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puter vision, natural language processing, autonomous

driving, and robotics. Its use has become a powerful

ally for autonomous systems of different domains to

perform complex tasks accurately and efficiently with

minimal human intervention. Perception systems are one

of the most crucial components for autonomous systems,

such as autonomous vehicles, employing ML to execute

complex perception tasks. These systems perceive and

interpret the surrounding environment, relying on sensors

such as cameras, lidars, and radars, and must ensure a

safe and reliable output that genuinely represents the

authentic environment [1].

As other systems, perception systems are also subject

to faults (e.g., caused by bit-flip errors [2]) and malicious

attacks (e.g., adversarial attacks [3]), that can degrade

ML modules’ accuracy or stop it completely, precluding

the system’s capability of providing a correct output.

Perception errors may have severe and irreversible con-

sequences depending on the application, such as in au-

tonomous vehicle accidents [4]. As a result, guaranteeing

a reliable and correct perception output even when those

systems are subject to faults and malicious attacks is a

major challenge.

Several studies have explored different methods and

techniques to build more reliable perception systems [1],
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[5], [6]. Researches adopting N-version programming

(NVP) [7] for ML-based systems has demonstrated sig-

nificant improvement in the system’s output reliability.

The main idea of NVP is to utilize replicated and diverse

system components capable of performing the same

tasks. When adopting multiple versions, various archi-

tectural possibilities exist due to diverse ML modules

and input data. Modeling approaches have investigated

different architectures. For instance, Ege et al. [8] have

proposed a general model for computing the reliability

of an N-version programming software that could be

extended to ML-based systems. The two-version sys-

tem [9], [10] and the three-version system [11] are the

architectures of N = 2 and 3, respectively, known to be

theoretically effective for improving the system output

reliability. Besides, Latifi et al. [12], Gujarati et al. [13],

and Xu et al. [14] have experimentally analyzed N-

version for ML systems to improve output reliability.

However, previous studies have not explored the impacts

caused by faults or malicious attacks on these systems.

Furthermore, the combination with other techniques,

such as software rejuvenation, has not been sufficiently

investigated [15].

Therefore, this paper explores the NVP ML and

software rejuvenation combination to enhance percep-

tion systems’ output reliability. We model and evaluate

perception system architectures employing multiple ML

modules and time-based software rejuvenation to recover

compromised ML modules proactively. We use Deter-

ministic and Stochastic Petri Net (DSPN) to represent

(1) faults and malicious attacks’ effects on a perception

system, (2) recovery actions after failures, and (3) a

proactive time-based rejuvenation mechanism for the ML

modules. Then, we define reliability functions to capture

the output reliability in different states that the system

may assume. The reliability functions are defined based

on a voting scheme necessary to decide whether a request

is correct when multiple versions are used (e.g., majority

voting). This paper explicitly focuses on voting schemes

used by Byzantine fault-tolerant (BFT) protocols, where

correctness can only be guaranteed when there are fewer

compromised components than a pre-defined threshold.

We perform numerical experiments in four- and six-

version perception systems using the proposed models

and reliability functions. Our analysis shows that the

reliability of the six-version system adopting a reju-

venation mechanism is higher than the four-version

system without adopting rejuvenation. Additionally, we

investigate different scenarios to find the optimum values

of key input parameters to maximize the system output

reliability in both cases where rejuvenation is used or

not. Our contributions are:

• adoption of a rejuvenation method for perception

system architectures with N-version ML;

• reliability models and functions to evaluate the

expected output reliability of perception systems,

taking into account faults, malicious attacks, reju-

venation, and BFT voting schemes;

• numerical analysis to find optimum values of key

input parameters where output reliability is maxi-

mized.

The remainder of the paper is organized as follows.

§II presents fundamental concepts and related work.

§III presents a perception system architecture adopting

a rejuvenation mechanism. §IV presents the developed

models and functions to analyze the reliability of N-

version perception systems. §V presents and discuss the

numerical analysis, demonstrating the proposed mod-

els’ applicability. Finally, §VI concludes this paper and

briefly explains future work.
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II. BACKGROUND AND RELATED WORK

A. Software rejuvenation

Rejuvenation is a preventive maintenance technique

to avoid system degradation by proactively recovering

components to a safe and healthy state before they

degrade. It has been studied and applied in different

systems and areas, such as BFT protocols and cloud

environments, to enhance fault tolerance, reliability, and

availability. Rejuvenation modeling has also been suc-

cessfully employed to evaluate availability [16], the

impact of aging-related bugs in software systems [17],

and reliability [18]. However, few works consider this

technique as an instrument to improve output reliability

in ML systems [15].

