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Abstract

The innate immune system plays diverse roles in health and disease. It rep-
resents the first line of defense against infection and is involved in tissue
repair, wound healing, and clearance of apoptotic cells and cellular debris.
Excessive or nonresolving innate immune activation can lead to systemic
or local inflammatory complications and cause or contribute to the devel-
opment of inflammatory diseases. In the brain, microglia represent the key
innate immune cells, which are involved in brain development, brain matura-
tion, and homeostasis. Impaired microglial function, either through aberrant
activation or decreased functionality, can occur during aging and during neu-
rodegeneration, and the resulting inflammation is thought to contribute to
neurodegenerative diseases. This review highlights recent advances in our
understanding of the influence of innate immunity on neurodegenerative
disorders such as Alzheimer’s disease, amyotrophic lateral sclerosis, Parkin-
son’s disease, and Huntington’s disease.
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INTRODUCTION

Neurodegenerative diseases are generally characterized by synaptic loss and neuronal death, re-
sulting in cognitive decline, dementia, and loss of motor function. Neuronal loss is attributed to
the formation, spread, and deposition of pathogenic protein aggregates, which can arise either
spontaneously or due to inherited mutations. Histologically, neurodegenerative diseases can be
classified according to the pathologic protein aggregate that is deposited in distinct brain regions.
These include the amyloidoses, with prion protein and beta-amyloid (Aβ) plaques manifesting in
Creutzfeldt-Jakob disease and Alzheimer’s disease (AD), respectively; the tauopathies, with the
characteristic neurofibrillary tangles of the hyperphosphorylated microtubule-binding protein tau,
which is also present in AD; the synucleinopathies, such as Parkinson’s disease, with aggregates of
α-synuclein (α-syn) forming Lewy bodies; and the transactivation response DNA binding protein
(TDP)-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) (1).

Protein aggregate deposition and neuron loss typically start in a specific region of the brain
and subsequently spread to other regions, though how this occurs remains controversial. Spread
of these aggregates—particularly of tau and α-syn, which form intracellular aggregates—may
proceed in a prion-like manner, where uptake of aggregates into neighboring cells seeds the
aggregation of the soluble protein in new cells (2). This seeding effect could also explain how
soluble fibrils can be more neurotoxic than other large aggregates (as in the case of Aβ). However,
it is also possible that aggregation of these intracellular proteins occurs in a cell-autonomous
manner and that the affected neurons are in a microenvironment that makes them vulnerable to
increased protein aggregation (3). Whereas mutations that predispose proteins to misfolding likely
drive aggregation in familial inherited disease, defects in proteostasis, such as dysfunctional protein
chaperoning and defective lysosomal clearance, may promote protein aggregation in sporadic
disease (4). Another key factor is age; risk for developing neurodegenerative disease increases as
we get older. This review considers the role of the innate immune system in aggregate formation,
deposition, and clearance; how these aggregates can trigger inflammation; and how inflammation
affects central nervous system (CNS) function.

NEURODEGENERATIVE DISEASE HALLMARKS

AD is the most common cause of dementia, with >46 million people worldwide estimated to be
affected (5). Sporadic AD, which occurs in 10–30% of the population aged over 65, is characterized
by extracellular Aβ plaques and accumulation of the microtubule-binding protein tau in neurons as
neurofibrillary tangles (6). Aβ is processed from the amyloid precursor protein (APP) by multiple
enzymes including the gamma secretase complex, a multiprotein complex mediating intramem-
brane proteolysis whose enzymatic subunits presenilin 1 (PS1, encoded by PSEN1) and presenilin
2 (PS2, encoded by PSEN2) are mutated in familial forms of AD (6). Pathologic mutations in APP,
PS1, or PS2 can be inherited in an autosomal dominant manner and manifest as early-onset AD,
which, in terms of disease progression and pathology, is comparable to sporadic, late-onset AD
(6). Although mutations in the gene encoding tau (MAPT ) produce tauopathies, they do not pro-
duce AD. This observation suggests that hyperphosphorylation of tau and neurofibrillary tangles
results from Aβ-related pathology, in agreement with the amyloid cascade hypothesis (3).

