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Abstract—Coexisting satellite and terrestrial networks present
a unique set of challenges and opportunities when the two
networks share the same spectrum. One of these challenges is the
signal recovery. In this work, we design a signal recovery scheme
in coexisting satellite and terrestrial networks. We formulate
an optimization problem and propose a diffusion model to
perform signal recovery. The proposed diffusion model leverages
the denoising mechanism to recover the signals from noisy
and distorted signals. The proposed diffusion model consists
of encoder to encode the input to the latent space, U-Net for
denoising, attention block to integrate different relevant feature
to create better context for signal recovery, and decoder to deliver
the recovered signal.

Index Terms—Satellite network, terrestrial network, low earth
orbit (LEO) satellite, Diffusion model, signal recovery.

I. Introduction

Coexistence of satellite and terrestrial networks represent
a complex and dynamic aspect of modern communication
systems. Working together, satellite and terrestrial networks
can ensure comprehensive coverage, combining the wide reach
of satellite networks with the high capacity and low latency
of terrestrial networks [1]. Nevertheless, major challenges in
these networks include managing interference between satel-
lite, equipment noises, and terrestrial signals and recovery of
these signals, especially in bands where both systems operate
[2], [3]. Traditional methods such as power amplifier lineariza-
tion techniques have been widely used [4]. The premise of
these traditional methods is that the working conditions of
the power amplifier need to be maintained to obtain a stable
operating state. Despite the typically robust design of satellite
transmission systems, minor fluctuations in signal levels and
power supplies may still occur, owing to the severity of the
irradiation environment they operate in [5].

Traditional communication systems rely on handcrafted
algorithms and models for signal prediction. However, with
the advent of deep learning, there has been a paradigm shift
towards data-driven approaches that leverage the power of
deep neural networks (DNNs) to automatically learn complex
patterns and representations from large amounts of data. In
this context, deep learning-based signal recovery concept is
consistent with this direction of the technology development.
Benefiting from the robustness to noise provided by the deep
neural networks (DNN) themselves [4], [6], [7] and the power
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independence contributed by batch normalization (BN) layers,
the proposed concept is becoming possible.

Generative deep learning for signal recovery is a cutting-
edge approach that leverages the power of generative models
such as generative adversarial networks (GANs) and autoen-
coders such as variational autoencoders (VAEs) to reconstruct
or enhance signals that have been degraded or distorted [8].
Different from these generative models, diffusion models work
by gradually learning to reverse a diffusion process, which
gradually adds noise to the data until it turns into a random
noise signal. The model is trained to do the opposite: starting
from noise, it learns to gradually reconstruct the original data.
Motivated by the above working mechanism the diffusion
models, we propose a diffusion model-based signal recovery
scheme for coexisting satellite and terrestrial networks with
large LEO satellite constellation. To the best of our knowledge,
this the first work to use employ diffusion model to perform
signal recovery in satellite communications. The contributions
of this work can be summarized as follows:
• We consider coexisting satellite and terrestrial networks.

The satellite network consists of low earth orbit (LEO)
satellite constellation modelled as cell-free MIMO serv-
ing multiple satellite users (SUs). The terrestrial network
consists of multiple base stations (BSs) causing interfer-
ence to the SUs. Aiming at recovering the signal at the
SUs, we formulate an optimization problem.

• To handle the formulated problem, we propose a diffu-
sion model-based signal recovery scheme. The proposed
model leverages the denoising mechanism to recover the
signals from noisy and distorted signals. The proposed
diffusion model consists of encoder to encode the input
to the latent space, U-Net for denoising, attention block to
integrate different relevant feature to create better context
for signal recovery, and decoder to deliver the recovered
signal.

• We compare the performance of the proposed scheme
with recent work in the literature and we show that the
proposed scheme has superior performance.

