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Résumé— Cet article traite de la stabilisation des systémes
bilinéaires fractionnaires par 1’approche de la nouvelle
généralisation du lemme de Gronwall-Bellman. L’utilisation
de cette nouvelle approche permet de montrer sous certaines
hypothéses adéquates, qu’on peut garantir une stabilisation
asymptotique par retour d’état statique et par retour de
sortie statique des systémes bilinéaires fractionnaires. La
méthodologie est illustrée par ’intermédiaire d’un exemple
numérique.

Mots-clés— Systémes bilinéaires fractionnaires, nouvelle
généralisation du lemme de Gronwall-Bellman, retour d’état
statique, retour de sortie statique, stabilisation asympto-
tique.

I. INTRODUCTION

Beaucoup de vrais systemes dynamiques sont mieux
caractérisés par un modele dynamique d’ordre non en-
tier, basé en générale sur la notion de différentiation ou
d’intégration de ’ordre non entier.

Les systemes fractionnaires ou d’ordre non entier sont
aussi stables que leurs homologues, les systemes d’ordre
entier. En effet, du fait que les systemes fractionnaires sont
d’une part, pour la plupart considérés comme des systemes
a mémoire qui sont généralement plus stables comparés
aux systemes d’ordre entier et d’autre part, du fait qu’ils
affichent une dynamique beaucoup plus sophistiquée, ce
qui présente une grande importance par exemple dans le
domaine de la communication sécurisée. Récemment, le
probleme de la synchronisation chaotique a été naturelle-
ment étendue aux systémes fractionnaires en raison des ap-
plications nombreuses et potentielles en physique des lasers,
des réacteurs chimiques, de la communication sécurisée et
de la biomédecine.

Le calcul traditionnel étant basé sur la différentiation et
I'intégration d’ordre entier. Le concept du calcul fraction-
naire a le potentiel énorme de changer la maniere dont nous
voyons, modélisons, et commandons la nature autour de
nous. La raison principale de 1'usage fréquent des modeles
d’ordre entier était 'absence des méthodes de solution pour
des équations fractionnaires ou d’ordre non entier. Actuel-
lement, un bon nombre de méthodes pour ’approximation
de la dérivée et de l'intégrale fractionnaire peut étre faci-
lement employé dans diverses applications notamment en
théorie du controle (nouveaux contrdleurs et modeles de
systémes fractionnaires) en théorie de circuits électriques
(fractances), en théorie de condensateur etc...

D’ailleurs, quelques études théoriques et expérimentales
montrent que certains systemes électrochimiques [1], ther-

miques [2] et viscoélastiques [3] sont régis par des équations
différentielles a dérivées non entieres. L’utilisation de
modeles classiques basés sur une dérivation entiere n’est
donc pas appropriée. Des modeles basés sur des équations
différentielles a dérivées non entieres ont, a cet effet, été
développés [4]. Par ailleurs, la question de la stabilité est
trés importante surtout en théorie du controle. Dans le cas
de la commande des systemes d’ordre fractionnaire, il y’a
beaucoup de défis et des probleémes non résolus liés a la
théorie de la stabilité tels que la stabilité robuste, la stabi-
lité interne, la stabilité & entrée bornée et a sortie bornée
etc...

L’objectif de ce papier est d’étudier la stabilisation par
retour d’état statique et par retour de sortie statique des
systemes bilinéaires fractionnaires non homogenes. L’ap-
proche naturelle pour cela, est l'utilisation de la partie
linéaire du systéme, pour montrer que sous certaines hy-
potheses adéquates, il est possible de controler le systeme
global par retour d’état statique et par retour de sortie
statique, en utilisant la nouvelle généralisation du lemme
de Gronwall-Bellman. La preuve du lemme de Gronwall-
Bellman standard ou classique et son utilisation dans la
théorie des systemes non linéaires peuvent étre trouvés
dans [5], [6], [7] et quelques généralisations de ce lemme
dans [8], [9].

Des définitions de base du calcul fractionnaire, en par-
ticulier, la fonction de Mittag-Leffler, sont présentées
d’abord dans la section II.

Puis, dans la section III, on présente la définition de
la stabilité des systémes dynamiques d’ordre fraction-
naire commensurable en mettant en exergue les différentes
régions de stabilité.

Dans la section IV, on propose d’étudier la stabilisation

asymptotique des systemes bilinéaires fractionnaires ou
d’ordre non entier par retour d’état statique et par retour
de sortie statique en utilisant une nouvelle généralisation
du lemme de Gronwall-Bellman. Un exemple numérique
est utilisée dans la section V pour illustrer nos résultats.
La nouvelle généralisation du lemme est prouvée également
dans 'annexe.
Notations. ||z|| = VazTz et ||A]| = v/ Amax(ATA) sont,
respectivement la norme euclidienne de vecteur et la norme
spectrale de matrice ou /\maX(ATA) est la valeur propre
maximale de la matrice symétrique ATA. (f(-)); est la i®™e
composante du vecteur f(-).