Parkinson’s disease (PD) is the second most common neurodegenerative disease, estimated to
affect 1–2% of the population aged over 60 (7). PD symptoms include the classic motor triad of
tremor, rigidity, and bradykinesia, as well as dementia (7). The characteristic motor impairment
in PD is a result of dopamine deficiency due to loss of dopaminergic neurons in the substantia
nigra pars compacta (8). Like AD, PD is a complex disease with both genetic and environmental
components, including the aggregation of α-syn.
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Various proteins have been suggested to be misfolded and prion-like in ALS. The disease is
characterized by progressive deterioration of the upper and lower motor neurons, resulting in rapid
loss of muscle function, with 50% of patients dying within 1.5 years of disease onset (9). In both
ALS and frontotemporal lobar degeneration, protein aggregates of TDP-43, gain-of-function
mutant superoxide dismutase 1 (SOD1), and hexanucleotide repeated expansion of C9Orf72 are
all associated with neuronal death and disease progression (1). Like α-syn and tau, misfolded SOD1
displays prion-like properties and is capable of seeding new aggregates in neighboring cells (9).

Huntington’s disease (HD) is a rare, autosomal dominant inherited disease with a prevalence
of 1 in ∼7,500 in Western populations and an age of onset of ∼45 years (10). An expanded CAG
repeat in the HTT gene, which encodes the protein huntingtin, corresponds to an abnormally long
polyglutamine sequence in the protein, giving it pathologic properties (10). In HD, the aggre-
gation of mutant huntingtin to form so-called huntingtin-rich inclusions culminates in neuronal
dysfunction and death (10).

MICROGLIAL FUNCTION DURING HOMEOSTASIS

Microglia are the main innate immune cells present in the CNS and are considered the resident
brain macrophages (11), although recent studies employing single-cell transcriptomic profiling
have revealed that microglia are epigenetically and transcriptionally distinct from other tissue
macrophages or bone marrow–derived macrophages (12). Microglia, unlike other tissue-resident
macrophages, do not arise from bone marrow precursors but are generated from a yolk sac–derived
pool of progenitors in the CNS (13). In addition, microglia can self-renew in situ upon receiving
an activation stimulus (14). Although the blood–brain barrier keeps the CNS immune privileged,
influx of peripheral immune cells is also possible. This occurs beneficially during infection and
pathogenically during autoimmune diseases such as multiple sclerosis. The function of microglia
is multifaceted: They are important for normal brain development, maturation, and homeostasis
as well as for responding to and clearing CNS infections. For instance, microglia are required for
complement C1q- and C3-dependent synaptic pruning in neuronal development (15, 16) and sup-
port proper functioning of neuronal networks. Microglia furthermore phagocytose apoptotic cells
during neurogenesis via the anti-inflammatory receptors Axl and Mer (17), and they may also sup-
port learning-dependent synapse formation by releasing brain-derived neurotrophic factor (18).

In the healthy CNS, resting microglia have multi-branched, long processes that are constantly
in contact with neurons, astrocytes, and endothelial cells, monitoring local synapses and surveying
for injury or infection. Upon detecting such a disturbance in homeostasis, activated microglia
change their morphology to become more rounded and “amoeboid” in shape, reflecting their
increased phagocytic capacity and production of proinflammatory cytokines (19). During aging
and neurodegeneration, there is evidence for both microgliosis, i.e., a total increase in the number
of microglia present in the CNS (20), and changes in microglial function.

MICROGLIAL ACTIVATION IN NEURODEGENERATION

High levels of proinflammatory cytokines, including tumor necrosis factor (TNF), interleukin
(IL)-1β, and IL-6, are expressed in the brains, cerebrospinal fluid, and serum of patients with
AD, PD, and HD (21). However, in contrast to the neuroinflammation that occurs in bacte-
rial or viral infection or in multiple sclerosis, in these neurodegenerative disorders there is no
accompanying infiltration of adaptive immune cells into the CNS (22). The source of these proin-
flammatory cytokines in the brain is therefore primarily microglia and other infiltrating peripheral
myeloid cells. In addition to detecting and responding to CNS infection by recognizing pathogen
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associated molecular patterns (PAMPs), microglia can also respond to sterile triggers, such as
protein aggregates or danger associated molecular patterns (DAMPs).

