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Abstract
We investigate the problem of estimating the structure of a weighted network from repeated
measurements of aGaussian graphicalmodel (GGM)on the network. In this vein,we consider
GGMs whose covariance structures align with the geometry of the weighted network on
which they are based. Such GGMs have been of longstanding interest in statistical physics,
and are referred to as the Gaussian free field (GFF). In recent years, they have attracted
considerable interest in the machine learning and theoretical computer science. In this work,
we propose a novel estimator for the weighted network (equivalently, its Laplacian) from
repeated measurements of a GFF on the network, based on the Fourier analytic properties
of the Gaussian distribution. In this pursuit, our approach exploits complex-valued statistics
constructed from observed data, that are of interest in their own right. We demonstrate the
effectiveness of our estimator with concrete recovery guarantees and bounds on the required
sample complexity. In particular, we show that the proposed statistic achieves the parametric
rate of estimation for fixed network size. In the setting of networks growing with sample
size, our results show that for Erdos–Renyi random graphs G(d, p) above the connectivity
threshold, network recovery takes place with high probability as soon as the sample size n
satisfies n � d4 log d · p−2.
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1 Introduction

1.1 Gaussian Graphical Models

Gaussian graphical models (GGM), also known as GaussianMarkov random fields (GMRF),
are multivariate Gaussian distributions defined on undirected graphs. In these models, a
Gaussian random variable is associated to each vertex of a graph, and the existence or non-
existence of edges captures the dependency structure between these random variables.

More precisely, suppose we have a graph G = (V , E) on |V | = d vertices. In a
GMRF/GGMmodel, we assume our sampleX1, . . . ,Xn consists of i.i.d. copies of a random
vector X = (X1, . . . , Xd)

� having a multivariate normal distribution.
It is well-known that the covariancematrix� of a GGMcaptures the dependency structure

between Xi s. That is, for i �= j , the (i, j)-thmatrix entry�[i, j] = 0 if andonly if the variable
Xi is independent of the variable X j .

The inverse of the covariance matrix, often called the precision matrix or the informa-
tion matrix, is also of longstanding interest, because it captures the conditional dependency
structure between Xi s. More precisely, the (i, j)-th matrix entry �−1[i, j] for i �= j is 0 if
and only if Xi is independent of X j given the rest of the variables.

More generally, the following may be shown to hold true. If, for some subset of indices
A ⊂ V , it holds that removing the vertices in A from the graph G disconnects the vertices i
and j , then the random variables Xi and X j are conditionally independent given (Xk)k∈A.
This is a form of graphicalMarkov property, which endows GGM-s with a highly attractive
structure, both as a stochastic model and as a data modelling tool.

Unsurprisingly, GGM-s have attracted interest in a wide array of application domains as
an effective modelling technique to capture the dependency structures among variates. These
include applications to genomics (Menéndez et al. [37], Basso et al. [6], Wille et al. [52],
Schafer and Strimmer [44]); neuroscience (Huang et al. [27], Varoquaux et al. [49], Rish et
al. [42], Varoquaux et al. [48]); causal inference (Loh and Bühlmann [33]); to name a few.

1.2 Learning Networks from Random Fields

The problem of learning a network from observations of a random field that lives on it has
been a topic of great interest in recent years. A significant instance of this is accorded by the
Ising model on graphs and Gaussian Graphical Models. The Ising model on a graph G is a
random field with values in the set {+1,−1}, with a dependency structure that reflects the
structure of the graph. Estimating the underlying graph (or various properties thereof) from
observations of the Ising model (or GGM) has been a topic of intensive research activities
in recent years. Investigations on this problem have been carried out in various settings, for
details we refer the interested reader to (Ravikumar et al. [40], Bresler [13], Bhattacharya and
Mukherjee [10], Berthet et al. [9], Anandkumar et al. [1, 2]) for a partial list of references.

In this paper, we investigate the problem of learning a network from a Gaussian Graphical
Model supported on the network. More generally than unweighted graphs, we will concern
ourselves with the broader problem of estimating a weighted network from aGGM supported
thereon. This necessitates the correlation structure of the GGM to carry information about
the weights on the edges of the network. A canonical choice for such a GGM is proffered by
the so-calledGaussian Free Field (abbrv.GFF), which is what we will focus on in this work.
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1.3 Gaussian Free Fields

Gaussian Free Fields (abbrv. GFF) have emerged as important models of strongly correlated
Gaussian fields, that are canonically equipped to capture the geometry of their ambient space.
In the case of graphs, the background geometry is encapsulated in the graph Laplacian.
GFF-s arise originally in theoretical physics, in the study Euclidean quantum field theories.
Applications in physics generally require the GFF to be defined on the continuum, which is
often a challenge in itself in context of the fact that, even on Euclidean spaces of dimension
> 1, the continuum GFF is defined only as a distribution valued random variable. On graphs
and weighted networks, the setting we are principally interested in, it is of interest to study
the so-called Discrete Gaussian Free Field (abbrv. DGFF). The DGFF, in comparison to the
continuum setting, is well-defined as a random field that lives on the nodes of the network;
however, it exhibits degeneracy properties as a Gaussian random vector, which demands
some consideration in its definition.

The GFF is, for many natural reasons, a GGM of wide interest in its own right. For
one, a quadratic form based on the network Laplacian encodes smoothness with respect
to the geometry of the weighted network. This underpins the significance of GFF based
models in active and semi-supervised learning (Zhu et al. [58, 59], Ma et al. [34], Ghosh
and Mukherjee [25]). In fact, it has been shown (Kelner et al. [29]) that DGFFs essentially
cover all possibilities in an important class of GGMs known as attractive GGMs, wherein
the pairwise correlations are all non-negative and which arise naturally in a wide array of
applications such has phylogenetic studies and copula models of finance. For more details
on the generalities of the GFF and its significance with statistical and mathematical physics,
we refer the reader to the excellent mathematical surveys (Sheffield [45], Berestycki [8]).

1.3.1 The Massless DGFF

The massless DGFF on a weighted graph G = (V (G), E(G)) is defined as follows. Let ∂

be a distinguished set of vertices, called the boundary of the graph. Let Sn be the simple
symmetric random walk on G. Let τ be the hitting time of ∂ . The Green function G(x, y) is
defined for x, y ∈ V (G) by putting

G(x, y) = 1

deg(y)
Ex

( ∞∑
n=0

1 [Xn = y; τ > n]

)
.

The DGFF is the centered Gaussian vector (h(x))x∈V (G) with covariance given by the Green
functionG. In other words, if A ⊂ R

|V (G)|, then the probability distribution of (h(x))x∈V (G)

is given by (see Theorem 1.5 in Berestycki [8])

P

(
(h(x))x∈V (G) ∈ A

)
= 1

Z

∫
A
exp

⎛
⎝−1

4

∑
xi∼x j

(h(xi ) − h(x j ))
2

⎞
⎠ ∏

xi /∈∂

dh(xi )
∏
xi∈∂

δ0(dh(xi )),

(1)
where δ0 is the Dirac delta measure at 0. In particular, the field always takes value 0 at the
boundary vertices ∂ .

