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Abstract. Among numerical libraries capable of computing gradient de-
scent optimization, JAX stands out by offering more features, accelerated
by an intermediate representation known as Jaxpr language. However,
editing the Jaxpr code is not directly possible. This article introduces
JaxDecompiler, a tool that transforms any JAX function into an ed-
itable Python code, especially useful for editing the JAX function gen-
erated by the gradient function. JaxDecompiler simplifies the processes
of reverse engineering, understanding, customizing, and interoperability
of software developed by JAX. We highlight its capabilities, emphasize
its practical applications especially in deep learning and more generally
gradient-informed software, and demonstrate that the decompiled code
speed performance is similar to the original.

1 Introduction

Computational science and data science are witnessing a profound transforma-
tion, marked by the emergence of powerful new numerical frameworks. Recently,
numerical frameworks such as Jax [2] [7], Tensorflow [1], PyTorch [4] and Sympy
[13] have transformed the design of mathematical optimization by leveraging
symbolic differentiation, eliminating the reliance on numerical approximations.

JAX distinguishes itself from PyTorch and TensorFlow by offering a broader
range of functionalities. While PyTorch and TensorFlow primarily focus on deep
neural network training, JAX not only integrates natively Autograd allowing
which allows to address optimization problems with multi-order derivatives. The
design of the function allows to use of the native Python language, including
support for loops, indexing, and conditions. It provides an intuitive Numpy API
[17] and includes distributed computing capabilities based on the MapReduce
programming model [6].

The strength of JAX extends beyond its expressiveness; it also leverages
a low-level Jaxpr code for faster execution. This efficiency can be further en-
hanced through Just-In-Time compilation using XLA [10]. However, it’s crucial
to acknowledge that the automatically generated Jaxpr code may not always be
suitable for every scenario. This underscores the importance of a decompiler to
translate the Jaxpr code into Python, facilitating modification before regenerat-
ing Jaxpr for final execution.
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Many decompilers have been extensively proposed but they have mostly fo-
cused on languages like C, C++, and Java [8]. Those works show that the chal-
lenge of designing a decompiler is intrinsically linked to both the source and
target language characteristics.

To bridge the gap between Jaxpr and Python and answer this technological
gap, we introduce JaxDecompiler. It takes any JAX function as input and pro-
duces the equivalent Python code. The decompiler is required when the input
function has been generated by a symbolic derivative in the Jaxpr language.

JaxDecompiler may serve a variety of purposes. Decompilers are generally
used in applications such as malware detection [12], identifying duplicate code
[14], and offering automatic code design recommendations [11]. JaxDecompil-
ers is also useful for gradient code customization aiming to improve computing
speed, and arithmetic stability, or export the gradient code for interoperability.
PyTorch, Tensorflow, and JAX 1 allows already to customize gradient code by
replacing the gradient code of a given function. JaxDecompiler enables another
approach to do this, after the gradient code is computed with chain rule and
exported as Python with the JaxDecompiler, the user may edit it and have full
control of it.

Finally, JaxDecompiler provides the capability to export Python gradient
code, facilitating interoperability with diverse software and platforms. In con-
trast, PyTorch and Tensorflow use neural network representation syntax for
storing them such as ONNX [15] and TorchScript. This is constrained by the
requirement for a dedicated neural network interpreter on the target platform
and those representations are primarily tailored for neural networks. It’s worth
noting that, before the introduction of JaxDecompiler, JAX users typically con-
verted their models into Tensorflow, and then from Tensorflow into ONNX for
interoperability.

This paper is organized into four main sections. Section 2 provides practi-
cal examples of JaxDecompiler’s usage. The inner working of the decompiler is
presented in section 3. The speed performance of decompiled code is compared
to the original JAX code on 3 applications in section 4. Finally, the conclusion
in section 5 summarizes the significance and potential of JaxDecompiler and
provides the GitHub link.

2 Step-by-step use cases

This section provides an example of the typical workflow usage of JaxDecompiler.

