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naux pour les Transports) - COSYS (Composants et Systèmes).

Prof. Nikola Bešinović
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Summary

Europe aims to reach carbon neutrality by 2050, imposing a radical transformation of the continent

in every aspect. Freight transport, in this context, accounts from a carbon footprint perspective

for 27% of total transport CO2 emissions, with 95% of these produced by cars, vans, trucks, and

buses, i.e., road transport. As the freight market is expected to grow in Europe by 50% by 2050

from the level of 1990, European Union seeks to double the use of freight rail transportation in the

next 30 years. This is not a trivial task, as freight rail transportation comes with specific problems,

such as the coexistence in the railway network with passenger trains which leads, in some cases,

to average delays of up to 11 hours. Therefore, to ensure punctual departures, and optimize the

management of the freight railway system, among the possible solutions, we have chosen to focus

on the optimization of internal freight railway operations as our primary approach in this thesis.

Among the different operations within the shunting yard, the specific stations where freight trains

are parked, loaded, and dispatched to their destination, we deal with the problem of shunting

optimization. Shunting operations are defined as the movement of rolling stock within a specific

station, and are essential for ensuring the smooth operation of activities within the shunting yard.

The goal of this dissertation is to implement maintenance consideration within freight train

operations, specifically focusing on the impact that maintenance has on shunting operations. The

primary objective of this research is to explore how maintenance operations impact shunting op-

erations and, by extension, the overall performance of freight rail systems. Shunting operations

are expensive, time and resource-consuming. Still, maintenance scheduling and operations impact

them, as maintenance creates unavailability for the demand to be fulfilled, leading to additional

shunting, and potentially causing delays and cancellations. In this context, we identify the role

of maintenance, framing the problem from both strategic and tactical dimensions, assessing the
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impact’s magnitude, and proposing solutions to improve freight rail management.

Our methodological approach includes the development of two Mixed Integer Linear Program-

ming (MILP) models and Machine Learning (ML) techniques to include in our considerations both

mileage and condition-based maintenance. These models are designed to incorporate maintenance

requirements into the daily operational planning of freight trains, aiming to improve system relia-

bility, cost efficiency, and rolling stock management, while reducing delays and cancellations.

Key findings of this research reveal that the lack of integration between maintenance planning

and operational scheduling from a strategic point of view can lead to significant underestimations

of operational needs and system performance. We demonstrate that shunting policies, defined

as the criteria to choose which wagon to choose for a service, when accounting for mileage-based

maintenance considerations can substantially improve the efficiency of shunting yards and fleet man-

agement. Furthermore, we developed a machine learning model for condition-based maintenance

prediction, which coupled with a tactical model enables more informed decision-making based on

risk assessment, leading to more resilient and efficient freight rail operations.
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Chapter 1

Introduction

When the war of the beasts brings about

the world’s end,

The goddess descends from the sky.

Loveless, Prologue

1.1 Context and Motivation

In March 2011, the European Commission published its Roadmap for moving to a competitive low

carbon economy in 2050 [30], a document defining the framework to implement a competitive low

carbon footprint economy, whose aim is the reduction of all its domestic emission by 80% compared

to 1990. Domestic is here defined as the real internal reductions of EU emissions and not offsetting

through the carbon market. Figure 1.1 shows the projected reduction between different sectors of

CO2 Emissions.

In the same month, the European Commission published an ambitious transport strategy named

Transport 2050 [31], aimed at enhancing mobility, promoting growth and employment, while signif-

icantly reducing Europe’s oil dependency and cutting transport-related carbon emissions by 60%

by 2050. Key objectives of this comprehensive plan include:

• Eliminating conventionally-fuelled cars in urban areas by 2050.

• Increasing sustainable, low carbon fuels in aviation to 40%, and reducing shipping emissions

1



Chapter 1 – Introduction

Figure 1.1: EU GHG emissions towards an 80% domestic reduction (100% =1990). Source: [30]

by at least 40%.

• Shifting 50% of medium-distance intercity passenger and freight transport from road to rail

and waterborne transport.

• Implementing a Single European Transport Area to remove barriers and integrate different

transport modes.

For intercity and urban travel, the plan emphasizes a significant move towards rail and wa-

terborne transport, modernizing infrastructure, and enhancing multimodal connections. For long-

distance and intercontinental freight, the strategy relies on more efficient and lower-emission air,

passenger rail, maritime transport, and freight rail transport. This is also supported by huge in-

vestments in the railway infrastructure in Europe, which will have to account for the new expected

growth in demand for both freight and passenger trains.

The Transport 2050 proposal was followed up by the European Green Deal (EGD) [33], presented

on the 11th of December 2019, which upped the stakes bringing the proposed cut of transport

2
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emission to 90% by 2050. Looking specifically at freight transport, the European Commission’s

strategy aims to mitigate its environmental impact, as this sector is the backbone of the EU’s Single

Market. The freight transport keeps supermarkets, factories, and pharmacies stocked, enabling

European companies to sell their products across the continent and beyond. In 2020, 6 million

people worked in the EU freight sector in 2020, with freight transport in the EU responsible for

an annual turnover of €938 billion. This market, from a carbon footprint perspective, accounts for

27% of total EU emissions of transport CO2 emissions, as per data from the European Environment

Agency (EEA) [8]. Of this percentage, 95% of these are produced by cars, vans, trucks, and buses,

i.e., road transport. This is an impressive number, considering that road freight transport accounts

for only 25% of the overall tonne-km transported in 2021. Only 5.4% delegated to rail freight

transportation, as depicted in Figure 1.2, [21].

Figure 1.2: Modal Split Freight as per 2021. Source: [21]

With the freight market expected to grow in Europe by 25% by 2030 and 50% by 2050 from the

level of 1990, and as part of its goal for reaching the declared carbon neutrality goals, the European

Union aims to double the use of freight rail transportation in the next 30 years [19]. This sector

can play a crucial role in supporting the achievement of these environmental challenges, reducing

congestion on roads and costs related to this sector. This is because freight train is one of the

least pollutant modes of transporting freight, Figure 1.3a, while having the second lowest cost of

operations among the different options, Figure 1.3b.

Nonetheless, freight rail transportation also has its inherent challenges: costs, logistic complex-
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(a) CO2 - Emissions from Freight Transport Op-

erations (g CO2/tonne-km). Source: ECTA

(b) Unit trade value (import/export unit cost)

for each means of transportation for USA in 2021.

Source: Bureau of Transportation Statistics

Figure 1.3: Comparative Analysis of CO2 Emissions (a) and Trade Values in Freight Transport (b)

ities, and the coexistence with the passenger railway market on the same infrastructure, which are

on a different scale compared to road transport.

The coexistence of the passenger railway, with its expected growth in traffic by 34% by 2030 and

51% by 2050 ([29]), becomes an important challenge for improving freight railway attractiveness.

Freight rail transport has one of the lowest priorities in the railway network [75], meaning that

when there is a conflict in a railway section, meaning two trains arriving at the same time in the

same section, train dispatchers decide which train is going to pass first to solve the conflict based

on some predetermined priorities. This increases the likelihood that freight trains have to wait

for the other train to pass, reducing the quality of service and decreasing its punctuality, bringing

increased costs for this sector. Punctuality in trains can be improved through the increase of what

is defined as the reserved times, defined as the time for which a section of the railways is booked for

a specific service, whether it be passenger or freight. However, larger reserved times require first a

larger capacity of the network, which would come with time with new investments, but reduces the

capacity utilization of lines, which is a trade-off that must be considered [23]. With the expectation

of doubling freight and passenger traffic by 2050 and the prioritization system in action in Europe,

reducing late departures can be a key strategic lever for improving train punctuality. Reducing

late departures, especially for freight, increases the probability of the trains meeting the requested

appointments at each section, reducing the likelihood of a conflict and therefore of propagated

delays.

This is not a trivial task, as delays on departure are influenced both by the network and the
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operations to be performed on the train. The Polish Office of Rail Transport states that for the

period July-September 2023 the average punctuality rate of their freight trains was 51.89%, with

an average delay of 679 minutes (around 11 hours), [78].

These delays, being propagated from the network to the station, increase the probability of

incurring delays and potential cancellation and rescheduling of service, impacting the quality of

the service provided and inducing increased costs. These delays create a vicious circle, where the

delays in arrival create delays in starting the necessary operations that are needed to make the train

available for the next service. The operations performed on the train itself can also be a source of

delay, which usually are tightly scheduled to cope with the limited capacity of the stations.
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Economic Impact Description

Fleet Requirements Late arrivals of a train may necessitate additional wagons or rolling

stock to meet other scheduled services, increasing capital and opera-

tional costs.

Cancellation Fees Delays could lead to cancellations of subsequent services, incurring

fees and reducing customer satisfaction.

Idle Time Rescheduling due to delays can lead to increased idle time for wagons

and locomotives, reducing asset utilization and increasing costs.

Labor Costs Additional workforce required to handle the backlog and reschedul-

ing, leading to increased labor costs.

Service Quality Delays can cascade through the system, affecting service quality and

potentially leading to loss of business.

Handling Costs Late arrivals might require extra shunting moves and handling, in-

creasing operational costs.

Buffer Stocks Customers may need to maintain higher inventory levels to accom-

modate unreliable service, which could lead to increased storage costs

and reduced competitiveness.

Contractual Penalties Customers may impose fines or seek damages for late deliveries im-

pacting their operations.

Fuel Costs Inefficiencies and additional movements in the yard can lead to higher

fuel consumption.

Wear and Tear Additional and unexpected operations can accelerate the wear and

tear on wagons and infrastructure.

Network Capacity Delays can affect the overall network capacity, leading to a broader

economic impact on the train operating company’s ability to trans-

port goods.

Table 1.2: Table of potential economic impacts of a delayed train on shunting yard operations.
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The impact of late-arriving trains can have multiple effects, such as the ones presented in Table

1.2: increased fleet requirements to costs related to fees, overtime labor, and increased consumption

of fuel to cite some. While some operations in the yard that are capacity-constrained can be

improved only by increasing the infrastructure of the station, such as the loading and unloading

operations, others such as shunting operations can only be optimized and are demand-dependent.

According to [17], the shunting operation refers to the movement of one or more rolling stocks

within a shunting yard, which is a specific station where railway coaches are maneuvered. These

are operations that lie in between strategic, tactical, and operational planning, as they are affected

by long-term investment (shunting yard, fleet), middle-term management (assignment of wagons

to a service), and short-term operations (physical routing of the wagons around the yard). CFL

Multimodal, the Luxembourgish Railway Multimodal Freight Company, stated that 20% of their

delays and cancellations are directly caused by shunting operations inefficiency. This is due to the

complexity of this problem, which involves the assignment of wagons to a specific service, as well as

routing. As stated by CFL, a single shunting operation can last up to 15 minutes, costing around

350 €. Given that trains typically undergo several shunting maneuvers as needed, it becomes clear

that the efficient performance of these operations is a critical factor in reducing late departures of

outbound freight trains.

When it comes to why shunting operations are performed, this happens for different reasons:

arranging wagons to prepare them for a service, parking them inside the station waiting for the

next service, and removing them from their position due to maintenance operations. Regarding

the formers, the assignment of rolling stock without considering any wagon condition parameter

(e.g. the mileage performed by each wagon, which is linked to contractual clauses and maintenance

thresholds), can lead to an additional number of shunting operations to be performed in the long

term. This inefficiency occurs under the assumption that one wagon or multiple wagons can be

moved altogether while consuming the same time and cost [17]. As a result, a sub-optimal choice

of wagons for a train may result in repeated, unnecessary shunting operations, affecting the overall

performance of freight train management. Moreover, in terms of cost, wagon maintenance is itself a

major cost factor for a freight rail company [48], even though its management is always focused on a

short-term period rather than looking at the long-term impact of scheduling these operations. This

can lead to unavailability as the fleet is being used in a sub-optimal way, leading to the creation

of delays and cancellations to gather the wagons mentioned above. Furthermore, maintenance is
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usually not integrated into the train composition process but is instead solved as a separate problem

[36], usually without considering how this may affect long-term operations.

1.2 Objective and Scope

In this thesis, we focus on understanding how we can optimize the shunting operations processes

when including maintenance considerations within the problem. We focus on assessing how shunting

is affected by the various maintenance operations to be performed, and how to optimize shunting

operations such that the impact of maintenance is minimized, within an integrated framework. For

this dissertation, we focus on both the strategic planning and the tactical planning of this problem.

This choice comes from the intuition that, as maintenance is a periodical operation on a rolling

stock, a short-term analysis could not grasp the proper impact on more strategic aspects such as

fleet management. The main research question we want to answer in this thesis is as follows:

What is the impact of maintenance operations in shunting operations?

How can we assess the integration of maintenance and shunting opera-

tions in freight rail management within a strategic and tactical vision?

The complexity of answering this question lies in the interdependence that the maintenance has

with the shunting operation. The first requires the second, but as for the shunting definition from

[17], where one or multiple rolling stocks can be moved with the same movement, the assessment of

the maintenance impact becomes more complex to understand. Capturing the short-term impact

of these maintenance operations on shunting, and therefore on the system performance, becomes

convoluted, especially if we want to look at problems such as fleet management. Proposing instead

a long-term vision can provide us with insight into how the management of the shunting operation

should be directed. Another reason that motivated us to tackle this problem with this approach is

the lack of literature on the strategic planning of freight train operations, which is further explored

in Chapter 2.

To answer the main question, we propose 3 intermediate Research Questions (RQs) that will

provide us with the methodological framework to assess, model, quantify, and address these dy-

namics.
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RQ1: Can we assess the impact of the maintenance in freight train operations on

shunting operation and on the system performance?

This first question concerns whether there is a direct correlation between maintenance in freight

train operations and shunting operations, and how this affects the whole system. Specifically, we

want to understand which are the dimensions that are worth exploring in terms of the impact of

neglecting maintenance, and the underestimation that comes with it. It is rational to conclude that

this correlation exists, but as explained in Chapter 2, usually the maintenance scheduling problem

is solved separately and is not linked to the shunting operations.

RQ2: How can we model this problem in a way that we can quantify its impact?

The second research question looks at the availability of tools and models to assess the impact of

maintenance considerations within freight train operations in an integrated way. To address it, the

thesis aims to develop and evaluate models that can integrate maintenance considerations within

freight train operations. This involves the development of a methodological framework that can

capture the complexities of maintenance activities and their effects on shunting operations, fleet

utilization, and service reliability. The core of the model should integrate maintenance requirements

with daily shunting operations. This involves creating methodologies that can trigger maintenance

when needed (based on mileage or other wear and tear indicators) and incorporating these mainte-

nance activities into the shunting schedules without significantly disrupting operations. The models

should aim to optimize multiple objectives, mainly strategic and tactical, such as minimizing delays

and cancellations, reducing operational costs, and maximizing fleet utilization.

RQ3: How can we address the shunting operation optimization problem with main-

tenance considerations, therefore improving the performance of the system?

The third research question looks at techniques that can address the impact of maintenance

considerations within freight train operations. The focus shifts towards implementing the insights

and models developed in RQ2 to create strategies that enhance system performance under these

considerations. This includes developing practical approaches that facilitate the integration of

maintenance considerations. Many tools can be used in this matter:

• Developing strategies for operations that look at long-term approaches to exploit the shunting

definition, such that we can reduce the number of operations performed, therefore improving

the system mechanics.
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• Use of optimization models to allocate resources (e.g., rolling stock) more efficiently and

consider maintenance constraints, ensuring that maintenance activities are carried out without

compromising the availability of resources for operational needs while making more informed

decisions.

• Use of data-driven machine learning models and data analytics techniques to include more

precise maintenance information within the models. This involves analyzing historical data on

rolling stock performance, wear and tear patterns, and failure rates to anticipate maintenance

requirements before they lead to operational disruptions.

1.3 Thesis Contribution

We can divide the contribution of this dissertation into theoretical and practical:

• Theoretical:

– We developed two Mixed Integer Linear Programming (MILP) models whose aim is to

optimize shunting operations performed and that allow the assessment of the impact of

maintenance operations for tactical and strategic planning: the first MILP model im-

plements mileage-based maintenance considerations and long-term propagation of effect

through policies, with the second implementing both mileage-based and condition-based

maintenance information.

– We developed four shunting policies aimed at optimizing shunting operations long-term,

under both maintenance and no-maintenance considerations.

– We developed a simulation environment to assess the long-term impact of operations in

a shunting yard.

– We developed a Binary Classification Machine Learning (ML) model to detect unplanned

disruptions for rolling stocks for condition-based maintenance.

– We developed a risk assessment framework to assess the ML model’s prediction against

itself, which has been implemented in the second MILP model to measure the trustwor-

thiness of the model and allow for a more informed decision on shunting optimization

under maintenance considerations.
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• Practical:

– We demonstrate that the non-integration of maintenance in operations in the shunting

yard can lead to underestimation of shunting operations, fleet requirements, and fleet

performance.

– We demonstrate that different shunting policies lead to different performances of the

fleet, shunting yard, and operations under both no-maintenance and maintenance con-

siderations.

– We highlight that for our Binary Classification Machine Learning (ML) model, the most

important features for predicting the disruption of the rolling stocks based on condition-

based analysis are a monthly carried weight by the wagon, seen as the TEU (Twenty-foot

Equivalent Unit) count, the Actual Mileage, Journey Destination, and average monthly

absolute elevation performed.

– We demonstrate that the application of a mild input of the ML within a risk-assessment

framework improves the performance of the MILP model for shunting operations for

wagon fleets with lower mileage.

1.4 Thesis Outline

The manuscript is organized into six chapters, with the current one being the first. Chapter 2

reviews the state of the art, with a particular focus on the existing methodologies and models

to represent shunting operations. At the end of it, we highlight four Research Challenges (RCs)

given the state of the art and the proposed Research Questions (RQs). Chapter 3 explains how

we are going to address each RC with the Research Objectives (ROs), which create the theoretical

framework of this thesis. Chapter 4 describes the first MILP model for optimizing shunting opera-

tions and the shunting policies, paired with the description of a simulation environment. We also

present a case study in which we show the efficacy of this model, together with the assessment of

the magnitude of error related to the implementation of the maintenance considerations. Chapter

5 describes the Binary Classification ML model, shows its development process, and introduces the

model’s performance. Then, it shows the second MILP model, together with the risk-assessment

framework, to introduce condition-based maintenance consideration and further improve shunting
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optimization. In this Chapter, we also present a case study showcasing the improvement of the

performance of the model compared to the traditional implementation of the ML prediction inside

the model. Chapter 6 presents conclusive thoughts and highlights some possible future research

directions.
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Chapter 2

Literature Review

Infinite in mystery is the gift of the

Goddess,

We seek it thus, and take to the sky.

Loveless Act I

This chapter aims to cover the relevant aspects concerning the state of the art of shunting

operations and shunting yards, maintenance, and how these operations are modeled in the literature.

Section 2.1 discusses the different types of shunting yards, the operations performed, together with

the planning phases regarding railway operations, and how these are connected to the yards. Section

2.2 presents the theoretical aspects related to shunting operation. This section also discusses,

within the context of shunting operations, how maintenance services are scheduled and up to which

level. The latter is further discussed in Section 2.3, which covers the criteria for assessing when a

rolling stock has to go to maintenance. Section 2.4 discusses the practical aspects of both shunting

operations and yards, how these are modeled for freight trains, and discusses the state-of-the-

art solutions for these problems. Finally, Section 2.5 highlights the shortcomings of the current

literature and proposes four research challenges that this dissertation aims to address.
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2.1 Shunting Yards

A shunting yard, also called a classification or marshaling yard, is defined as a large railway yard

in which wagons are organized into trains. Inbound trains are sorted and reassembled to create the

desired composition of outbound trains. These shunting yards can be of different types: flat yards,

which function on a level terrain, where trains are manually maneuvered for the assembly and

disassembly of wagons; hump yards and gravity yards, which utilize a hill or ”hump” to separate

and distribute the wagons, in which these are pushed up the hump and then roll down by gravity

onto their designated tracks [1]. The typical layout of a shunting yard can be roughly separated

into three main areas, which all consist of a set of parallel tracks [15]: the receiving area/tracks, the

classification area/tracks, and the departure area/tracks. An example scheme from [24] of a hump

yard is presented in Figure 2.1.

Figure 2.1: Scheme of a hump yard

In shunting yards, incoming trains are temporarily stationed for inspection and coded based on

their destinations in the receiving area, while awaiting humping and disassembly. Depending on

priority, these trains or subsets of their wagons are then maneuvered by shunting locomotives over

the hump (in hump yards) or on a slope (in gravity yards) directed to specific tracks by switches,

or moved directly through a shunting locomotive in the classification yard (in flat yards). Once the

composition of the outbound train has been completed, these trains are then pulled to departure

tracks to be inspected, road engines are attached, and ready for departure.

The management of shunting yards involves addressing a variety of tasks and challenges, each

subject to specific constraints and objectives. While some tasks in the yard, like inspections and

train assembly, can have relatively fixed durations, others significantly impact yard efficiency and

require careful planning. Uncertainty in train arrivals adds complexity to decision-making. To

streamline the process, some subproblems are tackled independently [14], while only in a few cases
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we see an integration of multiple problems together [50, 51].

To provide a more comprehensive outline of the different operations that can be performed on

these yards, we present here the different phases into which these can be clustered. The research

panorama is quite aligned on how to categorize the type of planning phases that exist in railway

operations, as outlined by [14, 54]:

• Strategic planning: this phase focuses on the assessment of the current infrastructure for

future train services. This is based on expected demand, rolling stock growth, environmental

policies, and long-term mobility strategies. A key aspect is estimating shunting capacity needs

across the network.

• Tactical planning: this phase involves capacity checks at individual stations, ensuring suf-

ficient infrastructure for routing trains and parking rolling stock, adequate crew capacity for

local shunting activities, and sufficient resources for cleaning rolling stock.

• Operational planning: this phase deals with the generation of a detailed plan for the near

future, involving timetable matching of outbound and inbound trains for demand fitting, and

actual routing of wagons around the shunting yard.

• Real-time planning: this phase deals with the re-planning for addressing disruptions that

occur during operations. These disruptions can range from minor deviations, like slight delays

in train services, to major issues such as infrastructure failures or train breakdowns. Both

types of deviations can lead to significant disruptions in local shunting activities and overall

network operations.

In this literature review, we will categorize the state of the art for the shunting operations within

these phases.

2.2 Shunting Operation

While many definitions of shunting operations exist, we will adhere to the one proposed by [17]. We

define shunting operations as the sorting, assembling, and disassembling of trains, and the movement

of rolling stock for purposes such as maintenance, loading, or preparation for departure. As an

example, assuming we have a flat yard, when rolling stock needs to be moved from the receiving
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yard into the shunting yards, the operation performed to move the wagon from the first area to the

second area, using a shunting locomotive, is commonly referred to as a shunting operation. These

operations, while being expensive and time-consuming, are usually performed for a specific reason,

which is for example fulfilling a service for an outbound train that has to be created in the departure

track (demand) from the available wagons parked in the classification tracks (supply). Once this

matching has been performed, for each wagon or cluster of wagons that needs to be shunted, a

specific routing is created within the tracks of the shunting yard to connect these rolling stocks to

the actual outbound train. Thus, the shunting optimization problem, as for [41], is usually modeled

through two interrelated and sequential sub-problems: the Rolling Stock Problem (RSP) and the

Train Unit Shunting Problem (TUSP). The RSP addresses the planning of each wagon’s service

time and aims to optimize the management of rolling stocks and reduce costs, and is discussed

further in detail in Section 2.2.1, while the TUSP is concerned with the routing of different rolling

stocks throughout the shunting yard, parking of these in the shunting yard and all the operations

that have to be performed on the rolling stock to get it ready for service, and discussed in detail in

Section 2.2.2.
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2.2.1 RSP

The Rolling Stock Problem (RSP) is defined as the scheduling of a time of service for each rolling

stock to best manage wagon and/or train units and in turn, reduce costs to supply the services or

to cover the demand. It is a strategic problem that is tightly correlated with shunting operations.