II. DEFINITIONS PRELIMINAIRES

A. Définition de la dérivée fractionnaire
Dans ce papier, les symboles de la dérivation fraction-
naire ont été normalisés comme suit [10], [11]

do

I a>0
oD =91, a=0 (1)

[ldr)) a<o

ol ,Djf* représente 'opérateur de dérivation d’ordre «,
a est la limite inférieure et ¢ la limite supérieure de cet
opérateur de dérivation fractionnaire. Dans ce qui suit, on
pose a = 0, alors I'opérateur ,Dj* est remplacé par D<.

La formulation suivante des dérivées fractionnaires dite
dérivée au sens de Caputo est souvent utilisée puisque sa
transformée de Laplace conduit a des conditions initiales
qui prennent la méme forme que pour les systémes a dérivée
d’ordre entier avec des interprétations physiques claires.

La dérivée au sens de Caputo est définie par [11], [12] :

d f( ) 1 . da" f(T)
SFAON dtm B
dt®  D(n-a) /s (t—7)2-n+t dr, n—lga<n (2)

avec n € IN et a € RT, ot I'(.) est la fonction
Gamma FEuler. L’interprétation physique et la résolution
des équations différentielles fractionnaires ont été large-
ment traitées dans [11], [12].

Dans la résolution des équations différentielles et ana-
lytiques, I'utilisation de la technique de transformation de
Laplace est souvent nécessaire et joue un role important
dans la résolution des équations & dérivée fractionnaire.

La transformée de Laplace de la dérivée fractionnaire au
sens de Caputo de I’équation (2) est donnée par :

[ttt = s - s 00 3
k=0

ou s € C est 'opérateur de Laplace. En considérant que
toutes les conditions initialles sont nulles 1’équation (3)
peut étre réduite a

£(SL) = secirn. ()

L’initialisation appropriée est également cruciale dans la
résolution et la compréhension des équations ou systemes
fractionnaires.

Ainsi, on adopte généralement la notation pour la cau-
salité “arrogante” de la fonction ou du systeme (pour tout
0<a<)

DPf(t) = adi f(1) + adg f(2),

o ,d¢ f(t) est la dérivée d’ordre o qui peut s’écrire sous la
forme suivante

avec a<(c=0)<t (5)

d 1 !
w10 =3 (e [ oo dr)  ©
et ot ,d§f(t) = ¥(a, f,a,0,t) est une fonction initiale

définie par

0 T
o5 110 = 0000 = 3 (= [ 2 e 07)
@

B. Définition de la fonction de Mittag-Leffler o deux pa-
rametres

La fonction de Mittag-Leffler est une généralisation de
la fonction exponentielle, elle est souvent utilisée dans
la résolution des problemes physiques décrits par des
équations a dérivée ou intégrale fractionnaire. Elle est
également connue pour avoir un nombre fini de zéros réels,
ce qui est applicable & de nombreux problemes physiques.

La fonction de Mittag-Lefller & deux parametres est
définie par la relation suivante [11], [13] :

Ea,ﬁ(z)zkzﬂir(awm, a>0,8>0 (8)

o0 Zk B
Eoq(z) = ;;) b 1D = E.(2)

est la fonction de Mittag-Leffler & un seul parametre.
La transformée de Laplace de la fonction de Mittag-
Leffler & deux parametres peut s’écrire :
s Bkl

oo
—styak+B8—1 (k) _
/Oe stye Eaﬁ(at"‘)dt_ (o)l (9)

ou d(k

@B Ttk a,B-
Lemme 1 : [14] Si a < 2, 8 un nombre réel choisi arbi-
trairement, v est tel que 0.5ar < v < min[mr, 7a] et Cy > 0

est un réel constant, alors

|Ea,p(2)| < ?OZ v < Jarg(z)| < 7w, 2 #0.
Pour une matrice de n-dimension, nous obtenons le corol-
laire suivant

Corollaire 1 : [15] Si A € C"" et a < 2, B est un
nombre réel choisi arbitrairement, v est tel que 5 < vy <
min[m, 7] et § > 0 est un réel constant, alors

1B (4] < T 7 < are ()] < 7, i= 1o
(10)
ott 0=max(C, || P||||[P~||C), Xi(A) est la i®™® valeur propre
de la matrice A, P est une matrice de transformation non
singuliere donnée par la forme canonique de Jordan de la

i

trice A, —— > 0
maftrice 1+)\1

1+ [A] 712
constantes positives.

