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ABSTRACT

Neural networks often struggle with catastrophic forgetting when learning sequences of tasks or data
streams, unlike humans who can continuously learn and consolidate new concepts even in the ab-
sence of explicit cues. Online data-incremental learning seeks to emulate this capability by process-
ing each sample only once, without having access to task or stream cues at any point in time since
this is more realistic compared to offline setups, where all data from novel class(es) is assumed to be
readily available. However, existing methods typically rely on storing the subsets of data in memory
or expanding the initial model architecture, resulting in significant computational overhead. Drawing
inspiration from ‘self-regulated neurogenesis’—brain’s mechanism for creating specialized regions
or circuits for distinct functions—we propose a novel approach SERENA which encodes each con-
cept in a specialized network path called ‘concept cell’, integrated into a single over-parameterized
network. Once a concept is learned, its corresponding concept cell is frozen, effectively preventing
the forgetting of previously acquired information. Furthermore, we introduce two new continual
learning scenarios that more closely reflect real-world conditions, characterized by gradually chang-
ing sample sizes. Experimental results show that our method not only establishes new state-of-the-art
results across ten benchmarks but also remarkably surpasses offline supervised batch learning per-
formance. The code is available at ht tps://github.com/muratonuryildirim/serena.

1 INTRODUCTION

Artificial neural networks have achieved great success, often surpassing human performance in various applications,
particularly when operating on datasets assumed to be sampled from independent and identically distributed (iid)
static sources. However, real-world systems face a different reality, where they are exposed to sequential streams
of non-stationary (non-iid) data. As the input data changes, previously learned weights are overwritten, leading to
catastrophic forgetting (McCloskey & Cohen, 1989) which poses a major obstacle to effective continual learning (CL)
of sequential streams.

In contrast, humans excel at CL by seamlessly assimilating and integrating novel information from a dynamic and con-
tinuous stream of diverse experiences throughout life’s continuum. This ability is underpinned by a sophisticated set
of neurophysiological processing principles, also called plasticity-stability mechanisms (Parisi et al., 2019; Goyal &
Bengio, 2022). By continuously monitoring sensory inputs and internal representations, the human brain detects devi-
ations from expected patterns or environmental contexts, signaling concept drift (Zou et al., 2020; Tsuda et al., 2020).
In response, it triggers adaptive mechanisms such as updating specialized regions known as concept cells (Quiroga,
2012), reallocating attentional resources, or initiating new learning processes to accommodate an evolving environ-
ment (Lourenco & Casey, 2013; Astle & Scerif, 2011). Collectively, these processes contribute to self-regulated
neurogenesis (Kempermann et al., 1998; Yiu & He, 2006), enabling continuous adaptation and knowledge refinement.

Inspired by these intricate mechanisms, we introduce SERENA, a model that learns each concept within a special-
ized neural circuit (or network path), integrated into a single over-parameterized network. It does not require multi-
ple epochs of training and explicit task cues by automatically detecting concept changes in the data stream thereby
can operate in online data-incremental learning scenarios (De Lange & Tuytelaars, 2021)—also referred to as task-
free (Aljundi et al., 2019b) or task-agnostic continual learning (Zeno et al., 2019). Once a concept is learned, its
corresponding concept cell is frozen to prevent forgetting. During inference, rather than simply relying on a single
neural path, SERENA adopts another neuro-inspired strategy that incorporates a built-in recency effect (Murdock Jr,
1962) with an ensemble approach. This prioritizes the recent experiences in the decision-making process while still
integrating past knowledge, enhancing adaptability to evolving data.
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Figure 1: SERENA assigns random network paths or concept cells (Quiroga, 2012) integrated into a single over-
parameterized network at each concept drift that is detected automatically without explicit indicators, mirroring the
self-regulated neurogenesis (Kempermann et al., 1998; Yiu & He, 2006) without any model growth.

Our contributions can be summarized as follows:

I. SERENA: We introduce a novel online data-incremental learning approach inspired by the brain’s mech-
anisms, leveraging concept cells formed through zero-cost random pruning during training and a recency-
biased ensemble strategy during inference. It offers a simple yet effective solution by continually fine-tuning
specific neural paths within a fixed backbone without relying on experience replay or network expansion.

II. New SOTA: We conduct extensive experiments across eleven benchmarks, demonstrating that SERENA sig-
nificantly outperforms existing state-of-the-art methods while reducing complexity. Notably, it improves the
accuracy of state-of-the-art methods more than 2x on Split-CIFAR100 while even surpassing the perfor-
mance of traditional iid offline supervised batch learning.

III. New CL Scenarios: We also propose two new continual learning scenarios that more closely reflect real-
world dynamics with gradually increasing or decreasing sample sizes throughout learning sessions, com-
plementing the long-tailed CL scenario (Liu et al., 2022b) and offering a challenging testbed for evaluating
continual learning algorithms.