B. Byzantine Fault-Tolerance & DSPN modeling

Byzantine fault-tolerant (BFT) consensus protocols

have been designed to ensure systems consistency even

in the presence of Byzantine faults, which are arbitrary,

and include malicious behaviors [19]. BFT protocols are

commonly designed to run on n ≥ 3f + 1 replicas

to guarantee systems’ correctness under a pre-defined

number of f faulty or malicious replicas, but adaptive

protocols have been proposed recently [20]. For the

common case, 2f + 1 replicas must reach a consensus

to validate and execute a request. However, protocols

considering rejuvenation mechanisms have also been

proposed to mitigate failure and attacks in BFT-based

systems. These protocols must contain n ≥ 3f +2r+1

replicas to support f faulty or malicious replicas and r

replicas simultaneously rejuvenating [21]. Therefore, to

reach a consensus and execute a request, 2f + r + 1

replicas must agree on the request. Further details can

be found on [19] and [21].

Deterministic and Stochastic Petri Nets (DSPNs) is a

formalism highly adopted for modeling systems faults,

rejuvenation, and malicious attack behaviors and evalu-

ating performance and dependability metrics such as re-

liability. DSPNs allow both stochastic and deterministic

transitions to represent events in systems. While stochas-

tic transitions follow an exponential time distribution,

deterministic ones follow a uniform time distribution.

DSPNs follow Petri nets representation, where tokens are

small black circles, places white circles, and transitions

rectangles. Immediate transitions are thin black, stochas-

tic transitions are white and deterministic transitions are

bold black rectangles. Places can store tokens, and the

transitions firing consume tokens from one place and

generate new tokens in another. Arcs are represented by

arrows and connect places and transitions, defining the

tokens’ flow through the places, and can have weights.

Inhibitor arcs are defined by an arrow ending with a

small white circle, capable of disabling a transition when

its weight is met. We refer the reader to [22] for further

details.

III. REJUVENATION FOR N-VERSION PERCEPTION

SYSTEMS

This section describes adopting a rejuvenation mech-

anism for an N-version perception system. The primary

motivation for combining these two techniques is to pro-

vide more reliable output in perception systems. Figure 1

presents an architecture for such a perception system.

In the architecture, we consider (1) different types of

sensors providing input data for ML modules that run

inside the perception system; (2) N-version ML modules

subject to faults and attacks to execute perception tasks;

(3) a voter to collect the individual results of each ML

module and decide the final perception output based

on a pre-defined voting scheme; and (4) a time-based

rejuvenation mechanism to rejuvenate the healthy or

compromised ML modules back to a healthy state.
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Fig. 1: An architecture of a perception system subject to

faults and attacks that adopts N-version ML and a time-

based rejuvenation mechanism.

Faults and malicious attacks in perception systems

may compromise ML modules’ accuracy. In such a

case, we can assume ML modules have three possible

states: healthy (H), compromised (C), or non-operational

(N). When in a healthy state, an ML module operates

normally. However, when Byzantine faults or malicious

attacks affect an ML module, it enters a compromised

state (C), consequently reducing its accuracy and the

probability of producing correct outputs. In the case

faults or attacks endure, the ML module will eventually

enter a non-operational state (N), incapable of executing

perception tasks. Usually, failure detection tools can

easily detect whether a component is operational. Thus,

by leveraging such tools, the system may employ a

recovery mechanism to recover an ML module from a

non-operational (N) to a healthy (H) state.

When using a rejuvenation mechanism, like in the

architecture shown in Figure 1, ML modules benefit

it by recovering from ongoing faults or attacks. For

instance, one may consider reloading and redeploying

an ML module from a safe memory location as a

rejuvenation action. Hence, the rejuvenation process

consists of recovering ML modules from a healthy (H)

or compromised (C) state back to the healthy state (H).

Although an ML module cannot execute perception tasks

while rejuvenating, it may benefit the whole system by

returning the total capacity to complete a perception task

after rejuvenation.

