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ABSTRACT In this study, we explore a hybrid non-orthogonal multiple access and time division multiple
access (NOMA-TDMA) approach designed to maximize sum throughput in a wireless powered Internet
of Things (IoT) network (WPIN). Hybrid access points send energy signals to users on downlink, and
users in various groups utilize that harvested energy to transmit information on uplink. This process is
facilitated by the NOMA-TDMA scheme wherein users of the same group use NOMA for simultaneous
transmissions, and separate time slots are assigned to each group through TDMA. Under this hybrid NOMA-
TDMA scheme, the main objective is to enhance the network’s sum throughput by jointly optimizing both
the allocation of time for downlink and uplink and the downlink beamforming vectors. Given the complex
interdependence of variables, the problem is inherently non-convex, making it difficult to solve numerically.
Therefore, we reformulate the problem as a bi-level programming problem—the outer-level sub-problem
addresses beamforming vectors using a genetic algorithm while the inner-level sub-problem deals with the
allocation of downlink and uplink time through the Lagrange multiplier method. Numerical results show that
the proposed hybrid NOMA-TDMA scheme outperforms baseline schemes like orthogonal multiple access
and equal time allocation, in terms of the sum throughput of the WPIN.

INDEX TERMS Internet of Things (IoT), wireless powered IoT network (WPIN), multiple input single
output (MISO), wireless energy transfer (WET), wireless information transfer (WIT), energy harvesting,
non-orthogonal multiple access (NOMA), orthogonal multiple access (OMA), genetic algorithm (GA),
Lagrange multiplier (LM).

I. INTRODUCTION
The Internet of Things (IoT) represents an integrated network
of intelligent devices capable of interacting and collabo-
rating through the Internet with each other, with humans,
and with the environment. This convergence facilitates a
seamless bridge between the physical and digital realms,
empowering objects with capabilities to execute complex
tasks independently. A crucial aspect of the IoT is its
inherent autonomy, which requires minimal to no human
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intervention for operational functionality [1]. The IoT has
significantly enhanced the scope of application domains
like transportation, smart grids, security, public safety,
agriculture, logistics, and e-health with its distinctive and
unparalleled features [2].

The IoT holds the potential to profoundly impact various
aspects of our daily lives, offering significant advantages to
businesses through the automation of processes and enhanced
management of environmental factors [3]. Conventionally,
sensor networks and other low-energy wireless networks
are powered by fixed energy sources like batteries, which
have finite operating times [4]. Even though changing
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or recharging the batteries might prolong the network’s
lifespan, doing so can be difficult, expensive, risky (e.g.,
in harmful environments), or nearly impossible (e.g., sensors
inserted into human bodies) [5]. In addition, widespread
implementation of the IoT presents considerable challenges,
such as security vulnerabilities, data privacy concerns, and
scalability. Among these, energy limitations are one of the
main challenges to its acceptance.

Wireless power transfer (WPT) has been considered an
important technology in recent years, not only due to
its ease of use and enhanced security but also because
of its continually evolving renewable features. WPT has
become integral to various applications, including mobile
charging, electric vehicles, IoT networks and implantable
medical devices [6]. To overcome the energy limitation on
IoT networks, harvesting energy from the environment has
attracted a lot of attention lately as a viable alternative for
extending the lifespan of wireless networks [7], [8]. Since
radio frequency (RF) signals can be obtained from specialized
transmitters that already meet the requirements for far-field
wireless power transfer, they are drawing greater attention
than other energy sources [9], [10], [11].
In recent years, wireless powered IoT networks (WPINs)

have surfaced as a significant advancement for battery-life-
constrained mobile and communications devices [9]. This
technology has been identified as a crucial solution for several
low-power scenarios, including wireless powered communi-
cation networks (WPCNs) and radio frequency identification
(RFID) networks [12]. Typically, WPINs consist of a hybrid
access point (H-AP) that coordinates multiple wireless
devices for wireless energy transfer on downlink and wireless
information transfer on uplink. Furthermore, in WPINs, the
harvest-then-transmit (HTT) protocol is considered wherein
wireless devices operate without battery power. Instead, they
harvest energy from the H-AP and utilize this energy to
send information [9], [13].To ensure effective operation and
performance of a network,WPINs require cooperative design
in information and energy transmissions. In WPINs where
the H-AP is equipped with multi-antenna configurations, the
technique of energy beamforming—concentrating RF signals
into a focused beam—significantly enhances the efficiency
of energy transmissions [14]. In addition, WPINs can benefit
from energy beamforming at the H-AP since a multi-
antenna H-AP canmanage the transmit beamforming vectors,
improving energy transmission efficiency.Moreover, through
the strategic design of energy beams, it is possible to improve
the uplink throughput for each user. This enhancement stems
from the increased energy harvested on downlink, which in
turn permits higher transmit power on uplink [15].
Alongside this, non-orthogonal multiple access (NOMA)

has been introduced as a strategy to facilitate connectivity of
a massive number of devices within IoT networks. NOMA
allows numerous users to share a single (frequency, time,
coding, or spatial) channel at the same time, resulting in
improved spectrum efficiency and energy efficiency [16].
From the perspective of IoT networks, the spectral efficiency

holds considerable importance in the 6G wireless networks.
In the absence of efficient spectrum allocation schemes,
the densification of devices would ultimately saturate the
spectral resources of 6G networks, leading to network-wide
disruptions [17]. NOMA is considered a promising resources
allocation scheme in IoT networks, [18], [19]. According to a
study by Ding et al. [20], NOMA can obtain a higher uplink
sum rate than orthogonal multiple access (OMA). However,
compared to OMA, NOMA requires substantially greater
receiver complexity when employing successive interference
cancellation (SIC) [21]. Additionally, the involvement of
a large number of users in the SIC process introduces a
performance-limiting factor attributed to error propagation
resulting from the removal of prior users’ signals. Although
NOMA may not consistently exceed the performance of
OMA, like time division multiple access (TDMA) in certain
scenarios, OMA can exhibit superior energy efficiency
compared to NOMA in WPCNs [22]. Consequently, finding
a trade-off between complexity and performance in WPINs
is still a challenge.

A. RELATED WORKS
The literature features a wide range of studies that have
explored Wireless Powered IoT Networks (WPINs), [9],
[23], [24], [25], [26], [27], [28], NOMA based WPINs [29],
[30], [31], [32], [33], [34] and hybrid NOMA-TDMA based
WPINs [35], [36], [37], [38].

In the study by Ju and Zhang [23], the authors delved into
throughput maximization in wireless powered communica-
tion networks by utilizing the HTT protocol. They proposed
an optimal solution aimed at enhancing throughput by
strategically allocating time to wireless users. Furthermore,
they addressed (and proposed a solution for) the doubly
near-far problem by optimizing common throughput, offering
significant insights into improving network efficiency.

Asiedu et al. provided a study on beamforming and
allocation of resources for multi-user full duplex wireless
powered communications in IoT networks [24]. This research
explored a MISO system configuration where the AP
functions in full duplex mode with the users in half duplex
mode. Optimization of channel assignment, time resources,
and power allocation is undertaken to improve the uplink
weighted sum rate.

Zheng et al. addressed maximizing throughput based on
data packets in their study [26]. They proposed both short-
and long-term throughput maximization in mobile WPINs.
They segmented the short-term problem based on data
packet generation, and introduced a generated-data-packets
throughput-maximization algorithm. For long-term maxi-
mization, they demonstrated its equivalence to the integer
knapsack problem, and developed a deep deterministic policy
gradient (DDPG) multi-node resource allocation (DMRA)
algorithm to determine optimal times, power allocations, and
channel assignments among IoT users.

In [9], the authors focused on simultaneously optimizing
transmission time and packet error rate for each user to
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either maximize total effective throughput or minimize
overall transmission time, subject to users’ individual
effective-amount-of-information requirements.

