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Abstract
We exploit level-set topology optimization to find the optimal material distribution for metamaterial-based heat manipulators. 
The level-set function, geometry, and solution field are parameterized using the Non-Uniform Rational B-Spline (NURBS) 
basis functions to take advantage of easy control of smoothness and continuity. In addition, NURBS approximations can 
produce conic geometries exactly and provide higher efficiency for higher-order elements. The values of the level-set function 
at the control points (called expansion coefficients) are utilized as design variables. For optimization, we use an advanced 
mathematical programming technique, Sequential Quadratic Programming. Taking into account a large number of design 
variables and the small number of constraints associated with our optimization problem, the adjoint method is utilized to 
calculate the required sensitivities with respect to the design variables. The efficiency and robustness of the proposed method 
are demonstrated by solving three numerical examples. We have also shown that the current method can handle different 
geometries and types of objective functions. In addition, regularization techniques such as Tikhonov regularization and 
volume regularization have been explored to reduce unnecessary complexity and increase the manufacturability of optimized 
topologies.

Keywords  Level-set topology optimization · Thermal cloak · Thermal camouflage · Thermal metamaterials · Adjoint 
method · Isogeometric analysis

1  Introduction

Due to the special arrangement of the constituent materials, 
thermal metamaterials can have heat transfer capabilities 
superior to those of materials available in nature. There-
fore, researchers have proposed the use of artificially created 
thermal metamaterials to control heat fluxes. The concept 
opened research opportunities in heat transfer applications. 

Creating devices that are thermal equivalent to resistors, 
capacitors, inductors, diodes, transistors, etc. is one such 
opportunity. These devices are called heat manipulators, 
and several of them have already been proposed, such as 
thermal cloak (Narayana and Sato 2012; Guenneau et al. 
2012; Schittny et al. 2013; Han et al. 2014a, b; Sklan et al. 
2016; Li et al. 2019; Fujii and Akimoto 2019b), thermal con-
centrator (Narayana and Sato 2012; Guenneau et al. 2012; 
Schittny et al. 2013; Li et al. 2019; Shen et al. 2016), thermal 
camouflage (Han et al. 2014a; Peng et al. 2020), heat flux 
inverter (Narayana and Sato 2012) etc. The spatial layout of 
the member materials of a metamaterial-based heat manipu-
lator has a significant impact on its performance. Because 
of this, structural optimization can be a useful technique 
for understanding the impact of the spatial arrangement 
of member materials and for developing superior designs. 
To the knowledge of the authors, work on optimization of 
the metamaterial-based heat manipulator is limited (Fujii 
et al. 2018; Fujii and Akimoto 2020, 2019a). The authors 
already published an article on isogeometric shape optimiza-
tion in combination with the gradient-free Particle Swarm 
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Optimization (PSO) algorithm (Jansari et al. 2022a). The 
present work can be considered as an extension of the previ-
ous work, as in this work, we are using topology optimiza-
tion to avoid the limitations imposed by shape optimization 
and explore even a larger design space.

The goal of structural optimization is to determine 
the material distribution in the design domain that gives 
the best-desired performance (of a device or structure). 
In the early days of its inception, structural optimization 
primarily focused on the optimization of mechanical 
structures. Over a period of time, optimization transpired 
as a more general numerical technique that can cover a 
wider range of physical problems including fluids, optics, 
acoustics, thermodynamics. Lately, topology optimization 
has become increasingly popular compared to other 
structural optimization techniques such as shape and size 
optimization. The reason for its popularity is its ability 
to allow changes in topology during optimization, hence 
avoiding the need for a close-to-optimal initial design. 
Several topology optimization approaches have been 
developed to date. The most common ones are density-
based, level-set-based, phase field-based, and evolutionary 
algorithm-based. Despite the fact that these approaches 
define diverse directions for topology optimizations, there 
are few conceptual differences between them. It is difficult 
to determine which technique is best for a given problem 
due to the lack of direct-relevant comparisons (Sigmund 
and Maute 2013). In addition, not simply the choice of a 
method but also factors like optimizers, filters, constraints 
define the overall performance. However, particularly in 
the level-set-based approach, the interface is clearly defined 
throughout the optimization process, and therefore, we focus 
on level-set topology optimization considering their possible 
advantage in applying objective function or constraints on 
the interface in future work (Sethian and Wiegmann 2000; 
Wang et al. 2003; Allaire et al. 2004; van Dijk et al. 2013). 
The remaining approaches are covered in detail in review 
articles (Sigmund and Maute 2013; Munk et  al. 2015; 
Rozvany 2009; Deaton and Grandhi 2014).

The Level-Set Method (LSM), proposed by Osher 
and Sethian (1988), captures moving interfaces in multi-
phase flow. The idea to incorporate LSM with topology 
optimization was suggested by Haber and Bendsoe (1998). 
Following this, several research groups began working and 
subsequently published the level-set topology optimization 
method (Sethian and Wiegmann 2000; De  Ruiter and 
Van Keulen 2000). In Osher and Santosa (2001), Allaire 
et  al. (2004), Allaire et  al. (2002), and Wang et  al. 
(2003), the shape-sensitivity-based level-set topology 
optimization framework was introduced. Specifically for 
heat manipulators, Fujii and Akimoto have explored the 
level-set topology optimization method. They used the 
method to optimize a thermal cloak (Fujii et al. 2018), a 

thermal cloak-concentrator (Fujii and Akimoto 2020), 
as well as a combined thermal-electric cloak (Fujii and 
Akimoto 2019a). In their work, the finite element method, 
for the boundary value problem, and a stochastic evolution 
strategy, for optimization, are utilized. Conversely, we use 
the isogeometric analysis for the boundary value problem 
and a gradient-based Sequential Quadratic Programming 
(SQP) method for optimization. In the next few paragraphs, 
we discuss the level-set topology optimization method in 
addition to the other aspects of the optimization process.

In level-set topology optimization, the isocontours of 
a level-set function (LSF) implicitly define the interfaces 
between the material phases. Accordingly, the topology 
changes with the motion of these isocontours. Additionally, 
the mesh remains unchanged, eliminating the cost associated 
with creating a new mesh at each iteration.

There are three main components of the level-set topology 
optimization: the level-set function (LSF) parameterization 
(design space), an efficient numerical method to solve the 
boundary value problem, and the optimization strategy. 
In this work, NURBS basis functions are employed to 
parameterize the LSF, geometry, and solution field (i.e., 
the temperature distribution). Isogeometric analysis (IGA) 
(Hughes et al. 2005) is utilized to solve the thermal boundary 
value problem. Here, we decouple LSF parameterization 
from geometry and solution field by taking two different 
NURBS bases. However, it will be advantageous to decouple 
all three parameterizations using tools such as Geometry 
Independent Field approximaTion (GIFT) (Atroshchenko 
et  al. 2018; Jansari et  al. 2022b). For optimization, we 
use a mathematical programming approach-Sequential 
Quadratic Programming (SQP) (Nocedal and Wright 2006). 
The motivation behind the above-mentioned choices and 
their respective alternatives are discussed in the following 
paragraphs. Figure 1 shows the overview of the method with 
its components and particular choices for each component 
(Schittkowski et al. 1994; Schittkowski and Zillober 2005; 
Lavezzi et al. 2022).

At first, we discuss LSF parameterization. The LSF is 
approximated over the whole design domain from a few 
point values using LSF parameterization, and these values 
at nodes/control points work as design variables. The LSF 
parameterization decides the design freedom, level of detail, 
and nature of the optimization problem. Hence, the effort 
required for optimization strongly depends on the LSF 
parameterization. In the present work, the parameterization 
for the LSF is decoupled from the geometry and solution 
field parameterizations. Decoupling allows for securing 
the required accuracy of the solution without increasing 
the complexity of the optimization. This idea is standard 
in LSM for free boundary problems, as discussed in Duddu 
et al. (2008).



Design of metamaterial‑based heat manipulators using isogeometric level‑set topology… Page 3 of 32     61 

The use of NURBS parameterizations and IGA provides 
several advantages over Lagrange parameterizations and 
the conventional Finite Element Method (FEM) (Wang 
et al. 2018; Gao et al. 2020): (i) easy control of smoothness 
and inter-element continuity, (ii) an exact representation 
of conic geometries, and (iii) higher efficiency for higher-
order elements. Hughes et al. (2005) proposed Isogeometric 
Analysis (IGA) based on the discretization of a Galerkin 
formulation using NURBS basis functions. Later, several 
other variants of IGA such as the Isogeometric Collocation 
method (IGA-C) (Auricchio et  al. 2010), Isogeometric 
Boundary Element Method (IGABEM) (Simpson et  al. 
2012, 2013), Geometry Independent Field approximaTion 
(GIFT) (Atroshchenko et al. 2018; Jansari et al. 2022b) have 
been proposed. IGA and its variants have been successfully 
implemented in shape and topology optimization framework 
(Wang et al. 2018; Gao et al. 2020; Lian et al. 2016, 2017).

In our work, we exploit the parameterized level-
set topology optimization incorporating IGA proposed 
by Wang and Benson (2016). However, instead of the 
immersed boundary technique to map the geometry to a 
numerical model as in Wang and Benson (2016), we use 
density-based point geometry mapping due to its relatively 
easy implementation. Also, density-based mapping avoids 
ill-conditioning issues which are common in immersed 
boundary techniques. In density-based mapping, no 
special treatment is performed for the integration. Thermal 
conductivity at an integration point for numerical analysis is 
defined directly from the LSF value. However, the material 
definition by this simplistic approach is not very accurate 
near the interface. Therefore, by using a fine enough solution 
mesh, it ensures that the density-based mapping does not 
deteriorate the solution accuracy.

Lastly, the optimization procedure is discussed. It 
includes two parts: (i) update information and (ii) update 
procedure. Update information often consists of the 
objective function and constraint sensitivities with respect to 
design variables. The most common methods for sensitivity 
analysis are (a) the direct method, (b) the finite difference 

method, (c) the semi-analytical method, and (d) the adjoint 
method (Wang et al. 2018). The direct method requires to 
solve an extra system for each design variable; therefore, the 
direct method is significantly costly for complex problems. 
Similarly, the finite difference method requires to solve 
n + 1 boundary value problems for n design variables. 
Furthermore, the accuracy of the finite difference method 
depends on the perturbation size. The semi-analytical 
approach is computationally efficient; however, its accuracy 
can be relatively unsatisfactory for special cases due to 
the incompatibility of the design sensitivity field with the 
structure (Barthelemy and Haftka 1990). The adjoint method 
requires to solve n + 1 system for n objectives and constraints 
that depend on the field solution. The adjoint system is 
efficient for a problem with a large number of design 
variables and a small number of constraints, which aligns 
with our case. Therefore, in this work, the adjoint method 
(Allaire et al. 2005) is used to calculate the sensitivity.