Since ML modules can perceive the environment

differently, a voting system is necessary to decide the

final perception output. The voter may assume different

schemes to decide about each final perception output. For

instance, voting schemes include simple majority (e.g.,

2-out-of-3) [11] or unanimity between the ML modules

(e.g., 5-out-of-5) [12]. In this paper, we focus on analyz-

ing BFT-like voting schemes. Specifically, we focus on

perception systems that deal with a pre-defined number

of compromised f ML modules and can simultaneously

support r ML modules rejuvenating or recovering (see

§II-B).

IV. RELIABILITY MODELS FOR N-VERSION

PERCEPTION SYSTEMS

This section describes the developed models to eval-

uate reliability in N-version perception systems. We

first present the fault and threat model assumed for the

models and the modeling assumptions. Next, we present

the developed DSPNs for the system. Lastly, we explain

the reliability functions defined for a four- and six-

version perception system.

A. Threat and Fault Model

This section summarises the assumed malicious at-

tacks and faults represented in the proposed models as

follows: (1) attacks and faults can continuously happen

in the system, leading to a misperception of the ground

truth; (2) attackers can compromise the accuracy of one

ML module per time, for instance, through adversar-

ial [3] or evasion attacks [23], which happen in a given

amount of time; (3) transient faults such as memory

failure or bit flip errors [2] may also happen, degrading

ML modules’ accuracy or completely stopping an ML

module; and (4) after being compromised due to faults

or attacks, if not rejuvenated, ML modules eventually

enter a non-operational state.
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B. Modeling assumptions

To model a perception system with N-version modules

and a time-based rejuvenation mechanism, we assume

the following:

A.1 faults of an ML module in a healthy state (H) are

considered dependent with a factor of α ∈ [0, 1]

as assumed in [8]. However, faults of ML modules

in a compromised state (C) are no more dependent

on other modules, as transient faults in this state

become random. Also, persistent attacks in this state

may completely stop the ML module;

A.2 the voter can be configured with different schemes.

When not considering a rejuvenation mechanism,

we model the voter needing 2f+1 correct outputs to

produce a correct perception output. Similarly, we

only consider a perception error when at least 2f+1

ML modules output incorrectly. In other cases, the

output is considered inconclusive but safe, and the

voter safely skips the output.

A.3 When considering a rejuvenation mechanism, we

model the voter needing 2f + r+1 correct outputs

to produce a correct perception output. For instance,

in a 6-version system where f = 1, r = 1, and

therefore, n ≥ 6, it is necessary at least 2f + r +

1 = 4 correct outputs from the ML modules for a

request to be classified as correct (e.g., 4-out-of-6

voting). When at least 2f+r+1 ML modules output

incorrectly, it is considered a perception error. In

other cases, the output is considered inconclusive

but safe, and the voter safely skips the output.

A.4 we do not consider failures in the voter and rejuve-

nation clock for the sake of simplicity.

C. DSPN models

We adopt DSPN models to compute the reliability of

the N-version ML system and leverage its capabilities to

model failure behaviors and a time-based rejuvenation

Tc
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Fig. 2: DSPNs for an N-version perception system (a)

not considering rejuvenation and (b, c) adopting a time-

based rejuvenation mechanism.

mechanism. Figure 2 (a) presents the DSPN for a system

with N ML modules subject to faults and attacks but not

rejuvenation. The place Pmh represents an ML module

in a healthy state. The number of tokens N in this place

represents the number of ML module versions.

The exponential transition Tc models attacks or faults

that partially compromise the accuracy of the ML mod-

ule. When Tc fires, a token is consumed from place Pmh,

and another is generated in place Pmc, representing an

ML module not running at total accuracy. The transition

Tf is enabled by the presence of a token in the place

Pmc. When Tf fires, a token is consumed from place

Pmc, and another is generated in place Pmf, representing

the ML module crashed and cannot execute a perception

task. An ML module in a non-operational state needs

to be repaired. The transition Tr represents the repair

event. The firing of Tr consumes a token from Pmf and
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TABLE I: Guard functions and arc weights for the DSPN

models of Figures 2 (b) and (c).

Transition Guard/Weight Enabling Function/Value

Tac g1 #Ptr = 1

Trj1, Trj2, g2 (#Pmf + #Pmr) < r

Trt g3 (#Pmr + #Pac) > 0

Trj1 w1
IF (#Pmc = 0): (0.00001) ELSE

(#Pmc/(#Pmc + #Pmh));

Trj2 w2
IF (#Pmh = 0): (0.00001) ELSE

(#Pmh/(#Pmc + #Pmh));

- w3, w4 r

- w5 IF (#Pmr < r): (#Pmr) ELSE (r);

- w6 #Pmr

generates another in Pmh, implying that the ML module

is fully operating again.

