

Exponentiation as a complex operation

Pupils familiarise themselves with the exponential function $x \mapsto e^x$ defined over the real numbers. They also study complex numbers, and then they should be made aware of some dangers concerning the exponentiation for complex numbers.

Probably the first non-real exponentiation that the pupils are confronted with is

$$e^{i\theta} = \cos(\theta) + i \sin(\theta)$$

where θ can be any real number. This defines exponentiation (for base e) in the case where the exponent is purely imaginary. Because the trigonometric functions \cos and \sin are periodic, one can easily deduce that the exponentiation with purely imaginary exponent, namely the function defined over the real numbers

$$x \mapsto e^{ix}$$

is periodic with minimal period 2π . This periodicity says for example that

$$1 = e^{0i} = e^{2\pi ki}$$

holds for every integer k .

One may define the exponentiation of a complex number as follows

$$z \mapsto e^z$$

where, if $z = a + ib$ (a and b being real numbers) we have

$$e^{a+ib} = e^a \cos(b) + ie^a \sin(b).$$

The formula

$$e^{z+w} = e^z e^w$$

holds for all complex numbers z and w .

If we want to define the logarithm as the inverse of the exponential function we have an issue because this periodic function, being not injective, is not a bijection and hence cannot be inverted. We can accept that the logarithm takes multiple values and therefore also define exponentiation with any complex basis that is non-zero:

$$z^w = e^{w \log(z)}$$

Consider that, despite the ambiguity of $\log(z)$ being only with multiples of $2\pi i$, the different values of z^w may fail to have the same argument (in case the real part of w is not an integer).

For example, one could pick as value for the complex logarithm its principal value, so that $\log(i) = \frac{\pi}{2}i$, and then we have $i^i = e^{i \log(i)} = e^{-\pi/2}$. However, as multiple values are possible for the logarithm, then multiple values are also possible for i^i .

Even if one makes a considered choice for the logarithms, still there are some dangers to be considered:

– We have the following congruence, and in general not the equality:

$$\log(z^w) = w \log(z) \bmod (2\pi i)$$

– We don't have the identity $e^{xy} = (e^x)^y$.

Reference: Wikipedia contributors. "Exponentiation." *Wikipedia, The Free Encyclopedia*. Wikipedia, The Free Encyclopedia, 6 Mar. 2024. Web. 13 Mar. 2024.