2 RELATED WORK

Continual Learning. Continual learning approaches primarily target task-incremental learning (TIL) or class-
incremental learning (CIL) settings, where models are typically aware of task identifiers during training, testing,
or both. These approaches often assume that models can be trained over multiple epochs with repeated shuffling.
Regularization-based techniques focus on consolidation (Kirkpatrick et al., 2017; Zenke et al., 2017; Chaudhry et al.,
2018; Aljundi et al., 2018; Lee et al., 2020a) or knowledge distillation (Li & Hoiem, 2017; Hou et al., 2018; Kang et al.,
2022b) to maintain model stability. Replay-based methods either store (Rebuffi et al., 2017; Lopez-Paz & Ranzato,
2017; Wu et al., 2019; Zhao et al., 2020; Arani et al., 2022; Sarfraz et al., 2023) or generate (Mocanu et al., 2016b;
Shin et al., 2017; He et al., 2018; Hu et al., 2019; Petit et al., 2023) samples to preserve past experiences. Architecture
expansion methods (Aljundi et al., 2017; Liu et al., 2021; Pham et al., 2021; Yan et al., 2021; Wang et al., 2022a;
2023; Douillard et al., 2022; Zhou et al., 2023) add completely new layers or networks to enhance model plasticity and
parameter isolation techniques use mask learning (Mallya et al., 2018), iterative pruning (Mallya & Lazebnik, 2018;
Golkar et al., 2019; Wortsman et al., 2020; Dekhovich et al., 2023), or dynamic sparse training (Sokar et al., 2021; Gur-
buz & Dovrolis, 2022; Kang et al., 2022a; Wang et al., 2022b; Sokar et al., 2023; Kang et al., 2023; Hu et al., 2024)
to retain critical parameters. Recent research has integrated parameter-efficient fine-tuning (PEFT) techniques into
continual learning to reduce task interference by training only small sets of task-specific parameters on top of the large
pre-trained backbone (Zhou et al., 2024; Wang et al., 2022c; Smith et al., 2023; Yildirim et al., 2025). Despite their
success, these methods often face practical limitations such as the need for explicit task identifiers, the computational
burden of multiple training epochs or pre-trained architectures, which underscores more efficient strategies.

Online Data-Incremental Learning. A more realistic direction argues that realistic continual learners should be
capable of processing novel data streams in the absence of explicit task cues at any time point. This concept was
first explored in (Aljundi et al., 2019b) and later extended by MIR (Aljundi et al., 2019a), which enhanced reservoir
sampling with a loss-based retrieval strategy. Reservoir (Vitter, 1985) serves as a replay baseline with a strong potential
to surpass continual learning methods (Chaudhry et al., 2019). GSS (Aljundi et al., 2019c) extends the optimization



Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

perspective of GEM Lopez-Paz & Ranzato (2017), which necessitates prior knowledge of the number of tasks and
task transitions, to an instance-based level and adds samples to the buffer based on their gradients. CoPE (De Lange
& Tuytelaars, 2021) synchronizes the latent space with continually evolving prototypes with a high momentum-based
update to facilitate learning. CN-DPM (Lee et al., 2020b) uses a Dirichlet process-based expansion mechanism aiming
to increase the model’s capacity, and SEDEM (Ye & Bors, 2023) improves the expansion process by introducing a
self-assessment mechanism that considers the knowledge diversity among existing modules. Online-LoRA (Wei et al.,
2025) uses loss dynamics to detect distribution shifts and fine-tunes pre-trained Vision Transformer models using a
novel online weight regularization strategy to prevent forgetting. DCM (Ye & Bors, 2024) presents a novel memory
management approach that dynamically adjusts memory clusters based on knowledge discrepancy criteria without
task-specific signals. However, the practice of storing a subset of data for replay, expanding the network, or relying
on large pre-trained architectures presents scalability challenges and is often constrained by factors such as privacy,
memory limitations, and computational resources.

Network Pruning. Pruning removes some connections of the network and thereby limits the training process to a
subset of parameters or neural paths. Mocanu et al. (2016a) showed that pruning a restricted Boltzmann machine at
initialization achieves comparable performance to its dense counterpart. Similarly, Liu et al. (2022a) demonstrated the
effectiveness of randomly pruned backbones when they are sufficiently wide, while Gadhikar et al. (2023) proved that
randomly pruned random networks possess ample expressive capacity. Uniform (Mariet & Sra, 2015; He et al., 2017;
Gale et al., 2019), Erd6és-Rényi (ER) (Mocanu et al., 2018), and Erd6s-Rényi Kernel (ERK) (Evci et al., 2020) are pri-
mary practical studies that rely on predetermined sparsity ratios but work well in practice. Recent research proposes
more advanced approaches to adjust layer-wise sparsity ratios before training rather than relying on predetermined
sparsity ratios (Lee et al., 2019; Wang et al., 2020; Tanaka et al., 2020). Instead of relying on weight magnitudes,
edge-popup (Ramanujan et al., 2020) assigns distinct scores to each weight to guide the pruning process. This pruning
strategy is employed by an offline continual learning approach SupSup (Wortsman et al., 2020) to construct subnet-
works. However, it necessitates multiple forward and backward passes to determine the appropriate subnetwork for
each task, limiting its applicability to online settings that demand each sample to be processed only once.

3 SELF-REGULATED NEUROGENESIS (SERENA)

In this section, we first share the background of existing online data-incremental learning methods and then provide our
research question that motivates us to propose SERENA. Following, we give preliminaries and the details of training
and inference of our approach which is illustrated in Figure 1 and positioned its novelty in Table 1.

