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Résumé— Cet article traite de la stabilisation des systèmes
bilinéaires fractionnaires par l’approche de la nouvelle
généralisation du lemme de Gronwall-Bellman. L’utilisation
de cette nouvelle approche permet de montrer sous certaines
hypothèses adéquates, qu’on peut garantir une stabilisation
asymptotique par retour d’état statique et par retour de
sortie statique des systèmes bilinéaires fractionnaires. La
méthodologie est illustrée par l’intermédiaire d’un exemple
numérique.

Mots-clés— Systèmes bilinéaires fractionnaires, nouvelle
généralisation du lemme de Gronwall-Bellman, retour d’état
statique, retour de sortie statique, stabilisation asympto-
tique.

I. Introduction

Beaucoup de vrais systèmes dynamiques sont mieux
caractérisés par un modèle dynamique d’ordre non en-
tier, basé en générale sur la notion de différentiation ou
d’intégration de l’ordre non entier.

Les systèmes fractionnaires ou d’ordre non entier sont
aussi stables que leurs homologues, les systèmes d’ordre
entier. En effet, du fait que les systèmes fractionnaires sont
d’une part, pour la plupart considérés comme des systèmes
à mémoire qui sont généralement plus stables comparés
aux systèmes d’ordre entier et d’autre part, du fait qu’ils
affichent une dynamique beaucoup plus sophistiquée, ce
qui présente une grande importance par exemple dans le
domaine de la communication sécurisée. Récemment, le
problème de la synchronisation chaotique a été naturelle-
ment étendue aux systèmes fractionnaires en raison des ap-
plications nombreuses et potentielles en physique des lasers,
des réacteurs chimiques, de la communication sécurisée et
de la biomédecine.

Le calcul traditionnel étant basé sur la différentiation et
l’intégration d’ordre entier. Le concept du calcul fraction-
naire a le potentiel énorme de changer la manière dont nous
voyons, modélisons, et commandons la nature autour de
nous. La raison principale de l’usage fréquent des modèles
d’ordre entier était l’absence des méthodes de solution pour
des équations fractionnaires ou d’ordre non entier. Actuel-
lement, un bon nombre de méthodes pour l’approximation
de la dérivée et de l’intégrale fractionnaire peut être faci-
lement employé dans diverses applications notamment en
théorie du contrôle (nouveaux contrôleurs et modèles de
systèmes fractionnaires) en théorie de circuits électriques
(fractances), en théorie de condensateur etc...

D’ailleurs, quelques études théoriques et expérimentales
montrent que certains systèmes électrochimiques [1], ther-

miques [2] et viscoélastiques [3] sont régis par des équations
différentielles à dérivées non entières. L’utilisation de
modèles classiques basés sur une dérivation entière n’est
donc pas appropriée. Des modèles basés sur des équations
différentielles à dérivées non entières ont, à cet effet, été
développés [4]. Par ailleurs, la question de la stabilité est
très importante surtout en théorie du contrôle. Dans le cas
de la commande des systèmes d’ordre fractionnaire, il y’a
beaucoup de défis et des problèmes non résolus liés à la
théorie de la stabilité tels que la stabilité robuste, la stabi-
lité interne, la stabilité à entrée bornée et à sortie bornée
etc...

L’objectif de ce papier est d’étudier la stabilisation par
retour d’état statique et par retour de sortie statique des
systèmes bilinéaires fractionnaires non homogènes. L’ap-
proche naturelle pour celà, est l’utilisation de la partie
linéaire du système, pour montrer que sous certaines hy-
pothèses adéquates, il est possible de contrôler le système
global par retour d’état statique et par retour de sortie
statique, en utilisant la nouvelle généralisation du lemme
de Gronwall-Bellman. La preuve du lemme de Gronwall-
Bellman standard ou classique et son utilisation dans la
théorie des systèmes non linéaires peuvent être trouvés
dans [5], [6], [7] et quelques généralisations de ce lemme
dans [8], [9].

Des définitions de base du calcul fractionnaire, en par-
ticulier, la fonction de Mittag-Leffler, sont présentées
d’abord dans la section II.