1.3.2 The Massive DGFF

The massive DGFF on a weighted graph G = (V (G), E(G)) is, in a sense, simpler than
the massless case, and is defined as follows. For the mass parameter μ, the massive DGFF

123



   45 Page 4 of 28 S. Ghosh et al.

(h(x))x∈V (G) on G is given by the following relation. For A ⊂ R
|V (G)|, then the probability

distribution of (h(x))x∈V (G) is given by

P
(
(h(x))x∈V (G) ∈ A

) = 1

Z

∫
A
exp

⎛
⎝−1

4

∑
xi∼x j

(h(xi ) − h(x j ))
2 − 1

4
μ

∑
xi∈V

h(xi )
2

⎞
⎠ ∏

xi∈V
dh(xi ).

(2)
In other words, the probability density function of h := (h(x))x∈V (G) is given, up to a
normalization constant, by

exp

(
−1

4
h�(L + μI)h

)
, (3)

where L is the standard Laplacian matrix of the graph, and μ is the mass parameter of the
model.

The massive DGFF is the setting we will concern ourselves with in this article. The mass
parameter μ clearly controls the well-conditionedness of the model; and the regime we will
particularly concern ourself with is the one where the parameter μ is not too large, thereby
focusing on poorly conditioned GGMs.

1.4 Learning Networks from Gaussian Free Fields

In this article we consider the problem of precision matrix estimation of the Gaussian Free
Field. To wit, we consider a graph G = (V (G), E(G)) with vertex set V (G) and edge set
E(G). Let |V (G)| = d be the number of vertices and we label the vertex set with {1, . . . , d}.
Supposewe have an i.i.d. sampleX1, . . . ,Xn of randomvectors inR

d where eachXm follows
a multivariate normal distribution N (0,�). The covariance matrix is related to the graph G
in the following way.We assume� = (L+μI)−1 whereL is the graph Laplacian andμ > 0
is an unknown parameter.

The graph Laplacian L is the d × d matrix defined as L = D − A where D is the degree
matrix and A is the adjacency matrix. Thus, for an unweighted graph, (i, i)-th entry of L is
the degree of vertex i , and for i �= j the (i, j)-th entry of L is 0 if i is not connected to j ,
and it is −1 if i is connected to j . For a weighted graph, A is the weighted adjacency matrix
of the graph; i.e. Ai j = wi j , where wi j is the weight of the edge between vertices i and j .
The matrix D in this setting would be the weighted degree matrix of the graph; i.e., D is a
diagonal matrix with Di i = ∑

j∈V (G) Ai j .
We will concern ourselves with the problem of estimating L from X1, . . . ,Xn .
Thus our problem is same as estimating the graph underlying a DGFF where μ can be

thought of as the number of vertices that are designated as the boundary. These boundary
vertices are connected with all the other vertices.

1.5 A Survey on the Estimation of PrecisionMatrices

In view of its multifaceted importance, [21] initiated investigations into the problem of
estimating the precision matrix of a GGM. In this subsection, we provide a partial survey
of the principal approaches to this longstanding problem, and the associated problem of
estimating the covariance matrix of a GGM.
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1.5.1 Estimation of Covariance Matrices

Estimating the covariance matrix of a GGM is not difficult when the sample size n is much
bigger than d . In this case the sample covariance matrix

�n := 1

n

n∑
k=1

(
Xk − Xn

)(
Xk − Xn

)�
, where Xn := 1

n

n∑
k=1

Xk,

is a natural estimator of �, and has good consistency properties. In the high-dimensional
setup i.e., when the number of variables d is much larger than n, the sample covariance
matrix is not a good estimator of the true covariance matrix �. In this case estimating the
covariance matrix is a challenging problem, estimating the precision matrix is even more
difficult.

1.5.2 Estimation Under Order Structures

It is possible to estimate � using �n consistently if there exists additional structure on the
variables. For example, if the variables have a certain total ordering, for example in a time
series data, then one may assume �[i, j] is 0 or near 0 when |i − j | is big enough. This
leads to a banding structure in �. Under this kind of assumptions Bickel and Levina [11]
showed that banding the sample covariance matrix leads to a consistent estimator. Cai et al.
[14] considered the same class of estimators as Bickel and Levina [11] and established the
minimax rate of convergence and also constructed a rate-optimal estimator. The minimax
rate is given by

inf
�̂

sup
Pα

E(‖�̂ − �‖2) 
 min

{
n−2α/(2α+1) + log d

n
,
d

n

}
·

Here α is a sparsity parameter and Pα is a class of sparse covariance matrices. Larger α

corresponds to sparser matrices.
Assuming certain ordering structures on the variables, methods based on banding the

Cholesky factor of the inverse covariance matrix for estimating the covariance matrix have
also been proposed and studied (see, e.g., Wu and Pourahmadi [54], Huang et al. [26]).

1.5.3 Estimation Under Structured Sparsity

A natural total ordering on the set of variables is unavailable in many situations. Also finding
a suitable basis under which the sample-covariance matrix displays a banding structure is
often computationally impractical. To deal with these situations Karoui [22] and Bickel and
Levina [12] suggested assuming certain permutation invariant sparsity conditions on the
covariance matrix and proposed thresholding the sample covariance matrix for estimation.
They obtained rates of convergence for the thresholded sample covariance estimator.

1.5.4 Penalized Likelihood Based Methods

Penalized likelihood based methods are also very popular for estimation of sparse precision
matrices. Meinshausen and Bühlmann [36] estimate a sparse precision matrix by fitting a
lasso model to each variable, using the others as predictors. �−1[i, j] is then estimated to be
nonzero if either the estimated coefficient of variable i on j or the estimated coefficient of
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variable j on i is nonzero. They show that asymptotically, this consistently estimates the set
of nonzero elements of �−1.

1.5.5 The Graphical Lasso

Several algorithms for the exact maximization of the �1-penalized log-likelihood have been
proposed in the literature (see for e.g. Yuan and Lin [56], Banerjee and Ghaoui [3], Dahl et
al. [19], Friedman et al. [24], Rothman et al. [43], Cai et al. [18], Cai et al. [15], Ravikumar
et al. [41].) Friedman et al. [24] introduced the Graphical Lasso estimator which minimizes

− log det
(
�−1) + 1

n

n∑
i=1

(Xi − μ)� �−1 (Xi − μ)

subject to the sparsity condition
∑

i �= j �
−1[i, j] ≤ t , where t ≥ 0 is a tuning parameter.

An equivalent formulation is minimizing

− log det
(
�−1) + trace

(
�−1�n

) + λ
∑
i �= j

∣∣�−1[i, j]∣∣
where λ ≥ 0 is a tuning parameter. If �−1 satisfies various conditions, which typically
include an assumption similar to or stronger than the restricted eigenvalue (RE) condition (a
condition which, in particular, lower bounds the smallest eigenvalue of any 2d×2d principal
submatrix of � where d is the maximum vertex degree) then Graphical Lasso succeeds in
recovering the graph structure. Further, under some incoherence assumptions on the precision
matrix (stronger than RE), it has been shown by Ravikumar et al. [41] that the sparsity pattern
of the precision matrix can be accurately recovered from O((1/α2)d2 log(n)) samples; here
α ∈ (0, 1) is the incoherence parameter defined as follows. Suppose � = �−1. Let

� := ∇2
�′g(�′)|�′=� = �−1 ⊗ �−1

where

g(A) :=
{

− ln detA if A � 0

∞ otherwise

and ⊗ denotes the Kronecker matrix product. Thus � is a p2 × p2 matrix, indexed by vertex
pairs so that �[( j, k), (l,m)] is the partial derivative