Table 1: Online data-incremental learning baselines based Background and Motivation. Various methods proposed in

on key characteristics. online data-incremental learning can be divided into two main

Requires  Expands Selects branches: replay-based and architecture-based. Replay-based

Replay  Network  Connections CL approaches store a subset of the previous examples to

GSS v X X be able to adjust the features and decision boundaries for all

CoPE v X x classes. Architecture-based approaches, on the other hand,

MIR v X x learn the features of each concept or session on an entirely

CN'DPM v v X new model. However, they (i) bring overhead costs in terms of
Dynamic-OCM v v X . . .

SEDEM v v “ both memory a.nd computation, (ii) v101a.te.pr1vacy. concerns,

SERENA (ours) < « v and (iii) complicate data retrieval and training. This leads us

to an essential question in online data-incremental learning:

How can we enable continual learning without relying on complex procedures like initializing entirely new models
or storing replay data while still promoting adaptation to new concepts and minimizing catastrophic forgetting?

To address this question, we benefit from the ability of deep neural networks to efficiently maintain multiple subnet-
works or neural paths (Frankle & Carbin, 2019; Liu et al., 2020), allowing them to learn multiple tasks in a single
model. This dynamic allocation of network connections enables models to preserve knowledge while adapting to
new information, a crucial requirement in continual learning. Notably, this mechanism mirrors the brain’s selective
activation strategy, where specific neuron regions respond to particular stimuli (Babadi & Sompolinsky, 2014). Such
selective responses facilitate efficient knowledge retrieval, prevent interference and aligns with ‘self-regulated neu-
rogenesis’ (Kempermann et al., 1998) and Hebbian Theory’s principle (Lowel & Singer, 1992) of ‘Neurons that fire
together, wire together, which suggests that frequently co-activated neurons strengthen their connections over time,
reinforcing task-specific knowledge in certain neural paths or circuits (Quiroga, 2012). By leveraging these princi-
ples, we aim to construct models that retain previously acquired representations while seamlessly integrating new
knowledge into a single model, thereby bridging the gap between artificial and biological learning systems.
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Algorithm 1: Pseudocode for SERENA Preliminaries. SERENA operates under an online data-
incremental learning scenario which involves the continuous
Input: Data stream set S with Batches of B updating of a deep neural network model, where the data sam-
Model 6 ples (x;,y;) arrive gradually from a set of non-iid data streams
Learning rate n S = {s1, $2,. .., 85 with processing batches of size B. Data
Model sparsity ratio m sample ¢ is constituted by input feature x; € X and corre-
Accuracy window w sponding signal y; in which the output space for classification
Accuracy threshold ¢ is a discrete set of classes ) < Y;_1 Uy;. A deep network
Eq. 1 to create sparse expert 6,, C 0 is optimized to map input instances to the classifier space in
for (x;,y:) € Bdo a flowing data stream, denoted as fy : X — ), where 0
Eq. 2 to train 0y, with represents the network parameters. In online data-incremental
if accuracy of B < ju., - ¢ then learning, samples correspond to a series of tasks without any
freeze Oin identifiers, in contrast to task- or class-incremental setup where
Eq. 1 to create new Om C 0 explicit task cues are necessary.
end if
end for (nl—l +nt+w + hl)

1—

(D

i LIplwlhl

Concept Cell Allocation. SERENA uses zero-cost random unstructured pruning to the kernels of convolution layers
and the connections of classifier head for each stream, using Erd6s-Rényi Kernel (ERK) (Evci et al., 2020) as it enables
better parameter efficiency, preserves model capacity in key regions, while suitable for longer data streams or larger
number of tasks as demonstrated in prior work (Yildirim et al., 2023). Inspired by random graph theory, ERK allocates
non-zero weights proportionally across layers based on the number of parameters, input/output channels and kernel
dimensions, ensuring denser connectivity in the smaller layers. This allocation avoids over-pruning in the bottlenecks
and has been shown to consistently outperform uniform sparsity. Formally, to obtain concept cell or neural path 6,,
with overall sparsity level of binary mask m, it scales the sparsity of layers proportionally as given in Eq. 1, where
n! represents the number of neurons or feature maps at layer /, and w' and h' denote the width and height of the [*"
convolutional kernel, aiming to preserve the information flow.

Drift Detection. SERENA incorporates a drift detection mechanism to continuously monitor the accuracy curve,
enabling it to detect changes in the underlying concept being learned, similar to (Gama et al., 2004; Bifet & Gavalda,
2007). It tracks the accuracy of each batch of data B and compares it to the running accuracy over a defined window w.
If the accuracy of the current batch B drops by more than a predetermined threshold ¢ relative to the mean of running
accuracy, SERENA interprets this as a significant deviation or concept change. In response, it creates a new neural
path 6,, within the same fixed backbone 6 to adapt to the evolving concept.

Training Flow. SERENA learns a different neural path or concept cell 6,,, for each data stream ss by minimizing
the function given in Eq. 2 in an online manner. Here, C'E denotes the Cross-Entropy Loss, 6,, denotes the randomly
initialized concept cell, and the optimal 67, is obtained by solving this optimization problem. When a new stream S is
identified by a drift detector, it freezes these connections of 6, against forgetting and allocates a new concept cell 6,
to train on, which can share connections with other concept cells. This allows using the predefined main backbone 6
more efficiently while enabling knowledge transfer between the concept cells. We share the details in Algorithm 1.