Puis, dans la section III, on présente la définition de
la stabilité des systèmes dynamiques d’ordre fraction-
naire commensurable en mettant en exergue les différentes
régions de stabilité.

Dans la section IV, on propose d’étudier la stabilisation
asymptotique des systèmes bilinéaires fractionnaires ou
d’ordre non entier par retour d’état statique et par retour
de sortie statique en utilisant une nouvelle généralisation
du lemme de Gronwall-Bellman. Un exemple numérique
est utilisée dans la section V pour illustrer nos résultats.
La nouvelle généralisation du lemme est prouvée également
dans l’annexe.
Notations. ‖x‖ =

√
xTx et ‖A‖ =

√
λmax(ATA) sont,

respectivement la norme euclidienne de vecteur et la norme
spectrale de matrice où λmax(ATA) est la valeur propre
maximale de la matrice symétrique ATA. (f(·))i est la ième

composante du vecteur f(·).



II. Définitions préliminaires

A. Définition de la dérivée fractionnaire
Dans ce papier, les symboles de la dérivation fraction-

naire ont été normalisés comme suit [10], [11]

aD
α
t =


dα

d tα
, α > 0

1, α = 0∫ t
a d τ (−α), α < 0

(1)

où aD
α
t représente l’opérateur de dérivation d’ordre α,

a est la limite inférieure et t la limite supérieure de cet
opérateur de dérivation fractionnaire. Dans ce qui suit, on
pose a = 0, alors l’opérateur aDα

t est remplacé par Dα.
La formulation suivante des dérivées fractionnaires dite

dérivée au sens de Caputo est souvent utilisée puisque sa
transformée de Laplace conduit à des conditions initiales
qui prennent la même forme que pour les systèmes à dérivée
d’ordre entier avec des interprétations physiques claires.

La dérivée au sens de Caputo est définie par [11], [12] :

dα f(t)

d tα
=

1

Γ(n−α)

∫ t

a

dn f(τ)

d tn

(t−τ)α−n+1
d τ, n−16α<n (2)

avec n ∈ IN et α ∈ IR+, où Γ(�) est la fonction
Gamma Euler. L’interprétation physique et la résolution
des équations différentielles fractionnaires ont été large-
ment traitées dans [11], [12].

Dans la résolution des équations différentielles et ana-
lytiques, l’utilisation de la technique de transformation de
Laplace est souvent nécessaire et joue un rôle important
dans la résolution des équations à dérivée fractionnaire.

La transformée de Laplace de la dérivée fractionnaire au
sens de Caputo de l’équation (2) est donnée par :

∫ t

0

Dαf(t)e−st d t = sαL(f(t))−
n−1∑
k=0

sα−k−1f (k)(t)t=0 (3)

où s ∈ C est l’opérateur de Laplace. En considérant que
toutes les conditions initialles sont nulles l’équation (3)
peut être réduite à

L
(
dαf(t)
dtα

)
= sαL(f(t)). (4)

L’initialisation appropriée est également cruciale dans la
résolution et la compréhension des équations ou systèmes
fractionnaires.

Ainsi, on adopte généralement la notation pour la cau-
salité “arrogante” de la fonction ou du système (pour tout
0 6 α < 1)

cD
α
t f(t) = ad

α
t f(t) + ad

α
0 f(t), avec a6(c = 0)<t (5)

où ad
α
t f(t) est la dérivée d’ordre α qui peut s’écrire sous la

forme suivante

ad
α
t f(t) =

d
d t

(
1

Γ(1− α)

∫ t

a

f(τ)
(t− τ)α

d τ
)

(6)

et où ad
α
0 f(t) = Ψ(α, f, a, 0, t) est une fonction initiale

définie par

ad
α
0 f(t)=Ψ(α, f, a, 0, t)=

d
d t

(
1

Γ(1− α)

∫ 0

a

f(τ)
(t− τ)α

d τ
)
(7)

B. Définition de la fonction de Mittag-Leffler à deux pa-
ramètres

La fonction de Mittag-Leffler est une généralisation de
la fonction exponentielle, elle est souvent utilisée dans
la résolution des problèmes physiques décrits par des
équations à dérivée ou intégrale fractionnaire. Elle est
également connue pour avoir un nombre fini de zéros réels,
ce qui est applicable à de nombreux problèmes physiques.

