
Computers in Industry 151 (2023) 103974

A
0

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.sciencedirect.com/journal/computers-in-industry

Leveraging the power of formal methods in the realm of enterprise
modeling—On the example of extending the (meta) model verification
possibilities of ADOxx with Alloy
Sybren de Kinderen a,∗, Qin Ma b, Monika Kaczmarek-Heß c

a Information Systems Group, Eindhoven University Of Technology, The Netherlands
b Department of Computer Science, University of Luxembourg, Luxembourg
c Information Systems and Enterprise Modeling Research Group, University of Duisburg-Essen, Germany

A R T I C L E I N F O

Keywords:
Enterprise modeling
Enterprise analyses
Meta modeling platforms
ADOxx
Alloy
Verification and consistency checks

A B S T R A C T

Verification in the realm of enterprise modeling (EM) ensures both the consistency of EM language specifi-
cations (i.e., meta models and additional well-formedness constraints), as well as of enterprise models. The
consistency of enterprise models, which integrate different perspectives on an enterprise, ensures that they
contain the necessary, in line with domain-specific rules, information for carrying out a variety of model-driven
enterprise analyses. Meta modeling platforms are instrumental in carrying out such verification, especially
when multiple languages are applied in tandem, as is inherent to enterprise modeling.

This paper reports on our practical experiences of using formal methods for verification in the context of
EM. Motivated by the required verification capabilities, we show for one example platform, ADOxx, how it
can be chained together with Alloy, an example of lightweight formal method, to capitalize on complementary
platform strengths. Namely, ADOxx for language specification and use, and Alloy for verification capabilities.
We show the verification, both, on the meta model level, in terms of checking the consistency of language
specifications, and on the model level, in terms of checking models against well-formedness constraints. We
illustrate the chaining of ADOxx and Alloy on the basis of consistency checks of two languages applied in
tandem, namely the value modeling language e3value and the IT infrastructure modeling language, ITML.
We also carry out experiments with three further languages to reflect upon the performance of Alloy, and its
capability to uncover inconsistencies.
1. Introduction

Enterprise modeling (EM) supports the description, reflection upon,
and (re-)design of various aspects of enterprises (e.g., organizational
goals, business processes, or IT infrastructure) (Frank, 2014; Sandkuhl
et al., 2014). Therefore, EM approaches usually cover multiple perspec-
tives on an organization, modeled using different modeling languages
in tandem, and relate these perspectives to each other. A modeling
language is typically defined in terms of a meta model and additional
constraints (Frank, 2011, p. 3). Being a model of models, this meta
model can subsequently be instantiated into models in a dedicated
modeling tool.

As one of the main roles of enterprise models is the provision of
knowledge on selected aspects within, or related to, an enterprise,
they support a variety of analyses (Antunes et al., 2015; Niemann,
2006). Examples include various functional impact-of-change analyses,
such as assessing the impact of changing an insurance intermediary

∗ Corresponding author.
E-mail address: s.d.kinderen@tue.nl (S. de Kinderen).

on the collaborations it participates (Lankhorst, 2017). Equally, there
exist also cost–benefit analysis, compliance analysis, and dependency
analysis (Niemann, 2006; Florez et al., 2016). Moreover, due to the
multi-perspective nature (Frank, 2014; Sandkuhl et al., 2014), analyses
driven by EM require to ensure consistency of different enterprise
models, which may be created using different enterprise modeling
languages (Jeusfeld, 2016).

A pre-requisite for such model-based analyses is to ensure firstly that
the specification of modeling languages (i.e., their meta models and
well-formedness constraints) are consistent, and secondly, that enter-
prise models contain the necessary and correct information, in line with
domain-specific rules. This can be partly achieved by verification of a
(meta) model, by taking advantage of formal methods (Antunes et al.,
2015; Johnson et al., 2007). Formal methods refer to mathematically-
based languages, techniques, and tools for specifying and verifying
vailable online 18 July 2023
166-3615/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.compind.2023.103974
Received 10 February 2023; Received in revised form 28 April 2023; Accepted 10
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

June 2023

https://www.sciencedirect.com/journal/computers-in-industry
http://www.sciencedirect.com/journal/computers-in-industry
mailto:s.d.kinderen@tue.nl
https://doi.org/10.1016/j.compind.2023.103974
https://doi.org/10.1016/j.compind.2023.103974
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2023.103974&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers in Industry 151 (2023) 103974S. de Kinderen et al.

a
n
a
e
a
a
e
t
s
m
m

2

o
t
F
o

m
p
(
c
m
a
(
e
t
c
a
i
T
d
a
t

I
t
c
i

a
p
e
T
t
t
l
t
t
e
i
t
v
M
a
t

computer systems (Clarke and Wing, 1996). With formal methods, a
system is defined in terms of rigorous mathematical entities, and formal
analysis techniques can be used to explore the capability of the system
and to verify the properties of the system.

Conducting verification of (meta) models is one of the desired func-
tionalities of meta modeling tools, which are used to support the design
of (enterprise) modeling methods and the realization of corresponding
modeling tools (Ma et al., 2023). Existing studies, e.g., Erdweg et al.
(2015), Negm et al. (2019) and Iung et al. (2020), show that meta
modeling platforms support the development of software tools, creation
of machine-readable models amenable to computer-supported analysis,
provide querying capabilities, and more. However, when it comes to
support for verification, additional mechanisms are required (Weid-
mann et al., 2021; Ozkaya and Akdur, 2021; Ma et al., 2023), such
as instance generation capabilities for checking the consistency of a
language specification.

In response to the above, we show how an example meta modeling
platform used often in the EM domain, ADOxx, can be extended with
an example lightweight formal method, Alloy, for carrying out veri-
fication. This is in line with several existing efforts of using multiple
platforms together (Karagiannis and Buchmann, 2018; Jeusfeld, 2016),
so as to capitalize on respective platform strengths, as well as with
expectations of practitioners (Ozkaya and Akdur, 2021). This paper
is a continuation of our earlier work (de Kinderen et al., 2020; Ma
et al., 2023) aiming to enhance verification capabilities in the realm
of EM. While de Kinderen et al. (2020) focuses on supporting the
checking of models against well-formedness constraints only, in this
paper, among others: (1) we propose a general solution that can tackle
verification of both modeling language specifications (i.e., on the meta
model level) and enterprise models (i.e., on the model level); (2) we
draw a conceptual mapping between ADOxx and Alloy and define
corresponding transformations, and (3) we conduct an experiment with
further EM languages, to report on the performance and utility of Alloy.

The paper is structured as follows. Section 2 introduces a motivating
scenario, provides a taxonomy of verification mechanisms which meta
modeling platforms should provide for EM, and we assess ADOxx,
as a representative meta model platform, against this taxonomy to
identify its shortcomings. Subsequently, we motivate and demonstrate
our ADOxx-Alloy solution in Section 3, and illustrate its feasibility in
Section 4. Section 5 evaluates the proposed solution, reports on the
performance and utility of the Alloy Analyzer, and discusses related
work. Section 6 concludes the paper.

2. Motivating scenario and verification capabilities

As mentioned, one of the aims of EM is to enable enterprise-
wide analyses. Such enterprise-wide analyses require the integration
of different perspectives, which, in the light of model-driven analyses,
requires integration of involved languages.

2.1. Motivating scenario

Across this paper we consider a case, inspired by Gordijn and
Akkermans (2005) and further extended based on, e.g., Wang et al.
(2019), focusing on interactions between two types of actors in the
energy sector: a Distributed Systems Operator (DSO) and consumers
equipped with smart meters. The DSO receives high-resolution data
from smart meters that provide information on the electricity consump-
tion behavior of the consumers and analyzes them to, among others,
prepare personalized load forecasting (Wang et al., 2019). Individual
load forecasting constitutes valuable information for customers, as it
can be used in their home energy management systems to reduce
electricity bills (Keerthisinghe et al., 2018). Therefore, personalized
load forecasting is offered by the DSO to customers via an optional
payable service termed ‘‘metering’’. To use this service, the customers
sign a service contract, and pay a monthly fee. Internally, the DSO
2

realizes the metering service via a metering functionalities software
suite running on general-purpose servers.

A model-driven analysis of such a case requires at least the conjoint
use of two domain-specific modeling languages (DSMLs), namely a
value modeling language (such as e3value, Gordijn and Akkermans,
2001) to capture the value exchanges among involved actors, and an
IT infrastructure modeling language (such as the ITML, Frank, 2014)
to capture IT infrastructure and associated costs. Integrating e3value
nd the ITML holds potential for concurrently exploring (1) a value
etwork, (2) the qualities required of an underlying IT infrastructure,
nd (3) a detailed analysis of cost allocations to IT infrastructure
lements. However, modeling language integration is more than simply
pplying individual languages together. Various relationships, which
llow to connect concepts from individual modeling languages and to
nable their interaction, should be established during the integration,
oo. More importantly, consistency of these cross-language relation-
hips should be checked, because relating valid models of individual
odeling languages does not necessarily render a valid integrated
odel (cf. Section 4).

.2. Verification capabilities required for EM

In addition to checking consistency of cross-language relationships,
ther verification capabilities are also required for EM. We elaborate on
hem by constructing a taxonomy of verification capabilities for EM (cf.
ig. 1), following the well-established taxonomy development method
f Nickerson et al. (2013).