The update procedure decides how to use the update 
information to advance the level-set interfaces. For the 
update procedure, two classes of methods are available 
in the literature (a) Hamilton–Jacobi (HJ) equation-based 
procedures and (b) mathematical programming. In the first 
class, the problem is considered a quasi-temporal problem. 
The interface motion is calculated based on the solution of 
the Hamilton-Jacobi (HJ) equation in pseudo-time (Burger 
and Osher 2005; Sethian 1999, 2001). The second class, 
mathematical programming (Haber 2004; Luo et al. 2007; 
Maute et al. 2011; Norato et al. 2004), often equipped with 
sophisticated step selection, constraint handling strategies, 
as well as optimized speed and efficiency. In this work, 
Sequential Quadratic Programming (SQP) (Nocedal and 
Wright 2006) is chosen due to its ability to accurately solve 
nonlinear constrained problems. In addition, MATLAB has 
an inbuilt subroutine on SQP in its ‘fmincon’ optimization 
tool, which provides an advantage from an implementation 
point of view.

In the context of level-set topology optimization, our 
approach differs from typical methods that employ the 

Fig. 1   The components of the level-set topology optimization
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Hamilton-Jacobi equation alongside variational shape sensi-
tivity to drive interface evolution. Our formulation, however, 
employs the level-set function solely as a descriptor for topol-
ogy, defining the material distribution. In this regard, our 
approach aligns closely with parameterized level-set topology 
optimization method (Wang et al. 2003; Allaire et al. 2004) 
and three projection density topology optimization methods 
(Guest et al. 2004; Sigmund 2007; Xu et al. 2010). For a better 
understanding of nomenclature, readers are encouraged to refer 
to Section 3.1.3 of Sigmund and Maute (2013).

The key contributions of our work include:

•	 Design of thermal metamaterials for heat flux 
manipulation: Our work addresses the intricate 
task of creating thermal metamaterials that control 
and manipulate heat flux to achieve specific thermal 
objectives. The challenge involves finding the 
conductivity distribution necessary to create the 
required temperature or flux profile at the boundary. 
Conventionally, this problem has been explored by 
analytical methods such as transformation thermotics 
and scattering cancellation method. In contrast, we 
introduced an innovative approach of exploiting 
topology optimization to efficiently design these thermal 
metamaterials.

•	 Enhanced design tool: We enhanced the design tool’s 
effectiveness by implementing regularization techniques. 
This enhancement improves not only the optimization 
convergence but also the manufacturability of the 
resulting designs.

•	 Practical application: We verified the practicality of our 
tool by showcasing its effectiveness in designing thermal 
cloaks and camouflages. Also, our approach can handle 

diverse geometries, a capability that remains beyond the 
reach of conventional analytical methods.

The remainder of the paper is organized as follows: 
Sect. 2 provides the numerical formulation of the level-
set topology optimization that includes boundary value 
problem formulation, implicit interface representation, 
and numerical approximations. The optimization problem, 
the sensitivity analysis, the SQP algorithm, and the 
regularization techniques are explained in Sect. 3. In Sect. 4, 
three numerical examples are demonstrated: a toy problem 
of an annular ring with the known solutions for the state and 
adjoint boundary value problems (Sect. 4.1), the thermal 
cloak problem (Sect. 4.2), and the thermal camouflage 
problem (Sect. 4.3), which corroborate the efficiency and 
robustness of the proposed method. Section 5 presents the 
main conclusions of the current work.

2 � Level‑set topology optimization 
with isogeometric analysis

2.1 � Boundary value problem description

As shown in Fig. 2, a heat manipulator embedded in the 
domain Ω ∈ ℝ2 is considered. Note that all formulations 
given here stand for three-dimensional physical space as well. 
The domain is externally bounded by Γ = �Ω = ΓD ∪ ΓN , 
where ΓD and ΓN are two parts of the boundary, where the 
Dirichlet and Neumann boundary conditions are applied, 
respectively. ΓD ∩ ΓN = � . The embedded heat manipulator 
uniquely divides the domain into 3 different parts; the inside 
region Ωin , the heat manipulator region Ωdesign , and the 
outside region Ωout . Ω = Ωin ∪ Ωdesign ∪ Ωout . The internal 

Fig. 2   Domain description of the boundary value problem. Ωdesign 
represents the region of the heat manipulator, Ωin & Ωout are, respec-
tively, the inside and outside regions with respect to Ωdesign . Ω= 
Ωin ∪ Ωout ∪ Ωdesign . The solid black line shows an explicitly defined 

interface Γ
I
 , while the broken black & white line shows an implicitly 

defined interface Γ
L
 (that separates Ωdesign in two parts Ω

�1
 and Ω

�2
 ). 

The detailed view highlights the matching of control points of con-
necting patches at the interface Γ

I
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boundaries between these parts are collectively denoted by 
ΓI = ΓIin

∪ ΓIout
.

In this work, we restrict our scope to metamaterials made 
of two isotropic member materials. Therefore, in addition 
to above-mentioned partition, Ωdesign is divided into two 
parts Ω

�1
 and Ω

�2
 , representing two member materials 

( Ωdesign = Ω
�1
∪ Ω

�2
 ). An interface ΓL between the member 

materials is implicitly defined by the level-set function. 
The description of the level-set function and corresponding 
interface ΓL will be explained in detail in Sect. 2.2. We 
simplify the problem with the following assumptions: the 
temperature and normal flux are continuous along ΓI , the 
heat conduction is the only present form of heat transfer, 
and there is no internal heat generation. The steady-state 
thermal boundary value problem for the given temperature 
field T can be written as, 

where � is the thermal conductivity matrix (for isotropic 
material, � = ��2 with �2 be an identity matrix of ℝ2 ), QN is 
the flux applied on ΓN , TD is the prescribed temperature on 
ΓD , n is the unit normal on the boundary, [[⋅]] is the jump 
operator, and ∇ =

(
�

�x
,
�

�y

)
 . On the internal boundary ΓI , 

n = n
1 = −n2 where the connected patches at ΓI are denoted 

by 1 and 2.
To solve the boundary value problem, the strong 

form described in Eq. (1) is transformed into the weak 
form using the standard Bubnov–Galerkin formula-
tion. The weak formulation is given as follows: Find 
Th ∈ T

h ⊆ T =
{
T ∈ ℍ1(Ω), T = TD on ΓD

}
 such that 

∀Sh ∈ S
h

0
⊆ S0 =

{
S ∈ ℍ1(Ω), S = 0 on ΓD

}
,

with

The interface continuity conditions described in Eqs. 
(1d)–(1e) are applied using Nitsche’s method (Nguyen 

(1a)∇ ⋅ (�∇T) = 0 in Ω,

(1b)T = T
D
on Γ

D
,

(1c)�∇T ⋅ n = Q
N
on Γ

N
,

(1d)[[T]] = 0 on Γ
I
,

(1e)n ⋅ [[�∇T]] = 0 on ΓI ,

(2)a(Th, Sh) = �(Sh),

(3)a(Th, Sh) = ∫Ω

(∇Sh)T�∇ThdΩ,

(4)�(Sh) = ∫ΓN

(Sh)TQNdΓ.

et al. 2014). Nitsche’s method applies the interface condi-
tions weakly while preserving the coercivity and consist-
ency of the bilinear form. Nitsche’s method lies between 
the Lagrange multiplier method and the penalty method, 
designed to overcome some of the limitations of these con-
ventional methods such as over-sensitivity to the penalty 
parameter, inconsistency of variational form, limitations 
imposed by stability conditions. Nitsche’s method modifies 
the bilinear form by substituting the Lagrange multipliers of 
the Lagrange method with their actual physical representa-
tion, i.e. normal flux. As shown in Nguyen et al. (2014) and 
Hu et al. (2018), the bilinear form after modification appears 
as follows,

where � is the stabilization parameter and {⋅} is the averaging 
operator defined as {�} = ��1 + (1 − �)�2 with � being the 
averaging parameter ( 0 < 𝛾 < 1 ) (Nguyen et al. 2014; Hu 
et al. 2018). For the current work, � = 1 × 1012 and � = 0.5 . 
In the literature Nguyen et al. (2014) and Hu et al. (2018), it 
is also reported that the large stabilization parameter might 
cause ill-conditioning of the system, but we did not face any 
conditioning issue for our boundary value problem.

2.2 � Implicit boundary representation with level‑set 
function

As described in Sect. 2.1, the interface ΓL , inside Ωdesign 
that separates the member materials, is not explicitly defined 
in Eq. (1). It is defined by a level-set function, and its 
movement is the main act of level-set topology optimization.

In the level-set method in ℝd , the interface between 
two materials is implicitly represented by an isosurface of 
a scalar function � ∶ ℝd

→ ℝ , called level-set function 
(LSF). Accordingly, in our work, an isosurface of LSF 
� ∶ ℝ2

→ ℝ , � = 0 , defines the interface ΓL separating Ω
�1

 
and Ω

�2
 in Ωdesign as shown in Fig. 3. The overall level-set 

representation can be given as, 

(5)

a(Th, Sh) =∫Ω

(∇Sh)T�∇ThdΩ

− ∫ΓI

(
n ⋅ {�∇Sh}

)T
[[Th]] dΓ

− ∫ΓI

[[Sh]]T
(
n ⋅ {�∇Th}

)
dΓ

+ ∫ΓI

� [[Sh]]T[[Th]] dΓ,

(6a)𝛷(x) > 0 ∀x ∈ Ω
�1
⧵ ΓL,

(6b)�(x) = 0 ∀x ∈ ΓL,



	 C. Jansari et al.   61   Page 6 of 32

During optimization, the movement of the interface is 
defined by the evolution of the isosurface � = 0 , while the 
background Eulerian mesh remains fixed.