When the RSP assigns times of service to wagons or train units, it essentially schedules when and

where these assets need to be. This schedule determines when a wagon or a train needs to be ready

at a specific location to start its service. Following the scheduling and rostering decisions made

during the RSP, shunting operations are required to physically arrange the rolling stock accordingly.

This problem has been divided by [18] into two sub-problems: the Rolling Stock Rostering

(RSR), which focuses on the assignment of rotations for individual units of rolling stock and,

simultaneously, to each train unit; the Rolling Stock Circulation (RSC), where once the roster

is assigned, deals with the assignment of locomotives and carriages to the timetable services. The

majority of the literature covers this problem from the passenger railways perspective, whether it be

the passenger trains or metro lines. While being a more strategic problem, solution approaches for

the RSP have been proposed for all the different planning phases, with the goal being to determine

the fleet size or to find a feasible rolling stock schedule (or circulation) [61].

For the operational/real-time level, the literature focuses on real-time replanning. [66] deals

with real-time disruption management, describing a generic framework for dealing with disruptions

of railway rolling stock schedules. Their approach uses a rolling-horizon period iterative approach to

deal with disruption and reassignment of rolling stock to outbound trains in passenger train railways,

considering inventory status in the system in terms of wagon type and stations. [42] propose an

extension of the model from [66] for real-time planning, considering the ordering of rolling stock

constraints, using a MILP modeling approach to see the different train decisions throughout the

horizon. [82] solves a real-time train rescheduling and rolling stock circulation problem under short-

term disruption through a MILP model considering the maximum number of available rolling stock,

turnaround constraints, and service connections in metro networks.

At the tactical and strategic level planning, [9] solves the rolling stock problem considering the

compositions of inbound and outbound trains, solving it within the tactical planning horizon level.

[89] solve the RSP for urban rail transit proposing a bi-level formulation model, solving it through a

simulated-annealing-based heuristic. In their high-level model, the focus is on the trade-off between

waiting time for passengers and frequency of the network, while in the lower-level model, the goal
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is to minimize the number of infeasible train paths. [91] deals with the tactical planning level of

the rolling stock problem solving it for intercity high-speed railways (IHSR), including passenger

demand for multiple stations with fixed train formation. [43] proposes a Mixed Integer Programming

(MIP) modeling for solving the Departure Matching Problem (DMP), which is a subproblem of the

Rolling Stock Unit Management on Railway Sites (RSUM). In their paper, they do not consider

how to route, couple, and de-couple train units in the station when solving the DMP, assuming that

the routing is performed in a subsequent step. [87] solves a more complex model, the rolling stock

allocation and timetables problem (RATT), where for the part regarding the rolling stock they look

at the inventory in the depot and the fleet size, optimizing how to allocate it. [20, 40, 55] propose

a placing-in/taking-out approach for the train composition, which can be seen as a reformulation

of the RSP problem. It was initially solved through a MILP model, and eventually evolved into a

simulation-based approach with various shunting policies to reduce operating costs for the wagon

entry and exit system. [92] solves the RSP problem integrating the Train Formation Plan (TFP)

and Rolling Stock Scheduling (RSS) through MILP modeling, applying it for the Bejing Subway

Network and minimizing both the shunting operations and the rolling stock used within the horizon

considered. A schematic taxonomy for the RSP problem is provided in Figure 2.3.
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2.2.2 TUSP

Once the rolling stock is scheduled for a specific service, the Train Unit Shunting Problem (TUSP)

deals with the routing of the rolling stock inside the shunting yard, together with all the operations

that have to be performed on the rolling stock to get it ready for service. To provide clarity given

the diverse interpretations of the TUSP in the literature, our study adheres to the specific definition

of TUSP as provided by [53, 54, 71]. [53, 71] defines arriving and departing shunt units as train

units that respectively require to be moved (either parked or retrieved) from the shunt tracks. They

formally define the Train Unit Shunting Problem (TUSP) as the problem of effectively pairing the

arriving shunt units with the departing ones, and allocating these units on the shunt tracks. The

goal of this problem is to minimize the total shunting costs while avoiding any occurrences of

crossings. A viable solution for the TUSP consists of allocating specific tracks to the arriving shunt

units and aligning them with the appropriate departing units. [54] proposes a more comprehensive

modeling of the TUSP problem from a passenger train’s point of view, extending the definition

provided by [53] and dividing it into multiple subproblems:

• Matching: this is the subproblem in which the planner has to match the arriving units

with the departing ones, considering position constraints and types, given a specific timetable

provided in advance, with the matching coming theoretically from the RSP problem.

• Parking: the planner receives information about various train units, including their associ-

ated arrival or departure services. For each arriving train unit, the expected time of arrival

and the specific arrival platform is predetermined. The second element of the input contains

the shunt tracks and their characteristics as previously explained. The matching of arriving

and departing services for train units is completed in advance as part of the previously men-

tioned subproblem (RSP or Matching, depending on the formulation). The output of this

process is the allocation of train units to tracks, such that the rolling stock does not impair

the movement of others, either during arrival or departure.

• Routing: the routing of train units involves their movement from platforms to the shunting

yard and back, as well as transfers between arriving and departing platforms. Additional

routing may be required for local tasks such as internal or external cleaning. These tasks,

along with the parking of train units, generate the need for specific route planning over the

station’s infrastructure. If the planning of shunting operations for train units does not consider
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their routing to and from the shunt yards, the resulting plans are likely to be impractical,

leading to unresolvable routes that can generate conflicts.

• Cleaning: in passenger railways, cleaning is a service that has to be performed on the rolling

stocks such that it can perform a specific service. By examining the efficiency of cleaning

procedures at various stations, it’s possible to highlight bottlenecks in the system, from a

practical point of view. Similarly, evaluating these processes in the context of different rolling

stock types can also yield insights into performance variations.

• Crew Planning: in shunt planning, crew planning deals with the assignment of shunting

crew to the tasks related to shunting, as these activities can be carried out only by special-

ized crews. These tasks include operating trains across railway infrastructure, coupling, and

decoupling train units, and cleaning. Shunting drivers are qualified to route trains, while

shunting assistants handle the coupling and train preparation. Cleaning crews, on the other

hand, are tasked with maintaining train units. Although each task has a suggested start time,

some, like routing train units locally, are flexible in scheduling. Shunting tasks vary in dura-

tion and are often combined into a single day’s work schedule for each crew. The duration

of these tasks can differ based on the station and the specific task at hand. For instance,

the time taken to route a train is influenced by the route’s characteristics and existing train

reservations. However, if multiple units for the same train are parked in sequence on the same

track, they can be coupled there instead.

Moreover, [54] provides for each subproblem a respective formulation, solving it for multiple in-

stances and highlighting the NP-hardness of their models. [81] extends the TUSP creating Train

Unit Shunting and Service (TUSS) problem, solving the model formulated in [54] through a heuris-

tic approach. This model was extended later in [80] considering service scheduling and developing a

local search approach for the train shunting and scheduling problem with the consideration of train

matching, parking, and service tasks scheduling as well as train routing decisions. [85] considers

a similar TUSP problem as [80] for high-speed railways including service scheduling daily mainte-

nance, cleaning operation, and safety operational requirements, solving it through a minimum-cost

multi-commodity network flow model (MCNF) formulation and Lagrangian relaxation heuristic.

[47] proposes a TUSP mixed-integer formulation, demonstrating the NP-Hardness of the TUSP

problem, and solving it via heuristic to minimize the weighted tardiness of each outbound train. A
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high-level formulation has been provided in the literature by [22]. They discuss the train marshaling

problem, which is the problem of rearranging carriages in a freight train. They focused on grouping

rolling stock by destination to reduce both shunting operations and the minimum number of tracks

used for this rearrangement to fulfill the demand of a departing train. [84] solve special cases of

the TUSP problem for dispatching trams in a depot by proposing multiple binary program models.

[83] extends the TUSP approach considering length restrictions for the trains and mixed arrivals

and departures, discussing also an application for the bus depot. [44] propose different algorithmic

approaches for the solution of the TUSP problem using MIP modeling, solving it from the opera-

tional point of view. [37] deal with both LIFO (Last In First Out) and FIFO (First In First Out)

tracks for the TUSP problem, proposing two Integer Linear Programming (ILP) formulations. The

former includes arrival times, while the second one considers possible conflicts, proposing also a

robust extension and a stochastic version to take into account possible delays. [65, 79] propose a

formulation of the TUSP in which wagons have to be routed on a shunting yard such that main-

tenance tasks can be performed without collisions occurring. In this context, incoming trains have

to be matched to outgoing trains, since trains of the same type can be used interchangeably. They

propose a TUSP modeling based on a Multi-Agent Pathfinding (MAPF) to solve the routing prob-

lem, solving the model using Conflict-Bases Search (CBS). A schematic taxonomy for the TUSP

problem is provided in Figure 2.4.
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Figure 2.4: Taxonomy for the TUSP problem.
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2.2.3 Integration of RSP and TUSP

Generally, the RSP is solved before the TUSP in both passenger and freight train operations. The

sequencing is logical, as the TUSP depends on the outcomes of the RSP for essential inputs, partic-

ularly the alignment of rolling stock for inbound and outbound trains. Recognizing this distinction,

various studies proposed methodologies to integrate these two problems. [50, 51] proposes the

Generalized Train Unit Shunting problem (G-TUSP), which is composed of 4 subproblems:

• Train Matching Problem (TMP), the problem of matching arriving and departing train units,

respecting constraints linked to type matching of rolling stock and schedule. This can be seen

as a very similar problem to the RSP, and for this paper, it has been solved through the use

of a MILP model.

• Track Allocation Problem (TAP), the problem of choosing train units location.

• Shunting Routing Problem (SRP), the problem of determining train units routing during

shunting movement.

• Shunting Maintenance Problem (SMP), the problem of defining train units maintenance

scheduling.

The authors state that the majority of research contributions, with the notable exception of

[50], concentrate on addressing only specific portions of the four sub-problems discussed. This

observation highlights a dominant trend in the literature, where a wide coverage of the entire

problem scope remains fairly rare. A similar approach has been proposed by [41], which presents an

integrated sequential framework approach for these RSP and TUSP, namely the Integrated Rolling

Stock and Unit Shunting Problem (IRSUSP), highlighting the need for an integrated approach

given that from their computational results the high-quality solutions for the integrated problem

are obtained in instances where a conventional, sequential approach ends in infeasibility.
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2.3 Maintenance in Railways

Wagons spend a significant portion of their downtime in maintenance and repair activities in the

workshop, incurring overhead costs (e.g. leasing costs) and variable costs (e.g. storage costs).

On average, the rolling stock remains idle 70% of the time within the shunting yard, resulting in

additional storage costs, and implying potential overcapacity of the owned fleet [12]. Moreover, the

maintenance operations designed for a larger fleet become inefficient, expecting to accommodate

the servicing and inspection of numerous idle wagons. Maintenance scheduling is driven by either

mileage, time, or condition monitoring [7, 74]. Specifically:

• Time-Based Maintenance: traditionally used method where functions like braking safety and

wheel condition are evaluated on a set schedule. This approach may not always reflect the

actual condition of the train, especially if the vehicle has been idle for significant periods.

• Mileage-Based Maintenance: this approach is used to perform maintenance based on the

actual use of the vehicle, rather than a predetermined time frame. It helps address the wear

and tear that reflects the actual usage of the train. Still, it can be challenging due to the

extensive documentation required to accurately track the mileage of multiple vehicles.

• Condition-Based Monitoring: this is the most modern method, relying on automated data

collection and sensors to trigger maintenance checks based on the real-world performance of

the vehicle. This method uses data collection and software solutions to efficiently manage and

schedule maintenance activities. These schedules must be coordinated with train utilization

schedules to ensure efficient operations.

While time-based methods were traditionally used, mileage-based or condition-based mainte-

nance is now preferred by many operators [2, 6]. This shift is supported by advances in cloud

computing and enhanced data collection and storage methods, which have significantly evolved.

For this thesis, our analysis will specifically cover mileage-based and condition-based maintenance

approaches.

2.3.1 Mileage and Condition-Based Maintenance

Mileage-based maintenance involves defining a specific mileage threshold at which wagons have to

be scheduled for maintenance. This approach is utilized for preventive maintenance scheduling
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purposes. Unfortunately, the literature regarding this topic is scarce, as maintenance is usually

scheduled in advance. In the majority of the models analyzed in this literature review, the mainte-

nance schedule is provided without distinguishing whether a wagon is due for maintenance based

on mileage, time, or condition. This is a deliberate modeling choice, neither advantageous nor

disadvantageous in itself.

[59] approaches the high-level maintenance scheduling problem study for high-speed trains with

capacitated workshops. In their problem, they show different thresholds to be faced as a rolling stock

goes throughout its life-cycle, focusing specifically on the high-level maintenance, which happens at

1.2 million and 2.4 million km specifically, or on average between 3 and 6 years, depending on which

services the rolling stock is assigned. In their model, they consider the historical daily mileages as

raw inputs, and the future daily mileages are considered as ranges to generate wider maintenance

time windows for train sets, formulating the problem as a 0–1 Integer Linear Programming (ILP). In

their respective studies, [56] and [58] focus on the synchronized scheduling of train operation plans

in the context of mileage-based monthly maintenance. Their approach incorporates maintenance

as a constraint by establishing maintenance cycles and capacity limits, where their goal was to

minimize the total mileage loss for all trains over a week, treating maintenance as an integral factor

in the scheduling process.

Following our discussion on mileage-based maintenance, we now shift our focus to condition-

based maintenance. This approach relies on continuous monitoring and assessment of the rolling

stock’s condition to schedule maintenance tasks. This method is particularly effective in identifying

potential breakdowns and preventing them before they occur, increasing the effectiveness of pre-

emptive maintenance. To understand how condition-based maintenance is performed, we present

quickly which are the most common causes of rolling-stock disruption from a physical perspective.

[63] define the railway wheelsets based on three main components; the wheel, axle and axle bearing.

Faults can develop on any of the aforementioned components, but the most common are related to

wheel and axle bearing damages. For wheel disruption, [77] proposes a neural network approach

for multiple-defect detection of rail wheel images. They provide a list of usual defects that were

reported from the maintenance workshop of the London Underground Northern Line fleet, some of

which are listed below:

• Indentation: Superficial dent caused by the wheels running over a hard object on the track.
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• Rolling Contact Fatigue: Cracks caused by repeated contact stress during the rolling motion

of the wheels.

• Wheel Flat (FLT) Rash that appears on both wheels caused by the wheelset skidding on the

rail.

• Crazing (CRAZ) Also known as thermal cracking, it is a fracture that occurs with repeated

heating and cooling of the wheel tread surface caused by traction and braking actions.

One of the most common causes of wheel damage is due to severe braking. This activity includes

sudden braking, braking on steep gradients, and braking with high-weight loads, as explained in

[28, 67]. [25] assess the correlation between the mechanical deterioration of wheels and winter

conditions. An extreme example of wheel damage is presented in Figure 2.5.

Figure 2.5: Example of a wheel dam-

age consequence of a derailment of a freight

train near Rennie, Manitoba. A minor

fracture went undetected during automated

wayside inspections and several inspections

at terminals. The fracture expanded in op-

posite directions until parts of the wheel

broke away, the report says. Submitted by

the Transportation Safety Board.

The axle bearing is the component that transmits part

of the weight of the carriage directly to the wheelset. A

severe axle-bearing fault will lead to an increase in the

temperature of the components due to additional heat

produced by frictional interactions during rotation. [35,

68] list down some of the reasons for the failure of train

axle bearings, among which fatigue is reported to be the

leading cause. [62] presents a basic framework for the

evaluation method, proposing an approximation of the

S-N curve (number of cycles to failure, N(S), when a

material is repeatedly cycled through a given stress range

S) highlighting the importance of the frequency of the

stress to which the rolling stock is put onto. [10] propose a

procedure for the railway axle risk of fatigue failure under

service loading, proposing different methodologies for the

fatigue assessment, highlighting many factors that can

contribute to the overall load applied on the rolling stock

axle bearing. An example is the train running on curved

rails or in a snaking motion, which makes the bearings

receive axial loads due to lateral movement.
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2.3.2 Integration of Maintenance within the RSP and TUSP Problem

[64] states that maintenance scheduling in the rolling stock problem is often ignored and integrated

models that simultaneously schedule maintenance tasks and railway operations are scarce in the

literature. They propose in their research an integration of the maintenance scheduling within the

RSP problem, specifically including the shunting operations to be performed for maintenance rea-

sons. [93] presents a similar approach, solving RSP under maintenance requirements, proposing an

extension of the MILP model presented in [42]. In their study, they address the problem of improv-

ing the integration of passenger timetabling with track maintenance scheduling at a microscopic

level. Rolling stock management has been identified also by [36] as a significant cost factor for

railway companies and a key determinant of service quality. To address this, they propose a two-

step approach that incorporates scheduling tasks related to train services, short-term maintenance

operations, and empty runs into the solution of the Rolling Stock Problem. [45] addresses both the

RSP and maintenance scheduling for passenger trains, including not only preventive maintenance

but also degradation based on the distance traveled, to maximize the functional life of each train.

[70] propose a discrete-time model that integrates maintenance and the TUSP, solving it through

a heuristic approach.

Practitioners need to consider two major issues when organizing wagon maintenance: which

wagons in the inbound train require shunting due to maintenance regulations and which wagon

should be replaced; and how to implement a traffic schedule that ensures traffic safety [90]. Our

study focuses on the first decision problem, as most literature assumes the number, position, and

type of wagons to be replaced as an input [20]. Table 2.1 provides an overview of how the shunting

operations problem, between the TUSP and RSP, has been dealt with in the literature.
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2.4 Modelling of Shunting Yard and Shunting Operations in

Freight Train Systems

2.4.1 Types of Wagon Load

To assess the impact on shunting yard delays of freight train operations, we need to first clarify

which methods of transport of goods are used usually, and how these affect the operations. Among

the different freight railway methods of shipping goods, the two that we will cover in this literature

review are:

• Single Wagon Load (SWL): this method involves grouping railway wagons headed in the same

direction at various nodes. These are then combined to form trains that travel to the next

node in a hub-and-spoke network. At each of these nodes, the wagons often need to be sorted,

grouped, and regrouped based on their destinations and the composition of outbound trains

[72]. The shunting process in SWL is more complex as it requires careful planning to group

wagons efficiently, as this is essential to form trains headed to the same or nearby destinations,

making the operation less time-consuming and labor-intensive, reducing shunting operations.

• Intermodal Wagon Load (IWL): this method uses wagons that carry goods in standardized

containers, allowing an easy switch between different modes of transportation, like ships,

trains, and trucks. Usually, intermodal wagon loads are used for large volumes of goods that

can fill entire containers, such that these containers can protect the goods and facilitate easy

handling and transfer. These are typically loaded and unloaded at dedicated facilities designed

for intermodal transfers and can be directly loaded onto or off the railcars without the need

for breaking down or reconfiguring the train compositions extensively, meaning less shunting

of individual wagons within a specific yard, [34]. Analyzing the freight train composition in

terms of wagons, IWL on average presents a smaller number of wagons with usually longer

rolling stocks compared to the SWL.

When integrating maintenance considerations into the problem of inbound train logistics, effi-

cient grouping of wagons becomes more critical no matter the method of transporting goods. If a

train has several wagons that require removal, whether it be for a change in the demand between

inbound and outbound trains or maintenance, strategically grouping these wagons can significantly
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simplify the process while minimizing the operations to be performed. This reduces the shunting

operations to be performed, and the time required for operation, reducing delays and cancellations.

Looking specifically in the context of the freight train, this approach of clustering applies intuitively

and beneficially in the context of SWL, where multiple sorting, grouping, and removing needs to

be performed. Nonetheless, also IWL, and other rail freight transportation methods, can benefit

from this approach, especially when they involve mixed cargo or wagons with varying maintenance

needs.

2.4.2 Classification Problem in Shunting Yards

[24] states that we can classify the types of classification of a yard into three categories:

• Single-stage classification;

• Multistage classification with mixing tracks;

• Multistage classification with car ordering.

In a single-stage classification yard, railcars are moved just once, going directly from the receiving

tracks to the classification tracks. There, they are immediately assembled into the outbound trains

they are designated for. In contrast, multistage classification yards with mixing tracks don’t have

enough formation tracks to immediately start forming all outbound trains. So, in these yards,

cars that cannot be immediately added to an outbound train are temporarily stored on mixing

tracks. These cars must be moved back to the receiving tracks at least once more before they can

be added to their outbound train. Lastly, in multistage classification yards with car ordering, cars

are promptly used for their intended outbound trains, but they need to be arranged in a specific

sequence, [24]. The TUSP problem, specifically the parking step as for [54], is strongly correlated

with the classification problem in the shunting yard, which is key for the optimization of these

operations. Imagining the structure as presented in Figure 2.1, the arrangement of the wagon

parked on each track affects how long it will take for the composition of an arbitrary outbound

train. A good portion of the research related to shunting yard operations is focused on departure

prediction and formalized under the classification problem [24]. This problem is formulated usually

into finding, for hump and gravity yards, the humping sequence of the arrival of the trains, together

with their respective assignment on the classification tracks [14]. For this problem, the proposed
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solutions usually found in the literature consist of the minimization of departing trains’ delay as the

main objective of the function. [52] proposes a model to minimize the lateness of all outbound trains

using arrival, departure, and processing times, highlighting that the congestion level of the shunting

yard impacts directly the delayed departure. They suggest that the trains should be handled as soon

as possible to prevent delay propagation on the operations. Minimization of weighted departures

of the train is presented in [48, 49], by optimizing the humping sequences.

2.4.3 Integrated Modeling of Yards and Network

To finalize the modeling of the shunting yard, it is important to cover how the shunting yard and

the network impact each other. The yard and the network-integrated modeling is on how these two

elements impact each other. As the yard can generate delayed trains, impacting the network and

creating disruptions in the schedule, likewise, the railway network can lead to delays in train arrivals

at the yard, complicating the scheduling and organization of shunting operations. Therefore, while

a properly functioning network would ensure the on-time arrival to the yards, a flawless functioning

yard should ensure on-time departure to the network. This connection can ensure that the whole

system would perform as expected.

When modeling shunting yards, [24] states that regardless of the specific problem being ad-

dressed, the basic input and output elements tend to remain consistent. Commonly, the input for

these problems includes:

• The estimated arrival time of incoming trains (ETA).

• The expected departure time of outgoing trains (ETD).

• The order and makeup of railcars in both incoming and outgoing trains.

• Details about the yard’s layout and the rolling stock, such as the number of tracks, their

lengths, and the types and sizes of railcars.

• Expected time for each shunting operation.

As for the typical outputs provided by the solution, these usually encompass:

• A detailed schedule of various operations, including when to leave the receiving track, when

to move to the classification track, and the timing for pullback operations.
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• A timetable for locomotive usage.

• The planned departure times for all trains leaving the yard.

Nonetheless, the complexity of the railway operations, as well as uncertainties and variations

leads to deviation in train runs [88, 94]. The study of this integration evolved into a new research

topic when the focus shifted from the railway network importance to the shunting yard optimization,

considering it not as a separate entity in a network but as an object that constantly interacts with

it. Therefore, how the trains are dispatched into and received from the network, as well as the delay

given and obtained by it, became of utter importance. The studies around this topic are branching

towards two directions: the impact of the network on yards through a parametric approach with

assumption on the yard modeling, and the connection of one or multiple separate yards and network

models. [27] tried to analyze the network impact on yards through arrival variability, with [26]

showing that an increasing train arrival time variability impacts yard performance by increasing

the proportion of wagons missing their planned connection, increasing overall dwell times and

the variability in volume/length of departing trains, therefore requiring more shunting operations.

[27] explains that the influence of volume variation, train arrival variability, arriving block volume

variability, and departing train distribution affects yard performance. The paper suggests also that,

based on the different types of yards, different metrics should be analyzed.