Following Nickerson et al. (2013), we start by determining the
eta characteristic of the taxonomy based on its purpose and ex-
ected use. In our case, the taxonomy is mainly to enable discussing
enterprise) meta modeling platforms in terms of their verification
apabilities on both the meta model and model levels. Guided by the
eta characteristic, taxonomy dimensions are then identified following
conceptual-to-empirical approach. More specifically, we take general

meta) model verification concepts from existing surveys, e.g., Erdweg
t al. (2015), Weidmann et al. (2021) and Iung et al. (2020), as
he point of departure, and subsequently zoom into those verification
oncepts relevant to EM, (1) as motivated by our scenario (Section 2.1),
nd (2) based on known characteristics, such as typical stakeholders
nvolved in EM and the according usability of meta model platforms.
hen, in terms of the empirical side, we confront our initial set of
imensions with existing meta modeling platforms and formal methods,
nd tease out additional required verification capabilities. The resulting
axonomy consists of three main dimensions, explained below.

ntra (meta) model consistency. Within the range of one EM language,
his dimension concerns the consistency of both the language specifi-
ation itself (intra meta model consistency sub-dimension), and of its
nstances (intra model consistency sub-dimension).

To ensure model consistency one needs to ensure that a model is
valid instance of the modeling language (Weidmann et al., 2021,

. 4). Three main types of constraints needs to be checked to this
nd: typing, multiplicity, and well-formedness (Weidmann et al., 2021).
hey follow from the role a modeling language plays, e.g., to define
he concepts one can instantiate when building a model and the rela-
ions one can establish between those instances. For each relation, the
anguage specifies the types of instances it can connect, referred to as
yping constraints, and the number of instances it can connect, referred
o as multiplicity constraints. In the mentioned e3value language for
xample, a value exchange is connected to a value port as input (the
n-port) and another value port as output (the out-port). Therefore, both
he ‘‘in-connects’’ and ‘‘out-connects’’ relations are defined between a
alue exchange and a value port, being examples of typing constraints.
oreover, for each value port, one and only one value object should be

ttached to indicate what is being exchanged. ‘‘One and only one’’ in
his context refers to a multiplicity constraint. Moreover, a modeling



Computers in Industry 151 (2023) 103974S. de Kinderen et al.
Fig. 1. Taxonomy of verification properties desired from an enterprise modeling perspective.
language can also specify a set of well-formedness constraints (aka.
static semantics) to express domain-specific invariants (Strembeck and
Zdun, 2009, p. 1261). For example, according to e3value the value
object attached to the in-port of a value exchange must be the same
as the value object attached to the out-port of the value exchange.

To ensure modeling language specification consistency, one needs
to firstly ensure that the meta model of a modeling language is a
consistent instance of its corresponding meta meta model (cf. model
consistency above). Secondly, one needs to ensure ‘‘no contradiction in
its specification, i.e., there is at least one valid instance model’’ (Se-
meráth et al., 2017, p. 367). In this regard, instance models one
can generate from the language specification provide evidence of its
(in)consistency. Thirdly, one needs to also ensure the soundness of
the language specification with respect to the domain being captured,
namely, that all the instances generated are indeed sensible examples
in the domain at hand.

Composability. Due to their multi-perspective nature (Frank, 2014;
Sandkuhl et al., 2014) enterprise models usually provide an integrated
view covering different diagrams, created using different DSMLs (Frank,
2014). For example, referring to our scenario (Section 2), the integrated
consideration of e3value and ITML enables, for a given value network
(modeled in e3value), exploring detailed cost allocations of the under-
lying IT infrastructure (modeled in ITML). This dimension concerns
the verification of such composability, defined as supporting the use
of DSMLs together (Erdweg et al., 2012), by systematically adding
additional language constructs to the base language, or integrating
languages into a single one (Erdweg et al., 2015, p. 8).

Similar to the previous dimension, verification of composability
amounts to ensuring consistency of both composed language specifica-
tions (the inter meta model consistency sub-dimension) and composed
models (the inter model consistency sub-dimension). To ensure inter
model consistency, one needs to check if information in the overlapping
parts of composed models is conflict free, and that the constraints
pertain to their integration are respected across diagrams (Jeusfeld,
2016; Weidmann et al., 2021). To ensure inter meta model consistency,
one needs to check if the extra language constructs added to the base
language do not contradict the base language, or that overlapping
domain knowledge captured in individual DSMLs (that are integrated
into a single one) is in accord. For example, following the motivation
scenario, an integration between e3value and ITML will be presented
in our case study (Section 4), realized by a bridging relation called
‘‘agreed_by’’. To ensure consistency of the integration, the relation is
defined between two specific types, namely the class ‘‘Value Object’’
from e3value and the class ‘‘Service Contract’’ from ITML. In addition to
this typing constraint, multiplicity constraints are also specified for this
relation, namely one value object can be agreed by at most one service
contract, and vice versa. Moreover, a well-formedness constraint ensur-
ing the agreement of domain knowledge captured in both e3value and
ITML, which is initially overlooked, is discovered by checking the inter
meta model consistency. All these three types of constraints should
be checked to ensure consistency of composed e3value–ITML models
(i.e., inter model consistency).
3

In practice, integrated (meta) models are (meta) models themselves,
hence inter (meta) model consistency can be checked by the same
techniques applied for intra (meta) model consistency.

Means of implementation. This dimension refers to the way in which
users of a meta modeling platform can implement the required ver-
ification capabilities, which can be programmatic or projectional in
nature (Erdweg et al., 2015; Iung et al., 2020).

Implementation of a verification capability is programmatic if it
employs a language (Erdweg et al., 2015; Iung et al., 2020), which
can be declarative or imperative. Employing a declarative language,
one focuses on specifying the verification result to achieve. Examples
of declarative languages for this purpose include constraint languages
like OCL (OMG, 2014; Gogolla et al., 2007), or logic formalisms. In
contrast, employing an imperative language, one focuses on expressing
how the desired verification result should be achieved. Here, typically
general-purpose programming languages like Java are used (Erdweg
et al., 2015; Ma et al., 2015). In contrast, if implementation of a
verification capability employs fixed predefined layouts, e.g., in terms
of pre-defined forms (Tolvanen and Kelly, 2009), it is projectional (Iung
et al., 2020).

On the one hand, usability is an important criterion to compare
different means of implementation, whereby the profile of potential
users (typical EM community members in our case) should be taken
into consideration. Usability concerns both the easiness of specifying
and checking of a constraint. On the other hand, the means of im-
plementation (and its underlying formalism) should also be expressive
enough to cater for all constraints of interest. According to Levesque
(1986) and Levesque and Brachman (1987), there is a trade-off be-
tween usability and expressiveness, in the sense that the difficulty of
using a language increases dramatically as the expressive power of the
language increases.

Generally speaking, projectional mechanisms, like templates or
forms, are less powerful compared to programmatic solutions, because
the set of possible constraints for the former is pre-defined, hence
limited. But, specification of constraints with projectional mechanisms
is also in general simpler than programmatic solutions, which either
require technical expertise (when it comes to programming language
based solutions), or mathematical expertise (when it comes to logic
or constraint language based solutions). Note that between program-
matic solutions, declarative mechanisms, working at a high level of
abstraction, are relatively easier to use than imperative ones.

As it is difficult to decide exactly the level of expressiveness desired
in general (because different domains may have different needs of
varying complexity), and as profiles and preferences of potential users
vary, one should strike a careful balance between aforementioned
usability and expressiveness when selecting an appropriate mechanism.

2.3. Verification capabilities of ADOxx

As already mentioned in the introduction, existing studies (Erdweg
et al., 2015; Negm et al., 2019; Iung et al., 2020) show that whereas
meta modeling platforms offer a plethora of various functionalities



Computers in Industry 151 (2023) 103974S. de Kinderen et al.

1
f
r
T
q
f

B
f
l

a

relevant to the EM field, they fall short when it comes to verification
support (Jeusfeld, 2016; Ozkaya and Akdur, 2021).

To illustrate common shortcomings, we assess the verification ca-
pabilities of one representative platform, namely ADOxx, against the
dimensions of the taxonomy introduced previously. ADOxx is openly
available, and a popular meta modeling platform for developing DSMLs
generally (Iung et al., 2020), and for developing DSMLs for the EM field
specifically (Ma et al., 2023).

For intra model consistency, ADOxx provides native support to
check typing and multiplicity constraints. However, when it comes
to checking well-formedness constraints, it falls short. Briefly, ADOxx
makes use of AQL queries for this purpose. One needs to execute
appropriate queries on a model and interpret query results to decide
whether the model is well-formed, both manually. Alternatively, one
can also automate the checking by imperatively implementing the
checking and interpreting logic in ADOScript. The ADOScript code
involves additional complexity, and consequently its use for checking
well-formedness can be time consuming, and enhances the risk of
introducing errors (de Kinderen et al., 2020).

For intra meta model consistency, according to the taxonomy, a
meta model should foremost be a consistent model (instance) of its
meta meta model. Meta models are created in ADOxx by instantiating
the ADOxx meta meta model. Therefore, basic typing and multiplicity
constraints imposed in the meta meta model are respected. However,
ADOxx lacks means to detect conflicts in language specifications, i.e., if
instances can indeed be created from a specification, and to check
the domain soundness thereof, i.e., if created instances are all sensible
examples of the domain. Moreover, it even falls short in carrying out
a basic sanity check of language specifications as reported in Sec-
tion 5.3. For composability, although ADOxx explicitly supports cross-
diagram modeling, inter (meta) model consistency checking suffers,
as a consequence of its deficiency in (1) checking intra model well-
formedness, (2) detecting intra meta model conflicts, and (3) assuring
intra meta model domain soundness.

Finally, when it comes to means of implementation, ADOxx supports
both projectional editing through predefined forms, and imperative
programming through ADOScript.

To fill the gaps manifested above, as also remarked by Jeusfeld
(2016) and Ozkaya and Akdur (2021), it would be sensible to com-
plement meta modeling platforms with an instrument dedicated to
verification such as formal methods, so as to capitalize on their comple-
mentary verification strengths. In the following we show how ADOxx,
the example meta modeling platform, can be used together with an
example light-weight formal method, Alloy, to support verification as
desired in the light of the taxonomy.