Yang et al. proposed a study on maximizing minimum
throughput in wirelessly powered IoT systems assisted by
backscatter technology [28]. The objective of this research
was to establish a transmission schedule for all devices
that would maximize the system’s minimum throughput.
In [29], Zewde and Gursoy provided a study on the efficacy
of NOMA in wireless powered communications. Their aim
was to enhance a system’s energy efficiency when using
NOMA for uplink information transfer. The investigation
focused on numerous energy-harvesting UEs operating under
the HTT protocol. For uplink information transfer, power-
domain multiplexing was employed, and the receiver was
designed to decode each UE’s information in a way that
allows the UE with the highest channel gain to be decoded
without interference.

Zhai et al. investigated the non-orthogonality of NOMA
in intracell interference [30]. To coordinate intracell interfer-
ence, they proposed a solution to dynamic user scheduling
and the power allocation problem with the objective being
to minimize total power consumption of the whole network
under constraints on all users’ long-term requirements.

In [31], Rauniyar et al. explored the dynamics of radio
frequency energy harvesting and information transfer by
leveraging time switching relaying (TSR), power splitting
relaying (PSR), and NOMA with the objective of optimizing
sum throughput. The study describes a process where a
power-limited IoT relay node initially harvests energy from
the RF signal of a source node through either TSR or PSR.
Subsequently, it transmits information from the source node
together with its own data to the designated destination nodes
using the NOMA protocol.

Wang et el. proposed a study on throughput maxi-
mization for peer-assisted wireless powered IoT NOMA
networks [32]. The objective of this research was to
maximize the sum-throughput of each proposed model,
while considering the combination of TDMA and NOMA,
under the assumption that the power of active UEs is fixed.
This study states different transmission modes (non-stand-
alone/stand-alone) and different operations (NOMA/NOMA-
plus-TDMA) and re-investigate the above schemes in the
scenario where active UEs’ energy is limited, i.e., the power
of active UEs is not fixed and is affected by time allocation.

In the study by Tegos et al. [33], they explored two
random access (RA) protocols that enhance the traditional
slotted ALOHA (SA) by integrating it with uplink NOMA.
Compared to other RA protocols, SA is favored for its low
complexity and its ability to eliminate partially overlapping
transmissions, thereby reducing collisions. However, SA can
become inefficient under conditions of high traffic load and
increased device numbers, leading to congestion. To address
these issues, this study introduces two detection techniques
aimed at mitigating interference when two sources transmit
simultaneously in the same time slot. These techniques SIC

with an optimal decoding order policy and joint decoding
(JD) are designed to decrease the number of collisions and
enhance the throughput of SA while maintaining system
simplicity.

Manzoor et al. investigated the combination of NOMA
using power-domain with backscatter communication (BC)
[34]. The goal of this work was to maximize the total energy
efficiency (EE) of the IoT network, subject to the quality of
services of each IoT device. This study introduced a BC in a
multicell IoT network, where a source in each cell transmits
a superimposed signal to its associated IoT devices using
NOMA. The backscatter sensor tag (BST) also transmits data
to IoT devices by reflecting andmodulating the superimposed
signal of the source. The proposed work simultaneously
optimizes the total power of each source, power allocation
coefficient of IoT devices, and RC of BST under imperfect
SIC decoding.

The authors in [36] discussed maximization of the
weighted sum rate for TDMA and NOMA by optimizing
harvesting time and transmission time variables. In [37],
a hybrid approach combining NOMA and TDMA for
intelligent reflecting surface (IRS)-assisted wireless powered
communications was studied. Users were organized into
various clusters to harvest energy on downlink, followed
by transmission of information to the base station (BS) by
utilizing a combined NOMA and TDMA strategy on uplink.

B. MOTIVATION AND CONTRIBUTIONS
Motivated by the aforementioned research, we studied
the sum-throughput problem for wireless powered IoT
networks. We studied the efficiency and the diverse appli-
cations of NOMA in WPINs; however, studies on hybrid
NOMA-TDMA schemes were not found in the literature
review. The primary motivation for selecting TDMA along-
side NOMA in this study is due to TDMA’s simplicity and its
proven effectiveness in managing interference between users
in wireless networks [39]. TDMA organizes transmission
times into distinct slots for different user groups [35].
This clear structure simplifies scheduling and reduces the
complexity of system design, which is particularly beneficial
when combined with NOMA’s power-domain multiplex-
ing [40]. As a generalization of both NOMA and TDMA
systems, hybrid NOMA-TDMA reduces the complexity of
SIC implementation while simultaneously providing more
degrees of freedom to enhance performance. Additionally,
TDMA is well-suited for situations where it’s important
to synchronize user transmissions and minimize system
overhead [41]. Its straightforward implementation, supported
by well-established technologies and infrastructure, makes
TDMA a practical choice for both theoretical research
and real-world applications. To solve this non-convex
problem, we converted the optimization problem of hybrid
NOMA-TDMA to a bi-level programming problem with
outer and inner sub-problems. The non-convex problem
is complex due to coupling of highly optimal variables.
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TABLE 1. Notations used for mathematical expressions.

We solve the outer problem using a genetic algorithm, and
solve the inner problem by means of the Lagrangian method.

The main contributions of our paper are as follows.

• We propose a hybrid NOMA-TDMA MISO system for
sum-throughput maximization inWPINs by jointly opti-
mizing the downlink beamforming vectors and uplink
and downlink time, subject to minimum harvested
energy.

• To solve the non-convex problem, we propose trans-
forming it into a bi-level programming problem that
consists of an outer problem and an inner problem.
Hence, the main problem turns into sub-problems, and
we solve the outer sub-problem for beamforming vectors
with a genetic algorithm and solve the inner problem
for downlink and uplink time allocation by using the
Lagrange multiplier method to find the near-optimal
solution.

• As a comparative scheme, we consider OMA and
equal time allocation (ETA) techniques and evaluate the
performance of the proposed scheme via simulations
that demonstrate the proposed hybrid NOMA-TDMA
scheme has better performance than other conventional
scenarios and OMA techniques.

This paper’s remaining sections are arranged as follows:
In Section II, we discuss the system model and problem
formulation for sum-throughput maximization. Section III
describes the proposed solution for bi-level programming,
which consists of genetic algorithm (GA) and the Lagrange
multiplier method. Section IV explains the numerical results
and discussion for evaluation and comparison purposes.
Finally, conclusions are discussed in Section V.
Table 1 provides a list of important notations and their
definitions.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a multiple input single output transmission
system that consists of a hybrid access point andN distributed
IoT users in K groups, as shown in Fig. 1. The H-AP is
equipped with multiple antennae, M > 1, and users are
equipped with a single antenna each. H1,H2,H3, . . . ,HK
represent channel conditions between the H-AP and each
user group. These coefficients characterize the quality of the
channel, including aspects like path loss and fading, which
affect both energy transfer and data transmission processes.

The users’ grouping strategy involves arranging them as
U1, . . . ,UN such that ∥h1∥ ≥ ∥h2∥ ≥ · · · ≥ ∥hN∥, where
hn denotes the channel coefficient from nth user to the H-AP,
for n = 1, 2, . . . ,N . This method of grouping is referred
to as large-channel-strength difference (LCSD), which lets
the user—H-AP channel strength differences among users
in the same group stay as large as possible [37], [42].
User groups under this scheme can be {U1,U4,U7,U10},
{U2,U5,U8,U11}, and {U3,U6,U9,U12}. The H-AP sends
energy to users on downlink by using beamforming, whereas
users transmit information to the H-AP on uplink by utilizing
the harvested energy. We have N distributed users and K
groups where n = {1, 2, . . . , |N |} and k = {1, 2, .., |K |}. The
hybrid NOMA-TDMA scheme switches to TDMA when
K = N , and uses NOMA when K=1 [37].
We also assume that channel state information is known

at the H-AP. The time frame is divided such that the first
part is τ0 where (0 < τ0 < 1) where the H-AP broadcasts
wireless energy on downlink to all users. All users have initial
power (Pi = 0), recharging themselves with the energy from
the H-AP to transmit information under the HTT protocol.
Uplink time is further divided using TDMA to assign a
time slot to each group, in which all users of that group
transmit information simultaneously on uplink to the H-AP.
The amount of time assigned to the kth group on uplink is
denoted τk (0 < τk < 1), as shown in Fig. 2.

