after the infection

(see Tables 6.1 and 6.2 for the metadata of the two RNA-Seq studies). We then used single and

double knockouts to identify vulnerabilities specific to infected cells predicted by our network models

to reduce the viral proliferation, while only moderately affecting the growth of host and control cells

(see Figure 6.1). To further prioritize essential genes, we considered their essentiality scores across cell

lines and in time and the effect of a knockout of these genes in the healthy tissues. The final aim

is to identify conserved essential genes across infected models that do not provoke severe side effects

when the gene is knocked out in the healthy counterpart model. To further identify vulnerabilities in

the networks that could be exploited as drug targets, in silico inactivation of reactions was simulated.

We further investigated the pathways harboring the predicted essential genes and reactions, to gain

insight into how the virus adapts to the metabolism of lung cells. Finally, we proposed drug and drug

combinations that target the predicted essential genes and synergistic essential gene pairs.

Table 6.1: Severity study metadata (GEO: GSE147507).

Expression data from three lung cell lines infected with SARS-CoV-2 at three different viral
loads and for some samples transfected with a vector expressing ACE2 with their controls.
Condition
Name

Cell Line Multiplicity
of Infection

ACE2 Vec-
tor

Abbreviation Number of
Samples (In-
fected/Mock)

Series 1 NHBE 2 No NHBE_2 3/3
Series 2 A549 0.02 No A549_0.02 3/3
Series 5 A549 2 No A549_2 3/3
Series 6 A549 0.2 Yes A549_0.2_ACE2 3/3
Series 7 Calu-3 2 No Calu3_2 3/3
Series 16 A549 2 Yes A549_2_ACE2 3/3

Table 6.2: Time-series study metadata (GEO: GSE148729).

Time series expression data with five time-points (4, 8, 12, 24, and 36 hrs) with infected and
mock samples for two lung cell lines.

Condition
Name

Cell Line Time Point
(hrs)

Number of Samples (In-
fected/Mock)

Calu3_4h Calu-3 4 4/4
Calu3_8h Calu-3 8 2/0
Calu3_12h Calu-3 12 4/2
Calu3_24h Calu-3 24 2/2
H1299_4h H1299 4 2/2
H1299_12h H1299 12 2/0
H1299_24h H1299 24 2/0
H1299_36h H1299 36 2/2
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6.2.1 Metabolic pathway analysis of differentially expressed genes indicates COVID-

19-based rewiring of core metabolism

Infection by the SARS-CoV-2 virus provokes alterations in the metabolism of the host cells. To eluci-

date these induced metabolic changes, we took advantage of two available expression datasets (Severity

Study; Time-series Study; see STAR Methods for details). Principal component analysis (PCA) of

the severity study samples shows a clear cluster separation according to the cell type (see Figure

S1). Besides determining the differentially expressed genes (DEGs), we built genome-scale metabolic

models applying rFASTCORMICS (related to STAR Methods 6.6.1.2.1). The context-specific model

reconstruction process resulted in 50 models (28 infected and 22 mock) with a median of 3646 metabo-

lites (2465-5088) and 2456.5 reactions (1790-3474). To determine the key dysregulated pathways, we

mapped the DEGs on the Recon3D_01 model and displayed the pathway alterations in the mostly

dysregulated conditions (Figures 6.2 and S2 that shows a representation of all pathways without fil-

tering on the number of reactions, nor the reactions per pathway). A549_0.02 condition didn’t show

any differentially expressed metabolic genes, thus it was discarded from the DEGs metabolic pathways.

Meanwhile, the Normal Human Bronchial Epithelial cell line with MOI of 2 (NHBE_2) condition

pathways were filtered (related to STAR Methods 6.6.1.1.2). Among the most down-regulated path-

ways in the A549 cell lines with transfection (A549_2_ACE2 and A549_0.2_ACE2) in comparison

to no ACE2 vector (A549_2) were chondroitin sulfate degradation, phosphatidylinositol phosphate

metabolism, and phenylalanine metabolism, whereas glutathione metabolism was upregulated. For the

A549 cell line with high viral load (A549_2_ACE2 and A549_2) in comparison to low (A549_0.2_-

ACE2), a downregulation of fatty acid synthesis, androgen and estrogen synthesis and metabolism,

chondroitin synthesis, and pyruvate metabolism were also detected. Across all conditions, including

Calu3_2, we found a moderate downregulation of several pathways (glycerophospholipid metabolism,

glycosphingolipid metabolism, sphingolipid metabolism). Other regulated pathways in Calu3_2 are

the downregulated chondroitin sulfate degradation, nucleotide interconversion, and the upregulated

cholesterol metabolism. The two additional DEG analyses on the ACE2 transfection showed some

dysregulated pathways, such as the metabolism of folate, cholesterol, butanoate, arginine, proline, and

D-alanine. Only cholesterol metabolism was shared between ACE2 transfection and Calu3_2 pathways

(Figure S2).

6.2.2 In silico single-gene deletion predicts common potential drug targets across in-

fected cell lines with reduced side effects on control cells

The DEGs and the performed pathway analysis indicate a rewiring of the metabolism induced by

SARS-CoV-2. The next step was then to verify if these alterations caused the appearance of infected

cell-specific essential genes that could specifically be targeted by repositioned drugs. Therefore, for

every condition of both lung studies, in silico single-gene deletion was performed on the respective

reconstructed metabolic models. Twenty-three unique genes were predicted to be essential in the
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Figure 6.2: Reactions per pathway Heatmap for pathway analysis of differentially
expressed genes in the severity study.

Differentially expressed genes (DEGs) were computed with DESeq2 (absolute log2 fold change
>1, adjusted p-value < 0.05). The Down- and up-regulated were mapped to the pathways
(subSystems) of Recon3D_01. The number of up and down-regulated reactions was then
summed up to identify the top altered pathways in the infected lung cell lines in the severity
study (related to STAR Methods 6.6.1.1.2). The color code “Reactions per Pathway [%]”
represents the number of enriched metabolic reactions in a pathway divided by the overall
number of reactions in this pathway. The transfection of ACE2 at an MOI of two in the A549
cell lines caused the downregulation of many pathways, which was not seen when the MOI
was decreased by a factor of ten.

infected models (Tables S1 and S4). To assess if a drug targeting the candidate essential gene will kill

the infected cell or reduce the viral proliferation, we computed an essentiality score for each essential

gene, which sums up the number of models in which this gene is predicted to be essential. Essential genes

that are only found in one or a few conditions might be cell line or experiment (e.g., medium) specific

and hence might not have general biological relevance. Single-gene deletion of each predicted essential

gene was then performed on the counterpart control model (related to STAR Methods 6.6.1.2.2) to

predict the effect of the gene knockout on the healthy tissue. This allowed obtaining a safety score and,

hence, estimating the potential toxicity of each of the considered drug targets.

The obtained essentiality and safety scores are plotted for visual inspection (see Figure 6.1). Cardiolipin
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synthase 1 (CRLS1) and sphingomyelin synthase 1 (SGMS1) scored highest for essentiality, but were

among the lowest for safety, thus indicating that targeting any of these genes might be effective against

the virus but also reduces the growth of healthy cells, suggesting high toxicity of respective drugs. On

the other hand, GUK1 gene showed a moderate essentiality score, but a higher safety score expecting

fewer side effects. No gene could be identified that has high efficiency and safety. Also, nine of the 23

essential genes belong to the solute carrier (SLC) transporter gene family. Transporters are known key

regulators of metabolic flux [6], [49]; hence, modulating their expression might contribute to diverting

metabolic fluxes to pathways for viral survival and proliferation. Of the 23 essential genes, 10 genes were

shared between the two investigated lung studies, and many essential gene sets are shared between the

investigated conditions (CRLS1, GUK1, SGMS1 in the severity study and CRLS1, ISYNA1, SGMS1,

SLC27A4 in the time-series study), suggesting the existence of a consistent metabolic rewiring of the

host metabolism rather than random alterations.

Figure 6.3: Scatterplot and tripartite network of essential genes, and their pre-
dicted drugs and pathways, determined by in silico single-gene deletions on the

infected lung models.
(A) Scatterplot of essentiality and safety scores of the essential genes. Essentiality and safety
scores correspond to the number of infected and healthy models, respectively, in which each
gene is predicted to be essential. The y-axis indicates the number of infected cell lines for
which the gene is predicted to be essential, whereas the x-axis indicates the number of control
cell lines that are predicted to remain unharmed by the silencing of the target genes. (B)
Tripartite network of the drug-gene-pathway interactions of the essential genes: A network of
the single repositioned drugs and their essential genes, predicted by in silico gene deletion,
was built. The relationships between the essential genes and their pathways were mapped
using Recon3D_01 subSystem. Genes, and their connected drugs, that don’t have pathways
in Recon3D_01 subSystems were discarded.
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6.2.3 In silico single-gene deletion predicts potential drug targets for different stages

and disease severity levels

Variability in the metabolism of cell lines, viral load, and time of infection gives rise to the appearance

of context-specific essential genes. Core essential genes in infected cells are optimal drug targets as

likely to be efficient for a majority of patients. Essential genes that are specific to the time of the

disease or severity level are also of interest, as it allows modulating the specific treatment. It might

be reasonable to provide drugs with strong adverse effects to more severe cases and to opt for lighter

treatments for mild affections. To identify core and context-specific essential genes, we performed in

silico gene knock-outs on all reconstructed models and compared the sets of essential genes across all

the conditions and between the severity and time-series studies. And more specifically, we focused on

the effect of the transfection of the ACE2 vector, the viral load in the severity study, and the time

after infection in the time-series study. ACE2 is crucial for SARS-CoV-2 cell entry by binding with

its spike protein, but ACE2 also has many cellular functions crucial to the host cells, such as in the

angiotensin–renin system. By comparing the essential genes in the absence (A549_2) and the presence

of the ACE2 vector (A549_2_ACE2 & A549_0.2_ACE2), we could identify one set of genes (ISYNA1,

SLC3A2, SLC7A11) that are essential for the virus in the absence of the ACE2 vector. By comparing

the essential genes in the A549 cell line in the severity study with a high multiplicity of infection

(MOI) (A549_2 & A549_2_ACE2) against low MOI (A549_0.02 & A549_0.2_ACE2), we identified

essential genes for high viral load (CMPK1, CTH, PTDSS1, SLC2A13, SLC3A1, SLC5A3, SLC7A9)

in A549_2_ACE2 and one essential gene, DTYMK, in A549_2, where the gene set (AGXT, DHFR,

SLC27A4, TYMS) were unique for low viral load in A549_0.2_ACE2.

For the time-series study, a list of core essential genes (7–10 genes) was common to every time point and

for each cell line (see Table S2). Besides the core essential genes, there were time point-specific essential

genes that were essential only at very specific time-points owing to the inactivation of alternative

pathways (Table S2). The Calu-3 cell line has eight core essential genes (CRLS1, GUK1, ISYNA1,

PEPD, SGMS1, SLC27A4, SLC3A2, SLC7A11) and three-time point-specific genes (see Table S2).