3. Extending ADOxx with Alloy

In the following, we show how ADOxx can be used in tandem
with Alloy, so that the extensive analysis capabilities natively pro-
vided by the latter can be exploited. To prepare the discussion, we
first summarize the features of the meta modeling platform ADOxx
(Section 3.1), and provide a short introduction to Alloy (Section 3.2).
Next, we argue for an integration of Alloy in ADOxx in order to
leverage Alloy’s checking capabilities (Section 3.3). We demonstrate
the integration with two scenarios: (1) checking the consistency of,
and refining, an EM language (i.e., its meta model and additional
well-formedness constraints) developed in ADOxx (Section 3.4); and
(2) checking the consistency of enterprise models created in ADOxx
4

against well-formedness constraints (Section 3.5). t
3.1. Enterprise modeling language design and usage with ADOxx

Language specifications are implemented with the ADOxx Develop-
ment Toolkit. For a given language, one defines the abstract syntax
(meta model) using the ADOxx Library Language (ALL). In addition by
using ADOScript, ADOxx’s scripting language, one can define a concrete
syntax. Subsequently, the ADOxx Modeling Toolkit is dedicated to
language use. It allows for creating models of defined language speci-
fications using the ADOxx Development Language (ADL). Additionally,
one can analyze created models by querying them using the ADOxx
Query Language AQL.

Fig. 2 summarizes the languages used by the ADOxx approach
for creating different components of an enterprise modeling language.
The highlighted part is relevant for this work, whereby meta models
and models created in ADOxx, using ALL and ADL respectively, are
exported in the XML format for interoperation with Alloy to leverage
its verification capabilities.

3.2. (Meta) Model checking with Alloy

Alloy (Jackson, 2012) is both a formal language for specifying
complex structures, constraints, and behaviors of systems (in terms of
Alloy models), and an analyzer for automatically checking properties
or simulating the execution of such models. The Alloy specification
language is based on first-order relational logic, and can be used for
both system specification and constraints definition.

An Alloy model mainly consists of a set of signatures, declared with
the keyword sig. Signatures in Alloy are similar to ADOxx or UML
classes. A signature may have zero or many fields. Each field defines
a relation between the instances of the containing signature and the
instances of another signature.1 Possible instances of an Alloy model,
i.e., by populating the signatures and relations, can be controlled by
expressing constraints, in two ways: (1) through multiplicity constraints
given in signature definitions, for which four multiplicities are prede-
fined in Alloy: lone for 0..1, one for 1..1, set for 0.. ∗, and some for
.. ∗; (2) by defining facts that express constraints in terms of logical
ormulae. If a fact only concerns a single signature, it can be declared
ight after the signature in the form of a block of logic formulae.
his is called a signature fact. A signature fact is implicitly universally
uantified over the set of instances of the signature, and the logic
ormulae in the block are joined with logical conjunction.

The Alloy Analyzer generates instances of an Alloy model using a
oolean SAT solver (Torlak and Jackson, 2007). To cope with both
inite and infinite Alloy models, the Alloy Analyzer works only within
imited scopes relying on the small scope hypothesis, namely ‘‘a high

proportion of bugs can be found by testing a program for all test
inputs within some small scope’’ (Andoni et al., 2003). In other words,
analyzing Alloy models within small scopes suffices to unveil most
of the bugs in practice. In addition, generated instances of an Alloy
model can be displayed in a domain specific visualization, enabling
domain experts to review, to confirm, or to point out violation of
domain semantics in the instances and subsequently inconsistency in
the specified Alloy model (Gammaitoni et al., 2015, 2018; Razo-Zapata
et al., 2018).

3.3. Integrating ADOxx with Alloy

To leverage the power of Alloy, an integration of Alloy into both
the design and modeling environments of meta modeling platforms
would be desired. Indeed, on the one hand, integrating Alloy in the
ADOxx Development Toolkit would allow (1) defining well-formedness

1 Fields in Alloy can define relations of any arity, not only just binary ones
s in the case of ADOxx. In this paper, we introduce only the part of Alloy
hat is relevant for this work.



Computers in Industry 151 (2023) 103974S. de Kinderen et al.

i
m
w

A

Fig. 2. ADOxx languages.
Source: Adapted from Fill
and Karagiannis (2013).
constraints in terms of facts directly in Alloy models corresponding
to language specifications, (2) checking consistency of modeling lan-
guage specifications by analyzing the corresponding Alloy models, and
(3) refining modeling language specifications to correct conflicting con-
straints and/or add missing ones. On the other hand, integrating Alloy
in the ADOxx Modeling Toolkit would allow checking and providing
informative feedback on the consistency of models.

This paper adopts a loosely coupled integration of ADOxx and Alloy,
and chains those platforms together via two model transformations:
(1) ADOxxMM2-Alloy to automatically translate meta models devel-
oped in ADOxx into Alloy, and (2) ADOxxMdl2Alloy to automatically
translate models created in ADOxx into Alloy.

3.3.1. ADOxxMM2Alloy: transforming ADOxx meta models to Alloy mod-
els

Meta models are implemented with the ADOxx Development Toolkit
using the ADOxx Library Language (ALL). The transformation takes
a meta model specification in ALL as input and produces an Alloy
model as output. For the formal underpinnings of ALL, especially its
formal relation to the Formalism for Describing ADOxx Meta Models
and Models (FDMM), we refer to Fill et al. (2013).

We elaborate in the following how different constructs in a meta
model specification are transformed.

Classes. ADOxx classes are translated into Alloy signatures. If a class
has a superclass specified, it is translated into a subsignature extending
the signature corresponding to the superclass.

ALL CLASS ⟨C1⟩ [: ⟨C2⟩] CLASSATTRIBUTE ⟨ClassAbstract⟩ VALUE 0
Alloy sig C1 [extends C2] {. . . }

Moreover, an abstract class is translated into an abstract signature.

ALL CLASS ⟨C1⟩ [: ⟨C2⟩] CLASSATTRIBUTE ⟨ClassAbstract⟩ VALUE 1
Alloy abstract sig C1 [extends C2] {. . . }

Attributes. An INTEGER or DOUBLE typed attribute of a class is translated
nto a field of the signature corresponding to the class. The field has
ultiplicity one and refers to the special predefined signature Int,
hich represents integers.

ALL CLASS ⟨C⟩ ATTRIBUTE ⟨att⟩ TYPE INTEGER | DOUBLE

Alloy sig C {att: one Int}

Similarly, an STRING or LONGSTRING typed attribute in ADOxx is trans-
lated into a field with multiplicity one and refers to the predefined
signature String.

ALL CLASS ⟨C⟩ ATTRIBUTE ⟨att⟩ TYPE STRING | LONGSTRING

Alloy sig C {att: one String}

An ENUMERATION typed attribute in ADOxx is translated into both an
lloy enum signature and a field referring to the enum signature.
5

ALL CLASS ⟨C⟩ ATTRIBUTE ⟨att⟩ TYPE ENUMERATION
FACET ⟨EnumerationDomain⟩ VALUE ‘‘𝑒1@𝑒2. . .@𝑒𝑘’’

Alloy sig C {att: one att_enum}
enum att_enum {𝑒1, 𝑒2,. . . , 𝑒𝑘}

Finally, an ENUMERATIONLIST typed attribute is translated similarly, but
with a different multiplicity (assumed by ADOxx), namely one for
ENUMERATION and some for ENUMERATIONLIST.

ALL CLASS ⟨C⟩ ATTRIBUTE ⟨att⟩ TYPE ENUMERATIONLIST
FACET ⟨EnumerationDomain⟩ VALUE ‘‘𝑒1@𝑒2 …@𝑒𝑘’’

Alloy sig C {att: some att_enum}
enum att_enum {𝑒1, 𝑒2,. . . , 𝑒𝑘}

Relations. In ADOxx, associations between objects are expressed ei-
ther as a relationclass or as a special attribute of type INTERREF.

An INTERREF typed attribute is used to relate an object of the class
owning the attribute in one model to an object in another model. As
given in Box I, INTERREF typed attributes are translated into fields. Note
that our transformations ignore the boundary of (meta) models, namely
elements of different (meta) models are translated to elements in one
‘‘global’’ Alloy model, because it is orthogonal to the properties we
want to check at both the meta model and model levels (cf. Sections 3.4
and 3.5). The lower bound of the multiplicity of an INTERREF typed
attribute is always 0, while the upper bound is specified by the intValue
associated to max. If the upper bound is 1, the transformation makes
use of the Alloy multiplicity lone directly for the field. Otherwise, the
Alloy multiplicity set is used plus a signature fact specifying the exact
bounds.
A relationclass relates objects of a source class to objects of a target
class. It is translated into a field of the signature corresponding to the
source class.

ALL RELATIONCLASS ⟨R⟩ FROM ⟨C1⟩ TO ⟨C2⟩

Alloy sig C1{R: set C2}

In contrast to INTERREF, one can specify additionally source and target
multiplicities of a relationclass R separately from the relationclass def-
inition. As given in Box II, such a multiplicity is defined in the context
of a class C using the special class attribute called Class cardinality.
One can use TO-CLASS to specify the target multiplicity of relation R
from class C to class ToC with the lower bound being intValue1 and
upper bound intValue2. During the transformation, if intValue1 ≠ 0 or
intValue2 ≠ ∗, signature facts are specified for the context class C to
explicitly constrain so. Source multiplicity of R from class FromC to
class C specified using FROM-CLASS is transformed in a similar manner
(cf. Box III).
Note that in Alloy, a field f is automatically expanded to this.f in
signature facts. To access the relation defined by f , one can use the @
operator. Therefore, #(R & ToC) refers to the number of ToC instances
pointed to by a C instance via relation R, and #(this.∼@R & FromC)
refers to the number of FromC instances pointing to a C instance via
relation R, whereby & is the set intersection operator and ∼f is the
reverse of f .