In the level-set method, the geometric mapping defines 
how the LSF information is utilized in the numerical solu-
tion of the boundary value problem. Via accuracy of this 
numerical solution, the geometric mapping affects the 
optimization results. There are three common geometric 
mapping approaches (van Dijk et al. 2013): (a) conformal 
discretization, (b) immersed boundary techniques (Fries 
and Belytschko 2010; Duprez and Lozinski 2020), and (c) 
density-based mapping. In conformal discretization, the 
mesh conforms to the interface defined by the LSF. The 
method is distinct from shape optimization, as the LSF 
governs the changes in shape. The approach provides a 
crisp interface representation and the most accurate solu-
tion. However, it becomes expensive due to remeshing at 
each iteration. On the other hand, the immersed boundary 
techniques allow the nonconforming mesh. In these meth-
ods, the mesh remains fixed and the interface is captured 
in the numerical model using special treatment. Immersed 
boundary techniques also have a crisp interface represen-
tation and allow the enforcement of interface conditions 
directly. A specialized code for numerical integration and 
field approximation is needed for the elements cut by level-
set interfaces. Sometimes immersed boundary techniques 
face issues of noise and ill-conditioning due to small inter-
sections. The last approach, density-based mapping, is the 
most common because of its easy implementation. For 

(6c)𝛷(x) < 0 ∀x ∈ Ω
�2
⧵ ΓL, the same advantage, we utilize density-based geometric 

mapping.
We explore point-wise density mapping. In other words, the 

LSF value at an integration point defines the material density 
at that particular point. Hence, the thermal conductivity � 
becomes directly a function of the LSF value. It takes the 
following form,

which can be represented using the Heaviside function H as,

with

For the sensitivity analysis (see Sect. 3.2), we need the 
derivative of � with respect to � , and hence the derivative of 
the Heaviside function with respect to � , i.e. the Dirac delta 
function �(�) . The singularity of the Dirac delta function 
brings numerical issues while calculating the derivatives; 
therefore, both functions are often replaced by their smooth 
approximations. There are several forms of smoothed 
Heaviside function available in the literature (van Dijk et al. 
2013). Here, we use a polynomial form given as,

(7)� =

{
�1 = 𝜅1�2 if x ∈ Ω

�1
i.e. 𝛷 ⩾ 0,

�2 = 𝜅2�2 if x ∈ Ω
�2
⧵ ΓL i.e. 𝛷 < 0,

(8)�(�) = �1H(�) + �2(1 − H(�)),

(9)H(𝛷) =

{
1 if 𝛷 ⩾ 0,

0 if 𝛷 < 0.

Fig. 3   Level-set representation to define the material distribution. a 
The level-set function � in 3D. Height represents the value of � . � 
above and below the plane, � = 0 , represent two member materials 

(shown by two different colors). b The level-set function � in 2D. 
The material interface is calculated by the intersection of function � 
with the plane, � = 0
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where � is a small positive value (here we take � = 0 ) and � 
is the support bandwidth.

Consequently, the derivative of � can be written as,

where one-dimensional Dirac delta function �(�) is 
approximated by,

The smoothed Heaviside and smoothed Dirac delta functions 
in the given polynomial form are shown in Fig. 4.

It is noteworthy that the density mapping is not without 
drawbacks. By exploiting the density mapping with a 
smoothed Heaviside function, we use the information beyond 
zero-level contour and therefore, the level-set description 
loses some of the crispness (Liu et al. 2005; Pingen et al. 
2010; Kawamoto et al. 2011; Luo et al. 2012; Zhou and Zou 
2008). Consequently, if the slope of LSF within support 
bandwidth is not controlled by some measures, the LSF can 
become too flat or too steep. Ultimately, it may deteriorate 
the convergence rate of optimization. To address this issue, a 
regularization technique called LSF reinitialization is utilized 
in this work (refer Sect. 3.4.1). Furthermore, mapping based 
on the smoothed Heaviside function requires a large number 
of closely spaced integration points for accuracy to capture 
its strong nonlinearity (Liu and Korvink 2008). To ensure 
the accuracy of our approach, we conduct a mesh study as 
presented in Sect. 4.1.

(10)H(𝛷) =

⎧⎪⎨⎪⎩

𝛼 if 𝛷 < −𝛥,
3(1−𝛼)

4

�
𝛷

𝛥
−

𝛷3

3𝛥3

�
+

1+𝛼

2
if − 𝛥 ⩽ 𝛷 < 𝛥,

1 if 𝛷 ⩾ 𝛥,

(11)
d�(�)

d�
= (�1 − �2)�(�),

(12)𝛿(𝛷) =

{
3(1−𝛼)

4𝛥

(
1 −

𝛷2

𝛥2

)
if |𝛷| ⩽ 𝛥,

0 if |𝛷| > 𝛥.

2.3 � Solution of the boundary value problem using 
isogeometric analysis

Following the implicit representation of the interface by 
the LSF, the weak form (Eq. (5)) is modified again to 
accommodate the conductivity matrix functional �(�) . 
Since the LSF is defined in domain Ωdesign , which does not 
have a common boundary with �Ω , the applied boundary 
condition is not a function of the LSF. Therefore, the linear 
form (Eq. (4)) remains unchanged. The modified weak form 
transforms to,

with

The next step is to define the geometry and solution 
approximations to discretize the weak form. As mentioned 
in Sect. 1, we use NURBS basis functions for geometry and 
solution field approximations. Here we use standard IGA, 
where both geometry and solution fields are approximated 
with the same NURBS basis functions. Let x ∈ Ω , and � be 
the corresponding point in parametric domain as shown in 
Fig. 5, then the domain using n NURBS functions Ni and n 
control points �i is approximated as,

(13)a(Th, Sh,�) = �(Sh),

(14)

a(Th, Sh,�) =∫Ω

(∇Sh)T�(�)∇ThdΩ

− ∫ΓI

(
n ⋅ {�(�)∇Sh}

)T
[[Th]] dΓ

− ∫ΓI

[[Sh]]T
(
n ⋅ {�(�)∇Th}

)
dΓ

+ ∫ΓI

� [[Sh]]T[[Th]] dΓ,

Fig. 4   Smoothed Heaviside function and smoothed Dirac delta func-
tion

Fig. 5   Parametrization of a point from the parametric domain to a 
point in the physical domain using NURBS basis functions



	 C. Jansari et al.   61   Page 8 of 32

and accordingly, the test and trial functions are also 
approximated with the same NURBS shape functions as,

Here, Ti and Si are the temperature and the arbitrary 
temperature at the i th control point.

By substituting Eq. (16) in Eq. (13), a linear system is 
obtained,

where � is the vector of unknown temperatures at the control 
points, � is the global stiffness matrix and � is the global 
flux vector. The detailed matrix formulation is given in 
Appendix 1.

(15)x =

n∑
i=1

�iNi(�),

(16)Th(�) =

n∑
i=1

TiNi(�), and Sh(�) =

n∑
i=1

SiNi(�),

(17)�� = �,

2.4 � Level‑set function parameterization

The objective of LSF parameterization is to use the basis 
functions (in our case, the NURBS basis functions) to 
approximate LSF on the entire domain via values at nodes/
control points. Values at nodes/control points are called 
expansion coefficients and are utilized as design variables 
for optimization. The choice of LSF parameterization also 
decides the design freedom as well as the detailedness of 
the level-set interface and eventually influences the opti-
mization results. A finer mesh for LSF parameterization 
means a bigger discretized optimization problem with a 
larger search pool and more design variables, which often 
requires more computational effort. On the other hand, the 
numerical analysis method requires a finer mesh to ensure 
adequate solution accuracy. Taking this into account, it is 
advantageous to decouple the LSF parameterization from 
the structural mesh. This way, the structural mesh can be 
refined without changing the design variables.

In this paper, we utilize two stages of refinement  
to achieve the above-mentioned decoupling. After  

Fig. 6   Discretization strategy to decouple the LSF parametrization from the geometry and solution field parameterizations. Two stages of refine-
ment are provided. The first is to create the design/LSF mesh, and the second is to create the solution mesh to ensure the solution accuracy
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creating a geometry on the coarsest possible NURBS 
mesh, we provide the first stage of refinement to get  
the required LSF parameterization (or the required  
number of design variables). After the first stage, the 
mesh is refined again for the second stage to ensure the 
required structural accuracy. The detailed refinement 
procedure is shown in Fig. 6. The degree elevation and 
knot insertion algorithms are used for both stages of 
refinement. All refinements are provided uniformly. For 
future work, it will be advantageous to define a refine-
ment criterion (Bordas et al. 2008; Bordas and Duflot 
2007; Duflot and Bordas 2008; Jansari et al. 2019) based 
on the LSF, and employ local refinement using advanced 
splines such as PHT-splines (Jansari et al. 2022b). The 
LSF � is parameterized using m NURBS basis functions 
Ri as,

where �i is the expansion coefficient corresponding to the 
i th control point.

We often need the expansion coefficients corresponding to 
a predefined LSF, for example, to initialize the optimization. 
To obtain these expansion coefficients �i , a simple linear mass 
system is solved. The mass system can be written as,

(18)�(�) =

m∑
i=1

Ri(�)�i

3 � Optimization problem

3.1 � Optimization problem description

In the level-set topology optimization method, the expansion 
coefficients, as mentioned in Eq. (18), are used as design 
variables. The goal is to find the values of these design varia-
bles, such that the corresponding topology yields the optimal 
value of the function of interest (called objective function). 
In our case, � = [�1 �2 ... �Nvar

]T is the vector of the 
Nvar design variables, and J is the objective function. In a 
general case, Nvar can be different from the number of basis 
functions m in Eq. (18). For the most of numerical examples 
in the next section, Nvar are less than m considering imposed 
x and y axial symmetry. The topology optimization problem 
for a heat manipulator can be defined in a mathematical form 
as,

with 

such that the following constraints are satisfied,

(22)min
�∈ℝNvar

J(Th,�),

(23a)J ∶ ℝ
Nvar

→ ℝ,

(23b)J ∶ � ↦ J(Th(�),�(�)),

where � = [�1 �2 ... �m]
T , mass matrix � and the 

right-side vector � are defined as,

(19)�� = �,

(20)� = ∫Ωdesign

(�)T� dΩ,

(21)� = ∫Ωdesign

(�)T� dΩ.

(24)Equality constraint: a(Th, Sh,�) = �(Sh),∀Sh ∈ S
h

0
in Ω,

(25)Equality constraint: T = T
D

on Γ
D
,

(26)Box constraints: �
i,min

≤ �
i
≤ �

i,max
i = 1, 2, ...,N

var
,

where �i,min and �i,max are the lower and upper bounds of 
the design variable �i.