La fonction de Mittag-Leffler à deux paramètres est
définie par la relation suivante [11], [13] :

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0 (8)

où

Eα,1(z) =
∞∑
k=0

zk

Γ(αk + 1)
≡ Eα(z)

est la fonction de Mittag-Leffler à un seul paramètre.
La transformée de Laplace de la fonction de Mittag-

Leffler à deux paramètres peut s’écrire :∫ ∞
0
e−sttαk+β−1E

(k)
α,β(atα) d t =

sα−βk!

(sα−a)k+1
(9)

où

E
(k)
α,β =

d(k)
d tk

Eα,β .

Lemme 1 : [14] Si α < 2, β un nombre réel choisi arbi-
trairement, γ est tel que 0.5απ < γ < min[π, πα] et C0 > 0
est un réel constant, alors

|Eα,β(z)| 6 C0

1 + z
, γ 6 |arg(z)| 6 π, z 6= 0.

Pour une matrice de n-dimension, nous obtenons le corol-
laire suivant

Corollaire 1 : [15] Si A ∈ Cn×n et α < 2, β est un
nombre réel choisi arbitrairement, γ est tel que απ

2 < γ <
min[π, πα] et θ > 0 est un réel constant, alors

‖Eα,β(A)‖ 6 θ

1 + ‖A‖
, γ 6 |arg(λi(A))| 6 π, i = 1 . . . n

(10)
où θ=max(C, ‖P‖‖P−1‖C), λi(A) est la ième valeur propre
de la matrice A, P est une matrice de transformation non
singulière donnée par la forme canonique de Jordan de la

matrice A,
C

1 + ‖A‖
> max

16i6n

∣∣∣∣ C0i

1 + λi

∣∣∣∣, où C et C0i sont des

constantes positives.

III. Stabilité des systèmes linéaires
fractionnaires

Dans la théorie de la stabilité des systèmes linéaires à
temps invariant, nous savons bien qu’un système est stable
si les racines du polynôme caractéristique sont négatives ou
à parties réelles négatives si elles sont complexes conjugés
donc situées sur la moitié gauche du plan complexe. Par
ailleurs, dans le cas des systèmes fractionnaires linéaires à
temps invariant, la définition de la stabilité est différente
des systèmes d’ordre entier. En effet, la notion intéressante
est que les systèmes fractionnaires ou d’ordre non entier
peuvent bel et bien avoir des racines dans la moitié droite
du plan complexe.



La stabilité des systèmes fractionnaires a été étudiée dans
[16], [17], où des conditions nécessaires et suffisantes ont été
obtenues donnant lieu au théorème suivant :

Théorème 1 : [16], [17] Considérons le système linéaire
fractionnaire d’ordre commensurable suivant :

Dα
t x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

x(0) = x0

0 < α < 1 (11)

x(t) ∈ IRn, u(t) ∈ IRm, y(t) ∈ IRp. Soit σ(A) =
{λ1, . . . , λn}.

Le système (11) est stable si est seulement si :

| arg(λi)| >
απ

2
, λi ∈ σ(A), i = 1 . . . n (12)

D’après, ce théorème de la stabilité, il en découle les
différentes régions ou zones stables et instables, (voir figure
1). Im

Re

stable

stable

stable

−απ
2

stable

instable

απ
2

instable

stable

stable

Fig. 1. Régions de stabilité des systèmes d’ordre fractionnaires avec
0<α<1

IV. Stabilisation des systèmes bilinéaires
fractionnaires

Considérons le système bilinéaire fractionnaire décrit par
le modèle suivant :

Dαx(t) =A0x(t) +
m∑
i=1

ui(t)Aix(t) +Bu(t)

y(t) = Cx(t)

x(0)=x0

0 < α < 1

(13)
où x(t) ∈ IRn est le vecteur d’état, u(t) ∈ IRm est le vec-
teur des entrées, y(t) ∈ IRp représente le vecteur de sortie,
ui(t) est la ième coordonnée de u(t), Ai est la matrice as-
socieé à la coordonnée ui(t), A0, B et C sont des matrices
constantes de dimensions appropriées.