The most relevant example of modeling interactions between yards is presented as a conceptual

dispatching decision support system (DSS) in the OPTIYARD European Shift2Rail project [57],

presenting a novel approach that combines an optimization model with a simulation environment.

The core component of the DSS is the optimization algorithm that evaluates the yard operations

several hours ahead through a simplified yard model. Based on the yard condition, the optimization

algorithm makes decisions to generate a yard operating plan, which is later communicated to the

yard simulator representing the real yard. The latter module simulates the operating plan, and

if any perturbation happens during the execution, the optimization model is run again to provide

a backup plan. If the plan is executed successfully, then another module micro-simulates the

surrounding network to detect any perturbation that might impact the yard and vice versa.
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2.5 Research Challenges

Despite the considerable advances in shunting yard operations and rolling stock management, the

literature reveals distinct areas where current methodologies and practices remain unexplored. We

therefore identify several critical gaps within the shunting operation domain:

• Maintenance operations on rolling stocks are usually solved as a separate, distinct problem

from the RSP and TUSP, with rare cases in which the integration is presented, as underscored

by [64]. As highlighted in this literature review though, these operations usually constrain

the shunting movements inside the shunting yard and therefore can impact both costs and

departure delays. The separate resolutions of the two problems might lead the whole system

state to the unavailability of the fleet requirements and, therefore, to train cancellations,

which cannot be foreseen by the classical, non-integrated models.

• Maintenance operations are usually scheduled in advance in each of the presented models,

omitting if this happens due to mileage, time or condition-based constraints. While this

modeling choice is completely legitimate, as explained in 2.3.1, when proposing an integrated

mileage a similar framework has to be integrated as well inside the models.

• The existing literature primarily deals with disruption management in terms of delays, lacking

a detailed focus on fleet management in terms of fleet status, which for this thesis is the inte-

gration of the maintenance using either a mileage or condition-based approach. This omission

extends to the integrated impact of maintenance on the wagon fleet, as this might generate

unavailability of specific wagons for a specific time, or increase the number of operations

to be performed to fulfill a specific service. For instance, [42] and [66] do not consider the

maintenance-related status of the fleet, such as feasibility due to maintenance constraints or

parameters indicating the health of the fleet. Additionally, while [43] recognizes the need to

consider the number of wagons in shunting operations, their approach overlooks the shunting

time for adjacent wagons and does not account for the actual status of the inventory before

proceeding with shunting, coupling, and decoupling activities.

• Most studies focus on maximizing the feasibility of timetables without specifically addressing

the impact of shunting operations in yards. While these papers consider moving blocks of

wagons, they do not explore strategies to optimize the movement of individual wagons or
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maximize the efficiency of moving wagon blocks, which could significantly reduce operational

delays. As for [18], moving 1 or multiple adjacent wagons will require the same time. This

becomes crucial when looking at the classification in the shunting yard for the Parking step

performed in the TUSP, as with one shunt we could compose a higher portion of the train

with fewer operations. Neglecting the adjacency of wagons in the shunting yards when it

comes to retrieval might lead to unrealistic optimal solutions, as maybe wagons that were

close to each other might have reduced the shunting time to fulfill an outbound demand.

• In the context of freight train operations, none of the papers mentioned above address the

RSP in the freight train context, which requires different modeling approaches, such as those

for SWL and IWL. This aspect is crucial and warrants further discussion, as outlined in

Section 2.4.1.

These gaps highlight the need for a more comprehensive approach that incorporates both fleet

status and maintenance considerations into the shunting operation environment, particularly within

the freight train context. This approach should not only focus on the strategic level, involving fleet

requirements and long-term costs but also integrate maintenance as an essential component of fleet

management and shunting policies. Moreover, as for the state of the art, within this integrated

vision, no condition-based maintenance model has been developed to see its impact on shunting

operations. Another problem arises when not considering an integrated model that combines the

RSP, the TUSP, and the maintenance within a strategic planning point of view: while tactical

planning involves more analysis of delays and cancellations within the considered horizon, looking at

the strategic point of view involves more choices that are by definition long-term, such as investment

in the rolling stock fleet, workshop capacity, maintenance costs, and revenue, which are overlooked

by the current literature.

We identify four primary challenges that our methodology aims to address in this thesis, with

innovative approaches that integrate maintenance within the combined RSP and TUSP in the

freight train context under SWL constraints for the strategic and tactical planning level and could

easily be applied under IWL constraints as well. The following research challenges (RCs) have been

summarized and addressed in this doctoral thesis:

• RC1: Lack of maintenance integration in the shunting operation from a system perspective.

• RC2: Lack of approaches to tackle the RSP, TUSP and mileage-based maintenance within an
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integrated problem from a strategic and tactical planning point.

• RC3: Lack of an hybrid model to assess the impact of the maintenance consideration modelling

shunting operation for strategic assessment in freight rail.

• RC4: Lack of complete understanding of the impact of unplanned maintenance/disruption

for condition-based maintenance, and how these affect the normal shunting operation.
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Research Objectives

There is no hate, only joy

For you are beloved by the goddess.

Loveless Act II

This chapter presents the formulated research objectives based on the order of research challenges

identified in Section 2.5.

3.1 RO1: Analysis and Assessment of Maintenance Integra-

tion in Shunting Yard Operations

Current literature predominantly treats maintenance scheduling as a distinct entity, separate from

the critical operational processes within shunting yards, assuming that a maintenance plan is already

in place. Most of the research focuses on solving this maintenance scheduling separately, overlooking

the influence that planned maintenance might have on shunting yard operations. As stated in

Section 2.3, as mileage-based or condition-based maintenance are the preferred approaches for

maintenance scheduling, this needs to be formalized and integrated into the model.

In this dissertation, we will integrate both types of maintenance. Specifically, in both the

models presented in Sections 4.4 and 5.3, we propose formulations for the RSP model with TUSP

considerations in which we include the mileage-based maintenance following the guideline from
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[59]. In their work, they define mileage-based maintenance as a threshold-specific mileage at which

a wagon has to be removed from the system for a specific amount of time and sent to the workshop.

For the condition-based maintenance, we integrate it in the model presented in Section 5.3 through

the use of a data-driven model to predict the condition of the rolling stock, integrated within the

improved MILP model.

The reason for the necessity of this integration, in this dissertation, is tightly connected to the

definition of shunting operation. In the context of the SWL, the number of operations required

on a train changes significantly based on the position of the wagons in both the shunting yard

and the inbound train. In the worst-case scenario, wagons in the inbound trains are positioned in

an alternating sequence where one requires maintenance and the adjacent one does not. If then

every wagon in the shunting yard that we choose to place in the outbound train is positioned

in such a way that each wagon requires one shunting, the number of shunting operations to be

performed is N , where N is the length of the train in terms of wagons. This is because N/2

operations are required from both the inbound train removal and outbound train composition

respectively. When integrating maintenance, information regarding the mileage in the model, or

some metric of similarity between wagons, can promote the creation of clusters of the wagons within

the train. These can be exploited to reduce the amount of shunting operations to be performed

for maintenance operations. When clustering wagons to enhance the performance of the shunting

operations by solving the RSP problem, it is important to analyze the fleet status under different

lenses. Integrating mileage information in the model in a strategic vision provides the ability to

control fleet status in terms of mileage, which is necessary to ensure that everything is running

smoothly and we can meet the maintenance thresholds. A non-controlled fleet in the long term

might present skewed distributions of mileage towards the maximum mileage allowed, leading to

unbalanced trains that might end up not benefiting from being able to create clusters when it comes

to maintenance. This is highly dependent on the supply given by the shunting yard, where ideally

the wagons parked there should have an aligned mileage with the trains going around in the system.

This can improve the exchangeability of the wagons in case of disruption. The exchangeability of

wagons for our problem is defined as the capability of the shunting yard to replace a wagon with

another wagon of similar characteristics in terms of mileage.
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3.2 RO2: Identification of the Most Relevant KPIs Required

for Strategic and Tactical Planning

KPI Planning Phase KPI Class Type of railway Reference Maintenance

Waiting time for passenger O Demand P [42] No

Number of travelling passenger T Demand P [87], [92] Yes

Num. Train T/S Demand P [84] Yes

Planned daily mileage S Fleet P [59] No

Rolling stock trajectories T Fleet P [9], [50] No

Num. of allocated Rolling stock T Fleet P [87] Yes

Degradation Level T Fleet P [45] No

Fleet Size T/S Fleet P [9],[16],[87], [36], [93] No

Number of blocks O Yard P [71] No

Capacity rolling stock parked O/T/S Yard P [9], [41] No

Maintenace operations T Yard P/F [51],[36],[64] Yes

Shunting ops. T Yard P/F [51], [93], [64] Yes

Shunting time T Yard P/F [51] No

Delay T Yard P/F [50],[51] No

Detention Time T Yard F [55] Yes

Maintenance Time T Yard P [64] No

Mileage distribution of the fleet T Yard P [93] No

Operational costs T/S Yard P [61], [93] No

Cancellations T/S Yard P [61],[50] No

Table 3.1: KPI analysed in the literature divided by planning phase (O = Operational, T = Tactical,

S = Strategical), KPI Class and type of railway (P = Passenger, F = Freight) in which the KPI has be

applied.

To analyze the KPIs that will be needed to assess the goodness of the presented methodologies

for strategical and tactical planning, we present in Table 3.1 an overview of the literature through

the lens of the KPIs chosen for their results. Two major elements defined how we decided to

approach this problem: one is the lack of purely strategic studies within this topic, leading to an

absence of KPIs to analyze for this problem and the lack of maintenance integration within the

shunting operation processes. For this, through Table 3.1, we identified KPIs that might be of

relevance to this problem. Performance indicators that are important for our analysis in assessing

the maintenance impact on shunting operation on the strategical planning are:
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• Number of maintenance operations: this is a metric that in strategic planning plays an impor-

tant role, given that maintenance is a source of costs. Integrating mileage-based maintenance,

even at the tactical level, becomes crucial as the number of maintenance operations to be per-

formed is strictly related to the potential delays and cancellations that might come from

shunting out one wagon for maintenance reasons. This problem is connected to the definition

coming from [17], in which a shunting operation can be performed on either one or a block

of wagon. When it comes to shunting operations to be performed for maintenance reasons

though, it becomes nearly impossible to create a 1-to-1 connection between a specific shunting

operation with a maintenance operation, as with one block we can remove one or multiple

wagons, some of which might require maintenance.

• Number of shunting operations performed: this metric helps us understand how the model(s)

are performing from the clustering point of view. Within the same instance, the higher the

number of shunting operations, the more exploitative could be the model of the system, and

the better the performance of the system might be. Moreover, this is also a metric that

when applied on the single wagons can provide us with a measure of how much the model is

under/over using the fleet.

• Delays, cancellation: this metric helps us understand the feasibility of the model. From a

strategic point of view, we are not so interested in reaching perfect feasibility as much as

for the tactical level, given that we can account for rescheduling by penalizing the model for

this. Nonetheless, having low cancellation rates overall, as well as low delays, is important to

ensure the quality of the service.

• Fleet Size: this is both a strategic and tactical KPI, depending on the point of view. On the

tactical side, the absence of an available fleet might lead to cancellations/delays for retrieval,

while the surplus might not be relevant information. When this surplus is then propagated

through time, therefore on the strategical side, this becomes of uttermost importance, as is one

of the metrics that tell us how good are we at optimizing fleet usage, and therefore reducing

the costs for investments in rolling stock in the long term. Furthermore, the maintenance

impacts directly on the fleet size required for a specific instance, as it creates unavailability

for a specific amount of time.

• Mileage distribution of the fleet: this KPI is more important from the strategic point of
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view when we can start seeing the rotation of the fleet and different maintenance performed

on wagons, rather than on a tactical level where our planning horizon is smaller. This is

connected to the concept of exchangeability of the fleet, as stated in the previous RC, where

ideally we would like the mileage of the parked wagons and the ones going around to be as

aligned as possible.

Regarding the tactical perspective, the KPIs for assessing the integration of maintenance into

freight train operations are as follows:

• Operating Cost: it is defined as the total cost associated with the operation of freight train

services, including maintenance and shunting. It is a metric for evaluating the efficiency of

operational strategies. Lower operating costs can indicate effective maintenance scheduling,

as well as shunting operations performed.

• Overall Shunts: this refers to the total number of shunting operations performed within

the instance to fulfill the demand of an outbound train considering maintenance. This KPI

provides insights into the operational workload of shunting yards and is directly connected to

delays and resource efficiency. Efficiently managing the number of shunts can lead to reduced

operational times and lower costs.

• Total Wagons Moved: this metric displays the efficiency in allocating the rolling stock for

an outbound service. This metric allows us to understand shunting efficiency, as more wag-

ons moved with less shunt means more clustering, thereby improving the overall operations

performed.

• Actual Departure: this metric defines the actual train departures, reflecting punctuality and

efficiency. Actual departure times are crucial for maintaining service reliability and customer

satisfaction. Delays can be costly and disrupt downstream operations, and higher delays can

cause cancellations. In tactical planning, having a better performance in the average actual

departures signifies better efficiency in performing operations, reducing cancellation rates.

• Risk Term: for this study, this metric measures the risk associated with operational decisions

of keeping or removing a wagon for maintenance. The risk term helps in assessing the model

performance in terms of potential cost loss.
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3.3 RO3: Development of a Hybrid Modeling Approach for

Long-Term Assessment through MILP and Simulation

We decided to address RC3 by developing a hybrid modeling framework that combines a Mixed

Integer Linear Programming (MILP) model with a simulation environment, as for [57, 86], to

evaluate the long-term efficacy and robustness analysis of shunting yard operations, particularly

under maintenance constraints.

The proposed MILP models a similar problem to the RSP, in which we need to decide both which

wagon to remove from an inbound train and which wagon to add to form the final composition for

the next service. In the first part, defined as shunt-out, the wagon is chosen based on mileage-based

maintenance considerations, clustering possibility, and delays consideration to reduce the number

of shunting operations to perform. In the second part, defined as shunt-in, wagons in the shunting

yard that are more suitable are selected based on the concept of shunting policies. These policies

are defined as the criteria for assigning to a wagon its time of service, looking at attributes of the

wagon of the wagon seen as the mileage covered from different perspectives, and are explained in

detail in Section 4.5.

Given the computational complexity brought by the inclusion of a strategical approach to this

model, namely considering multiple instances of multiple trains within a larger timespan at the

same time, the chosen solution is to break down each incoming train service and solve it singularly

(if needed) while having the whole system managed by a higher-level interface to allow a continu-

ous simulation. What it means in practice is that the proposed simulation environment provides

information regarding the management of rolling stock status, different delays and cancellations,

loading and unloading, and maintenance operations to be performed. It allows us to simulate the

TUSP by having the structure of the shunting yard modeled within it. This comes with the strong

assumption that we do not consider the potential conflicts coming from the routing of wagons as

in the TUSP problem, but just the retrievability of the wagon. We opted for this assumption as

previously made in [42, 43]. In their work, they assume that the routing is performed in the fol-

lowing step, modeling only the position of the wagons in the shunting yard and the estimated time

for moving rolling stock. In our model, the shunting time for the retrieval from the shunting yard

is treated as a pseudo-random variable, while the removal from the inbound train is dependent on

the position of each wagon that needs shunting. This is further explained in Section 4.3.2. This
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assumption holds significant importance for tactical and operational planning; however, its impact

is less critical when viewed from a strategic perspective, allowing for a degree of flexibility in its ap-

plication at that level. The choice of the simulation environment is important as a modeling choice

for the MILP problem. A major limitation is that the solution space of the MILP is limited on the

single train and shunting yard status. This effect is mitigated by the shunting policies embedded

in the model, which has a longer-term vision aiming to maximize the cluster that can be created

in the long term. This allows the MILP to effectively use the simulation environment to propagate

its effect through time and within the system, resulting in the capability of performing long-term

analysis. For the classical RSP, this can be disregarded, as usually, the aim is to minimize delays

and cancellations, assigning wagons to the outbound train which minimizes the operational time.

When incorporating maintenance, and looking long-term in minimizing these operations, then the

choice of which wagon to place in and in which position becomes crucial in the light of the scenario

as explained in Section 2.5, RC1. The policies aim to improve the likelihood of creating clusters

within the inbound train for maintenance reasons and improve the controllability of the system in

terms of maintenance.

3.4 RO4: Data-Driven Modeling for Condition-Based Main-

tenance and Unplanned Disruption, and its Integration

in MILP Modeling through a Risk-Management Ap-

proach

As stated in Section 2.3, mileage-based or condition-based maintenance are the preferred approaches

for maintenance scheduling. While the former has been addressed in RC3, integrating the latter

requires a more data-driven modeling approach, as usually these data are computed through sensors

on the rolling stocks. In this thesis, this problem is solved by developing a Machine Learning (ML)

model, which is then plugged into an extended version of the MILP model compared to the one

presented in RC3 through a risk-assessment approach. We developed a Binary Classification ML

model whose aim is to predict the likelihood of rolling stock breakdowns based on real data to create

a condition-based maintenance model to use in our MILP model. This model identifies key features

that can generate disruption, and therefore unplanned maintenance, aiding in preemptive decision-
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making. To improve the MILP presented in Section 4.2 and adapt it to a more tactical vision, we

developed a new version of the MILP, presented in Section 5.3 that addresses the shortcomings

of the previous model, which includes a better representation of the retrieval time for each wagon

from the shunting yard. As the ML model is our source of information regarding disruption, acting

like a ”sensor” for our rolling stock, we want to be able to consider its capability of prediction

within our model. This is because the failure of the ML model can mean the failure of the wagon,

which can lead to a disruptive event. In this work, we propose a mild integration of the ML

input through a risk management framework. The proposed solution risk assesses the ML model

against its failure within our MILP model, using the classification model’s metrics as probabilities

of failure/success to compute the different risks associated with the decision of following the ML

direction or not. The idea is to use the ML outputs not as direct inputs but as advisory tools,

assisting in strategic decisions about maintenance and shunting operations. The model evaluates

the risks associated with various operational scenarios, balancing the impact of potential disruptions

against the costs and benefits of different maintenance strategies, read as deciding whether to remove

one particular wagon or not for preemptive maintenance. This approach is particularly effective in

mitigating the effects of unpredictable and severe disruptions, such as rolling stock failures, which

can have widespread consequences on network efficiency. Moreover, in a context where preemptive

maintenance can be time-consuming and resource-draining, having this approach will help mitigate

the risk to an acceptable level.

A visual framework of the proposed RCs and ROs and how these are going to be integrated is

provided in Figure 3.1.
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Figure 3.1: Visual framework of the proposed RCs and ROs
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Chapter 4

Simulation and MILP Modeling

for the Shunt-In/Shunt-Out

Problem (SISO)

My friend, do you fly away now?

To a world that abhors you and I?

Loveless Act III

4.1 Introduction

This chapter covers RO3, Section 3.3, ”Development of a Hybrid Modeling Approach for Long-Term

Assessment through MILP and Simulation”, and has been published in [11, 13]. We formalize the

Shunt-In Shunt-Out (SISO) problem in Section 4.2, within the context of railway shunting oper-

ations, focusing on the impact of maintenance operations. This problem is a formulation of the

RSP with TUSP considerations and maintenance constraints. We aim to optimize shunting oper-

ations with rolling stock clustering consideration and evaluate the impact of maintenance through

a mileage-maintenance threshold approach. We say TUSP consideration as we consider the orga-

nization and order of the rolling stocks within the inbound train for shunting consideration, but
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we omit the computation of routing or conflict. The chapter then focuses on the formalization of

the SISO problem, in which we present its mathematical modeling through Mixed Integer Linear

Programming (MILP) as in Section 4.4 and Appendix A, and the various strategies and policies for

effective wagon management, in Section 4.5. We then present a detailed simulation framework in

Section 4.6. This tool is necessary to integrate the mathematical model within a strategic vision,

providing a comprehensive approach to understanding and solving the SISO problem.

4.2 The Shunt-In Shunt-Out Problem (SISO)

We want to analyze the impact of mileage-based maintenance on the shunting operations and

strategic KPIs through the use not of the classical RSP and TUSP problem, but by creating an

integrated problem that is suitable for this kind of assessment. We formalize this new problem

as the Shunt-In Shunt-Out problem (SISO). We define them as two coupled problems, as they

deal with the aspects of removing wagons and recomposing the train for the outbound service.

Specifically, we define a model for selecting which wagons have to be removed from the inbound

train due to leasing contract, timetable constraints, or for reducing operational time (Shunt-Out,

SO), and criteria for replacing the latter with shunting yard’s wagons to make up the outbound

train (Shunt-In, SI), taking into account parameters such as the time to shunt, the shunting yard’s

supplies availability and so on.

To do this, we propose an integrated MILP model resolving both the Shunt-In and Shunt-

Out problems. The mathematical model considers rolling stock maintenance as mileage-based

maintenance and timetable constraints, as well as a multi-objective function that aims to minimize

the number of shunts performed. The multi-objective function further considers weighted delay

terms of outbound trains, the SI policy applied, and weighted terms associated with shunting binary

variables used to avoid a quick shortage of wagons inside the shunting yard. The SO problem can

be influenced by various constraints such as maintenance constraints, operational costs, seasonal

wagon demand, etc. The cost of the make-ready stage of the shunting locomotive is the biggest part

of the SO operation’s cost, so creating clusters of shunts by triggering optional shunts that aren’t

caused by maintenance or demand constraints can bring cost benefits. Moreover, as a constraint

for this model, the outbound train’s composition must be fulfilled and wagons must not be moved

for maintenance unless their mileage is within the maintenance threshold range. The SI problem
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is a complementary problem to the SO, where the goal is to minimize time and economic costs by

replacing each shunted-out wagon with a suitable wagon from the shunting yard. A suitable wagon

is defined as a wagon that has enough mileage for the next trip, filling the correct type requested.

The basic problem is the replacement of a shunted wagon with one that takes less time to shunt-in

the shunting yard. However, considering just one parameter for a strategic vision might be short-

sighted, as we are not considering many parameters unique to that specific wagon. As an example,

the shunted-in wagons might already be close to the mileage limit, which can potentially trigger

an SO maintenance request when the train returns from its service, and thereby require additional

shunting. A multi-component objective function that focuses on economic costs can avoid this

additional cost. For the SI problem, different policies are described, each of which is characterized

by particular wagon assignment criteria, mileage-based. Due to their different assignment criteria,

each SI policy has pros and cons, therefore, should be used considering the target that the user

wants to achieve.

4.3 Assumptions

For this specific model for the SISO problem, we apply the following assumptions:

• We consider two types of wagons, SIMPLE (Fig. 4.1a) andDOUBLE (Fig. 4.1b) to simplify

the initial problem. These two classes of wagons are defined by the number of containers they

can carry.

• We define two types of SO operations: the mandatory and the optional ones. The mandatory

operations are performed on rolling stocks that need to be removed due to maintenance rules or

demand-matching constraints, as further explained in Section 4.3.1. The optional operations

are performed on rolling stocks between successive mandatory shunts to create bigger clusters

and reduce shunting costs and time.

• A cluster of shunts (namely, two or more adjacent wagons requiring SO operations) is asso-

ciated with a single economic cost and a single temporal cost.

• The wagon matching between inbound and outbound wagons is not positional, as explained

in Section 4.3.1.
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• The operational time to SO is fixed and defined by the shunt time for a wagon/cluster. The

time required to SI, given the shunting yard position and therefore the expected time for

routing, changes from wagon to wagon, as further explained in Section 4.3.2.

• The optional shunt can be performed only when the wagon’s virtualmileage ranges between

the minimum and maximum mileage or exceeds the maximum mileage defined by the corre-

sponding leasing contract. The virtual mileage is defined as the kilometers covered by the

wagon i-th (mi) once it has performed the outbound train’s next trip (rT ), and described in

Eq. 4.1:

vmsi = mi + rT (4.1)

• Themaintenance shunt can be performed only when the virtual mileage exceeds the maximum

mileage defined for that wagon. Further explanations are provided in the definition of the

maintenance constraint in Section 4.3.1.