Identifying the precise DAMPs that activate microglia in the context of neurodegeneration is
difficult. There is extensive evidence that fibrillar Aβ and α-syn can act as DAMPs within the
CNS, but dying neurons can give rise to a multitude of other DAMPs, including ATP (23), high-
mobility group box protein 1 (HMGB1), and lysophosphatidylcholine (24). Hence, numerous
physicochemically diverse DAMPs can be recognized by different receptors, culminating in a
neuroinflammatory response (25). Figure 1 gives an overview.

Il1b
Tnf

RAGE

TLRs 
(1,2,4)

CD36

Soluble Aβ

Fibrillar Aβ

Lysosome Inflammasomes:
NLRP3,  
NLRP1/NLRC4

pro-IL-1β

ASC

Caspase 1

IL-1β

ATP
LPC

Fibrillar
α-Syn

Mutant
huntingtin

Aβ
α-Syn
SOD1

TDP-43A
gg

re
ga

te
d

Pu.1
C/EBP α/β

NFκB

Figure 1
PRR activation by protein aggregates in neurodegeneration. Soluble fibrillary Aβ or α-syn can be
recognized by cell surface receptors such as RAGE, TLR2, and TLR4, triggering NF-κB-dependent
proinflammatory gene expression and upregulating components of the inflammasome pathway. Uptake of
soluble Aβ mediated by CD36 can increase cellular Aβ concentrations such that Aβ aggregates. Fibrillar
and aggregated Aβ, α-syn, TDP-43, and SOD1, along with other DAMPs released by dying neurons such as
ATP and LPC, can trigger NLRP3 and NLRP1/NLRC4 inflammasome activation, which in turn triggers
IL-1β release. Aggregation-prone mutant huntingtin triggers Pu.1- and C/EBPα/β-dependent
upregulation of proinflammatory gene expression. Abbreviations: ASC, apoptosis-associated speck-like
protein containing a carboxy-terminal CARD; PRR, pattern recognition receptor; Aβ, beta-amyloid; α-syn,
α synuclein; RAGE, receptor for advanced glycation end products; TLR, Toll-like receptor; NF-κB,
nuclear factor κB; TDP, transactivation response DNA binding protein; SOD1, superoxide dismutase 1;
LPC, lysophosphatidylcholine; DAMP, danger-associated molecular pattern; ATP, adenosine triphosphate;
C/EBPα/β, CCAAT/enhancer binding protein alpha/beta.
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Similar to peripheral innate immune cells, microglia express all classes of innate immune sig-
naling receptors, also called pattern recognition receptors (PRRs). The best-characterized PRRs,
especially in regard to neurodegeneration, are the Toll-like receptors (TLRs) and inflammasomes.
TLRs are activated after engaging ligands that cause TLRs to dimerize and undergo conforma-
tional changes leading to the recruitment of the adaptor proteins MyD88 or TRIF (Tir-domain
containing adaptor inducing interferon-β). Downstream signaling cascades result in activation
and nuclear translocation of transcription factors, including nuclear factor κB (NF-κB) and mem-
bers of the interferon regulatory factor family, and subsequent induction of proinflammatory
cytokines (26). Inflammasomes are cytosolic multimeric signaling platforms that are required for
processing the inactive proforms of IL-1β and IL-18 into their mature active forms. This requires
oligomerization of the inflammasome “sensor” protein upon recognition of the trigger, followed
by recruitment of the adaptor ASC (apoptosis-associated speck-like protein containing a car-
boxyterminal CARD), and the subsequent activation of caspase-1. Active caspase-1 proteolytically
activates IL-1β and IL-18 cytokines and promotes an inflammatory cell death termed pyroptosis.
NLRP3 inflammasome activation is tightly regulated, and one of the key mechanisms is that both
pro-IL-1β and NLRP3 expression need to be induced (priming) before the second stimulus can
induce inflammasome activation (27). Exactly how NLRP3 is activated is still not understood,
although for particulate, crystalline, and aggregated ligands (such as the protein aggregates in
neurodegeneration), lysosomal damage and release of lysosomal proteases is proposed to trigger
NLRP3 oligomerization (27). The NLR proteins (nucleotide-binding domain, leucine-rich repeat
containing) are the best-characterized inflammasomes in neurodegeneration. The DNA sensing
AIM2 (absent in melanoma 2) inflammasome is also expressed in astrocytes and microglia and is
further upregulated during gliosis, a model of neurodegenerative disease (28).