,ou C et Cp, sont des

III. STABILITE DES SYSTEMES LINEAIRES
FRACTIONNAIRES

Dans la théorie de la stabilité des systemes linéaires a
temps invariant, nous savons bien qu’un systéme est stable
si les racines du polynoéme caractéristique sont négatives ou
a parties réelles négatives si elles sont complexes conjugés
donc situées sur la moitié gauche du plan complexe. Par
ailleurs, dans le cas des systeémes fractionnaires linéaires a
temps invariant, la définition de la stabilité est différente
des systémes d’ordre entier. En effet, la notion intéressante
est que les systemes fractionnaires ou d’ordre non entier
peuvent bel et bien avoir des racines dans la moitié droite
du plan complexe.



La stabilité des systemes fractionnaires a été étudiée dans
[16], [17], o des conditions nécessaires et suffisantes ont été
obtenues donnant lieu au théoreme suivant :

Théoréme 1 : [16], [17] Considérons le systéme linéaire
fractionnaire d’ordre commensurable suivant :

Dga(t) = Ax(t) + Bu(t)

y(t) = Cx(t) 0<axl (11)
x(0) = xo
z(t) € R", u(t) € R™, y(t) € RP. Soit o(A)

Dy )

Le systeme (11) est stable si est seulement si :

|arg(A;)] > %, Ai € 0(A), i=1...n (12

D’apres, ce théoreme de la stabilité, il en découle les
différentes régions ou zones stables et instables, (voir figure

1). Im
stable
stable
stable instable
agy
—af Re
stable instable
stable
stable

Fig. 1. Régions de stabilité des systemes d’ordre fractionnaires avec
0<axl1

IV. STABILISATION DES SYSTEMES BILINEAIRES
FRACTIONNAIRES

Considérons le systeme bilinéaire fractionnaire décrit par
le modele suivant :

m
Dex(t) =Apx(t) + Z w; (t)A;x(t) + Bu(t)
i=1
() = Calt e
z(0)=xz¢
(13)
ou z(t) € R" est le vecteur d’état, u(t) € R™ est le vec-
teur des entrées, y(t) € RP représente le vecteur de sortie,
u;(t) est la i€ coordonnée de u(t), A; est la matrice as-
socieé a la coordonnée u;(t), Ag, B et C sont des matrices
constantes de dimensions appropriées.

A. Stabilisation par retour d’état statique

Le but de cette section est d’étudier le probleme de la
stabilisation asymptotique par retour d’état statique du
systéme bilinéaire fractionnaire (13) avec C = I,,.

Hypothése 1 : Supposons qu’il existe une matrice gain
L telle que la relation (10) du corollaire 1 soit satisfaite,
c’est a dire, la matrice A est remplacée par la matrice A=
(Ap + BL) avec =1, et que

arg(Ai(A))

~’ QT

pour tout i = 1,...,n. O

La stabilisation asymptotique du systéme bilinéaire frac-
tionnaire (13) avec C' = I, est donnée par le théoréme
suivant.

Théoréme 2 : Sous U'hypothese 1, le systéme (13) avec
C = I,, controlé par le retour d’état suivant

u(t) = La(t) (14)

est asymptotiquement stable si est seulement si toutes les
valeurs propres de la matrix A = (Ag+ BL) sont a partie
réelles négatives et si I’état initial ||zo|| satisfait la relation
suivante

i

26%(1 L1 Il Al

i=1

[[zoll < (15)

De plus, létat du systeme x(t) est borné en norme
comme suit

Ollzoll
1+ HEH ta

lle@Il < m
202||L|[lzoll Y Il Ail

i=1

T
v (5)

Preuve 1 : En utilisant la transformée de Laplace du
systeme (13) et la relation (14) avec C' = I,,, nous obte-
nons 1’équation suivante

X(s)=(I,s*—A)"! <s°‘_1x0 +L (Z Ax(t) (La:(t))l>>

= (17)

afa

ot A= (Ao + BL).