• If the operational shunting time exceeds the planned departure time of the outbound train,

a penalty due to the lowering of the service level is considered. This penalty is given by the

departure delay function in the objective function of the MILP.

(a) Example of a 40’ freight wagon. (b) Example of a T3000e wagon.

Figure 4.1: Example of a SIMPLE wagon (a) and a DOUBLE wagon (b).

4.3.1 Mandatory Shunts

As for [38], we have identified two scenarios for shunting: demand matching and mileage-based

maintenance constraints. These are shunts that are performed on rolling stocks that need to be

50



Chapter 4 – Simulation and MILP Modeling for the Shunt-In/Shunt-Out Problem (SISO)

replaced for one of the two above-mentioned reasons. For this work, we define them as Mandatory

shunts and they can be seen as the type of shunts that are inevitable. The demand-matching shunts

are triggered by wagons that are necessary to remove due to a change between the inbound and

outbound train composition. To achieve this, we determine the difference in wagon types (numk)

between the inbound and outbound trains without considering the positional constraints of rolling

stocks. Then, we select wagons to SO from the inbound train based on the number required of each

type and the maintenance threshold (Eq. 4.2). For the second type of mandatory shunts, due to

maintenance, the state of each wagon i ∈ T can be described by its current mileage, mi, and the

maximum mileage, mmaxi , before it requires maintenance, which is either determined by its leasing

contract or based on practitioner policy. Formally, we define the maintenance constraint, which can

be expressed formally as Eq. 4.2 using the virtual rate definition from Eq. 4.1:

vmsi ≤ mmaxi , (4.2)

This equation expresses that if the current mileage exceeds the maximum mileage with the next

trip, the wagon must be removed from the inbound train and sent for maintenance. If a wagon

selected for demand matching has also surpassed its mmaxi
, it is immediately sent for maintenance.

Otherwise, it is parked inside the shunting yard. This process results in an intermediate list of

wagons with the new train composition.

4.3.2 Computing Time to Shunt-In

Routing time for the wagon to SI from the shunting yard to the inbound train depends on several

factors, such as the shunting yard layout, the number of rail tracks, and is usually the solution of

the individual TUSP problem, given the input of the RSP. For this study, we opted not to deter-

mine this time explicitly. Given that our study focuses on estimating the impact of maintenance

considerations and how neglecting it can lead to the underestimation of strategic decisions on assets

and parameters such as fleet requirement, we have decided not to address the optimization problem

associated with daily, operational time scales in great detail, following the assumption for routing

of each wagon of the shunting movement and the optimization of it as presented in [41].

Instead, we rely on assumptions based on information provided by practitioners, which are the

following:

51



Chapter 4 – Simulation and MILP Modeling for the Shunt-In/Shunt-Out Problem (SISO)

• Based on the wagon selected to be shunted in, we compute the necessary time tsin sampling a

normal distribution describing the time that should be computed through the TUSP problem.

• The time tsout required for each SO maneuver is considered fixed and dependent on the number

of wagons/clusters to be removed from the inbound train.

As mentioned above, the tsin is computed through distribution sampling as the time required to

retrieve a wagon from the shunting yard depends on multiple exogenous and endogenous variables,

and is usually the output value of the TUSP problem and the Classification Problem, both NP-hard

problems. Additionally, the shunting yard configuration greatly influences the actual time required

for shunting, tsin. To avoid overly specific results, we opted for a more general approach, assuming no

optimization of shunting movements and no conflict, representing the shunting yard as a vector with

dimension S. We calculate a normal distribution, with mean µ and standard deviation σ, denoted

as N (µ, σ2), referred to as ∆. The first distribution, ∆, represents the average time to move one

wagon from a random track inside the shunting yard to the outbound train. Once the policy chooses

a wagon w, we sample its associated time twout from ∆ and use it to generate a pseudo-random

variable, with mean twout
and a fixed standard deviation ζ2. This standard deviation represents

the deviation in time to move one wagon from a random position in the track up to the end of

it. Therefore, this second distribution, N (twout , ζ
2), denoted as ∆|SHt| can be seen as the average

time needed to move a wagon from a random position in the shunting yard to the outbound train,

therefore as the distribution of tsin.
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4.4 Mathematical Model

Section 4.4 presents the nomenclature for the SISO problem formulation; Section 4.4 explains in-

depth a base version of the MILP model; Section 4.5 presents several SI policies translatable as

different versions of the MILP objective function. The following model is the final iteration of the

model used in the simulation environment, developed through these years and presented in [13].

Nomenclature

Sets

Name Description

T , i ∈ T Set of inbound train’s wagons.

S, j ∈ S Set of shunting yard’s wagons.

K, k ∈ K Set of wagon types.

T R, T ∈ T R Set of train destinations.

Parameters

Name Description

aT Integer value expressing the inbound train’s arrival time, T ∈ T R.

dT Integer value expressing the outbound train’s planned departure time,

T ∈ T R.

ddT Integer value expressing the outbound train latest time before cancel-

lation, T ∈ T R.

ts Integer value expressing the time required by a shunting locomotive

to perform a single SO operation.

rT Integer value expressing the kilometers the train T will perform during

the next trip, T ∈ T R.

mi Integer value expressing the current mileage of the wagon, i ∈ T

msj . Integer value expressing the current mileage of the wagon, j ∈ S.

mmaxi
Integer value expressing the maximum mileage before the mainte-

nance of the wagon, i ∈ T .
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msmaxj
Integer value expressing the maximum mileage before the mainte-

nance of the wagon, j ∈ S.

mmini
Integer value expressing the minimum mileage to shunt the wagon,

i ∈ T .

typeini
Integer value equal to 1 or 2 expressing the type of the wagon, i ∈ T .

typeSj Integer value equal to 1 or 2 expressing the type of the wagon, j ∈ S.

codeini
Integer value expressing the unique code associated with the wagon

in the inbound train, i ∈ T .

codeSj
Integer value expressing the unique code associated with the wagon

of the outbound train, j ∈ S.

typek Integer value equal to 1 or 2 expressing the wagon type on the out-

bound train that must increase due to the demand, compared to the

inbound train T , k ∈ K.

numk Integer value expressing the surplus of wagons of the type typek in

the outbound train new composition, compared to the inbound train

T , k ∈ K.

nmsj Float value expressing the virtual rate (Eq. 4.1), j ∈ S.

cui Float value expressing the shunting convenience cost used as a pre-

emptive tool to avoid infeasibility of the shunting yard S.

csi,j Float value expressing the temporal cost to replace the wagon i-th on

the inbound train T with the wagon j-th inside the shunting yard S,

normalized through the Min-Max normalization.

M Big-M coefficient.

β Float value between 0 and 1 expressing the percentage of operational

time left before the outbound train’s deadline once all the SO opera-

tions are performed.

α Float value equal to 1 - β.

Simulation Output

Name Description
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codeouti Integer value expressing the unique code associated with the wagon

i-th on the outbound train.

Decision Variables

Name Description

adT Integer value expressing the actual departure time of the outbound

train T once all the shunting operations are performed, i ∈ T .

yi Binary variable equals to 1 if on the wagon i-th on the inbound train

T a maintenance or optional shunt is performed, i ∈ T .

xi,k Binary variable equals to 1 if on the wagon i-th on the inbound train

T a demand shunt is performed and it is replaced by a shunting yard’s

wagon of type k, i ∈ T , k ∈ K.

zi,j Binary variable equal to 1 if the wagon i-th on the inbound train T is

replaced by the wagon j-th inside the shunting yard S, i ∈ T , j ∈ S.

γi Binary variable equals to 1 if the wagon i-th on the inbound train T

is shunted out, regardless of the shunt type, i ∈ T .

σ1 Binary variable equals to 1 if ddT ≥ adT > dT , and to 0 if dT ≥ adT .

σ2 Binary variable equals to 1 if adT > ddT , and to 0 if adT ≤ ddT .

σ3 Real variable equals to adT−dT

ddT−dT
if σ1 = 1, and to 0 if σ1 = 0.

adji,i+1 Binary variable equals to 1 if both the wagon i-th and its adjacent

wagon i+ 1-th on the inbound train T are shunted out, i ∈ T .
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4.4.1 Shunt-In/Shunt-Out (SISO) Model

The following formulation is presented also without comments in Appendix A.

The objective function for the MILP model is presented in Eq. 4.3. For this problem, we propose

a weighted multiobjective function.

min

Eq.(4.4)︷ ︸︸ ︷∑
i∈T

γi −
|T |−1∑
i=1

adji,i+1 +
|T |
2

Eq.(4.5)︷ ︸︸ ︷
(σ2 + σ3)+

+
|T |
4

Eq.(4.6)︷ ︸︸ ︷
(
∑
i∈T

∑
j∈S

(csi,jα+ nmsjβ)zi,j +
∑
i∈T

yicui

(4.3)

Eq. 4.4 represents the actual number of shunts performed considering the assumption on clus-

tering (Section 4.3).

∑
i∈T

γi −
|T |−1∑
i=1

adji,i+1 (4.4)

It considers the overall number of wagons to be removed for SO (γi), regardless of them being

mandatory or optional shunts, minus the adjacencies selected (adji,i+1). This way, we count the

number of clusters of shunts activated rather than single wagons shunted-out, taking into account

the assumption that states that two or more adjacent wagons shunted out are considered as a single

economic cost. Shunt-out operations are not multiplied by a weight, since we have set the other

objective function terms in such a way that they are all comparable in number of wagons.

Eq. 4.5 expresses the penalty related to the possible departure delay µ(adT ) of the outbound

train.

|T |
2

µ(adT )︷ ︸︸ ︷
(σ2 + σ3) (4.5)

Due to its non-linear behaviour, µ(adT ) has been handled by introducing three different binary

variables σ used for the constraints (4.7)-(4.16). If the actual departure time (adT ) is smaller

than its planned departure time (dT ), σ2 and σ3 will be both equal to zero and µ(adT ) will be

equal to zero as well. If adT is between dT and the maximum time before cancellation (ddT ), the

model imposes σ2 to zero and σ3 and µ(adT ) to
adT−dT

ddT−dT
, representing the normalized delay for the

expected departure. µ(adT ) is then multiplied by a weight proportional to the number of wagons
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on the inbound train. The weight can not be proportional to the number of wagons SO, as it would

both produce a non-linear term and enter into contradiction with the clustering assumption.

Eq. 4.6 includes the decision criteria of the selected shunt-in policy and a term that considers

the shunting yard availability of wagons.

|T |
4

Add-on SI Policy︷ ︸︸ ︷
(
∑
i∈T

∑
j∈S

(csi,jα+ nmsjβ)zi,j +
∑
i∈T

yicui) (4.6)

According to practice priority, Eq. 4.6 is weighted with a halved value compared to the second term.

This term takes into account two parts: the shunt-in policy applied and the shunting convenience

costs cui
. The Add-on SI Policy is explained in detail in Section 4.5, as is connected with all the

shunt-in policies. The second aspect is a preemptive tool to avoid too many optional shunts that

could lead to an unfeasible state of the shunting yard capacity over the simulation iterations. The

value cui
is defined as the shunting convenience, and it prevents the model from performing too

many optional shunts to avoid the possibility of a shortage of rolling stock in the shunting yard.

Therefore, if the current mileage of the wagon i-th in the outbound train is low and the number of

wagons in the shunting yard is below a certain threshold, the cost cui is computed so that will be

high, and the model will opt not to shunt-out the wagon.

Eq. 4.7 - 4.16 represents the constraints related to the delay µ(adT ) function. Based on adT ,

they define if the outbound train is on time, late, or if it will be canceled due to the exceeding of

the planned deadline. This is done by using three temporal variables σ, as described in Section 4.4,

to add a delay penalty in the objective function.
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adT ≤ dT + σ1M + σ2M (4.7)

ddT + (1 − σ1)M ≥ adT (4.8)

adT > dT − (1− σ1)M (4.9)

adT ≤ ddT + σ2M (4.10)

adT > ddT − (1− σ2)M (4.11)

σ1 + σ2 ≤ 1 (4.12)

σ3 ≤ σ1M (4.13)

σ3 ≥ aT − dT
ddT − dT

σ1 (4.14)

σ3 ≤ adT − dT
ddT − dT

+ (1− σ1)M (4.15)

σ3 ≥ adT − dT
ddT − dT

− (1− σ1)M (4.16)

Eq. 4.7 - 4.9 ensure that the conditions of σ1 are satisfied: if both σ1 and σ2 are equal to 0

then the outbound train must be on time; if σ1 is equal to 1 then adT must range between dT (not

included) and ddT . Instead, Eq. 4.10 and 4.11 express σ2’s conditions, saying that if σ2 is equal to

0 then adT has not already reached the outbound train’s deadline, otherwise, the outbound train

will be canceled. While constraint 4.12 links σ1 to σ2 by forcing them not to be simultaneously

active, constraints 4.13 - 4.16 link σ1 and σ3 and represent σ3’s conditions. The latter states that if

σ1 is equal to 0 then σ3 will be equal to 0 as well, while if σ1 is equal to 1 then adT ranges between

dT and ddT , and σ3 will be equal to adT−dT

ddT−dT
.

Eq. 4.17 sets the adT equal to the inbound train arrival time (aT ) plus the time required to

perform both the shunt-out and shunt-in operations.

aT + (

SO Ops.︷ ︸︸ ︷∑
i∈T

γi −
|T |−1∑
i=1

adji,i+1)ts+

SI Ops.︷ ︸︸ ︷∑
i∈T

∑
j∈S

csi,j = adT (4.17)
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Constraints 4.18 and 4.19 set α and β, the percentage of operational time used by the shunt-out

(β) and the shunt-in (α) operations.

aT + (
∑
i∈T

γi −
|T |−1∑
i=1

adji,i+1)ts

ddT
= α (4.18)

1− α = β (4.19)

The operational time is defined in this case by the arrival time of the train in the shunting yard

and the latest time before its cancellation. Both the values of α and β range between 0 and 1.

Equations 4.20 and 4.21 ensure that shunt-out operations are performed properly.

yi ≥
mi + rT
mmaxi

− 1− (
∑
k∈K

xi,k)M ∀i ∈ T (4.20)

yi ≤ (1−
∑
k∈K

xi,k)
mi + rT
mmini

∀i ∈ T (4.21)

The above constraints represent two conditions:

• If the next trip of the train (rT ) plus the actual mileage (mi) exceeds the maximum mileage

(mmaxi), then the wagon i-th must be shunted out, therefore we yi is equal to 1.

• If a demand shunt is already activated for the wagon i-th, it is not possible to perform

maintenance or an optional shunt.

Eq. 4.22 is an optional constraint that should be considered if we want to force the model to

activate only mandatory shunts once mmaxi
is exceeded.

yi ≤
mi + rT
mmaxi

∀i ∈ T (4.22)

Eq. 4.23 - 4.25 ensure that the new composition on the outbound train will be satisfied.∑
i∈T :typeini

̸=typek

xi,typek = numk (4.23)

∑
k∈K

xi,k = 0 ∀i ∈ T : typeini
= typek (4.24)

∑
i∈T

xi,k = 0 ∀k ∈ K : k ̸= typek (4.25)

The sum of the wagon type to shunt-in (xi,k) with a k different from the typek (the wagon type

that must increase on the outbound train) must be equal to the surplus of the wagon of typek.
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Moreover, the sum of xi,k of typek type must be equal to 0, because in this way the other part of

the composition will not be altered.

|typeouti − typeini
| = pi ∀i ∈ T (4.26)

Practice might require an orderly composition of the departure train, meaning that for each

wagon position, a specific type is requested there. To express this Eq. 4.23 - 4.25 must be replaced

by constraint 4.26, where typeouti represents the type of wagon i required on the outbound train

and the binary variable pi is equal to 1 when the inbound train wagon i is shunted out due to

demand matching. However, constraint 4.26 works when there are exactly two wagon types. This

is connected with the SIMPLE/DOUBLE assumption as for Section 4.3.

Eq. 4.27 - 4.30 models the shunt-in operations.∑
j∈S:typeSj

=typeini

zi,j = yi ∀i ∈ T (4.27)

∑
j∈S:typeSj

̸=typeini

zi,j = xi,typek ∀i ∈ T (4.28)

zi,j ≤ 2− msj + rT
msmaxj

∀i ∈ T ,∀j ∈ S (4.29)∑
i∈T

zi,j ≤ 1 ∀j ∈ S (4.30)

Constraints 4.27 and 4.28 force the model to activate the shunt-in (zi,j) with the proper type

from the suitable wagons. Eq. 4.27 forces the wagons shunted out with maintenance or optional

shunt to be replaced by shunting yard’s wagons of the same type. For Eq. 4.28, the ones shunted

out with demand shunt will be replaced by wagons of the opposite type. This is because we consider

only two types for this formulation, therefore if a demand shunt is requested, the opposite type

is needed. Constraints 4.29 and 4.30 ensure that we cannot select wagons from the shunting yard

unable to perform the next trip rT , and that the same shunting yard wagon will not replace more

than one inbound train wagon. These constraints define the feasible region where the SI policy

applied will select shunting yard wagons.

The following Eq. 4.31 and 4.32 allow the model to comply with the clustering assumption.∑
k∈K

xi,k + yi = γi ∀i ∈ T (4.31)

2adji,i+1 ≤ γi + γi+1 ∀i = 1, ..., |T | − 1 (4.32)
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Constraints 4.31 and 4.32 assure that if two or more wagons on the inbound train will be SO, then

the respective adjacency variables will be activated and counted in the objective function. This is

done by summarizing in a single variable γi both the demand, the optional and the maintenance

shunts performed, and by forcing the activation of adji,i+1 only if both γi and γi+1 are equal to 1.

∑
j∈S

zi,jcodeSj
+ (1− γi)codeini

= codeouti ∀i ∈ T (4.33)

Eq. 4.33 is an optional one, not strictly necessary to optimize the problem, but quite useful to

keep track of wagons’ codes that will be on the outbound train once all the SO and SI operations

are performed. If the wagon i-th has been replaced by activating zi,j , this constraint associates

the wagon j-th’s code to the position i-th, alternatively, the wagon i-th’s code remains unchanged.

This constraint becomes important when giving back the solution to the simulation environment,

as it will speed up the process of computing the different states of each wagon.

4.5 Shunt-In Policies

In this section, we propose different shunt-in policies and discuss the composition and add-ons to the

multi-component objective function (4.4)-(4.6). The shunt-in model’s basic version only considers

the time cost required to move a wagon i-th into the position j-th, defined as csi,j . This cost is the

matrix that is composed of the routing times defined as the assumption from Section 4.3.2. While

this approach could be limiting from a strategic point of view, the shunt-in policies allow the model

to exploit different features impacting the number of future shunting operations. These features

are directly linked to assumptions (Section 4.3), such as those on clustering, and have proved to be

impactful also on the wagon fleet size and average mileage performed by each wagon. The general

structure of a shunt-in policy, defined as the Add-on SI Policy, is described in Equation 4.34:

min ...
∑
i∈A

∑
j∈R

(α ∗W1 + β ∗W2)zi,j ... (4.34)

Based on the policy criteria, weights W1 and W2 can assume different meanings, to steer the model

for an objective function that covers more strategic than tactical/operational goals. Specifically

for this study, we will refer to W1 as the cost csi,j , while W2 will change depending on the policy

applied, and are both normalized for measurement unit reason. α and β are complementary weights
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describing the temporal state of the system between the two stages, the shunt-out and the shunt-in

respectively. α represents the percentage of operational time used by SO, while β represents the

remaining percentage of the operational time that SI can use. Depending on the value assumed by

α and, consequently, by β, the solver will decide whether to weigh more the cost csi,j , therefore

opting for a more greedy approach, or the policy criteria W2.

As a note from the author, it can be pointed out that the following policies are designed to be

both simple and pragmatic, as they rely on metrics that can be easily derived from the data that

has been collected. This was a specific design choice, to allow for easy and no-cost implementation

from the practitioners’ side fighting the classical resistance that comes with overly complex models.

4.5.1 MIN

This policy aims to shunt in wagons from the shunting yard with the minimum virtual rate nmsj .

Therefore, the Add-on SI Policy is modeled as follows:

min ...
∑
i∈A

∑
j∈R

(α ∗ csi,j + β ∗ nmsj )zi,j ... (4.35)

Based on (4.35), if the percentage of operational time required by the shunt-out operations is

predominant, the solver will opt to shunt in wagons with a lower cost csi,j . Otherwise, the solver

will be directed toward the policy criteria, choosing wagons with the lowest nmsj . The goal of this

policy is to keep the average current mileage of the departing train T low by assigning the wagon

with the lowest current mileage msj .

4.5.2 AVG Long - Short (AVG L-S)

The AVG L-S policy aims to make the most of the wagon’s mileage capacity, based on its services

assignment record. The goal is to balance the number of long trips (longj) and short trips (shortj)

assigned to each wagon by utilizing terms: the degree of unbalance δj as described in Eq. 4.36, and

the threshold tresh. The threshold tresh is used to determine whether a trip rT is considered long

or a short trip and strongly depends on the instance. The goal is to choose a suitable j ∈ S with

the maximum degree of unbalance, defined as:

δj = nlongj − nshortj (4.36)
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The objective function will therefore become:

min ...
∑
i∈T

∑
j∈S

(αcsi,j − β((−1)longθj))zi,j ... (4.37)

Where:

• long is a metric that is 1 if the trip is a long trip, 0 otherwise.

• θj is the normalized vector of unbalances of the wagons in the shunting yard.

If a wagon has performed a large number of long trips, it’s likely that it has used much of its

max mileage msmaxj
and therefore will be assigned to a short trip to maximize its remaining usage.

This is a policy that has been developed based on the current policy applied by CFL to keep

the wagons rotating to leverage the mileage performed by each wagon.

4.5.3 NCLD

The NCLD policy, which stands formiNimum distanCe simiLar Deadline, aims to optimize shunting

operations by minimizing the difference between the index of use of individual wagons and the

average index of use of wagons in the inbound train. The index of use is defined as the ratio of

distance traveled by a wagon to its mmaxw
, w ∈ T ∪ S before maintenance. The index of use is

computed as Eq. 4.38

useindw =
aw + rT
mmaxw

,∀w ∈ T ∪ S (4.38)

This is computed for both the wagons on the inbound train (αw) and those in the suitable set S

associated with the train T and the type of wagon in position j (βw).

The goal is to maximize both wagon utilization and create as many clusters of wagons with a

similar index of use as possible, such that we can increase the likelihood of minimizing the shunting

to be performed for maintenance. This is achieved by aligning the βw of selected wagons with the

average α of non-exchangeable wagons within the train. The final element necessary for this policy

to work is the definition of the C, set of n wagons on the train not to be shunted.

If wagons with a homogeneous index of use are shunted-in, then it is likely that, when one of

the wagons requires maintenance for mileage reasons, a cluster will be created as more wagons will

need maintenance. This means that multiple wagons will be shunted out altogether.
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The add-on in the multi-component objective function will be:

min ...
∑
i∈T

∑
j∈S

(αcsi,j + β|ASO −ASI |)zi,j ... (4.39)

ASO is defined as the average virtual rate on the inbound train once all the shunt-out operations

have been performed; ASI is defined as the average virtual rate of the wagons shunted in, as

expressed by (4.40) and (4.41).

ASO =

∑
i∈T

(1− γi)vi∑
i∈T

(1− γi)
(4.40)

ASI =

∑
i∈T

∑
j∈S

zi,j∑
i∈T

∑
j∈S

zi,j
(4.41)

If β is higher than α, (4.39) will minimize the distance between the average virtual rate of the left

wagons on the outbound train and one of the wagons shunted in.

This method results in a leaner solution, reducing the number of wagons needed in the long

term to fulfill services, and promoting the reusability of the wagons. However, a notable side effect

is increased shunting operations due to overuse. As the policy tends to favor wagons with non-zero

mileage over those with zero mileage, the policy tends to use fewer wagons on average, preferring

those that have βw > 0. This preference leads to an overstressing of all wagons that have been used

previously, therefore requiring more shunting operations due to maintenance reasons on a fewer

number of wagons.