Pattern Recognition Receptor Activation in Alzheimer’s Disease

One of the earliest receptors described for Aβ is the receptor for advanced glycation end products
(RAGE), which triggers microglial activation and secretion of proinflammatory cytokines (29,
30). Fibrillar Aβ has also been shown to bind to and elicit proinflammatory signaling in murine
microglia through the B-class scavenger receptor CD36 (31), which can form complexes with
TLRs 4 and 6 (32). While soluble (prefibrillar) Aβ does not directly induce inflammation in
microglia, CD36 also mediates the uptake of soluble Aβ, where it can then aggregate in the
lysosome (33). This intracellular, fibrillar Aβ is then able to activate the NLRP3 inflammasome,
resulting in IL-1β release (34). This uptake and activation is summarized in Figure 1. The
pathogenic role of the NLRP3 inflammasome and IL-1β in AD pathogenesis was confirmed in vivo
as NLRP3- or caspase-1-deficient mice in the APP/PS1 model showed improved spatial memory
and decreased Aβ plaque load in the brain (35). Of note, increased caspase-1 cleavage was also seen
in brain lysates isolated from either the frontal cortex or hippocampal cortex of patients with AD
compared to healthy control subjects, suggesting inflammasome pathway engagement in human
AD (35). Of note, monocytes from AD patients have more NLRP3 and NLRP1 expression than
healthy control subjects, concomitant with an increased release of IL-1β upon stimulation with Aβ

fibrils (36), whereas MCC950, a specific NLRP3 inhibitor, blocks Aβ- induced IL-1β release from
microglia and improves cognitive function in murine models (37). Aβ has also been described to
activate NLRP1 in neurons, triggering IL-1β release and neuronal pyroptosis (38). A recent study
demonstrated that the neuronal NLRP1 inflammasome was activated in response to stress (serum
starvation) to release IL-1β and even Aβ in a caspase-1- and -6-dependent manner (39). Because
IL-1β is a potent modulator of microglial responses, and IL-1 is known to have a pathogenic
role in neurodegenerative diseases (40), deciphering the exact contributions of the NLRP1 and
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NLRP3 inflammasomes in their respective cell types is of great interest. Recently described roles
for the AIM2 (41) and NLRC4 inflammasomes in mediating the inflammatory response in acute
brain injury (42) suggest that these inflammasomes could also play pathogenetic roles in AD.

Pattern Recognition Receptor Activation in Parkinson’s Disease

Microglial TLR2, which can heterodimerize with TLR1, binds to misfolded, fibrillar α-syn re-
leased from neurons, triggering TNF and IL-1β production via MyD88 and NF-κB (43, 44).
A similar study in a human monocytic cell line (THP1) confirmed that fibrillar α-syn, but not
oligomeric α-syn, could trigger TNF and IL-1β upregulation in a TLR1/2-dependent manner
(45). TLR4 may also play a role in α-syn microglial responses as α-syn uptake, proinflammatory
cytokine release, and reactive oxygen species production were all TLR4 dependent in microglial
cultures (46). Moreover, in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin)–induced
murine model of PD, TLR4-deficient mice were protected, suggesting a detrimental role for
TLR4 in PD pathogenesis (47). The involvement of the NLRP3 inflammasome in α-syn-induced
inflammatory responses is also not completely elucidated. Fibrillar α-syn induced pro-IL-1β