As mentioned in Sect. 1, the given optimization prob-
lem is solved using a mathematical programming tech-
nique—Sequential Quadratic programming (SQP). In 
SQP, the boundary value problem described in Sect. 2.1 
is solved in each iteration. Since SQP is a gradient-based 
algorithm, the sensitivity of the objective functions J with 
respect to each design variable �i needs to be calculated 
(using the solution of the boundary value problem) at the 
end of each iteration. Later, the sensitivities are fed into 
the algorithm to generate the new values of the design 
variables. The following two sections will, respectively, 
explain the adjoint method to calculate the sensitivity at 
each iteration and SQP in detail.
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3.2 � Sensitivity analysis

In this section, we outline the sensitivity analysis method 
called the adjoint method  (Allaire et al. 2005; Wang et al. 
2003; Luo et al. 2007). In the most general case, the perfor-
mance objective function J(T ,�) can be written as a sum 
of two terms, corresponding to the volume and the surface 
integrals, respectively, i.e.

where Ωb is the domain where the volume term is calculated, 
and Γs is part of the boundary where the surface term is 
calculated. For our numerical examples, only the volume 
term of the objective function is considered.

Next, the Lagrangian can be obtained by augmenting the 
objective functional J(T ,�) with the weak form constraint 
as well as Dirichlet boundary constraint (with the help of 
the Lagrange multipliers P and � , respectively) that T should 
satisfy. It is defined as,

with

The optimality conditions of the minimization problem are 
derived as the stationary conditions of the Lagrangian. The 
detailed derivation of the stationary conditions, respective 
adjoint problem and functional form of sensitivity are given 
in Appendix 2.

By employing the trial and test function approximations, 
the adjoint problem as defined in Eq. (63) is discretized into 
the following linear system,

where � is the vector of adjoint temperature at control 
points, �adj is the global adjoint flux vector defined as,

Similarly, by employing the trial and test function approxima-
tions in Eq. (66), the parameterized sensitivity can be written as,

where d�
d�

 is the derivative of the global stiffness matrix 
with respect to � (as given in Eq. (55)). Using the LSF 

(27)J(T ,�) = ∫Ωb

Jb(T ,�) dΩ + ∫Γs

Js(T ,�) dΓ,

(28)L ∶ ℍ
1(ℝ2) × ℍ

1(ℝ2) × ℍ
1(ℝ2) × ℍ

1(ℝ2) → ℝ,

(29)
L(T ,P,�, �) =J(T ,�) + a(T ,P,�) − �(P)

+ ∫ΓD

�(T − TD) dΓ.

(30)�
T
� = �adj,

(31)�adj = −∫Ωb

�
T
�Jb
�T

dΩ − ∫Γs

�
T
�Js
�T

dΓ,

(32)
dJ

d�
= ∫Ωb

�Jb
��

dΩ + ∫Γs

�Js
��

dΓ + (�)T
d�

d�
�,

parameterization (Eq. (18)), the sensitivity with respect to a 
particular expansion coefficient �i is given as,

3.3 � Update scheme—Sequential Quadratic 
Programming (SQP)

In the Sequential Quadratic Programming (SQP) approach, 
the optimization problem is approximated as a quadratic 
sub-problem at each iteration (Nocedal and Wright 2006). 
For the SQP method, the main challenge is to form a good 
quadratic sub-problem that generates a suitable step for 
optimization. For our optimization problem, the quadratic 
subproblem in the m th iteration is modeled as,

where Jm , ∇Jm and Hm are the objective function value, the 
gradient of the objective function, and the Hessian approxi-
mation of the Lagrangian L in the m th iteration, respectively. 
Later, the minimizer of the subproblem p = pm is used to get 
the next approximation �m+1 based on a line search algo-
rithm or a trust region algorithm. One point to note here is 
that equality constraints are excluded. As the temperature T 
is evaluated from the linear system Eq. (17), the equality con-
straints will be satisfied explicitly at each iteration.

In this work, we use ‘fmincon’ optimization toolbox from 
MATLAB with the ‘sqp’ option. The ‘sqp’ option solves 
the above-mentioned quadratic subproblem with an active 
set strategy. At each iteration, the user provides the objec-
tive function Jm and the gradient ∇Jm (using the sensitivity 
analysis from the last section). For the calculation of Hessian 
approximation Hm , it uses the BFGS-update scheme. Once 
the solution to the subproblem pm is found, the size of step 
�m is found using an inbuilt line search algorithm. Then, the 
design variables are updated as,

3.4 � Regularizations

More often, the optimization problem is found to suffer 
from a lack of well-posedness, numerical artifacts, slower 
convergence, and entrapment into local minima with poor 
performance. To overcome these issues, regularization 
techniques can be used. Sometimes, regularization is utilized 
to control geometrical features in optimization results. 
Generally, a single regularization technique addresses 

(33)

dJ

d�i

= ∫Ωb

�Jb
��

d�

d�i

dΩ + ∫Γs

�Js
��

d�

d�i

dΓ + (�)T
d�

d�

d�

d�i

�.

(34)min
p∈ℝNvar

Jm + ∇JT
m
p +

1

2
p
T
Hmp,

(35)�m+1 = �m + �mpm.
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more than one of the above-mentioned problems. For our 
numerical examples, we explored three regularization 
techniques: LSF reinitialization, Tikhonov regularization, 
and volume regularization.

3.4.1 � Level‑set function reinitialization

As the interfaces are defined by the zero-level contours of 
LSF, only local regions near these contours are uniquely 
described in the optimal solution. Therefore, the LSF is 
not unique, especially in the region far from interfaces. As 
a consequence of this non-uniqueness property, the LSF 
sometimes becomes too flat or too steep during optimiza-
tion. This phenomenon can deteriorate the convergence rate. 
To alleviate the problem, the LSF is initialized as well as 
maintained as a sign distance function ( ||∇�||2 = 1 ) dur-
ing optimization. One way to maintain the LSF as a sign 
distance function is to reinitialize it after several iterations 
while maintaining the locations of zero-level contours. Rein-
itialization can be performed implicitly (by solving a PDE, 

while preserving the zero-level contour) (Sethian 1999; 
Osher and Fedkiw 2003; Wang et al. 2003; Allaire et al. 
2004; Challis and Guest 2009) or by explicit recalculation 
(Abe et al. 2007; Yamasaki et al. 2010). In the current work, 
we employ an explicit recalculation method—the geometry-
based reinitialization method. However, to retain the exact 
location of the discretized contour for curved boundaries and 
have ||∇�||2 = 1 everywhere with reinitialization, is gener-
ally not possible. Often there is a slight shift of the LSF con-
tours after reinitialization, introducing inconsistency in the 
optimization process (Osher and Fedkiw 2003; Hartmann 
et al. 2010). To alleviate this issue, inspired by Hartmann 
et al. (2010), we incorporate ||∇�||2 = 1 as a constraint on 
LSF reinitialization calculation. Additionally, if the reini-
tialization is applied at each iteration, it hinders the potential 
emergence of new holes. Therefore, reinitialization is per-
formed periodically (Challis and Guest 2009; Challis 2010).

Here, we explain the geometry-based constrained reini-
tialization technique in detail. Figure 7 outlines the steps of 
the technique. Using the inverse of LSF parameterization, 

(a) (b) (c)

Fig. 7   Geometry-based constrained LSF reinitialization technique

Fig. 8   The LSF before and after reinitialization. The green points (in c) represent the interface points before reinitialization, which lie exactly on 
the new interface
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we find several points on the interface as shown in Fig. 7a. 
For the sake of clarity, we call them the interface points. 
Then, the new LSF value at a point is defined as the distance 
to the closest interface point while keeping the sign from 
the original value (Fig. 7b). The number of interface points 
decides the accuracy of the reinitialization. To find the new 
expansion coefficients, we solve the mass matrix system as 
shown in Eq. (19) by implementing the new LSF values at 
the integration/collocation points (Fig. 7c). However, there 
is one difference from the initialization mass system. In this 
system, we apply the constraints which enforce the LSF val-
ues at interface points to be zero to preserve the location of 
the interface via the penalty method. An example of the LSF 
before and after reinitialization is shown in Fig. 8.

3.4.2 � Tikhonov regularization

The effect of Tikhonov regularization (Haber 2004; Tikhonov 
et al. 1995) is similar to perimeter regularization, where the 
perimeter of the level-set interface is penalized. In Tikhonov 
regularization, an additional term penalizing the gradient of 
LSF is added to the main objective function. By penaliz-
ing the gradient of LSF, the optimization is directed towards 
smoother LSF and eventually smoother interface. This Tik-
honov term and corresponding sensitivity are written as,

To implement Tikhonov regularization, the primary 
objective function and sensitivities are augmented by 
corresponding Tikhonov regularization terms using a 
weighing parameter � as,

3.4.3 � Volume regularization

For the heat manipulator optimization, we propose one more 
regularization, called volume regularization. In a metamate-
rial-based heat manipulator (made of two member materi-
als), often one high � material and another low � material are 
used. The high � material works as the medium that allows 
the flow of the flux, while the low � material hinders the flow 
and guides it towards the required path. By taking into account 
these particular roles, the area where the flux is not flowing 
(and the temperature gradient is zero or negligibly small) can 
be filled by low � material. In other words, the areas, that do 
not contribute to the original objective, can be filled with low 

(36)

JTknv =∫Ωdesign

∇�T ∇� dΩ, and

dJTknv

d�i

=∫Ωdesign

2∇�T ∇Ri dΩ.

(37)Jtotal = J + �JTknv, and
dJtotal

d�i

=
dJ

d�i

+ �
dJTknv

d�i

.

� material. By doing so, those areas are made as homogeneous 
as possible and free of unnecessary complex features. Math-
ematically, this objective is defined through a volume term as,

The term calculates the volume of high � material, as we 
assign high � material on the positive side of the level-set 
interface. As our optimization problem is a minimization 
problem, the term guides the optimization toward a larger 
volume of low � material. When this term is added to the 
main objective function through a weighing parameter, the 
combined objective of heat flux manipulation and volume 
filling can be achieved simultaneously.

To implement volume regularization, the primary 
objective function and sensitivities are augmented by 
corresponding volume regularization terms using a weighing 
parameter � as,

4 � Numerical examples

In this section, we verify the proposed method and test its 
efficiency and effectiveness for several numerical examples. 
We denote p and q as the order of NURBS approximation 
in two directions of a NURBS patch, which lies along the 
circumferential direction and radial directions, respectively, 
for the given examples. Since we are using ‘fmincon’ opti-
mization toolbox in MATLAB, there are several inbuilt 
stopping criteria such as, ‘OptimalityTolerance’ (tolerance 
value in the first-order optimality measures), ‘StepTolerance’ 
(tolerance value of the change in design variables’ values), 
‘ObjectiveLimit’ (tolerance value of the objective function), 
‘MaxFunctionEvaluations’ (maximum number of the func-
tion evaluations), ‘MaxIterations’ (maximum number of 
the iterations). We define ‘ObjectiveLimit’=1 × 10−9 , ‘Step-
Tolerance’=1 × 10−8 , ‘OptimalityTolerance’=1 × 10−6 . If 
LSF reinitialization is utilized, ‘MaxFunctionEvaluations’ 
and ‘MaxIterations’ are employed to stop the optimization 
before reinitializing it. Also, the ‘StepTolerance’ criterion 
often gets affected by poor LSF function. Therefore, the opti-
mization is stopped when it fails by ‘StepTolerance’ criterion 
for 4 consecutive times. Otherwise, the LSF is reinitialized 
and the optimization is run again. The stopping criteria, 
tolerance values, and applied regularizations differ slightly 
example-wise and are mentioned in the descriptions of the 

(38)

Jvol =∫Ωdesign

H(�) dΩ, and

dJvol

d�i

=∫Ωdesign

�(�)Ri dΩ.