II. SystemModel and Problem Formulation

Fig. 1 illustrates satellite and terrestrial networks coexisting
on the same spectrum and consist of LEO satellite constella-
tion (LEO SatCon) consists of L satellites serving Ks satellite
users (SUs) and B base stations (BSs) serving Kc cellular
users (CUs). Each LEO satellite s, SU ks, and BS b are
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Fig. 1. Schematic diagram of network architecture of coexisting terrestrial and
LEO satellite constellations networks.

equipped uniform planar array (UPA) respectively denoted as
M = Mx × My, N = Nx × Ny, and A = Ax × Ay.

A. Channel Model

To model the propagation and attenuation where the path
loss components, the channel model includes the large-scale
fading and the small-scale fading. The large-scale fading
between the satellite and SUs. [9]

PLTot = PLb + PLg + PLs, (1)

where PLb represents the basic path loss, PLg accounts for the
attenuation due to atmospheric gasses, PLs is the attenuation
due to either ionospheric or tropospheric scintillation. All these
path loss components measured in dB. Specifically, the basic
path loss model PLb accounts for the signal’s free space
propagation and shadow fading. The free space path loss
(PLFS ) in dB for a distance dk,i (also known as slant range)
in meter and frequency fc in GHz. Hence, the slant distance
dk,i can be expressed in terms of the satellite altitude H and
its elevation angle as [10], [11]:

d =
√

R2
e sin2 θ + r2

m + 2Rerm − Re sin θ, (2)

where RE = 6378 Km is the radius of the Earth, rm, and θ,
are the satellite altitude and its elevation angle, respectively.
Thereby, the free space path loss (PLFS )can be calculated as:

PLFS (d, f c) = 32.45 + 20 log10( f c) + 20 log10(d). (3)

Shadow fading (SF) is modeled by a log-normal distribution
as ∼ LN(0, σ2

S F) with zero-mean and σS F standard deviation.
The values of σ2

S F can be extracted from the 3GPP Release-
15. Then, the path loss with shadow fading in dB units is
modeled as:

PLb = PLFS (d, f c) + S F. (4)

The large-scale fading effects of the LEO satellite s to the
SU ks after considering the LEO satellite antenna gain GT can
be modeled as

ζs,ks (dB) = PLTot −GT . (5)

B. Small Scale Channel Model

In this work, we focus on the case where both line-of-
sight (LoS) and non-LoS (NLoS) paths of the LEO satellite
channels exist [11], [12]. Small-scale fading consists of line-
of-sight (LoS) and non-LoS (NLoS) components. Accordingly,
we consider the Rician model to express the channel between
LEO satellite s and the SU ks. The channel from the LEO
satellite s to the SU ks is given as

fs,ks =

√
Rkζs,ks

Rk + 1
f̄s,ks +

√
ζs,ks

Rk + 1
f̃s,ks , (6)

where f̄s,ks and f̃s,ks are the LoS and NLoS components, respec-
tively, and Rk is the Rician factor. Further, the entries of f̃s,ks

are independent and identically distributed (i.i.d.) and follow
the complex Gaussian distribution with zero mean and unit
variance. Given that users are often separated by only a few
wavelengths, it can be assumed that the channel realizations
from the satellite to various users uncorrelated. Consequently,
by employing a ray-tracing based channel modeling method,
the complex baseband downlink space domain channel at a
time instance t and frequency f can be depicted as [9]

hs,ks (t, f ) =
Uks−1∑
uks=1

fs,ks . exp
(
2π
[
tνks − f τks

])
(7)

where Uks is the number of propagation paths of the SU kS ,
νks is the doppler shifts, and τks is the propagation delay.

