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Abstract

Arti�cial Intelligence (AI) systems are proliferating in our society due to their capacity to

simulate human intelligence, behaviors, and processes. �e increased utilization of AI sys-

tems in society, especially in high-risk se�ings such as autonomous systems and healthcare,

has been accompanied by an increased concern about the impact of AI systems on society.

In recent years, vulnerabilities to algorithmic bias, adversarial a�acks, and data breaches

have resulted in the critical assessment of how AI systems can be designed to be inherently

trustworthy.

�is dissertation presents the key concepts of trustworthiness in AI systems, with a focus

on identifying the challenges associated with designing, developing, and deploying collabo-

rative AI. Towards this purpose, key elements of trustworthy AI are identi�ed, culminating

in a set of concise guidelines that developers can leverage in the development of trust-

worthy AI. Further, this dissertation explores how techniques initially created solely for

privacy, speci�cally federated learning, can be leveraged to build trust in machine-learning

environments.

Federated learning is assessed for its implications on trustworthy principles, with a par-

ticular focus on how privacy is established to enable collaboration between participants

without the sharing of private data. �e security of federated learning is further assessed

by demonstrating the impact of targeted model poisoning a�acks and an assessment of

Byzantine-tolerant defense mechanisms to prevent and defend against such a�acks. Fur-

ther, the potential for federated learning to be leveraged for compliance with regulatory

requirements is assessed.
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Chapter 1

Introduction

Arti�cial Intelligence (AI) refers to the development of machines, especially computer sys-

tems, that simulate human intelligence, behaviors, and processes. �ese encompass learn-

ing, reasoning, problem-solving, perception, language understanding, and self-correction,

among others. In recent years, the use of AI technologies has proliferated in our society

due to advancements in �elds as diverse as healthcare, �nance, transportation, and enter-

tainment. AI systems are being utilized in nearly every sector, with notable applications

in autonomous systems [392], education [68], manufacturing [198], and healthcare [231].

Advancements in big data, computational power, and algorithm sophistication continue to

propel AI’s capabilities. However, with this promise also come challenges with the trust-

worthiness of AI-powered systems, making the study and application of trustworthy AI

critical.

�e trustworthiness of an AI system implies that the development of such a system con-

siders the greater ethical, technical, and practical impacts on humanity. In recent years,

growing interest and advancements in the �eld of AI have drawn a�ention to the con-
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cerns of the large-scale impacts of such AI systems [9]. In particular, recent research has

raised concern about issues with lack of explainability [18], bias [234], loss of privacy [157],

and safety [349]. Several regulating and policy-making agencies have suggested that the

development of Trustworthy AI systems is vital to ensure that AI systems do not cause

unintended harm [79, 261, 354].

Consider, for example, the use of AI in medical diagnoses and decisions where an AI assists

medical personnel in making decisions based on diagnostic scans. In theory, these systems

should provide faster and more accurate diagnoses, allowing hospitals to treat additional

patients, and reduce human error. However, while these systems performwell in controlled

environments, in real-world scenarios they o�en perform poorly and increase the time re-

quired to make diagnoses [30]. In this example, the issue of trust in such a system comes

into consideration on multiple levels: the systemmust have the trust of the medical person-

nel utilizing it, the patient, and its greater community. How do we trust that the decisions

these systems make are accurate, and who takes responsibility if a patient is misdiagnosed,

or if time is wasted on a�empting to use a faulty system?

�e concept of trustworthiness should be at the forefront of consideration when we think

about AI development and deployment into society. In general, the technical aspects of

trustworthy AI may focus on the concepts of fairness and non-discrimination, privacy,

safety and security, and transparency and explainability, whereas ethical components may

focus on human control and the promotion of human values. �ese aspects govern how

AI makes decisions about vulnerable populations, ensures user privacy, maintains security

against data leaks and malicious a�acks, and explains the decisions it makes. To encourage

large-scale AI adoption and increase trust, the burden is on the creators to address trust in

their deployed systems. However, even though there is a plethora of research, literature,

and policy texts on AI, there is li�le consistency in the de�nition of Trustworthy AI and

which elements are required to develop a trustworthy system.
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One emerging technology with notable applications in increasing trustworthiness in AI

systems is Federating Learning (FL). FL is a popular distributed machine learning (ML) set-

ting where multiple clients can collaboratively train an ML model without sharing private

data [233]. Typically orchestrated by a central server, FL follows a multi-round, multi-

agent-based strategy. In each round, the server distributes a current global ML model to a

random subset of participants, who then separately leverage private data to locally update

the model. �e updated models are sent back to the server, which aggregates the updates

into a new global model. Due to its strength in allowing many participants to collabo-

rate, FL has gained popularity, with applications in mobile devices [206], speech and image

recognition [222], �nance [215], and medicine [200].