∂2g

∂�′
jk∂�′

lm

evaluated at �. For Gaussian observations this is simply Cov(X j Xk, Xl Xm). The mutual
incoherence or irrepresentable condition is the following:

‖�ScS(�SS)
−1‖∞ ≤ 1 − α

for some α ∈ (0, 1). Here S is the set of vertex pairs either of the form (i, i) or (i, j) if i
is connected to j . This condition imposes control on the influence that the non-edge terms,
indexed by Sc, can have on the edge-based terms, indexed by S. A similar condition for the
Lasso, with the covariance matrix � in the place of �, is necessary and sufficient for support
recovery using the ordinary Lasso ([36, 47, 51, 57].)
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1.5.6 The CLIME Estimator

Another popular estimator is the CLIME (constrained �1-minimization for inverse matrix
estimation) introduced by Cai et al. [18]. It solves the following optimization problem

minimize ‖�‖1 such that ‖�̂n� − I‖∞ ≤ λ,

where λ is a tuning parameter. The analysis of CLIME uses a condition number assumption.
For example, if entries �−1[i, j] are either zero or bounded away from zero by an absolute
constant then CLIME succeeds at structure recovery when given roughly CM4 log d sam-
ples where M = max‖u‖∞≤1 ‖�−1u‖∞. Cai et al. [16] obtained minimax rates for precision
matrix estimation in the high-dimensional setting. They also proposed a fully data driven
estimator called ACLIME based on adaptive constrained �1 minimization and obtained rate
of convergence. A survey ofminimax rates for sparse covariancematrix estimation and sparse
precision matrix estimation along with rates of convergence of various �1-penalized estima-
tors can be found in the expository article Cai et al. [17]. d’Aspremont et al. [20] considers
penalizing the number of nonzero terms instead of the �1 penalty. Liu et al. [32] have showed
that for a class of non-Gaussian distribution called nonparanormal distribution, the problem
of estimating the graph also can be reduced to estimating the precision matrix. Yuan [55]
replaced the lasso selection by a Dantzig-type modification, where first the ratios between
the off-diagonal elements �−1[i, j] and the corresponding diagonal element �−1[i, i] were
estimated for each row i and then the diagonal entries �[i, i] were obtained given the esti-
mated ratios. Lam and Fan [30], Fan et al. [23] considered penalizing the normal likelihood
with a nonconvex penalty in order to reduce the bias of the �1 penalized estimator.

1.5.7 Information Theoretic Lower Bounds

Misra et al. [38] considers the problem of finding information theoretic lower bound on
the sample size for recovering the precision matrix in a sparse GGM. They establish that
for a model defined on a sparse graph with p nodes, a maximum degree d and minimum
normalized edge strength κ , the necessary number of samples scales at least as d log p/κ2.
The parameter κ , called the minimum normalized edge strength, is defined as

κ := min
(i, j)∈E

�−1[i, j]√
�−1[i, i]

√
�−1[ j, j]

.

They propose an algorithm called degree-constrained inverse covariance estimator (DICE)
which achieves this information theoretic lower bound. They also propose another algorithm
called sparse least-squares inverse covariance estimator (SLICE) which uses mixed integer
quadratic programming, making it more efficient, but the sample complexity of SLICE is
roughly 1/κ2 higher than the information theoretic lower bound.

1.5.8 Ill-Conditioned GGMs

CLIME or Graphical Lasso is only suitable when the precision matrix is well-conditioned.
Kelner et al. [28] considers the problem of estimating an ill-conditioned precision matrix in
some important class of GGMS. They give fixed polynomial-time algorithms for learning
attractive GGMs and walk-summable GGMs with a logarithmic number of samples. Attrac-
tive GGMs are GGMs in which the off-diagonal entries of � are non-positive. This means
that all partial correlations are non-negative. These are often used in practice, for example
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in phylogenetic applications, observed variables are often positively dependent because of
shared ancestry (see Zwiernik [60]); also in finance where using a latent global market vari-
able leads to positive dependence (seeMüller and Scarsini [39]). Kelner et al. [28] introduces
an algorithm called GREEDY-AND-PRUNE which has sample complexity log(1/κ) times
higher than the information theoretic lower bound but is more efficient than other methods.
Walk-summable GGMs are defined as follows, see Malioutov et al. [35] for more details. A
walk of length l ≥ 0 in a graph G = (V (G), E(G)) is a sequence w = (w0, w1, . . . , wl) of
nodes wk ∈ V (G) such that each step of the walk, say (wk, wk+1), corresponds to an edge
of the graph {wk, wk+1} ∈ E(G). Walks may visit nodes and cross edges multiple times. We
let l(w) denote the length of walk w. We define the weight of a walk to be the product of the
edge weights along the walk:

φ(w) =
l(w)∏
k=1

rwk−1,wk .

Wealso allow zero-length “self”walksw = (v) at each node v forwhichwedefineφ(w) = 1.
The connection between these walks and Gaussian inference can be seen as follows. We
decompose the covariance matrix as

� = �−1 = (I − R)−1 =
∞∑
k=0

Rk,

for ρ(R) < 1. We have assumed that the model is normalized by rescaling variables so that
�[i, i] = 1 for all i . Then R = I − � has zero diagonal and the off-diagonal elements are
equal to the partial correlation coefficients ri j

ri j := Cov(xi , x j |xV \{i j})√
Var(xi |xV \{i j})

√
Var(x j |xV \{i j})

·

The (i, j)’th entry of Rl is sum over weights of paths of length l that go from i to j .
A GGM is called walk-summable if for all i, j the sum of |φ(w)| over all walks from i to
j is finite almost surely. For learning walk-summable GGMs [28] introduces an algorithm
calledHYBRIDMBwhich has sample complexity 1/κ2 times the information theoretic lower
bound.

1.5.9 Bayesian Approaches

Bayesian methods have also been utilized for estimation of precision matrices. Banerjee and
Ghosal [5] considers a prior distribution on the off-diagonal entries of the precision matrix
which put a mixture of a point mass at zero and certain absolutely continuous distribution.
They establish posterior consistency of the resulting estimator. Posterior consistency was
established for class of banded precision matrix in Banerjee and Ghosal [4]. In Shi et al.
[46] the authors consider the situation where the observation from the Graphical model are
tampered with Gaussian measurement errors.

1.6 Our Contributions and Future Directions

In this work, we contribute a novel estimator for the weighted network from samples of a
GFF on the network, based on certain Fourier analytic properties of the Gaussian distribution.
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In this pursuit, our approach exploits complex-valued statistics constructed from observed
data, that are of interest in their own right.

To wit, we begin with the observation that the logarithm of a probability density in a
Gaussian Free Field is essentially a quadratic form of the network Laplacian (up to an
additive constant), and is thus of interest in learning the Laplacian via its quadratic forms.
Fundamentally, our approach is underpinned by the observation that the standard Gaussian
density is essentially a fixed point of the Fourier transform, and for a general covariance
matrix�, the Fourier transform entails amapping� �→ �−1 on the exponent of theGaussian
density. Thus, two successive applications of the Fourier transformation acts like an involution
on a Gaussian density, up to a normalization constant. While taking the Fourier transform
via numerical integration can be challenging computationally, we tackle this via a stochastic
approach, by averaging against an independent Gaussian with a suitable dispersion. Our test
statistic, which is complex-valued, is conveniently bounded in absolute value by 1, thereby
allowing for superior concentration of measure effects.