Nevertheless, the perfect channel estimation is challenging
but there are some preliminary studies have been done on
channel estimation of IoT networks. In [43], the author
proposed two models relevant to low powered LP-IoT
communication in IoT networks. The first model provided
a theoretical representation of the wireless channel for the
LP-IoT network while the second model was the channel
estimation model, where they applied the least squares (LSE)
and maximum likelihood (MLE) techniques to estimate
the LP-IoT wireless channel. Reference [44] investigated
the channel estimation performance of massive multiple-
input-multiple-output (MIMO) IoT systems with Rician
fading. This framework utilized the LS and minimum mean
squared error (MMSE) estimation methods and considered
the relative channel estimation error (RCEE) between the IoT
device and base-station, and provide the approximations of
the expectation of RCEE. In a study [45], the author proposed
a model-driven deep learning algorithm for joint activity
detection and channel estimation based on the principle of
approximate massage passing (AMP) which does not require
the prior information about active probabilities and channel
variance, and can significantly improve the performance with
a finite number of training data.

A. DOWNLINK TRANSMISSION
During the downlink phase, the H-AP transmits an arbitrary
energy signal in the form of beams directed towards users
with beamforming vector w at time τ0. Since a distant user
from the H-AP receives less power on downlink and suffers
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FIGURE 1. The wireless powered IoT network with WET on downlink to
all users and WIT on uplink using the proposed hybrid NOMA-TDMA.

from throughput degradation on uplink compared to a nearby
user, the H-AP applies different energy beamforming weights
to control power allocation. We denote the downlink energy
signal as sdl = ws0, where s0 is an independent and
identically distributed random signal with zero mean and unit
variance, and w ∈ CM×1 denotes the energy beamformers
for the transmitter. The transmit power of the H-AP on
downlink can be expressed as E[|sdl |2] = |w|2. The H-AP
has a transmit sum-power constraint, Pmax ; thus, we have
|w|2 ≤ Pmax . The signal received from the H-AP by the nth
user in the kth group is represented as follows:

y(k,n) = hH(k,n)ws0 + zn (1)

where hk,n ∈ CM×1 is the link from the H-AP (M antennae)
to the nth user in the kth group; zn is noise from the nth user,
whereas w ∈ CM×1 denotes the energy beamforming vector
at the H-AP.

We assume that the energy harvested from the receiver’s
noise is negligible in comparison to the energy harvested
from the energy signal, so we ignore receiver noise in further
problem formulations. Then, the amount of energy harvested
by the nth user in the kth group is

∗Ek,n = ξk,n|hHk,nw|
2τ0 (2)

where 0 < ξk,n < 1 is the energy-harvesting efficiency of the
nth user in the kth group, and τ0 is the time taken for downlink
energy transfer.

B. UPLINK TRANSMISSION
After harvesting energy during the downlink phase, users
send information during the uplink phase by using the
harvested energy. We consider a hybrid scheme for infor-
mation transfer on uplink where different groups transmit
at different times using TDMA, while users in the same
group transmit at the same time using NOMA. For users
under NOMA, we assume effective channel gain for users
in the kth group is denoted in descending order: ||hk,1||2 >
||hk,2||2 > ||hk,3||2 > . . . ||hk,n||2. Using TDMA, each

FIGURE 2. Time-frame divisions for downlink energy transfer and uplink
information transfer.

group is allocated a single time slot for uplink transmission.
Then, the available average power of the nth user in the kth
group to transmit on uplink can be expressed as

Pk,n =
Ek,n
τk
=
ξk,n|hHk,nw|

2τ0

τk
(3)

We assume users have no other energy source or battery to
store harvested energy, and hence, all energy must be used
for transmission [48], [49]. The signal received at the H-AP
from the nth user in the kth group can be written as follows:

rk,n = vHn hk,nsul + z (4)

where vn ∈ CM
× 1 denotes the receiver beamforming

vector that is used to decode the information of the nth user;
sul =

√
pk,nsk,n denotes the information signal on uplink, and

z is noise at the H-AP. According to NOMA principles, for
uplink employing SIC at the H-AP, the decoding process is
executed in descending order. In this decoding order, the first
user needs to endure all in-group interference from the other
users, but a user later in the decoding order can benefit from
the throughput by cancelling the interference, and theweakest
user’s message is decoded without interference. The signal-
to-interference-plus-noise ratio is then calculated as the ratio
of the desired signal power to the total interference plus noise,
which is expressed as

γk,n =
pk,n|vHn hk,n|

2∑N
i=n+1 pk,i|v

H
i hk,i|

2 + σ 2
, 1 ≤ n ≤ N − 1 (5)

so the signal-to-noise ratio for the Nth user can be written as

γk,n =
pk,n|vHn hk,n|

2

σ 2 , Nth user (6)

We adopt maximal ratio combining (MRC) beamforming at
the receiver as described in [50], where beamforming vector
vn is defined as vn =

hk,n
∥hk,n∥

. Furthermore, acknowledging
that all harvested energy is utilized for uplink transmission,
we adjust uplink transmit power to reflect the harvested
energy. Consequently, equation (5) can be reformulated as
follows:

γk,n =

τ0
τk
ξk,n|hHk,nw|

2
||hk,n||2∑N

i=n+1 pk,i|v
H
i hk,i|

2 + σ 2
, 1 ≤ n ≤ N − 1 (7)

Equation (6) is also updated under MRC as

γk,n =

τ0
τk
ξk,n|hHk,nw|

2
||hk,n||2

σ 2 ,Nth user (8)
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Using Shannon’s capacity formula, the throughput of the nth
user in the kth group can be written as

Rk,n = (τk ) log2(1+ γk,n) (9)

Hence, the sum throughput for the kth group can be written as
expressed in [51]:

Rk = (τk ) log2(1+

N∑
n=1

τ0
τk
ξk,n|hHk,nw|

2
||hk,n||2

σ 2 ) (10)

In this problem, to maximize the sum throughput of all users
while jointly optimizing downlink beamforming vectorw and
allocation of time τ for downlink and uplink, we formulate
the optimization problem as follows:

(P1) : max
w,τ

K∑
k=1

Rk (11a)

s.t. C1 : ξk,n|hHk,nw|
2τ0 ≥ emin (11b)

C2 : ||w||2 ≤ Pmax (11c)

C3 : 0 ≤
K∑
k=0

τk ≤ 1 (11d)

where emin is the minimum threshold for harvested energy,
and w is the beamforming vector. Constraint C1 ensures
quality of service for users in order to satisfy the minimum
criteria for harvested energy in the downlink phase. More-
over, constraintC2 guarantees that the H-AP’s transmit power
does not exceed themaximum available power, and constraint
C3 fulfills time-frame normalization for time allocation.

Since P1 is non-convex and highly complex because
of the coupling of optimal variables aimed at maximizing
sum throughput, finding a feasible solution analytically
is difficult. In this paper, we convert P1 into a bi-level
programming problem consisting of outer-level variables and
inner-level variables in order to get a tractable solution.