Computers in Industry 151 (2023) 103974S. de Kinderen et al.

3

o
(
a
A
v
r
i
s
o
w
w
W
t

O
A
c
t

ALL CLASS ⟨C⟩ ATTRIBUTE ⟨att⟩ TYPE INTERREF
FACET ⟨AttributeInterRefDomain⟩ VALUE OBJREF mt:⟨MT⟩ c:⟨C⟩′ max:⟨intValue⟩

Alloy sig C {att: lone C′} if intValue = 1
sig C {att: set C′}{#att >= 0 and #att <= intValue} otherwise

Box I.
ALL CLASS ⟨C⟩ CLASSATTRIBUTE ⟨Class cardinality⟩ VALUE RELATION: ⟨R⟩
TO-CLASS: ⟨ToC⟩ val-min-outgoing: ⟨intValue1⟩ val-max-outgoing: ⟨intValue2⟩

Alloy
sig C{. . . }{
#(R & ToC) >= intValue1 if intValue1 ≠ 0
#(R & ToC) <= intValue2} if intValue2 ≠ *

Box II.
ALL CLASS ⟨C⟩ CLASSATTRIBUTE ⟨Class cardinality⟩ VALUE RELATION: ⟨R⟩
FROM-CLASS: ⟨FromC⟩ val-min-incoming: ⟨intValue1⟩ val-max-incoming: ⟨intValue2⟩

Alloy
sig C{. . . }{

#(this.∼@R & FromC) >= intValue1 if intValue1 ≠ 0
#(this.∼@R & FromC) <= intValue2} if intValue2 ≠ *

Box III.
c
p
m

o
s
t
i
i

.3.2. ADOxxMdl2Alloy: transforming ADOxx models to Alloy models
The ADOxx Modeling Toolkit allows creating models (instances)

f a defined meta model using the ADOxx Development Language
ADL). This transformation takes a model described in ADL as input
nd produces also an Alloy model as output. Note that instances of
lloy models cannot be created directly, but are only ‘‘generated’’
ia the Alloy Analyzer, because Alloy is not a modeling tool but
ather aim to analyze (meta) models. Lacking direct access to instances
n Alloy, this transformation capitalizes on the ‘‘instance promotion’’
trategy (Gammaitoni and Kelsen, 2014) to encode a particular instance
f an Alloy model in terms of an Alloy model. The result Alloy model,
hen analyzed by the Alloy Analyzer, has one and only one instance,
hich corresponds exactly to the original model created in ADOxx.
e elaborate in the following how different constructs of a model are

ransformed.

bjects. An object in an ADOxx model is translated into a singleton
lloy subsignature (i.e., the multiplicity of the signature is one hence,
an have exactly one atom), extending the signature corresponding to
he class of the object (cf. Section 3.3.1).

ADL INSTANCE ⟨o⟩: ⟨C⟩
Alloy one sig o extends C{}

Attribute assignments. An attribute assignment of an object is trans-
lated into a signature fact associated to the signature corresponding to
the object.

ADL INSTANCE ⟨o⟩: ⟨C⟩ ATTRIBUTE ⟨att⟩ VALUE ⟨value⟩
6

Alloy one sig o extends C{}{att = value} t
Links. A link, namely an instantiation of a relationclass, is trans-
formed into a fact associated to the signature corresponding to the
source object of the link.

ADL
INSTANCE ⟨o1⟩: ⟨C1⟩

INSTANCE ⟨o2⟩: ⟨C2⟩

CONNECTOR ⟨r⟩: ⟨R⟩ FROM ⟨o1⟩: ⟨C1⟩ TO ⟨o2⟩: ⟨C2⟩

Alloy one sig o1 extends C1{}{R = o2}
one sig o2 extends C2{}

3.3.3. Prototyping of two transformations
As a proof of concept, we implemented prototypes of these trans-

formations in Python, which take the XML export of meta models
defined in ALL (respectively models defined in ADL), and generate
their counterparts in Alloy by following the transformation rules given
above.

3.4. Leveraging Alloy for language consistency checking

Fig. 3 describes a process to walk through the ADOxx-Alloy integra-
tion for meta model consistency checking.

In step 1, a language engineer manually designs a modeling lan-
guage in ADOxx, exports it into the XML format (metamodel.xml), then
alls the prototype of ADOxxMM2Alloy transformation (step 2) to
roduce the corresponding language specification in terms of an Alloy
odel (metamodel.als).

The language engineer continues by manually expressing the set
f known domain constraints in terms of Alloy logical formulae in
tep 3, and launches the Alloy Analyzer to automatically generate all
he possible instances of the language specification within a given scope
n step 4. If no instance can be generated, this indicates inconsistency
n the language specification. A typical example of an inconsistency is
hat two constraints are conflicting with each other hence, they cannot



Computers in Industry 151 (2023) 103974S. de Kinderen et al.
Fig. 3. Chaining ADOxx with Alloy for EM language consistency checking.
be satisfied at the same time. In this case, the language engineer goes
to step 5.1 to review, debug, and eventually refine the specification.

Otherwise, if there are indeed instances generated, the current
language specification is conflict-free. The language engineer presents
the generated instances to a domain expert in step 5.2, and seeks insight
in or confirmation of the consistency of the instances with respect to the
domain semantics, namely if the generated instances faithfully reflect
the domain being captured, e.g., by respecting all the domain rules. The
review of generated instances takes the form of a visualization suiting
the domain expert. Note that Alloy offers various ways to visualize
the generated instances, including a tree view, a table view, and a
graphical view. In addition to these, one can also exploit the Alloy-
based language workbench Lightning (Gammaitoni et al., 2015) to
display generated instances in domain-specific visualizations. As soon
as the domain expert detects an anomaly, s/he communicates it to the
language engineer. In turn, the language engineer will go to step 5.1 to
refine the language specification by adjusting existing and/or adding
missing domain constraints. Thereafter, instances will be generated
again from the updated language specification and will be reviewed
by the domain expert. This continues until all instances are approved
by the domain expert.

The refined and approved language specification is used in the next
section for checking the consistency of enterprise models. It is also to
be reflected in the ADOxx implementation.

3.5. Leveraging Alloy for model consistency checking

This subsection concerns checking the consistency of enterprise
models, created in ADOxx, against the modeling language refined and
approved in the previous section, using Alloy. In particular, we check if
an enterprise model satisfies all the well-formedness constraints. In case
elements of an enterprise model violate a well-formedness constraint,
we indicate them. Fig. 4 displays a process for using the ADOxx-Alloy
integration for model consistency checking.

In step 1, a modeler manually creates, using the ADOxx Model-
ing Toolkit and modeling languages implemented there, an enterprise
model. This model is then exported into XML format (model.xml).
In step 2, the ADOxxMdl2Alloy transformation takes this XML file,
translates it into an Alloy model (model.als), and combines it with
the Alloy model corresponding to the refined and approved language
specification from the previous section (i.e., metamodel.als within con-
straints) with all signatures in metamodel.als becoming abstract, and
all well-formedness constraints in metamodel.als becoming assertions.
Recall that the transformation capitalizes on the ‘‘instance promotion’’
7

strategy (Gammaitoni and Kelsen, 2014) to encode a particular instance
of an Alloy model in terms of an Alloy model, because Alloy does not
make instances of an Alloy model directly accessible, which are only
‘‘generated’’ via the Alloy Analyzer.

Assertions representing well-formedness constraints are checked in
step 3. Checking an assertion in an Alloy model amounts to searching
in all possible instances of the Alloy model for an instance that violates
the assertion, i.e., a counterexample of the assertion. Recall that the
Alloy model (model.als) has one and only one instance, which is exactly
the enterprise model created in ADOxx whose consistency we want
to check. Thus, when checking the well-formedness assertions on the
Alloy model, Alloy basically checks if the enterprise model constitutes
a counterexample to violate an assertion.

If no assertion is violated, the original enterprise model satisfies
all the well-formedness constraints, hence, the model is consistent.
Otherwise, if at least one assertion is violated, the model is inconsistent.
Moreover, Alloy also binds quantified variables of the assertion to
elements of the model, which are responsible for the violation. The
modeler exploits this information, debugs the model in ADOxx and
when appropriate, s/he repeats the consistency checking process.

4. Illustration: Well-formed and integrated enterprise models

We illustrate the two scenarios using the case introduced in Sec-
tion 2.

4.1. Consistent integration of e3value and the ITML

We demonstrate how to shape a consistent integration of e3value and
ITML following the chaining of ADOxx and Alloy (Section 3.4). As the
purpose is to illustrate how chaining ADOxx with Alloy can support
consistency check of (integrated) modeling languages, we focus on a
segment of e3value and a segment of ITML only.

4.1.1. Segment of e3value for value modeling
Fig. 5 shows a simplified value model capturing the value exchanges

between the DSO and a consumer. The consumer uses the Metering
service offered by the DSO as a value object, and pays in return the
value object Metering Fee. Further, the value exchange is triggered
by a Need for Metering on the side of the consumer, and the DSO
executes the value activity Provide Metering to provide the value
object Metering.

Fig. 6, in the top right corner, presents the meta model of the
selected e3value segment. We focus on four concepts Value Ex-
change, Value Port, Value Object, and Expense, and the



Computers in Industry 151 (2023) 103974S. de Kinderen et al.
Fig. 4. Chaining ADOxx with Alloy for enterprise models consistency checking.
Fig. 5. An example e3value model.
relations among them. A value exchange connects two value ports: one
out and one in, each of which has a value object attached. In addition,
an expense can be assigned to a value object to indicate its economical
value. Expenses form input for e3value profitability calculations.

Moreover, we include one well-formedness constraint (C1) relevant
to the selected segment: for a given value exchange, the value object
attached to the in-port needs to be the same as the value object of
the out-port. Returning to our e3value model (Fig. 5), this constraint
requires that the same value object Metering is attached to both the
in-port and the out-port of the value exchange from the DSO to the
consumer.