Complex-valued statistical observables have certain salutary properties, which can be of
interest from theoretical perspectives. In particular, they embody a phase, which can lead
to stronger cancellation effects due to the destructive interference of phases. Such statistics,
however, have not been exploited to their full potential, and literature on their application is
quite limited. A recent instance in the literature is accorded by Belomestny et al. [7], where
the authors use complex-valued test statistics in order to perform deconvolution in the context
of covariance matrix estimation.

The approach proposed in the present work is conceptually simple and computationally
light, in addition to having highly tractable analytical properties. Most of the known tech-
niques for precision matrix estimation for GGMs are known to be of limited effectiveness
when the GGM is ill-conditioned, such as the GFF (with a small mass parameter). Further-
more, the known techniques for graph recovery fromGGMs, especially in the ill-conditioned
setting (see, e.g., Kelner et al. [29]) are often combinatorial in nature and are more suited for
the setting of unweighted graphs. Much of the existing literature is also geared towards the
learning of sparse graphs (in the context of the high-dimensional tradeoff between system
size and data availability), and involve computationally intensive optimization procedures.
However, it may be noted that a network can be low dimensional without being sparse –
this is significant vis-a-vis current interest in generative models, where a dense network can
be generated from generative model with only a few parameters. A classic case in point
is that of the Erdos-Renyi random graph in the dense regime, which is characterised by a
single parameter, namely the edge connection probability; another instance on similar lines
is provided by a stochastic block model.

Our approach addressesmany of these issueswith a simple and easy-to-compute estimator.
We demonstrate the effectiveness of our estimator with concrete recovery guarantees and
bounds on the required sample complexity. In particular, we show that the proposed statistic
achieves the parametric rate of estimation for fixed network size. In the setting of networks
growing with sample size, our results show that for Erdos–Renyi random graphs G(d, p)
above the connectivity threshold, network recovery takes place with high probability as soon
as the sample size n satisfies n � d4 log d · p−2.

We believe that the present work inaugurates the study of complex-valued statistics and
techniques inspired by Gaussian Fourier analysis in the context of GGMs, and more gen-
erally, Gaussian random fields with a geometric structure. A direction of particular interest
would be to augment our simple approach with additional ingredients so as to account for
structured network models, a case in point being that of sparsity. Further improvisations
and modifications of our relatively straightforward approach to provide efficient learning in
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wider classes of networks and enhanced rates in specific structural scenarios provide natural
avenues for further investigation.

2 Learning Networks fromGaussian Free Fields

In this section, we will lay out our approach to estimation of the weighted network
(equivalently, its Laplacian) based on Gaussian Fourier analysis. To fix notations, we set
� = (L + μI)−1 and L as d × d matrices and μ > 0. Let

λ1 := λmax(L).

For η > 0, we define

L(η) := (
� + η−1I

)−1
. (4)

Our estimation procedure will comprise of two steps. We will first estimate L(η), and then
from this estimate of L(η) we will construct an estimator of �−1.

2.1 Estimation ofL(�)

Our approach to estimation ofL(η) is based on the Fourier analytic properties of the Gaussian
distribution. In particular, up to constants, the standard Gaussian density in d dimensions is a
fixed point of the Fourier transform. For a general covariance matrix�, the Fourier transform
induces a mapping� �→ �−1 on the exponent of the Gaussian density. Thus, two successive
applications of the Fourier transformation acts like an involution on a Gaussian density, up
to a normalization constant.

Therefore, if there is a simple way to mimic the Fourier transform of an underlying
Gaussian based on data generated from that distribution, then a twofold application of the
Fourier transform (followed by a logarithmic transformation) would approximately result in
a quadratic form in the precision matrix. Obtaining the precision matrix from this quadratic
form would then be a rather simple matter.

In expectation, taking the Fourier transform of a Gaussian density on the basis of random
samples from it is relatively canonical: we simply consider the plane wave corresponding to
the random variable (or more precisely, its empirical version). Towit, ifW is a d-dimensional

Gaussian random vector, then E

(
exp

(
i〈ξ ,W〉)) is the Fourier transform of the density of

W, evaluated at ξ ∈ R
d . In practice, we do not work at the level of expectations, but based

on a large set of samples drawn from W; thus the act of taking expectation is substituted
canonically with averaging over this sample. Thus, we are performing a stochastic version
of a Fourier transformation, based on observed samples from a distribution. In this vein, it is
convenient that our test statistic (which is notably complex-valued) is conveniently bounded
in absolute value by 1, thereby allowing for strong concentration of measure effects.

A second application of the Fourier transform would nominally entail another integral
(in the variable ξ ) against the complex harmonic ei〈ξ ,t〉. However, numerically integrating
statistical estimates, such as those obtained from the fist round of stochastic Fourier transform
above, can be rather challenging, with attendant numerical instability effects. We tackle this
issue by replacing the Lebesgue measure in this second integral by a Gaussian density with a
suitable variance η; the intuitive idea being that the true integral can be seen as a limit when
η → ∞. This introduces the additional parameter η into our estimation procedure, but this is
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not too difficult to eliminate, and is the focus of the subsequent step of the process, discussed
in the next section.

In this work, we combine the two steps above in one stroke, by considering the estimator
in (7), which in turn is motivated by the expectation-level quantity ϕ in (5) and (6). In fact, an
intuitively clarifying interpretation to (5) would be to first take the expectation with respect
to the random variable X (corresponding to the first round of Fourier transform discussed
above), followed by expectation with respect to the variable Y (corresponding to the second
round of Fourier transformation in our earlier discussion).

Let ϕ : R
d → R be defined as

ϕ(t) := E (exp (i〈Y,X + t〉)) (5)

where X ∼ N (0,�), Y ∼ N (0, ηI), and 〈·, ·〉 : R
d × R

d → R is the usual inner product

〈y, x〉 :=
d∑
j=1

y j x j .

An alternative expression of ϕ(t) is the following (see Lemma 5.1)

ϕ(t) = det

(
1

η
L(η)

)1/2

· exp
(

−1

2
〈t,L(η)t〉

)
. (6)

Estimating ϕ(t) for well-chosen values of t ∈ R
d , and suitably aggregating these estimates,

we will obtain an estimate of L(η).
The sample version of the definition (5) of ϕ(t) naturally suggests the following unbiased

estimator:

ϕn(t) := 1

n

n∑
k=1

exp
(
i〈Yk,Xk + t〉) , (7)

where Y1, . . . ,Yn are i.i.d. random vectors in R
d which are independent of the X j s with the

common distribution N (0, ηI). Let e1, . . . , ed denote the standard basis of R
d .

Let l(η)
i j denote the (i, j)-entry of L(η). A direct computation gives

l(η)
i j = −2 log

∣∣ϕ (
ei + e j√

2

) ∣∣ + log
∣∣ϕ(ei )

∣∣ + log
∣∣ϕ(e j )

∣∣ for i �= j,

l(η)
i i = −2 log

∣∣ϕ(ei )
∣∣ + 2 log

∣∣ϕ(0)
∣∣.