In this dissertation, the concept and technicalities of trustworthiness in AI will be explored.

�e various texts about TrustworthyAI are explored, revealing commonality between trust-

worthy concepts around six main principles: accountability, explainability & interpretabil-

ity, fairness & non-discrimination, privacy, robustness & reliability, and safety & security.

�ese principles appear in the majority of trustworthy texts, with an additional emphasis

on improving transparency in each principle. Guidelines towards developing and deploy-

ing trustworthy AI are de�ned, with connections to the main concepts in Trustworthy AI

literature. Further, several applications that leverage FL to increase trust in AI are proposed.

FL has a multitude of bene�ts that, if implemented properly, have signi�cant applications

in increasing trust in AI. In particular, data privacy, security, and robustness are at the

forefront of the bene�ts of FL systems, ensuring that private data remains under user and

organizational control. FL can assist organizations comply with stringent data protection

regulations, such as the GDPR and AI Act in the European Union. By emphasizing local

computation andmaintaining user control, FL can lead to more transparent, private, secure,

and accountable AI systems.

Speci�cally, the following research questions are explored:

3
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1. What are the main principles associated with Trustworthy AI, and how can AI sys-

tems be designed, developed, and deployed to be inherently trustworthy?

2. Which design principles are essential to ensure that AI systems can be audited for

trustworthiness?

3. How can privacy-preserving methods such as FL be leveraged to increase trust while

facilitating secure and e�cient collaboration amongst di�erent individuals, institu-

tions, or other players?

4. What are the security implications of FL, and how can FL systems be forti�ed against

adversarial a�acks, especially when processing sensitive data?

5. What is the impact of a�acker-resistant aggregation mechanisms on the performance

of FL models?

6. How can FL aid in ensuring AI regulatory compliance?

1.1 Dissertation Structure
In this dissertation, methods to increase trust in AI are discussed, primarily focusing on

leveraging FL for secure distributed ML collaboration among multiple parties. A novel

approach is introduced to increase trust in AI implementation by providing a set of clear

guidelines for creators to leverage in the development of AI systems. Several applications

for the use of FL are discussed, focused on encouraging collaboration while ensuring data

privacy, model performance, and secure computation, and the use of FL to ease AI regu-

lation is discussed. Finally, considerations on the security and safety of federated ML are

explored with an analysis of model poisoning in several scenarios.

Chapter 2 provides in-depth background information on the �eld of trustworthy AI. �e

various international and national approaches to trustworthy AI are discussed, including

the ethical considerations proposed by leading authorities.
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Chapter 3 introduces the Know Your Model (KYM) concept. �is concept is in�uenced

by the idea that all models have a unique identity and that model characteristics can be

leveraged to know and trust models. To ”know” a model implies collecting, recording, and

storing detailed records of the processes undergone during the development of a model,

subsequently establishing model identity. Twenty key guidelines are proposed to establish

a model’s identity, particularly around 4 core principles: e�cacy, reliability, safety, and

responsibility.

Chapter 4 introduces FL as a privacy-preserving collaborative learning method. �e types

of architectures and aggregation mechanisms are discussed. Several use cases are explored,

including healthcare, �nance, and manufacturing. �e implications of FL on increasing

trust in AI are outlined. Lastly, a use case applying FL to anti-money laundering is ex-

plored.

Chapter 5 analyzes the security and privacy considerations of FL. In this chapter, a thorough

analysis of the behavior of byzantine aggregation mechanisms against model poisoning in

an FL se�ing is explored. In particular, the performance of popular defenses such as Krum,

Multi-Krum [45], Norm-Di�erence Clipping [332], and Robust Federated Averaging (RFA)

[273] are discussed. Model poisoning is conducted to explore the impact of adversarial

a�acks on each aggregation mechanism. �e impact of each defense mechanism on the

performance of the FL model is measured.