(39)Jtotal = J + �Jvol, and
dJtotal

d�i

=
dJ

d�i

+ �
dJvol

d�i

.
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examples. Most of the examples are symmetric along x and 
y-axes. Therefore, x and y-axes symmetry is applied in almost 
all numerical models, and we explicitly state when there is an 
exception. From here onward, the value of the objective func-
tion for a particular test case will be mentioned in the caption.

It is noteworthy that, for each numerical example, deter-
mining an appropriate value of support bandwidth is cru-
cial. The support bandwidth defines the area characterized by 
intermediate densities. Achieving a clear 0-1 design involves 
minimizing this intermediate density area, ensuring higher 
numerical accuracy for state and adjoint problems. On the 
other hand, the sensitivity is confined to this intermediate 
density zone with zero sensitivity elsewhere (as shown in 
Eq. (11)). Therefore, for a given design mesh and solution 
mesh, decreasing the support bandwidth compromises the 
sensitivity accuracy due to fewer integration points available 
for sensitivity calculations. If one wants to reduce the support 
bandwidth while maintaining sensitivity accuracy, one has 
to either increase the integration points or refine the solu-
tion mesh, both constrained by the computational time. Thus, 
the absolute value of the support bandwidth will be decided 
based on a trade-off among accuracy, stability and computa-
tional effort. We will also showcase a thorough study on the 
effect of support bandwidth on the objective function value, 
sensitivity, and the accuracy of state and adjoint temperatures 
for the first numerical example, an annular ring problem.

4.1 � Annular ring problem

In this example, we consider a benchmark problem. As per 
authors’ knowledge, there are not any benchmark prob-
lems of multi-material optimization with heat conduction 

phenomena and given interface conditions in the literature. 
The importance of this test case is to verify the proposed 
method with an analytical solution. An annular ring with 
inner radius Ra and outer radius Rb is the domain Ω . The 
domain is divided into two regions Ωa and Ωb by an implic-
itly defined interface ΓL (a circle with radius RL ) as shown in 
Fig. 9. Regions Ωa and Ωb are filled with isotropic materials 
of conductivity �a and �b , respectively. For the state variable 
T, the boundary value problem is given as, 

 and the objective is to maximize the functional J(T),

By comparing it with Eq. (27), Ωb = Ω , Jb = T2 , and the 
surface term is absent.

In the simplest case, when the interface radius RL is the 
only design variable, the adjoint problem for the adjoint state 
P can be constructed using Eq. (63) as, 

 F o r  t h e  g i v e n  e x a m p l e ,  w e  t a k e 
Ra = 1,Rb = 2, Ta = 0, Tb = 100, �a = 100 , and �b = 10 . 
The analytical solutions of the boundary value problem and 

(40a)
Governing equations ∶ �a∇

2Ta = 0 in Ωa,

(40b)
�b∇

2Tb = 0 in Ωb,

(40c)

Interface conditions ∶ �a
�Ta
�r

= �b
�Tb
�r

at r = RL,

(40d)
T
a
= T

b
at r = R

L
,

(40e)
Boundary conditions ∶ T

a
= T

a
at r = R

a
,

(40f)
T
b
= T

b
at r = R

b
,

(41)J(T) = ∫Ω

T2dΩ.

(42a)
Governing equations ∶ �a∇

2Pa = −2Ta in Ωa,

(42b)
�
b
∇2

P
b
= −2T

b
in Ω

b
,

(42c)

Interface conditions ∶ �a
�Pa

�r
= �b

�Pb

�r
at r = RL,

(42d)
P
a
= P

b
at r = R

L
,

(42e)
Boundary conditions ∶ P

a
= 0 at r = R

a
,

(42f)
P
b
= 0 at r = R

b
.

Fig. 9   Domain description of the annular ring problem
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(a) (b)

(c) (d)

(e)

Fig. 10   For the annular ring problem, variation of a objective func-
tion J, b sensitivity dJ

dRL

 , c interface perimeter Per
L
 and d relative L2-

error of state variable T and e relative L2-error of the adjoint variable 
P with respect to interface radius R

L
 for different values of  support 

bandwidth � of smoothed Heaviside function. The analytical results 
are shown in black color. It is observed that the IGA provides better 
accuracy in the objective function with a smaller bandwidth. How-
ever, a bandwidth that is too small can produce unstable results with 
oscillations in the optimization
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adjoint problem are given in Appendix 3. From the analyti-
cal solution, we can derive that the optimized value of J(T), 
J(T) = 1.6094 × 104 , is achieved at RL ≈ 1.80612 . This is 
the only minimum in the given design space, and hence the 
unique solution to the optimization problem.

At first, we compare the numerical results with the ana-
lytical results for different support bandwidths � of the 
smoothed Heaviside function in Eq. (10). Figure 10 shows 

the variation of quantities such as the objective function J, 
sensitivity dJ∕dRL , interface perimeter PerL , error in the 
state and adjoint variables with respect to interface radius 
RL over range [Ra,Rb] . A constant mesh with 4389 degrees 
of freedom and 1089 expansion coefficients is exploited. 
For each value of RL , the expansion coefficients are defined 
using Eq. (19). The numerical sensitivity with respect to 
interface radius is calculated as follows,

(a) (b)

(c) (d)

Fig. 11   For the annular ring problem, the effect of DOF number on 
stability and accuracy a variation in the relative L2-error of the state 
variable T in the radius range as the mesh is refined, � = 0.05 b con-
vergence of the objective function J, � = 0.5, 0.1, 0.05, 0.01, 0.005 
c convergence of the state variable T and adjoint variable P, 

� = 0.5, 0.1, 0.05, 0.01, 0.005 d relation between relative L2

-error in J and �∕havg , where havg is the average mesh size, 
� = 0.5, 0.1, 0.05, 0.01, 0.005 . The errors in J, T, and P reduce 
with the mesh refinement bounded by the support bandwidth
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and the interface perimeter PerL is calculated using the 
expansion coefficients as follows,

The values of the support bandwidth � taken into account 
are � = 0.5, 0.1, 0.05 , 0.01, 0.005. From Fig. 10, it is evident 
that the IGA provides better accuracy in the objective func-
tion with a smaller bandwidth. However, a bandwidth that 
is too small can produce unstable results with oscillations in 

(43)

dJ

dRL

=
dJ

d�
⋅
d�

dRL

, with

d�

dRL

= �
−1 d�

dRL

(refer Eq.(19)),

(44)PerL = ∫Ω

�(�(�)) dΩ.

the optimization. The reason behind it is inaccurate material 
information near the interface, as we are using density-based 
geometric mapping. Oscillations can stop the optimization 
prematurely or make it behave erratically. In addition, the 
mesh size has a direct relation with these oscillations.

In Fig.  11, we show the effect of the mesh size on 
the numerical results. Figure  11a presents the fluctua-
tion of relative L2-error in state variable T over the range 
of RL for four different mesh size with degrees of freedom 
(DOF)=105, 333, 1173, 4389. � = 0.05 for all four cases. 
From the figure, it is evident that the accuracy and stabil-
ity increase with the mesh refinement, which aligns with our 
expectations. Because we are using density-based geometry 
mapping, the finer mesh with a more precise material distribu-
tion improves the structural response. In addition, it captures 

Fig. 12   For the annular ring problem, initial and optimized topolo-
gies for three values of Nvar = 25, 42 and 1089 with � = 0.05 . Four 
initial topologies (samples I, II, III, and IV) are discretized with the 

corresponding design basis. All optimized topologies are close to the 
optimal topology with a circular interface at R

L
≈ 1.80612 with the 

objective function J = 1.6098 × 104.
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the smoothed Heaviside and Dirac delta functions with better 
accuracy to provide stable results. One point to note is that a 
finer mesh means higher computation effort in optimization 
and that provides a practical limit to the mesh size.

The relative L2-error in objective function J and 
the variables T & P with respect to DOF are plotted in 
Fig. 11b and c, respectively. Here, we considered five val-
ues of � same as Fig. 10. We observe a similar pattern, 
the errors in all three quantities reduce with mesh refine-
ment bounded by the support bandwidth. In Fig. 11d, the 
approximate relation between relative L2-error in objec-
tive function J and �∕havg , where havg is the average mesh 
size, is developed. From the figure, it can be observed 
that the black line, log10(||errJ||2) = m log10(�∕havg) + C ; 
m ≈ 1.7008,C ≈ −3.8495 , represents an approximate upper 
bound on the improvement by refinement for a given value 
of � . The improvement in accuracy via refinement is lim-
ited on the right side of the line. This empirical relation 
helps to find an appropriate mesh size (for a given � ) to 
use for optimization.

For optimization, we take the expansion coefficients as 
design variables instead of the interface radius. Figure 12 
shows the initial and optimized topologies for three values 
of Nvar , Nvar = 25, 42 and 1089. The corresponding solution 
meshes have 4389, 4658, and 4389 DOF, respectively. For 
Nvar = 25, 1089 , we use p = 2 and q = 1 , while for Nvar = 42 , 
we use p = 3 and q = 2 . We choose � = 0.05 to trade off the 
accuracy, stability, and computational cost. We also consider 
four different LSFs (samples I, II, III, and IV) to define the 
initial topologies. For a particular LSF, the initial topology 
for each value of Nvar can be slightly different due to their 
different parameterizations. From the figure, we observe that 
each case generates a topology close to the optimal topology 
from the analytical solution regardless of the initial topology, 
which verifies the efficiency of the proposed method. The 

values of the objective function are also within 1% variation 
of optimal value. It is interesting to observe that in all cases 
optimization converged to the minimum corresponding to 
the global minimum of J in the design space with the unique 
parameter RL . In the most general space, we can only claim 
that it is a local minimum.