Out of the eight core essential genes, five (SLC27A4, CRLS1, GUK1, PEPD, SGMS1) were also in the

six essential genes of the Calu3_2 condition in the severity study. Six core essential genes (CRLS1,

ISYNA1, PLD2, SGMS1, SLC27A4, SLC7A6) and two time-specific genes were predicted for the H1299

cell line. Jaccard similarity of the essential genes between different conditions shows cell type-specific

essential genes in the time-series study (see Figure S4). Clustering of the reconstructed models by

core reactions using Jaccard similarity (see Figure S3) shows four clusters by cell type (A549, H1299,

NHBE, Calu-3), even for cell lines between the two studies (Calu-3). This cell line-specific clustering

is more apparent in Recon 3D than in Recon2. Moreover, the infection state (Mock, infected) forms

sub-clusters within each of the four main clusters.
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6.2.4 Essential genes and reactions are predicted to be harbored in 8 unique pathways

among which is methionine and cysteine metabolism

To obtain a comprehensive picture of viral essentiality, we apply pathway analysis for core and context-

specific essential genes to identify pathways that are major players in the determination of the severity

as well as the stage of the infections. For both studies, the predicted essential genes were enriched

in 13 unique pathways, of which eight were shared between both studies (Figure 6.4B) (fatty acid

oxidation, glycerophospholipid metabolism, inositol phosphate metabolism, methionine, and cysteine

metabolism, nucleotide interconversion, sphingolipid metabolism, starch, and sucrose metabolism, ex-

tracellular transport). Glycerophospholipid metabolism was enriched in all conditions across both

studies. Nucleotide interconversion and extracellular transport were highly enriched in the severity and

in the time-series study, respectively. Also, two pathways were shared with the DEGs pathways (glyc-

erophospholipid metabolism, and sphingolipid metabolism). The essential gene ISYNA1, encoding a

synthase in the inositol phosphate metabolism pathway, was specific to cell lines without ACE2 vectors.

No unique change in the set of essential genes’ pathways was found in the function of the viral load in

both conditions (A549_2 & A549_2_ACE2).

To also explore pathways harboring essential genes that are not directly linked to metabolism or that

are not captured by the metabolic genes and pathways in Recon3D_01, and Enrichr pathway analysis

was performed [50]. Among others, ferroptosis, selenocompound metabolism, cysteine, and methionine

metabolism, mTOR signaling pathway, and ether lipid metabolism were enriched for the essential genes

(Figure 6.4A). Ferroptosis was the only Enrichr-derived pathway that was associated with non-ACE2

vector samples owing to context-specific essential genes (SLC3A2, SLC7A11). Protein digestion and

absorption were also enriched in some conditions with high viral load, whereas glycerophospholipid

metabolism was highly enriched in both lung studies. Finally, pyrimidine metabolism was enriched

in most severity study conditions; meanwhile, sphingolipid metabolism was enriched in all time-series

study conditions. Only folate metabolism was shared between the essential genes’ metabolic pathways

and the dysregulated pathways of ACE2 transfection (Figure S2).

6.2.5 Prediction of candidates for repositioning of drugs and drug combinations tar-

geting essential genes and synergetic gene pairs

Out of the 23 predicted essential genes, eight genes are druggable by 45 unique drugs (Table S3) from

DrugBank [51]. Six antiviral drugs (acyclovir, valaciclovir, lamivudine, sofosbuvir, methotrexate, and

trifluridine) were identified in these 45 drugs. These drugs cover many modes-of-actions such as im-

munosuppressive, antiviral, folic acid antagonists, antirheumatic, and hypolipidemic actions besides

some known nutraceutical cofactors such as lactose and folic acid (see Figure S5). The mode of ac-

tions were downloaded from the Drug Repurposing Hub [52], while side effects were extracted from

the MedDRA database (downloaded on 26th May 2020) [53] with selecting only side effects containing
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Figure 6.4: Pathway analysis of the essential genes in the two lung studies.
Identification of the pathways harboring the identified essential genes using Enrichr and Re-
con3D_01 subSystem, and hence the most critical pathways for the viral survival and prolif-
eration across cell type, severity level, and time after infection. On the x-axis from the left
to the right, are the conditions of both the severity study and the time-series lung studies,
respectively (related to STAR Methods ). Conditions in the severity study were named as cell
line + ACE2 vector (if exists) + MOI. Conditions in the second lung cell line were named
as cell line + time point. (A) Enrichr enrichment: The color code in (A) "Enrichment [%]"
represents the number of enriched genes in this pathway divided by the overall number of
genes in this pathway. (B) Metabolic pathway analysis: The color code in (B) "Reactions per
Pathway [%]" represents the number of enriched metabolic reactions in a pathway divided by
the overall number of reactions in this pathway.
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the pattern “toxic.” The tripartite network of individual repositioned drugs (Figure 6.5.B) shows a

multi-target effect of four drugs (pralatrexate, pemetrexed, methotrexate, gemcitabine). Gemcitabine

affects the nucleotide interconversion pathway through both CPMK1 and TYMS essential genes. Mean-

while, pralatrexate, pemetrexed, and methotrexate affect both nucleotide interconversion and folate

metabolism pathways through thymidylate synthetase (TYMS) and dihydrofolate reductase (DHFR)

essential genes, respectively.

Double gene deletion produced 598 unique gene pairs across the two lung studies. Out of these 598

gene pairs, 56 gene pairs are druggable by 3411 unique drugs or drug pairs. We found 47 single drugs

with two paired targets (Table S4), owing to multiple identified targets per drug. As these 3411 drug

pairs could target more than one gene-pair, safety scores and essentiality scores were calculated using

the average of these scores. To prioritize among the 3411 drug pairs, we filtered by keeping drug pairs

with more than two essentiality scores, and more than one in either the number of gene pairs or safety

scores. This reduced drug pair list has 52 drug pairs that consist of 37 individual drugs (Table S5). The

top-ranked drug pairs in the number of gene pairs are (azathioprine-pemetrexed and mercaptopurine-

pemetrexed) affecting five essential gene pairs, while (imexon–valaciclovir and imexon–acyclovir) are

top-ranked in the essentiality score of 10. The pathway analysis of the druggable essential gene pairs

(see Figure 6.5) shows that most of the single drugs with two paired, targets the extracellular transport

pathway. Meanwhile, the reduced drug pairs cover more diverse pathways. These pathways include

new pathways in addition to the single druggable pathways such as purine catabolism, purine synthe-

sis, nucleotide salvage pathway, and NAD metabolism. The aforementioned azathioprine–pemetrexed

drug pair targets seven metabolic pathways such as transporter pathway and purine synthesis and

catabolism. Also, among the 47 predicted single drugs with two paired targets, four drugs are affecting

more than one gene-pair (gemcitabine, trifluridine, mercaptopurine, tegafur–uracil).

6.3 Discussion

In the present study, we analyzed changes in transcriptomic data of lung cell lines infected with COVID-

19 at various viral loads and at different time points after infection. The main focus was on the alteration

of expression of metabolic genes that could be evidence of a metabolic rewiring induced by the virus.

Then, in silico single and gene double knockouts were performed to identify potential infected cell-

specific essential genes that arise from this metabolic rewiring and that could be used as potential drug

targets. To extend the list of targets and identify critical pathways for the growth or survival of the

virus, reactions were inactivated in silico and the resulting impact on the viral biomass production

was estimated. In addition, we explored pathways enriched for predicted essential genes and reactions

to obtain a better picture of the occurring metabolic rewiring. Furthermore, we predicted a set of 85

repositionable single drugs (45 drugs on single targets in Table S3 and 47 drugs on gene pairs in Table

S4 with 7 drugs shared between the 2 drug lists), and 52 drug combinations that could be explored as
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Figure 6.5: Tripartite network of the drug-gene-pathway interactions of the syn-
ergistic gene pairs determined by double gene deletion.

Determination for the individual repositioned drugs for the synergistic gene pairs, and also
mapping the relationships of the genes to pathways determined by Recon3D_01 subSystem.
(A) Tripartite network of the reduced list of double gene deletion drug pairs: Candidate gene
pairs causing synergistic lethality were determined by double gene knockout (DKO) (related
to STAR Methods 6.6.1.2.3). Gene pairs for which both genes are targeted by the same drug
were excluded from the candidate list for drug combinations and added to the list of single
drugs. Genes, and their associated drugs, that are not present in Recon3D_01 were discarded.
(B) Tripartite network of single drugs targeting two genes that reduce biomass when knocked-
out together: The gene pairs were determined by DKO (related to STAR Methods 6.6.1.2.3).
Only targets present in Recon3D_01 were included in the analysis.
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a treatment against COVID-19. Finally, we compared our results against two recent studies that cover

the candidate metabolic pathways’ alternation in COVID-19 infection [54], [55].

6.3.1 COVID-19-induced dysregulated pathways may not be essential

To unravel the metabolic rewiring induced by COVID-19 on the host lung cell after ACE2 or a mock

transfection at different viral loads, we computed the metabolic differentially expressed genes (DEGs)

in the severity study. Among the metabolic pathways with a different activation pattern after the

transfection with the ACE2 vector, are chondroitin sulfate degradation and synthesis that have a link

to oxidative stress. Chondroitin is a glycosaminoglycan (GAG) with antioxidant and neuroprotective

effects against oxidative stress through the upregulation of phosphoinositide 3-kinases (PI3K)/Akt

signaling and heme oxygenase-1 (HMOX1) [56]. Chondroitin sulfate degradation was downregulated

after the transfection with ACE2 vector, while chondroitin synthesis was downregulated with a high

viral load. This dysregulation is consistent with the hypothesis of chondroitin accumulation in the

infected cells to balance the oxidative stress induced by the virus. The phosphoinositol phosphate

pathway, which includes PI3K, was also downregulated after transfection with the ACE2 vector, further

supporting the protective role of chondroitin in COVID-19 infection. Although this hypothesis was not

tested in vitro, in an in vivo study on the Vero cell line, chondroitin sulfate showed weak inhibition

of SARS-CoV-2 cell entry in comparison to other types of GAGs such as heparin and enoxaparin [57].

Finally, HMOX1 has been found to bind to SARS-CoV-2 open reading frame 3 A (ORF3a) [58]. The

ineffectiveness of chondroitin sulfate as an antiviral agent in SARS-CoV-2 was expected owing to its

unspecific mode of action. Reducing oxidative stress may alleviate the symptoms but may not kill the

virus nor does it reduce its ability to replicate itself. The assessment of ACE2 transfection alone (see

Figure S2) didn’t show that shared dysregulation after infection with SARS-CoV-2. Meanwhile, ACE2

transfection increased the viral reads to 54% of the total mapped reads [59]. Also, ACE2 transfection

decreases the interferons IFN-I and IFN-III through the inactivation of the kinase TBK1 [59].