4.5.4 Reserving

The Reserving policy leverages the concepts of βw from Section 4.5.3, tresh, and long from 4.5.2.

It evaluates two scenarios based on the trip length rT of the train T . If rT exceeds tresh, indicating

a long trip, the policy prioritizes using the wagon with the lowest mileage in the depot, as indicated

by βw. On the other hand, if the trip is short, the policy chooses the most used wagon with

enough residual mileage to complete rT . This policy promotes a balanced rotation of the fleet

and maximizes the number of trips a wagon can complete before maintenance while ensuring a

homogeneous usage of the rolling stock.

The add-on in the multi-component objective function will be in this case:

min ...
∑
i∈T

∑
j∈S

(αcsi,j − β((−1)longζj))zi,j ... (4.42)
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With ζj being the normalized vector of βj for the shunting yard.

4.5.5 Random Policy

To compare the different policies with the typical operations within a shunting yard, we implemented

what we refer to as the random policy. This criterion selects wagons from the shunting yard without

taking mileage, nor trips performed, into account, but only looking at the closest to the inbound

train. It’s a simple yet effective way to represent the actual, non-structured behavior often observed

in shunting yards, and it serves as a baseline against which the other, more targeted policies can

be assessed.

Finally, the add-on in the multi-component objective function for this policy will be:

min ...
∑
i∈T

∑
j∈S

csi,j ... (4.43)

4.6 Simulation

In this section, we present the simulation framework. The simulation environment has been devel-

oped by the University of Luxembourg in partnership with CFL Multimodal, which has shared data

for the case study as well. The event-based simulation framework, developed in Python, aims to

reproduce the mechanisms, events, activities, and objects of a shunting yard. The entire simulation

process is depicted in the flowchart presented in Figures B.1 and B.2 of Appendix B. This visual

representation provides a clear and concise illustration of all the steps involved in the simulation.

We opted for a simulation approach mainly due to our research objectives and the challenges

associated with using a MILP model for long-term scenario analysis, which could lead to scalability

issues. Therefore, we propose a simulation approach paired with a MILP model to solve each

instance optimally, as explained in Section 4.6.1, with all the assumptions and clear limitations,

which allowed us to test and analyze different scenarios over time, offering us the flexibility to adjust

and refine the simulations as necessary.
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4.6.1 Interaction between the Mathematical Model and the Simulation

Environment

The mathematical model used in this simulator is the one presented in Section 4.4. The MILP

model defines which wagons have to be shunted-in and out based on both the optimal solution.

Once this has been computed, the simulator will subsequently handle the operations to meet the

outbound train service requirements as outlined in the model.

Figure 4.2: Integration between the event-based simulator and the MILP model.

The event-based simulation manages all the high-level information and events that trigger within

the shunting yard, including but not limited to:

• Arrival and departure of trains.

• Loading and unloading time, adding them to the current time as well as managing all the

queues for the different shunting yard areas.

• Shunting yard and workshop states.

• Data tracking of the policies KPIs.
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The simulation environment aims to reproduce the behavior of the shunting yard. The train

arrives and gets dispatched following the flow as explained in Figure 4.3. Trains that do not require

shunting are still processed and added to the queue if in need of loading and unloading. The sim-

ulation starts a shunting operation when is required for either demand or maintenance purposes.

The necessary train data is collected and formatted into arrays, sets, and parameters that can be

processed by the MILP model. This pre-processing step is followed by the use of the IBM CPLEX

solver accessed through the CPLEX Python API, which receives all the information required by the

optimization model. Upon receiving a solution from the MILP, the simulation updates the system

state by performing the shunts on the trains, computing new arrivals, updating performance indica-

tors (KPIs), and preparing the shunting yard for the next trains. If the optimization model proves

infeasible, it indicates that the operations cannot be executed as planned. In such circumstances,

there are two potential outcomes:

• If the unfeasibility is due to a lack of rolling stock in the shunting yard, the train will be

rescheduled for shunting as soon as the necessary wagons become available. Once the opera-

tions have been completed, the train will be rescheduled again.

• If the unfeasibility is caused by a cancellation request, meaning that the model is unable to

complete the operations within the given operational time frame available before cancellation,

the simulation will proceed to cancel the planned outbound train, while still conducting the

shunting operations. The canceled train will be rescheduled for a future rotation.

In both cases, as for the current state of the simulator, no replanner has been introduced for the

timetabling.

4.6.2 Input Requirements

The simulation environment requires comprehensive input data and distributions to be able to

generate scenarios and assess them. This includes information tracked by practitioners on train

movements, such as the number of trains in transit, frequency of operations, and weight and distance

of transported freight. In addition, data on the maintenance threshold and resources available must

be included to model the impact of maintenance constraints. The input data are listed below:

• A timetable with all services τ , providing specifics on the freight demand and the layout of

the wagons for each train.
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• A comprehensive list of wagons W = T ∪ S.

• A set of standard time parameters for specific operations.

• Information on the maintenance threshold.

• Data on the freight load for loading into outbound trains.

The simulation operates on a per-train basis, processing each train based on its arrival time.

The flowchart detailing the sequence of events for each train entry is presented in Figure 4.3.

4.6.3 Shunting Yard Areas

Each area in the shunting yard is represented through an M/M/1 queue with FIFO serving and an

infinite buffer between the areas. Given a train T arriving at time tarr ∈ τ , as soon as it enters

the system, it is moved into the queue of the Arrival/Departure yard (from now on referred to

as ADY) where some operations as for the indication of CFL are performed. After these, T is

moved into the Train Loading/Unloading area (from now on referred to as TLA), if is free. Each

loading/unloading operation requires on average tload time to be fulfilled. We do not consider

loading and unloading operations in the overall shunting operation count, since we are addressing

the impact of the maintenance on the rail system and the two problems are not mutually dependent.

The TLA, like the other zones, is designed to have an unlimited buffer to accommodate the shunting

yard’s availability for operations. This buffer serves as a waiting area for post-unloading and pre-

loading operations, as well as scheduled activities. After unloading the goods, the train is directed to

the queue in the Shunting Yard for shunting operations. This queue also follows an M/M/1 queuing

model for demand matching or maintenance purposes. For each SISO operation, respectively, a time

tsout and tsin is required. Once all the shunting operations are performed, the train is moved again

to the queue of TLA for the loading operations, after which, it is ready for departure. The allowed

time window for the departure ranges between the departure time scheduled and a max delay of

ddT minutes. For our specific case study, the threshold used to decide to cancel a trip is 180 minutes

after the latest possible operational time. This is specific to our case study and can be generalized

if needed. The train is canceled in case it exceeds this deadline and assumed as rescheduled before

it arrives at the next station.
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Figure 4.3: Flowchart of the operations performed in the simulator for each train.

4.7 Case Study

Our case study considers the 2020 timetable for freight trains at the Bettemburg Eurohub Sud

Terminal, a shunting yard managed by the freight forwarding operator CFL Multimodal, which

plays an important role in Europe by connecting various EU countries (Figure 4.4) due to its

central location. Bettembourg Eurohub Sud Terminal, one of the 446 intermodal terminals across

Europe [3], emerged as a significant hub for freight rail traffic in 2021, handling 2.6 billion tonne-

kilometers of intermodal freight traffic, representing roughly 1% of the total freight rail traffic in

Europe [5][4]. In the same year, the yard saw the passage of 1384 trains, with approximately 600
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recorded shunting operations performed.

Figure 4.4: The Bettemburg Eurohub Sud Terminal key location. In this case, the shunting yard is

connected to an Arrival/Departure yard (ADY) and a Train Loading/Unloading Area (TLA).

Bettembourg shunting yard handles both SWL and IWL traffic, with a specific focus on the

latter. It is equipped with a classification yard and a hump specifically designed for classification.

This hump is primarily employed for the SWL traffic. Intermodal units, on the other hand, are

predominantly managed using shunting locomotives to ensure safe and efficient operations. While

the classification yard serves both types of traffic, for IWL specifically, shunting operations are

performed in case of changes in the demand composition, or parked when maintenance operations

are required on the train within the yard.
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4.7.1 Case Study Parameters

For this study, the same 2020 year timetable was used to simulate inbound and outbound trains,

including information on train rotation, wagon demand, and destinations of outbound trains. To

assess the long-term impact of the maintenance, and how to address them through the concept of

shunt-in policies, this timetable has been extended by 20 years. The simulator also implements

a predictive model, previously developed by [69], to estimate the trip delays of incoming trains

based on factors such as the weight of the wagons and the distance of the train trip. In this study,

we classify wagons into two categories, SIMPLE and DOUBLE, based on the wagon models and

tare, as for the assumptions in Section 4.3. To fit the initial distribution of types provided by

practitioners (in terms of SIMPLE wagons and DOUBLE wagons, 19% and 81% respectively), a

group of 1400 wagons was chosen to be available inside the simulation, setting their initial mi = 0.

This was done to allow a warm start and understand the complete behavior of the policies, rather

than just the impact of these. Moreover, the maintenance mileage limit for this study has been

set to mmaxw = 150000 km, ∀w ∈ T ∪ S, and maintenance time has been set to tmaint=3 days.

It is important to emphasize that any available wagon left unused in the simulation will not be

considered in the following postprocessing. Conversely, if a wagon is employed at least once, it will

be accounted for in the postprocessing and thereby be deemed as ’owned’. For each of the shunt-in

policies presented, we run a simulation for both the no-maintenance and maintenance scenarios,

with the above-mentioned specification.

4.7.2 No - Maintenance Scenario

To evaluate the impact of maintenance on different KPIs through the shunting policies, we conduct

a benchmark analysis in which we simulate, for each policy, the different No-Maintenance scenarios,

setting them as a baseline. We aim to compare the Maintenance scenario, viewed as a better ap-

proximation of the real-world scenario, with practitioners’ previsions which may be underestimated,

leading to additional costs to be sustained in practice. In addition, we aim to demonstrate that

the exclusion of the maintenance constraint in shunting operations may impede the detection of

underlying problems, leading to reactive rather than proactive measures to address issues.
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4.8 Results and KPIs

Table 4.2 presents the results of simulations for the 2020-2040 period to evaluate the impact of

integrating maintenance with rolling stock management on the wagon fleet size, shunting operations,

and annual mileage per wagon for each policy. For this study, we have chosen to analyze all the

KPIs that have been identified for the strategic problem in RO2, Section 3.2.

72



Chapter 4 – Simulation and MILP Modeling for the Shunt-In/Shunt-Out Problem (SISO)

Min NCLD AVG L-S Reserving Random

Shunting Ops. 16434 16434 16434 16434 16434

N
o
m
a
in
te
n
a
n
ce

sc
en
a
ri
o

Maintenance Ops. 0 0 0 0 0

Wagons Used 1199 276 269 1198 1226

Annual operations on each wagon

Mean 20.29 88.68 87.46 20.29 17.09

Median 13 71 30 13 15

Variance 21.55 75.78 143.59 21.55 19.43

Annual Miles Performed per wagon (km)

Mean 5092.12 27717.93 28180.52 6895.58 6740.51

Median 1902.1 21782.3 8318.5 1320.9 6055.5

Variance 8941.44 17272.87 41142.57 12108.2 6505.1

Shunting Ops. 16850 18427 18514 17050 17523

M
a
in
te
n
a
n
ce

sc
en
a
ri
o

Maintenance Ops. 1326 2288 2615 1429 1660

Wagons Used 1335 1385 791 1338 1409

Annual operations on each wagon

Mean 19.23 19.36 34.06 19.25 16.64

Median 12 10 10 13 12

Variance 21.74 38.73 86.24 21.55 17.61

Annual Miles Performed per wagon (km)

Mean 17370.46 17458 33986.09 15941.29 17013.11

Median 14234.42 12490.8 13951.28 12807.19 14566.16

Variance 19387.4 33683.83 62047.3 18194.7 13706.26

Shunting Ops. 2% 11% 11% 4% 6%

C
om

p
ar
is
on

Wagons Used 10% 80% 66% 10% 13%

Annual Miles Performed 71% 37% 17% 57% 60%

Table 4.2: Performance comparison between the policies between the No-Maintenance and Maintenance

scenario.
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4.8.1 No Maintenance Scenario

Shunting Ops

Since no maintenance operations have to be performed, the same number of shunting operations is

observed in each policy, given that only the demand constraint has to be met. Nevertheless, this

does not apply to the number of wagons used, since each policy can be greedier regarding wagons

to shunt-in (Min, Reserving, Random) compared to more exploitative policies (NCLD, AVG L-S).

Fleet Usage

The fleet size varies based on the criteria used to determine which rolling stock is shunt-in by each

policy. For instance, NCLD and AVG L-S prioritize a limited set of wagons with high residual

mileage, while the other policies tend to utilize a wider range of rolling stock. Since both the

composition and the length of the outbound trains can change, MIN and Reserving policies tend to

bring in wagons with lower mileages, while wagons removed due to demand matching are likely to

be parked in the shunting yard and infrequently used. These policies typically avoid wagons with

higher mileage until new wagons become available, leading to a lower average mileage per wagon

as observed in the simulation results. This type of trend is also observed in the statistically low

performance in terms of Mileage Performed per wagon. The No Maintenance scenario suggests that

NCLD and AVG L-S might have the best wagon fleet usage, based on the high mean, median, and

variance for shunting operations.

Mileage Performed

NCLD presents a higher mean compared to Min and Reserving, which is paired with a close median

and a similar variance, translating into an almost symmetric distribution of mileage across the fleet,

meaning that its fleet covers more km efficiently, using fewer wagons. AVG L-S performs similarly

in terms of mean, but with a distant median and high variance, suggesting that fewer wagons are

used more frequently, confirmed by the slight decrease in the number of wagons used and higher

statistics on operations on wagons compared to NCLD.
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4.8.2 Maintenance Constraint Scenario

By including in the shunting operations the maintenance constraint, therefore constraining the

maximum mileage for each wagon, significant changes occur.

Shunting Ops

The number of shunting operations performed increases from 2% to 11%, and this disparity can be

directly attributed to maintenance constraints. However, it is challenging to determine the exact

number of shunting operations performed for maintenance purposes, as the definition of shunting

operation does not allow for a clear distinction: if multiple rolling stocks are moved together and,

within this group, there is a wagon that must be removed for maintenance reasons, it is incorrect

to say that this cluster has been created for maintenance. Instead, we can assess the impact of

maintenance constraints on the overall number of shunting operations. In this case, a higher number

of shunting operations due to maintenance constraints and higher annual mileage per wagon may

suggest better fleet management in terms of wagon requirements. However, uneven utilization of

the wagon fleet, as seen in AVG L-S, is not desirable.

Maintenance Operations

The number of maintenance operations performed by each policy varies based on how exploitative

it is. With Random setting the benchmark, we can see that Min and Reserving perform fewer

maintenance operations on the wagon, tending to spread the effort among different wagons. On

the other hand, NCLD and AVG L-S prefer used wagons to new ones, performing, therefore, more

operations and using less rolling stock on average compared to the other policies.

Fleet Usage

The number of used wagons required to perform the simulations increases, compared to the bench-

mark, due to maintenance activities causing fleet unavailability. Despite AVG L-S showing a higher

number of shunting operations, it also utilized nearly 40% fewer rolling stocks, resulting in in-

creased operational expenses but significantly reduced overheads (leasing costs per wagon) and

variable costs (e.g. storage costs).
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Mileage Performed

In terms of mileage performed, AVG L-S presents almost twice the mean and variance compared

to the other policies. This could be both an advantage and a disadvantage: the distant mean and

median, coupled with the high variance, indicate an uneven utilization of the fleet, where a smaller

number of wagons are used more frequently, requiring more maintenance and shunting operations

to meet the policy’s demands. This is attractive for companies that have a limited owned fleet and

rely heavily on leased wagons, but it could also lead to overuse of the rolling stock, causing excessive

wear and additional maintenance. Overuse of wagons may also increase the risk of breakdowns.

4.9 Discussion

In this section, we will discuss the presented results focusing on how these can be read in terms

of assessment of the impact of the maintenance constraint, so a “vertical” analysis between the

No-Maintenance and the Maintenance scenario, the addressment of it, through a breakdown on the

policy performance in terms of the analyzed KPIs.

4.9.1 Assessing the Impact of the Maintenance Constraint

Looking only at the No-Maintenance scenario, therefore neglecting the application of the mainte-

nance constraint, the conclusion that could be drawn is that AVG L-S and NCLD outperform Min,

Reserving and Random, especially in terms of fleet size. This leads to more operations performed

on average on each wagon and more miles performed on average, highlighting the optimization in

the fleet use of these two policies.

When we examine the variation in all the KPIs after implementing the maintenance constraint,

the extent of the previous undervaluation due to the neglection of the constraint becomes evident.

This underestimation’s impact is not just a numerical adjustment, but it reflects notably on the

practical aspects of our study, such as the distribution of annual mileage performed by each wagon.

A concrete illustration of this underestimation effect can be seen in the distribution of annual

mileage performed by each wagon, as presented in Figure 4.5.

For Min and Reserving in the No-Maintenance scenario, Figure 4.5 shows high peaks corre-

sponding to the Mean Annual Mileage Performed per Wagon in Table 4.2, which represents the
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Figure 4.5: Annual Mileage Distribution of each wagon between Benchmark and Maintenance Scenario
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fact that a limited number of wagons are utilized only to meet occasional demand fluctuations,

leading to many wagons covering minimal distances, and therefore getting counted during the post-

processing. In contrast, the majority of the fleet operates with a consistent annual mileage. This

behavior changes completely when looking at the Maintenance Scenario, where a more balanced

fleet usage is observed by these two policies. Interestingly though, the Operations performed on

each wagon do not increase so much between the No-Maintenance and the Maintenance scenarios

(2% and 4% respectively), given the high demand shunts performed in the No-Maintenance scenario

compared to the additional effort required in the Maintenance scenario. Overall, the two policies

seem to perform in a very similar way. The increase in the spread of all the distributions passing

from the No-Maintenance to the Maintenance scenario is strongly connected to the increase in the

number of wagons required for performing the simulation, which remains stable for MIN and Re-

serving as the turnover of wagons for maintenance reduces the increase of wagons by working on

the average mileage per wagon while increasing for NCLD and AVG L-S. The maintenance limita-

tions lead policies to opt for wagons that may not meet their decision criteria, resulting in up to

an 80% increase in the fleet size for the NCLD policy and a 66% increase for AVG L-S, spreading

the distribution of annual mileage performed by increasing the ”owned” fleet usage (Section 4.7.1)

and requiring more effort from an increasing number of wagons, concluding in more maintenance

efforts which were unplanned, and therefore a more widespread annual mileage distribution by all

the policies. Nonetheless, both these two policies in the Maintenance scenario show a quite com-

pacted use of the fleet, showing a more controlled behavior even under maintenance constraints.

Looking at the Min and Reserving policies in the No-Maintenance scenario, which can be seen as

the initial practitioner’s perspective, what can be observed is that the fleet’s wagon requirements

look overestimated compared to NCLD and AVG L-S, potentially leading to the other two policies

as a choice. Yet, this initial overestimation does not find its validation when we introduce the

maintenance constraint. These two policies present a smaller differential in terms of Wagon Used

among the policies. Nonetheless, this initial corrected view on the No-Maintenance scenario for

the fleet requirements for Min and Reserving significantly underestimates the fleet’s annual mileage

performed distribution, as seen from the Annual Miles Performed differential for these two policies

in Table 4.2.

Looking at the comparison in Table 4.2, what can be seen is that, even though the shunting

difference assesses itself between 2 and 11%, which can be directly connected to the maintenance
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operations, the highest difference in terms of impact lies within the core business of the freight

companies, which are the mileage to be performed each year by the wagons and the number of

wagons required to fulfill all the services.

4.9.2 Addressing the Impact of the Maintenance Constraint

To address the maintenance constraint, we want to analyze if there is a policy that outperforms the

others in terms of different KPIs. This may completely depend on the points of view, and needs

of the company, with an example provided in Figure 4.6, which represents the average mileage of

the wagons available inside the shunting yard at any point in the simulation per policy for the

Maintenance scenario.

This parameter can be read as the resilience of the overall wagon fleet, where a more linear trend

corresponds to a control on the fleet distribution mileage through time, which results in multiple

benefits such as a better answer to eventual disruption and less wagon fleet requirement to fulfill all

services. In grey, for all the plots as presented in Figure 4.6, is represented the Random behavior

for comparison reasons. In this case, what is observed is that for SIMPLE wagons Min, NCLD

and Res (Fig. 4.6 (a),(c),(g)) suffer all from a bullwhip effect, indicating an underestimation of the

SIMPLE wagon fleet requirement and a constant overuse of this portion of the fleet. This trend has

not been observed in AVG L-S, which provides a more stable behavior. In this context, Random

policy seems to perform slightly better than Min and Res, but still with an initial bullwhip effect

observed. For the DOUBLE wagons instead, while the size of the DOUBLE fleet allows for a steady

growth in the actual mileage available in the depot for Min and Res (Fig. 4.6 (b),(h)), which will

eventually result in the same bullwhip effect as observed in the case of the SIMPLE wagons, two

interesting behaviors arises. First, the NCLD trend (Fig. 4.6 (d)) shows complete control of the

fleet, given that the criteria will always prefer a wagon with mi > 0 compared to a fresh wagon,

only reusing the new wagons when there is no availability. For AVG L-S (Fig. 4.6 (f)), a similar

trend is observed, where a steady state is reached, together with a more controllable situation in

terms of wagons. In both cases, a reduction of the wagon fleet ownership could be applied, still

resulting in a stable scenario. In this context, the Random policy appears to perform slightly better

than Min and Res, providing a somewhat stable behavior in the fleet average mileage. However, it’s

important to note that this stable trend observed may be more attributable to the specific setup

of the instance (as explained in Section 4.7.1) rather than a reflection of the policy’s controllability
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Figure 4.6: AVG mileage available in the depot per year per policy.
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over fleet management. Given the Random shunt-in criterion, its performance advantage in this

scenario may not necessarily translate to a consistent or intentional control strategy. To proceed

further, we investigated the overall distribution of the average yearly mileage of the fleet at the end

of the simulation from the NCLD and AVG L-S policies, divided into the “active fleet” (wagons

in service) and the “passive” fleet (wagons parked in the shunting yard). This has not been done

for Min and Res. as they have shown to perform worse in terms of fleet management and all the

presented KPIs. As for this case study, Min and Reserving exhibited a pronounced bullwhip effect

for both SINGLE and DOUBLE wagons, a phenomenon observed with NCLD in the SINGLE

wagon case, but with much better mileage management for the DOUBLE wagons. Moreover, while

their KPIs are relatively aligned, they are distinctly outperformed by both NCLD and AVG L-S

in terms of operations within the fleet and annual miles performed, where NCLD and AVG L-S

demonstrate a better efficiency, further highlighting the optimization and effectiveness of these two

policies in comparison to Min and Reserving. To assess the acceptability of the fleet management

behavior of NCLD and AVG L-S, we compared the average actual mileage within the depot (passive

fleet) to the average mileage of the departed trains (active fleet), which provides an overview of the

fleet’s overall condition, together with the behavior of the Random policy, as depicted in Figure

4.7.

What is desirable is that these two distributions are close to each other, describing overall good

management of the fleet in terms of wagons available in the depot and wagons active for services;

moreover, in case of misalignment, we would still prefer to have a passive fleet mileage distribution

that has:

• Either an average mileage uniformly distributed, to more likely fit better the policies criteria

which

• is centered more toward the lower mileage, rather than toward the maximum available mileage.