4.2 � Thermal cloak problem

4.2.1 � Problem description

In this example, a thermal cloak is optimized. The objec-
tive of a thermal cloak is to reduce the temperature distur-
bance created by an obstacle and produce the temperature 
distribution as if there were no obstacles. The geometry 
is referred from Chen and Yuan Lei (2015), however, our 
focus is on a thermal cloak instead of a thermal concentra-
tor as in Chen and Yuan Lei (2015). We consider a square 
base material-aluminum alloy (6063) plate ( �Al = 200 W/
mK) with a side length of 140 mm. The plate is under 
constant temperature difference between the left side 
(at 300 K) and the right side (at 200 K) as shown in 
Fig. 13a. The thermally insulated boundary condition, 
∇T ⋅ n = 0 , is applied on the remaining two sides. Now, 
the plate is embedded with a circular obstacle, which is 
a thermal insulator with very low thermal conductivity, 
�insulator = 0.0001 W/mK (see Fig. 13b). Due to the addition 
of an insulator, the temperature distribution is disturbed. 
Next, to reduce the temperature disturbance, a thermal 
cloak made of a metamaterial is added surrounding the 
obstacle (as shown in Fig. 13c). All dimensions related to 
the given problem are shown in Fig. 13. For the cloak, we 
chose a metamaterial made of copper and polydimethylsi-
loxane (PDMS), with thermal conductivities �copper = 398 
W/mK and �PDMS = 0.27 W/mK, respectively.

(a) (b) (c)

Fig. 13   Schematic design of a a base material (aluminium alloy) 
plate under constant heat flux applied by the high-temperature source 
on the left side and low-temperature sink on the right side; b a circu-
lar insulated obstacle embedded in the base material plate; ( Ωin is the 
obstacle) c the obstacle and a surrounding metamaterial-based ther-

mal cloak embedded in the base material plate; Ωdesign is the domain 
of the cloak where the topology (the distribution of two materials, 
denoted by pink and blue colors) is optimized, Ωout is the outside 
domain of remaining base material, where the temperature distur-
bance is sought to be reduced. Ω = Ωin ∪ Ωdesign ∪ Ωout.
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4.2.2 � Objective function

The thermal cloak aims to reduce the temperature 
disturbance in Ωout created by the inner obstacle Ωin . 
Mathematically, the cloak objective function is defined as,

with J̃cloak be the normalization value given as,

(45)Jcloak =
1

J̃cloak
∫Ωout

|T − T|2 dΩ,

Fig. 14   For the thermal cloak 
problem, the convergence of the 
objective function Jcloak (with 
respect to the number of itera-
tions) with and without LSF 
reinitialization. Black color dots 
show the case without LSF rein-
itialization, while the remaining 
colors represent the case with 
LSF reinitialization. The change 
in the color indicates that the 
LSF has been reinitialized at 
that iteration

Fig. 15   For the thermal cloak problem, initial and optimized topolo-
gies for three values of Nvar = 25, 42 and 1089 with � = 0.0005 . 
Three initial topologies (samples I, II, and III) are discretized with the 

corresponding design basis. All optimized topologies reach the objec-
tive function value of order 10−9–10−10.
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Here, T  represents the temperature field for the reference 
case when the entire domain is filled with the base material, 
and T̃  is the temperature field when Ωdesign is entirely filled 
with the insulator.

By  compar i son  wi th  Eq .  (27) ,  �b = Ωout  , 
Jb =

1

J̃cloak
| T − T |2 , and the surface term is absent.

4.2.3 � Results and discussion

Here, Nvar, p, q values are taken to be the same as in the 
previous example, and � = 0.0005 . Three initial topologies 
(samples I, II, and III) are considered and the corresponding 
LSFs are discretized with Nvar = 25, 42 and 1089. The solu-
tion meshes corresponding to Nvar = 25, 42 and 1089 have 

(46)J̃cloak = ∫Ωout

|T̃ − T|2 dΩ, 13167, 13974 and 13167 DOF, respectively. Additionally, 
the LSF reinitialization is used to increase the convergence 
rate. For each knot span in a parameter direction, we uti-
lize 20 isoparameter lines to find the interface points (as 
described in Sect. 3.4.1). The reinitialization is performed 
every 10 iterations or 100 function evaluations. To illus-
trate the convergence pattern of the objective function with 
reinitialization, we show the convergence for sample III with 
Nvar = 1089 in Fig. 14. From Fig. 14, it is observed that 
reinitialization improves the convergence rate substantially.

Figure  15 shows the initial and optimized topolo-
gies. From the figure, we see that the optimized topol-
ogy depends on the initial topology and on the number 
of design variables. The objective function, however, 
successfully reaches the values of order 10−9-10−10 for all 
cases. Larger Nvar represents more design freedom, and 
that is evidently visible for the optimized topologies for 
Nvar = 1089 . Using a large Nvar will allow exploring more 

Fig. 16   For the thermal cloak problem, flux flow and temperature dis-
tribution for (left column) a homogeneous base material plate (refer-
ence case), (middle column) a base material plate embedded with a 
circular insulator obstacle, and (right column) a base material plate 

embedded with a circular insulator and surrounding thermal cloak 
(sample I and Nvar = 1089 ). The temperature and heat flux distribu-
tions are shown. The thermal cloak reduces the temperature distur-
bance in Ωout.
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detailed topologies, but at the same time, it can create 
unnecessary and complicated features. One of the solu-
tions to the cloak problem is an exact bilayer cloak as 
proposed in Han et al. (2014a), where the interface is a 
circle and the radius is uniquely defined by the conduc-
tivities at hand. From our optimization, we obtain several 
optimized topologies such as (Fig. 15b, d, f, h, n) close to 
a bilayer cloak.

To further illustrate the results of optimization, in Fig. 16, 
we present an optimized thermal cloak for sample I with 
Nvar = 1089 . We compare the flux flow and temperature dis-
tribution among the three cases shown in Fig. 13: a back-
ground plate under constant heat flux, a plate with an obsta-
cle and a plate with an obstacle and the cloak. From the 
temperature difference, we can evidently see that the thermal 
cloak decreases the temperature disturbance created by the 
obstacle. In the Ωout region, the temperature distribution 
mimics the reference case, and the flux remains undisturbed.

In this paragraph, we discuss how to avoid unneces-
sary complex features in optimized topologies as shown in 
Fig. 15f, l, r. The goal is to use regularization techniques 
to produce smooth and less complex topologies. First, we 

explore the Tikhonov regularization. With the Tikhonov regu-
larization, the total objective function Jtotal = Jcloak + �JTknv . 
The optimization is performed with four values of � : 10−5 , 
10−4 , 10−3 , and 10−2 . The optimization results are presented 
in Fig. 17. For � = 10−5 , 10−4 , the effect of regularization 
is very minor, and consequently, we can see that some of 
the small features are still present. For larger values of � 
( 10−3 , 10−2 ), the optimized topologies are smoother and with 
fewer complex features, as expected. However, regularization 
provides a slight constraint on the Jcloak-values. The values, 
which are within the order of 10−7 , are still capable of provid-
ing the cloaking effect with enough accuracy.

Next, we explore the effect of another type of regulariza-
tion, volume regularization. With the volume regularization, 
the total objective function Jtotal = Jcloak + �Jvol . Here, we 
use four values of � : 10−5 , 10−4 , 10−3 and 10−2 . Figure 18 
shows the optimization results. From the figure, it is evident 
that volume regularization with higher � fills the zero-flux 
area with PDMS material. For lower values of � , the effect is 
not dominant. Similarly to the last regularization, Jcloak-val-
ues suffer up to some extent, however, still lie within order 
10−6 . Also, for sample II, the optimized topology without 

Fig. 17   For thermal cloak problem, initial topologies, optimized 
topologies without any regularization and with Tikhonov regulariza-
tion for Nvar = 1089 with � = 0.0005 . Three initial topologies (sam-
ples I, II and III) are discretized with the corresponding design basis. 

Four values of weighing parameter � are considered. Tikhonov regu-
larization provides smoother optimized topologies with a slight com-
promise on the Jcloak-values
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any regularization (as shown in Fig. 18h) is quite differ-
ent from the bilayer. However, after volume regularization, 
Fig. 18l–k are close to the bilayer cloak.

Thereupon, we check the combination of these two regu-
larizations mentioned in the last two paragraphs. We consider 
four combinations of � = 10−4, 10−3 and � = 10−4, 10−2 , 
denoted by sets A to D. The optimization results are shown 
in Fig. 19. For sample I, all sets give similar results with very 
negligible differences in topology. For samples II and III, sets 
C and D provide smoother topologies with smaller perimeters 
and less complex features compared to sets A and B. Jcloak
-values, however, are slightly higher for sets C and D. There-
fore, we can say that � and � are decided based on a trade-off 
between the smoothness of the topologies and fulfillment of 
the cloaking objective. However, it is difficult to predict the 
exact values of � and � a priori and should be decided on 
the basis of the trial and error method. Other regularization 
techniques such as perimeter regularization and sensitivity 
smoothing can also be applied to get smoother geometries. 
Nonetheless, the issue of lack of apriori knowledge of the 
appropriate value of weighing parameters remains. Another 
way to avoid complex topologies is by applying geometric 

constraints such as minimum length scale in the optimization 
problem. Geometry-constrained optimization, however, is 
beyond the scope of the current work, and it will be explored 
in future research.

In the next study, we explore several types of geom-
etries of the obstacle and thermal cloak for a given prob-
lem. The different configurations under consideration and 
their dimensions are shown in Fig. 20. The plate dimen-
sions are the same as in Fig. 13, therefore excluded. For all 
configurations, we apply symmetry along x and y-axis as 
in the earlier cases except Config. V—inclined ellipsoidal 
obstacle, for which we remove the symmetry condition 
due to lack of symmetry in geometry itself. We perform 
optimization for one value of Nvar , Nvar = 1089 , and the 
corresponding results are shown in Fig. 21 In terms of 
the initial topology, the optimized topology (without any 
regularization), and the optimized topology (with com-
bined Tikhonov and volume regularization). For combined 
Tikhonov and volume regularization, we present only one 
case that gives a smoother topology with good accuracy 
(the corresponding weighing parameters � and � for each 
case are also mentioned in Fig. 21). From the results, it 

Fig. 18   For the thermal cloak problem, initial topologies, optimized 
topologies without any regularization and with volume regularization 
for Nvar = 1089 with � = 0.0005 . Three initial topologies (samples I, 
II and III) are discretized with the corresponding design basis. Four 

values of weighing parameter � are considered. Volume regulariza-
tion fills the zero-flux area with PDMS material with a slight compro-
mise on the Jcloak-values
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can be concluded that the proposed method handles dif-
ferent geometries. In the same vein as the earlier results, 
regularization can generate smoother geometries. In some 
cases, the objective function of the regularized problem is 
better than the unregularized problem. The reason behind 
this is that the unregularized optimization problem can get 
stuck in a local minimum without exploring the full scope 
of the whole design space. After applying regularization, 
the regularized problem becomes a better-defined optimi-
zation problem for those cases. Following it, optimization 
has the advantage of exploring better designs that were 
not possible earlier.