2.1 Step 1: JaxDecompiler input

Let’s consider a typical JAX code below. In this example, we start with the func-
tion jnp.log(1+jnp.exp(x)) and aim to obtain the derivative with respect to x

1 URL: https://jax.readthedocs.io/en/latest/notebooks/Custom_derivative_r
ules_for_Python_code.html

https://jax.readthedocs.io/en/latest/notebooks/Custom_derivative_rules_for_Python_code.html
https://jax.readthedocs.io/en/latest/notebooks/Custom_derivative_rules_for_Python_code.html
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encoded as float 32bits. The generated gradient function suffers from arithmetic
instability for large x values greater than 87. JaxDecompiler addresses this issue
by providing a decompiled version of the JAX function, allowing users to modify
the code.

from jax import numpy as jnp

def f(x):

return jnp.log(1+jnp.exp(x))

from jax import grad

gf=grad(f)

print(gf(100.)) # output: nan, expected: 1

The Jaxpr code of gf may be exported:

{ lambda ; a:f32[]. let

b:f32[] = exp a

c:f32[] = add 1.0 b

_:f32[] = log c

d:f32[] = div 1.0 c

e:f32[] = mul d b

in (e,) }

2.2 Step 2: Utilizing JaxDecompiler API

To address the limitations of the Jaxpr code and enable users to better under-
stand, modify, and work with it, JaxDecompiler is introduced. The Jaxpr2python
function is a key feature of JaxDecompiler, taking a JAX function as input and
returning the decompiled function. The decompiled Python code is also provided
as a string for exposing it to the user.

from JaxDecompiler import decompiler

gf2,py=decompiler.Jaxpr2python(gf,0.,is_python=True)

The main feature of Jaxpr2python function is to take a function as input
(here gf2) and return the decompiled function (here gf) which behaves the same
as the input one. The second argument (here 0.) is a fake input used to specify
the input type.

The is python argument indicates that we return a second output, the de-
compiled function as a string (here py). Saving and importing py is identical to
gf.

The decompiled Python code for the given example is as follows:

from jax.numpy import *

def gf2(a):

b = exp(a)

c = 1.0 + b
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_ = log(c)

d = 1.0 / c

e = d * b

return e

It’s important to emphasize that while the equivalence between Jaxpr and
Python code may appear straightforward in this example, the JaxDecompiler
may handle more intricate patterns, including conditional structures, distributed
map operations, and loops. The GitHub repository link at the end provides the
opportunity to explore and translate more complex Jaxpr code into compre-
hensive unit tests and applications, showcasing the decompiler’s versatility and
utility in handling a wide range of scenarios.

2.3 Step 3: Consuming JaxDecompiler output

The generated Python code is owned by the user, providing flexibility to use
external code tools or manually edit the code. For example, the code can be
manually improved for arithmetic stability with the if block statement to return
an approximation:

from jax.numpy import *

def gf2(a):

if a>87:

return 1.

b = exp(a)

c = 1.0 + b

_ = log(c)

d = 1.0 / c

e = d * b

return e

This assembly-style language produced by decompilers is a well-known limi-
tation for human maintenance of large software. Recent advancements in Large
Language Models for processing decompiled codes [3] provide optimism for edit-
ing decompiler output into equivalent and more human-friendly code.

While the assembly-style Python produced by JaxDecompiler is a limitation
when generating large software intended for human maintenance, it is advanta-
geous for transpilation from Python to another language increasing interoper-
ability. The transpiled code from Python into C is given below.

#include <cmath>

float gf2(float a) {

if (a > 87) {

return 1.0;

}

float b = exp(a);

float c = 1.0 + b;
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float d = 1.0 / c;

float e = d * b;

return e;

}

3 JaxDecompiler design

This section presents the JaxDecompiler. First, an overview is given, and then
the 3 main components are presented in more detail: Tokenizer, Line Translator,
and Import Set.

3.1 Overview

The user gives the Jax function, and argument example (to automatically infer
data types) and gets the decompiled Python code as output. The flow of data
and processes for achieving this is depicted in Figure 1.

Jax function

Decompiled Python code

Tokenizer

Forbidden names

Line Translator Import Set

Concatenation

Module dependency
Tokens

Body statements Import statements

jax.make_jaxp(...)
Args. example

Names checkJaxpr code

Fig. 1. Design of the JaxDecompiler. Edge represents data flow and the box the pro-
cessing.

The first step is extracting the JaxPr code from the Jax function using
make jaxpr 2. The Tokenizer splits Jaxpr lines into tokens, the Line Transla-
tor produces body statements, and the Import Set generates Python’s import
statements.

3.2 Tokenizer

Unlike compilers, decompilers take well-formatted code as input, making the
input code trivial to analyze. The lexer step splits each Jaxpr statement into 4
sub-parts:

2 https://jax.readthedocs.io/en/latest/_autosummary/jax.make_jaxpr.html

 https://jax.readthedocs.io/en/latest/_autosummary/jax.make_jaxpr.html 
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1. From 0 to n output variable name(s).