C. Signal Model

In the considered downlink data transmission scenario, lin-
ear precoding is executed at the LEO satellite s for transmitting
data to the K SUs who are concurrently served on the same
time-frequency blocks. The received signal at the SU ks is
given as

yks =

S∑
s=1

hH
s,ks

xs,ks︸        ︷︷        ︸
Desirable signal

+

Ks∑
is,ks

S∑
s=1

hH
s,is

xs,is︸             ︷︷             ︸
Inter - user interference

+ Itr︸︷︷︸
Terrestrial interference

+ zks︸︷︷︸
Noise

,

(8)
where xs represents the transmit signal at satellite s. The inter-
ference from the coexisting terrestrial network Itr is estimated
at SU ks assuming that the satellite network has no information
on the terrestrial network. zks ∼ CN

(
0, σk

k

)
is the additive

white Gaussian noise (AWGN) at SU ks.
Let us denote the desirable signal of SU ks as dks . Recover-

ing dks perfectly can be challenging, which may always lead
to a residual loss. Although the residual loss may be negligible
compared with dks , but still resulting in an incorrect estimation
of dks . To address this issue of recovering dks , signal detection
problem is formulated as follows [13]
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Fig. 2. Architecture of the proposed diffusion model.

min
θ

L (θ) = E
{∥∥∥dks − d̂ks

∥∥∥2} (9)

s.t. d̂ks = Fθ
(
dks

)
, (9a)

where θ is the parameters of the recovery model, d̂ks is the
detected signal, and Fθ

(
dks

)
is proposed signal receovery

model. In the following section, we propose the signal re-
covery model.

III. DiffusionModel for Signal Recovery

In this section, we present the details of the proposed diffu-
sion model-based scheme signal recovery. Before diving into
the structure, it’s important to understand that diffusion models
work by gradually transforming a sample of random noise into
a structured output through a series of learned reverse diffusion
steps [14], [15]. To adapt this concept to our data (which is
numerical data), we would essentially be training a model
to ”denoise” numerical data, iteratively refining random or
noisy numerical inputs into cleaner, structured outputs which
represent the predicted channels and recovered signals.

A. Model Architecture

The proposed diffusion model depicted in Fig. 2 operates by
using a process known as ”diffusion modeling,” which is a gen-
erative technique that involves a forward ”diffusion” process
to add noise to input data, and a reverse ”denoising” process
to reconstruct the data. Below we explain the architecture and
working mechanism of the model:
• Encoding to Latent Space: The process begins with an

original input signal X that is encoded into a latent space
representation z using an encoder E. The latent space
is typically a lower-dimensional representation of the
input signal, which includes the necessary features for
the signal reconstruction.

• Diffusion Process: Once the input signal is in the latent
space, diffusion process is applied on the input signal.
This process gradually adds noise over a series of discrete

time steps T , transforming the data into a completely
noised version zT by the final time step. Using a known
method in advanced, we add the noise according to a
predefined noise schedule.

• Denoising with U-Net: The reverse process involves a
denoising U-Net, which is an efficient DNN. The U-Net
is trained to predict the original input signal from the
noised latent representation. U-Net predict the original
signal by iteratively denoising the latent representation
across the time steps from T to 1.

• Attention Mechanisms: Inside the U-Net, there is a block
that utilizes attention mechanism. This mechanism allows
the network to focus on and integrate relevant features
across different parts of the input signal.

• Iterative Denoising: The denoising process is iterative.
In each denoising step, the model makes a prediction of
the less-noisy version of the latent representation, moving
backward from zT towards z. Skip connections in the U-
Net help to preserve and refine details throughout this
procedure.

• Decoding to Pixel Space: After the final denoising step,
the now-denoised latent representation is decoded back
into the sample space using a decoder D, resulting in the
reconstructed signal X̂.

• Output: The output of the model is a new signal that
retains the characteristics of the original input signal.

B. Signal Recovery Scheme

The signal recovery scheme can be divided into two phases,
offline training phase and online recovery phase. Given the
training data X =

{
d(1)

ks
, d(2)

ks
, ..., d(n)

ks

}
with n represent n-th

training sample, we aim at decreasing the loss between the
recovered signal d̂(n)

ks
and the actual signal d(n)

ks
during the

offline training phase. Thus, we define the following mean
square error (MSE) loss function

MS E =
1
N

N∑
n=1

∥∥∥∥d(n)
ks
− d̂(n)

ks

∥∥∥∥2 (10)