and NLRP3 mRNA expression in human monocytes, and it induced IL-1β release in mono-
cytes and THP1 cells in an NLRP3- and caspase-1-dependent manner (45, 48). In contrast,
Gustin and colleagues (49) found that NLRP3 is not activated by α-syn in primary mouse mi-
croglia, although a recent study demonstrated increased NLRP3 expression in a mouse microglial
cell line upon α-syn treatment, which correlated with caspase-1-dependent IL-1β release (50).
Finally, NLRP3-deficient mice were protected from MPTP-induced loss of nigral dopaminergic
neurons and had decreased MPTP-induced caspase-1 activation and IL-1β release (51), suggest-
ing a role for NLRP3 in PD development. Interestingly, dopamine itself was described to inhibit
the NLRP3 inflammasome (51); however, whether inflammasome activation precedes the loss of
dopaminergic neurons, or is a result of that loss, remains to be determined.

Pattern Recognition Receptor Activation in Amyotrophic Lateral Sclerosis

The DAMPs contributing to neuroinflammation in ALS are less well characterized than those
underlying AD and PD. Recombinant TDP-43 protein triggered TNF and IL-1β induction
when added to microglia and was cytotoxic to motor neurons in coculture with microglia (52).
This release was due to NF-κB and AP-1 activation downstream of CD14 (52), and although the
nature of the aggregates and their uptake was not characterized, TDP-43 with gain-of-function
mutations was able to activate microglia more effectively than wild-type protein at lower doses
(52). Similarly, recombinant mutant (G39A) SOD1 triggered IL-1β release from primary murine
microglia, whereas wild-type SOD1 did not (53). Treating G39A SOD1 transgenic mice with an
IL-1R antagonist (IL-1Ra), or genetically deleting IL-1β or caspase-1, slowed disease progression
and modestly improved cognitive function (53). Anakinra, a recombinant form of IL-1Ra, was
recently tested in a pilot study for ALS, and although lower cytokine levels were observed in the
first 24 weeks of treatment, this observation did not extend to the full 52 weeks of the study (54).
However, the drug was well tolerated, and further studies will answer whether targeting IL-1β in
ALS is therapeutically desirable.

Pattern Recognition Receptor Activation in Huntington’s Disease

To date there is little evidence that mutant huntingtin acts as an extracellular DAMP to induce
inflammation in CNS cells. Huntingtin is, however, highly expressed in both neurons and mi-
croglia, and a recent study determined that overexpression of mutant huntingtin in primary murine
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microglia led to increased expression of inflammatory genes in the absence of any activating stim-
uli (55). This was associated with increased expression and activity of the key myeloid transcrip-
tion factors Pu.1 and C/EBPα/β (CCAAT/enhancer binding protein alpha/beta). Furthermore,
microglia overexpressing mutant huntingtin induced more neuronal cell death than their coun-
terparts expressing wild-type huntingtin, suggesting a mechanism whereby mutant huntingtin
expression results in basally hyperinflammatory microglia, which can then be further activated
by other DAMPs released by dying neurons (55). Whether aggregation-prone huntingtin also
triggers inflammasome activation and how mutant huntingtin activates Pu.1 and C/EBP activity
in microglia remain to be determined.

MICROGLIAL DYSFUNCTION IN NEUROINFLAMMATION

There is evidence that IL-1β and IL-6 can contribute to tau hyperphosphorylation, a prerequisite
for the formation of neurofibrillary tangles (56). Moreover, reactive oxygen species and nitric
oxide produced by activated microglia can be directly cytotoxic to neurons (57). One of the most
intriguing possibilities is that these inflammatory cytokines cause microglia to be dysfunctional,
particularly by modulating their phagocytic capacity (Figure 2). Indeed, an emerging consensus
is that the microglia surrounding Aβ plaques or Lewy bodies are not activated, as originally and
commonly interpreted, but are instead nonfunctional (58, 59). Proinflammatory cytokines were
shown to downregulate the expression of microglial receptors involved in phagocytosis, resulting

Systemic inflammation
Danger signals
Pathogen-derived signals
Microglial “priming”