6.3.2 Pyrimidine metabolism as a candidate druggable essential pathway

To be more effective, drug candidates have to target genes, reactions, or pathways that are key and

specific to viral metabolism. Hence, in silico single and double gene knockouts were performed to

identify genes essential to the viral biomass production but whose knockout has little or no effect on

the host biomass production. Among the 23 predicted essential genes for viral biomass, two genes

of the phospholipid metabolism (CRLS1 and SGMS1) showed the highest essentiality score. GUK1,

which was the main essential gene identified in [44], is also among the top predicted targets and dis-

plays moderate essentiality and safety score. Also, pyrimidine biosynthesis was among the pathways

with consistent flux changes in the metabolic modeling of multiple cell lines [45]. Furthermore, three

essential genes (DTYMK, CMPK1, and TYMS) are part of pyrimidine metabolism (through pyrim-

idine deoxyribonucleotides de novo biosynthesis) that were enriched in all conditions in the severity
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study, but for the last time point of the time-series study in the Calu-3 cell line. In two separate in

vivo studies on the Vero cell line, inhibition of de novo pyrimidine biosynthesis pathway through dihy-

droorotate dehydrogenase (DHODH) inhibitors, showed broad-spectrum antiviral activity, stopped, or

halted SARS-CoV-2 replication, respectively [60], [61]. Although DHODH inhibitor PTC299 showed a

little cytotoxic effect on SARS-CoV2, they were proven to have an immunomodulatory effect on IL-6,

IL-7A, IL-17F, and VEGF [60]. Alterations in the expression of genes of the pyrimidine metabolism

were significantly higher in the A549, suggesting a response that could be specific to this cell line.

Additionally, using pyrimidine biosynthesis inhibitors on SARS-CoV-2-infected mouse models, reduced

individually viral infectivity, and reduced lung inflammation when used in combinations [62].

6.3.3 Ferroptosis as a candidate prognostic and target pathway for COVID-19

To further understand why a gene is essential for viral biomass production, we examined the pathways

harboring the essential genes, where eight out of 13 pathways were found between the two lung studies.

Pathways harboring essential genes were also enriched for DEGs. Exploring the ferroptosis-specific

database FerrDb shows that three out of the 23 essential genes are related to ferroptosis. SLC7A11 and

SLC3A2 are classified as suppressors; meanwhile, SLC7A5 is a marker. Also, FerrDb, classified only

one of our predicted drugs, sulfasalazine, as an inducer of ferroptosis. Ferroptosis is an iron-dependent

programmed cell death that can be inhibited by selenium. In a cross-sectional study, selenium level

was found to be higher in tissue samples from COVID-19 survivors in comparison to non-survivors [63].

Similarly, the analysis of blood single-cell expression data found that four genes governing ferroptosis

were upregulated in infected patients than recovered [64]. Also in a population retrospective analysis,

the selenium concentration in the hair in the population of Chinese cities outside Hubei province was

correlated with the COVID-19 cure rate in Chinese cities [65]. Even though the last retrospective

study, using city population-level data instead of patient-level data, might be less reliable, these studies

suggest a role of ferroptosis in the survival of patients with COVID-19.

6.3.4 Comparison to a metabolomics study shows altered polyunsaturated fatty acids

We further compared our enriched pathways from the DEGs and essential genes (Figure 6.2) with a

recent metabolomics study [55]. In this study, serum metabolites were compared among SARS-CoV-2

positive and negative patients, also altered IL-6 levels measures as an indication of COVID-19 severity.

The study found several altered pathways and dysregulation, notably of nitrogen and tryptophan

metabolism associated with increased severity. Also, some metabolite levels were increased in patients

with COVID-19 such as kynurenines, methionine sulfoxide, cystine, and free polyunsaturated fatty

acids (PUFAs). Up-regulated fatty acid oxidation in DEGs and glycerophospholipid metabolism in

essential gene pathways is consistent with the increased levels of PUFAs [55]. The increased PUFAs

are biomarkers for ferroptosis, which was predicted in the condition without ACE2 vector. The recent

evidence for the role of selenium in COVID-19 and the significant presence of PUFAs as a biomarker
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in severe COVID-19 cases might be a further indication of the role of ferroptosis regarding COVID-

19 severity. Moreover, the SARS-CoV-2 spike protein was discovered to have a binding pocket for

free fatty acids [66]. This seems to allow the PUFA linoleic acid to have a synergistic effect with the

antiviral remdesivir against SARS-CoV-2 in vitro [66]. The use of 5-aminosalicylate or sulfasalazine,

a 5-aminosalicylate prodrug, has recently been shown to increase COVID-19 severity in patients with

inflammatory bowel disease (IBD) in a retrospective study (n = 525) [67]. As sulfasalazine was found as

a ferroptosis inducer in FerrDb [68], this could strengthen the evidence of a role of ferroptosis in COVID-

19 severity. It also illustrates the need for a careful assessment of the toxicity of the predicted drugs in

follow-up in vitro and in vivo studies as well as a patient or group of patient-tailored approaches.

6.3.5 Methionine, cysteine, and pyrimidine metabolism are enriched in a multi-omics

study

To discover which lung essential pathways might be shared with other infected organs, we also compared

our identified pathways with a multi-omics study on three cell types: megakaryocytes, erythroid cells,

and plasmablasts [54]. In this longitudinal study of COVID-19 severity, cell-/tissue-specific metabolic

models were reconstructed from single-cell/bulk RNA-seq, respectively [54]. The goal of the metabolic

reconstruction in this study was to find cell-specific metabolic pathways associated with different disease

progression and recovery time points [54]. The essentiality of genes and reactions in these pathways

across the three cell types are unknown as single-gene or reaction deletions were not applied. Many

identified metabolic pathways in this multi-omics study across megakaryocytes, erythroid cells, and

plasmablasts were also shared with our essential pathways on the lung such as pyrimidine metabolism

and cysteine and methionine metabolism. Also, our lung essential metabolic pathways such as inos-

itol phosphate metabolism and sphingolipid metabolism have been identified as both erythroid cells-

and plasmablasts-specific. Meanwhile, the lung-essential fatty acid oxidation and non-essential pyru-

vate metabolism have been identified as megakaryocytes-specific. Interestingly, a high upregulation of

pyruvate kinase M in PI3K/Akt signaling was found in critical patients in megakaryocytes [54], that

participate in the dysregulated chondroitin sulfate metabolism [56]. Furthermore, serum sphingosine-

1-phosphate, a metabolite in the lung-essential sphingolipid metabolism, was found to significantly

decrease with COVID-19 severity in a small study (n = 111) [69]. Moreover, clofazimine, an inhibitor

to the acid sphingomyelinase in the sphingolipid metabolism pathway, was found to have antiviral ac-

tivity in the golden Syrian hamster model against MERS & SARS-CoV-2 [70]. Taken together, the

shared metabolic pathways between the different studies such as pyrimidine metabolism and methionine

and cysteine metabolism across different tissues might represent core viral-specific pathways that could

harbor efficient drug targets that would eliminate or slow down the virus regardless of the infected

tissue.
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6.3.6 Some candidate drugs have antiviral, immunomodulatory, and angiotensin I-

converting enzyme inhibitor actions

To prioritize drug and drug combinations and as many conditions in the time-series study were lacking

mock samples, we relied for the present work rather on the essentiality score of each gene identified

in terms of reducing the viral proliferation rather than the predicted toxicity on control tissue mod-

els (safety score). In total, SARS-COV-2-specific essential genes and gene pairs were predicted by

rFASTCORMICS-based lung models that can be targeted by 85 single repositionable drugs and 52

drug combinations. The safety of the drugs was assessed by simulation knockouts on the biomass of the

counterpart mock sample. This strategy allows estimating which drugs might be potential candidates

for not having too drastic side effects. Although the drug candidates are all FDA-approved drugs,

some treatments are associated with severe side effects, and combining two drugs can have additional

unexpected side effects. Hence, further tests would be required on other tissues and using other op-

timization functions as well as in vitro and in vivo validations before considering any predictions as

potential drug candidates. Among the 85 predicted single drugs, five are broad-spectrum antivirals

(lamivudine, methotrexate, sofosbuvir, valaciclovir, zalcitabine) [71]. Also, five drugs in the candidate

drug combinations have broad-spectrum antivirals (ezetimibe, lamivudine, methotrexate, sofosbuvir,

valaciclovir). In a small clinical trial (n = 62), the combination of sofosbuvir-daclatasvir decreased

the COVID-19 mortality rate (6%) in comparison to ribavirin (33%) [72]. Of the predicted drugs,

two drugs (acyclovir, valaciclovir) target the GUK1 gene, which shows relative essentiality and safety.

Acetylcysteine, another predicted drug by our workflow, is mucolytic and antioxidant in high doses

through regenerating glutathione. Acetylcysteine alone or with bromelain was able in vitro to frag-

ment the recombinant spike and envelope SARS-CoV-2 proteins [73]. Moreover, gemcitabine has been

shown to have antiviral activity against SARS-CoV-2 in the Vero-E6 cell line [74]. Methotrexate shows

antiviral activity against SARS-CoV-2 in Vero-E and Calu-3 cell lines [75]. This antiviral activity was

better than the only authorized antiviral for emergency use for COVID-19 remdesivir. Till 29 July

2021, out of the 85 single drugs, nine drugs are being tested currently in clinical trials (acetylcys-

teine, liothyronine, melphalan, methotrexate, moexipril, quinapril, ramipril, rosuvastatin, sofosbuvir,

trandolapril) according to DrugBank COVID-19 Clinical Trial Summary [51]. Among the single drugs

targeting gene pairs, nine were drugs belonging to angiotensin-converting enzyme inhibitors (ACEIs)

such as ramipril, affecting the gene-pair SLC15A1-SLC15A2 through targeting the extracellular trans-

port pathway. Interestingly, in a prospective study of COVID-19 (n = 19,486), patients taking ACEIs

have a reduced risk of COVID-19, with differences according to ethnicity [76]. Meanwhile, ACEIs did

not reduce the risk of receiving ICU care [76]. Furthermore, statins, lipid-lowering drugs that were

enriched among the predicted drugs were debated for their efficacy in reducing COVID-19 severity at

the onset of the pandemic and their usefulness for COVID-19 is still unclear [77]. Also, a retrospective

study (n = 13,981) has shown an association between statins and reduced COVID-19 mortality from

9.4% in patients not taking statins to 5.2% with statins [65]. Owing to the relative number of the

different statin recipients, this study couldn’t rank the different statin types. But, a recent in vitro

study of different statins showed an antiviral effect on SARS-CoV-2 [78], where rosuvastatin was ranked
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second in the antiviral activity [78]. In the candidate drug combinations, immunomodulators appear

such as mercaptopurine, azathioprine, pemetrexed, and methotrexate. Also, three predicted nucleoside

analogs (azathioprine, mercaptopurine, gemcitabine), were among 16 nucleoside analogs and 122 drugs

validated in vitro against Calu-3 [62].