A. Stabilisation par retour d’état statique

Le but de cette section est d’étudier le problème de la
stabilisation asymptotique par retour d’état statique du
système bilinéaire fractionnaire (13) avec C = In.

Hypothèse 1 : Supposons qu’il existe une matrice gain
L telle que la relation (10) du corollaire 1 soit satisfaite,
c’est à dire, la matrice A est remplacée par la matrice Ã =
(A0 +BL) avec β = 1, et que∣∣∣arg(λi(Ã))

∣∣∣ > απ

2

pour tout i = 1, . . . , n. �

La stabilisation asymptotique du système bilinéaire frac-
tionnaire (13) avec C = In est donnée par le théorème
suivant.

Théorème 2 : Sous l’hypothèse 1, le système (13) avec
C = In contrôlé par le retour d’état suivant

u(t) = Lx(t) (14)

est asymptotiquement stable si est seulement si toutes les
valeurs propres de la matrix Ã = (A0+BL) sont à partie
réelles négatives et si l’état initial ‖x0‖ satisfait la relation
suivante

‖x0‖ <


α
∥∥∥Ã∥∥∥

2θ2‖L‖
m∑
i=1

‖Ai‖

 . (15)

De plus, l’état du système x(t) est borné en norme
comme suit

‖x(t)‖ 6

θ‖x0‖

1 +
∥∥∥Ã∥∥∥ tα1−

2θ2‖L‖‖x0‖
m∑
i=1

‖Ai‖

α
∥∥∥Ã∥∥∥

1−
1

1 +
∥∥∥Ã∥∥∥( t

2

)


. (16)

Preuve 1 : En utilisant la transformée de Laplace du
système (13) et la relation (14) avec C = In, nous obte-
nons l’équation suivante

X(s)=(Insα−Ã)−1

(
sα−1x0+L

(
m∑
i=1

Aix(t)(Lx(t))i

))
(17)

où Ã = (A0 +BL).
Puis, en appliquant la transformée inverse de Laplace de

l’équation (17), obtenue d’une part grâce à la transformée
inverse de la fonction de Mittag-Leffler à deux paramètres,
et d’autre part, en utilisant l’intégrale de convolution, on
obtient l’égalité suivante

x(t)=Eα,1(Ãtα)x0

+

∫ t

0
(t−τ)α−1Eα,α(Ã(t−τ)α)

(
m∑
i=1

Aix(τ)(Lx(τ))i

)
d τ (18)

en appliquant ensuite la norme des deux côtés de l’équation
(18) et en utilisant le corollaire 1, on obtient l’inégalité
suivante

‖x(t)‖ 6
θ‖x0‖

1 + ‖Ãtα‖
+

∫ t

0

θ
∑m
i=1 ‖Ai‖ ‖L‖‖t− τ‖α−1

1 + ‖Ã(t− τ)α‖
‖x(τ)‖2 d τ

(19)
ou d’une manière équivalente

‖x(t)‖ 6
θ‖x0‖

1 + ‖Ã‖tα
+

∫ t

0

θ
∑m
i=1 ‖Ai‖ ‖L‖(t− τ)α−1

1 + ‖Ã‖(t− τ)α
‖x(τ)‖2 d τ.

(20)

En utilisant ainsi le lemme 3 de la nouvelle généralisation
du lemme de Gronwall-Bellman et en considérant

r(t)=
θ‖x0‖

1+‖Ã‖tα
, f(τ)=

θ

m∑
i=1

‖Ai‖ ‖L‖(t−τ)α−1

1+‖Ã‖(t− τ)α
. (21)



On peut vérifier que l’inégalité (42) du lemme 3 est bien
vérifiée, c’est à dire

1− (`− 1)
∫ b

a

(r(s))`−1f(s) d s > 0 (22)

l’inégalité (22) peut s’écrire sous la forme

1−
∫ t

0

θ‖x0‖
(1+‖Ã‖τα)

θ
m∑
i=1

‖Ai‖ ‖L‖(t−τ)α−1

1+‖Ã‖(t− τ)α
d τ >0, ∀ t>0 (23)

où d’une manière équivalente

1−θ2‖L‖‖x0‖
m∑
i=1

‖Ai‖
∫ t

0

1

(1+
∥∥∥Ã∥∥∥ τα)