Figures 2 (b) and (c) present a DSPN model for a

rejuvenation clock — to trigger the rejuvenation mecha-

nism at pre-defined intervals — and a perception system

subject to rejuvenation, respectively. The rejuvenation

clock model (Figure 2 (b)) uses a deterministic transition

to control the interval in which the ML modules are

rejuvenated. A token in place Prc enables Trc. When Trc

fires, it consumes a token from place Prc and generates

another one in place Ptr. A token in the place Ptr

satisfies the guard function g1, and the transition Tac

(in the DSPN of Figure 2 (c)) can fire. Next, when g3

is satisfied, Trt can fire, consuming a token from place

Ptr and generating another one in place Prc, indicating

the clock is reset. Table I presents the guard and weight

functions.

The operation of the perception system adopting re-

juvenation (Figure 2 (c)) is similar to the previously

explained in Figure 2 (a). It only differs regarding the

rejuvenation mechanism, which works as follows. The

firing of Tac generates r tokens in the place Pac. Tokens

in the place Pac can enable either Trj1 or Trj2. The

guard function g2 must be satisfied to fire Trj1 or Trj2.

The weights w1 and w2 model the firing probability of

Trj1 and Trj2, meaning that the system cannot distin-

guish between healthy or compromised ML modules to

rejuvenate. When Trj1 fires, one token is consumed from

places Pmc and Pac, and one token is generated in place

Pmr. When Trj2 fires, it consumes one token from places

Pmh and Pac, generating another token in place Pmr.

Tokens in the place Pmr enable transition Trj, indicating

ML modules are rejuvenating. The rejuvenation process

is complete when Trj fires. The firing of Trj consumes a

maximum number of r tokens and generates the same

number of consumed tokens in place Pmh. The arc

weights w5 and w6 model this behavior.

D. Reliability functions definition

We define reliability functions for an N-version per-

ception system subject to faults, attacks, and rejuvena-

tion. Unlike the general reliability model proposed by

Ege et al. [8], in ML-based systems, an ML module

is unlikely to hold its perception accuracy when in

a compromised state. Thus, instead of relying on the

equivalent failure probability p during the whole system

execution, we also define p′(> p) as the output failure

probability of an ML module in a compromised state.

Since ML module states change due to attacks, faults,

or rejuvenation (see §III), the system’s expected reliabil-

ity depends on the state probability. Defining S as the

set of reachable states in the DSPN model presented in

§IV-C, we can represent a state of an N-version percep-

tion system as (i, j, k) ∈ S where i, j, and k represent

the number of ML modules in healthy, compromised, and

non-operational states, respectively. Next, we also define

Ri,j,k as the output reliability of a perception system

with N-version ML modules in a state (i, j, k). Then,

we leverage the DSPN models to compute each state’s

steady-state probability πi,j,k. In this way, by assigning
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Ri,j,k as the rewards for the individual states, we obtain

the expected system output reliability as

E[Rsys] =
∑

(i,j,k)∈S

πi,j,kRi,j,k (1)

Next, we derive the reliability functions for a four- and

six-version perception system to embed it in the DSPN

models for computing the expected reliability.

1) Reliability functions for a four-version system: We

model a four-version system without adopting rejuvena-

tion. This system requires at least four ML modules to

support one compromised module (i.e., f = 1), where

n ≥ 3f + 1. As assumption A.2 explains (see §IV-B), a

perception error occurs when three or more ML modules

classify a request wrongly. Thus, the system reliability

functions are defined only for the states satisfying k ≤ 1.

In this way, we define the reliability function matrix

Rf4 whose (i, j) element corresponds Ri,j,k, i, j, k ∈

{0, 4}, k = 4− (i+ j) if the state fulfills the voting rule,

otherwise 0.

Rf4 =



0 0 0 R3,0,1 R4,0,0

0 0 R2,1,1 R3,1,0 0

0 R1,2,1 R2,2,0 0 0

R0,3,1 R1,3,0 0 0 0

R0,4,0 0 0 0 0


.