Inflammatory cytokines
Reactive oxygen species
Nitric oxide
Neuronal death

Growth factors
Neurotrophic factors

Homeostatic tissue signals
Metabolites

Healthy
microglia

Dysfunctional
microglia

Defective proteostasis
Dysfunctional phagocytosis
Protein aggregates
Spreading of aggregates
Pruning of synapses

Brain development
Brain maturation
Effective pruning

Phagocytosis
Infection control

Figure 2
Microglial function in homeostasis and dysfunction in neurodegeneration. Healthy microglia are maintained
by homeostatic tissue signals from surrounding cells in the microenvironment and play key roles in brain
development, maturation, synaptic pruning, phagocytosis, and infection control. Additionally, healthy
microglia support neurons by secreting growth factors and neurotrophic factors. Age, local and systemic
inflammation, and other factors can cause microglia to become dysfunctional. Microglia can recognize both
pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs),
leading to an amplification in inflammation and a “primed” state. This, coupled with defects in proteostasis
and dysfunctional phagocytosis, can lead to an increase in pathogenic aggregates, as well as a
hyperinflammatory state that is neurotoxic.
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in impaired Aβ clearance in murine AD models (60). This concept has been supported by genetic
studies that identified rare variants in immune receptor genes involved in phagocytosis as confer-
ring increased risk of sporadic AD, including TREM2 (triggering receptor expressed on myeloid
cells 2), inhibitory receptor myeloid cell surface antigen CD33, and the complement component
3b/4b receptor 1 (CR1) (58). In keeping with this, a recent study showed that Aβ increased com-
plement C1q levels, which may aberrantly activate the developmental synaptic pruning process
by microglia, leading to synapse loss in AD (61).

Of these receptors, TREM2 has received the most interest (reviewed in Reference 62). TREM2
is a receptor expressed highly in microglia and other myeloid cells that signals through the adaptor
Dap12 (also known as TYROBP) to initiate a multitude of functions. These include phagocytosis,
survival, and proliferation and secretion of cytokines (62), as well as an immunosuppressive role
in TLR-induced inflammation in macrophages (63, 64). A systems-analysis study on post mortem
brain tissue from patients with late-onset AD identified a key role for Dap12/TYROBP and
inflammatory gene networks in AD progression (65). In vitro studies suggested TREM2 could be
directly involved in Aβ clearance (66), but the function of TREM2 in AD in vivo is still being fully
elucidated. In two recent studies, TREM2 deficiency also reduced neuroinflammation in the brain
tissue of mice with either APP/PS1 (67) or 5XfAD mutations (68). In one study (68), the overall
outcome of TREM2 deficiency was increased Aβ accumulation and neuronal loss, but another (67)
found that TREM2 deficiency improved disease outcome, suggesting that TREM2 is detrimental
in AD pathology. The differences between these studies were reconciled by a further study that
investigated TREM2 involvement in AD pathogenesis in vivo at several time points; it suggested
that TREM2 is required for early microglial expansion around Aβ plaques (68), which limits
diffusion of plaques and ensuing neuronal damage to Aβ (69). A number of ligands for TREM2
have also been recently described, including phospholipids that are associated with fibrillar Aβ (68)
and apolipoprotein E, of which the variant ApoE4 is encoded by a well-established AD risk gene
(70, 71). Whether microglial TREM2 binding of these DAMPs results in increased inflammation
or increased Aβ clearance, and how this affects AD pathogenesis, remain intriguing questions.