(t− τ)α−1

1+
∥∥∥Ã∥∥∥ (t− τ)α

d τ >0,∀ t > 0,

(24)

vérifions maintenant que l’inégalité suivante est bien sa-
tisfaite

1− θ2‖L‖‖x0‖
m∑
i=1

‖Ai‖Φ(t) > 0,∀ t > 0 (25)

où

Φ(t) =
∫ t

0

1

(1 +
∥∥∥Ã∥∥∥ τα)

(t− τ)α−1

(1 +
∥∥∥Ã∥∥∥ (t− τ)α)

d τ. (26)

L’intégrale dans (26) peut être décomposer en une somme
de deux intégrales

Φ(t) =
∫ t

2

0

1

(1 +
∥∥∥Ã∥∥∥ τα)

(t− τ)α−1

(1 +
∥∥∥Ã∥∥∥ (t− τ)α)

d τ

+
∫ t

t
2

1

(1 +
∥∥∥Ã∥∥∥ τα)

(t− τ)α−1

(1 +
∥∥∥Ã∥∥∥ (t− τ)α)

d τ (27)

avec 0 < α < 1 et (t − τ) > τ pour tout τ ∈ [0, t
2 ], on

obtient ∫ t
2

0

1

(1 +
∥∥∥Ã∥∥∥ τα)

(t− τ)α−1

(1 +
∥∥∥Ã∥∥∥ (t− τ)α)

d τ

6
∫ t

2

0

1

(1 +
∥∥∥Ã∥∥∥ τα)

τα−1

(1 +
∥∥∥Ã∥∥∥ τα)

d τ (28)

de même, 0 < α < 1 et (t− τ) 6 τ pour tout τ ∈ [ t2 , t],
on a ∫ t

t
2

1

(1 +
∥∥∥Ã∥∥∥ τα)

(t− τ)α−1

(1 +
∥∥∥Ã∥∥∥ (t− τ)α)

d τ

6
∫ t

t
2

1

(1 +
∥∥∥Ã∥∥∥ (t− τ)α)

(t− τ)α−1

(1 + ‖Ã‖(t− τ)α)
d τ

=
∫ t

2

0

1

(1 +
∥∥∥Ã∥∥∥ (η)α)

ηα−1

(1 +
∥∥∥Ã∥∥∥ ηα)

d η, (29)

en substituant (t− τ) par η. En utilisant les deux relations
(28) et (29), la relation (26) peut être réécrite comme suit

Φ(t) = 2
∫ t

2

0

1

(1 +
∥∥∥Ã∥∥∥ τα)

τα−1

(1 +
∥∥∥Ã∥∥∥ τα)

d τ

= 2
∫ t

2

0

τα−1

(1 +
∥∥∥Ã∥∥∥ τα)2

d τ (30)

cette dernière est équivalente à

Φ(t) =
2

α
∥∥∥Ã∥∥∥

1− 1

1 +
∥∥∥Ã∥∥∥( t

2

)
 . (31)

À partir de l’équation (31), on montre que Φ(t) > 0 si
t > 0 et la relation suivante

1− θ2‖L‖‖x0‖
m∑
i=1

‖Ai‖Φ(t)

dans l’inégalité (25) est minimale quand t tend vers l’infini.
Par ailleurs, l’inégalité (25) est satisfaite si l’état initial x0

vérifie la condition (15).
À partir de l’équation (20), on applique le lemme 3 de la

nouvelle généralisation du lemme de Gronwall-Bellman et
on obtient l’inégalité suivante

‖x(t)‖ 6

θ‖x0‖

1 +
∥∥∥Ã∥∥∥ tα

1− θ2‖L‖‖x0‖
m∑
i=1

‖Ai‖Φ(t)

(32)

qui vérifie bien l’inégalité (16) énoncée dans le théorème 2.
Enfin, on vérifie bien que si le temps t tend vers l’infini,

‖x(t)‖ converge vers zéro, ce qui implique que la solution
du système fractionnaire est asymptotiquement stable.