07, = argmin 3 [CE(fy,, (2:), 1) )

m
i=1

Inference Flow. In evolving data streams, relying on a single selected path for classification can become unreliable
due to distribution shifts, especially in the absence of explicit task or stream identifiers. Inspired by neurological
processes, SERENA addresses this challenge through a novel ensemble classification strategy that mirrors how the
brain tends to rely more heavily on the most recent experiences when making decisions, a phenomenon known as
recency effect (Murdock Jr, 1962) or recency bias (Costabile & Klein, 2005). Formally, each concept cell 8,,, produces
a logit vector z; = fo (x) € RIYI. SERENA then computes the final logits # as a weighted sum of these outputs,
as shown in Eq. 3, in which a linearly increasing weighting scheme prioritizes more recent neural paths while still
integrating past knowledge. By dynamically adjusting the contributions of each concept cell, SERENA stabilizes
decision boundaries and maintains robust predictions even without explicit task or stream labels. This neuro-inspired
mechanism allows SERENA to be particularly effective in scenarios where pinpointing the correct neural path is
inherently challenging, as its ensemble approach offers a reliable solution for managing evolving data distributions.

- 1 . -
5= ; g 0= argmax, 3)
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4 EXPERIMENTS

In this section, we describe the experimental setup and present experiments conducted on twelve different benchmarks
to evaluate the incremental learning capabilities of SERENA in comparison with other state-of-the-art algorithms.
Additionally, we share a run-time vs. accuracy analysis as well as a space projection of the samples to provide the
robustness of the proposed method in more detail.

4.1 EXPERIMENTAL SETUP

Datasets and Scenarios. In balanced scenarios, Split-MNIST and Split-CIFAR10 have 5 streams, and each stream
has 2 classes with 12000 samples for MNIST (LeCun et al., 2010) and 10000 samples for CIFAR10 (Krizhevsky
et al.,, 2009) in training and 2000 samples in testing.Split-CIFAR100 and Split-MinilmageNet divide CI-
FAR100 (Krizhevsky et al., 2009) and MinilmageNet (Vinyals et al., 2016) into 20 streams, each with 5 disjoint
classes with 2500 samples for training and 500 samples for testing. Split-TinyImageNet divides TinylmageNet into
100 streams, each consist of 2 classes with 1000 samples for training and 100 samples for testing. Finally, Split-
ImageNet (Deng et al., 2009) has 20 streams, each with 50 classes with around 60000 samples for training and 2500
samples for testing. In imbalanced scenarios, sample sizes exhibit a logarithmic increase or decrease pattern. As-
cending Split-MNIST gradually rises from 2500 to 12000 samples per stream. Ascending Split-CIFAR10 gradually
increases from 2000 to 10000 samples per stream. Ascending Split-CIFAR100 starts from 500 up to 2500 sam-
ples per stream. The descending counterparts; namely Descending Split-MNIST, Descending Split-CIFAR10, and
Descending Split-CIFAR100 mirror this trajectory in reverse.

Compared Baselines. We compare with finetune as a naive approach; reservoir (Vitter, 1985), GSS (Aljundi et al.,
2019c), MIR (Aljundi et al., 2019a), CoPE (De Lange & Tuytelaars, 2021) as replay-based approaches; and CN-
DPM (Lee et al., 2020b), Dynamic-OCM (Ye & Bors, 2022), and SEDEM (Ye & Bors, 2023) as architecture expan-
sion methods. Moreover, similar to (De Lange & Tuytelaars, 2021; Lee et al., 2020b), we compare with iid-online and
iid-offline as upper reference points for performance by relaxing the non-iid property of CL to a traditional supervised
learning setting where online trains all classes at once for a single epoch and offfine for 50 epochs. Note that TIL and
CIL methods are not designed or suitable for this setup; thus, they are not included as direct baselines for comparison.

Backbones. For Split-MNIST, we use a 2-layer MLP with 400 neurons in each layer before the classifier. We
use standard a ResNetl8 (He et al., 2016) for the rest. After each stream, we freeze used connections except batch
normalization since they cannot be designated as stream-specific components.

Evaluation Metrics. We measure model performance with common CL metrics which are Average Accuracy and
Forgetting (Shim et al., 2021; Gu et al., 2022). Average Accuracy is computed by training the model on the data stream
comprising all streams and subsequently evaluating the final model’s performance using the test data associated with
all streams. It is formally defined as: + Zle as,; where a; ; is the accuracy on stream j after the model is trained
from stream 1 to ¢. Average Forgetting quantifies the extent to which the model forgets previously learned streams after

. . —1
being trained on the final stream and can be defined as: ﬁ Zle [s,j where f; j = maxpe2,...i—1) Qk,j — Qi j-

Implementation Details. We train from scratch with a batch size of 10, following (Shim et al., 2021; Guo et al.,
2022; Wei et al., 2023). We set the window size to 10 and the accuracy drop threshold to 50% for the drift detector. We
use SGD with a learning rate of 1 x 10~2 for MLP and 5 x 10~ for ResNet18 and weight decay of 5 x 10~ for both.
When training new concept cells, we activate a fixed percentage of the weights, 20% for MLP and 5% for ResNet18.
For the baselines, we use the same backbone and their default settings for a fair comparison. For online-joint, we train
all classes at once for 1 epoch with a batch size of 10 and for offline-joint, 50 epochs with a batch size of 128.