(2)

By using Eq. 1 and Rf4, we can define E[R4v] as

a reward function to the DSPN model of Figure 2 (a)

and compute the expected reliability for a four-version

system without adopting rejuvenation. Due to space

limitations, we detail each reliability function on §A of

the Appendix.

2) Reliability functions for a six-version system ap-

plying rejuvenation: A system supporting f = 1 com-

promised modules and r = 1 modules simultaneously

rejuvenating requires at least n ≥ 3f + 2r + 1 ML

modules. Therefore, we model a six-version system that

adopts rejuvenation. In this configuration, the system

outputs an error when four or more ML modules classify

a request wrongly (see assumption A.3 on §IV-B). The

system reliability functions are defined only for the states

satisfying k ≤ 2. In this way, we define the reliability

function matrix Rf6 whose (i, j) element corresponds

Ri,j,k, i, j, k ∈ {0, 6}, k = 6− (i+ j) if the state fulfills

the voting rule, otherwise 0. Each reliability function

is expanded on the §B of the Appendix. Finally, the

expected reliability for a six-version system adopting

rejuvenation E[R6v] can be defined as a reward function

in the DSPN models of Figures 2 (b) and (c) using the

Rf6 into Eq. 1.

Rf6 =

0 0 0 0 R4,0,2 R5,0,1 R6,0,0

0 0 0 R3,1,2 R4,1,1 R5,1,0 0

0 0 R2,2,2 R3,2,1 R4,2,0 0 0

0 R1,3,2 R2,3,1 R3,3,0 0 0 0

R0,4,2 R1,4,1 R2,4,0 0 0 0 0

R0,5,1 R1,5,0 0 0 0 0 0

R0,6,0 0 0 0 0 0 0


(3)

V. NUMERICAL EXPERIMENTS

This section presents numerical experiments to

demonstrate the models’ applicability in computing the

expected output reliability of N-version perception sys-

tems. We first describe the experimental setup and input

parameters adopted. Then, we evaluate and discuss the

reliability results of systems with four- and six-version

perception systems with or without rejuvenation.

A. Experiments setup

We employed the TimeNET tool [24] to run and

analyze the DSPN models. Table II shows the input

7



parameters and their default values adopted in the ex-

periments. It also shows the associated transition of the

parameters in the DSPN models.

Most parameters are hard to find in the literature, so

we estimate some parameters to demonstrate the models’

applicability. We modeled scenarios where: the number

of ML modules is N = 4 or 6; the safely supported

number of compromised ML modules is f = 1; and the

number of simultaneously recovering or rejuvenating ML

modules is r = 1. For the error probability dependency

between modules (α), we use a default value of 0.5,

which means 50% of error dependency. We adopt an

average of the inaccuracy of neural networks LeNet,

AlexNet, and ResNet that we experimentally used to

classify the German Traffic Sign dataset [25] as the inac-

curacy of a healthy ML module (p). We estimate the in-

accuracy of a compromised ML module as p′ = 0.5 since

outputs in a compromised state become random. We

leverage the results from Oboril et al. [26] and employ

their computed mean time between faults (MTBF) as

the mean time to compromise/degrade a module (1/λc).

The mean time to failure (1/λ) may depend on specific

scenarios, so we reasonably use 2 × 1/λc
∼= 3000 for

this parameter. Since different hardware configurations

may interfere with recovering an ML module, we assume

1/µ = 3 seconds for the mean time to repair. The

same value is used as the mean time to rejuvenate an

ML module (1/µr). However, since r ML modules can

rejuvenate simultaneously, the final value depends on

the number of ML modules that are rejuvenating, thus,

1/µr = #Pmr × 3 seconds. Lastly, we adopt a default

value of 600 seconds for the rejuvenation interval (1/γ),

but we also vary this value to investigate its impact on

system reliability.

TABLE II: Default input parameters for the DSPN

models.

Param. Associated Transition Value

N - 4 or 6

f - 1

r - 1

α - 0.5

p - 0.08

p′ - 0.5

1/λc Tc 1523 s

1/λ Tf 3000 s

1/µ Tr 3 s

1/µr Trj #Pmr × 3 s

1/γ Trc 600 s

B. Reliability results and discussion

Using the DSPN models of Figure 2, the reliability

functions (i.e., E[R4v] and E[R6v]), and the default

input parameters of Table II, we evaluated the expected

reliability for each system configuration. The computed

expected reliability was 0.8233477 for the four-version

(without rejuvenation) and 0.93464665 for the six-

version (adopting rejuvenation) using the default input

parameters. Therefore, these first results show that using

a rejuvenation mechanism would improve the system

reliability by about 13%. The better results for the system

using the rejuvenation mechanism can be explained

mainly by the proactive recovery of compromised ML

modules, making the system have a higher number of

modules in a healthy state.