Due to this observation, we propose the following estimator of L(η) = [l(η)
i j ]1≤i, j≤d :

̂L(η) :=
[
l̂(η)
i j

]
1≤i, j≤d

, (8)

where

l̂(η)
i j := − 2 log

∣∣ϕn

(
ei + e j√

2

) ∣∣ + log
∣∣ϕn(ei )

∣∣ + log
∣∣ϕn(e j )

∣∣ for i �= j , and (9)

l̂(η)
i i := − 2 log

∣∣ϕn(ei )
∣∣ + 2 log

∣∣ϕn(0)
∣∣. (10)
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2.2 Estimation of 6−1 fromL(�)

The quantityL(η) estimated in the previous section involves the parameter η that is an artefact
of our procedure. In this section our goal is to put forward a principled way of eliminating
the parameter η and obtain an estimate of �−1, which is our object of interest.

A vanilla approach to obtaining �−1 from L(η), in light of its defining equation (4), is
to observe that �−1 and L(η) commute, and therefore spectral inversion is a possibility.
However, direct inversion at the level of eigenvalues can lead to numerical instabilities, and
instead, we propose the following approach, based on the so-calledWoodbury’s identity.

We first write down an identity relating�−1 andL(η). To this end, we recall theWoodbury
matrix identity [53]:(

A + UCV
)−1 = A−1 − A−1U

(
C−1 + VA−1U

)−1VA−1. (11)

With A = η−1I, C = �, U = I and V = I, we get

L(η) = ηI − ηI
(
�−1 + ηI)−1ηI = ηI − η2(�−1 + ηI)−1.

Thus
�−1 = η2

(
ηI − L(η)

)−1 − ηI. (12)

Thus from an estimator̂L(η) of L(η), one can construct a plug-in estimator of �−1:

̂�−1 = η2
(
ηI −̂L(η)

)−1 − ηI. (13)

2.3 AVanilla Spectral Estimator

In [7], the authors introduced the following estimator for the covariance matrix. For ψn(u)

the empirical version of the characteristic function of the Gaussian field, given by

ψn(u) := 1

n

n∑
j=1

exp(i〈u,X j 〉),

and a suitably chosen large parameter U > 0, we define

(�̂BMT)i i := − 2

U 2 � (logψn(Uei )) and (14)

(�̂BMT)i j := − 2

U 2 �
(
logψn

(
U · ei + e j√

2

))
− 1

2

(
(�̂BMT)i i + (�̂BMT) j j

)
for i �= j .

(15)

A naive approach to estimating �−1 would be to invert �̂BMT directly. Conceptually, a
principal point of divergence in which this estimator differs from our approach is that, instead
of directly computing the matrix inverse �−1, we apply another round of Gaussian Fourier
analysis and access �−1 indirectly via that route.

Since both approaches involve Gaussian Fourier analytic or spectral ideas and complex
valued statistics, it would be of interest to compare the two techniques. In particular, such
comparison will clarify whether accessing the Laplacian indirectly via Gaussian Fourier
analysis brings in any statistical benefits.

In summary, our analysis appears to corroborate the fact that the application of Gaussian
Fourier analysis to access the Laplacian indirectly, as in our approach, brings in significant
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statistical benefits. As such, this makes the case for wider investigation of similar ideas in
the study of Gaussian random fields in general and Gaussian Graphical Models in particular.

3 Theoretical Guarantees

In this section, we lay out theoretical guarantees that demonstrate the effectiveness of our
method.

3.1 Estimation Rates via Concentration Bounds

We first state a result showing how the error in estimatingL(η) influences the estimation error

of ̂�−1.

Theorem 3.1 Suppose that

λ1 + μ + η

η2
‖̂L(η) − L(η)‖2 < 1.

Then we have

1

d
‖̂�−1 − �−1‖F ≤ (λ1 + μ + η)2

η4
(
1 − λ1+μ+η

η2
‖̂L(η) − L(η)‖2

) 1

d
‖̂L(η) − L(η)‖F . (16)

Theorem 3.1 naturally leads to the question of concentration bounds for̂L(η), which we
take up in the next section.

3.2 Concentration of ̂L(�)

We begin with a concentration bound for ϕn .

Proposition 3.2 (Concentration of ϕn) For any x > 0 and t ∈ R
d , we have

P (|ϕn(t) − ϕ(t)| ≥ x) ≤ 4 exp
(
− 3nx2

24 + 8x

)
·

In particular, for x ∈ (0, 1] and t ∈ R
d , we have

P (|ϕn(t) − ϕ(t)| ≥ x) ≤ 4 exp
(
− 3

32
nx2

)
·

Let

cη := det

(
1

η
L(η)

)1/2

, c∗(η) := 1

2
cη exp

(
−1

2
‖L(η)‖22

)
, (17)

and
Sn(t) := log |ϕn(t)| − log |ϕ(t)| . (18)

This allows us to state a concentration bound for Sn .
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Proposition 3.3 (Concentration of Sn) For any t ∈ R
d , ‖t‖ ≤ 1 and x ∈ (0, 1], we have

P (|Sn(t)| ≥ x) ≤ 3P (|ϕn(t) − ϕ(t)| ≥ c∗(η)x) .

Therefore, for any t ∈ R
d , ‖t‖ ≤ 1 and x ∈ (0, 1], we have

P (|Sn(t)| ≥ x) ≤ C1 exp(−C2 · nc∗(η)2x2),

for some universal positive constants C1,C2.

Concentration of ϕn(t) around ϕ(t) yields concentration of̂L(η) around L(η) as shown by
the following lemma.

Lemma 3.4 (Concentration of ϕn implies concentration of̂L(η))We have

l(η)
i i − l̂(η)

i i = 2Sn(ei ) − 2Sn(0)

l(η)
i j − l̂(η)

i j = 2Sn
(ei + e j√

2

)
− Sn(ei ) − Sn(e j ) for i �= j .

Finally, we are ready to state

Theorem 3.5 (Concentration of̂L(η)) For x ∈ (0, 1] we have

P

(
1

d
‖L(η) −̂L(η)‖F ≥ x

)
≤ d2 · C1 · exp

(
−C2nc∗(η)2x2

)
,

for some universal positive constants C1,C2. In other words, with probability at least 1−d−c,
we have

1

d
‖̂L(η) − L(η)‖F = O

(
1

c∗(η)

√
log d

n

)
.

Note that

c∗(η) = 1

2
cη exp

(
− 1

2
‖L(η)‖22

)
and

‖L(η)‖2 = η

1 + ηλmin(�)
·

Thus c∗(η) 
 cη. But

cη =
( d∏

j=1

λ j + μ

λ j + μ + η

)1/2

=
( d∏

j=1

(
1 + η

λ j + μ

)−1)1/2

= exp

(
− 1

2

d∑
j=1

log

(
1 + η

λ j + μ

))
·
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3.3 An Explicit Guarantee on the Estimation Rate

It remains to combine the main results of the last two sections to provide an explicit guarantee
on estimation rates.

Theorem 3.6 Suppose that

λ1 + μ + η

η2
‖̂L(η) − L(η)‖2 < 1.

Then, with probability ≥ 1 − d−c, we have

1

d
‖̂�−1 − �−1‖F ≤ C · (λ1 + μ + η)2

η4
(
1 − λ1+μ+η

η2
‖̂L(η) − L(η)‖2

) · 1

c∗(η)

√
log d

n
(19)

for some positive constant C.

4 Generative Models: Erdös–Rényi RandomGraphs

In this section, we investigate the behaviour of our approach in the setting of some common
generative models of random graphs, and compare with the vanilla spectral estimator based
on Belomestny et al. [7]. In particular, we will focus on the setup where the base graph
G(d, p) is generated from the Erdös–Rényi model with edge probability

p = �
( log d

d

)
.