4.3 � Thermal camouflage problem

4.3.1 � Problem description

In this example, we explore the optimization of thermal 
camouflage. Both thermal cloak and thermal camouflage 
mimic the thermal signature (in the region of interest) of 

other reference scenarios. Thermal cloaks hide the objects 
from outside detection; however, they can be detected from 
inside observation as they have a different heat signature from 
the reference case in the inside region. On the other hand, ther-
mal camouflage mimics the heat signature of another object 
for both inside and outside detection. The schematics of the 
camouflage problem and the corresponding dimensions are 
shown in Fig. 22. Figure 22a shows the reference state where 
two insulated sectors are embedded in a square base mate-
rial-Aluminum alloy (grade 5457) plate ( �Al = 177 W/mK) 
with a side length of 100 mm. The insulators’ conductivity 
is taken as 0.0001 W/mK. Figure 22b shows that the magne-
sium alloy object (grade AZ91D), with thermal conductivity 
�Mg = 72.7 W/mK, is added at the center of two sectors. It 
also shows a metamaterial-based thermal camouflage covering 
the area between the sectors and the object. For camouflage, 
we chose the metamaterial similar to the last example, made 
of copper and polydimethylsiloxane (PDMS), with thermal 
conductivity �copper = 398 W/mK and �PDMS = 0.27 W/mK. 

Fig. 19   For the thermal cloak problem, initial topologies, optimized 
topologies without any regularization and with combined Tikhonov 
and volume regularization for Nvar = 1089 with � = 0.0005 . Three 
initial topologies (samples I, II and III) are discretized with the corre-

sponding design basis. Four sets of weighing parameters � and � are 
considered. Combined regularization can fill the zero-flux area with 
PDMS material as well as produce smoother topologies with a slight 
compromise on the Jcloak-values



Design of metamaterial‑based heat manipulators using isogeometric level‑set topology… Page 23 of 32     61 

The boundary conditions are identical to those in the previous 
example.

4.3.2 � Objective function

The objective of thermal camouflage is to reduce the 
temperature difference with respect to the temperature 
signature of the reference state in Ωin ∪ Ωdesign ∪ Ωout . 
Mathematically, the camouflage function is defined as,

with J̃cmflg be the normalization value given as,

(47)Jcmflg =
1

J̃cmflg
∫Ωin∪Ωdesign∪Ωout

|T − T|2 dΩ,

Here, T  represents the temperature field for the reference 
case, when Ωin ∪ Ωdesign ∪ Ωout is filled with the base mate-
rial, and T̃  is the temperature field when Ωdesign is entirely 
filled with the insulator.

By comparison with Eq. (27), Ωb = Ωin ∪ Ωdesign ∪ Ωout , 
Jb =

1

J̃cmflg

| T − T |2 , and the surface term is absent.

4.3.3 � Results and discussion

In this example, we consider Nvar = 1089 (with p = 2 , q = 1 
and a mesh of 17655 DOF) and � = 0.001 . We also exploit 

(48)J̃cmflg = ∫Ωin∪Ωdesign∪Ωout

|T̃ − T|2 dΩ,

(a) (b) (c)

(d) (e)

(f) (g) (h)

Fig. 20   Configurations and dimensions of different types geometries 
of a thermal cloak problem: Config. I—square obstacle, Config. 
II—horizontal rectangular obstacle, Config. III—vertical rectangu-
lar obstacle, Config. IV—horizontal ellipsoidal obstacle, Config. 

V—inclined ellipsoidal obstacle, Config. VI—square cloak, Config. 
VII—horizontal rectangular cloak, Config. VIII—inclined square 
cloak
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the LSF reinitialization performed after every 10 iterations 
or 300 function evaluations. All other parameters are taken 
the same as the last example.

Figure 23 shows the initial topologies, the optimized 
topologies without any regularization ( Jtotal = Jcmflg ), and 
the optimized topologies with combined Tikhonov and 
volume regularization ( Jtotal = Jcmflg + �JTknv + �Jvol ). 
For combined regularization, we consider four sets of 
parameters �  and � , denoted as set-A ( � = 1 , � = 10−2 ), 

set-B ( � = 1 , � = 10−1 ), set-C ( � = 1 , � = 1 ) and set-D 
( � = 1 , � = 0 ). It can be seen that the optimal topologies 
provide the copper channels to allow the flux to flow 
similarly to the reference case. The widths of the channels 
are dependent on numerical accuracy, design freedom, 
and regularization parameters. As evident from the fig-
ure, the optimized geometries without any regularization 
are impractical considering their too complex features. 
However, the alternative designs with regularization have 

Fig. 21   For the thermal cloak problem, initial topologies, optimized 
topologies without any regularization, optimized topologies with 
combined Tikhonov and volume regularizations for different types 

geometries of a thermal cloak for Nvar = 1089 with � = 0.0005 . The 
proposed method can handle different geometries
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better practical topologies. Also, one point to note is that 
their Jcmflg-values are in the same range as the unregular-
ized cases, sometimes even smaller. The difference among 

the optimized topologies from set A to D is very negli-
gible. As discussed in the last example, the parameters � 
and � values are difficult to predict apriori and have to be 

(a) (b)

Fig. 22   Schematic design of a A base material (aluminum alloy) 
plate embedded with two insulator sectors under constant heat flux 
applied by a high-temperature source on the left side and low-temper-
ature sink on the right side; b A conductive object, a thermal camou-
flage surrounding the object and two insulator sectors embedded in a 

base material plate; Ωsec is the region covered by the insulator sectors, 
Ωin is the region covered by the object, Ωdesign is the area of the cam-
ouflage where the topology is optimized, Ωout is the outside area of 
remaining base material, Ω = Ωin ∪ Ωdesign ∪ Ωsec ∪ Ωout.

Fig. 23   For the thermal camouflage problem, initial topologies, opti-
mized topologies without any regularization and with combined Tik-
honov and volume regularization for Nvar = 1089 with � = 0.001 . 

Three initial topologies (samples I, II and III) are discretized with the 
corresponding design basis. Four sets of weighing parameters � and � 
are considered
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decided based on the trial and error method according to 
the design requirements.

In Fig. 24, we present the optimized topologies with 
and without regularizations achieving the desired cam-
ouflaging objective for sample I. We compare the flux 
flow, temperature distribution, and temperature differ-
ence with the reference temperature distribution. From 
the figure, it can be seen that the thermal camouflage 
produces the temperature signature same as the refer-
ence case.

5 � Conclusions

In the present article, we explore the level-set topology opti-
mization method for the design of heat manipulators. The 
NURBS basis functions are utilized for parameterizations of 
the geometry, temperature field, and level-set function. The 
thermal boundary value problem is solved using isogeomet-
ric analysis. For the optimization problem, a gradient-based 
advanced mathematical programming technique, Sequential 
Quadratic Programming (SQP), is used. To calculate the 

Fig. 24   For the thermal camouflage problem, flux flow and tem-
perature distribution for (left column) a base material plate embed-
ded with two insulator sectors (reference case), (middle column) a 
plate embedded with two insulator sectors, a conductive object (at 
the center), and an optimized thermal camouflage (without regulari-
zation) surrounding the object (sample I), and (right column) a plate 

embedded with two insulator sectors, a conductive object (at the 
center), and an optimized thermal camouflage (with regularization) 
surrounding the object (sample I, set C). The temperature and heat 
flux distributions are shown. The thermal camouflage reduces the 
temperature disturbance in Ωin ∪ Ωdesign ∪ Ωout.
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sensitivity, the adjoint method is utilized. Three numerical 
examples are presented: an annular ring problem, a thermal 
cloak problem, and a thermal camouflage problem that cor-
roborates the efficiency of the proposed method.

In the annular ring problem, the numerical results match 
the analytical results, which verifies the accuracy of the 
proposed method. The results indicate that,

•	 A smaller support bandwidth of the smoothed 
approximate Heaviside function improves the accuracy of 
the numerical solution and hence the optimization results. 
However, a too-small bandwidth affects the numerical 
sensitivity calculation and produces oscillations in the 
optimization. This would result in stopping optimization 
prematurely or making it behave erratically.

•	 A remedy to oscillations coming from smaller band-
widths is to refine the solution mesh. However, the 
amount of refinement is also constrained by the asso-
ciated computational cost. Therefore, a solution mesh 
and the bandwidth of smoothed Heaviside function are 
decided on the basis of a compromise among accuracy, 
stability, and computational cost. However, for the bench-
mark problem, we developed an empirical lower bound 
on the required mesh size for a given support bandwidth 
to give an estimate.

•	 Considering the uniqueness of the solution in the given 
design space, the proposed optimization procedure suc-
cessfully generates the topologies close to the analytical 
optimal topology irrespective of the initial topologies. 
The values of the objective function are also within 1% 
variation of the optimal value.

In the thermal cloak problem, we optimized the topology 
of an annular-shaped thermal cloak. We also explored 
two regularizations (Tikhonov regularization and volume 
regularization) and their combination to generate smoother and 
more practical optimized topologies. In the end, the efficacy of 
the current method for other geometries of the thermal cloak 
was also examined. The results indicate that,

•	 The problem is not convex and can have different optimized 
topologies depending on the initial topology and the num-
ber of design variables. Several optimized topologies are 
close to one known analytical solution—a bilayer cloak 
with a circular interface. The objective function reaches 
values of order 10−9 − 10−10 for all cases.

•	 By providing regularizations during optimization, 
smoother and less complex topologies are generated with 
a slight compromise on the objective function value.

•	 The values of the parameters � and � , the weights of Tik-
honov and volume terms, respectively, are very difficult to 
predict apriori. They are often decided based on a trade-off 

between the complexity of the topologies and fulfillment 
of the cloaking objective using the trial and error method.

•	 The proposed method can handle different geometries 
and shapes with the same effectiveness.

In the last example, we optimized a thermal camouflage 
mimicking the temperature signature of a reference 
scenario. Similar to the thermal cloak problem, we exploited 
regularizations to generate smoother and more practical 
designs. The results are equally satisfactory.