III. PROPOSED SOLUTION OF BI-LEVEL PROGRAMMING
PROBLEM
Based on problem P1, we can see that it is extremely intricate
and challenging to solve because of the highly coupled
variables and non-convexity of the objective functions and
constraints. Therefore, to solve P1, we convert it to a bi-level
programming problem comprising outer-level and inner-level
variables, {w} and τ , respectively.

A. OUTER-LEVEL VARIABLE

(P2) : max
w

K∑
k=1

Rk (12a)

s.t. C1 : ξk,n|hHk,nw|
2τ0 ≥ emin (12b)

C2 : ||w||2 ≤ Pmax (12c)

Problem P2 describes the outer-level problem, which deals
with downlink beamforming vectors {w0}. We consider a

scheme based on a genetic algorithm (GA) to ascertain the
outer-level variable values. The GA is recognized for its
efficacy in solving linear and non-linear problems, and excels
at avoiding local minima to attain solutions that are close to
optimal through the utilization of selection, crossover, and
mutation techniques.

B. INNER-LEVEL VARIABLE

(P3) : max
τ

K∑
k=1

Rk (13a)

s.t. C1 :

K∑
k=0

τk ≤ 1, τk > 0, k = 0, 1, · · · ,K .

(13b)

where Problem P3 corresponds to an inner-optimization
problem with respect to variable τ , which shows the time for
downlink and uplink transmissions. In addition, the constraint
ensures that the downlink and uplink times must be less than
or equal to 1. Since Problem P3 is convex, we propose a
Lagrange multiplier algorithm to determine the optimal value
of the inner-level variable.

Themethodology proposed in this study employs a cyclical
optimization process for both the upper-level variables
{w} and the inner-level variables {τ }. Initially, a GA-
based framework is introduced to determine the values of
outer-level variables {w}. After that, the Lagrange multiplier
method is applied to the inner optimization problem using
the values of {w} to achieve close to optimal solutions for
the inner-level variable represented by {τ }. Objective function
(10a) is then evaluated, and the GA uses the result to further
refine variable set {w}. The process iterates with the updated
{w} values informing the Lagrange multiplier’s adjustment of
the {τ } variables, continuing until convergence is achieved.
The GA framework is described in Section III-B1, while
implementation of the Lagrange multiplier technique is
explained in Section III-B2 and Section III-B3 describes the
complexity analysis.

1) OUTER-LEVEL SUB-PROBLEM SOLUTION USING A
GENETIC ALGORITHM
In this subsection, we solve the outer sub-problem of the
bi-level programming problem to find the optimal values
for beamforming vector w by fixing another variable, like
time allocations {τ0, τ1, τ2, · · · , τk}. To solve Problem P2,
we use a genetic algorithm. The GA represents a class
of optimization methodologies derived from the principles
of natural selection and genetics. The genetic algorithm
begins with an initial population where individual solutions
evolve through selection and mutation processes. The aim
is to evolve into a solution that optimally satisfies the cost
function [52]. Broadly, GAs are categorized into two types:
binary and continuous. The binary GA operates on binary
strings, encoding the problem’s variables into binary format
and optimizing the objective function in this discrete space.
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On the other hand, the continuous GA, also referred to as
a real-coded GA, works directly with continuous variables,
thus offering a more direct approach to optimizing the
objective function. Due to the absence of a decoding step
for chromosome evaluation, the continuous GA typically
exhibits higher efficiency than its binary counterpart. In the
context of our study, particularly in addressing beamforming
problems, we adopt the continuous GA approach. This
decision stems from the increased efficiency gained by
operating directly on real-valued variables, bypassing the
need for encoding and decoding inherent in the binary GA.

In a GA, the population comprises Npop chromosomes
where each nth chromosome, denoted as crn, contains
Nvar variables. Therefore, a chromosome can be articulated
as crn = [w1, . . . ,wNvar ] for n = 1, . . . ,Npop. The
efficacy of each chromosome is quantified through a cost
function, which is defined by objective function (12a). The
process initiates with a natural selection phase, during which
chromosomes are ranked in descending order based on their
cost, represented as f (crn). Following this ranking, only
a portion of the population, predetermined by selection
rate {SelRate}, is preserved for subsequent generations. The
retained chromosomes will be used as parents for crossover
and mutation operations in the genetic algorithm:

Nkeep =
⌊
SelRateNpop

⌋
, (14)

where Nkeep denotes the quantity of chromosomes retained
for generating new offspring, and Npop − Nkeep determines
the chromosomes that are eliminated. Following this, the
pairing procedure entails selection of chromosomes from
the conserved pool of Nkeep chromosomes, with the aim of
forming MatP = Npop−Nkeep

2 mating pairs. The selection
process employs a rank weighting method wherein the
probability for the nth chromosome is determined as follows:

Pbn =
Nkeep−n+ 1∑Nkeep

n=1 n
, n = 1, . . . ,Nkeep. (15)

Considering that probability, the initial step involves
arranging the chromosomes in a descending sequence based
on their cost, thereby positioning the chromosome with the
highest cost at the top. Following this, we proceed to ascertain
the cumulative probabilities for each chromosome, denoted
by CPbn =

∑n
i=1 Probi. To select the first parent, parentx1 ,

for each mating pair indexed by x (where x = 1, . . . ,MatP),
a uniformly distributed random value, randx1 within [0, 1],
is generated. Initiating from n = 1 within the assortment of
the mating pool, we select the earliest chromosome where
the cumulative probability, CPn, is greater than randx1 ,
appointing it as parentx1 for the xth mating pair. Subsequently,
a second random value, randx2, is generated to determine the
second parent, parentx2, for the xth mating pair. This selection
mechanism is iteratively performed to establish a total of
MatP mating pairs.
As we select the parents, the generation of two offspring

per mating pair is obtained through the mating procedure,

Algorithm 1 Genetic Algorithm-Based Solution for
Problem P2
1: inputs: Npop, I , SelRate, MutR, τ, {Rk,min}.
2: Initialize iteration index i = 1.
3: Initialize the chromosomes, crn, in the population and

solve equation (12a) to get f (crn).
4: Calculate Nkeep, MatP, and Nmut , and sort the chromo-

somes in descending order according to cost f (crn).
5: while i ≤ I do
6: Discard Npop − Nkeep chromosomes.
7: Create the mating pool to get CPbn, n = 1, . . . ,Nkeep.

8: for x = 1, . . . ,MatP do
9: Select parentx1 and parentx2 for xth mating pair.
10: Execute the mating process to generate two off-

spring, offspx1 and offsp
x
2, by using (16), (17a), (17b),

(18a), and (18b).
11: end for
12: Replace the discardedNpop−Nkeep chromosomes with

the newly generated offspring from the MatP mating
pairs.

13: Mutate the Nmut selected variables of the chromo-
somes using (19).

14: Evaluate updated population using objective func-
tion (12a) and re-sort chromosomes by cost.

15: Update iteration index: i← i+ 1.
16: end while
17: output: The best chromosome is cr1 with beamform

vector f (cr1) and near-optimal values for the variables
of problem (12a).

which is predicated on the crossover strategy [53], [54]. For
every xth mating pair, the crossover point, denoted as {ψx},
is ascertained by randomly selecting one of the variables from
the parents within the xth mating pair. The crossover point is
determined as follows:

ψx =
⌈
randx,mat × Nvar

⌉
, (16)

This ensures the crossover point is within the range of the
chromosome’s variables, andwe define randx,mat as a random
number between [0, 1]. Then, new variables are created in the
following manner for the two offspring of the xth mating pair
by combining variables for ψx from the parents:

vnew1,xψx
= v

parentx1
ψx

− εx

(
v
parentx1
ψx

− v
parentx2
ψx

)
, (17a)

vnew2,xψx
= v

parentx2
ψx

+ εx

(
v
parentx1
ψx

− v
parentx2
ψx

)
, (17b)

where v
parentxj
ψx

represents the value of variable ψx associated
with the jth parent, while εx denotes a random number
selected from the interval [0,1], as illustrated in [55].
Consequently, offspring from the xthmating pair are produced
through the following procedure:

offspx1 =
[
v
parentx1
1 , . . . , vnew1,xψx

, . . . , v
parentx2
ψx+1

, . . . , v
parentx2
Nvar

]
,

(18a)
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offspx2 =
[
v
parentx2
1 , . . . , vnew2,xψx

, . . . , v
parentx1
ψx+1

, . . . , v
parentx1
Nvar

]
.