Puis, en appliquant la transformée inverse de Laplace de
léquation (17), obtenue d’une part grace & la transformée
inverse de la fonction de Mittag-Leffler a deux parametres,
et d’autre part, en utilisant 'intégrale de convolution, on
obtient 1’égalité suivante

z(t)=Fa,1 (gta)$0

t _ m
+/ (t—7)"Ea,a(A(t—7)%) <Z Aim(T)(L.I(T))i> dr  (18)
0 i=1

en appliquant ensuite la norme des deux cotés de ’équation
(18) et en utilisant le corollaire 1, on obtient l'inégalité
suivante

lz(r)|*d T
(19)

llz@I <

Ollzoll /t O35 1A IILIE = rfl*—*
1+ |l Ate]| o 1+ [JA(t— 1)

ou d’une maniere équivalente

N /‘ 07y ALt = 7)>
0 1+ Al — )

Ol|zoll

_— lz(7)|12 d .
1+ [|Aljt>

(20)

[EQIIES

En utilisant ainsi le lemme 3 de la nouvelle généralisation
du lemme de Gronwall-Bellman et en considérant

0> AL (=)
(t)_ QHJ:OH i=1 _
1+ A[[( —7)*

14| Al fr)=

(21)



On peut vérifier que I'inégalité (42) du lemme 3 est bien
vérifiée, c’est a dire

b
1—(0— 1)/ (r(s))" ' f(s)ds >0 (22)
a
I'inégalité (22) peut s’écrire sous la forme
C g 0> ALl (=)
7/ lzoll =1 dr>0,vt>0  (23)
Jo (1+[|A[[r) L+ AJl(E =)
ou d’une maniere équivalente
g t _ a—1
1= ol 14l [ — e — =D —drsovis o,
X Gl el o=
(24)

vérifions maintenant que 'inégalité suivante est bien sa-
tisfaite

1= 0% L][lzoll Y [l Aill ®(t) > 0,7t > 0 (25)
i=1
ou

_ ¢ 1 (t—71)2t
W= 0 [~ 0+ [A ¢ -

dr. (26)

L’intégrale dans (26) peut étre décomposer en une somme
de deux intégrales

e 1 (t—7)o ! .
b= /o (1+ HEH 7o) (1+ HZH (t — 7)) ‘
f C__ar @)

(1+ HEH 7o) (1+ HZH (t — 7))
avec 0 < a < 1 et (t —7) > 7 pour tout 7 € [0, £], on

obtient

(t—r1)o 1t

/2 1~ — dr
0 (14 HAH 7o) (14 HAH (t — 7))

dr

2 1 ro-l
o Ao @

de méme, 0 < a < 1 et (t —7) < 7 pour tout 7 € [£, ],
(t—7)o 1t
ro) (1+ || 4]| ¢t = 7))

on a
K 1
b
(t—7)ot

o N
i (1+’ﬁ’ (t — 7)) (L+ [|A[(E - 7))

dr

2

dn, (29)

_ /3 ! !
0 (|| A ) 1+ || 4] e

en substituant (¢t — 7) par 7. En utilisant les deux relations
(28) et (29), la relation (26) peut étre réécrite comme suit

% 1 a—1
<I>(t):2/ T
0

— — dr
(1+ HAH 7o) (14 HAH )

% Ta—l
:2/ —dr7 (30)
o (|4 ey
cette derniére est équivalente a
2 1
) = —=1 |1~ =7~ |- (31)
Al ()

A partir de équation (31), on montre que ®(t) > 0 si
t > 0 et la relation suivante

L= L[llzollY_llAill (1)

i=1

dans l'inégalité (25) est minimale quand ¢ tend vers Uinfini.
Par ailleurs, I'inégalité (25) est satisfaite si I’état initial
vérifie la condition (15).

A partir de Péquation (20), on applique le lemme 3 de la
nouvelle généralisation du lemme de Gronwall-Bellman et
on obtient I'inégalité suivante

0|0l

1+ HZ’ to

le@)] <

I (32)
1— 0| Lzl D I1 A ()

i=1

qui vérifie bien I'inégalité (16) énoncée dans le théoreme 2.

Enfin, on vérifie bien que si le temps ¢ tend vers l'infini,
|z(®)|| converge vers zéro, ce qui implique que la solution
du systeme fractionnaire est asymptotiquement stable.

B. Stabilisation par retour de sortie statique

Dans cette section, on cherchera également a étudier le
probleme de la stabilisation asymptotique par retour de
sortie statique du systeme bilinéaire d’ordre fractionnaire
(13).

Pour cela, nous supposons que I’état du systeme bi-
linéaire d’ordre fractionnaire est partiellement mesurable
et nous considérons toujours le systéme bilinéaire fraction-
naire défini dans (13).