The proposed method is generalized to apply to any 
heat manipulator with varying geometries. Also, keeping 
in mind that the heat flux manipulation problems are often 
not unique, the method can find other possible topologies 
for the already developed heat manipulators based on 
analytical methods such as transformation thermotics, 
scattering cancelation method. In addition, many times we 
deal with a larger number of design variables, and therefore, 
the gradient-based optimization (with the adjoint method 
to find sensitivity) works faster than other gradient-free 
optimization processes. However, the method in its current 
form lacks the ability to carry out geometry-constrained 
optimization. Consequently, the method can be extended 
to impose geometry-constrained optimization in future 
work. In addition, the optimization problem can also be 
extended to multiphysics problems such as thermomagnetic, 
thermoacoustic, thermoelectrics. In another direction, the 
method can be improved to reduce the computational time 
using surrogate models for boundary value problems, 
acceleration techniques, and NURBS hyper-surfaces 
(Montemurro and Refai 2021; Costa et al. 2021).

Appendix 1: Matrix formulation of boundary 
value problem

The global stiffness matrix � and the global flux vector � 
(as shown in Eq. (17)) are written as,

where �b is the bulk stiffness matrix. As �in , �out and �design 
are considered separate patches, Kb is defined as follows,

where B is the shape function derivative matrix (with 
superscript k representing the patch index).

(49)� = �
b +�

n + (�n)T +�
s,

(50)� = ∫ΓN

�
TQN dΓ,

(51)K
b =

∑
k∈{in,design,out}

∫Ωk

(Bk)T�k(�)Bk dΩ.
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K
n and Ks are the interfacial stiffness matrices since these 

matrices are used to couple adjacent patches with the condi-
tions given in Eqs. (1d)–(1e). A point to note, before defin-
ing Kn and Ks , is that the connecting patches have matching 
control points at the interface as shown in Fig. 2. Follow-
ing the notation used in Sect. 2.1, the connecting patches at 
interface �I are denoted as 1 and 2 (and by superscripts 1 & 
2 in the following equations). Consequently, Kn and Ks are 
given by the following equations,

where N is the vector of shape functions. For a given patch 
k, the shape function derivative matrix Bk and the vector of 
shape functions Nk are given as follows,

In Sect. 3.2, the derivative of global stiffness matrix with 
respect to LSF � will be needed in the sensitivity calculation. 
It is defined by differentiating Eq. (49) as follows,

where

and dK
n

d�
 & dK

s

d�
 are defined similarly by differentiating Eq. (52) 

& Eq. (53), respectively.

Appendix 2: Optimality conditions 
derivation

In this section, we derive the optimality conditions by solving 
the stationary conditions of the Lagrangian as defined in Eq. 
(29). The first stationary condition is obtained by equating 
the partial Fréchet derivative of L with respect to P (in any 
arbitrary direction �P ∈ ℍ1 ) to zero, i.e.

(52)

K
n =

⎡
⎢⎢⎢⎣

−� ∫ΓI

(N1)Tn�1(�)B1 dΓ − (1 − �)∫ΓI

(N1)Tn�2(�)B2 dΓ

� ∫ΓI

(N2)Tn�1(�)B1 dΓ (1 − �)∫ΓI

(N2)Tn�2(�)B2 dΓ

⎤
⎥⎥⎥⎦
,

(53)K
s =

⎡
⎢⎢⎢⎣

� ∫ΓI

(N1)TN1 dΓ − � ∫ΓI

(N1)TN2 dΓ

−� ∫ΓI

(N2)TN1 dΓ � ∫ΓI

(N2)TN2 dΓ

⎤
⎥⎥⎥⎦
,

(54)

B
k =

[
Nk
1,x

Nk
2,x

... Nk
I,x

...

Nk
1,y

Nk
2,y

... Nk
I,y

...

]
, N

k =
[
Nk
1
Nk
2
... Nk

I
...
]
.

(55)dK

d�
=

dKb

d�
+

dKn

d�
+

(
dKn

d�

)T

+
dKs

d�
,

(56)
dKb

d�
=

∑
k∈{in,design,out}

∫Ωk

(Bk)T
d�k(�)

d�
B
k dΩ,

Using the bilinear form and the linear form from Eqs. (14) 
and (4), it can be derived that,

Substituting the second and third equations of Eq. (58) in 
Eq. (57),

which shows that ∀�P ∈ ℍ1 , given state variable T ∈ ℍ1 sat-
isfies the weak form.

The second stationary condition is obtained by taking the 
partial Fréchet derivative of L with respect to � (in any arbi-
trary direction �� ∈ ℍ1 ) and equating it to zero as follows,

which readily implies that T = TD on ΓD . Together Eqs. (59) 
and (60) solve the boundary value problem in the state vari-
able T (as described in Eq. (1)).

The third stationary condition is obtained by taking the par-
tial Fréchet derivative of L with respect to T (in any arbitrary 
direction �T ∈ ℍ1 ) and equating it to zero as follows,

Using Eq. (58) & the fact that T is constant, i.e.�T = 0 , on 
ΓD,

Equation (62) is valid for ∀�T ∈ ℍ1 , therefore, with an arbi-
trary normal derivative ��T

dn
 on ΓD and vanishing trace �T = 0 , 

it gives, P = 0 on ΓD . Combining this fact with Eq. (62), we 
can generate a well-posed adjoint problem as, 

(57)

⟨
�L(T ,P,�, �)

�P
, �P

⟩
=

⟨
�a(T ,P,�)

�P
, �P

⟩

−

⟨
��(P)

�P
, �P

⟩
= 0.

(58)

⟨
�a(T ,P,�)

�T
, �T

⟩
= a(�T ,P,�);

⟨
�a(T ,P,�)

�P
, �P

⟩
= a(T , �P,�);and

⟨
��(P)

�P
, �P

⟩
= �(�P).

(59)a(T , �P,�) = �(�P),

(60)
⟨
�L(T ,P,�, �)

��
, ��

⟩
= ∫ΓD

��(T − TD) dΓ = 0.

(61)

⟨
�L(T ,P,�, �)

�T
, �T

⟩
=

⟨
�J(T ,�)

�T
, �T

⟩

+

⟨
�a(T ,P,�)

�T
, �T

⟩
+ ∫ΓD

��T dΓ = 0.

(62)a(�T ,P,�) = −

⟨
�J(T ,�)

�T
, �T

⟩
.
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 where T is the primary temperature field, and P is the 
adjoint temperature field.

At last, with the fulfillment of all three stationary condi-
tions, the sensitivity of the objective functional 

(
dJ

d�

)
 

becomes equal to the total derivative of Lagrangian L with 
respect to the LSF � . Therefore, it can be written as follows,

By substituting Eq. (62),

Appendix 3: Analytical solution 
of the annular ring problem

The analytical solutions of the boundary value problem (Eq. 
(40)) is given as follows, 

 where coefficients ca, da, cb, db are obtained from the 
following system of algebraic equations, resulting from 
satisfying boundary conditions (Eq. (40)) for r = Ra , r = Rb 
and r = RL,

(63a)∇ ⋅ (�∇P) = −
�J(T ,�)

�T
in Ω,

(63b)P = 0 on Γ
D
,

(63c)�∇P ⋅ n = 0 on Γ
N
,

(63d)[[P]] = 0 on Γ
I
,

(63e)n ⋅ [[�∇P]] = 0 on Γ
I
,

(64)

⟨
dJ(T ,�)

d�
, ��

⟩
∶=

⟨
dL(T ,P,�, �)

d�
, ��

⟩

=

⟨
�J(T ,�)

��
, ��

⟩
+

⟨
�J(T ,�)

�T
, �T

⟩

+

⟨
�a(T ,P,�)

��
, ��

⟩
+

⟨
�a(T ,P,�)

�T
, �T

⟩
.

(65)

⟨
dJ(T ,�)

d�
, ��

⟩
=

⟨
�J(T ,�)

��
, ��

⟩
+

⟨
�a(T ,P,�)

��
, ��

⟩
,

(66)∴
dJ(T ,�)

d�
=

�J(T ,�)

��
+

�a(T ,P,�)

��
.

(67a)Ta(r) = ca + da log(r),

(67b)Tb(r) = cb + db log(r),

which can be written as,

The adjoint system (Eq. (42)) can be reduced to the 
following two ODEs,

whose solution takes the form,

The coefficients C1,D1,C2,D2 are found by satisfying 
boundary conditions given in Eq. (42), i.e. from the 
following system,
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(68)

⎡⎢⎢⎢⎣

1 log(Ra) 0 0

0 0 1 log(Rb)

1 log(RL) − 1 − log(RL)

0 �a 0 − �b

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

ca
da
cb
db

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

Ta
Tb
0

0

⎤⎥⎥⎥⎦
,

(69)

ca = −
−�bTb log(Ra) − �aTa log(RI) + �bTa log(RI) + �aTa log(Rb)

�b log(Ra) + �a log(RI) − �b log(RI) − �a log(Rb)
,

da =
�b(Ta − Tb)

�b log(Ra) + �a log(RI) − �b log(RI) − �a log(Rb)
,

cb = −
�bTb log(Ra) + �aTb log(RI) − kbTb log(RI) − �aTa log(Rb)

−�b log(Ra) − �a log(RI) + �b log(RI) + �a log(Rb)
,

db =
�a(Ta − Tb)

�b log(Ra) + �a log(RI) − �b log(RI) − �a log(Rb)
.

(70)
P

��

a
(r) +

1

r
P

�

a
(r) =

−2

�a
(ca + da log(r)),

P
��

b
(r) +

1

r
P

�

b
(r) =

−2

�b
(cb + db log(r)),

(71)
Pa(r) = C1 log(r) + D1 −

(ca − da)r
2

2�a
+

dar
2 log(r)

2�a
,

Pb(r) = C2 log(r) + D2 −
(cb − db)r

2

2�b
+

dbr
2 log(r)

2�b
,

(72)

⎡⎢⎢⎢⎣

1 log(Ra) 0 0

0 0 1 log(Rb)

1 log(RL) − 1 − log(RL)

0 �a 0 − �b

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

C1

D1

C2

D2

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

R2
a
(ca−da)+R

2
a
da log(Ra)

2�a
R2
b
(cb−db)+R

2
b
db log(Rb)

2�b
R2
L

2

�
ca−da

�a
−

cb−db

�b

�
+

R2
L
log(RL)

2

�
da

�a
−

db

�b

�
R2
L

2

�
2ca − 2cb − da + db

�
+ R2

L
log(RL)

�
da − db

�

⎤⎥⎥⎥⎥⎥⎥⎦

.
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