(18b)

where offspx1 and offspx2 denote the pair of progeny derived
from the xth mating pair. Consequently, this methodology
facilitates the generation of Npop −Nkeep offspring, designed
to replace the same number of chromosomes eliminated
during the initial selection phase.

To this end, an elitism strategy is implemented, ensuring
that the best solutions found in the population are retained
unaltered. Specifically, the top two chromosomes, denoted as
Nelt = 2, are preserved without modification, thereby pre-
venting their loss through mutation or crossover operations.
The adaptive mutation mechanism is applied to the remaining
chromosomes, with the exception of the elite ones. This
equation determines the total number of mutations carried
out:

Nmut = round
(
(Npop − Nelt)NvarMutR

)
(19)

where (Npop − Nelt)Nvar denotes the variables that can
undergo mutation throughout the population, and MutR is
the predetermined mutation rate. This formula calculates the
aggregate mutations across the population, factoring in the
number of mutable genes post-elitism. During the mutation,
a chromosome and a specific gene within it are randomly
selected. Mutation involves modifying the gene’s value by
incorporating a Gaussian noise component, which is given as

v′n,i = vn,i +1(generation, σ ) (20)

where v′n,i denotes the mutated value of gene i in chro-
mosome n, with vn,i being its original value. The term
1(generation, σ ) represents Gaussian noise with standard
deviation σ , which diminishes as the generation number
increases. The magnitude of this noise is calculated as σ =
0.2 + adaptiveMutationFactor

generation . This adaptive approach ensures
that mutations are more prominent in initial generations to
facilitate exploration, and they gradually decrease to promote
exploitation as the algorithm approaches convergence.

2) THE INNER-LEVEL SUB-PROBLEM SOLUTION USING A
LAGRANGIAN METHOD
In this sub-problem, we address the optimization of downlink
and uplink time allocations τ = {τ0, τ1, τ2, · · · , τk} in
Problem P3 while keeping beamforming vector w constant.
Given that Problem P3 is characterized as a convex optimiza-
tion problem that can be solved using convex optimization,
we consider the Lagrange multiplier technique to solve it.
The Lagrange multiplier method finds the local maxima and
minima of a function while satisfying equality constraints.
The formulation of the Lagrangian function for solving
Problem P3 is as follows:

Lsum(τ ,λ)=
K∑
k=1

τk log2

(
1+Ck

τ0

τk

)
+λ

(
1−

K∑
k=1

τk

)
,

(21)

Algorithm 2 Lagrange Optimization and the Newton-
Raphson-Based Algorithm to Solve Problem P3
1: Initialize λ, τ0, τk , and w0.

2: repeat
3: Solve Problem P3 using (26) & (27) and find optimal

values for {τ ∗0 , {τ
∗
k }}.

4: Compute D(λ) using (21) and check for the feasible
solution.

5: ComputeD(λ) as the minimum of Lsum(τ ,λ) over the
feasible set S according to (22).

6: Update λ using the sub-gradient method
7: if |λ− λold| < ϵ then
8: Convergence achieved, exit loop.
9: end if

10: Set λold = λ
11: until Stopping criterion is met
12: output: Optimal time allocations τ ∗0 , τ

∗
k and optimal

Lagrange multiplier λ∗.

where, Ck =
∑N

n=1 ξk,n

∣∣∣hHk,nw∣∣∣2∥hk,n∥2
σ 2

.

After formulating the Lagrangian for the primal problem,
where λ ≥ 0 represents the Lagrange multiplier associated
with constraint (13b). The dual function for Problem P3 is

D(λ) = min
τ∈S

Lsum(τ, ν), (22)

where S is the feasible set of τ as seen in (13b), which shows
that τ ∈ S with τk > 0, k = 0, 1, · · · ,K . Given that Problem
P3 is a convex optimization problem where strong duality
holds, the Karush-Kuhn-Tucker (KKT) conditions serve as
necessary and sufficient criteria for its global optimality,
which are given by

K∑
k=0

τ ∗k ≤ 1, (23)

λ∗

(
K∑
k=0

τ ∗k − 1

)
= 0, (24)

∂

∂τk
Rsum(τ ∗)− λ∗ = 0, k = 0, 1, 2, · · · ,K . (25)

Let τ ∗k and λ∗ denote the optimal primal and dual solutions,
respectively, of Problem P3. Therefore, without loss of
generality, we assumeλ∗ > 0. Hence, optimal time allocation
solution {τ ∗0 , {τk}

∗
} is given by

τ ∗0 =
1

1+
K∑
k=1
η∗k

(26)

τ ∗i =
η∗k

1+
K∑
k=1
η∗k

, ∀k (27)

where η∗k can be found by solving the KKT conditions of
the Lagrangian function in (21), as described in [56]. With
feasible optimal solution {τ ∗0 , {τk}

∗
}, we update λ using

65248 VOLUME 12, 2024



A. Afridi et al.: Throughput Maximization of WPIN With Hybrid NOMA-TDMA Scheme

the sub-gradient method and iteratively solve for λ∗ when
convergence is achieved. To find η∗k , we use the Newton-
Raphson method, which is known for its efficiency in
solving non-linear equations. The time allocation procedure
is summarized in Algorithm 2.

Hence, the complete algorithm for solving Problem P1 is
presented in Algorithm 3, and a flow chart for its graphical
representation is Fig. 3.

Algorithm 3 The Genetic Algorithm and Lagrangian
Optimization to Solve Problem P1
1: Initialization: Set initial values for w0, τ0, and {τk}.
2: Set I = 0 and R(0) = f (w0, τ0, {τk}).
3: repeat
4: Set I = I + 1
5: Under given τ0 and {τk}, updatew0 by solving problem

(P2).
6: Under givenw0, update τ0 and {τk} by solving problem

(P3).
7: Set R(I ) = f (w0, τ0, {τk})

8: until |R
(I )
−R(I−1)|
R(I )

< ϵ

3) COMLEXITY ANALYSIS
This study examined the computational complexity of
Algorithm 3. Problem P1 was solved using a Bi-level
programming method, where GA used to optimize the
beamforming vectors in the outer problem, with an inner
problem solved via Lagrangian method. The computational
complexity is expressed as:

O((Npop − Nelt) · I · Clgr)

where Npop represents the total number of population, Nelt
denotes the elitism, which are carried over to the next
generation without undergoing genetic operations such as
crossover or mutation. I is the number of iterations the GA
performs throughout the optimization process. Clgr denotes
the computational complexity associated with solving the
inner problem using Lagrangian relaxation for each individ-
ual solution during each iteration. This complexity formula
reflects the worst-case scenario, where every non-elite
individual in each generation requires a full computation of
the inner problem using Lagrangian methods, compounded
over all iterations of the GA.

IV. NUMERICAL RESULTS AND DISCUSSION
To evaluate the performance of the proposed hybrid
NOMA-TDMA approach in WPINs, simulations were con-
ducted using MATLAB R2022b by running approximately
100 iterations on a computer with an AMD Ryzen 5 5600X
processor at 3.70 GHz with six cores and 12 threads.
The experiments considered a distance-dependent path loss
channel model expressed as H = 10−3d−α where α is the
path loss exponent. We chose α = 3 for our simulations.
Other key parameters included the total transmit power
budget at the hybrid access point, set to Pmax = 30dBm,

efficiency of energy harvesting set at ζn = ζ = 0.8, and
noise variance set at σ 2

= −70dBm/Hz. Additionally, IoT
users were assumed to be uniformly distributed at one to two
meters from the BS.