In conclusion, unlike drug repositioning using expression reversal or drug docking that lack targets’

identification or genome-scale multi-targeting, respectively, constraint-based metabolic modeling is a

powerful in silico tool for drug repositioning with genome-scale information and producing known

targets. These powerful advantages come from gene essentiality prediction. In this work, context-

specific models from expression data from infected lung cell lines were built, then constrained by both

viral and host biomass. In silico gene deletion identified 23 single essential genes and 598 essential gene

pairs. Drug repositioning using approved drugs in DrugBank V5 identified 85 single drugs and 52 drug

combinations, of which 47 single drugs are targeting both genes in the gene-pair. Pathway analysis

of the essential genes identifies ferroptosis as a candidate biomarker pathway of COVID-19 severity.

Gemcitabine was predicted to target two single essential genes in the nucleotide interconversion pathway

and three gene pairs in drugs identified by both single and double gene deletion, respectively. Finally,

we predicted the GUK1 gene as both relatively safe and essential against SARS-CoV2 as reported by

a previous in silico modeling.

6.4 Limitations of study

Although this study predicts some interesting drug candidates and drug combinations, the work is

limited by the modeled lung cell lines (A549, Calu-3, H1299, NHBE). Another limitation to this work

is that the identified drug and drug pairs are based on targets identified by network effects on the host

metabolome (as the virus is only modeled through its biomass function) rather than direct docking

on the viral proteome. Thus, further in vitro single- and double-gene deletion studies are needed to

determine the essentiality of the identified single genes and gene pairs. These could, for example,

involve some selected drug and drug combinations on the different cell lines at various concentrations

in order to obtain drug response curves and landscapes, respectively, to identify IC-50 and synergy

scores for the drug combinations. These experiments would be more beneficial for genes with predicted

essentiality across different cell lines such as (CRLS1, SGMS1, SLC27A4) which were essential in the

four lung cell lines.

6.5 STAR* Methods

Detailed methods are provided in the online version of this paper and include the following:

• Key Resources Table
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• Resource Availability

– Lead contact

– Materials availability

– Data and code availability

• METHODS DETAILS

– A. SARS-CoV-2 essentiality analysis in lung

– B. Gene enrichment of the potential targets

– C. Drug repositioning of the essential genes

– D. Relationship with ferroptosis

Supplemental Information

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.103331.
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Reagent or Resource Source Identifier
Deposited data - FPKM for the
time-series study (GSE148729)

MDC-berlin https://filetransfer.mdc-berlin.de/?u=CVXckugR&p=
MACT6Xw9

Read counts of the severity study
(GSE147507)

NCBI GEO https://ftp.ncbi.nlm.nih.gov/geo/series/GSE147nnn/
GSE147507/suppl/GSE147507_RawReadCounts_Human.tsv.
gz

Formulation of the viral biomass
function

BioModels https://www.ebi.ac.uk/biomodels/MODEL2003020001#
Files

DrugBank V5 DrugBank https://go.drugbank.com/releases/latest
Drug Repurposing Hub mode of ac-
tions

Clue.io https://s3.amazonaws.com/data.clue.io/repurposing/
downloads/repurposing_drugs_20200324.txt

GHDDI Broad-spectrum antiviral
agents

GHDDI https://ghddiai.oss-cn-zhangjiakou.aliyuncs.com/
file/Antivirus_Drug_Profile_k2.csv

Recon 2 VMH https://www.vmh.life/#downloadview
Recon3D VMH https://www.vmh.life/#downloadview
Software and algorithms - rFAST-
CORMICS

[6] https://github.com/sysbiolux/rFASTCORMICS

COBRA Toolbox GitHub https://github.com/opencobra/cobratoolbox/tree/
master/src

IBM CPLEX solver https://www.ibm.com/products/
ilog-cplex-optimization-studio

RStudio https://www.rstudio.com/
R CRAN (FactoMineR, networkD3,
ggplot2 & dependencies)

https://cran.r-project.org/

Bioconductor (edgeR, DESeq2 &
dependencies)

https://www.bioconductor.org/

Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyses existing, publicly available data. The source of the data is listed in the key

resources table. The models and code generated during this study are available at GitHub (https:

//github.com/sysbiolux/DCcov).

6.6 Methods Details

6.6.1 SARS-CoV-2 essentiality analysis in lung

6.6.1.1 Differentially expressed genes analysis

6.6.1.1.1 Data preprocessing. At the onset of the pandemic, two datasets were available, focusing

mainly on the effects of the virus on lung tissues. These two bulk RNA seq datasets GSE147507 [59] and

GSE148729 [80] of human cell lines hosting SARS-CoV-2, as well as of mock samples, were downloaded

from the NCBI Gene Expression Omnibus (GEO) [81] data repository on April 23, and May 15, 2020,
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respectively. The GSE147507 dataset, which focuses on the expression changes at various severity

levels of Infection (severity study), contains 36 samples originating from healthy epithelial, A549, and

Calu-3 cells infected by SARS-CoV-2 at three different viral loads, as well as control samples with a

mock infection. As the level of plasma ACE2 is a potential predictor of COVID-19 severity [82], the

comparison between conditions with different levels of ACE2 and viral load would allow identifying

essential genes, and hence drug targets for different stages and severity levels of COVID-19. Using

drugs associated with severe effects would not be beneficial for milder forms of COVID-19, but could

be crucial for the cure of more severe forms. The A549 cell line was found to express ACE2 at a lower

level than Calu-3, which doesn’t allow the cell entry of SARS-CoV-2 [59]. For this reason, the A549 cell

line was transfected with a vector expressing ACE2 (Table 6.1). Conditions with two replicates only or

subjected to drug perturbations were not considered for the analysis. Raw counts were converted to the

Reads Per Kilobase of transcript (RPKM) using an in-house Python script. For the GSE148729 dataset,

which monitors how expression changes at different points after the infection (time-series study), the

normalized Fragments Per Kilobase of transcript per Million (FPKM) values of Calu-3 and H1299 cell

lines infected by SARS-CoV-2, as well as controls were retrieved from GEO.

6.6.1.1.2 Differentially expressed genes analysis. The differential gene expression analysis was

only applied to the severity study, as the time-series has either missing mock samples or two samples

in some conditions. First, a principal component analysis was first performed using FactoMineR [83] to

identify and, if necessary, remove outliers by visual inspection. Then, genes with low expression values

were filtered out using edgeR’s filterByExpr function (Version 3.30.3). This function keeps genes based

on a minimum count-per-million in at least k samples, determined by the lowest sample size between

all conditions [84]. DESeq2 identifies the significant DEGs using the Wald test and adjusted for mul-

tiple testing by Benjamini and Hochberg, yielding adjusted p-values. DESeq2 (Version 1.28.1) [85] via

R (Version 4.0.1) was run on the preprocessed data to identify differentially expressed genes (DEG)

between the infected and the mock samples applying an adjusted p-value threshold of 0.05, and an

absolute log fold change threshold of 1. To assess if the gene expression changes observed after ACE2

transfection were caused by the transfection itself, rather than the overexpression of ACE2, a DEG

analysis was performed to compare two conditions (A549_2_ACE2 against A549_2), using first the

mock samples only (ACE2_Mock), then only the infected samples (ACE2_Infected). DEGs were

mapped to the genes of the generic model Recon3D_01 [12] via the GPR rules to retrieve differentially

expressed reactions (DERs) as well as their associated pathways. For each pathway with at least three

reactions, the ratio of up-and down-regulated reactions overall reactions was computed. To improve

the readability of the plot, only pathways with more than 5% of DERs were depicted.
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6.6.1.2 Essentiality analysis

6.6.1.2.1 Condition-specific model building. To further elucidate the metabolic alteration pro-

voked by the virus, metabolic models for the infected samples and mock samples were built. Therefore,

the VBOF from the infected alveolar macrophage model iAB-AMØ1410_SARS-CoV-2 (BioModels:

MODEL2003020001) [44] was added to both the generic reconstructions Recon2.04 [11] and Recon3D_-

01 [12] using the addReaction function of the COBRA Toolbox v.3.0 [19]. The identifiers of metabo-

lites included in the biomass had first to be modified to match the ones of the generic reconstruction.

Then, FASTCC [14] was run to remove blocked reactions. For each condition, the RPKM values and

the modified consistent generic reconstruction were used as input for the rFASTCORMICS [6] to get

condition-specific models. COBRA Toolbox v.3.0 and FASTCC were used via MATLAB (R2019a).

6.6.1.2.2 Single gene knockout. The metabolic models were then used to identify viral-specific

vulnerabilities, using a single gene deletion approach on the mock and infected models. For the infected

model, to ensure that both host and viral biomass’s objective functions can carry simultaneously a flux

in the infected models, the objective coefficients were set to 100 and 1, respectively, and the upper

bound of the host biomass was fixed to 10% of its maximal flux. This setting constrains the model

to guarantee cell homeostasis and protein turnover in the host model while diverting all non-essential

resources for viral reproduction.

model.c(viral biomass) =1

model.c(host biomass) = 100

model.ub(host biomass) = 10 % of max flux determined by FBA

In silico single-gene knockouts (SKO) were performed on the infected models using a corrected version of

the singleGeneDeletion function of the COBRA Toolbox v.3.0 [19] to assess the impact of the knockout

of each gene on the viral biomasses. The 0.2 threshold was used as a cutoff for gene growth rate Ratio

(grRatio) to identify essential genes.

6.6.1.2.3 Double gene knockout. To identify potential targets for drug combinations, double gene

knock-outs (DKO) for all gene-pair combinations were simulated using the doubleGeneDeletion function

on the infected models. From the analysis, we obtained two lists of synergistic gene-pairs: non-essential

gene-pairs that allow reducing the growth rate below the specified thresholds when simultaneously

knocked out and pairs of essential and non-essential genes that induced a stronger reduction of the

growth than the knockout of the essential gene alone. Both non-essential and essential gene-pairs were

concatenated as DKO outputs for further drug repositioning.
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6.6.1.2.4 Essentiality and safety scoring. To test the knockout impact of SARS-CoV-2-infected

host-specific predicted essential genes and gene-pairs on the healthy counterpart tissue, SKO, and DKO

of these genes were performed on the healthy models. Genes or gene-pairs that cause a reduction of

biomass only in the infected models are considered safe, whereas those that cause also a reduction of

biomass in the healthy models are regarded as potentially toxic. The essentiality score of an essential

gene is the sum of infected models that show this gene as essential. The safety score of an essential gene

is the sum of healthy models that show this gene as safe. A healthy model, SKO and DKO of a gene

was applied only if the gene is determined as essential in its respective infected model. A scatterplot

of essentiality scores against safety scores was plotted (see Figure 6.3).