We note in passing that the above regime of connection probability ensures that a graph
generated according to this model is connected with high probability.

4.1 Estimating Erdös–Rényi RandomGraphs via Our Approach

Herein we carry out a performance analysis of our approach for the Erdös–Rényi random
graph model.

To state our main result of this section, we denote the average degree of the graph by

�avg := (d − 1)p.

We may now state

Theorem 4.1 If we choose η = �(p) and take

n >
d6 log d

�2
avg

,

then we have with probability at least 1 − d−c that

1

d
‖̂�−1 − �−1‖F ≤ C

√
d4

p4
log d

n
,

for some absolute constants c,C > 0.
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Remark 4.2 Itmay be noted that in the dense regime of the Erdös–Rényi randomgraphmodel,
i.e. with the connection probability p = �(1) (as d → ∞), Theorem 4.1 implies a sample
complexity of order d4 log d .

Remark 4.3 More generally, one can prove a similar result for inhomogeneous Erdős–Rényi
random graphs with edge probability matrix P . There the role of the average degree �avg

would be replaced by the maximum expected degree �max := maxi
∑

j Pi j .

4.2 Comparison to theVanilla Spectral Estimator

In this section, we will provide a comparison of the theoretical guarantees on our approach
vis-a-vis the vanilla spectral estimator motivated by Belomestny et al. [7]. The application
of the latter estimator requires a choice of the parameter U . We undertake an analysis of
two such possible choices—one following the recommendation of Belomestny et al. [7], and
another following an improvisation tailored to our specific setting.

For both choices (c.f. (25), (26)) of parameter U , it appears from the analysis in the two
subsequent sections that for dense Erdös–Rényi randomgraphs (i.e. p = �(1)), our approach
has a better sample complexity guarantee for ill-conditioned GFFs (i.e., the mass parameter
μ being small); refer to Theorem 4.1 and Remark 4.2.

For our purpose, we state here a simplified version of Theorem 1 of [7]. Note that in [7],
the observations are Yi = Xi + εi , i = 1, . . . , n, where εi s are i.i.d. noises independent of
Xi s. In our setting, the noises εi = 0.

Theorem 4.4 (Theorem 1 of [7]) Assume that ‖�‖2 ≤ R. Let γ >
√
2 and U ≥ 1 satisfy

8γ

√
log(ed)

n
< e−RU2

. (20)

Set

τ(U ) := 6γ
eRU

2

U 2

( log(ed)

n

)1/2· (21)

Then for any τ ≥ τ(U ),

P(‖�̂BMT − �‖∞ < τ) ≥ 1 − 12e−γ 2
d2−γ 2

.

To undertake the analysis for the vanilla estimator, we also need the following preparatory
result.

Proposition 4.5 Let �̂ denote any estimator of �. Assume that smin(�) > ‖�̂ −�‖2, where
smin(M) denotes the smallest singular value ofM. Then

1

d
‖�̂−1 − �−1‖F ≤

1
d ‖�̂ − �‖F

smin(�)(smin(�) − ‖�̂ − �‖2)
·

Let us nowanalyse the vanilla spectral estimator �̂
−1
BMT with two specific choices of param-

eter U : the canonical choice (recommended by Belomestny et al. in [7]) and an improvised
choice (tailored to our specific setting). In [7], the authors suggested the canonical choice
for U should take the form

U = c0R
−1/2

√
log

( n

log(ed)

)
(22)
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for some sufficiently small positive constant c0. On the other hand, in the light of Theorem
4.4 (a simplified version of Theorem 1 in [7] which is tailored to our setting), if we fix the
parameter γ >

√
2 then the condition (20) is equivalent to

RU 2 <
1

2
log

( n

log(ed)

)
− log(8γ ). (23)

The optimal choice for the parameter U should minimize the quantity τ(U ) in (21). Thus,
provided that n is large enough, the improvised choice for U should be

U = R−1/2. (24)

Theorem 4.6 (i) (Canonical parameter choice) If U is of the form (22), then for any α ∈
(0, 1/2), we have

1

d
‖�̂−1

BMT − �−1‖F = O
( (λ1 + μ)2

μ

( log(ed)

n

)1/2−α)
with probability at least 1 − Cd−c for some constants c,C > 0, provided that

n �
(
d(λ1 + μ)

μ

) 2
1−2α

log(ed).

(ii) (Improvised parameter choice) If U is of the form (24), then we have

1

d
‖�̂−1

BMT − �−1‖F = O
( (λ1 + μ)2

μ

( log(ed)

n

)1/2)
with probability at least 1 − Cd−c for some constants c,C > 0, provided that

n �
(
d(λ1 + μ)

μ

)2

log(ed).

WhenL is the Laplacian of an ER(d, p) random graph, we have λ1 = dp+O(
√
dp log d)

with high probability. Applying Theorem 4.6 to this special case gives

Corollary 4.7 (i) (Canonical parameter choice) If U is of the form (22), then for any α ∈
(0, 1/2), we have

1

d
‖�̂−1

BMT − �−1‖F = O
( (dp)2

μ

( log(ed)

n

)1/2−α)
with probability at least 1 − Cd−c for some constants c,C > 0, provided that

n �
(
d2 p

μ

) 2
1−2α

log(ed). (25)

(ii) (Improvised parameter choice) If U is of the form (24), then we have

1

d
‖�̂−1

BMT − �−1‖F = O
( (dp)2

μ

( log(ed)

n

)1/2)
with probability at least 1 − Cd−c for some constants c,C > 0, provided that

n �
(
d2 p

μ

)2

log(ed). (26)
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5 Detailed Proofs of Theoretical Results

In this section, we provide detailed proofs of various theoretical results in the earlier sections
of the paper.

5.1 On the Expectation of'n(t)

We begin with a Lemma that deals with the expectation of ϕn(t).

Lemma 5.1 (Expectation of ϕn(t))

ϕ(t) = det

(
1

η
L(η)

)1/2

· exp
(

−1

2
〈t,L(η)t〉

)
.

Proof We observe that

ϕ(t) = E

[
exp

(
i〈Y1,X1 + t〉

)]
= EY1

[
exp

(
i〈Y1, t〉

)
EX1

[
exp

(
i〈Y1,X1〉

)]]
= EY1

[
exp

(
i〈Y1, t〉

)
exp

(
− 1

2
〈Y1,�Y1〉

)]
=

∫
Rd

1√
det(2πηI)

exp (i〈y, t〉) exp
(

−1

2
〈y,�y〉

)
exp

(
−1

2
〈y, η−1y〉

)
dy

=
∫

Rd

1√
det(2πηI)

exp (i〈y, t〉) exp
(

−1

2
〈y, (� + η−1I)y〉

)
dy

= 1√
det(I + η�)

exp

(
−1

2
〈t,L(η)t〉

)

= cηexp

(
−1

2
〈t,L(η)t〉

)
,

where

cη := det (I + η�)−1/2 = det

(
1

η
L(η)

)1/2

. (27)

��

5.2 Proof of Lemma 3.4

We continue with the proof of Lemma 3.4.

Proof of Lemma 3.4 Observe that

1

2
〈t,L(η)t〉 = − logϕ(t) + logϕ(0)

= − logϕn(t) +
(
logϕn(t) − logϕ(t)

)
+ logϕ(0).