2. The operator.

3. The operator arguments (if any). It encompasses the arguments associated
with the operator, if applicable.

4. From 0 to m input token(s) (variable names or literals).

Jaxpr is a strongly typed language but not the produced Python code. This
is why the variable types are ignored at the tokenization step.

Some Jaxpr variable names may be forbidden by the Python language. A
set of all forbidden variable names is stored (e.g. “if”, “in”, “is”) to identify
forbidden variable names and replace them with the uppercase version without
the risk of colliding with the keywords.

3.3 Line Translator

JaxDecompiler’s Line Translator contains a set of functions taking Jaxpr line
represented as tokens and producing an equivalent Python string code. When
a Jaxpr operator is missing, a clear Python Exception indicates the Jaxpr op-
erator name to allow understanding and invite the community to implement it.
Over 70 Jaxpr operators have been implemented, tested, and already addressing
diversified applications.

We may enumerate some implemented Jaxpr operators in 3 categories:

– Element-wise: ‘+’, ‘*’, ‘-’, ‘/’, ‘and’, ‘or’, ‘cos’, ‘sin’, ‘tan’ ...

– Tensor manipulation: dot, transpose, convolution, sort ...

– High-order functions: condition, scan, parallel map, vectorized map ...

The Line Translator handles high-order instructions by applying recursive
calls inside operator settings. In the Jaxpr language, high-order functions are
represented using lambda expressions (unnamed function) stored in the operator
arguments. To enhance code maintainability and reusability, a named function
is produced and named with an incrementing index.

3.4 Import Set

Some Jaxpr functions can be translated into native Python language, while oth-
ers require additional modules. Each time a line is encountered the Line Transla-
tor adds the import instruction’s string into the import set. The Import Set keeps
track of necessary import statements, ensuring efficiency and avoiding duplicate
imports. We assume that the order of import has no importance.

Ultimately, after reading and translating all Jaxpr code, and the Import Set
has tracked the necessary imports, the output of the Import Set and the Python
code are concatenated. This constitutes the final Python code.
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4 Performance of the decompiled code

The provided section gives an overview of the performance evaluation of code
decompiled by JaxDecompiler. It aims to assess whether the decompiled Python
code can maintain performance levels comparable to the original Jaxpr code.
The performance is scrutinized across five distinct applications:

– Training with Multi-Layer Perceptrons (MLP): Involves computing the gra-
dient of the neural network for backpropagation during training. Various
settings are explored, including different numbers of data points, units per
layer, and layers.

– Inference with MLP: Similar to the training scenario, performance is assessed
while predicting MLPs under varying settings.

– Sorting using MapReduce: Utilizes multi-core CPU for sorting 32 million ran-
dom numbers and returning the three smallest elements to the user. Specif-
ically employs the multi-core ”pmap.”

– Molecular simulation: Involves simulating molecules represented as a 3D
point cloud, utilizing gradient descent to update their positions at each time
step to reach a stable equilibrium state.

– All reduce in multi-node multi-core settings: Computes an array of nine
elements containing the average of process identifiers (MPI rank) based on
the average allReduce collective communication operation in a distributed
setting. Evaluated on the University of Luxembourg HPC [16] named Aion
3. Notably, JAX users involved in data-parallel code use ‘mpi4jax’ [9], while
JaxDecompiler translates this with ‘mpi4py’ [5].

For each application, the results are presented based on the average and standard
deviation time (in seconds) across ten runs. The CPU used is an AMD EPYC
with 128 cores (without hyper-threading) which is a common CPU in computing-
intensive infrastructures. The performance is summarized in Table 1 for unjitted
code and Table 2 after Just-In-Time (JIT) compilation.

The showcased applications underscore the versatility of decompiling various
types of applications. In summary, the performance evaluation of the decom-
piled code demonstrates reasonable performance when compared to the original
Jaxpr code. In the AllReduce scenario, the superior performance of the decom-
piled code is attributed to the direct nature of mpi4py in calling MPI (Message
Passing Interface) primitives, as opposed to mpi4jax, which relies on mpi4py
before reaching the MPI library. This additional layer of abstraction contributes
to the observed performance differences. Additionally, the resilience in retain-
ing the benefits of parallel and JIT instructions post-decompilation enhances the
adaptability of the decompiled code for diverse performance-critical applications.