6.6.2 Gene enrichment of the potential targets

The identifiers of the essential genes and synergetic genes were translated into HGNC gene symbols

using GSEApy (Version 0.9.17, https://github.com/zqfang/GSEApy/) Python package (3.7.4) and

then uploaded to Enrichr API [50] to identify enrichment of these genes in KEGG pathways (KEGG2019

human [86] database with 0.05 p-value cutoff). Fisher exact test (default hypothesis test) was performed

for calculating the p-value based on the assumption of the binomial distribution of the input gene set.

All enrichment results based on only one gene were discarded. Then, the enrichment percentage was

calculated (related to STAR Methods 6.6.1.1.2). Metabolic pathway analysis was also applied using the

Recon3D_01 subSystem as background instead of KEGG pathways on the essential genes (related to

STAR Methods 6.6.1.1.2) without further filtering of the pathways. Comparison of pathways of Calu-3

and NHBE cell lines were excluded from the analysis of the effect of viral load and ACE2 vector in the

severity study because these cell lines didn’t have ACE2 vector conditions.

6.6.3 Drug repositioning of the essential genes

To identify drugs targeting the predicted viral-specific essential genes, drug-target interactions were

downloaded from DrugBank V5 [51] on April 23, 2020. Drugs that were withdrawn, nutraceutical, or

experimental were discarded from the analysis. Drugs that are described as having any effect on the

potential targets were selected as candidate drugs (Table S3) and drug combinations (Tables S4 and

S5). To determine which drugs, have a multi-target effect, tripartite networks of the drug-gene-pathway

interactions were constructed for the single and double knockout drugs using Recon3D_01 subSystems

as pathways (Figures 6.3.B and 6.5). The tripartite networks were constructed using the sankeyNetwork

function in networkD3 [87] (version 0.4) package in R.
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6.6.4 Relationship with ferroptosis

As SKO targets were enriched for many pathways related to ferroptosis, the potential targets and

SKO drugs were searched in a curated database (FerrDb) [88] for ferroptosis genes and related drugs.

FerrDb classifies genes into driver, suppressor, and marker, while it classifies drugs into inducer and

inhibitor. These classes were also used to identify the role of the potential targets and SKO drugs in

the ferroptosis pathway.

6.7 Summary and Outlook

In 2023, two years after the publication of this work, many predicted drugs showed improved survival in

COVID-19 clinical trials (see Table 1.3.8). Notably, drugs targeting cysteine synthesis but not glycine

uptake improved COVID-19 survival. Similarly, predicted essential genes targeting once carbon cycle

by folate showed higher dependency than recently approved drugs in a genome-scale CRISPR screen

(see Figure 1.6). As new COVID-19 variants keep emerging, as well as current understanding of the

multi-organ failure caused by COVID-19, future GEMs could benefit from the whole-body model [89]

with organ -instead of cell line- expression data. All in all, using the available cell line datasets in

2020 and no approved drugs, metabolic modeling was able to repurpose approved drugs, of which five

improved COVID-19 survival or severity in randomized control trials.
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7.1 Supplementary Methods

To repurpose FDA-approved drugs for the glioma subtypes, building high-quality semi-curated GEMs

is crucial. Subtype intra-homogeneity and separability between subtype samples were critical factors

assessed before the subtype model building.

7.1.1 Sample stratification based on WHO 2021 glioma subtypes

The 2021 World Health Organization (WHO) classification of the central nervous system (CNS) tu-

mors [1] defined two key molecular markers for glioma subtype classification: IDH mutation sta-

tus, 1p.19q codeletion. Two RNA-Seq datasets in The Cancer Genome Atlas (TCGA) were selected

for model building: TCGA-GBM for glioblastoma (GBM) and TCGA-LGG for lower-grade glioma

(LGG) [2]. The metadata for both datasets was downloaded using the R package TCGABiolinks [3],

containing three metadata features (IDH mutation status, 1p.19q codeletion, and diagnosis). Both

molecular features were used for sample selection and stratification (Figure S7.1). Based on the 2021

182



Supplementary File 1 of Chapter 3 183

WHO classification of CNS tumours [1], IDH-mutant GBM has been moved into IDH-mutant astrocy-

toma (AST). To ensure intra-homogeneity between subtype samples and constancy to the 2021 WHO

classification, IDH-mutant GBM samples were discarded. Moreover, samples with oligoastrocytoma

diagnosis ("mixed-glioma") were excluded as they were poorly defined and represented a mixture of

AST and oligodendroglioma (ODG) in different proportions between patients. The selected samples

for the three glioma subtypes were classified as follows:

Figure 7.1: TCGA metadata stratification based on 2021 WHO classification of CNS
tumors using diagnosis, IDH mutation status, and 1p.19.q co-deletion.

• iGBM: diagnosis = glioblastoma and IDH mutation = wildtype.

• iAST: diagnosis = astrocytoma, IDH mutation = mutant and 1p.19q codeletion = no codeletion.

• iODG: diagnosis = oligodendroglioma, IDH mutation = mutant and 1p.19q codeletion = codeletion.

7.1.2 Model selection (choosing the optimal combination of preprocessed

data, generic model, and curation)

Many factors may affect the contextualization and specificity of the subtype models, such as the choice

of generic models, applied curation, the objective function(s), and preprocessed data. Therefore, sev-

eral settings were tested to find the optimal combination of preprocessed data, generic model, and
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medium that ensured the best separation between the sample models. The search included three pre-

processed data, generic metabolic models (Recon2 [4], Recon3D [5], or Human1 [6]), and two curation

methods (no medium or with cerebrospinal fluid medium (CSF)). The three preprocessed data are Rah-

man2015 [7], Ceccarelli2016 [8], and TCGABiolinks [3]). These datasets were downloaded in FPKM

(Fragments Per Kilobase of transcript per Million mapped reads) format. The CSF medium composi-

tion was imported from the Human Metabolome Database [9] like the whole-body metabolic model [10].

7.1.2.1 Separation between the glioma subtypes’ sample models

These three factors were used for sample model building using rFASTCORMICS [11]. rFASTCORMICS

is a context-specific metabolic model-building algorithm that takes as inputs RNA-Seq data and a con-

sistent generic model with an optional medium composition [11]. The default discretization function in

rFASTCORMICS (discretize_FPKM) was used for Ceccarelli2016 and Rahman2015 as their expres-

sion distribution peaked at the rightmost side with unexpressed formed leftmost tail (See Figure 7.2).

Meanwhile, TCGABiolinks was discretized using another function (discretize_FPKM_skewed) as the

expression data had a bimodal distribution with two peaks with comparable heights. In total, 18 com-

binations were searched, and 358 samples were built for each combination. Biomass production and

ATP production were chosen as objective functions. The median number of samples’ reactions was

computed for each combination, and a hierarchical clustering of the samples was plotted as a metric

for separating the three subtypes. After selecting the optimal combination of data, generic model, and

curation, three subtype models were built using the abovementioned settings.

Figure 7.2: Different TCGA RNA-seq data showed different distributions affecting
the choice of discretization during model building.
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7.1.2.2 Evaluation to literature-retrieved exchange reactions

In addition to sample model separation, subtype models of the various data-model-curation combi-

nations were evaluated against literature-retrieved metabolic exchanges that are representative of the

within subtype variations (Table S 7.2). Flux Variability Analysis (FVA) was applied for the various

subtype models exchanges with 100% maximization of the biomass objective function and compared

to the literature-retrieved metabolic. Rahman2015 data, Recon3D generic model, and CSF curation

showed the best matching to literature-retrieved metabolic exchanges (Figure S 7.5). Similarly, the

same setting showed the best sample model separation (Figure S 7.3), suggesting that subtype separa-

tion and empirical metabolic exchange matching could improve model selection.

7.1.2.3 Evaluation to cancer common essential genes

To further evaluate if other input reconstruction and prepossessing methods would impact the essential

genes prediction. We ran the single gene deletion workflow on all possible data-model-curation combi-

nations and compared the respective essential genes to the list of common genes (defined as genes found

to be essential in >90% of cell lines in pan-cancer CRISPR-Cas9 screens) by the Cancer Dependency

Map’s (DepMap) [12]. All models had accuracy between 0.84-0.90, with Recon3D with and without

medium constraints, as well as Human1 having similar accuracy values (above 0.88). However, without

medium constraints, Recon2 and Recon3D did predict very few essential genes also captured by the

constrained conditions and Human1 is slightly advantaged by the larger number of genes included in

the models. Human1 has 3050 genes against 1884 and 1733 for Recon3D and Recon2, inflating so the

number of True Negatives. Finally, as we are comparing our predictions to common essential genes

(no good quality glioma-specific binary high throughput screens are available), some predicted essential

genes corresponding to glioma-specific essential genes might be wrongly identified as False Positives

(Figure S 7.6).

7.1.3 Drug prioritization

Different clinical, preclinical, and pharmacokinetics data in brain cancer were collected to rank and

filter the predicted single drugs and combinations based on their eligibility for testing (Supplementary

File 2, Tables S8-10). The data collected in Supplementary File 2 included clinical trial data (Supple-

mentary File 2, Table S11), in/ex vivo xenograft testing (Table S12), in vitro potency (Supplementary

File 2, Table S13), non-brain cancer cytotoxicity (Supplementary File 2, Table S14), blood-brain barrier

(BBB) permeability, CSF bioavailability (Supplementary File 2, Table S15), and possible drug-drug

interactions for combinations (Supplementary File 2, Table S16). Other selection criteria included di-

versity and main mode of action (MOA), proven efficacy in higher clinical evidence, and agreement
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Table 7.1: CSF medium constraining reduced sample model sizes by >20% in
Recon2 and > 25% in Recon3D.

Sample models were built to determine the optimal combinations of data, generic model, and
medium for model separation. The median number of reactions for sample models was com-
puted for each parameter combination. Sample models built with Human1 with CSF medium
were missing the objective function (OF) and thus were excluded. The total number of reac-
tions in each generic model is displayed beside the generic model names. Noticeable reduction
in model sizes with CSF medium, especially in Recon3D, indicated a separation using a bio-

logically representative medium constraining.

Medium Generic model Recon2
(5317)

Recon3D
(10600)

Human1
(11887)

TCGABiolinks No medium 2752 5388 6533
Ceccarelli2016 No medium 2999 5465 6297
Rahman2015 No medium 2701 5183 6279
TCGABiolinks CSF medium 2310 3862 Missing OF
Ceccarelli2016 CSF medium 2295 3732 Missing OF
Rahman2015 CSF medium 2258 3776 Missing OF

of predicted MOA with literature. Single drugs that showed either in vitro increased proliferation, no

effect, or substrate drug-target interaction were excluded. Six of the ten excluded single drugs were

hormones/co-factors, followed by two antivirals and two psychoactive drugs. The remaining drugs

were ranked into selected candidates and weak candidates (see Supplementary File 2, Table S8). The

final benchmarking assessed the predicted drugs compared to the approved anti-brain chemotherapies

(AntiBCs) using the criteria summarized in Table S 7.7. The final evaluation classified the predicted

single and combination drugs into effective, ineffective, and untested drugs across in vitro, in/ex vivo

xenografts, and phase II clinical trials.