4.2 RESULTS AND ANALYSIS

Performance on balanced scenarios. In Table 2, the results demonstrate the superior performance of SERENA
relative to state-of-the-art methods, highlighting its ability to learn continually. Furthermore, as illustrated in Figure
2, SERENA consistently achieves higher accuracy at every time step across all benchmarks, even in the absence of
replay data (M=0) and network expansion. A key factor behind SERENA’s success is its biologically inspired learning
mechanism, which balances plasticity and stability. Existing approaches are generally good at plasticity by acquiring
the knowledge of a given task while they suffer on the stability side by forgetting previously learned concepts, which
can be observed in Table 4 and Figure 3. Unlike existing state-of-the-art methods, which struggle to maintain past
knowledge even with the existence of replay and architecture expansion, SERENA achieves this naturally, ensuring
strong retention of prior concepts without compromising adaptation to new streams.
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Table 2: Average accuracy [ %] (higher is better) of SERENA compared to existing methods on different benchmarks. The results
of architecture expansion approaches are cited from Ye & Bors (2023) and denoted with . Note that iid-offline and iid-online are
not CL methods, and the best results are highlighted in bold.

Split-MNIST Split-CIFAR10 Split-CIFAR100 Split-MinilmageNet
Method (M=2k) (M=1k) (M=>5k) (M=5k)
iid-offline 98.4+0.1 852+1.1 58.3+0.6 54.7+0.9
iid-online 96.4 +0.2 59.9+3.1 223+32 19.2+48
finetune 19.8 0.1 17.6 +0.8 32+03 3.7+09
reservoir 922+0.7 42727 20.7+2.8 70+23
GSS 919+1.38 202+42 145+29 69+33
CoPE 93.8+0.6 50.8+2.1 228+1.5 13.4+1.1
MIR 91.8+3.5 393+52 17.1 1.7 74+23
CN-DPM ¥ 932+0.1 45202 20.1+0.1 27923
Dynamic-OCM + 94.0+0.2 492+1.5 21.8+0.7 26.6 +2.1
SEDEM 98.4+0.2 553+13 249+1.2 29.6+1.9
SERENA (M=0) 98.5+0.1 88.7+0.9 62.1+1.7 48.7+1.8
(a) Split-MNIST (MLP) (b) Split-CIFAR10 (ResNet18) (c) Split-CIFAR100 (ResNet18)
100 \ 92 M/ 65
\
< 9 <80 S
7 7 z
c 96 © 68 © 45
3 — iid-offline 3 8
£ 94 iid-online \ 256 <35
i —— reservoir i L
o o <%
o2 2 44 © 25
— CoPE M
9o ~— SERENA (ours) 32 15
1 2 3 4 5 1 2 3 4 5 1 5 10 15 20

Task [#] Task [#] Task [#]

Figure 2: Average accuracy [ %] after each stream on balanced benchmarks. SERENA outperforms all methods by a large margin,
including iid-offline which is not a CL method but a standard supervised batch learning, representing an upper reference point.

Another remarkable advantage of SERENA is its ability to achieve performance levels comparable to iid-offline learn-
ing, making it particularly valuable for real-world applications where data is encountered sequentially. This capability
bridges the gap between online continual learning and traditional offline training, demonstrating its potential for large-
scale deployment. Notably, SERENA achieves this without initializing entirely new models or storing replay data,
which is crucial for reducing computational costs, preserving privacy, and minimizing additional memory overhead.

Table 3: Average accuracy [%] and run time [hour] on Performance on a challenging scenario. We evaluated
Split-ImageNet. SERENA reaches offline performance in SERENA also on the large-scale ImageNet dataset, as shown

an online data-incremental setup. in Table 3, by dividing it into 20 sequential streams, a setup
Method Setup  Split-ImageNet RunTime W€ .refler to as Split-ImageNet. This benchmark serves as a

: realistic and challenging test for continual learning, as it re-

iCaRL (M=20k) online 211 6.6hrs  quires models to learn from high-dimensional, diverse visual
offline 14.96 642 hrs  data without revisiting previous concepts. Due to the absence

online 0.94 11.4 hrs of direct baselines in.existing podebases, we were unable to

FOSTER (M=20k) compare SERENA directly with them. Instead, we bench-
offline 37.76 80.7hrs  mark against iCaRL Rebuffi et al. (2017) and FOSTER Wang

SERENA (M=0)  online 36.22 41nhs €t al. (2022a), two widely recognized methods designed for

offline class-incremental learning that provide implementa-
tions compatible with ImageNet. To ensure a fair comparison, we evaluated both methods using a replay buffer of 20
images per class (totaling 20,000 images) in two different scenarios: I-epoch online and 50-epoch offline. Our results
reveal that iCaRL (Rebuffi et al., 2017) and FOSTER (Wang et al., 2022a) struggle significantly in the online setup,
which aligns with expectations, as both methods are inherently designed for offline continual learning, where multiple
training epochs help mitigate forgetting. While SERENA is specifically designed for the online setting, it substantially
outperforms a fundamental method in offline continual learning iCaRL (Rebuffi et al., 2017) and achieves performance
on par with the offline state-of-the-art method FOSTER (Wang et al., 2022a), despite operating in a far more challeng-
ing single-pass learning scenario. These results underscore SERENA’s capacity to handle large-scale, real-world data
streams efficiently without reliance on extensive memory buffers or multiple training iterations.
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Table 4: Average forgetting [ %] (lower is better) of SERENA compared to existing methods on different benchmarks. The results
of architecture expansion approaches are cited from Ye & Bors (2023) and denoted with {, and “~" indicates that the result was not
reported. Note that iid-offline and iid-online return zero forgetting since they are supervised learners, not continual learners.