During aging, microglia may become hyperresponsive—with increased proinflammatory cy-
tokine output and upregulated cell surface receptor expression—and/or assume a dysfunctional
state with loss of phagocytic functionality and the ability to degrade excess proteins (72). The phe-
nomenon of microglial priming, whereby primed microglia have an exaggerated or heightened
response to a second inflammatory stimulus compared to naı̈ve microglia, was proposed to explain
microglial dysfunction in aging (73). Microglial priming is similar to the newly emerging concept
of “trained immunity” or “innate immune memory,” in which peripheral innate immune cells such
as monocytes undergo epigenetic and metabolic changes upon an initial challenge by a stimula-
tory trigger. This acquired cellular programming results in an intensified adapted (or maladapted)
response to a secondary challenge (74). Epigenetic changes modulate gene expression by variably
acetylating or methylating the histone proteins in the region of interest and thus altering the
accessibility of transcription factors and transcriptional machinery to target promoters. For exam-
ple, the histone H3K27me3 demethylase JMDJ3 ( Jumonji domain containing 3) was required for
polarizing microglia toward an anti-inflammatory phenotype (75). Consistent with this, JMDJ3
knockdown promoted microglia-mediated neuronal cell death in microglia/neuron cocultures, and
in vivo knockdown of JMDJ3 exacerbated dopaminergic neuron loss in a MPLT-induced model
of PD (75). Similarly, in a murine model of AD, profiling the epigenetic changes in the hippocam-
pus by comparing H3K4 methylation or H3K27 acetylation states showed increased transcription
factor accessibility to immune genes and their enhancer regions, suggesting increased immune
gene expression, and a concomitant decrease in genes associated with synaptic plasticity (76). This
supports the idea that microglial priming could indeed be mediated by epigenetic changes.
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The source of the initial stimulus that primes microglia in aging remains unclear. Local factors
within the CNS, lack of inhibitory signals from surrounding neurons, and factors triggered during
systemic inflammation are all possibilities, and not mutually exclusive. Indeed, many studies have
documented that induction of systemic inflammation can trigger increased disease pathology in
murine models of AD, PD, and ALS (77). A recent study found that effective microglial function
is dependent on microbiome-derived short-chain fatty acids, suggesting that the microbiome and
nutrition could also have an impact on innate immune function in neurodegeneration (78). This is
consistent with a study suggesting that gut microbiota can influence blood–brain barrier perme-
ability (79). With the advance of single-cell analyses at the epigenetic, transcriptional, proteomic,
and metabolomic levels, it will be interesting to systematically define the changes in microglia
during aging, discern whether they are indeed primed during neurodegeneration, and determine
whether this is reminiscent of peripheral trained immunity.

CONCLUSIONS

In the last two decades, it has been appreciated that innate immune cells, including microglia, are
equipped with a broad range of germ-line encoded signaling receptors allowing them to respond
to microbes or damage to tissues. We have started to understand under which conditions these
pathways play beneficial or pathogenic roles in the brain, but we are still far from a clear picture
of the breadth of innate immune function in brain homeostasis and disease. Only a fraction
of these innate immune receptors and signaling pathways have been studied in the context of
neuroinflammatory or neurodegenerative diseases.

Future work needs to better decipher the contribution of other pathways, such as the nucleic
acid–sensing pathways, to the inflammatory response in the brain. Indeed, aberrant cytokine
production due to gain-of-function mutations in nucleic acid–sensing receptors or their regulatory
pathways triggers autoinflammatory syndromes in people with type I interferonopathies. Many of
these diseases present with CNS defects (80).

There is also evidence that type I interferon (IFN) signaling is associated with aging in the
choroid plexus, and that blocking type I IFN activity may improve cognitive function (81).
Whether this type I IFN signaling in aging arises from increased sensing of damaged DNA
or cellular senescence by cytosolic DNA and RNA sensors remains to be determined.

It is well known that neurodegenerative diseases are associated with cell demise. As the ac-
tivation of many innate immune pathways can cause inflammatory forms of cell death, such as
pyroptosis, it is important to better understand how inflammatory cell death pathways contribute
to neuroinflammation or neurodegenerative diseases.

The quantity and quality of innate immune cell responses are profoundly influenced by cellular
metabolism and the epigenetic status of the cell. It would be beneficial to better define how
microglial function can be tuned by changes in cellular metabolism or innate immune training
induced by local or systemic triggers, and how diet, lifestyle, and aging impact this. As innate
immune pathways are amenable to pharmacologic interference, there is a great prospect that a
better understanding of the contribution of different pathways to neurodegenerative diseases could
lead to future development of targeted therapies.
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