4.1.2. Segment of ITML for IT infrastructure modeling
Fig. 6, on the left and at the bottom, presents the meta model of

the selected ITML segment. A Service Contract concerns several
IT Reference Objects, which is a surrogate for any types of IT
infrastructure elements involved in the provision of the service. For the
sake of illustration, we include two types of IT elements: Software
and Server. Consider the ITML model in Fig. 7. The Metering
Service Contract, being a service contract offered by the DSO,
involves both a software Metering Functionalities Software
Suite, and General Purpose Servers.

Turning to the cost conception in the ITML, each IT Reference
Object is associated to a Cost, which is subsequently associated to
8

several Cost Allocations, to provide a detailed cost breakdown
of a service contract. A cost allocation can be subdivided further in
different types, of which we focus on two: Direct Cost Alloca-
tion and Proportional Cost Allocation. In our example in
Fig. 7, the provision of metering service amounts to (1) purchasing the
software Metering Functionalities Software Suite, hence
incurs a Direct Cost Allocation corresponding to the purchasing
cost, and (2) the usage of a quota of a server to run the software,
hence incurs a Proportional Cost Allocation of the total cost
of the General Purpose Servers. The ratio of the proportional
cost allocation, namely 80% in this case, is further justified by an IT
Utilization, which indicates that the software occupies the server
with a very high frequency, hence the (estimated) 80% utilization of
the server.

One well-formedness constraint (C2) relevant for the selected ITML
segment is included, as defined in Heise (2013). This constraint states
that a given cost is either associated to one direct cost allocation, or
to several proportional cost allocations, but not a mix of both types of
cost allocation.

4.1.3. Consistency checking of an e3value -ITML integration
To illustrate, we establish in Fig. 6 an example integration of e3value

and ITML with a bridging relation between e3value and the ITML called



Computers in Industry 151 (2023) 103974S. de Kinderen et al.
Fig. 6. A segment of the e3value-ITML integration meta model, implemented in ADOxx, cf. Gordijn (2002, p. 48) and Heise (2013, p. 280).
Fig. 7. An example ITML model.
agreed_by from Value Object to Service Contract. Thanks
to this relation, a value object offered in an e3value model can be
elaborated with further details such as the service contract providing
it, the IT infrastructure realizing the service, and the associated cost
breakdown thereof, by capitalizing on the modeling capabilities of
ITML.

Using the ADOxx Development Toolkit, we implement Fig. 6 in ALL:
concepts (shown in Fig. 6 as boxes) are defined as classes, relations
(shown as lines) as relationclasses, and their multiplicities (shown next
to the two ends of lines) via the predefined class attribute
Class cardinality.

In the following, we walk through the tool chain of ADOxx and Alloy
as defined in Fig. 3 to illustrate consistency checking of this integration.
The ALL definition of the integration is first exported in the XML format
(step 1), then transformed into an Alloy model by the ADOxxMM2Alloy
transformation defined in Section 3.3.1 (step 2). The resulting Alloy
model is given in Appendix A. For example, the ALL definition of the
bridging relation agreed_by from class Value Object in e3value
to class Service Contract in ITML (given below in the ALL row),
9

is transformed into two signatures (corresponding to the two classes),
one field (corresponding to the relationclass), and two signature facts
(corresponding to the multiplicities) is given in Box IV.
We then augment the Alloy model with well-formedness constraints
originating from e3value and the ITML respectively (step 3). Recall that
for the selected segments of e3value and ITML, there are two relevant
constraints: C1 from e3value (cf. Section 4.1.1) stating that for a given
value exchange, the value object attached to the in-port needs to the
same as the value object of the out-port; and C2 from the ITML (cf.
Section 4.1.2) stating that a given cost is either associated to one direct
cost allocation, or to several proportional cost allocations, but not a mix
of both types of cost allocation. We capture C1 by the following fact in
Alloy:

fact sameValueObjectExchanged{
all ex: E3_Value_Exchange |
ex.out_connects.offers_requests =
ex.in_connects.offers_requests

}

and C2 by the following fact:



Computers in Industry 151 (2023) 103974S. de Kinderen et al.
ALL

CLASS ⟨E3_Value_Object⟩
CLASSATTRIBUTE ⟨Class cardinality⟩ VALUE RELATION: ⟨agreed_by⟩

TO-CLASS: ⟨ITML_Service_Contract⟩ val-min-outgoing: 0 val-max-outgoing: 1
CLASS ⟨ITML_Service_Contract⟩

CLASSATTRIBUTE ⟨Class cardinality⟩ VALUE RELATION: ⟨agreed_by⟩
FROM-CLASS: ⟨E3_Value_Object⟩ val-min-incoming: 0 val-max-incoming: 1

RELATIONCLASS ⟨agreed_by⟩ FROM ⟨E3_Value_Object⟩ TO ⟨ITML_Service_Contract⟩

Alloy

sig E3_Value_Object{agreed_by: set ITML_Service_Contract}{
#(agreed_by & ITML_Service_Contract) <= 1}

sig ITML_Service_Contract{}{
#(this.∼@agreed_by & E3_Value_Object) <= 1}

Box IV.
Fig. 8. An instance of the integrated e3value–ITML meta model, generated by Alloy Analyzer.
fact eitherDirectCostOrProportional{
all c: ITML_Cost |
some c.allocation & ITML_Proportional_Cost_Allocation
implies

no c.allocation & ITML_Direct_Cost_Allocation and
some c.allocation & ITML_Direct_Cost_Allocation implies

(no c.allocation & ITML_Proportional_Cost_Allocation
and one c.allocation)

}

These two facts restrict the Alloy Analyzer to only search for instances
of integrated e3value–ITML meta model, of which both the e3value part
and ITML part are valid e3value and ITML models respectively.

As a result, the Alloy Analyzer generates multiple instances (step 4).
These instances are reviewed (step 5.2) and one inconsistent instance
(as shown in Fig. 8) is noticed. Specifically, in this instance an expense
is assigned to the value object. The same value object is also agreed
by a service contract providing the value object. Realizing the service
concerns the usage of a server and a software, which incurs both the
cost of purchasing the software, modeled as a direct cost allocation of
value 126, and the cost of using the server, modeled as a proportional
cost allocation of the total cost of the server, namely 100, with a
10
ratio of 64%.2 Therefore, the total cost to offer the value object is
100 × 64% + 126 = 190, i.e., the expense of the value object. However,
in the generated instance the expense assigned to the value object is
108 ≠ 190. This anomaly is due to an inconsistency in the e3value–ITML
integration. We correct it by adding a new well-formedness constraint
C3: the expense assigned to a value object in e3value should be equal
to the costs incurred for offering this value object elaborated in the
ITML. Note that C3 is only relevant when e3value and ITML are used in
tandem. The following Alloy fact captures C3:

fact ExpenseEqualsCost{
all vo: E3_Value_Object |

some vo.agreed_by and some vo.assigned_expense
implies vo.assigned_expense.value =

(sum c: vo.agreed_by.concerns.incurs_for_cost |
actualCost[c])

}

fun actualCost[c: ITML_Cost]: Int{
some c.allocation & ITML_Proportional_Cost_Allocation

implies mul[c.value, c.allocation.ratio] else c.value
}

2 Note that costs generated for the instance are only indicative and do not
necessarily correspond to real costs.



Computers in Industry 151 (2023) 103974S. de Kinderen et al.
Fig. 9. An example ill-formed e3value model, created with ADOxx.
ADL

INSTANCE ⟨E3_Value_Port_105603⟩: ⟨E3_Value_Port⟩
INSTANCE ⟨Metering⟩: ⟨E3_Value_Object⟩
CONNECTOR ⟨r⟩: ⟨offers_requests⟩

FROM ⟨E3_Value_Port_105603⟩: ⟨E3_Value_Port⟩ TO ⟨Metering⟩: ⟨E3_Value_Object⟩

Alloy one sig E3_Value_Port_105603 extends E3_Value_Port{}{offers_requests = Metering}
one sig Metering extends E3_Value_Object{}

Box V.
4.2. Well-formedness checking of e3value models

Now we zoom into the e3value part of the case to illustrate con-
sistency checking of models following the chaining of ADOxx and
Alloy (Section 3.5). Recall that ADOxx natively checks both (1) typing
constraints, e.g., a value port can be related to a value object via the
offers-requests relation, and (2) multiplicity constraints, e.g., a
value port can be related to exactly one value object via the offers-
requests relation. But it falls short in checking well-formedness
constraints.

Fig. 9 shows an example e3value model instantiating the e3value seg-
ment in Fig. 6. We implement the model in ADL using ADOxx Modeling
Toolkit. In the following, we walk through the tool chain of ADOxx
and Alloy presented in Fig. 4 to illustrate well-formedness checking
of this example model. The ADL definition of the example e3value
model is first exported in the XML format (step 1), then transformed
into an Alloy model by the ADOxxMdl2Alloy transformation defined in
Section 3.3.2 (step 2). The resulting Alloy model is given in Appendix
B. For example, the ADL definition, given below in the ADL row, of
the left value port in Fig. 9 and the Metering value object related
to it via a offers_requests link, is transformed into two singleton
sub signatures extending the signatures corresponding to their classes
respectively, and one fact in the signature corresponding to the value
port instance is given in Box V.
We proceed to check if this model is well-formed. To do so, we add a
command in the Alloy model to check the assertion representing the
well-formedness constraint C1 (step 3).