This can be seen as the interchangeability of the active and passive fleet. As can be seen in

Figure 4.7 (a), NCLD belongs to the first case, providing a pseudo uniform distribution. This can

be attributed to the discrepancy between types (SIMPLE, DOUBLE) in the mileage of the available

wagons as shown in Figure 4.6 (c),(d); moreover, the distribution of average mileage of the active

fleet shows a good alignment, showing that the wagons that are in service are not overused, which

suggests good fleet management. In Figure 4.7 (b), we can see that AVG L-S shows less alignment
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Figure 4.7: Distrib. of AVG mileage available in the depot vs Train Dep. AVG mileage
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between the two distributions, with an active fleet mileage distribution aligned with the other two

policies, and slightly better management in terms of the passive fleet mileage distribution. Looking

at Figure 4.7 (c), we can see that instead the Random policy provides a similar active fleet mileage

distribution as NCLD and AVG L – S. Nonetheless, the mileage of the passive fleet is much higher

and flattened towards the high 80000km, suggesting that this mass will likely move onward towards

the maximum mileage. Overall, it can be stated that based on our simulations both AVG L-S

and NCLD provide reliable fleet management resilient to disruptions compared to the Random

policy, with AVG L-S providing better performance due to the more controlled management of the

SIMPLE wagons available in the depot and better control over the active fleet. Moreover, for both

these policies, this might also suggest that the wagons provided for the simulation and accounted

as “owned”, as stated in Section 4.1.1, might have been instead only leased to reduce the economic

cost to be sustained by the company. Among the policies proposed, some final consideration has

to be made:

• The MIN and Reserving policies exhibit a more balanced utilization of the fleet for the Main-

tenance scenario, showing less variance in the annual miles performed per wagon, as for Table

4.2, which results in a more compact distribution of the annual mileage distribution, as for

Figure 4.5 (a), (d). Nonetheless, their lack of fleet optimization due to their simple shunt-in

criterion is reflected in the bullwhip effect for both SIMPLE and DOUBLE wagons for these

two policies as for Figure 4.6.

• AVG L-S tends to use a small portion of the fleet, calling back the other wagons only to

address exceptional situations where the preferred wagons are unavailable due to maintenance,

providing good reliability in terms of disruption management and having better control of the

wagons on service.

• NCLD policy provides statistics closer to the more conservative fleet management seen in MIN

and Reserving while still compactly utilizing fewer wagons due to higher variance, similar to

AVG L-S. The management of the SIMPLE fleet could be improved by increasing the size

of the SIMPLE wagons “owned”, while decreasing dramatically the DOUBLE ones and still

having a stable and controllable fleet.
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4.10 Summary

This chapter presents a detailed study on the Shunt-In/Shunt-Out (SISO) problem, focusing on

optimizing railway shunting operations with an emphasis on the impact of maintenance activities.

We introduce a MILP model to formalize the problem, integrating maintenance considerations

into the rolling stock management to optimize shunting operations. We then present a simulation

framework that evaluates the efficacy of various Shunt-In policies (Min, NCLD, AVG L-S, Reserving,

Random) over 20 years, highlighting the consequences of maintenance constraints on operational

efficiency and rolling stock utilization.

Key findings from the simulation under both No Maintenance and Maintenance scenarios reveal

that the underestimation of shunting operations between these two scenarios can vary from 2% to

11%, with almost 10% to 80% difference in the underestimation of the fleet requirement. Moreover,

under maintenance constraints, AVG L-S and NCLD policies outperform others in terms of strategic

fleet utilization and operational efficiency. The inclusion of maintenance constraints significantly

varies for each policy, with AVG L-S demonstrating better fleet management, achieving balanced

utilization and high mileage efficiency.
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Chapter 5

ML model and MILP Modelling

with Condition-Based

Maintenance Integration

My friend, the fates are cruel

There are no dreams, no honor remains.

Loveless Act IV

5.1 Introduction

This chapter covers RO4, Section 3.4, ”Data-Driven Modeling for Condition-Based Maintenance

and Unplanned Disruption, and its Integration in MILP Modeling through a Risk-Management

Approach”, and a portion of it is in review for the Optimization and Decision Science (ODS) 2024

conference. In this chapter, we describe in depth the generation of the ML model in Section 5.2, from

the data selection up to the validation of the finalized model. We then describe the deterministic

MILP model informed by uncertainty in Section 5.3, whose aim is to overcome the shortcomings of

the previous model described in Section 4.4 and implement the ML model as an input through a

risk-assessment approach for the evaluation of the shunting operations.
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The idea is to incorporate inside our MILP model information about rolling stock’s condition

information, which might trigger potential unplanned disruption. To do this, we developed a ML

model to predict these unplanned events based on real data. In this context, our data-driven model

is the source of our information on potential disruptions, as its output describes the state of the

rolling stock. For this study, rather than implementing the input of the ML model as is in our

MILP, we want to perform a risk assessment on the trustworthiness of its predictions. The ML

model becomes the asset that we are interested in assessing against its failure, as this could lead to

the actual disruption of our asset of interest, the rolling stock, which can set off a cascade effect of

other disruptive events.

ML models have proven effective when it comes to big data, understanding patterns within the

latter, particularly when it comes to predicting future outcomes based on past events. However,

some of these models also have the disadvantage of being hard to interpret, potentially resulting in

unreliable outcomes. These models tend to be insensible to specific unseen events, which comes from

the limitation of not always being able to implement all the necessary data that would allow perfect

predictions. This limitation is worsened by data-cleaning processes, where resampling techniques

like oversampling and undersampling can help balance imbalanced datasets and improve model

performance, while risking introducing bias or overfitting, further reducing the reliability of these

models.

Therefore, matching these models with a higher-level evaluator that accounts for the risk of a specific

decision on a single event and also looks at the performance of the models in terms of predictions

and different system KPIs can be beneficial for better evaluation. The proposed ML model aims to

predict, based on real data, rolling stock status in terms of potential disruption, which may lead to

both the interruption of normal shunting yard functioning and unplanned maintenance.

Given how diverse, severe, and unpredictable the impacts of disruption can be, being able to

predict and mitigate these events requires the development and implementation of sophisticated

maintenance strategies, as well as preemptive maintenance models. While in the best-case scenario,

these disruptions lead to additional maintenance operations once the wagon reaches the maintenance

site, based on the severity of the problem, the worst-case scenario can be illustrated by a freight

train derailment that happened in Florence on 20/04/2023. Media claimed that this was caused

by an axle breakdown, and the impact of the derailment ended up not only disrupting the wagon

itself, but also damaging the infrastructure in the section through which it passed. As a result,
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the whole high-speed Italian network was blocked, with delays propagating throughout Italy and

disruption registered from Milan to Rome [76]. Moreover, unplanned maintenance operations can

also disrupt the maintenance schedule of companies, making it challenging to plan maintenance

operations. This can result in a reactive maintenance approach, which can be more costly and

time-consuming than proactive maintenance [11]. Train disruption analysis and recovery have long

been recognized as crucial components of the transportation industry, with a particular focus on the

area of real-time railway rescheduling [16, 93]. As this field continues to evolve, machine learning has

become an increasingly popular tool for enhancing disruption analysis and recovery [46, 73]. There

is still a significant gap in our understanding of the root causes of disruptions that are triggered

by rolling stock breakdowns. Existing research has generally focused on mechanical issues, more

comprehensive studies are needed to identify the key features that can trigger these breakdowns,

taking into account both network and rolling stock attributes. By adopting a more preemptive

approach that proactively identifies potentially disrupted rolling stocks, transportation providers

may be able to reduce the occurrence of disruptions and minimize the associated costs, leading to

greater efficiency and a more sustainable transportation system overall.

5.2 ML Model

The goal of our proposed data-driven model is to predict the condition of our rolling stock, and

therefore its potential disruption, based on both rolling stock and network characteristics. We

propose a binary classification supervised ML model that can be used for the prediction of eventual

future hazards. We use incident data, GPS information of the rolling stock, train schedules, and

other relevant data sources to train and validate the model. We conducted extensive preprocessing

of data from CFL Multimodal, the freight railway company in Luxembourg, to remove outliers,

standardize numerical features, and treat categorical features to ensure data consistency and quality.

We first present the Data collection, preprocessing and feature engineering in Section 5.2.1, the

selection of the model in Section 5.2.2, and finally the performance assessment in Section 5.2.3.
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5.2.1 Data Collection, Data Pre-Processing and Feature Engineering

Incident Selection

By initially filtering the data related to the accidents, we realized from the database that the

disruptions that lead to unplanned maintenance accounted for around 34% of the total recorded

disruptions for the year of analysis.

These accidents are divided by gravity, which is defined as the impact that the disruption has

on the specific train. The description of the gravity and the percentage of occurrence among our

unplanned maintenance cases are shown in Table 5.2:

Gravity Description % of Occurrence

1 Événement : This deviation did not lead to a train delay (> 60

min) or cancellation, and had a low probability of impacting

the train schedule.

71%

2 Presqu’incident : This deviation did not lead to a train delay (>

60 min) or cancellation, and had a medium to high probability

of impacting the train schedule.

21%

3 Incident : This deviation led to a train delay (> 60 min). 0%

4 Incident grave: This deviation led to a train cancellation. 8%

Table 5.2: Different gravity with related distribution of unexpected maintenance accidents.

Data Joining and Feature Engineering

For our model, we collected data on freight rail operations for the years 2022 and 2023 from CFL

Multimodal. The data includes, but is not limited to, information on rolling stock attributes, such

as incident records, and train schedules and operations. The complete framework of how the data

was joined and filtered is presented in Appendix C, Fig. C.1 and C.2. We merged a total of 8

different databases, each contributing to specific features of the final dataset. The most critical

among these was the incident list unplanned maint, a subset of the full incident list recorded in

the year of analysis. This list contains a wide spectrum of disruptions ranging from more severe
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breakdowns - such as wagon failure due to unlisted reasons, wheel flats, derailments, and brake

problems - to more straightforward issues such as electrical failures on the wagons or cuts in the

wagon cloth. The final dataset consisted of various attributes derived from the available data,

aligning with recommendations from the literature. We further refined this selection by choosing

data with the lowest correlation that provided the best performance of the model. These are

presented in Figure 5.1 and Table 5.4.

Figure 5.1: Correlation matrix of the selected attributes for training the model.
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Feature Type Explanation Note

impact maintenance Binary If the rolling stock suffered of dis-

ruption

Target

Feature

Journey Distance Numeric Distance towards destination -

wagon model Categorical Wagon model -

TEU Count Numeric Expected number of TEU count

transported by rolling for a spe-

cific destination in the month of

the trip

-

actual mileage at destination Numeric Expected actual mileage at data

point

-

code lat long Categorical Data point recorded for the posi-

tion of the wagon

Precision

of 11.1 km

avg monthly slope mt Numeric Estimated total elevation change

for the specific rolling stock be-

tween all its recorded data points

for that month

-

Table 5.4: Explanatory table of selected features.

The flag impact maintenance is the binary feature that we want to predict based on the initial

data, representing that a wagon has encountered a disruption at a specific point in time and space.

False means that the rolling stock is in a condition to proceed with its scheduled services, and

True signifies that a disruption might have happened in its road that we are not aware of. The

Journey Distance represents the distance that the rolling stock covers when assigned to a specific

destination (rT ). The wagon model represents a categorical variable detailing the specific model of

the wagon. These three are the features that we inherited from the initial merged datasets. The

attribute TEU Count represents the mean weight carried by a rolling stock considering as a unit

the TEU (Twenty-foot Equivalent Unit) based on the assigned destination throughout the month of

the performed trip. This attribute has been computed for each wagon based on the mean monthly
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TEU transported by a rolling stock for a specific destination T R.

The attribute actual mileage at destination (mi) represents the actual mileage as recorded on a

specific data point. We computed it using:

• Initial estimated mileage at the first entry in the system, computed using:

– The initial service time of the wagon (tstart).

– Mileage at initial service time (mtstart
i ) from the CFL dataset, inputting the missing

value using the average for the tstart,

– average mileage performed by a specific model given a specific year mtstart
i .

• GPS position of the different trajectories performed by the wagon since the initial entry in

the system, computing the distance between the point using the Haversine formula.

The attribute code lat long represents the province code of the wagon’s position, which has

been computed by clearing the GPS position of the rolling stock using a z-score approach for

detecting outliers, using a 1 decimal range (around 11.1 km precision). The data cleaning, especially

due to the z-score outlier detection, sometimes removed wagon positions due to significant noise,

causing sudden location changes not aligned with previous recordings, often occurring with wagons

reassigned to services different from their usual assignments. The beeline distance between such

disjointed entries was calculated to compensate for the data loss and added to the mi to enhance

precision. Finally, the attribute avg monthly slope mt represents the average monthly absolute

elevation performed, considering the GPS position. We computed this attribute for each rolling

stock by computing the absolute vertical distance traversed performed throughout a month for each

of its data points. This attribute has been specifically added to account for the heavy breaking and

effort to go up and downhill.

Training and Dataset Preparation

We transformed categorical features into dummy variables using categorical encoding and scaled

using the numerical features through MinMax normalization method. Lastly, we carried out a

correlation analysis to choose the features for model training, aiming to reduce redundant predictors

and avoid multicollinearity, which is presented in Figure 5.1.
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The target feature is to predict whether a rolling stock, throughout the analyzed time span,

experienced disruption as the one computed in Section 5.2.1. To achieve this, the most suitable

data-driven class of models is binary classification, which uses supervised machine-learning models

to predict binary classes. Following data pre-processing and feature engineering, we obtained a

total of 50,754 records. Due to the high data imbalance, we opted for an undersampling resampling

[60]. The undersampling strategy focused on keeping all instances of the minority class and a

randomized selection of the remaining instances, thereby reducing the dataset size from 50,754 to

17.484 records, with a distribution of 33% data points belonging to the positive class. This was

chosen over the oversampling due to the better performance of the final model. Finally, for the

training phase, data partitioning was executed using a k-stratified 10-fold cross-validation strategy

with an 80/20 split for training and testing datasets respectively.

5.2.2 Selection of the Model

We tested and evaluated a range of binary classification models, prioritizing Recall, the fraction

of accurately identified positive instances from all actual positive instances, and Precision, the

proportion of correctly predicted positive instances among all predicted positive cases. This choice

is linked to our specific operational context: the cost and operational implications of a false positive

- scheduling maintenance when it is not required - are far less severe than those associated with a

false negative - overlooking a critical maintenance event, as also further explained in Section 5.3.1.

The outcomes of this evaluation are presented in Table 5.5.
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Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (Sec)

Decision Tree Classifier 0.8975 0.8925 0.8775 0.8262 0.8510 0.7729 0.7739 0.0680

Extreme Gradient Boosting 0.8549 0.9296 0.7353 0.8118 0.7715 0.6657 0.6675 0.6400

Light Gradient Boosting Machine 0.8296 0.9129 0.6354 0.8131 0.7126 0.5942 0.6038 1.6020

Random Forest Classifier 0.7941 0.8589 0.6218 0.7220 0.6680 0.5200 0.5232 0.4320

Extra Trees Classifier 0.7676 0.8224 0.5875 0.6740 0.6276 0.4599 0.4623 0.4410

Gradient Boosting Classifier 0.7397 0.8138 0.2975 0.7917 0.4320 0.3059 0.3677 1.7080

K Neighbors Classifier 0.7092 0.7405 0.5159 0.5707 0.5417 0.3296 0.3307 0.4640

Ada Boost Classifier 0.7036 0.7209 0.2353 0.6582 0.3456 0.2059 0.2521 0.5230

SVM - Linear Kernel 0.6701 0.0000 0.0206 0.6468 0.0398 0.0202 0.0690 0.1060

Ridge Classifier 0.6691 0.0000 0.0489 0.5337 0.0895 0.0363 0.0761 0.0230

Linear Discriminant Analysis 0.6677 0.6416 0.0624 0.5109 0.1111 0.0419 0.0778 0.1250

Logistic Regression 0.6662 0.6399 0.0491 0.4930 0.0893 0.0307 0.0626 0.1670

Naive Bayes 0.6635 0.6109 0.0395 0.4461 0.0724 0.0194 0.0417 0.0230

Quadratic Discriminant Analysis 0.4360 0.4936 0.6664 0.3276 0.4322 -0.0109 -0.0144 0.0600

Table 5.5: ML model tested.

The Decision Tree Classifier (DT) model was chosen as the go-for ML model for this dataset

given that it provided the best performance out of the prioritized metrics.

DT Model

Decision Trees are a class of machine learning models used for both regression and classification

models. It operates by partitioning the data into subsets based on the values of input features,

effectively building a tree-like model of decisions. At each node of the tree, a feature is selected and

the data is split according to a criterion such as Gini impurity. This process continues recursively,

resulting in a set of terminal nodes or leaves, each representing a class label or a continuous output

value.

Our DT model training was performed by incorporating an early stopping criterion to mitigate

the risk of overfitting. Overfitting, where the model performs exceedingly well on the training

data but poorly on unseen data, can lead to over-optimistic initial results but poor real-world

applicability. By capping the tree’s depth, we aimed to create a model that generalized better to

new data, thereby ensuring more robust and reliable predictions. For our model, a maximum depth

of 15 was set for the tree. The performance metrics of the trained model are presented in Table 5.6.
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Accuracy AUC Recall Prec. F1 Kappa MCC

0 0.8284 0.9006 0.7961 0.7190 0.7556 0.6240 0.6259

1 0.8192 0.8862 0.7618 0.7143 0.7373 0.5996 0.6003

2 0.8406 0.8992 0.7554 0.7636 0.7594 0.6403 0.6403

3 0.8220 0.8996 0.7940 0.7075 0.7482 0.6113 0.6137

4 0.8463 0.9125 0.8069 0.7505 0.7777 0.6605 0.6615

5 0.8320 0.8935 0.7666 0.7397 0.7529 0.6257 0.6259

6 0.8406 0.9140 0.8223 0.7328 0.7750 0.6522 0.6548

7 0.8197 0.8958 0.7318 0.7286 0.7302 0.5949 0.5949

8 0.8255 0.8943 0.8047 0.7102 0.7545 0.6199 0.6228

9 0.8526 0.9219 0.7790 0.7790 0.7790 0.6685 0.6685

Mean 0.8327 0.9018 0.7818 0.7345 0.7570 0.6297 0.6309

SD 0.0112 0.0104 0.0264 0.0226 0.0156 0.0238 0.0238

Table 5.6: Initial DT Results

Despite these preventive measures, an overfitting from the model was observed, as observed

by the learning curve presented in Figure 5.2. This overfitting can be observed in the slightly

descending training score to the cross-validation score.
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Figure 5.2: Learning curve of the DT model: in this case, the stability of the training score compared to

the growing trend of the cross-validation score suggests the overfitting of the model.

To address the issues related to overfitting, we performed hyperparameter tuning. This step

aims to fine-tune the model by adjusting various hyperparameters to find the optimal configuration

that minimizes overfitting while improving the model’s predictive accuracy.

Tuned DT Model

To tune the DT model and obtain Tuned Decision Tree (TDT), we opted for the optimization of

the F1 score, an evaluation metric that measures a model’s accuracy that combines the Precision

and Recall scores of a model. This was done to ensure that when maintenance was predicted, it

was indeed necessary, thereby minimizing the potential for unnecessary maintenance activities. The

metrics are presented in 5.7.
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Accuracy AUC Recall Prec. F1 Kappa MCC

0 0.8106 0.8919 0.7639 0.6967 0.7288 0.5837 0.5852

1 0.8034 0.8901 0.7318 0.6945 0.7126 0.5634 0.5639

2 0.8299 0.9045 0.7060 0.7651 0.7344 0.6095 0.6106

3 0.7956 0.8876 0.7446 0.6751 0.7082 0.5514 0.5530

4 0.8256 0.9026 0.7661 0.7256 0.7453 0.6128 0.6134

5 0.8127 0.8905 0.7216 0.7186 0.7201 0.5794 0.5794

6 0.8106 0.8952 0.7516 0.7020 0.7260 0.5815 0.5823

7 0.8033 0.8972 0.6888 0.7118 0.7001 0.5538 0.5540

8 0.7961 0.8786 0.7532 0.6737 0.7112 0.5545 0.5565

9 0.8290 0.9134 0.7339 0.7484 0.7411 0.6135 0.6135

Mean 0.8117 0.8952 0.7362 0.7111 0.7228 0.5804 0.5812

SD 0.0121 0.0093 0.0238 0.0280 0.0141 0.0235 0.0233

Table 5.7: Tuned DT Results

The decrease in the TDT model’s performance is paired with less overfitting, as shown in Figure

5.3a. Therefore, we chose the TDT model to further investigate the role of input features on the

predicted outcomes. This allowed us to study how different attributes interact with each other and

how they contribute to the possible disruptions of rolling stocks.
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(a) Learning curve of the TDT model: in this case, the stability of the training

score compared to the steeper growing trend of the cross-validation score suggests

less overfitting of the model compared to the DT model.

(b) Feature importance plot on incidents causing unplanned maintenance on

rolling stock.

Figure 5.3: TDT learning curve and Feature Importance Plot.

Figure 5.3b shows the feature importance plot for the prediction based on the TDT. For this

dataset, the TEU count (monthly) emerged as one of the most influential features, followed by the
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Actual Mileage, Journey Destination, and AVG Slope (monthly). The significance of these features

is logical, given that both Slope and Journey Distance are highly dependent on the destination

and the route taken, and when paired with a high AVG TEU count these might trigger one of the

mentioned accidents.

5.2.3 Performance Assessment and Probability Threshold in the TDT

model

To assess the trustworthiness of the predictions generated by our TDT model, we use the concepts of

True Positive (TP), False Positive (FP), True Negative (TN), False Negative (FN), which compose

the Confusion Matrix, and Precision, Recall (True Positive Rate, TPR), Specificity (True Negative

Rate, TNR), False Positive Rate (FPR), and False Negative Rate (FNR). The explanation and

formulas of them are presented in Table 5.8.

Name Explanation Formula

True Positive (TP) Correctly predicted positive -

False Positive (FP) Incorrectly predicted positive -

True Negative (TN) Correctly predicted negative -

False Negative (FN) Incorrectly predicted negative -

Precision Proportion of true positives in predicted positives TP
TP+FP

Recall (TPR) Proportion of true positives out of all actual positives TP
TP+FN

Specificity (TNR) Proportion of true negatives out of all actual negatives TN
TN+FP

False Positive Rate (FPR) Proportion of false positives out of all actual negatives FP
TN+FP

False Negative Rate (FNR) Proportion of false negatives out of all actual positives FN
TP+FN

Table 5.8: Confusion Matrix Metrics and Formulas.

These values are all dependent on a key factor, which is also related to risk assessment, namely

the probability threshold. The probability threshold in classification decisions is key to under-

standing the model behavior and providing good predictions. It is a predetermined value, usually

between 0 and 1, that determines the cutoff at which a data point is classified into one of the two

categories based on the predicted probability. In risk assessment, it can be seen as the level of risk

98



Chapter 5 – ML model and MILP Modelling with Condition-Based Maintenance Integration

exposure that the model is willing to accept when making predictions. A lower threshold implies a

more conservative approach, where the model identifies more instances for preventive maintenance,

although this comes at the expense of increased false positives, leading to potentially unnecessary

maintenance actions, and more shunting operations, increasing the probability of delays and can-

cellation. Conversely, a higher threshold expresses a more tolerant stance, likely resulting in fewer

false positives but at the risk of overlooking some essential preventive maintenance, as captured

by the false negative rate, and therefore increasing the exposure to the risk event. We provide an

example for further clarification. Let’s consider a scenario where our TDT model is used for rolling

stock disruption prevention. The model predicts whether a particular rolling stock is likely to fail

soon.

• Scenario: The model analyzes data from sensors on the rolling stock and outputs a proba-

bility of failure shortly.

• Probability Threshold Setting: Let’s say we set the probability threshold at 0.7. This

means that if the model predicts a failure probability of 70% or higher, it flags this as a

potential disruption.

• Outcome Interpretation:

– If the model predicts a failure probability of 75% for a disruption, this exceeds our

threshold of 70%. Consequently, maintenance actions are triggered to prevent potential

disruption.