Split MNIST Split CIFAR10 Split CIFAR100 Split-MinilmageNet
Method (M=2k) (M=1k) (M=5k) (M=5k)
iid-offline 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
iid-online 0.0£0.0 0.0£0.0 0.0+0.0 0.0+0.0
finetune 79.5+0.1 63.5+£2.2 58.6+1.3 652 +2.1
reservoir 6.4 £0.1 419+2.1 442+24 48922
GSS 69+1.7 584 +49 453+5.1 472 +4.7
CoPE 43+0.1 279+2.8 36.6 £2.2 394+24
MIR 6.8+35 37.6+£9.8 399+1.1 425+ 1.5
CN-DPM ¥ - - - -
Dynamic-OCM - - - -
SEDEM + - - - -
SERENA (M=0) 0.0 £0.0 0.7+04 1.5+1.1 1.7+13
(a) GSS (b) CoPE (c) SERENA
H«EOOODOOOOOOOOOOOOOOO ~gJyo o 0 00 O0O0OO0OO0OOOOOOOOO0O - 00O0O0OOOOOOOOOOTO OO
N—ZlmoDODOOOOOOOOOODUDU ~ELMFPO0O 0O 0O0OO0O0O0OOOOOOOOOOO ~ 000O0OOOOO0OODO®OOODOO0
mf131400000000000000000 m EEJ 0 0 0 0 0 0 0O OO OOOGOUOU OGO OO m 00O0O0OOOOOOOOOO OGO OO
<-21827FJ 0o 00 0000000000000 ~383638EJ0 0 0 0000000000000 < 0000000000O0O0GO0O0O
m—ZOZSIBIOmDO 00O0O0OOOOOOOOOO n- 35253539 0 0 00O 0OOOOOOOOOTOO wn EEICCHGENCERS] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O
©-17 12 3 10 10 0 00OOOOOOOOOODO © -28 24 34 28 0 00O0OOOOOOOOOOOO o EFECNNENEIM 0 0 0 0 0 0 0 0 0 0 00 0O
;r\—17261010620 00O0O0OOOOOOOOOO ;n—24191A17 36 00O0O0OOOOOOOOOO ;v\ EEENCCENCEIpAN 0 0 0 0 0 0 0 0 0 0 0 0 O
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Figure 3: Accuracy [ %] of each stream after the model has been trained on a new one for Split-CIFAR100. SERENA demonstrates
its strength by maintaining consistently high accuracy and near-zero forgetting across the streams compared to existing approaches.

Table 5: Used connections in ResNet18 indicate that a sig- Network Saturation. Random connection sharing among
nificant portion of connections remains inactive, suggesting concept cells enables efficient network usage over a broader

ample capacity to accommodate additional data streams. range of tasks. Table 5 illustrates that many connections
- stay inactive after processing all streams. For example, Split-

Dataset Activated Parameters [%] CIFARI10 consists of 5 streams, and 18% of the network con-
Split-CIFAR10 18+2 nections are utilized, despite each concept cell utilizing 5% of
Split-CIFAR100 5142 the connections. Similarly, Split-CIFAR100 has 20 streams,

and only 51% of the connections are activated, showing that

Split-MinilmageNet 2#3 network usage does not increase linearly with the streams.

Performance on imbalanced scenarios. All methods experience a decline in average accuracy when exposed to
the imbalanced data streams we introduce, with performance degradation becoming more pronounced as the degree
of imbalance increases. However, SERENA demonstrates a significantly lower performance drop compared to other
methods and consistently outperforms them, particularly in scenarios where the number of samples per stream is highly
limited, as in Figure 4b and Figure 4c.

This improvement can be attributed to SERENA’s novel mechanism of dynamically allocating new concept cells to
incoming data streams. Unlike existing methods that struggle with class imbalance due to overemphasis on majority
classes, SERENA effectively mitigates this bias by learning distinct representations on different neural paths for new
data while preserving previously acquired knowledge. This ensures that rare or underrepresented classes receive
sufficient attention, allowing for more balanced learning across different distributions.

By maintaining equal focus across all classes and streams, SERENA not only reduces the detrimental effects of im-
balance but also achieves performance levels comparable to or exceeding those of 50-epoch offline supervised batch
learning. This robustness is particularly critical in real-world applications where data is often collected in an online
fashion and naturally exhibits class imbalances, requiring models that can handle continuous long-term performance
and imbalanced learning.
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(a) Split-MNIST (MLP) (b) Split-CIFAR10 (ResNet18) (c) Split-CIFAR100 (ResNet18)
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Figure 4: Average accuracy [ %] on different imbalanced benchmarks. Although all methods experience some level of performance
degradation, SERENA improves existing ones by a large margin, including the upper reference point iid-offline, which is not a CL
method but supervised batch learning.