// Constraint C1 from e3value
assert sameValueObjectExchanged{

all ex: E3_Value_Exchange |
ex.out_connects.offers_requests =
ex.in_connects.offers_requests

}

check sameValueObjectExchanged

Fig. 10 shows a counterexample found by the Alloy Analyzer
corresponding to the e3value model in Fig. 9. The box on top, which
represents the value exchange instance, has an additional label (high-
lighted in red). This label indicates that if one lets the variable ex:
E3_Value_Exchange defined in the assertion
sameValueObjectExchanged above be the value exchange object
named E3_Value_Exchange_105621 of the example model, the
very assertion is violated, because the in-port and the out-port of
this value exchange have two different value objects attached, namely
Metering and Billing respectively. In other words, the e3value
11
model in Fig. 9 is not well-formed: it violates the well-formedness
constraint C1 represented by the assertion.

5. Evaluation and discussion

In this section, we discuss the ADOxx-Alloy tool chain’s verification
capabilities, report on the experience of using the Alloy Analyzer, and
consider related approaches.

5.1. ADOxx-Alloy and its verification capabilities

A key takeaway is that Alloy’s verification capabilities provide a
nice complement to ADOxx, on both the meta model level, as well
as on the model level. On the meta model level, Alloy’s native in-
stance generation facilities allow a domain expert to check instance
sensibility. As such, a domain expert can check the sensibility of a
language specification by observing, e.g., conflicts or inconsistencies
that need to be resolved. On the model level, Alloy offers natively
model checking capabilities, allowing for a check of a model against a
set of well-formedness constraints. Additionally ADOxx and Alloy both
support composability, as also showcased with our illustrative scenario.
This composability is a necessary prerequisite for the kind of cross-
model and cross-language analysis inherent to the realm of enterprise
modeling.

Furthermore, when it comes to means of implementation, compared
to other (meta-)model checkers Alloy is attractive as it combines ex-
pressiveness with a relative usability. Specifically, in terms of usability
Alloy not only provides a substantive feedback to users on how and
why (e.g., in terms of what well-formedness constraints were violated),
but also offers ease-of-use based on our subjective experience. The
ease-of-use of Alloy is echoed by several related works. For one, in
relating UML to Alloy (Anastasakis et al., 2010) focus on Alloy in
contrast to theorem provers such as KeY (a theorem prover focusing
on the formalization of OCL, Ahrendt et al., 2005) which, as declared
by Anastasakis et al. (2010), require special expertise. Similarly, in
relating UML to Alloy various works e.g., Braga et al. (2010) and Cunha
et al. (2015), emphasize Alloy’s lightweight nature, with Cunha et al.
(2015) particularly comparing favorably its inherently user friendly
analysis tool to ‘‘heavy-weight’’ theorem provers requiring a steep
learning curve.

Finally, in case users would prefer to formulate constraints in OCL
instead, this would also be possible, as approaches exist allowing for
(automatic) transformation of OCL statements into Alloy, e.g., Cunha
et al. (2015).



Computers in Industry 151 (2023) 103974S. de Kinderen et al.
Fig. 10. The value exchange that violates the well-formedness constraint indicated by Alloy Analyzer.
Table 1
Analysis time of Alloya for the case study.

Alloy model Scope Time (s)

Listing Appendix Ab 3 but exactly 3 String, 8 Int 0.196
Listing Appendix B Default scopec 0.002

aAlloy Analyzer version 5.1.0, Solver=sat4j, measured on a 2,3 GHz 8-Core Intel Core
i9 CPU with 768 MB memory.
bExtended with additional predicates to avoid trivial empty instances.
cThe scope is irrelevant in this case, because of the ‘‘single instance’’ property of
ADOxxMdl2Alloy transformation (cf. Section 3.5).

5.2. Performance

We report on the performance of the Alloy Analyzer, when it is
applied to the case (cf. Table 1), and when it is applied to analyzing
other sample enterprise modeling languages with a different complexity
(cf. Table 2). Specifically, the first row of Table 1 expresses that within
a small scope (i.e., 3 but exactly 3 String, 8 Int) and within a short
period of time (i.e., 0.196 s), the Alloy Analyzer is already able to
generate a to-the-point instance of the integration of e3value and ITML
(whereby Listing Appendix A is the corresponding Alloy model of the
integration). This helps uncover a missing well-formedness constraint
that is only relevant when the two languages are integrated. The second
row shows the time (i.e., 0.002 s) used to check the well-formnedness
of an example e3value model (cf. Fig. 9 & Listing Appendix B).

Bearing in mind that a proposed solution is useful only if it can
scale beyond relatively small examples, we experiment further with the
ADOxx-Alloy tool chain on other sample modeling languages used in
the EM domain. Specifically, we test (1) an extended version of e3value
to include also the notions around ‘‘market segment’’, (2) the Extended
Entity-Relationship model (EER), and (3) the Business Process Model
and Notation (BPMN 2.0). The ADOxx implementations of EER and
BPMN 2.0 can be downloaded from the ADOxx website.3 These further
experiments are to allow for (1) testing the general applicability of the
ADOxx-Alloy tool chain, (2) testing the performance while scaling up
the complexity of languages being checked and the size of the state
space being searched, and last but not least (3) drawing lessons learned
from the combined use of ADOxx and Alloy.

The complexity of a language specification is at least influenced by
the following factors: the number of concepts (signatures in Alloy), the
number of relations (fields in Alloy), and the number of constraints
(facts in Alloy). Moreover, given a language specification, the Alloy

3 EER: https://www.adoxx.org/live/er, BPMN 2.0: https://www.adoxx.org/
live/bpmn.
12
Table 2
Analysis time of Alloya for sample EM languages.

EM Lang. Signature# Field# Fact# Scope Timeb (s)

e3value 27 26 12

30 0.239
40 0.711
50 0.996
60 1.358
70 3.007
80 2.969

EERc 154 80 0

100 0.358
110 0.408
120 0.532
130 0.567
140 0.630
150 0.691

BPMN 2.0c 443 605 290

20 0.681
30 1.394
40 2.917
50 4.551
60 7.207
70 19.593

aAlloy Analyzer version 5.1.0, Solver=sat4j, measured on 2,3 GHz 8-Core Intel Core i9
CPU with 3 GB memory.
bAverage of 3 executions.
cLanguage realization available on the ADOxx website: https://www.adoxx.org/live/
implementation-cases.

Analyzer can also search in spaces of different sizes (defined by the
scope) for satisfying instances of a predicate, or counterexamples of
an assertion. Note that if no satisfying instance of a predicate can be
found within a scope, this does not imply the predicate is inconsistent.
Also, when no counterexample of an assertion can be found within a
scope, this does not imply that the assertion is valid, because satisfying
instances or counterexamples may just beyond the given scope. There-
fore, in case large complex languages need to be analyzed, one typically
starts by analyzing in a small search space and expands it gradually,
until either useful evidence are found, or the limit is reached (which is
set by memory size, analysis time, and/or the Alloy Analyzer translation
capacity). Indeed, model finders like Alloy perform only incomplete
analyses, compared with model checkers or theorem provers (Jackson,
2012), and this is where we rely on the ‘‘small scope hypothesis’’.

Table 2 summarizes the results of experimenting on other sample
EM languages. For each language, we also take note of the number
of signatures, the number of fields, and the number of facts in the
corresponding Alloy model of the language (which is produced by the
ADOxxMM2Alloy transformation, cf. Section 3.4), as an indicator of the
complexity of the language. Moreover, analysis starts from a scope, and
scales up from there with a step of 10.

https://www.adoxx.org/live/er
https://www.adoxx.org/live/bpmn
https://www.adoxx.org/live/bpmn
https://www.adoxx.org/live/implementation-cases
https://www.adoxx.org/live/implementation-cases


Computers in Industry 151 (2023) 103974S. de Kinderen et al.

2
‘
D
s
n
o
A
i
a
A
t
c

C
e
s
d
t
E
a
a
p

5

f
e
S
i
e
o
p
B
l
o
t
p
w
p
t
t
t

i
t
p
2
m
o
i
t
p
g
s
t
m
t

p
t
p
o
u
w
c
o
c
A
c
n
t

6

p
l
t
l
p
a
t
c
l
t
a
m

c
o
t
i
s
r
o
m
c
o
t
l

c
f
i
t
s
d
v
m
t
a
o
v

C

t
Q
i
H

5.3. Reflection on the use formal methods

Our experience shows that Alloy, relative to ADOxx, offers more
powerful type checking capabilities on the meta model level. Especially,
this expresses itself in the following two cases.

Sanity checking of constraints specified on relations defined within an
inheritance hierarchy. During our experiment with the standard BPMN
.0 implementation of ADOxx, we noticed a general relationclass called

‘Message Flow’’ defined between D-Construct and D-Construct, with
-Construct being a pre-defined root class in ADOxx. Then for each

ubclass of D-Construct for which the relation does not hold, a cardi-
ality constraint of value 0..0 is specified to rule out the instantiation
f the relation between instances of the given subclass. Somehow, the
DOxx BPMN 2.0 implementation incorrectly specifies such cardinal-

ty constraints for classes that do not inherit from D-Construct, too,
nd ADOxx fails to detect the mistake. Differently, after applying the
DOxxMM2Alloy transformation to the BPMN 2.0 ADOxx implementa-

ion, Alloy issues a warning on the generated BPMN 2.0 Alloy model,
omplaining that a constraint is specified for a non-existing relation.

hecking of directionality of relations. During our experiment with the
3value implementation of ADOxx, we defined a relationclass from the
ource class E3_Value_Interface to the target class E3_Actor. We also
efined according cardinalities. However, we did so (accidentally) in
he wrong direction, i.e., by treating E3_Actor as the source class and
3_Value_Interface as the target class. Remarkably, this was not only
llowed by ADOxx, there were even no warnings generated. Differently,
gain after a transformation to Alloy the inconsistency was directly
ointed by the Alloy Analyzer.