Next, we investigate how the rejuvenation mechanism

impacts the system’s expected reliability using different

rejuvenation intervals. We varied the rejuvenation in-

terval (1/γ) between 200 and 3000 seconds. Figure 3

shows the reliability results achieved. The plot shows

that more frequent rejuvenation procedures are better

for the six-version system in terms of reliability. Thus,
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Fig. 3: Influence of the rejuvenation interval over the

expected reliability in a six-version perception system.

increasing the value of 1/γ after a certain point would

decrease the system’s reliability. In this way, knowing the

system parameters would be possible to find the optimum

rejuvenation interval to maximize the system’s reliability.

For instance, considering the adopted input parameters,

the maximum reliability is reached for a rejuvenation

interval of 400 - 450 seconds.

We also evaluate the influence of other key parameters

over the expected reliability through a sensitivity analy-

sis. Figure 4 presents the reliability results when varying

the parameters (a) mean time to compromise/degrade

a module, (b) error probability dependency between

modules, (c) ML modules inaccuracy when in a healthy

state, and (d) the ML modules inaccuracy when in a

compromised state. Figure 4 (a) shows that both systems

behaved as expected, where a higher value of 1/γc would

imply higher reliability for the system as it should remain

in a healthy state for more time. The four-version system

without rejuvenation outperforms the six-version system

under specific circumstances: (1) when 1/λc < 525

seconds, and (2) when 1/λc > 6000 seconds. For all

other values of 1/λc, the six-version system performs

better in terms of reliability. It means that when 1/λc is

less than the defined rejuvenation interval (in this case,

it was 1/γ = 600 seconds), the system probably would

not benefit from a rejuvenation mechanism. Besides,

when 1/λc is too high compared to the rejuvenation

interval, the benefits of a rejuvenation mechanism may

be marginal.

Figure 4 (b) shows the results when varying the error

dependency between the ML modules (α). Better relia-

bility results are achieved for small values of α. How-

ever, the overall impact of α on the reliability is small,

decreasing it by about 1.5% when α varies from 0.1 (low

error dependency) to 1 (total error dependency) on the

four-version system. The impact is also slight for the

six-version system, about 6.6%. When the rejuvenation

mechanism is adopted, the ML modules should spend

more time in a healthy state, where error dependency

exists and α has more impact on the system’s reliability

when its value is close to 1.

The ML modules’ inaccuracy when in a healthy state

(p) influence over the reliability is shown by Figure 4 (c).

The results reveal that the six-version system presents

better reliability than the four-version for all cases.

However, the impact is negatively higher on the six-

version system, about 13% when varying p from 0.01

to 0.2. On the other hand, the negative impact on the

four-version system is only about 5%.

Lastly, we investigated the impacts of the ML mod-

ules’ inaccuracy when in a compromised state (p′) over

the reliability (see Figure 4 (d)). The results show that

a rejuvenation mechanism could mitigate a higher relia-

bility degradation even when p′ is high (e.g., p′ = 0.8).

We understand that p′ is hard to estimate or obtain since

it depends on different fault or attack types. Therefore,

opting for a system with rejuvenation may cover broader

scenarios to maintain higher reliability. On the other

hand, when obtaining the value of p′, verifying whether a

rejuvenation mechanism is beneficial would be feasible.

For instance, using the input parameters of our numerical

9
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Fig. 4: Influence of the (a) mean time to compromise/degrade a module, (b) error probability dependency between

modules, (c) ML modules inaccuracy when in a healthy state, and (d) the ML modules inaccuracy when in a

compromised state over the expected system reliability.

experiments, a six-version system adopting rejuvena-

tion is only beneficial when p′ > 0.3. Otherwise, the

four-version system without a rejuvenation mechanism

presents better reliability.

VI. CONCLUSION

This paper investigated the combination of N-version

ML and time-based rejuvenation for perception systems.