Hypothése 2 : Supposons qu’il existe une matrice gain
K telle que la relation (10) du corollaire 1 soit satisfaite
c’est & dire la matrice A est remplacée par la matrice A =
Ay + BKC avec =1, et que

jarg( ()] > 5
pour tout i =1,...,net A e R"™". O

Remarque 1 : 1l n’est pas évident de déterminer le gain
K de I'hypothese 2 dans le cas d'un retour de sortie sta-
tique, ceci mene tres souvent aux problemes d’optimisation
non convexes cités dans [18] : il n’existe pas de conditions
nécessaires et suffisantes sur les matrices données A, B et
C telles que le gain K satisfait le corollaire 1. Dans la
littérature, beaucoup d’auteurs ont contribué et proposé
des lois de commande par retour de sortie statique sur les
systémes linéaires (voir [19], [20] et références incluses). o



La stabilisation asymptotique du systéme bilinéaire frac-
tionnaire (13) contrdlé par un retour de sortie statique est
donnée par le théoréeme suivant.

Théoréme 3 : Sous lhypotheése 2, le systéeme (13)
controlé par le retour de sortie statique suivant
u(t) = Ky(t) (33)

est asymptotiquement stable si est seulement si toutes les
valeurs propres de la matrix A = Ag + BKC sont & partie
réelles négatives et si I’état initial ||| vérifie la relation
suivante

laoll < Al (34)
20%| KC| D | Aill
=1

De plus, létat du systeme x(t) est borné en norme
comme suit

9H@II
14 ||A]f t~

la(®)l <
| 20PIKCllsoll S A | 1

a4 71+HZH t
2
()]

Preuve 2 : La preuve du théoréme 3 est donnée par la
preuve du théoreme 2 en remplagant, respectivement, A =
Ao+ BL et Lpar A= Ayg+ BKC et KC.

V. EXEMPLE NUMERIQUE

Prenons le systeme bilinéaire fractionnaire instable sui-
vant

Dfa = Agz + A B
(P Ao A B 1 (36)
z(0) = zg
avec
0 1 1 0 1
1 -1 2 1 1

Pour simplifier, nous construisons le controleur d’état

linéaire ou gain L = [-1 — 1] tel que
jang(n ()| >

et que les valeurs propres de la matrice A= A,+ BL soient
égales & (—1, —2). Ainsi, la condition du théoréme 2 étant
satisfaite. On conclut donc que la solution du systeme bi-
linéaire fractionnaire controlé par un retour d’état statique
est asymptotiquement stable. Les résultats de la simulation
sont donnés par la figure 2 avec 6 = 0.05; 2o = [1 0]T et
O<a<l.

VI. CONCLUSION

Dans cet article, on a montré que sous certaines condi-
tions adéquates, on pouvait stabiliser asymptotiquement
par retour d’état statique et par retour de sortie statique
le systeme bilineaire fractionnaire en utilisant ’approche
d’une nouvelle généralisation du lemme de Gronwall-
Bellman, cette derniére a été prouvée dans l'annexe. Les
résultats de simulation ont illustré 'efficacité de cette ap-
proche et de la méthode de contréle proposée.
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Fig. 2. Stabilisation par retour d’état statique du systéme bilinéaire
fractionnaire avec 0 <a <1

ANNEXE : NOUVELLE GENERALISATION DU LEMME DE
GRONWALL-BELLMAN

Lemme 2 (Lemme de Gronwall-Bellman) [7] (p 292) [5]
(p 252) Soit

— f, g et k, fonctions intégrables et définies de R™ — IR,

-920,k=>0,

AS ﬁoca

— gk est intégrable sur R™.

Siu:R" — R satisfait

u(t)<f(t)+g(t)/0 Kru(r)dr,  ¥t>0  (37)

alors

rt t
u(®) < 10 +90) [ k)@ e [ koot ds) arvezo,
(38)
Corollaire 2 : [8] Soit k : RT +— IR, intégrable sur R™

et k > 0 et ¢(t) fonction positive monotone et décroissante.
Siwu:R" — R" satisfait

u(t) < cft) + /0 Ckru(r)dr, VEs0  (39)

alors

t
/ k(T)dT), Vit > 0.
0

ult) < e(t) exp (40)

Lemme 8 (Généralisation du lemme de Gronwall-Bellman)
Soit
—a,beR,0<a<b r(t) > 0 une fonction positive
décroissante, £ > 1 un entier,
~ f ¢ [a,b] — RT une fonction intégrable telle que,
Ya,B € [a,bl, (0 < a<f),on ait

/jf(s)ds>0

— x: [a,b] — R une fonction bornée telle qu’on ait

w0 <o)+ [ fE@E) ds @D
alors, sous ’hypothese suivante
1— (- 1)/ (r(s) " 1f(s)ds >0 (42)



N

on a d’ou

r(t t
2(t) < 0 @) < 0 6
) -1
(1= =0 [ eenreas) (1= -0 [oereas)
Preuve 3 : L’inégalité (41) s’écrit ‘
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