– Conversely, if the model predicts a 60% probability of failure, this does not exceed the

threshold, and no immediate action is taken, though monitoring may continue.

The key here is the balance between safety and efficiency:

• A High Threshold (e.g., 90%) might result in fewer false alarms but could miss some potential

failures, risking disruptions.

• A Low Threshold (e.g., 30%) increases sensitivity to potential problems, possibly leading

to more frequent maintenance actions but could also result in unnecessary inspections and

repairs, reducing operational efficiency.
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The choice of threshold becomes a trade-off between different evaluation metrics and ultimately

depends on the specific operational context and the associated costs of false positives (useless

maintenance) and false negatives (missed preventive maintenance). For instance, in a scenario

where the cost of a false negative is significantly high—indicating a severe consequence for missing

a necessary maintenance action—a lower threshold may be more acceptable despite the higher false

positive rate.

To empirically determine the optimal threshold for our problem, we examined a range of thresh-

old values, incrementing by 0.05, and observed the corresponding impact on the key performance

metrics. Results are presented in Table 5.9.

TP FP TN FN Precision Recall Specificity FPR FNR Threshold

5801 25356 19763 27 0.19 1 0.44 0.56 0 0.05

5795 21447 23672 33 0.21 0.99 0.52 0.48 0.01 0.1

5783 18606 26513 45 0.24 0.99 0.59 0.41 0.01 0.15

5759 16123 28996 69 0.26 0.99 0.64 0.36 0.01 0.2

5732 13631 31488 96 0.3 0.98 0.7 0.3 0.02 0.25

5639 11011 34108 189 0.34 0.97 0.76 0.24 0.03 0.3

5499 9221 35898 329 0.37 0.94 0.8 0.2 0.06 0.35

5303 7644 37475 525 0.41 0.91 0.83 0.17 0.09 0.4

5113 6404 38715 715 0.44 0.88 0.86 0.14 0.12 0.45

4572 3759 41360 1256 0.55 0.78 0.92 0.08 0.22 0.5

3928 2181 42938 1900 0.64 0.67 0.95 0.05 0.33 0.55

3496 1441 43678 2332 0.71 0.6 0.97 0.03 0.4 0.6

3082 880 44239 2746 0.78 0.53 0.98 0.02 0.47 0.65

2686 575 44544 3142 0.82 0.46 0.99 0.01 0.54 0.7

2222 340 44779 3606 0.87 0.38 0.99 0.01 0.62 0.75

1885 198 44921 3943 0.9 0.32 1 0 0.68 0.8

1447 109 45010 4381 0.93 0.25 1 0 0.75 0.85

904 42 45077 4924 0.96 0.16 1 0 0.84 0.9

Table 5.9: Performance metrics at varying probability thresholds.
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This analysis, presented in Table 5.9, illustrates the trade-offs in selecting a particular threshold

and provides a data-driven basis for choosing a threshold value that aligns with our operational

priorities and risk tolerance.

Figure 5.4: Recall (TPR) vs Specificity (TNR) through probability thresholds.

Figure 5.4 shows the trend of Recall and Specificity and TNR through probability thresholds.

To balance these two, an optimal point has been identified around the 45% mark.
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5.3 MILP Modelling with Condition-Based Maintenance In-

tegration

In this section, we present an improved deterministic optimization model informed by a probabilistic

forecast. The new model addresses the limitations identified in earlier MILP models as presented

in Section 4.4 by including a more sophisticated representation of the operational dynamics that

happen in the shunting yard, together with the risk assessment on the ML’s prediction. The key

improvements can be summarized as follows:

• Spatial Granularity: we introduced the concepts of tracks and positions within the shunting

yard, offering a more granular representation of the spatial layout. Specifically, the set S has

been replaced with two new sets TRK and PTRK, representing the shunting yard track

number and the position relative to the track number respectively.

• Distribution Revision: the assumption of a normal distribution that defined the shunt-in

time (Section 4.3.2) has been replaced with a fixed shunting time calculation based on the

different tracks and positions of the wagons.

• Wagon Type Expansion: the model now can deal with all the possible wagon types,

aligning with the actual heterogeneity of the fleet observed in practice.

• Operational Constraints: the model introduces more specific delay and cancellation con-

straints, informing the model on the risk of over-shunting and the costs associated with it.

• Objective Transition: the objective function shifted from minimizing shunting and delays

to a maximization of the expected revenue of the train.

• Machine Learning Integration: we integrated ML analytics to risk assess it against its

prediction failure, using the MILP model as the final decision maker regarding the preemptive

maintenance.

We introduce the conceptualized risk analysis framework and explain the metrics developed to

quantify the ML model prediction’s vulnerability in Section 5.3.1, where propose a methodology to

compute the risk profile for each wagon within the fleet. Following this, we propose an integration

of ML metrics and the prediction, and how the latter is mildly inputted within this MILP model
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using the ML metrics as vulnerability/model trustworthiness in Section 5.3.1. Lastly, we present

the complete MILP model in Section 5.3.2.

5.3.1 Risk Assessment

Risk assessment is defined as the systematic process of identifying hazards and evaluating any

associated risks within a specific frame, then implementing reasonable control measures to remove

or reduce them. The Risk associated with an event is classically defined by the formula:

Risk = probability of occurrence ∗ impact of event (5.1)

Where:

• The probability of occurrence is defined as the likelihood of the analyzed event materializing.

• The impact of event is defined by the impact (economical, social, health-related) that the

event materialization has.

In the FAIR Risk Taxonomy ([32]), the risk analysis includes the identification of the different

assets at risk for the targeted event and the analysis of the likelihood of the event to assess the

frequency of potential threats. This topic is related to our research as our goal is to implement,

within our MILP model, information regarding the condition, and therefore potential disruption,

of rolling stocks using the predictions that come from our ML model. The asset that we want to

preserve from a disruptive event, for our study, is the rolling stock, with the event that we’re trying

to prevent being an unexpected disruption. To assess a potential disruption within our digital

environment, we use our TDT model as presented in Section 5.2.2. As this model is the source of

our information regarding the potential disruption, this is the asset at risk that we are interested

in assessing against its failure.

Therefore, the likelihood of our event is defined as the probability that the ML model could provide

a wrong prediction, potentially leading to an event that affects both rolling stocks and shunting

operations. Specifically, to each prediction, we can always associate its relative model performance,

False Positive Ratio, True Positive Ratio, True Negative Ratio, and False Negative Ratio. These are

rates that define how trustworthy is the model on its prediction versus the actual event happening

and can be computed based on the validation data.
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In the FAIR assessment, the impact of the event is defined as Loss Magnitude (LM). The LM

is formalized as the loss related to a specific event happening. The losses analyzed in this study are

relative to the potential events that are triggered by the failure of the ML model:

• Loss in productivity (PL) is defined as the loss of availability due to disruptions occurring.

For this study, the PL has been defined as the potential loss in availability of the fleet due to

unplanned disruption, or delays and cancellations based on the gravity of an event.

• Replacement loss (RL) is defined as the cost of replacing the disrupted rolling stock. For this

study, is assumed as the repair cost of a specific wagon, which depends on the gravity of the

disruption. We computed the repair costs from the PGV Agreement, an agreement on the

use of freight wagons in international traffic from the OSJD (Organisation for Cooperation

between Railways) Committee. We used this data as they provided a good heterogeneity in

terms of repair. To achieve this, we split the distribution of prices according to 4 quantiles,

performing a Monte-Carlo simulation to obtain the expected costs for each gravity.

• Monetary loss (MnL) is defined as fees associated with the disruptive event. For our study,

this cost was provided to us by CFL multimodal.

Risk of Pointless Disruption

To model the costs associated with the False Positive prediction, a preemptive maintenance opera-

tion that is not required, we define the Risk of Pointless disruption Rpoint for each wagon w. This

risk expresses the PL of a wagon being out for maintenance which was not needed, and the RL as

the cost of removing it from the train due to the additional operation to be performed. This risk is

independent of the gravity of the accident.

Rpoint =

PL︷ ︸︸ ︷
t̄prevout ∗ fdest,yr ∗Rdest ∗Revrail +

RL︷ ︸︸ ︷
Cshunt

single (5.2)

where:

• t̄prevout is the expected time that a wagon will be out to perform preemptive maintenance.

• fdest,yr is the frequency yearly of a wagon for a specific destination.

104

https://en.osjd.org/api/media/resources/955?action=download


Chapter 5 – ML model and MILP Modelling with Condition-Based Maintenance Integration

• Rdest is the distance to be covered for a specific destination (rT in the model presented in

Section 4.4).

• Revrail is the kilometric revenue towards a specific destination.

• Cshunt
single is the cost of a single shunt.

Risk of Disruption

The Risk of Disruption, Rdisr
grav, defines instead the risk associated with encountering a disruptive

event and is associated with the False Negative prediction. We formalize this risk as:

Rdisr
grav =

PL︷ ︸︸ ︷
(mmaxi −mi) ∗ revdest +

RL︷ ︸︸ ︷
Ccorr,maint

grav + Cshunt
single +

MnL︷ ︸︸ ︷
P (grav == 4) ∗ Ccanc (5.3)

where:

• Cshunt
single is the cost of a single shunt.

• Ccorr,maint
grav is the cost for corrective maintenance based on the gravity level.

• mmaxi −mi are the residual km to be performed before the scheduled maintenance.

• revdest is the kilometric revenue towards a specific destination.

• P (grav == 4) ∗Ccanc express that if the gravity is of level 4, we also include the cancellation

costs.

In our formulation, we assume different types of disruptive events, represented by grav and

explained in Table 5.2, the gravity of the event. The PL is defined as the economic loss related to

the wagon losing its potential mileage before the scheduled maintenance. The RL is represented

by the cost of performing corrective maintenance, which depends on grav as the cost of repair

increases with the intensity of the disruption, and the cost of removing the wagon from the system.

Finally, the MnL is specifically for our study, as the highest grav of disruptive event forces us into

cancellation.
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Risk Assessment Conceptual Framework

A conceptual framework is presented for clarity in Figure 5.5.

Figure 5.5: Conceptual framework of the risk assessment.

For the True Positive and True Negative, we associate the cost of preemptive maintenance

Cprev,maint and No Cost respectively. Figure 5.5 shows the impact of the assessment on the predic-

tion of the shunting model, as well as the proposed mild integration of the ML inside the MILP.

The rolling stock arrives with an unknown status, defined in our case as the event. The ML model

is then run, providing its prediction regarding the status of the wagon. This prediction is then not

executed right away, but instead placed inside the MILP, together with the performance metric

of the ML model, to make the former decide whether to agree with the ML model based on the

associated risks, operations to perform, delays, and cancellations.

The strength of this framework lies in the capability of the MILP model to make more informed
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decisions based on how trustworthy is the ML model, as well as being able to direct the MILP model

by choosing a probability threshold to the impact of each risk. Analyzing the example provided

in Figure 5.5, we can see that the proposed model presents good metrics of Recall and Specificity.

Within the framework, as for these metrics, the MILP model will tend to trust more the ML pre-

diction. Let’s suppose a rolling stock arrives in the station, with our ML model providing us with a

False prediction. This means that the wagon’s prediction can either be a False Negative or a True

Negative prediction. Based on the performance of the model, as well as the operations that have

to be conducted on the other rolling stocks, the MILP will decide whether to shunt-out the rolling

stock or not for preemptive maintenance weighting in this case the Risk of Disruption only by 12%,

rather than the expected probability of disruption of the wagon.

5.3.2 Operational Research Model

In this section, we will explain the improved MILP model developed for the Shunt-In/Shunt-Out

problem for the condition-based maintenance approach. The following formulation is presented also

without comments in Appendix D.

Nomenclature

Sets

Name Description

gravity Set of possible disruption level {g | g ∈ N0, 1 ≤ g ≤ gr}

T Set of position in the inbound train {i | i ∈ N0, 0 ≤ i ≤ rail}

TRK Set of track within the shunting yard {j | j ∈ N0, 0 ≤ j ≤ tr}

PTRK Set of position in the shunting yard track {k | k ∈ N0, 0 ≤ x ≤ pos}

TY P Set of types of wagons {l | l ∈ N0, 1 ≤ l ≤ typ}

Parameters

Name Description

rail Number of wagons in the train, rail ∈ N0

tr Number of tracks in the SY tr ∈ N0

pos Number of positions for tracks in the SY pos ∈ N0
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typ Number of types available in the fleet, typ ∈ N0

gr Possible number of gravity of disruption, gr ∈ N0

revj,k Potential revenue of each wagon in the SY, revj,k ∈ Rtr∗pos

Rdisr
j,k,g Risk of disruption for each wagon in the SY by gravity, Rdisr

j,k,g ∈

Rtr∗pos∗gr

adjj,k Adjacent wagons in the SY, adjj,k ∈ Ntr∗pos
0

suitj,k Suitable wagons in the SY, suitj,k ∈ Ntr∗pos
0 .

typj,k,l Wagon in the shunting yard per type, typj,k,lNtr∗pos∗typ
0

predML
j,k prediction of the ML model for the wagon in the SY. probML

j,k ∈

0, 1tr∗pos

Train parameters

Name Description

differencei,l Difference in the wagons of the train by type, differencei,l ∈ Nrail∗typ
0

WIi,l Type composition for the inbound train, WIi,l ∈ Nrail∗typ
0

WOi,l Type composition for the outbound train, WOi,l ∈ Nrail∗typ
0

top Expected operational time of the train, defined as the time before

cancellation happens, top ∈ R

Rdisr
i,g Risk of disruption for each wagon in the train, Rdisr

i,g ∈ Rrail∗gr

Rpoint Risk of pointless disruption, Rpoint ∈ R

Revrail Potential revenue of the train as a sum of the single wagon’s revenue,

Revrail ∈ Rrail

mainti Wagons to be removed due to maintenance constraint mainti ∈

0, 1rail

predML
i prediction of the ML model for the wagon in the inbound train.

predML
i ∈ 0, 1rail

ML & Risk Parameters

Name Description

Cshunt cost of a single shunt, Cshunt ∈ R

Ccorr,maint
gr cost of corrective maintenance per gravity, Ccorr,maint

gr ∈ Rgr
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Cprev,maint average cost of preemptive maintenance, Cprev,maint ∈ R

tshunt time to perform one shunting operation, tshunt ∈ R

Ccanc cost of cancelling one train, Ccanc ∈ R

TPR True Positive Ratio from the ML model, TPR ∈ R

TNR True Negative Ratio from the ML model, TNR ∈ R

FPR False Positive Ratio from the ML model, FPR ∈ R

FNR False Negative Ratio from the ML model, TPR ∈ R

P gr probability of gravity disruption, P gr ∈ Rgr

Decision Variables

Name Description

tdep expected departure time, tdep ∈ N0

Canctrig cancellation variable for costs, Canctrigg ∈ [0, 1]

Risk risk term overall between SI & SO, Risk ∈ R

Cmaint overall maintenance cost, Cmaint ∈ R

Demi wagons to be SO for demand reason, Demi ∈ [0, 1]rail

wSO
i wagons to be shunted out from the train, wSO

i ∈ [0, 1]rail

wIN,staying
i wagons that are staying after the SO, wIN,staying

i ∈ [0, 1]rail

shuntSO number of shunting operations performed for SO, shuntSO ∈ N0

adjSO number of adjacent wagons moved for the SO, adjSO ∈ N0

adji,i check if the wagons to SO are adjacent, adji,i ∈ [0, 1]rail

RSO
i risk of the train after the SO, RSO

i ∈ Rrail

MLmaint
i wagons to be SO due to the preemptive maint, MLmaint

i ∈ [0, 1]rail

wSI
i,j,k wagons to be shunted in rail from the SY at (j,k), wSI

i,j,k ∈

[0, 1]rail∗tr∗pos

adjSI number of adjacent wagons moved for the SI, adjSI ∈ N0

adjSIj,k flag for adjacent wagon in the SY, adjSIj,k ∈ [0, 1]tr∗pos

shuntSI number of shunting operations performed for SI, shuntSI ∈ N0

shunts overall number of shunting operations performed, shunts ∈ N0

wSI number of wagons to SI, wSI ∈ N0
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wmoved overall number of wagons moved, wmoved ∈ N0

W out
i,l train overall outbound type composition, W out ∈ [0, 1]rail∗typ

diffSISO difference between SI and SO, diffSISO ∈ N0

RSI
j,k risk term of the wagon to SI, RSI

j,k ∈ Rtr∗pos

RSI
i risk term of the wagon to SI (connect with the train), RSI

i ∈ Rtr∗pos

Rstaying
i overall risk term of the wagon staying in the train between SI and SO,

Rstaying
i ∈ Rrail

Revrail overall train revenue, Revrail ∈ Rrail

Table 5.10: Nomenclature of the Deterministic Risk model.

Two notes on nomenclature:

• Cprev,maint is computed by taking the average cost of preemptive maintenance and adding to

it the loss due to unavailability for that period, namely Lprev,maint = tprevout ∗fdaily ∗R∗Revrail,

where tprevout is the expected time out for preemptive maintenance in days, fdaily is the daily

frequency for a destination. Therefore, Cprev,maint = E[Cprev,maint] +Lprev,maint.

• suitj,k is defined by precomputing if the wagons in the SY can perform the next trip without

surpassing the maximum mileage threshold.
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Objective Function and Constraints

Eq. 5.4 is the objective function. We want to maximize the revenue of the inbound train, defined

as the sum of the potential revenue of each wagon throughout its services until the maintenance

deadline. The objective function considers the risk associated with the status of each wagon,

cancellation, shunting to perform, and maintenance operations associated with the train.

max Revrail − (Cmaint + shunts · Cshunt +Risk + Canctrig · Ccanc) (5.4)

The set of constraints 5.5 models the behavior of the model in terms of risk and revenue.∑
i∈T

(1− wSO
i ) · revi +

∑
j∈TRK

∑
k∈PTRK

wSI
i,j,k ∗ revj,k = Revrail (5.5a)

∑
i∈T

RSI
i +RSO

i = Risk (5.5b)

predML
i · {TPR · [

(
∑

g∈gravity

Pg ·Rdisr
i,g ) · (1−MLmaint

i ) + (Cshunt
single + Cprev,maint) ∗MLmaint

i

] + FPR ∗ [(Cshunt
single + Cprev,maint +Rpoint) ∗MLmaint

i ]}

+(1− predML
i )·

{TNR · (Cshunt
single +Rpoint + Cprev,maint) ·MLmaint

i

+FNR · [(
∑

g∈gravity

Pg ∗Rdisr
i,g ) · (1−MLmaint

i )

+(Cshunt
single + Cprev,maint) ·MLmaint

i ]}

= RSO
i ∀i ∈ T

(5.5c)

∑
j∈TRK

∑
k∈PTRK

{[predML
j,k ·

TPR · (
∑

g∈gravity

Pg ·Rdisr
i,j,k) · wSI

i,j,k]+

+(1− predML
j,k ) · FNR · [(

∑
g∈gravity

Pg ·Rdisr
i,j,k) · wSI

i,j,k]}

= RSI
i ∀i ∈ T

(5.5d)

Equation 5.5a models the revenue of the train defined by the revenue of the wagons staying in

the train after the operations and the one chosen for the shunting. Equation 5.5b defines the overall
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risk of the train and is composed of two factors: RSO
i , risk related to the shunt-out operations, and

RSI
i , risk related to the shunt-in operations.

RSO
i is defined by Eq. 5.5c and models the decision of which wagons should be removed or not

from the inbound train using the ML model as an advisor. The first part of the equation reads:

• If predML
j,k = 1, ML model predicting disruption, the cost of not removing the wagon (1 −

MLmaint
i ) from the inbound train is Rdisr

i,g , the risk of disruption. Trusting the model, therefore

removing the rolling stock (MLmaint
i ), has an associated cost of (Cshunt

single + Cprev,maint), the

shunting cost and the cost of preemptive maintenance. These costs are then weighted based

on the capability of the model to recognize positive class, as defined by the TPR. To this,

we add the risk of performing unnecessary maintenance if this prediction is instead a False

Positive. This is represented by (Cshunt
single +Cprev,maint +Rpoint), weighted on the capability of

the model to find False Positives, defined as the FPR.

• If predML
j,k = 0, ML model predicting no disruption, we investigate the risk of looking at the

negative class. The risk of removing a wagon for unnecessary maintenance is represented by

(Cshunt
single+Rpoint+Cprev,maint), weighted on the capability of the model to find True Negative,

TNR. To this, we add the risk of being a False Negative, with the respective decision and

risks as for the TPR case.

In a similar way, we define RSI
i in 5.5d as the risk of the wagon that needs to be shunted-in

from the shunting yard inside the outbound train. Given that there is always an associated risk in

placing a wagon for the destination, we can in this case only decide which wagon should be shunted

in, and not which one has to be removed. This reduces the problem of choosing the wagon at

minimum risk of future disruption.

The set of constraints 5.6 defines the time, cost, and constraints related to the number of shunts.

∑
i∈T

∑
g∈gravity

(Pg · Ccorr,maint
g ) ·mainti + Cprev,maint ·MLmaint

i = Cmaint (5.6a)

tdep − top ≤ M · Canctrig (5.6b)

shunts · tshunt = tdep (5.6c)

shuntsSI + shuntsSO = shunts (5.6d)
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Eq. 5.6a defines the overall cost of maintenance Cmaint to be sustained between the preemptive

and corrective maintenance. Eq. 5.6b and 5.6c define the timing constraints for the cancellation

and the expected departure time after operations. Eq. 5.6d defines the overall number of shunts to

be performed on the train.

The set of equations 5.7 models the shunt-out operations.

∑
i∈T

wSO
i −

rail−1∑
i=1

adji,i+1 = shuntsSO (5.7a)

2 · adjSOi,i+1 ≤ wSO
i + wSO

i+1 ∀i ∈ [T , T + 1] (5.7b)

mainti +MLmaint
i + demi ≤ 1 ∀i ∈ T (5.7c)

demi ≤ (1.05− probML
i ) ∀i ∈ T (5.7d)∑

i∈T
demi ≤

∑
l∈TY P

|diffl| (5.7e)

mainti +MLmaint
i + demi = wSO

i ∀i ∈ T (5.7f)

Eq. 5.7a defines the overall number of shunts that are accounted for the shunt-out operations.

Eq. 5.7b defines the number of wagons that have to be removed from the train by adjacency. Eq.

5.7c defines that we can’t perform demand shunts and preemptive shunts on the same wagon. Eq.

5.7d and 5.7e defines the shunt-out conditions for the demand shunts: we cannot remove a wagon

for demand reason if the ML model predicts a probability of disruption for the specific wagon less

than 5%. For this type of shunt, we bound the number of wagons that can be removed by the sum

of the absolute value of the difference of demand types between inbound and outbound composition.

Eq. 5.7f defines that a wagon to shunt out is defined by the corrective, preemptive, and demand

removal.
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The set of equation 5.8 defines the connection between the shunt in and shunt out, as well as

the type and demand management.

∑
l∈TY P

diffl −
∑
i∈T

(wSO
i −

∑
j∈TRK

∑
k∈PTRK

wSI
i,j,k) = 0 (5.8a)

∑
j∈TRK

∑
k∈PTRK

wSO
i · typi,j,k + (1− wSO

i ) ·WIi,l ≥ wOUT
i,l ∀i ∈ T ,∀l ∈ TY P (5.8b)

∑
i∈T

wOUT
i,l −WOi,l = 0 ∀l ∈ TY P (5.8c)

∑
l∈TY P

wOUT
i,l = 1 ∀i ∈ T (5.8d)

Eq. 5.8a ensures that if a wagon is requested to be shunted-out, then it will be replaced by a

shunt-in wagon considering the difference between the types of input and output. This not only

allows for management of the change in the size of the inbound and outbound train but connects

the wSI
i,j,k and wSO

i variables. Eq. 5.8b allows the model to fit the demands type between the wagons

that stay inside the train after the shunt-out operations and the wagons that will be placed in from

the shunt-in operations. Eq. 5.8c and 5.8d model that the demand of the outbound train has to be

to filled without replacement.