Taking real parts of both sides yields
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1

2
〈t,L(η)t〉 = − log |ϕn(t)| +

(
log |ϕn(t)| − log |ϕ(t)|

)
+ log |ϕ(0)|

= − log |ϕn(t)| + S(t) + log |ϕ(0)| .

Let l(η)
i j denote the entry at i’th row and j’th column of L(η). Since L(η) is symmetric, we

have

〈ei ,L(η)ei 〉 = l(η)
i i ,

〈ei + e j√
2

,L(η)
(ei + e j√

2

)〉
= 1

2
l(η)
i i + l(η)

i j + 1

2
l(η)
j j for i �= j .

Recall that

l̂(η)
i i = −2 log |ϕn(ei )| + 2 log |ϕn(0)|
l̂(η)
i j = −2 log

∣∣∣ϕn

(ei + e j√
2

)∣∣∣ + log |ϕn(ei )| + log |ϕn(e j )| for i �= j .

Thus,

l(η)
i i − l̂(η)

i i = 〈ei ,L(η)ei 〉 − (−2 log |ϕn(ei )| + 2 log |ϕn(0)|)
= 2Sn(ei ) − 2Sn(0)

and for i �= j

l(η)
i j − l̂(η)

i j =
〈ei + e j√

2
,L(η)

(ei + e j√
2

)〉
− 1

2

(
l(η)
i i + l(η)

j j

)
− l̂(η)

i j

= 2Sn
(ei + e j√

2

)
− Sn(ei ) − Sn(e j ).

��

5.3 Proofs of Propositions 3.2 and 3.3

Our next item is the proof of Proposition 3.2.

Proof of Proposition 3.2 Note that

|ϕn(t) − ϕ(t)| ≤ ∣∣�(
ϕn(t) − ϕ(t)

)∣∣ + ∣∣�(
ϕn(t) − ϕ(t)

)∣∣ .
For k ∈ {1, . . . , n}, we define

ξk := �
(
ei〈Yk ,Xk+t〉 − ϕ(t)

)
.

Then we have i.i.d. real random variables ξ1, . . . , ξn such that

�
(
ϕn(t) − ϕ(t)

)
= 1

n

n∑
k=1

ξk .

Observe that

E (ξk) = 0, |ξk | ≤ 1 + cη ≤ 2, Var(ξk) ≤ 1 − |ϕ(t)|2 ≤ 1.
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By the Bernstein’s inequality, we have for any x > 0

P
(∣∣�(

ϕn(t) − ϕ(t))
∣∣ ≥ x

) = P

(∣∣∣∣∣1n
n∑

k=1

ξk

∣∣∣∣∣ ≥ x

)
≤ 2 exp

(
−

1
2nx

2

1 + 2
3 x

)
·

Using similar bound for the imaginary part, we have

P
(|ϕn(t) − ϕ(t)| ≥ x

)
≤ P

(∣∣�(
ϕn(t) − ϕ(t)

)∣∣ + ∣∣�(
ϕn(t) − ϕ(t)

)∣∣ ≥ x
)

≤ P

(∣∣�(
ϕn(t) − ϕ(t)

)∣∣ ≥ x

2

)
+ P

(∣∣�(
ϕn(t) − ϕ(t)

)∣∣ ≥ x

2

)

≤ 4 exp
(
−

1
8nx

2

1 + 1
3 x

)
= 4 exp

(
− 3nx2

24 + 8x

)
·

This completes the proof of Proposition 3.2. ��
We continue on to the proof of Proposition 3.3.

Proof of Proposition 3.3 We have

Sn(t) = log
∣∣∣ϕn(t)
ϕ(t)

∣∣∣ ≤ log
(∣∣∣ϕn(t) − ϕ(t)

ϕ(t)

∣∣∣ + 1
)

≤
∣∣∣ϕn(t) − ϕ(t)

ϕ(t)

∣∣∣,
which implies that

P

(
Sn(t) ≥ x

)
≤ P

(
|ϕn(t) − ϕ(t)| ≥ x · ϕ(t)

)
for any x > 0.

On the event {
|ϕn(t) − ϕ(t)| ≤ 1

2
|ϕ(t)|

}

we have

−Sn(t) = log
∣∣∣ ϕ(t)
ϕn(t)

∣∣∣ ≤ log
(∣∣∣ϕn(t) − ϕ(t)

ϕn(t)

∣∣∣ + 1
)

≤ log
(
2
∣∣∣ϕn(t) − ϕ(t)

ϕ(t)

∣∣∣ + 1
)

≤ 2
∣∣∣ϕn(t) − ϕ(t)

ϕ(t)

∣∣∣ ·

Hence, for any x > 0,

P

(
−Sn(t) ≥ x

)
≤ P

(
|ϕn(t) − ϕ(t)| ≥ x

2
|ϕ(t)|

)
+ P

(
|ϕn(t) − ϕ(t)| >

1

2
|ϕ(t)|

)
.

In particular, if x ∈ (0, 1] we deduce that
P (|Sn(t)| ≥ x) ≤ 3 · P

(
|ϕn(t) − ϕ(t)| ≥ x

2
|ϕ(t)|

)
.

On the other hand, for any t ∈ R
d with ‖t‖ ≤ 1, one has∣∣∣〈t,L(η)t〉

∣∣∣ ≤ ‖L(η)‖22.
This implies

|ϕ(t)| = cη exp
(
−1

2
〈t,L(η)t〉

)
≤ cη exp

(
−1

2
‖L(η)‖22

)
= 2c∗(η).
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Thus, for x ∈ (0, 1] and ‖t‖ ≤ 1

P (|Sn(t)| ≥ x) ≤ 3P (|ϕn(t) − ϕ(t)| ≥ c∗(η)x) .

��

5.4 Proofs of Theorems 3.1 and 3.5

We first tackle the proof of Theorem 3.5

Proof of Theorem 3.5 For x ∈ (0, 1], we have
P

(∣∣∣l(η)
i i − l̂(η)

i i

∣∣∣ ≥ x
)

≤ P

(
2 |Sn(ei )| + 2|Sn(0)| ≥ x

)
≤ P

(
|Sn(ei )| ≥ x

4

)
+ P

(
|Sn(0)| ≥ x

4

)
≤ C1 · exp

(
−C2nc∗(η)2x2

)
,

for some universal constants C1,C2 > 0.
For i �= j and x ∈ (0, 1], we have

P

(∣∣l(η)
i j − l̂(η)

i j

∣∣ ≥ x
)

≤ P

(
2
∣∣Sn(ei + e j√

2

)∣∣ + ∣∣Sn(ei )∣∣ + ∣∣S(e j )
∣∣ ≥ x

)

≤ P

(∣∣Sn(ei + e j√
2

)∣∣ ≥ x

4

)
+ P

(∣∣Sn(ei )∣∣ ≥ x

4

)
+ P

(∣∣Sn(e j )∣∣ ≥ x

4

)
≤ C1 · exp

(
−C2nc∗(η)2x2

)
for some universal constants C1,C2 > 0.

Therefore, for x ∈ (0, 1]

P

(
max
i, j

∣∣∣l(η)
i j − l̂(η)

i j

∣∣∣ ≥ x

)
≤ d2 · C1 · exp

(
−C2nc∗(η)2x2

)
,

for some universal constants C1,C2 > 0. Note that,

‖L(η) −̂L(η)‖2F =
∑
i, j

∣∣∣l(η)
i j − l̂(η)

i, j

∣∣∣2 ≤ d2 · max
i, j

∣∣∣l(η)
i j − l̂(η)

i j

∣∣∣2 .