B. Stabilisation par retour de sortie statique

Dans cette section, on cherchera également à étudier le
problème de la stabilisation asymptotique par retour de
sortie statique du système bilinéaire d’ordre fractionnaire
(13).

Pour celà, nous supposons que l’état du système bi-
linéaire d’ordre fractionnaire est partiellement mesurable
et nous considérons toujours le système bilinéaire fraction-
naire défini dans (13).

Hypothèse 2 : Supposons qu’il existe une matrice gain
K telle que la relation (10) du corollaire 1 soit satisfaite
c’est à dire la matrice A est remplacée par la matrice A =
A0 +BKC avec β = 1, et que∣∣arg(λi(A))

∣∣ > απ

2

pour tout i = 1, . . . , n et A ∈ IRn×n. �
Remarque 1 : Il n’est pas évident de déterminer le gain

K de l’hypothèse 2 dans le cas d’un retour de sortie sta-
tique, ceci mène très souvent aux problèmes d’optimisation
non convexes cités dans [18] : il n’existe pas de conditions
nécessaires et suffisantes sur les matrices données A, B et
C telles que le gain K satisfait le corollaire 1. Dans la
littérature, beaucoup d’auteurs ont contribué et proposé
des lois de commande par retour de sortie statique sur les
systèmes linéaires (voir [19], [20] et références incluses). •



La stabilisation asymptotique du système bilinéaire frac-
tionnaire (13) contrôlé par un retour de sortie statique est
donnée par le théorème suivant.

Théorème 3 : Sous l’hypothèse 2, le système (13)
contrôlé par le retour de sortie statique suivant

u(t) = Ky(t) (33)

est asymptotiquement stable si est seulement si toutes les
valeurs propres de la matrix A = A0 +BKC sont à partie
réelles négatives et si l’état initial ‖x0‖ vérifie la relation
suivante

‖x0‖ <

 α
∥∥A∥∥

2θ2‖KC‖
m∑
i=1

‖Ai‖

 . (34)

De plus, l’état du système x(t) est borné en norme
comme suit

‖x(t)‖ 6

θ ‖x0‖
1 +

∥∥A∥∥ tα1−
2θ2‖KC‖‖x0‖

∑m
i=1‖Ai‖

α
∥∥A∥∥

1−
1

1 +
∥∥A∥∥( t

2

)


.

(35)

Preuve 2 : La preuve du théorème 3 est donnée par la
preuve du théorème 2 en remplaçant, respectivement, Ã =
A0 +BL et L par A = A0 +BKC et KC.

V. Exemple numérique

Prenons le système bilinéaire fractionnaire instable sui-
vant {

Dα
t x = A0x+A1ux+Bu

x(0) = x0

0 < α < 1 (36)

avec

A0 =

[
0 1

1 −1

]
, A1 =

[
1 0

2 −1

]
, B =

[
1

1

]
Pour simplifier, nous construisons le contrôleur d’état

linéaire ou gain L = [−1 − 1] tel que∣∣∣arg(λi(Ã))
∣∣∣ > απ

2

et que les valeurs propres de la matrice Ã = Ao+BL soient
égales à (−1,−2). Ainsi, la condition du théorème 2 étant
satisfaite. On conclut donc que la solution du système bi-
linéaire fractionnaire contrôlé par un retour d’état statique
est asymptotiquement stable. Les résultats de la simulation
sont donnés par la figure 2 avec θ = 0.05 ; x0 = [1 0]T et
0<α<1.

VI. Conclusion

Dans cet article, on a montré que sous certaines condi-
tions adéquates, on pouvait stabiliser asymptotiquement
par retour d’état statique et par retour de sortie statique
le système bilinèaire fractionnaire en utilisant l’approche
d’une nouvelle généralisation du lemme de Gronwall-
Bellman, cette dernière a été prouvée dans l’annexe. Les
résultats de simulation ont illustré l’efficacité de cette ap-
proche et de la méthode de contrôle proposée.
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Fig. 2. Stabilisation par retour d’état statique du système bilinéaire
fractionnaire avec 0<α<1

Annexe : Nouvelle généralisation du Lemme de
Gronwall-Bellman

Lemme 2 (Lemme de Gronwall-Bellman) [7] (p 292) [5]
(p 252) Soit

– f , g et k, fonctions intégrables et définies de IR+ 7→ IR,
– g > 0, k > 0,
– g ∈ L∞,
– gk est intégrable sur IR+.
Si u : IR+ 7→ IR satisfait

u(t) 6 f(t) + g(t)
∫ t

0

k(τ)u(τ) d τ, ∀ t > 0 (37)

alors

u(t) 6 f(t) + g(t)

∫ t

0
k(τ)f(τ) exp

(∫ t

τ
k(s)g(s) d s

)
d τ, ∀ t > 0.