7.1.3.1 Clinical trial data

Predicted single and combination drugs were searched on the ClinicalTrials website (beta.clinicaltrials.gov)

using ("Brain cancer" OR "Glioma") as the condition. Further clinical trials retrieved by using drug

synonyms from Google Scholar were added. Due to the absence of a systematic database of the clini-

cal trials, trials clinical trial identifiers were searched in PubMed to find which had published results.

Among the clinical trials with published results, two main survival measures were shared as the pri-

mary outcome: overall survival (OS) and progression-free survival (PFS, duration between treatment

and symptom worsening). If available, both survival measures were collected for phase I/II or higher

clinical trials. The clinical trial data covered 50 phase I/II or higher brain cancers (Supplementary File

2, Table S11), of which seven are two-arm glioma trials where an arm is an approved treatment.
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Figure 7.3: The optimal setting using Rahman2015 data, Recon3D generic recon-
struction, and CSF curation improved the separation between the sample models.

Hierarchical clustering was applied for the sample models’ reactions of each setting separately
to define the best setting in intra- and inter-heterogeneity of the three subtypes. CSF medium
constraining showed enhanced separation, but none separated AST and ODG. Only Rah-
man2015 data, Recon3D generic model, and CSF curation allowed a separation between GBM
and LGG (AST and ODG).

7.1.3.2 Potency and pharmacokinetics data

in vitro data for the predicted single and combination drugs were retrieved from high-throughput drug

screening (see Table S 7.6) and literature (Supplementary File 2, Table S13). The in vitro data in

the literature ranged from increased proliferation, no effect, minimum inhibitory concentration, IC50,

viability reduction, and apoptosis/autophagy. In literature, if a drug lacks in vitro data in brain cancer

cell lines, data were collected in non-brain cancer cell lines (Supplementary File 2, Table S14). in

vitro data from high-throughput drug screening covered only two measure types (viability reduction

and IC50). Pharmacokinetics data (CSF bioavailability, BBB permeability, and ABC (ATP Binding

Cassette) transporter affinity) were collected from B3DB [13], NCATS Inxight Drugs [14], and the
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Figure 7.4: Principal component analysis of the TCGA data expression data of Rah-
man2015 shows a clear separation between GBM and LGG but not between AST and

ODG.

To evaluate the quality of the TCGA expression data, principal component analysis (PCA)
was used to examine the separation between the three glioma subtypes based on the 2021
WHO CNS tumors classification. Separation based on IDH mutation was clear but not based
on 1a/19q co-deletion, suggesting the closeness between AST and ODG.

literature (Supplementary File 2, Table S15).

Table 7.2: Predicted exchange reactions showed that six out of seven were con-
sistent with previous knowledge.

Reaction Prediction Literature Evidence Literat-
ure
Related
Sub-
type

Matching
with
Litera-
ture

Cell
Lines
/Tissue
Samples

Referen-
ce

Thymidine
uptake

Thymidine uptake has
a narrow boundary in
GBM alone, with a small
influx in AST and ODG

18F -FLT, a radiotracer for
thymidine kinase, showed
higher uptake in GBM
compared to AST and
ODG

GBM Yes Patient
scans

[15], [16]
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L-
Glutamine
uptake

Glutamine uptake has a
narrow boundary, and it
was higher in GBM, fol-
lowed by AST with a
minute flux in ODG

ODG cell lines are less de-
pendent on glutamine up-
take compared to GBM

ODG Yes ODG:
Hs683;
HOG

[17]

L-
Phenylala-
nine up-
take

L-phenylalanine flux up-
take has a broader range
in GBM than in ODG

Metabolomics analysis of
tissue samples identified
L-phenylalanine as signifi-
cantly higher in GBM com-
pared to ODG

GBM Yes Tissue
samples

[18]

Myo-
Inositol
uptake

Higher myo-inositol up-
take was observed in
ODG compared to AST
and GBM

Metabolomics analysis of
tissue samples identified
myo-inositol as signifi-
cantly higher in ODG
compared to GBM

ODG Yes Tissue
samples

[15]

4-
Aminobuta-
noate
release

4-Aminobutanoate re-
leased only in AST

Tissue biopsies have ele-
vated levels of GABA in
AST compared to ODG

AST Yes Tissue
samples

[19]

L-
Glutamate
uptake

Glutamate uptake was
predicted to be active in
ODG but not in AST or
GBM

Oligodendrocytes have the
highest glutamate uptake
among all brain cells

ODG Yes Human
fetal
oligoden-
drocytes

[20]

(S)-
Lactate
release

Lactate exchange was
predicted to be reversible
in AST and ODG but in-
active in GBM

AST and ODG MR scans
show no lactate production
compared to GBM

ODG No Patient
scans

[21]

Table 7.3: A literature search identified six of the 25 predicted essential genes
linked to glioma viability, resistance, or patient survival.

Gene Function Literature Support for Glioma Cell
Lines/
Patient
Samples

Reference

TXNRD1 Thioredoxin
reductase • Selective inhibitors of TXNRD1 induced cell death

and decreased proliferation, invasion, and migration of
multidrug-resistant glioma cell lines. Additionally, selec-
tive inhibitors of TXNRD1 showed synergistic effects with
temozolomide (TMZ).

• Selective inhibition of thioredoxin reductase was more cy-
totoxic than TMZ treatment.

• TXNRD1 overexpression linked to radio-resistance. Ad-
ditionally, knockdown (KD) of TXNRD1 reduced radio-
resistance in GBM.

• TXNRD1 is upregulated in > 66% of cases and signifi-
cantly linked to higher proliferation and poorer prognosis.

• Linked to poor diagnosis and higher grade.

• U87,
U87-
TxR,
C6, RC6
(Rat)

• GL261
• U87MG,

T98G
• AST pa-

tients
• ODG pa-

tients

• [22]
• [23]
• [24]
• [25]
• [26]

SLC27A4 Fatty acid
uptake

SLC27A3 knockdown, SLC27A4 isoform, reduced GBM
xenograft growth, and its expression was linked to GBM
stemness (Human GBM neurosphere lines)

Human
GBM neu-
rosphere
lines

[27]

RRM2 Nucleotide
interconver-
sion

Genetic knockdown of RRM2 sensitizes GBM cell lines to
TMZ in vitro and in vivo

U87 [28]
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RRM1 Nucleotide
interconver-
sion

High-throughput drug screening followed by shRNA of the
hit’s targets identified RRM1 among nine genes as GBM
vulnerabilities

U87,
U87vIII,
T98G,
GL261

[29]

SPTLC1 Sphingolipid
synthesis

Knocking down SPLTC genes reduced the viability of GBM
cell lines

U87MG [30]

ANPEP Glutathione
metabolism

ANPEP is highly expressed in GBM and linked to low sur-
vival

Not speci-
fied

[31]

SLC6A14 L-Arginine
uptake

Arginine deprivation reduced cell adhesion and invasiveness
of GBM cell lines

U251MG,
U87MG

[32]

Table 7.4: Five predicted drugs matched the targeted genes and reactions for
their anti-glioma activity in the literature.

Drug Evidence from Liter-
ature

Glioma Cell
Lines

Predicted
Targets

Predicted Reac-
tions

Reference

Arsenic-
trioxide

Arsenic-trioxide induces
cytotoxicity by increas-
ing ROS formation.

C6 and 9L TXNRD1 Ph[c] + nadph[c] +
trdox[c] -> nadp[c] +
trdrd[c]

[33]

Acetazolamide
and brinzo-
lamide

Both drugs are
chemosensitizers for
TMZ by reducing extra-
cellular acidosis.

U373, U251,
U87MG, GaMG,
U87 and GSCs

Carbonic an-
hydrases

H20 + CO2 <=>
H+ + Bicarbonate

[34]

Cannabidiol Increasing ROS and de-
pletion of glutathione.

U87 ACAT1,
CAT, GSR

2 H2O2 -> 2 Water
+ Oxygen, gthox[c]
+ h[c] + nadph[c]
-> 2.0 gthrd[c] +
nadp[c]

[35]

Eflornithine Eflornithine reduces
GBM cell viability by
targeting ODC1.

DIPG ODC1 L-glutamate biosyn-
thesis from 2-
oxoglutarate

[36]

Table 7.5: Summary of the high- or medium-drug screening databases used to
evaluate the predicted drugs.

gCSI: Genentech Cell Line Screening Initiative

Database Type Tested
Concen-
trations

Number of
Cell Lines/
Xenografts

Number
of Tested
Drugs

Number
of Pre-
dicted Sin-
gle Drugs

Number of
Predicted
Combina-
tion Drugs

Refer-
ence

Stathias et
al., 2018

in vivo PDX
in mice

1 µM 7 (GBM) 186 10 3 [39]

Bell et al.
2018 Initial
screen

ex vivo PDX
in mice

10 µM 7 (GBM) 520 9 2 [40]

Bell et al.
2018 follow-
up screen

Ex vivo
PDX in
mice

0.1, 1, 10
µM

5 (GBM) 119 8 2 [40]

Primary
PRISM

in vitro (via-
bility reduc-
tion)

2.5-5 µM 25 (GBM), 10
(AST)

4517 31 17 [41]

Nam et al.
2021

in vitro (via-
bility reduc-
tion)

10 µM 2 (GBM) 975 11 8 [42]

gCSI in vitro
(IC50)

0.01-20
µM

8 (GBM), 5
(AST), 1 (ODG),
1 (non-glioma)

16 1 0 [43]
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GDSC1000 in vitro
(IC50)

3.125e-5
to 15.625
µM

27 (GBM), 9
(AST), 1 (ODG),
4 (non-glioma)

378 1 1 [44]

GDSC2000 in vitro
(IC50)

3.125e-5
to 15.625
µM

28 (GBM), 9
(AST), 1 (ODG),
4 (non-glioma)

286 1 1 [44]

Secondary
PRISM

in vitro
(IC50)

6.1e-3 to
10 µM

21 (GBM), 5
(AST), 2 (non-
glioma)

1414 14 4 [41]

Table 7.6: Classification criteria of the predicted single and combination drugs
into effective, ineffective, and untested compared to the AntiBCs.