Run Time. SERENA maintains an on-par overall runtime to state-of-the-art methods while achieving significantly
higher accuracy by utilizing only a small, randomly selected subnetwork for each stream. This selective activation
reduces computational overhead during training and enhances efficiency in handling sequential learning tasks. For
instance, on a single A100 GPU, SERENA completes Split-CIFAR10, Split-CIFAR100, and Split-MinilmageNet in
approximately 5 minutes, 11 minutes, and 16 minutes respectively, matching the runtime of existing methods while
nearly doubling the achieved accuracy, as illustrated in Figure 5. This efficiency is particularly crucial in online
learning environments where rapid adaptation to new data is essential. By optimizing resource utilization without
sacrificing performance, SERENA presents a practical solution for real-time continual learning scenarios, making it
well-suited for large-scale applications with strict computational constraints.

(a) Split-MNIST (b) Split-CIFAR10 (c) Split-CIFAR100 (d) Split-MinilmageNet
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Figure 5: Overall runtime vs. average accuracy for each method. SERENA maintains a comparable runtime to existing methods
while achieving significantly higher accuracy, demonstrating its efficiency in online data-incremental learning scenarios.

Ablation Study. We present the results in Table 6, which provides a comprehensive analysis of the performance of
our models under different configurations, specifically varying in terms of sparsity levels, window sizes, drift detection
thresholds, and learning rates, all evaluated on the Split-CIFAR10 benchmark. To better understand the sensitivity and
robustness of our approach, we experimented with sparsity levels of 0.80, 0.95, and 0.99, each tested across multiple
window sizes of 5, 10, and 20, and paired with drift detection thresholds of 0.1, 0.5, and 0.9. Additionally, we varied
the learning rate across a range of values, including 0.0005, 0.001, 0.005, and 0.01, to observe the interaction between
learning dynamics and structural compression.

From these experiments, we observe that extreme sparsity levels, particularly 0.99, or overly aggressive learning rates
such as 0.01 frequently lead to a noticeable drop in final model accuracy. This suggests that excessive pruning or
overly rapid updates result in unstable learning dynamics and hinder the model convergence to effectively capture
meaningful patterns from the input data. On the other hand, a moderate sparsity with smaller updates tends to strike a
favorable balance between model compactness and task performance.

Among all tested configurations, the best performance, reaching an accuracy of 89.7%, was achieved using a sparsity
level of 0.95, a window size of 10, a drift threshold of 0.5, and a conservative learning rate of 0.0005. We believe this
particular combination provides a sweet spot where the model can adapt adequately to distributional shifts between
tasks without overreacting to noise or losing generalization.
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Table 6: Ablation of different network sparsities, learning rates, window sizes, and threshold values on Split-CIFAR10 in terms of
average accuracy [ %]. Best result is highlighted in bold.

Sparsity Level 0.80 0.95 0.99
Window Size Drift Threshold 1r=0.0005 Ir=0.001 lr=0.01 Ir=0.0005 Ir=0.001 Ir=0.01 Ir=0.0005 Ir=0.001 Ir=0.01
0.1 89.0 89.3 41.0 89.5 88.3 40.9 88.8 89.3 41.1
5 0.5 89.5 88.8 41.1 89.5 88.5 41.5 88.9 89.1 40.9
0.9 89.1 88.7 41.1 87.8 88.3 413 89.5 88.7 40.6
0.1 89.3 88.9 41.1 89.5 88.3 40.9 89.5 89.2 40.8
10 0.5 89.4 89.4 40.1 89.7 89.0 41.1 89.2 88.7 41.1
0.9 88.8 88.8 41.0 89.6 87.6 39.9 89.5 89.1 41.2
0.1 89.2 89.2 412 89.5 88.5 41.0 89.3 88.9 41.1
20 0.5 89.2 89.2 41.3 89.4 88.3 40.5 89.2 89.1 40.9
0.9 80.3 89.1 40.9 80.0 88.6 41.1 89.4 89.2 40.9

5 DISCUSSION

In this section, we first investigate how SERENA achieves performance comparable to offline learning by analyzing
the representation space of the neural network. Furthermore, we examine two critical discussion points for contin-
uval learning: never-ending learning and class-revisiting scenarios. These settings pose unique challenges for fixed-
capacity replay-free systems and demand novel strategies for efficient knowledge acquirement, retention, and reuse.
Although not the central focus of our current experimental evaluation, we discuss how SERENA’s working principles
offer a strong foundation for addressing these complex scenarios.

(a) iid-online (b) iid-offline (c) SERENA (ours)
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Figure 6: By learning specialized neural paths or concept cells Quiroga (2012) in a single pass, SERENA effectively separates
distinct data streams and classes—as indicated by different colors—with minimal overlap.

Space Projection. To better understand why SERENA surpasses the upper reference point iid-offline, which uses
50-epoch supervised batch learning, we analyze the t-SNE projection of feature representations, after training on
all streams. This analysis provides insight into how well different ways of training separate the streams and the
classes within the same streams. As shown in Figure 6, the iid-online approach struggles to maintain distinct class
boundaries, resulting in a near-random spread of samples, indicating poor feature separation. While the iid-offline
approach improves upon this, showing clearer class differentiation, overlaps and moderate spread persist, increasing
the risk of misclassification.