In this paper, we considered baseline schemes for opti-
mized OMA (i.e., TDMA) and for fixed time with optimal
w0 and ETA (i.e., a fixed time and a random w0). Fig. 4
provides a convergence analysis of the proposed genetic
algorithm showing an upward trend corresponding to the
increase in the number of iterations. Moreover, an increasing
trend is observed in the value for best costs as the number of
transmit antennae (M) increases. The GA parameters were
set as follows: population size Npop = 20, selection rate
SelRate = 0.2, mutation rate MutR = 0.5, maximum
iterations at Imax = 100, and adaptive mutation control
factor adpt = 0.001. From Fig. 4, observe that with
those specified settings, the GA effectively converges to
near-optimal values. This convergence analysis validates
the effectiveness and efficiency of our proposed method
in achieving near-optimal solutions for the hybrid NOMA-
TDMA-based wireless powered IoT network, and helped
improve network performance.

Fig. 5 shows the relationship between sum throughput
and the number of antennae (M) at the H-AP. This graph
shows that as the number of antennae at the H-AP increases,
a more efficient beamforming design can be achieved,
thereby increasing the sum throughput. Moreover, observe
from the figure that the proposed scheme with optimal time
allocation τ and beamforming vectors w0 performed better
than the other schemes, i.e., optimized orthogonal multiple
access (OMA) throughput, with a fixed τ with optimal
w0, and with a fixed τ with random w0 employing equal
time allocation. Our proposed scheme with optimal τ and
w0 consistently achieved the highest sum throughput across
all antennae counts, demonstrating superior performance
relative to other methods. The OMA throughput and scenario
with fixed τ and optimal beamforming vector w0 showed
throughput improvement with increases in the number of
transmit antennae, but it could not surpass the proposed
method’s performance. In addition, the scenario with ETA
was consistently the least effective, demonstrating the lowest
throughput across the different values for M. Overall, the
graph suggests the effectiveness of transmit antennae at the
H-AP for sum throughput.

Fig. 6 illustrates sum throughput as a function of the
number of user groups (K) in a hybrid NOMA-TDMA sys-
tem. This system configuration involves random distribution
of a total of Nt = 12 users with K = 2, 3, 4, and 6,
resulting in N = Nt/K users in each group and transmit
antennae M=4. We see that for more groups of users, higher
throughput can be achieved. This is becausewithmore groups
there are more degrees of freedom for both beamforming
and time allocation optimization, which results in higher
sum throughput. The proposed scheme, employing optimal
time allocation τ and beamforming vectors w0 provided a
notable enhancement in system throughput as the number of
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FIGURE 3. The flowchart for solving Problem P1.

FIGURE 4. Convergence of the genetic algorithm for different values
of M.

groups increased. In contrast, the fixed-time techniques, with
both optimal and random beamforming vectors, displayed
throughput improvements but did not achieve performance
levels superior to the proposed adaptive strategy.

Fig. 7 shows the relationship between sum throughput
and the number of users, N , confirming a direct relationship
between throughput and users across various operational
scenarios, because individual user rates are cumulatively
added to system throughput. We considered N = 2,4,6,
and 8, with the number of transmit antennae at M=4.

FIGURE 5. Sum throughput for different numbers of H-AP antennae (M).

Notably, implementation of the proposed method, which
optimizes both time allocation τ and beamforming vectors
w0, achieved superior sum throughput, reinforcing a pos-
itive link between user density and system performance.
In comparison, throughput performance via OMA was
worse than under the proposed method. Despite this, the
trend remained upward, indicating that traditional access
methods similarly benefit from an increase in the number
of users. The fixed τ strategy with optimized w0 exhibited
a similar upward trend at consistently lower throughput
than the proposed approach, which underscores the value
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FIGURE 6. Sum throughput with different numbers of groups (K).

FIGURE 7. Sum throughput with different numbers of users (N).

FIGURE 8. Sum throughput from differing maximum available power for
transmission.

added by dynamic optimization. The strategy employing ETA
illustrated the least improvement in throughput, with only
a slight increase as the number of users increased. This
underscores the inherent constraints of static strategies in

dynamic user environments, emphasizing the necessity for
adaptive optimization to achieve efficient system throughput.

Variations in sum throughput from increasing maximum
available transmit power in decibel milliwatts at the H-AP
is shown in Fig. 8. The graph illustrates that more available
transmit power increases sum throughput because of the
freedom in algorithm convergence to find optimal values.
In addition, the proposed method outperformed optimal time
τ and optimal beamforming vectors w0, in contrast with the
other scenarios.

V. CONCLUSION
In this paper, we explored a hybrid NOMA-TDMA-based
WPIN to enhance sum throughput. We considered bi-
level programming to solve the problem. In particular,
NOMA and TDMA are used to reduce the complexity
of the system, whereas time allocations for downlink and
uplink transmissions and downlink beamforming vectors are
jointly optimized to maximize the sum throughput of the
network. We employ a genetic algorithm and a Lagrangian
method to identify an optimal solution characterized by rapid
convergence. Subsequent evaluation of simulations revealed
that the hybrid approach outperformed alternative scenarios
and strategies, improving the system’s sum throughput.

REFERENCES
[1] P. Ramezani and A. Jamalipour, ‘‘Toward the evolution of wireless

powered communication networks for the future Internet of Things,’’ IEEE
Netw., vol. 31, no. 6, pp. 62–69, Nov. 2017.

[2] R. Hassan, F. Qamar, M. K. Hasan, A. H. M. Aman, and A. S. Ahmed,
‘‘Internet of Things and its applications: A comprehensive survey,’’
Symmetry, vol. 12, no. 10, p. 1674, Oct. 2020.

[3] J. Santos, J. J. P. C. Rodrigues, J. Casal, K. Saleem, and V. Denisov,
‘‘Intelligent personal assistants based on Internet of Things approaches,’’
IEEE Syst. J., vol. 12, no. 2, pp. 1793–1802, Jun. 2018.

[4] J. A. Khan, H. K. Qureshi, and A. Iqbal, ‘‘Energy management in wireless
sensor networks: A survey,’’ Comput. Electr. Eng., vol. 41, pp. 159–176,
Jul. 2015.

[5] R.Wang andD. R. Brown, ‘‘Throughputmaximization inwireless powered
communication networks with energy saving,’’ in Proc. 48th Asilomar
Conf. Signals, Syst. Comput., Nov. 2014, pp. 516–520.

[6] R. E. Nafiaa andA. Z. Yonis, ‘‘Analysis of frequency splitting phenomenon
in WPT for intelligent applications,’’ in Proc. IEEE Int. Conf. Autom.
Control Intell. Syst. (I2CACIS), Jun. 2022, pp. 174–179.

[7] H. Yetgin, K. T. K. Cheung, M. El-Hajjar, and L. H. Hanzo, ‘‘A
survey of network lifetime maximization techniques in wireless sensor
networks,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 828–854,
2nd Quart., 2017.

[8] R. E. Nafiaa and A. Z. Yonis, ‘‘Performance analysis of high-efficiency
WPT for communication technologies,’’ in Proc. 14th Int. Conf. Comput.
Intell. Commun. Netw. (CICN), Dec. 2022, pp. 78–82.

[9] X. Liu, Z. Qin, Y. Gao, and J. A. McCann, ‘‘Resource allocation in
wireless powered IoT networks,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 4935–4945, Jun. 2019.

[10] S. U. Khan, C. E. García, T. Hwang, and I. Koo, ‘‘Radio environment map
construction based on privacy-centric federated learning,’’ IEEE Access,
vol. 12, pp. 28109–28121, 2024.