��
We are now ready to address the proof of Theorem 3.1.

Proof of Theorem 3.1 From (12) and (13), we have

̂�−1 − �−1 = η2
((

ηI −̂L(η)
)−1 − (

ηI − L(η)
)−1

)
.

Writing X = L(η) and X′ = ̂L(η), we have(
ηI − X′)−1 =

(
ηI − X + X − X′)−1

=
(
ηI − X

)−1 −
(
ηI − X

)−1(
X − X′)(

I + (
ηI − X

)−1(X − X′))−1(
ηI − X

)−1
,
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where for the second equality above we have used the Woodbury identity with A = ηI −X,
C = I, U = X − X′ and V = I. Now, using the inequalities ‖AB‖F ≤ ‖A‖F‖B‖2 and
‖AB‖2 ≤ ‖A‖2‖B‖2, we obtain

‖(ηI − X′)−1 − (ηI − X)−1‖F
= ‖(ηI − X)−1(X − X′)(I + (ηI − X)−1(X − X′))−1(ηI − X)−1‖F
≤ ‖(ηI − X)−1(X − X′)‖F‖(I + (ηI − X)−1(X − X′))−1(ηI − X)−1‖2
≤ ‖(ηI − X)−1‖2‖(X − X′)‖F‖(I + (ηI − X)−1(X − X′))−1‖2‖(ηI − X)−1‖2
≤ ‖X − X′‖F‖(ηI − X)−1‖22‖(I + (ηI − X)−1(X − X′))−1‖2.

Now observe that ηI − X = ηI − L(η) = η2(�−1 + ηI)−1, which implies
(
ηI − X

)−1 =
η−2

(
�−1 + ηI

)
. Hence

‖(ηI − X
)−1‖2 = η−2(λ1 + μ + η

)
.

Let E := (ηI − X)−1(X − X′). Then

‖E‖2 ≤ η−2(λ1 + μ + η
)‖X − X′‖2.

As long as ‖E‖2 < 1, we have

‖(I + E)−1‖2 ≤ 1

1 − ‖E‖2 ·

Putting everything together, we get

1

d
‖̂�−1 − �−1‖F ≤ (λ1 + μ + η)2

η4(1 − ‖E‖2) · 1
d

· ‖̂L(η) − L(η)‖F

≤ (λ1 + μ + η)2

η4
(
1 − λ1+μ+η

η2
‖̂L(η) − L(η)‖2

) · 1
d

· ‖̂L(η) − L(η)‖F .

This completes the proof. ��

5.5 Proof of Proposition 4.5

We now establish Proposition 4.5, which is of importance for the main results in Sect. 4.

Proof of Proposition 4.5 The identity

�̂
−1 − �−1 = �̂

−1
(� − �̂)�−1

gives

‖�̂−1 − �−1‖F = ‖�̂−1
(� − �̂)�−1‖F

≤ ‖�̂−1‖2‖(� − �̂)�−1‖F
≤ ‖�̂−1‖2‖� − �̂‖F‖�−1‖2
≤ ‖�̂ − �‖F

smin(�̂)smin(�)
· (28)
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Now, by Weyl’s inequality,

|smin(�̂) − smin(�)| ≤ ‖�̂ − �‖2,
which yields the lower bound

smin(�̂) ≥ smin(�) − ‖�̂ − �‖2 > 0.

Plugging this into (28) we get the desired upper bound. ��

5.6 Proofs of Theorems 4.1 and 4.6

We complete this section with the proofs of the Theorems in Sect. 4.

Proof of Theorem 4.1 For semi-dense Erdös–Rényi graphs, i.e.,

p = �
( log d

d

)
,

all the non-zero eigenvalues of L = D−A are �(dp), with probability at least 1−d−c. This
follows from Weyl’s inequality that

|λi − (d − 1)p| ≤ ‖(D − A) − ((d − 1)pI − p(J − I))‖2
for i = 1, . . . , d − 1, and the estimate

‖D − A − ((d − 1)pI − p(J − I))‖2
≤ ‖D − (d − 1)pI‖2 + ‖A − p(J − I)‖2
= O

(√
dp log d

)
,

which holds with probability at least 1 − d−c.
Indeed,

‖D − (d − 1)pI‖2 = max
i

|Dii − (d − 1)p|.
Now Dii follows Binomial ((d − 1), p), and hence Dii − (d − 1)p is zero mean Sub-
Gaussian with parameter σ 2 = O(dp), whence it follows (c.f. Vershynin [50] Chap. 2) that
with probability at least 1 − d−c we have

max
i

|Dii − (d − 1)p| = O
(√

dp log d
)
.

On the other hand,

‖A − p(J − I)‖2 ≤ O
(√

dp
)
,

with probability at least 1 − d−c (see, e.g., Theorem 5.2 in [31]).
Thus if η = O(p), we have

cη ≥ exp

(
− 1

2

d∑
j=1

η

λ j + μ

)

 exp

(
− C ′ η

p

)
= �(1).

Therefore, with probability at least 1 − d−c, we have

1

d
‖̂L(η) − L(η)‖F = O

(√
log d

n

)
.
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Using (19), we obtain

1

d
‖̂�−1 − �−1‖F

≤ (dp)2

p4
1

1 − d‖̂L(η)−L(η)‖2
p

1

d
‖̂L(η) − L(η)‖F

= O

(√
d4

p4
log d

n

)
,

provided

d‖̂L(η) − L(η)‖2
p

≤ d2

p

1

d
‖̂L(η) − L(η)‖F ≤ d2

p

√
log d

n
< 1.

Thus we need a sample complexity of

n >
d6 log d

�2
avg

to attain an estimation error of O(

√
d4

p4
log d
n ). ��

We finally complete the proof of Theorem 4.6.

Proof of Theorem 4.6 First, we note that in our set-up,

‖�‖2 = μ−1, smin(�) = (λ1 + μ)−1.

(i) From Theorem 1 of [7], we get by choosing R = ‖�‖2 = μ−1 and U =
c0

√
1
R log(n/ log(ed)) (where c0 > 0 is a sufficiently small constant) that for any α ∈

(0, 1/2),

‖�̂BMT − �‖∞ = O

(
μ−1

(
log(ed)

n

)1/2−α)
,

with probability at least 1 − Cd−c for some c,C > 0. As ‖ · ‖2 ≤ ‖ · ‖F ≤ d‖ · ‖∞, we get
from Proposition 4.5 that

1

d
‖�̂−1

BMT − �−1‖F = O

(
(λ1 + μ)2μ−1

(
log(ed)

n

)1/2−α)
,

provided

dμ−1
(
log(ed)

n

)1/2−α

< c∗smin(�) = c∗(λ1 + μ)−1,

for a sufficiently small c∗ > 0, i.e.

n �
(
dμ−1(λ1 + μ)

) 2
1−2α

log(ed),

as desired.
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(ii) From Theorem 1 of [7], we get by choosing R = ‖�‖2 = μ−1 and U = R−1/2 that

‖�̂BMT − �‖∞ = O
(
μ−1

( log(ed)

n

)1/2)
with probability at least 1−Cd−c for some c,C > 0. Using similar argument as part (i), we
get the desired result. This completes the proof. ��
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