(38)

Corollaire 2 : [8] Soit k : IR+ 7→ IR, intégrable sur IR+

et k > 0 et c(t) fonction positive monotone et décroissante.
Si u : IR+ 7→ IR+ satisfait

u(t) 6 c(t) +
∫ t

0

k(τ)u(τ) d τ, ∀ t > 0 (39)

alors

u(t) 6 c(t) exp
(∫ t

0

k(τ) d τ
)
, ∀ t > 0. (40)

Lemme 3 (Généralisation du lemme de Gronwall-Bellman)
Soit

– a, b ∈ IR, 0 6 a < b, r(t) > 0 une fonction positive
décroissante, ` > 1 un entier,

– f : [a, b] 7→ IR+ une fonction intégrable telle que,
∀α, β ∈ [a, b], (0 6 α < β), on ait∫ β

α

f(s) d s > 0

– x : [a, b] 7→ IR+ une fonction bornée telle qu’on ait

x(t) 6 r(t) +
∫ t

a

f(s)(x(s))` d s. (41)

alors, sous l’hypothèse suivante

1− (`− 1)
∫ t

a

(r(s))`−1f(s) d s > 0 (42)



on a

x(t) 6
r(t)(

1− (`− 1)
∫ t

a

(r(s))`−1f(s) d s
) 1

`−1
. (43)

Preuve 3 : L’inégalité (41) s’écrit

x(t) 6 r(t) +
∫ t

a

(
f(s)(x(s))`−1

)
x(s) d s

en appliquant le lemme de Gronwall-Bellman classique, [6],
[7], on obtient l’inégalité suivante

x(t) 6 r(t) exp
(∫ t

a

f(s)(x(s))`−1 d s
)

(44)

ou d’une manière equivalente

(x(t))`−1 6 (r(t))`−1 exp

(
(`− 1)

∫ t

a
f(s)(x(s))`−1 d s

)
. (45)

Multiplions l’inégalité précédente par −(` − 1)f(t), on
obtient

− (`− 1)f(t)(x(t))`−1

>−(`−1)(r(t))`−1f(t) exp

(
(`− 1)

∫ t

a
f(s)(x(s))`−1 d s

)
(46)

qui peut s’écrire sous la forme

− (`− 1)f(t)(x(t))`−1 exp

(
−(`− 1)

∫ t

a
f(s)(x(s))`−1 d s

)
> −(`− 1)(r(t))`−1f(t) (47)

en utilisant la primitive de la fonction exponentielle,
l’inégalité (47) devient

d
d t

(
exp
(
−(`− 1)

∫ t

a

f(s)(x(s))`−1 d s
))

> −(`− 1)(r(t))`−1f(t) (48)

en intégrant de a à t, on trouve

exp
(
−(`− 1)

∫ t

a

f(s)(x(s))`−1 d s
)

> 1− (`− 1)
∫ t

a

(r(s))`−1f(s) d s. (49)

Notons que la constante d’intégration est égale à 1 (lors-
qu’on choisit t = a).

si l’inégalité (42) est vérifiée, on a

exp
(

(`− 1)
∫ t

a

f(s)(x(s))`−1 d s
)

6
1

1− (`− 1)
∫ t

a

(r(s))`−1f(s) d s
. (50)

Les inégalités (45) et (50) impliquent

(x(t))`−1(r(t))−(`−1) 6
1

1− (`− 1)
∫ t

a

(r(s))`−1f(s) d s

d’où

x(t) 6
r(t)(

1− (`− 1)
∫ t

a

(r(s))`−1f(s) d s
) 1

`−1
. (51)
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