[11] M. Abdullah, M. Ghanim, and A. Yonis, ‘‘Effects of FFT size on papr of
MC-CDMA system,’’ in Proc. IEEE 9th Int. Colloq. Signal Process. Appl.,
Sep. 2013, pp. 182–187.

[12] N. Deepan and B. Rebekka, ‘‘Backscatter-assisted wireless powered com-
munication networks with multiple antennas,’’ in Proc. Int. Conf. Wireless
Commun. Signal Process. Netw. (WiSPNET), Aug. 2020, pp. 135–138.

VOLUME 12, 2024 65251



A. Afridi et al.: Throughput Maximization of WPIN With Hybrid NOMA-TDMA Scheme

[13] A. Afridi, I. Hameed, and I. Koo, ‘‘Enhancing sum throughput in wireless
powered IoT networks using TDMA-based resource allocation,’’ in Proc.
26th Int. Conf. Mechatronics Technol. (ICMT), Oct. 2023, pp. 1–5.

[14] G. Yang, C. K. Ho, R. Zhang, and Y. L. Guan, ‘‘Throughput optimization
for massive MIMO systems powered by wireless energy transfer,’’ IEEE
J. Sel. Areas Commun., vol. 33, no. 8, pp. 1640–1650, Aug. 2015.

[15] S. Zhong and X. Wang, ‘‘Energy allocation and utilization for wirelessly
powered IoT networks,’’ IEEE Internet Things J., vol. 5, no. 4,
pp. 2781–2792, Aug. 2018.

[16] Aws. Z. Yonis and A. Nawaf, ‘‘Investigation of evolving multiple access
technologies for 5G wireless system,’’ in Proc. 8th Int. Eng. Conf. Sustain.
Technol. Develop. (IEC), Feb. 2022, pp. 118–122.

[17] W. U. Khan, J. Liu, F. Jameel, V. Sharma, R. Jäntti, and Z. Han,
‘‘Spectral efficiency optimization for next generation NOMA-enabled IoT
networks,’’ IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 15284–15297,
Dec. 2020.

[18] G. Yang, X. Xu, and Y.-C. Liang, ‘‘Resource allocation in NOMA-
enhanced backscatter communication networks for wireless powered IoT,’’
IEEE Wireless Commun. Lett., vol. 9, no. 1, pp. 117–120, Jan. 2020.

[19] B. Liu, C. Liu, and M. Peng, ‘‘Resource allocation for energy-efficient
MEC in NOMA-enabled massive IoT networks,’’ IEEE J. Sel. Areas
Commun., vol. 39, no. 4, pp. 1015–1027, Apr. 2021.

[20] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, ‘‘On the performance of
non-orthogonal multiple access in 5G systems with randomly deployed
users,’’ IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505,
Dec. 2014.

[21] K. Higuchi andA. Benjebbour, ‘‘Non-orthogonal multiple access (NOMA)
with successive interference cancellation for future radio access,’’ IEICE
Trans. Commun., vol. 98, no. 3, pp. 403–414, 2015.

[22] Q. Wu, W. Chen, D. W. K. Ng, and R. Schober, ‘‘Spectral and energy-
efficient wireless powered IoT networks: NOMAor TDMA?’’ IEEE Trans.
Veh. Technol., vol. 67, no. 7, pp. 6663–6667, Jul. 2018.

[23] H. Ju and R. Zhang, ‘‘Throughput maximization in wireless powered
communication networks,’’ IEEE Trans. Wireless Commun., vol. 13, no. 1,
pp. 418–428, Jan. 2014.

[24] D. K. P. Asiedu, S. Mahama, C. Song, D. Kim, and K.-J. Lee,
‘‘Beamforming and resource allocation for multiuser full-duplex wireless-
powered communications in IoT networks,’’ IEEE Internet Things J.,
vol. 7, no. 12, pp. 11355–11370, Dec. 2020.

[25] Z. Yang, W. Xu, Y. Pan, C. Pan, and M. Chen, ‘‘Optimal fairness-aware
time and power allocation in wireless powered communication networks,’’
IEEE Trans. Commun., vol. 66, no. 7, pp. 3122–3135, Jul. 2018.

[26] K. Zheng, R. Luo, Z.Wang, X. Liu, and Y. Yao, ‘‘Short-term and long-term
throughput maximization in mobile wireless-powered Internet of Things,’’
IEEE Internet Things J., vol. 11, no. 6, pp. 10575–10591, Mar. 2024.

[27] R. Rezaei, S. Sun, X. Kang, Y. L. Guan, and M. R. Pakravan, ‘‘Secrecy
throughput maximization for full-duplex wireless powered IoT networks
under fairness constraints,’’ IEEE Internet Things J., vol. 6, no. 4,
pp. 6964–6976, Aug. 2019.

[28] C. Yang, X. Wang, and K.-W. Chin, ‘‘On max–min throughput in
backscatter-assisted wirelessly powered IoT,’’ IEEE Internet Things J.,
vol. 7, no. 1, pp. 137–147, Jan. 2020.

[29] T. A. Zewde and M. C. Gursoy, ‘‘NOMA-based energy-efficient wireless
powered communications,’’ IEEE Trans. Green Commun. Netw., vol. 2,
no. 3, pp. 679–692, Sep. 2018.

[30] D. Zhai, R. Zhang, L. Cai, B. Li, and Y. Jiang, ‘‘Energy-efficient user
scheduling and power allocation for NOMA-based wireless networks
with massive IoT devices,’’ IEEE Internet Things J., vol. 5, no. 3,
pp. 1857–1868, Jun. 2018.

[31] A. Rauniyar, P. Engelstad, and O. Østerbø, ‘‘RF energy harvesting and
information transmission based on NOMA for wireless powered IoT relay
systems,’’ Sensors, vol. 18, no. 10, p. 3254, Sep. 2018.

[32] J. Wang, X. Kang, S. Sun, and Y.-C. Liang, ‘‘Throughput maximization
for peer-assisted wireless powered IoT NOMA networks,’’ IEEE Trans.
Wireless Commun., vol. 19, no. 8, pp. 5278–5291, Aug. 2020.

[33] S. A. Tegos, P. D. Diamantoulakis, A. S. Lioumpas, P. G. Sarigiannidis, and
G. K. Karagiannidis, ‘‘Slotted Aloha with NOMA for the next generation
IoT,’’ IEEE Trans. Commun., vol. 68, no. 10, pp. 6289–6301, Oct. 2020.

[34] M. Ahmed, W. U. Khan, A. Ihsan, X. Li, J. Li, and T. A. Tsiftsis,
‘‘Backscatter sensors communication for 6G low-powered NOMA-
enabled IoT networks under imperfect SIC,’’ IEEE Syst. J., vol. 16, no. 4,
pp. 5883–5893, Dec. 2022.

[35] H. Al-Obiedollah, K. Cumanan, A. G. Burr, J. Tang, Y. Rahulamathavan,
Z. Ding, and O. A. Dobre, ‘‘On energy harvesting of hybrid TDMA-
NOMA systems,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2019, pp. 1–6.

[36] S. Khavari-Moghaddam, S. Farahmand, S. M. Razavizadeh, and I. Lee,
‘‘Optimum solutions for weighted sum-rate of NOMA and TDMA in
wireless-powered IoT networks,’’ IEEE Internet Things J., vol. 11, no. 2,
pp. 3302–3315, Jan. 2024.

[37] D. Zhang, Q. Wu, M. Cui, G. Zhang, and D. Niyato, ‘‘Throughput
maximization for IRS-assisted wireless powered hybrid NOMA and
TDMA,’’ IEEE Wireless Commun. Lett., vol. 10, no. 9, pp. 1944–1948,
Sep. 2021.