TABLE I Simulation Parameters

Parameter Value
U-Net contracting path kernel size 3 × 3
U-Net contracting path stride 1
U-Net expansive path kernel size 2 × 2
U-Net expansive path stride 2
Attention kernel size 2 × 2
Noise scheduling mechanism Markov chain
Noise scheduling variance β1 − βT 0.0001 – 0.015
Noise distribution Normal

Backpropagation is used during the training to update the
diffusion model parameters θ. Given the trained model, we
perform the online signal recovery with the given test data.
The signal recovery procedure is illustrated in Algorithm 1

Algorithm 1 Diffusion Model-based Signal Recovery

Initialization: i
Offline training phase

1: Input training set X
2: while i ≤ I do
3: Update θ via backproagation.
4: i = i + 1
5: end while
6: return Fθ

Online signal recovery phase
7: Input test samples
8: Output recovered signal d̂(n)

ks
=0

where i and I are respectively the iteration index and the
maximum number of iteration.

C. Training and Testing Setup

The entire process is trained end-to-end, with the goal
of the denoising process to learn to reverse the diffusion
process. Adam optimizer is used to optimize the network
parameters. The learning rate is set to 0.0001, batch size is
64 and drop 0.3 is added to overcome overfitting. TABLE
I includes the diffusion model parameters. The simulation
parameters to generate the data are illustrated in TABLE II.
The generated training data consists of 18000 samples which
is divided into 16000 samples for training and 2000 samples
for testing. Normalized mean square error (NMSE) is used as
an evaluation metric.

IV. Experimental Results

In this section, we provide simulation results to evaluate the
performance of the proposed diffusion model and testify its
effectiveness and robustness. Simulation parameters are given
in TABLE II. For sake of comparison, we use BRSnet with
attention (BRSnetWA) in [13].

Fig. 3 compares the performance of the proposed diffusion
model and BRSnet in terms NMSE. Both models employ
attention mechanism to optimize learnable parameters by fo-
cusing on crucial features and preventing the loss of important
features. Nevertheless, the location of deploying the attention
plays a crucial role on the performance. Our proposed diffusion

TABLE II Simulation Parameters

Parameter Value
Number of clusters 10
Number of LEO satellites per cluster 8
Number of SUs 100
Number of BSs 4
Number of antennas per satellite 64
Number of antennas per SU 8
Carrier frequency 28 GHz
Satellite antenna gain 35 dBi
User antenna gain 37 dBi
Scintillation loss 0.5 dB
Atmospheric loss 0.3 dB
Rician factor 2.8

0 2 4 6 8 10 12 14 16 18 20
SNR(dB)

−35

−30

−25

−20

−15

−10

−5

0

NM
SE

(d
B)

Proposed
BRSnetWA [13]

Fig. 3. NMSE versus SNR.

model incorporates the attention to focus on high quality
features inside the U-Net and during the denoising procedure.
This enhances the capability of the model in learning the useful
features for noise and interference removal signal recovery.
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Fig. 4. NMSE versus SNR.

In addition to NMSE, we define symbol error rate (SER)
metric as a performance metric. SER is defined as follows:

S ER =
1
T

T∑
t=1

γ(t)
dk
, (11)

where γ(t)
dk

is an indicator has value 1 when the predicted
sample d̂ks is equal to the test sample dks and 0 otherwise.
T represents the total number of symbols.



The SER performance of the proposed diffusion model is
depicted in Fig. 4. It can be observed that the proposed diffu-
sion moded can remarkably improve the SER performance and
a performance gap of around 4.1 dB between BRSnetWA and
the proposed diffusion model-based scheme can be observed
under moderate and high SNR conditions.

V. Conclusion
In this work, we proposed a diffusion model-based signal

recovery scheme in coexisting satellite and terrestrial net-
works where LEO satellite constellation is modelled as cell-
free MIMO and experiencing interference from the terrestrial
network. We formulated the signal recovery problem and
designed a diffusion model which leverages the denoising
mechanism to recover the signals from noisy and distorted
signals. Simulation results showed the superiority of the pro-
posed model over the compared recent method.
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