.4. Other approaches to extend ADOxx with verification capabilities

Different examples exist that conjointly use meta modeling plat-
orms and formal method tools, e.g., Anastasakis et al. (2010), Maoz
t al. (2011), Semeráth et al. (2017) and Kuhlmann et al. (2011).
pecifically, when it comes to extending ADOxx with verification capabil-
ties, also additional initiatives exist, e.g., Jeusfeld (2016), Karagiannis
t al. (2016) and Karagiannis and Buchmann (2018). Whereas most
f those initiatives capitalize on RDF-based representation and pro-
ose the use of ADOxx together with GraphDB, e.g., Karagiannis and
uchmann (2018) to benefit from the graph-based inference of the

atter, or Karagiannis et al. (2016) who capitalizes on SPARQL queries
ver RDF graphs to achieve among others inter model consistency;
he closest to our effort seems to be the work from the SemCheck
roject (Jeusfeld, 2016). The proposed integration architectures of our
ork and SemCheck are similar: both connect ADOxx with an external
latform, i.e., Alloy or ConceptBase, via an intermediate, i.e., ADOxx
o Alloy transformations or ADOxx/Telos Adapter. This allows for
ranslation of ADOxx (meta) models to the target platform in terms of
he Alloy or the ConceptBase syntax.

The difference between Jeusfeld (2016) and our approach exhibits
tself in the connected platforms. It is difficult to draw a judgment be-
ween the two, as both have their strengths and weaknesses. For exam-
le, ConceptBase focuses more on internal model consistency (Jeusfeld,
016), i.e., to check if a (meta) model conforms to a (meta) meta
odel. It addresses less so external model verification, i.e., the check

f (dynamic) semantics of (meta) models. In contrast, as demonstrated
n Section 3.4, a mainstream use case scenario of Alloy is to verify
he integrity of meta models by automatically generating instances of
artial specifications and validating the semantic consistency of the
enerated instances. This allows for detecting abnormal instances and
ubsequently completing/correcting meta model definitions (cf. Sec-
ion 4.1.3 and Gammaitoni et al., 2015). Moreover, Alloy also supports
odel execution simulation and checking properties of such execution
13

races (Kelsen and Ma, 2008). d
In addition, different non-functional properties of the connected
latforms are a factor to consider, e.g., being intuitive to use, easy
o learn, efficient to reason, and popular in education. While users’
reference between the syntax used by the two target platforms is more
f a subjective matter, one difference is worth noticing. Alloy uses an
nified language for both (meta) model and constraints specification,
hile ConceptBase uses two separate languages: (1) Telos frames to

apture (meta) models, and (2) Datalog (which is based on first-
rder logic) formulae to define queries and deductive rules to check
onsistency of those models. Moreover, although both ConceptBase and
lloy are based on first-order logic, in contrast to Alloy where transitive
losure is provided as the first class citizen, transitivity is not provided
atively by ConceptBase. Rather, it requires the user to define it in
erms of deductive rules.

. Conclusions

In this paper, we demonstrate how one selected meta modeling
latform, ADOxx, can be meaningfully complemented by an example
ightweight formal method, Alloy, for two types of checks: (1) on
he meta model level, where we check the consistency of modeling
anguage specifications by capitalizing on the instance generation ca-
abilities of Alloy; and (2) on the model level, where we check models
gainst well-formedness constraints of modeling language specifica-
ions by capitalizing on assertions. We illustrate our solution with a
ase from the energy sector, involving the integrated use of two EM
anguages, and report on experiments with three further EM languages,
o reflect both upon the performance of Alloy in terms of ‘‘scaling up’’,
nd upon the added value of its verification capabilities as a formal
ethod.

When it comes to limitations, during the meta model consistency
heck of the case we introduced the following simplifications. Firstly,
nly indicative values (which are smaller than the real-life values) for
he costs of the software and the server are used, to cope with Alloy’s
nstance generation getting increasingly resource intensive when the
cope is increased. Secondly, because Alloy natively lacks data types for
epresenting floating point numbers, we have changed all the attributes
f the floating point type to attributes of the integer type in the meta
odel. These simplifications did not affect the meta model consistency

heck, as the inconsistency is orthogonal to the actual values and types
f costs, and Alloy found the major inconsistency to-be-addressed in
he e3value-ITML integration. Still for future work we need to keep this
imitation in mind.

When it comes to future work, in this paper we illustrate the
haining of ADOxx and Alloy using a loosely coupled strategy via trans-
ormations from ADOxx to Alloy. We plan to also investigate deeper
ntegration of the two platforms. On the model level, we consider on-
he-fly well-formedness checking and consistency checking. As a first
tep we could experiment with the Olive microservices framework,
eveloped by OMiLAB to support modular meta modeling platform de-
elopment and dissemination (Bork et al., 2019, pp. 683–684). On the
eta model level, it would be interesting to extend the transformations

o become bi-directional, namely not only from ADOxx to Alloy, but
lso from Alloy back to ADOxx to facilitate the amendment/refinement
f modeling language specifications on the side of ADOxx, based on
erification results provided by Alloy.

RediT authorship contribution statement

Sybren de Kinderen: Conceptualization, Methodology, Investiga-
ion, Writing – original draft, Writing – review & editing, Software.
in Ma: Conceptualization, Methodology, Investigation, Writing – orig-

nal draft, Writing – review & editing, Software. Monika Kaczmarek-
eß: Conceptualization, Methodology, Investigation, Writing – original

raft, Writing – review & editing.



Computers in Industry 151 (2023) 103974S. de Kinderen et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compind.2023.103974.

References

Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., et al., 2005. The key tool. Softw. Syst. Model.
4 (1), 32–54.

Anastasakis, K., Bordbar, B., Georg, G., Ray, I., 2010. On challenges of model
transformation from UML to Alloy. Softw. Syst. Model. 9 (1), 69–86.

Andoni, A., Daniliuc, D., Khurshid, S., 2003. Evaluating the ‘‘Small Scope Hypothesis’’.
Tech. Rep., MIT-LCS-TR-921, MIT CSAIL.

Antunes, G., Barateiro, J., Caetano, A., Borbinha, J., 2015. Analysis of federated
enterprise architecture models. In: ECIS 2015 Completed Research Papers. Paper
10.

Bork, D., Buchmann, R., Karagiannis, D., Lee, M., Miron, E.-T., 2019. An open platform
for modeling method conceptualization: The OMiLAB digital ecosystem. Commun.
Assoc. Inf. Syst. 44, 673–697.

Braga, B.F., Almeida, J.P.A., Guizzardi, G., Benevides, A.B., 2010. Transforming
OntoUML into alloy: towards conceptual model validation using a lightweight
formal method. Innov. Syst. Softw. Eng. 6 (1), 55–63.

Clarke, E.M., Wing, J.M., 1996. Formal methods: State of the art and future directions.
ACM Comput. Surv. 28 (4), 626–643.

Cunha, A., Garis, A.G., Riesco, D., 2015. Translating between alloy specifications and
UML class diagrams annotated with OCL. Softw. Syst. Model. 14 (1), 5–25.

Erdweg, S., Giarrusso, P.G., Rendel, T., 2012. Language composition untangled. In:
Proceedings of the Twelfth Workshop on Language Descriptions, Tools, and
Applications. pp. 1–8.

Erdweg, S., van der Storm, T., Völter, M., Tratt, L., Bosman, R., Cook, W.R.,
Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., Konat, G., Molina, P.J., Palatnik, M.,
Pohjonen, R., Schindler, E., Schindler, K., Solmi, R., Vergu, V., Visser, E., van der
Vlist, K., Wachsmuth, G., van der Woning, J., 2015. Evaluating and comparing
language workbenches: Existing results and benchmarks for the future. Comput.
Lang. Syst. Struct. 44, 24–47.

Fill, H., Karagiannis, D., 2013. On the conceptualisation of modelling methods using
the ADOxx meta modelling platform. EMISA 8 (1), 4–25.

Fill, H.-G., Redmond, T., Karagiannis, D., 2013. Formalizing meta models with FDMM:
the ADOxx case. In: Enterprise Information Systems: 14th International Conference,
ICEIS 2012, Wroclaw, Poland, June 28-July 1, 2012, Revised Selected Papers 14.
Springer, pp. 429–451.

Florez, H., Sánchez, M., Villalobos, J., 2016. A catalog of automated analysis methods
for enterprise models. SpringerPlus 5 (1), 406.

Frank, U., 2011. The MEMO Meta modeling Language (MML) and Language Ar-
chitecture, ICB-Research Report 43, second ed. University of Duisburg-Essen,
Essen.

Frank, U., 2014. Multi-perspective enterprise modeling: Foundational concepts,
prospects and future research challenges. Softw. Syst. Model. 13 (3), 941–962.

Gammaitoni, L., Kelsen, P., 2014. Domain-specific visualization of Alloy instances. In:
Proceedings of the 4th International Conference on Abstract State Machines, Alloy,
B, TLA, VDM, and Z (ABZ 2014). In: LNCS, vol. 8477, pp. 324–327.

Gammaitoni, L., Kelsen, P., Glodt, C., 2015. Designing languages using lightning. In:
Proceedings of the 2015 ACM SIGPLAN International Conference on Software
Language Engineering (SLE 2015). pp. 77–82.

Gammaitoni, L., Kelsen, P., Ma, Q., 2018. Agile validation of model transformations
using compound F-alloy specifications. Sci. Comput. Program. 162, 55–75.

Gogolla, M., Büttner, F., Richters, M., 2007. USE: A UML-based specification
environment for validating UML and OCL. Sci. Comput. Program. 69 (1), 27–34.

Gordijn, J., 2002. Value-Based Requirements Engineering: Exploring Innovatie
E-Commerce Ideas (Ph.D. thesis). Vrije Universiteit Amsterdam.

Gordijn, J., Akkermans, J., 2001. e3-value: Design and evaluation of e-business models.
IEEE Intell. Syst. 11–17.