For the sake of transparency and reproducibility, we provide URLs at the
document’s end, offering access to JaxDecompiler’s main code, the benchmarks
used, and comprehensive tests. These resources serve as references for researchers
and practitioners seeking to replicate and delve deeper into our study.

3 https://hpc-docs.uni.lu/systems/aion/

https://hpc-docs.uni.lu/systems/aion/
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Table 1. Performance comparison (seconds) of unjitted JAX function before and after
decompilation

Application Settings JAX function Decompiled

Training
1K points 1K units 2 layers 13.49± 0.5 8.67± 0.07
16 points 1K units 128 layers 10.43± 0.15 5.3± 0.1
16 points 8K units 2 layers 8.85± 0.06 11.52± 0.07

Inference
1K points 1K units 2 layers 0.3685± 0.001 0.4351± 0.0187
16 points 1K units 128 layers 0.4725± 0.0008 0.635± 0.0405
16 points 8K units, 2 layers 0.4546± 0.0002 0.4681± 0.0002

Sorting

1 core 23.6494± 0.2312 24.5791± 2.1247
2 cores 11.778± 1.4836 11.5528± 1.3912
16 cores 1.0613± 0.0381 1.0812± 0.0115
128 cores 0.2312± 0.0246 0.2784± 0.0384

Physics
10,000 iter. 2 molecules 48.29± 0.06 17.95± 0.09
1,000 iter. 20 molecules 92.04± 0.17 33.99± 0.04

AllReduce

1 node 128 MPI ranks 0.0439± 0.0025 0.0021± 0.0006
4 nodes 512 MPI ranks 0.0749± 0.0099 0.0199± 0.0074
16 nodes 2048 MPI ranks 0.0863± 0.0076 0.0243± 0.0084
64 nodes 8192 MPI ranks 0.0998± 0.0108 0.0285± 0.0064

Table 2. Performance comparison (seconds) of JIT JAX function before and after
decompilation

Application Settings JAX function Decompiled

Training
1K points 1K units 2 layers 6.3± 0.35 6.48± 0.23
16 points 1K units 128 layers 5.92± 0.05 4.71± 0.09
16 points 8K units 2 layers 11.06± 0.04 12.38± 0.07

Inference
1K points 1K units 2 layers 0.1378± 0.0002 0.1622± 0.002
16 points 1K units 128 layers 0.4307± 0.0023 0.5792± 0.0016
16 points 8K units, 2 layers 0.442± 0.0001 0.6238± 0.0002

Sorting

1 core 24.1114± 1.1893 23.7351± 0.0911
2 cores 11.1945± 1.1323 12.589± 4.1843
16 cores 1.5066± 0.3904 1.5164± 0.3665
128 cores 1.6336± 0.3475 1.706± 0.1575

Physics
10,000 iter. 2 molecules 6.36± 0.02 9.79± 0.03
1,000 iter. 20 molecules 11.9± 0.02 18.63± 0.13

AllReduce

1 node 128 MPI ranks 0.0006± 0.0001 0.0021± 0.0001
4 nodes 512 MPI ranks 0.0191± 0.0058 0.0017± 0.0001
16 nodes 2048 MPI ranks 0.0247± 0.0049 0.0177± 0.0048
64 nodes 8192 MPI ranks 0.0334± 0.0137 0.0277± 0.0043
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5 Conclusion

In the ever-evolving landscape of numerical frameworks and gradient-informed
software development, JAX has emerged as a versatile and performant frame-
work. JaxDecompiler plays a pivotal role in reverse engineering machine learn-
ing functions generated by JAX, addressing a critical gap and empowering re-
searchers to gain deeper insights into the inner workings of these functions.
By offering a clearer and more accessible Python representation of Jaxpr code,
JaxDecompiler facilitates debugging and analysis, crucial for identifying and
addressing issues or unexpected behaviors. Furthermore, the software provides
users with the capability to manually optimize the generated Python code, en-
hancing performance and arithmetic stability.

Notably, JaxDecompiler’s performance aligns with that of code originally
written, showcasing its effectiveness. While decompilers are inherently dependent
on source and target language versions, JaxDecompiler stands as an open-source
project, welcoming community contributions and remaining adaptable in the
dynamic landscape of gradient-based software development and research.

Codes are available on GitHub: https://github.com/PierrickPochelu/J
axDecompiler/
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