[38] X. Chen, D. Xu, and H. Zhu, ‘‘Cooperative resource allocation for hybrid
NOMA-OMA-based wireless powered MC-IoT systems with hybrid
relays,’’ Electronics, vol. 13, no. 1, p. 99, Dec. 2023.

[39] H. Qi, Y. Peng, and H. Zhang, ‘‘Performance analysis for wireless-powered
IoT networks with hybrid non-orthogonal multiple access,’’ J. Smart
Environ. Green Comput., vol. 2, no. 3, pp. 105–125, 2022.

[40] Y. Zhu, X. Yuan, Y. Hu, T. Wang, M. C. Gursoy, and A. Schmeink, ‘‘Low-
latency hybrid NOMA-TDMA: QoS-driven design framework,’’ IEEE
Trans. Wireless Commun., vol. 22, no. 5, pp. 3006–3021, May 2023.

[41] D.-H. Chen and E.-H. Jiang, ‘‘Joint power and time allocation in hybrid
NOMA/OMA IoT networks for two-way communications,’’ Entropy,
vol. 24, no. 12, p. 1756, 2022.

[42] S. Mounchili and S. Hamouda, ‘‘New user grouping scheme for better
user pairing in NOMA systems,’’ in Proc. Int. Wireless Commun. Mobile
Comput. (IWCMC), Jun. 2020, pp. 820–825.

[43] S. Arif, M. A. Khan, and S. U. Rehman, ‘‘Wireless channel estimation
for low-power IoT devices using real-time data,’’ IEEE Access, vol. 12,
pp. 17895–17914, 2024.

[44] P. Liu and T. Jiang, ‘‘Channel estimation performance analysis of massive
MIMO IoT systems with Ricean fading,’’ IEEE Internet Things J., vol. 8,
no. 7, pp. 6114–6126, Apr. 2021.

[45] Y. Qiang, X. Shao, and X. Chen, ‘‘A model-driven deep learning algorithm
for joint activity detection and channel estimation,’’ IEEE Commun. Lett.,
vol. 24, no. 11, pp. 2508–2512, Nov. 2020.

[46] J. Zhang and M. Han, ‘‘Secrecy analysis for IoT relaying net-
works deploying NOMA with energy harvesting,’’ J. Franklin Inst.,
vol. 358, no. 18, pp. 10232–10249, Dec. 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0016003221006037

[47] A. Shome, A. K. Dutta, and S. Chakrabarti, ‘‘Throughput assessment
of non-linear energy harvesting secondary IoT network with hardware
impairments and randomly located licensed users in Nakagami-m fading,’’
IEEE Trans. Veh. Technol., vol. 70, no. 7, pp. 7283–7288, Jul. 2021.

[48] H.-T. Ye, X. Kang, J. Joung, and Y.-C. Liang, ‘‘Optimization for full-
duplex rotary-wing UAV-enabled wireless-powered IoT networks,’’ IEEE
Trans. Wireless Commun., vol. 19, no. 7, pp. 5057–5072, Jul. 2020.

[49] X. Kang, C. K. Ho, and S. Sun, ‘‘Full-duplex wireless-powered commu-
nication network with energy causality,’’ IEEE Trans. Wireless Commun.,
vol. 14, no. 10, pp. 5539–5551, Oct. 2015.

[50] D.-T. Do, T.-L. Nguyen, S. Ekin, Z. Kaleem, and M. Voznak, ‘‘Joint user
grouping and decoding order in uplink/downlink MISO/SIMO-NOMA,’’
IEEE Access, vol. 8, pp. 143632–143643, 2020.

[51] I. Hameed, M. R. Camana, P. V. Tuan, and I. Koo, ‘‘Intelligent
reflecting surfaces for sum-rate maximization in cognitive radio enabled
wireless powered communication network,’’ IEEE Access, vol. 11,
pp. 16021–16031, 2023.

[52] H. Guo, B. Makki, and T. Svensson, ‘‘A genetic algorithm-based
beamforming approach for delay-constrained networks,’’ in Proc. 15th
Int. Symp. Modeling Optim. Mobile, Ad Hoc, Wireless Netw. (WiOpt),
May 2017, pp. 1–7.

[53] S. Mirjalili, ‘‘Genetic algorithm,’’ in Evolutionary Algorithms and Neural
Networks: Theory and Applications. Cham, Switzerland: Springer, 2019,
ch. 4, pp. 43–55.

[54] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms. Hoboken, NJ,
USA: Wiley, 2004.

[55] M. R. Camana, C. E. Garcia, and I. Koo, ‘‘Rate-splitting multiple access in
a MISO SWIPT system assisted by an intelligent reflecting surface,’’ IEEE
Trans. Green Commun. Netw., vol. 6, no. 4, pp. 2084–2099, Dec. 2022.

[56] I. Hameed and I. Koo, ‘‘Max-min throughput optimization in WPCNs:
A hybrid active/passive IRS-assisted scheme,’’ IEEE Open J. Commun.
Soc., vol. 5, pp. 1123–1140, 2024.

65252 VOLUME 12, 2024



A. Afridi et al.: Throughput Maximization of WPIN With Hybrid NOMA-TDMA Scheme

ABID AFRIDI received the B.E. degree in elec-
trical engineering (telecommunication) from the
University of Science and Technology Bannu,
Bannu, Pakistan, in 2020. He is currently a
Graduate Research Assistant with the Department
of Electrical, Electronic and Computer Engineer-
ing, University of Ulsan, Ulsan, South Korea.
His research interests include the wireless pow-
ered IoT networks, optimization, and intelligent
reflecting surfaces.

IQRA HAMEED received the B.E. and M.E.
degrees in electrical engineering from the Uni-
versity of Engineering and Technology at Lahore,
Lahore, Pakistan, in 2013 and 2017, respectively,
and the Ph.D. degree from the Department of
Electrical, Electronic and Computer Engineer-
ing, University of Ulsan, Ulsan, South Korea,
in 2024. She is currently a Postdoctoral Fellow
with Hanyang University, Seoul, South Korea.
Her research interests include wireless powered

communications networks, deep learning, and optimization.

CARLA E. GARCÍA (Member, IEEE) received
the B.Eng. degree in electronics and telecommu-
nications engineering from Escuela Politécnica
Nacional (EPN), Quito, Ecuador, in 2016, and
the M.Sc. and Ph.D. degrees from the Univer-
sity of Ulsan, South Korea, in 2020 and 2023,
respectively. She was awarded the Brain Korean
(BK) 21+ Scholarship for her masters and Ph.D.
studies in South Korea. She held the positions of a
Research Assistant and a Postdoctoral Researcher

with the Department of Electrical, Electronic and Computer Engineering,
University of Ulsan, South Korea. She joined the Interdisciplinary Centre
for Security, Reliability and Trust (SnT), University of Luxembourg,
Luxembourg, where she is currently a Research Associate.

INSOO KOO received the B.E. degree from
Konkuk University, Seoul, South Korea, in 1996,
and the M.Sc. and Ph.D. degrees from Gwangju
Institute of Science and Technology (GIST),
Gwangju, South Korea, in 1998 and 2002, respec-
tively. From 2002 to 2004, he was a Research
Professor with the Ultrafast Fiber-Optic Networks
Research Center, GIST. In 2003, he was a Visiting
Scholar with the KTH Royal Institute of Science
and Technology, Stockholm, Sweden. In 2005,

he joined the University of Ulsan, Ulsan, South Korea, where he is currently
a Full Professor. His research interests include spectrum sensing issues for
CRNs, channel and power allocation for cognitive radio (CR) and military
networks, SWIPT MIMO issues in CR, MAC, routing protocol design for
UW-ASNs, and relay selection issues in CCRNs.

VOLUME 12, 2024 65253