Prediction Evidence Effective Ineffective Untested
Single
Drugs

in vitro
• Comparable/improved CSF

bioavailability/potency to
AntiBCs

• more than 50% viability re-
duction

• Induced apoptosis/au-
tophagy

• Induced proliferation
• Remaining tested drugs in

vitro

Single
Drugs

in/ex
vivo • >25% growth reduction in

GBM xenografts screening
databases

• Enhanced growth reduction
or survival in literature

• Remaining tested drugs
in/ex vivo

Single
Drugs

Clinical
trial • Phase II, two-arms, with im-

proved OS/PFS as monother-
apy/in combination against
AntiBCs

• Declared non-effective in
single-arm phase II trial

• Showed antagonism while
combined with AntiBCs
in phase II trial

• Remaining drugs,
including single-
arm phase II trials

Combination
Drugs

in vitro
• In addition to single drugs:
• Synergism/additive/

chemosensitizer effect with
TMZ

• In addition to single
drugs:

• Antagonism effect with
TMZ

Combination
Drugs

In/ex
vivo • In addition to single drugs:

• Synergism/additive/
chemosensitizer effect with
TMZ

• Radio-sensitization

• In addition to single
drugs:

• Antagonism effect with
TMZ

Combination
Drugs

Clinical
trial • Same as single drugs
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Table 7.7: Two of three predicted combinations showed synergistic interactions
in non-brain cancer cell lines.

Previous combined testing of each drug in a combination is essential to rank the predicted
combinations. PubMed and clinicaltrials.gov were searched for any previous testing of the
17 predicted combinations, including non-cancer, in vitro, and clinical trials. None of the
combinations were found to be tested clinically in brain cancer. Only three combinations were
tested in vitro in non-brain cancer with synergistic actions, of which two failed in clinical
trials. These tests were used to rank the combinations (Supplementary File 2, Table S10).

Predicted
combina-
tion

Clinical/
Preclini-
cal

Cancer
type

The rationale for
testing this com-
bination

Result Side effect
(if exists)

Refer-
ence

Fluorouracil/
zidovudine

Preclinical Colon can-
cer (HT-29)

Synergistic effect [45]

Fluorouracil/
zidovudine

Clinical
(Phase I,
n = 18)

Various tu-
mors

Preclinical synergis-
tic cytotoxic effect

Terminated, as the plasma
concentration of the anti-
cancer activity of zidovu-
dine is above the maximal
dose

[46]

Fluorouracil/
celecoxib

Preclinical Gastric car-
cinoma cell
line

Fluorouracil re-
sistance in gastric
cancer is correlated
with COX-2 ex-
pression

Synergistic effect Celecoxib did
not have addi-
tional toxicity
to fluorouracil

[47]

Fluorouracil/
celecoxib

Clinical
(Phase III,
n = 2526)

Colon Can-
cer (Stage
III)

Inhibiting COX2
might enhance OS

There is no notable change
in OS compared to fluo-
rouracil alone

Tolerated; a
slight increase
in hyperten-
sion

[48]

Fluorouracil/
resveratrol

Preclinical Colon
cancer
(HCT116,
DLD1)

Resveratrol increased
the anti-telomeric and
pro-apoptotic actions of
fluorouracil

[49]

Fluorouracil/
resveratrol

Preclinical Normal
human ker-
atinocytes
(HaCaT)

Resveratrol may
avoid fluorouracil-
induced side effects

Resveratrol reduced
fluorouracil-induced ROS
production

[50]

Resources table

Resources Version Link
RNA-Seq of TCGA-GBM and TCGA-
LGG

https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE62944

List of common essential genes DepMap 22Q1 https://ndownloader.figshare.com/files/
34008470

Stathias et al. 2018 GBM PDX data https://data.mendeley.com/datasets/
yz8m28gj6r/1

Bell et al. 2018, initial screen on GBM
PDXs

https://doi.org/10.1158/1541-7786.
MCR-17-0397, Supplementary Table 1

Bell et al. 2018, follow-up screen on
GBM PDXs

https://doi.org/10.1158/1541-7786.
MCR-17-0397, Supplementary Table 2

Primary and secondary PRISM screen PRISM Repur-
posing 19Q4

https://depmap.org/portal/download/all/
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Figure 7.5: Flux variability analysis determined the optimal setting using Rah-
man2015 data, Recon3D generic model, and CSF curation to better match literature-

retrieved metabolic exchanges.

Flux variability analysis was applied to the various subtype model settings to determine which
is the best setting matching literature-retrieved subtype-specific metabolic exchanges (Table
S 7.2).
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Figure 7.6: The accuracy for all models lies between 0.84 and 0.9 for capturing com-
mon essential genes.

Recon2 and Recon3 models without medium constraint have a lower number of predicted
essential genes. Human1 is advantaged by the larger number of metabolic genes included in
the model which inflates the number of True Negatives.
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Figure 7.7: Flux variability analysis of the metabolite exchanges identified differential
uptake and production between the glioma subtypes.

As a quality control, the preferred metabolite exchanges were compared to known variations in
the literature. The 101 metabolite exchanges shared across the three glioma subtype models
were fed to the fluxVariability function from the COBRA Toolbox v3.0 to define reactions
with narrow fluxes predicted to influence biomass growth.
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Figure 7.8: A release of the optimization threshold from 100% to 95% and 90%
increases the range predicted flux drastically turned some exchange reactions with narrow

bounds at 100% to become unbounded.

To determine the optimal maximization threshold for the Flux Variability Analysis (FVA)
matching the literature-retrieved exchange reactions (Table S 7.2), different thresholds (90%,
95%, and 100%) were tested for the three glioma subtype models. Increasing the maximization
threshold for the biomass reaction, decreased the range of the metabolic flux and improving
their matching to the literature. For example, the known glutamine dependency in GBM and
glutamate dependency in ODG were predicted with 100% maximization.
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Figure 7.9: The number of predicted essential genes remained constant for growth
ratio between 0 and 0.7.

Above 0.7, the number of essential genes substantially increased but the growth reduction is
too modest to consider using these additional genes as cancer targets.
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Figure 7.10: Only RRM1 and RRM2 of the predicted essential genes involved in
nucleotide biosynthesis showed stronger gene dependency than AntiBCs targets.

To evaluate predicted drugs against AntiBCs on target essentiality in glioma cell lines, targets
of AntiBCs, predicted single and combination drugs and essential genes were ranked according
to the dependency probability in the DepMap database. DepMap is the largest database
of genome-scale in vitro CRISPR-Cas9 KO screening of cancer cell lines, with dependency
probability representing the likelihood of cell death upon gene KO. Genes were ranked by
median dependency probability in GBM cell lines, and genes not predicted in a subtype were
highlighted in transparent color. RRM1 and RMM2 targeted by anti-metabolites exceeded
AntiBCs targets, followed by non-alkylating AntiBCs targets (doxorubicin (TOP2A, AURKA,
TOP1) and vincristine (TUBB, TUBA1B)).
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Figure 7.11: Glioma subtype models’ genes showed comparable specificity and com-
pleteness to curated and semi-curated brain metabolic models according to the Human

Protein Atlas brain-specific category.

The genes of the glioma subtype models were compared to the ones included in the brain
metabolic models discussed in our previous review [37] using the Human Protein Atlas [38]
(HPA) as reference to determine the quality of each model. HPA gene categories classify genes
based on differential tissue expression of the brain, that were combined into “Expressed” in
green and Unexpressed” in red. Model specificity (A) was computed as the number of model
genes in each category, while model completeness was computed as the ratio of model genes in
a category and the total number of genes in that category. Our glioma subtype models showed
comparable specificity and completeness compared to the curated and semi-curated models in
the brain.
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Figure 7.12: Half of the single drugs and two combinations show a minimal effect on
the healthy biomass maintenance reaction of the control model.

To determine which of the predicted single drugs and combinations are potentially toxic to
the healthy brain, drug deletion was applied to a control brain GEM built from five healthy
samples in TCGA-GBM. Growth reduction (1-grRatio) was used to rank the predicted drugs
based on potential safety for two reactions: ATP production (DM_atp_c_) and growth
(biomass_maintainance). All predicted drugs were predicted to be safe on ATP production.
Of the single drugs, half are predicted to be safe for healthy brain growth, including clinically
effective drugs: fotemustine and valganciclovir. Meanwhile, the subtype-specific combinations
(eflornithine/rifamycin and cannabidiol/adapalene) are the only safe combinations on the con-
trol model growth.
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Figure 7.13: Gemcitabine showed superior potency in all IC50 databases to approved
AntiBCs, while alkylating AntiBCs are commonly used for glioma.

Drug screening databases with IC50 measures and IC50 measures collected from the literature
(Supplementary File 2, Table S13) were used to rank predicted single, combinations drugs
and AntiBCs using median IC50 as a potency measure. Alkylating AntiBCs (temozolomide,
lomustine, carmustine, and cyclophosphamide) show the lowest potency, with gemcitabine
having the highest potency across the five databases. Other combinations of drugs, such
as zonisamide and fluorouracil, showed comparable potency to non-alkylating AntiBCs and
higher than alkylating AntiBCs.

201



202 Supplementary File 1 of Chapter 3

Figure 7.14: Doxorubicin, followed by the anti-metabolites, shows the strongest via-
bility reduction in the cell viability databases and literature.

Besides the IC50 data, other drug screening databases included only viability reduction with
a small range of tested concentrations. Viability reduction from two databases and literature
(Supplementary File 2, Table S13) was used to compare the single and combination drugs to
AntiBCs using the median viability reduction (black dot). Doxorubicin was the only AntiBCs,
followed by primarily anti-metabolites of the single drugs to exceed 50% viability reduction.
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Chapter 8

Conclusions and Perspectives

Metabolic modeling is revolutionizing molecular biology from understanding individual biochem-

ical reactions into the holistic network of reactions in various scales of cells, tissues, and organisms.

Among the many applications of metabolic modeling, target identification and predicting new drugs

stand out, of which some predicted drugs by metabolic modeling succeeded in clinical trials [41], [42].

Failed clinical trials in cancer cost $50 to $60 billion [162], forcing pharmaceutical companies to re-

consider the procedure of conventional drug discovery. Drug repurposing represents a cost-effective

complementary to conventional drug discovery by redirecting previously approved drugs to other dis-

eases, starting with phase II trials. Meanwhile, drug repositioning involves redirecting experimental

drugs from one disease to another beyond the approved drug arsenal. In this thesis, we showed various

applications of metabolic modeling-based drug repurposing and repositioning in cancer and infection

diseases with precision in predicted essential genes and drugs. While experimental drug repurposing

through HTS has been established for single drugs and easy-to-culture disease models, computational

drug repurposing is an unexpandable tool for combination prediction, hard-to-culture disease models,

and high-risk infections. Moreover, metabolic modeling sometimes outperforms in vitro disease models,

such as avoiding predicting statins for glioma, highlighting the importance of metabolic modeling in

preclinical studies. In this chapter, we will summarise future steps needed to improve drug repurposing

using metabolic modeling.