In contrast, SERENA exhibits well-defined class groups, achieving superior separation of each stream. Any observed
overlap is negligible and typically occurs only between semantically related classes within the same stream. The
curved structures in the t-SNE plot indicate that each network path or concept cell has learned a distinct manifold on
top of the initial stream, which forms a simpler and more compact cluster (orange-blue pair). This remarkable ability
highlights SERENA’s effectiveness in structuring learned representations, making it highly resilient to forgetting. By
dynamically leveraging distinct concept cells for each detected stream, SERENA ensures strong feature discrimination,
facilitating continual learning while achieving the performance level of the offline supervised batch learning.
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Table 7: Average accuracy [%] on Split-TinyImageNet, Never-Ending Scenario. Network saturation and reduced
which simulates a never-ending scenario with 100 streams.  plasticity are inherent limitations of many fixed-resource
replay-free continual learning methods, including SERENA.
Nevertheless, findings suggest that our approach offers a

Split-TinyImageNet =~ Used Parameters

(M=4k) (from 1IM) * oromising direction for such scenarios. Its design allows for
finetune L7 1IM (100%)  efficient parameter utilization by reusing existing connections
reservoir 2.0 11IM (100%) across streams rather than allocating entirely new parameters
GSS 2.4 11M (100%) for each stream and this significantly delays the saturation
CoPE 32 11M (100%) Without compromising performance. Our empirical analysis in
MIR 29 11M (100%) Table 5 substantiates this claim by demonstrating a sublinear
SERENA (M=0) 56.9 9.8M (89%) growth in parameter usage by overlap across different neural

paths. To emulate a never-ending scenario, we designed an
experimental setup involving 100 sequential streams using TinyImageNet (Le & Yang, 2015) in Table 7. Notably,
SERENA surpasses existing approaches both in performance and efficiency. While infinite stream lengths will in-
evitably exhaust any fixed model capacity, SERENA’s ability to sustain learning across long task sequences with
minimal redundancy represents a significant step toward scalable, never-ending scenarios.

100 1 o patn 1 Path2 mm Path3 mm pans mm parhs | Class-Revisiting Scenario. We conduct extensive evalua-

tions of SERENA on widely recognized online continual learn-
ing benchmarks to ensure fair comparisons. While those
benchmarks do not explicitly consider repetitive stream sce-
narios, we acknowledge that such settings represent a com-

pelling and realistic extension of the continual learning. De-
spite their practical relevance, task revisiting scenarios are
25 not yet standardized benchmarks in the field and thus remain
mostly underexplored. Therefore, it is an important challenge
0 that reflects a broader and largely unexplored area in continual

stream-l - Stream-2 - Stream-3 - Stream-4  StreamS  Jearning. For example, replay-based methods store samples
Figure 7: Neural path performances on each stream, after  from gl the tasks they encounter without discerning whether
completing all learning sessions on Split-CIFARI0. a task has truly changed or repeated. Similarly, architecture
expansion methods typically allocate new parameters for each incoming task without verifying task novelty, result-
ing in unnecessary model growth. Although SERENA does not currently implement a dedicated mechanism for task
recurrence, its architectural design offers natural extensibility to such cases. Specifically, SERENA’s integration of
concept drift detection and stream-specific neural paths enables the evaluation of existing paths upon encountering a
new input stream. If a previously established path yields high predictive accuracy, as proved in Figure 7, it could be
reused and interpreted as a sign of task recurrence rather than allocating additional resources. This potential for reuse
not only mitigates unnecessary parameter growth but also highlights SERENA’s flexibility and efficiency, making it a
strong candidate for future research in class-revisiting continual learning.

~
i

Top-1 Accuracy [%]

6 CONCLUSION

Existing online data-incremental learning approaches rely heavily on complex mechanisms, such as storing replay data
or expanding the model with entirely new network architectures, both of which introduce significant overhead costs
and potential privacy concerns. Inspired by self-regulated neurogenesis (Kempermann et al., 1998; Yiu & He, 2006)
and concept cells (Quiroga, 2012) observed in the human brain, we introduce SERENA for online data-incremental
learning. It dynamically adapts to concept drift by continuously fine-tuning the model and allocating neural con-
nections or pathways for new concepts without storing past data or expanding the initial architecture. This enables
SERENA to learn efficiently in a streaming setting while maintaining stability and minimizing interference. Addi-
tionally, we introduce new continual learning scenarios designed to better reflect real-world data dynamics where
the sample sizes gradually increase or decrease across learning sessions. Our extensive experiments demonstrate that
SERENA not only surpasses state-of-the-art methods but also surpasses offline supervised batch learning performance.
This underscores its effectiveness in real-world applications where storage constraints, computational efficiency, and
privacy considerations are critical. By eliminating the need for replay data and avoiding unnecessary architectural
expansion, SERENA provides a scalable and biologically inspired solution for continual learning.

Limitations and Future Work. While SERENA efficiently utilizes network capacity, prolonged learning across
an increasing number of streams may lead to model saturation, potentially limiting its ability to accommodate new
tasks. Future work could explore adaptive mechanisms for optimizing network capacity and other continual learning
scenarios, such as blurry and few-shot setups.

10
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BROADER IMPACT

This paper presents work whose goal is to advance the field of Machine Learning, especially on the subject of Online
Data-Incremental Learning. Besides the advancements in the field, it eliminates the need to store data or expand
models, thereby diminishing privacy, memory, computation, and scalability concerns.
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