The set of equations 5.9 defines the shunt-in constraints.

T −1∑
î=1

wSI
î,j,k

·
T∑

ĩ=î+1

wSI
ĩ,j,k

· adjj,k ≥ adjSIj,k ∀j ∈ TRK,∀k ∈ PTRK (5.9a)

∑
i∈T

∑
j∈TRK

∑
k∈PTRK

wSI
i,j,k −

PTRK−1∑
k=1

adjSIj,k = shuntsSI (5.9b)

∑
i∈T

wSI
i,j,k ≤ 1 ∀j ∈ TRK,∀k ∈ PTRK (5.9c)

∑
j∈TRK

∑
k∈PTRK

wSI
i,j,k ≤ 1 ∀i ∈ T (5.9d)

wSI
i,j,k ≤ suitj,k ∀i ∈ T ,∀j ∈ TRK,∀k ∈ PTRK (5.9e)

Eq. 5.9a defines which wagons that we are shunting-in are adjacent in the shunting yard. Eq.

5.9b defines the number of overall shunts to be performed for the shunt-in operations. Eq. 5.9c and

5.9d constraint the shunt-in variable only to take 1 wagon from the SY to place inside the train.

Eq. 5.9e force the model to choose only the suitable wagon. This last constraint is both optional
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and critical: while it might look unnecessary, it reduces the search for the wagon to replace within

the shunting yard only among the ones that can perform the trip, saving for big instances some

computational time. More importantly, it can allow for the implementation of the different shunt-in

policy, by creating a ranking of the rolling stock or not showing to the MILP model inadequate

wagons.

5.3.3 Comparison with the Classical Approach

To compare our approach to the traditional approach to ML implementation, we use the same

model by treating MLmaint
i as an input rather than a decision variable. This is modeled as Eq.

5.10:

MLmaint
i = predML,in

i ∀i ∈ T (5.10a)

This allows for a direct comparison between the two models in terms of both risk and key perfor-

mance indicators (KPIs). The modifications include the introduction of a new input, predML,in
i ,

set equal to predML
i if mainti = 0, and 0 otherwise; the removal of Equation 5.7d, to provide more

flexibility in demand management due to the forced acceptance of the input.

This modification allows the use of Equations 5.5c and 5.5d as the risk model, enabling the

computation of risk associated with ML-driven decisions.

5.4 Case Study and Result

5.4.1 Case Study

For the case study, we used the TDT model explained in Section 5.2.2. The instance for the

study was created using real statistics from CFL Multimodal for the year 2023, covering 7 different

destinations. This dataset includes information such as the average number of wagons required per

destination, associated revenue, frequency of cancellations, distance required for each journey, and

expected travel times. We associated each data point of the year 2023 with the missing data required

to perform the ML model prediction. The data regarding the preemptive and corrective maintenance

costs and time, expected delay, cancellation fees, revenue per km, as well as shunting costs, and

the data for the risk assessment were provided by CFL Multimodal. The inbound train’s wagon’s
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actual mileage mi is defined by sampling daily frequencies from a normal distribution based on the

mean and standard deviation of the destination for each year. If the standard deviation or mean

frequency for a year is zero or missing, it defaults to a general average value. The total kilometers

are computed by multiplying daily frequency samples by the distance covered for that service for

each day, then summing these products across all days and years considered. The maximum mileage

is instead set at 180000 km, as for CFL information. The shunting yard is populated with a fixed

numbers wagon that performs random services across the 7 destinations. For the case study, we

run the models for both the full Risk Function and the ML as an input implementing a 1-year-old

and 3-year-old fleet, with probability thresholds ranging between 0.05 and 0.95. We made this

choice to test the model under both very unlikely and likely scheduled maintenance, as the year

of the fleet is reflected on the mi of the rolling stocks arriving on the inbound train based on

the destinations. Cancellation is triggered by this model when the operational time surpasses 180

minutes, and consider 15 minutes per shunting operation.
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5.4.2 Result

1 Year fleet 3 Years fleet

Full Risk ML Input % Diff Risk-ML Full Risk ML Input % Diff Risk-ML

Max Wagon-

Demand In-Out

7.14 - 5.33 -

Predicted Dis-

rupted Wagons

7.6 - 4.55 -

Operating Cost 89815.13 84394.96 -6.03 189439.24 187936.37 -0.79

Overall Shunts 13.34 13.65 2.3 18.33 18.19 -0.8

Total Wagons

Moved

20.51 20.61 0.5 30.48 30.79 1

Actual Departure 200.12 204.72 2.3 275 272.8 -0.8

Risk Term 787139.25 887916.07 12.8 795515.9 809940.47 1.81

Table 5.11: Result Model for 1 and 3 years.

Table 5.11 presents the result for the 2 instances, based on the KPIs that relate to the opera-

tive/tactical context, as explained in Section 3.2. These values have been computed as the average

for each destination and each probability threshold. For the 1-year fleet, the Full Risk model slightly

surpasses the ML as an input, as the latter is forced to implement the prediction of the ML model.

The operational cost for this analysis is defined as: Cmaint + shunts · Cshunt, so the overall cost

of wagons to send to maintenance for either scheduled or preemptive maintenance and the cost

of shunting operation. We can see that the Full Risk has higher operational costs, due to more

maintenance and therefore operations in all instances, which also leads to an improvement of 12.8%

in the Risk Term compared to the ML Input.
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(a)

(b)

Figure 5.6: Normalized Risk (a) and Operational Cost (b) per destination for the 1-year fleet.
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Figure 5.6a and 5.6b show an in-depth regarding each single destination’s performance for the

risk and the operational cost. The risk in Figure 5.6a has been Min-Max normalized for visualization

reasons. What can be observed here is that for this instance the Full Risk model presents a more

stable trend compared to the ML one for both the KPIs. Moreover, what can be observed is that

for this instance ML input returned unfeasible for the Halkali - Bettembourg destination pair, while

the Full Risk model managed to solve it at the optimum. The unfeasibility is due to the high

amount of wagons to remove from the ML input.

Figure 5.7: Normalized Risk per destination and probability threshold for the Risk Model.
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Figure 5.8: Normalized Risk per destination and probability threshold for the ML Input.

Figure 5.7 and 5.8 show the trend of the normalized risk per destination for the probability

threshold. Here as well we can see that for almost every destination the risk taken by the ML Input

model is higher compared to the Risk Model, due to its inflexibility in evaluating the ML model

performance and acting accordingly. What is interesting to note is that there are two types of risk

trends observed among the multiple destinations:

• Increasing Risk: this is the expected one, where the risk increases according to the increase

in the probability threshold. As the threshold increases, the model tends to be less prone to

preemptive maintenance, therefore exposing itself to the Risk of Disruption. This is the case

of Antwerp, Lyon, and Trieste.

• Concave Risk: this is an unexpected one, where the risk initially decreases to then increases

again steeply as we get closer to the 0.9 probability. This might be due to different wagons
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within that service having different probabilities of disruption and is referred to the services

of Poznan, Kiel, and Rostock.

The average number of Overall Shunts is similar between the two instances, showing the overall

capacity of the model in clustering. The Actual Departures behave similarly, as the shunts influence

directly the departure time.

As operational time varies from service to service and depends on the rotation of the fleet trains,

we cannot state anything regarding the cancellation rate. Considering the threshold for our instance

(180 minutes of operational time), results of the cancellation rate are displayed in Figure 5.9.

Figure 5.9: Cancellation Rate for the 1-year fleet.

We can see that, for some destinations such as Kiel, Rostock, and Trieste, the Risk Model

manages to decrease up to 80% of the cancellations for these destinations.

Looking at the 3-year fleet, what we observe is that the two models are performing similarly.
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This is due to the high number of scheduled maintenance operations which are triggered by the

age of the fleet. This is suggested by the higher number of Operating Costs, as well as the Total

Wagons Moved, Overall Shunts, and Actual Departure.

Regarding the latter, looking at Table 5.11, applying the 180 minutes threshold cancellation

would result in a 100% cancellation rate for both models, as the average Actual Departure is much

higher than it.

Figure 5.10: Average Departure time for the 3-year fleet.

Results for the average Actual Departure are presented in Figure 5.10. We can still confirm

that for this instance, these two models behave almost equivalently, with some exceptions regarding

Rostock and Kiel, where the Risk Model performed better than the ML, and Antwerp, where instead

the ML model outperformed the Risk Model.

To summarize, what can conclude by looking at the result is that there is an advantage in using
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a risk-assessment approach compared to the ML Input model, especially when younger wagon fleets

are considered and the ML model is not fed with enough data to represent a real-world scenario.

The highest benefit of the application of this model is on the 1-year fleet, where there is less Risk

Associated with the overall operations, together with the ability to conclude all the services, which

instead the ML Input model failed at.

5.5 Summary

This chapter explores the integration of data-driven models into Mixed-Integer Linear MILP for

condition-based maintenance and unplanned disruption management in freight rail operations. We

propose a risk management strategy to assess the ML model against its failure, as it is our way to

incorporate information regarding unplanned disruption. To do this, we developed a binary clas-

sification supervised learning for predicting unplanned maintenance, which is then tuned focusing

on Recall and Precision. The final selected model, a Tuned Decision Tree (TDT) has been selected

as the go-for model given its superior performance. The analysis of input features highlights the

importance of monthly TEU count and actual mileage in predicting disruptions, aligning its perfor-

mance and expectations with the literature. We then proposed the extension of the model proposed

in Section 4.4 surpassing the shortcomings of the previous MILP, implementing probabilistic con-

sideration, and the comparison with traditional methods. Finally, we propose a case study based on

CFL Multimodal destination, showcasing the difference between the two models. Results suggest

that the risk model surpasses the ML as an Input model in the 1-year-old fleet instance, behaving

similarly for older fleets.
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Conclusion

Even if the morrow is barren of promises,

nothing shall forestall my return.

Loveless, Act V

The purpose of this dissertation was to identify and address the neglect of maintenance consid-

erations with an integrated approach for improving shunting yard operations and management for

freight trains from a strategic and tactical perspective.

6.1 Answer to the Research Questions

The main research question we asked ourselves at the beginning of this manuscript is:

What is the impact of maintenance operations in shunting operations?

How can we assess the integration of maintenance and shunting opera-

tions in freight rail management within a strategic and tactical vision?

To do this, we propose different methods whose goal is to assess the impact of mileage and

condition-based maintenance constraints on the operations performed in freight shunting yards in

both tactical and strategic terms. We focus on the analysis of the impact of maintenance con-

siderations in shunting operations and how these then affect multiple KPIs such as fleet require-

124



Chapter 6 – Conclusion

ments, mileage distribution of the fleet, delays, and cancellations. We propose two approaches: one

MILP model with simulation support for maintenance-based long-term analysis of KPIs related to

strategic goals; and an extension of the above-mentioned MILP which introduces condition-based

maintenance consideration using a ML model. This research question has been then split into multi-

ple research challenges, which are listed below and have been addressed throughout the manuscript.

RC1: Lack of maintenance integration in the shunting operation from a system

perspective.

The first research challenge has been formulated into the RO1: Analysis and Assessment of Mainte-

nance Integration in Shunting Yard Operations. We highlight this problem in Chapter 2, proposing

two methodologies for solving it in the third and fourth chapters of the thesis. The review of the

literature highlighted how maintenance is usually treated as a separate problem compared to the

RSP and TUSP, even if it impacts the latter and inputs the former. Maintenance operations to

be performed on trains trigger shunting operations, as the rolling stock has to be removed from

the inbound train. From the RSP perspective, this means that a wagon has to be assigned a time-

of-service in the inbound train that had the wagon removed from maintenance operations; for the

TUSP aspect, this means 2 additional wagons to route throughout the shunting yard. What we also

highlight is that in the literature few models perform integration of the RSP and TUSP together,

but none of them tries to look at more strategic aspects of the problem. This is due to the nature

of the problems but is a gap that can be addressed. The latter affirmation generated the RC2:

Lack of approaches to tackle the RSP, TUSP, and mileage-based maintenance within an integrated

problem from a strategic and tactical planning point.

RC2: Lack of approaches to tackle the RSP, TUSP and mileage-based maintenance

within an integrated problem from a strategic and tactical planning point.

The second research challenge aims to bridge the gap between the integration of RSP, TUSP,

and mileage-based maintenance considerations from strategic and tactical planning. This research

objective has been discussed in the second chapter of the thesis and has been addressed in the RO2:

Identification of the Most Relevant KPIs Required for Strategic and Tactical Planning. Our goal is to

provide a deeper understanding of which are the strategic and tactical KPIs that can be effectively

used to assess the impact of maintenance in shunting operations. This results in a comprehensive

review and analysis of existing studies to identify metrics that are not only relevant but also critical
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for assessing the performance and efficacy of shunting policies and maintenance strategies in railway

operations. The result of this analysis is presented in Table 4.2. For the strategic KPIs, we

selected the number of maintenance operations, the number of shunting operations performed,

delays, cancellations, fleet size, and mileage distribution of the fleet, while for tactical KPIs we

selected operating cost, overall shunts, total wagons moved, actual departure and risk term.

RC3: Lack of an hybrid model to assess the impact of the maintenance consideration

modelling shunting operation for strategic assessment in freight rail.

This research challenge has been formulated in the RO3: Development of a Hybrid Modeling

Approach for Long-Term Assessment through MILP and Simulation, and is discussed in detail

in Chapter 4 of the thesis. We developed a MILP model for addressing the RSP with TUSP

considerations and mileage-based constraints, creating the shunt-in/shunt-out problem (SISO). The

objective of this model is to find out which wagons we need to remove from the inbound train and

place in from shunting yard to minimize the shunting, delays, and cancellations when the train is

subjected to mandatory and optional shunting constraints. The model has been developed together

with 4 shunting policies, which are criteria to select which wagons are more suitable to reduce

the strategic KPIs long term. To prove the efficacy of the proposed methodology in assessing and

addressing the problem of the integration of the maintenance constraint, we developed a simulation

environment that can reproduce the operations that are performed in a shunting yard. Through

our case study, we show that there is a significant impact in neglecting the maintenance constraint.

Moreover, among the 4 policies, AVG L-S shows the best trade-off in terms of strategic KPIs for

long-term management.

RC4: Lack of complete understanding of the impact of unplanned maintenance/disruption

for condition-based maintenance, and how these affect the normal shunting operation.

This research challenge has been formulated in the RO4: Data-Driven Modeling for Condition-

Based Maintenance and Unplanned Disruption, and its Integration in MILP Modeling through a

Risk-Management Approach, and is discussed in detail in Chapter 5 of the thesis.

We decided to extend the MILP model presented in Section 4.4 to overcome the shortcomings of

the previous model and allow it to implement the prediction from a developed Binary Classification

ML model. As the ML model provides information on the condition of the rolling stocks, we decided

to implement a risk-assessment framework to assess it against its failure, to provide a better service

and not be forced to accept the prediction of the model without considering contour situations, such
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as delays, potential cancellations etc. The case study reveals that for the 1-year instance, the risk

model outperforms the classical integration of the ML as an input, while the 3-year instance provides

no valuable results, as the two models are both constrained by the high number of mileage-based

maintenance operations to perform.

6.1.1 Main Findings

The main findings and practical contributions of the thesis can be summarized as follows and

categorized between the strategic impact of maintenance integration and tactical impact. For the

strategic impact:

• In our case study for the 2020-2040 simulation, an increase of the shunting operation ranging

from 2-11% has been observed based on the policy between the no maintenance scenario

and the maintenance scenario. This suggests that there is a moderate impact in this matter

regarding the implementation of the maintenance constraint within an integrated model.

• This impact becomes critical when looking at the fleet size, whose difference changes between

10% and 80% based on the policy between the two scenarios. This means that the under-

estimation of the fleet size can bring additional costs due to leasing and cancellation due to

unavailability.

• Another critical point is the increase in the annual mileage performed, which ranges from

17% to 71% based on the policy chosen between scenarios. This means that not integrat-

ing maintenance considerations can lead to under/overestimation of the mileage each wagon

has to perform, leading to misaligned maintenance that can increase the risk of unplanned

disruptions.

• Among the presented policies, NCLD and AVG L-S present the best overall management.

For the tactical impact:

• Key factors for predicting possible rolling stock disruption are the weight carried by each

wagon, the actual mileage, the destination, and the average slope performed monthly.

• The capability of the model to decide to reject or accept ML prediction led to a more flexible

MILP model, which allowed in a case study a decrease of 12% of the accepted risk for the

1-year scenario.
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• For the same scenario, what is notable is that the risk model managed to serve all the desti-

nations, while the ML model input did not. Moreover, what is also notable is that for some

destinations the cancellation rate difference between the risk model and the ML as input

decreased as much as 80%.

• There is no notable difference in terms of the presented KPIs when instead it comes to older

fleets, as represented in the 3-year scenario. Here, the two models performed equivalently.

6.2 Future Research

The different chapters presented in this thesis have all possible value for future research, specifically

when looking at the inevitable road-to-rail transition for freight. Specifically, new policies should

be developed and studied, possibly tailored to the situation needed. What we believe in is that

there is no one good policy among all, but the timetable and the demand that has to be served

play an important part in defining which is the suitable wagon for which suitable destination.

Moreover, an inside replanner should be developed within the simulator to provide more accurate

results, as for now, this is not available due to the complexity of the problem. Finally, regarding

the Risk-assessment condition-based model, the implementation within the simulation environment,

together with the policy direction, would be desirable. This is because the MILP model developed

in Chapter 5 still suits the idea of the strategical approach, the application of the policies within

this model could only benefit the system long-term.
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Appendix A

Shunt-In/Shunt-Out (SISO) Model

Formulation

min
∑
i∈T

γi −
|T |−1∑
i=1

adji,i+1 +
|T |
2

(σ2 + σ3)+

+
|T |
4

(
∑
i∈T

∑
j∈S

(csi,jα+ nmsjβ)zi,j +
∑
i∈T

yicui

(A.1)
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adT ≤ dT + σ1M + σ2M (A.2)

ddT + (1 − σ1)M ≥ adT (A.3)

adT > dT − (1− σ1)M (A.4)

adT ≤ ddT + σ2M (A.5)

adT > ddT − (1− σ2)M (A.6)

σ1 + σ2 ≤ 1 (A.7)

σ3 ≤ σ1M (A.8)

σ3 ≥ aT − dT
ddT − dT

σ1 (A.9)

σ3 ≤ adT − dT
ddT − dT

+ (1− σ1)M (A.10)

σ3 ≥ adT − dT
ddT − dT

− (1− σ1)M (A.11)

aT + (
∑
i∈T

γi −
|T |−1∑
i=1

adji,i+1)ts+
∑
i∈T

∑
j∈S

csi,j = adT (A.12)
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aT + (
∑
i∈T

γi −
|T |−1∑
i=1

adji,i+1)ts

ddT
= α (A.13)

1− α = β (A.14)

yi ≥
mi + rT
mmaxi

− 1− (
∑
k∈K

xi,k)M ∀i ∈ T (A.15)

yi ≤ (1−
∑
k∈K

xi,k)
mi + rT
mmini

∀i ∈ T (A.16)

yi ≤
mi + rT
mmaxi

∀i ∈ T (A.17)∑
i∈T :typeini

̸=typek

xi,typek = numk (A.18)

∑
k∈K

xi,k = 0 ∀i ∈ T : typeini
= typek (A.19)

∑
i∈T

xi,k = 0 ∀k ∈ K : k ̸= typek (A.20)

|typeouti − typeini
| = pi ∀i ∈ T (A.21)∑

j∈S:typeSj
=typeini

zi,j = yi ∀i ∈ T (A.22)

∑
j∈S:typeSj

̸=typeini

zi,j = xi,typek ∀i ∈ T (A.23)

zi,j ≤ 2− msj + rT
msmaxj

∀i ∈ T ,∀j ∈ S (A.24)∑
i∈T

zi,j ≤ 1 ∀j ∈ S (A.25)

∑
k∈K

xi,k + yi = γi ∀i ∈ T (A.26)

2adji,i+1 ≤ γi + γi+1 ∀i = 1, ..., |T | − 1 (A.27)∑
j∈S

zi,jcodeSj
+ (1− γi)codeini

= codeouti ∀i ∈ T (A.28)
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Event-Based Simulation

Framework (EBSF) Flowchart
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Chapter B – Event-Based Simulation Framework (EBSF) Flowchart

Figure B.1: First part of the EBSF flowchart providing a comprehensive illustration of all the pre- and

post-processing operations that occur outside of the yards.
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Chapter B – Event-Based Simulation Framework (EBSF) Flowchart

Figure B.2: Second part of the EBSF flowchart depicting all the operations carried out in the various

areas within the station - Arrival/Departure Yard in Green, Train Loading/Unloading area in Red, Shunting

yard in Blue.
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Data Joining and Feature

Engineering for the ML model -

Flowcharts
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Chapter C – Data Joining and Feature Engineering for the ML model - Flowcharts

Figure C.1: Data joining phase related to the initial dataset.
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Chapter C – Data Joining and Feature Engineering for the ML model - Flowcharts

Figure C.2: Feature Engineering phase related to the initial dataset.
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max Revrail − (Cmaint + shunts · Cshunt +Risk + Canctrig · Ccanc) (D.1)

∑
i∈T

(1− wSO
i ) · revi +

∑
j∈TRK

∑
k∈PTRK

wSI
i,j,k ∗ revj,k = Revrail (D.2)

∑
i∈T

RSI
i +RSO

i = Risk (D.3)

predML
i · {TPR · [

(
∑

g∈gravity

Pg ·Rdisr
i,g ) · (1−MLmaint

i ) + (Cshunt
single + Cprev,maint) ∗MLmaint

i

] + FPR ∗ [(Cshunt
single + Cprev,maint +Rpoint) ∗MLmaint

i ]}

+(1− predML
i )·

{TNR · (Cshunt
single +Rpoint + Cprev,maint) ·MLmaint

i

+FNR · [(
∑

g∈gravity

Pg ∗Rdisr
i,g ) · (1−MLmaint

i )

+(Cshunt
single + Cprev,maint) ·MLmaint

i ]}

= RSO
i ∀i ∈ T

(D.4)

∑
j∈TRK

∑
k∈PTRK

{[predML
j,k ·

TPR · (
∑

g∈gravity

Pg ·Rdisr
i,j,k) · wSI

i,j,k]+
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j,k ) · FNR · [(

∑
g∈gravity

Pg ·Rdisr
i,j,k) · wSI
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i ∀i ∈ T

(D.5)
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∑
i∈T

∑
g∈gravity

(Pg · Ccorr,maint
g ) ·mainti + Cprev,maint ·MLmaint

i = Cmaint (D.6)

tdep − top ≤ M · Canctrig (D.7)

shunts · tshunt = tdep (D.8)

shuntsSI + shuntsSO = shunts (D.9)∑
i∈T

wSO
i −

rail−1∑
i=1

adji,i+1 = shuntsSO (D.10)

2 · adjSOi,i+1 ≤ wSO
i + wSO

i+1 ∀i ∈ [T , T + 1] (D.11)

mainti +MLmaint
i + demi ≤ 1 ∀i ∈ T (D.12)

demi ≤ (1.05− probML
i ) ∀i ∈ T (D.13)∑

i∈T
demi ≤

∑
l∈TY P

|diffl| (D.14)

mainti +MLmaint
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diffl −
∑
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(wSO
i −

∑
j∈TRK

∑
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wSI
i,j,k) = 0 (D.16)

∑
j∈TRK

∑
k∈PTRK

wSO
i · typi,j,k + (1− wSO

i ) ·WIi,l ≥ wOUT
i,l ∀i ∈ T ,∀l ∈ TY P (D.17)

∑
i∈T

wOUT
i,l −WOi,l = 0 ∀l ∈ TY P (D.18)

∑
l∈TY P

wOUT
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∑
i∈T

∑
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∑
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adjSIj,k = shuntsSI (D.21)
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∑
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∑
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