We proposed a set of models and functions to compute

the output reliability of perception systems and demon-

strated its applicability by evaluating a four- and six-

version system. The proposed models consider the mis-

behavior of ML modules due to faults, malicious attacks,

and the effects of using a proactive rejuvenation mech-

anism. Our results suggested that the output reliability

of a perception system could be improved by adopting

a rejuvenation mechanism in most scenarios. We also

performed a sensitivity analysis on key input parameters

to find thresholds where the system output reliability is

maximized. In future work, we aim to experimentally

analyze our proposed approach in perception and other

systems.
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APPENDIX

A. Reliability Functions for the four-version model

This section details the reliability functions for a four-

version system, where f = 1 and n = 4. Considering

(i, j, k) as the perception system states with i healthy,

j compromised, and k non-operational ML modules,

the reliability functions are defined only for the states

satisfying k ≤ 1. When k > 1, the voter can not have

2f+1 perception outputs from the ML modules about a

request, which leads to safely skipping the request or a

perception error. Therefore, the reliability in these states

is 0.

R4,0,0 = 1− [pα3 + 4pα2(1− α)]

R3,1,0 = 1− [pα2 + 3pα(1− α)p′]

R3,0,1 = 1− pα2

R2,2,0 = 1− [pp′2 + 2pαp′(1− p′)]
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R2,1,1 = 1− pαp′

R1,3,0 = 1− [p′3 + 3pp′2(1− p′)]

R1,2,1 = 1− pp′2

R0,4,0 = 1− [p′4 + 3p′3(1− p′)]

R0,3,1 = 1− p′3

B. Reliability Functions for the six-version model

This section presents the reliability functions for a six-

version system subject to rejuvenation, where f = 1,

r = 1, and n = 6. When considering (i, j, k) as the

perception system states with i healthy, j compromised,

and k non-operational or rejuvenating ML modules,

the reliability functions are defined only for the states

satisfying k ≤ 2.

R6,0,0 = 1− [pα5 + 6pα4(1− α) + 15pα3(1− α)2]

R5,1,0 = 1− [pα4 + 5pα3(1− α) + 10pα2(1− α)2p′]

R5,0,1 = 1− [pα4 + 5pα3(1− α)]

R4,2,0 = 1− [pα3p′2 + 2pα3p′(1− p′) + 4pα2(1− α)p′2+

8pα2(1− α)p′(1− p′) + 6pα(1− α)2p′2]

R4,1,1 = 1− [pα3 + 4pα2(1− α)p′]

R4,0,2 = 1− pα3

R3,3,0 = 1− [pα2p′3 + 3pα2p′2(1− p′) + 3pα(1− α)p′3+

3pα2p′(1− p′)2 + 9pα(1− α)p′2(1− p′)+

3p(1− α)2p′3]

R3,2,1 = 1− [pα2p′2 + 2pα2p′(1− p′) + 3pα(1− α)p′2]

R3,1,2 = 1− pα2p′

R2,4,0 = 1− [pαp′4 + 4pαp′3(1− p′) + 2p(1− α)p′4+

6pαp′2(1− p′)2 + 8p(1− α)p′3(1− p′)

+ p(2− α)p′4]

R2,3,1 = 1− [pαp′3 + 3pαp′2(1− p′) + 2p(1− α)p′3]

R2,2,2 = 1− pαp′2

R1,5,0 = 1− [p′5 + 5p′4(1− p′) + 10pp′3(1− p′)2]

R1,4,1 = 1− [p′4 + 4pp′3(1− p′)]

R1,3,2 = 1− pp′3

R0,6,0 = 1− [p′6 + 6p′5(1− p′) + 15p′4(1− p′)2]

R0,5,1 = 1− [p′5 + 5p′4(1− p′)]

R0,4,2 = 1− p′4

12


	Introduction
	Background and Related Work
	Software rejuvenation
	Byzantine Fault-Tolerance & DSPN modeling

	Rejuvenation for N-version Perception Systems
	Reliability Models for N-version Perception Systems
	Threat and Fault Model
	Modeling assumptions
	DSPN models
	Reliability functions definition
	Reliability functions for a four-version system
	Reliability functions for a six-version system applying rejuvenation


	Numerical Experiments
	Experiments setup
	Reliability results and discussion

	Conclusion
	References
	Appendix
	Reliability Functions for the four-version model
	Reliability Functions for the six-version model