Gordijn, J., Akkermans, H., 2005. Business models for distributed energy resources in
a liberalized market environment. Electr. Power Syst. Res. J. 77 (9), 1178–1188.

Heise, D., 2013. Unternehmensmodell-Basiertes IT-Kostenmanagement Als Bestandteil
Eines Integrativen IT-Controllings. Logos, Berlin.
14
Iung, A., Carbonell, J., Marchezan, L., Rodrigues, E., Bernardino, M., Basso, F.P.,
Medeiros, B., 2020. Systematic mapping study on domain-specific language
development tools. Empir. Softw. Eng. 25 (5), 4205–4249.

Jackson, D., 2012. Software Abstractions: Logic, Language, and Analysis, revised ed.
The MIT Press.

Jeusfeld, M.A., 2016. SemCheck: Checking constraints for multi-perspective modeling
languages. In: Karagiannis, D., Mayr, H.C., Mylopoulos, J. (Eds.), Domain-Specific
Conceptual Modeling: Concepts, Methods and Tools. Springer, pp. 31–53.

Johnson, P., Lagerström, R., Närman, P., Simonsson, M., 2007. Enterprise architecture
analysis with extended influence diagrams. Inf. Syst. Front. 9 (2–3), 163–180.

Karagiannis, D., Buchmann, R.A., 2018. A proposal for deploying hybrid knowledge
bases: the ADOxx-to-GraphDB interoperability case. In: Proceedings of the 51st
HICSS.

Karagiannis, D., Buchmann, R., Bork, D., 2016. Managing consistency in multi-view
enterprise models: An approach based on semantic queries. In: 24th European
Conference on Information Systems (ECIS 2016).

Keerthisinghe, C., Verbič, G., Chapman, A.C., 2018. A fast technique for smart home
management: ADP with temporal difference learning. IEEE Trans. Smart Grid 9 (4),
3291–3303.

Kelsen, P., Ma, Q., 2008. A lightweight approach for defining the formal semantics of a
modeling language. In: Proceedings of the 11th International Conference on Model
Driven Engineering Languages and Systems (MoDELS 2008). In: LNCS, vol. 5301,
Springer, pp. 690–704.

de Kinderen, S., Ma, Q., Kaczmarek-Heß, M., 2020. Towards extending the validation
possibilities of ADOxx with Alloy. In: Grabis, J., Bork, D. (Eds.), The Practice of
Enterprise Modeling. Springer, pp. 138–152.

Kuhlmann, M., Hamann, L., Gogolla, M., 2011. Extensive validation of OCL models
by integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (Eds.), Objects,
Models, Components, Patterns. Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
290–306.

Lankhorst, M., 2017. Enterprise Architecture at Work: Modeling, Communication and
Analysis, fourth ed. Springer.

Levesque, H.J., 1986. Knowledge representation and reasoning. Annu. Rev. Comput.
Sci. 1 (1), 255–287.

Levesque, H.J., Brachman, R.J., 1987. Expressiveness and tractability in knowledge
representation and reasoning 1. Comput. Intell. 3 (1), 78–93.

Ma, Q., Kaczmarek-Heß, M., de Kinderen, S., 2023. Validation and verification in
domain-specific modeling method engineering: an integrated life-cycle view. Softw.
Syst. Model. 22 (2), 647–666.

Ma, Q., Kelsen, P., Glodt, C., 2015. A generic model decomposition technique and
its application to the Eclipse modeling framework. Softw. Syst. Model. 14 (2),
921–952.

Maoz, S., Ringert, J.O., Rumpe, B., 2011. CD2alloy: Class diagrams analysis using Alloy
revisited. In: Whittle, J., Clark, T., Kühne, T. (Eds.), 14th International MODELS
Conference, Wellington, New Zealand, October 16-21, 2011. Proceedings. In: LNCS,
vol. 6981, Springer, pp. 592–607.

Negm, E., Makady, S., Salah, A., 2019. Survey on domain specific languages
implementation aspects. Int. J. Adv. Comput. Sci. Appl. 10 (11).

Nickerson, R.C., Varshney, U., Muntermann, J., 2013. A method for taxonomy de-
velopment and its application in information systems. Eur. J. Inf. Syst. 22 (3),
336–359.

Niemann, K.D., 2006. From Enterprise Architecture to IT Governance, Vol. 1. Springer.
OMG, 2014. Object Constraint Language (OCL), Version 2.4. Tech. Rep., URL https:

//www.omg.org/spec/OCL/2.4/PDF.
Ozkaya, M., Akdur, D., 2021. What do practitioners expect from the meta-modeling

tools? A survey. J. Comput. Lang. 63, 101030.
Razo-Zapata, I.S., Chew, E., Ma, Q., Gammaitoni, L., Proper, H.A., 2018. Enabling value

co-creation in customer journeys with VIVA. In: Proceedings of Joint International
Conference of Service Science and Innovation and Serviceology.

Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M., 2014. Enterprise Modeling: Tackling
Business Challenges with the 4EM Method. Springer, Berlin.

Semeráth, O., Barta, Á., Horváth, Á., Szatmári, Z., Varró, D., 2017. Formal validation of
domain-specific languages with derived features and well-formedness constraints.
Softw. Syst. Model. 16 (2), 357–392.

Strembeck, M., Zdun, U., 2009. An approach for the systematic development of
domain-specific languages. Softw. Pract. Exper. 39 (15), 1253–1292.

Tolvanen, J.-P., Kelly, S., 2009. MetaEdit+: Defining and using integrated domain-
specific modeling languages. In: Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems Languages and Applications.
OOPSLA ’09, Association for Computing Machinery, New York, NY, USA, pp.
819–820.

Torlak, E., Jackson, D., 2007. Kodkod: A relational model finder. In: Proceedings of the
13th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2007). In: LNCS 4424, pp. 632–647.

Wang, Y., Chen, Q., Hong, T., Kang, C., 2019. Review of smart meter data analytics:
Applications, methodologies, and challenges. IEEE Trans. Smart Grid 10 (3),
3125–3148.

Weidmann, N., Kannan, S., Anjorin, A., 2021. Tolerance in model-driven engineering: A
systematic literature review with model-driven tool support. CoRR abs/2106.01063.

https://doi.org/10.1016/j.compind.2023.103974
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb1
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb1
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb1
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb1
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb1
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb2
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb2
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb2
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb3
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb3
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb3
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb4
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb4
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb4
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb4
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb4
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb5
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb5
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb5
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb5
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb5
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb6
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb6
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb6
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb6
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb6
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb7
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb7
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb7
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb8
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb8
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb8
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb9
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb9
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb9
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb9
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb9
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb10
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb10
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb10
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb10
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb10
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb10
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb10
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb10
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb10
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb10
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb10
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb11
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb11
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb11
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb12
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb12
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb12
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb12
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb12
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb12
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb12
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb13
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb13
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb13
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb14
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb14
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb14
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb14
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb14
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb15
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb15
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb15
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb16
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb16
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb16
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb16
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb16
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb17
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb17
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb17
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb17
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb17
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb18
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb18
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb18
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb19
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb19
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb19
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb20
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb20
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb20
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb21
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb21
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb21
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb22
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb22
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb22
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb23
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb23
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb23
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb24
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb24
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb24
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb24
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb24
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb25
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb25
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb25
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb26
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb26
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb26
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb26
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb26
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb27
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb27
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb27
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb28
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb28
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb28
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb28
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb28
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb29
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb29
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb29
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb29
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb29
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb30
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb30
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb30
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb30
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb30
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb31
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb31
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb31
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb31
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb31
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb31
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb31
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb32
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb32
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb32
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb32
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb32
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb33
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb33
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb33
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb33
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb33
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb33
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb33
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb34
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb34
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb34
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb35
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb35
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb35
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb36
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb36
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb36
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb37
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb37
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb37
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb37
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb37
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb38
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb38
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb38
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb38
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb38
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb39
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb39
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb39
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb39
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb39
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb39
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb39
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb40
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb40
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb40
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb41
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb41
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb41
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb41
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb41
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb42
https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/OCL/2.4/PDF
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb44
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb44
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb44
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb45
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb45
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb45
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb45
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb45
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb46
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb46
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb46
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb47
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb47
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb47
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb47
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb47
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb48
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb48
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb48
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb49
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb49
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb49
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb49
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb49
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb49
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb49
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb49
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb49
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb50
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb50
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb50
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb50
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb50
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb51
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb51
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb51
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb51
http://refhub.elsevier.com/S0166-3615(23)00124-0/sb51
http://arxiv.org/abs/2106.01063

	Leveraging the power of formal methods in the realm of enterprise modeling—On the example of extending the (meta) model verification possibilities of ADOxx with Alloy
	Introduction
	Motivating Scenario and Verification Capabilities
	Motivating Scenario
	Verification Capabilities Required for EM
	Verification Capabilities of ADOxx

	Extending ADOxx with Alloy
	Enterprise Modeling Language Design and Usage with ADOxx
	(Meta) Model Checking with Alloy
	Integrating ADOxx with Alloy
	ADOxxMM2Alloy: transforming ADOxx meta models to Alloy models
	ADOxxMdl2Alloy: transforming ADOxx models to Alloy models
	Prototyping of two transformations

	Leveraging Alloy for Language Consistency Checking
	Leveraging Alloy for Model Consistency Checking

	Illustration: Well-Formed and Integrated Enterprise Models
	Consistent Integration of e3value and the ITML
	Segment of e3value for Value Modeling
	Segment of ITML for IT Infrastructure Modeling
	Consistency Checking of an e3value -ITML Integration

	Well-formedness Checking of e3value Models

	Evaluation and Discussion
	ADOxx-Alloy and its verification capabilities
	Performance
	Reflection on the Use Formal Methods
	Other Approaches to Extend ADOxx with Verification Capabilities

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A. Supplementary data
	References