8.1 Metabolic modeling allows balanced drug repurposing com-

bining interpretation and holistic target identification

Various computational drug repurposing approaches with different underlying hypotheses have

been proposed, which can be classified into target-based, signature-based, and network-based. Target-

based drug repurposing approaches, such as docking, virtual screening, and pharmacophore search,

assume diseases have single targets [23]. Target-based approaches rely on experimental identification
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of the disease target and its 3D structure. Signature-based approaches assume diseases to have multi-

factorial fingerprints represented as transcriptomic signatures, where the candidate drug should be able

to reverse this signature [22]. High-throughput pharmacogenomics databases of thousands of drugs

in many cancer cell lines, such as LINCS [163] and defining the disease transcriptomic signature, are

key in signature-based drug repurposing. Thirdly, network-based approaches utilize experimentally

determined or predicted interactions between molecular entities to define chock-points in a disease net-

work that could serve a vulnerability target [164]. Protein-protein interaction networks and metabolic

networks are two examples of network-based approaches [165], where metabolic network modeling

stands out due to the highly annotated biochemical network employed [166]. While signature-based

drug repurposing allows holistic prediction of drug candidates, it lacks interpretation in target identi-

fication [22]. Meanwhile, metabolic modeling enables pinpoint target gene(s) whose knock-out would

diminish the objective function [22]. The interpretability of metabolic modeling was shown in the pre-

dicted metabolic exchanges between the glioma subtypes (see Figure 3.1) and COVID-19 biomarkers

that matched the literature. Biofluid in vivo medium constraining, curating the generic model, adding

disease-specific reactions, and choosing the most disease-representative objective functions can improve

the interpretability of the GEMs’ predictions.

8.2 Biases in context model building are inherent, but equally,

adequate sanity checks could minimize these biases

Despite the predictability and the interpretability of metabolic modeling, prediction biases are

common, which could be attributed to the choice of model-building algorithm, generic reconstruction,

OF, medium constraining, and expression data. The bias factors of metabolic modeling, extensively

discussed in this review [167], could reduce the sensitivity of the context GEMs’ predictions of metabolic

fluxes, essential genes, and repurposed drugs. To minimize the biases of context GEMs, using separate

data for model building and model evaluation is crucial as covered in this review [168]. For example,

the binary CSF medium of Thiele et al., 2020 [71] was used during glioma GEMs model building;

meanwhile, literature-retrieved medium exchange was used for model evaluation [61]. Similarly, shared

predictions across many context GEMs for the same disease could reduce model biases, especially built

from different expression data as applied in melanoma models [63]. Finally, most GEMs are unable

to predict the KO effect of non-metabolic genes which limits the predicted drugs to the ones with

metabolic targets. The absence of the non-metabolic genes in GEMs’ predictability, was evident in the

NPs GEMs where NPs with the strongest potency target apoptosis and regulation (see Figure 1.3) [62].

Future model-building algorithms integrating regulation with GEMs and their benchmarking would

allow drug repurposing beyond metabolism [169].

207



Chapter 8- Conclusions and Perspectives

8.3 Exo-metabolomics, patient radiotracer uptake, and biofluid

concentrations could fine-tune model constraining

Previous brain GEMs covered in our review [72] used discrete medium composition from CSF

that constrains the exchange reactions and enhances model contextualization. Nonetheless, medium

metabolites have different concentrations; thus, differences in uptake dependencies are inevitable.

Metabolomics studies measuring biofluid metabolite concentrations can be used to constrain the ex-

change reactions’ boundaries quantitatively instead of the discrete medium. This could allow increased

uptake and dependency for high-concentration metabolites. In addition to the discrete biofluid medi-

ums, biofluid mediums are unable to distinguish between metabolites produced by the surrounding

tissues and the biofluid composition from diffusion. Exo-metabolomics data, such as NCI-60 [170],

measured the production and the uptake rates of 213 metabolites of 60 cancer cell lines [170]. NCI-60

exo-metabolomics data were used to calculate the fluxes using a core cancer reconstruction from Re-

con2 by (Zielinski et al., 2017 [159]). The recalculated flux rates of Zielinski et al., 2017 [159] could

fine-tune cancer GEMs after readjusting the boundaries based on the generic reconstruction. Similarly,

radiotracer uptake data, commonly available in radiological cancer diagnosis guidelines and reviews,

indicates the parent metabolite uptake [158]. All in all, exo-metabolomics data and radiotracers can

help distinguish metabolic exchanges from biofluid composition; meanwhile, metabolite concentration

could improve the discrete medium constraining.

8.4 Pan-cancer stratification may improve drug repurposing

on cancer with faster translation in basket trials

While using clinical guidelines such as WHO cancer classifications helps define poor-characterized

subtypes and the biomarkers needed for stratification, the discovery of new classifications can improve

the design of future clinical trials. Pan-cancer analysis and search for new biomarkers are gaining more

application in clinical trials, such as RAF/MEK inhibitors in BRAF-mutant patients and arginine

deprivation in patients with low ASS1 expression [171]. Both examples have been tested in glioma,

melanoma, and other solid tumors, with RAF/MEK inhibitors gaining approval in melanoma [48] and

then LGG [49]. Pan-cancer stratification is compatible with basket trials, where patient selection is

based on defined biomarkers regardless of cancer type [172]. De novo pan-cancer discovery of metabolic

biomarkers can be applied by correlating patient survival with metabolic model features (metabolites,

reactions, and fluxes) with proper statistical testing. In summary, current trends in approved drugs and

patient selection in metabolic deprivation treatment warrant pan-cancer patient stratification rather

than modeling specific cancer types.
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8.5 Absence of drug-target information, inclusion of non-inhibitors,

and ABC transporter affinity weakened drug repurposing

While medium constraining and patient stratification could improve predicted drugs to the desig-

nated medium and samples of the target disease, the drug repurposing pipeline could affect the efficiency

of the predicted drugs. Three key factors contributed to the inefficacy of some of the predicted drugs:

1) the absence of target-target information, 2) the inclusion of non-inhibitors in the drug library, and

3) drug resistance by ABC transporters. Many of the predicted essential genes were untargeted by the

FDA-approved drugs, such as genes in cholesterol esterification, glycine synthesis (AGXT and PEPD),

and sphingolipid synthesis/salvage. This comes from the limitation of approved drugs in targeting the

whole transcriptome. For example, all drugs targeting cholesterol esterification are still investigational

in clinical trials and are yet to be approved [173]. The diversity of the druggable essential genes can be

improved by including investigational compounds and approved drugs for drug repurposing. Similarly,

preclinical compounds usually lack entries in drug-target databases, such as 56% of the NPs used in

the BRC study, even with specialized databases such as NPASS [174]. Nevertheless, less curated drug-

target databases such as STRING [175] and Therapeutic target database [176] with literature-extracted

interactions might improve the retrieval of candidate preclinical compounds.

Non-inhibitors such as substrates and inducers hinder drug repurposing as metabolic modeling-

based drug deletion assumes target KO. While DrugBank has the type of interaction (inducer, inhibitor,

or co-factor), many of them are classified as unknown. Predicted drugs in the four studies included

many cofactors or hormones with no clinical effect. Restricting the drug library to only drugs with

inhibitor interactions would greatly affect the number of predicted drugs but would reduce the number

of false positives. To avoid predicting drugs with potential resistance, predicted drugs with substate

or inducer affinity to the ABC transporters in the context of GEMs should be excluded. All in all,

the inclusion of investigational compounds, the exclusion of non-inhibitors, and the exclusion of ABC

transporter substrates or inducers would enhance drug repurposing and avoid drug resistance.

8.6 Single-cell RNA-Seq model building could predict resis-

tance due to intratumoral heterogeneity

In addition to the ABC transporter, intratumoral heterogeneity constitutes a factor in cancer drug

resistance. While studies covered in this thesis used bulk RNA-Seq and predicted drugs targeting ABC

transporters, intratumoral heterogeneity remains unaddressed using bulk RNA-Seq alone. Single-cell

RNA-Seq (scRNA-Seq) allows sequencing of the expression of each individual cell; meanwhile, spatial
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RNA-Seq employs advanced localization to detect expression from multiple regions of the target or-

gan [177]. Despite spatial RNA-Seq being a relatively new technique, both techniques provide better

resolution to intratumoral heterogeneity, especially with drug-tolerant persister (DTP) cells. DTP cells

are cancer subclone cell that survives anticancer treatment by adapting DNA repair and shifting from

glycolysis to OXPHOS [178]. Currently, the scFASTCORMICS algorithm allows model building of

multi-cell population models using scRNA-Seq [179]; meanwhile, spatial RNA-Seq lacks an established

model-building algorithm. GEMs built from scRNA-Seq with scFASTCORMICS could allow the de-

tection of DTP cells and further repurpose drugs targeting them or combinations targeting the various

metabolic rewiring of DTP cells and other clones. Similarly, GEMs built from scRNA-Seq of non-

cancer diseases could identify cell-cell metabolic interactions such as glial-neuron interactions. Overall,

metabolic models built from single-cell RNA-Seq could predict cell-cell interactions and improve pre-

dicted drugs against resistant DTP cells.

To this end, we can summarize the steps needed for improving drug repurposing using metabolic

modeling as follows:

• Metabolic exchange data of radiotracers in cancer can fine-tune medium constraining or validate

model consistency with predicted uptakes and efflux.

• Whole-body metabolic models are crucial for acute diseases that are invasive to multiple organs.

• Adding investigational drugs to FDA-approved drugs during drug repurposing could diversify the

drug targets to undruggable genes by approved drugs.

• Curating the generic model with ABC transporters could predict potential drug resistance due to

secondary drug metabolite efflux.

• Curating the generic model with drug-metabolizing reactions such as CYP genes from prodrug to

active metabolite could improve cancer drug toxicity by selecting prodrugs for cancer-specific metab-

olizing reactions.

• Exclusion of drugs with inducer and substrate affinity, such as cofactors and hormones, from drug

predictions can reduce the number of false positives of predicted drugs.

As George Box said, "All models are wrong, but some are useful". Likewise, all disease mod-

els, albeit preclinical or computational, are wrong, but some are useful. Systems Biology has been

a cornerstone in understanding the interactions between biological entities in disease modeling, with

metabolic modeling at the forefront. Metabolic modeling provides the mathematical formulation of

metabolic networks that can predict or validate new hypotheses. Similarly, metabolic modeling has

applications using bulk expression data from target identification, repurposing drugs and combinations,

and biomarker prediction, which warrant its use for personalized medicine. Drug repurposing using

metabolic modeling predicted drugs comparable to the disease-approved drugs in clinical trials, such

as fotemustine in glioma and melanoma. Moreover, metabolic modeling predicted new combinations

in glioma with predicted target genes matching known vulnerabilities in the respective subtypes. Still,

many limitations could drive drug resistance, which could be enhanced by model curation and adjust-

ing the drug prediction pipeline. These results make metabolic modeling an ideal disease model for
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translational applications in personalized medicine and rare diseases.
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