Chapter 6 explores applying FL to ful�ll the requirements of the AI Act proposed by the

European Commission in 2023. In this chapter, an FL regulatory sandbox is proposed to

foster an environment for developer/regulator collaboration in a privacy-preserving man-

ner.
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1.2 Contributions
�e following published contributions are included in this dissertation. Contributions are

listed in chronological order.

• Roszel, M., Norvill, R., & State, R. An Analysis of Byzantine-Tolerant Aggregation

Mechanisms on Model Poisoning in Federated Learning. In International Conference

on Modeling Decisions for Arti�cial Intelligence, MDAI 2022, Sant Cugat del Vallès,

Spain, 2022, pp. 143-155. Cham: Springer International Publishing. [297] (Included in

Chapter 5)

• Roszel, M., Fiz, B., Norvill, R., Hilger, J., & State, R. Know Your Model (KYM): Increas-

ing Trust in AI and Machine Learning. In Deployable AI (DAI) Workshop of the 37th

AAAI Conference on Arti�cial Intelligence, AAAI 2023, Washington DC, USA, 2023.

[299] (Included in Chapter 3)

• Roszel, M., Fiz, B., & State, R. FLAIRS: Federated Learning AI Regulatory Sandbox. In

Machine Learning and Knowledge Discovery in Databases: Workshop on ML, Law, and

Society: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023.

Springer Nature Publishing. [298] (Included in Chapter 6)
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Chapter 2

Trustworthy Arti�cial Intelligence

AI is a �eld of study focused on the development of machine intelligence, particularly

the development of machines and systems that simulate human intelligence, behaviors,

and processes, such as problem-solving, decision-making, and learning [301]. While the

de�nition of AI is widely debated, the �eld encompasses systems with a variety of func-

tions, including Expert Systems, Machine Learning, Robotics, Natural Language Processing,

Computer Vision, and Speech Recognition [78]. �e use of AI systems has transformed

society, with wide applications and utilization in a multitude of domains, including au-

tonomous systems [392], e-commerce [28], education[68], �nance [62], healthcare [158],

power electronics [397], medicine [231], smart manufacturing [198], and supply chain e�-

ciency [343].

�e increased prevalence of AI systems in society has been accompanied by an increased

concern about the impact of AI systems on society. When developing AI systems we o�en

consider its accuracy in decision making, but accuracy alone is not enough in high-stake

scenarios (such as judicial decisions, and fraud detection) where an incorrect decision may
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have undesirable consequences [394]. In recent years, there has been an increasing concern

that AI systems are vulnerable to algorithmic bias and discrimination, such as bias due to

gender, race, religion, age, nationality, or socio-economic status [6, 257]. �ere are several

notable examples of serious repercussions of AI resulting in biased results, such as the

COMPAS algorithm predicting criminal recidivism with a bias against African-American

o�enders [236], and the Amazon recruitment tool recommending candidates in a gender-

biased manner [183]. Further, there are concerns about personal privacy, accountability,

security, and safety of AI systems, and even concerns about the long-term impact of AI on

job availability and human control over AI [89].

�e increased concerns about the large-scale impact of AI deployment on society have

sparked an interest in developing Trustworthy AI. �e domain of Trustworthy AI, similar

to the domains of benevolent AI, responsible AI, and ethical AI, focuses on the development

of AI that can be trusted; systems in which the bene�ts are maximized and the risks and

dangers are minimized [341]. �e large-scale adoption of AI systems greatly depends on

developing trust in not only their performance but also their greater purpose and trans-

parency. Developing trust in AI is a dynamic process requiring continuous trust develop-

ment and maintenance throughout all stages of development and deployment, this process

being crucial for the greater adoption of AI systems [318].

Trustworthy AI has gained the a�ention of policy-makers, governments, regulatory bodies,

and scienti�c communities. Several regulating and policy-making agencies have suggested

that the development of Trustworthy AI systems is vital to ensure that AI systems do not

cause unintended harm to humanity [79, 142, 261, 354]. �e International Organization

for Standardization (ISO), has developed standardization guidance to establish trust in AI

systems using the concepts of availability, resiliency, reliability, accuracy, safety, security,

and privacy [156]. Further, many policy-makers have proposed requirements for the de-

velopment of AI systems that will lead to Trustworthy AI, such as the High-Level Expert

8
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Group reports, and the Arti�cial Intelligence Act in the European Union [142, 338], and

the Executive Order on the Safe, Secure, and Trustworthy Development and Use of Arti�cial

Intelligence in the United States of America [43].

�ese frameworks de�ne various key aspects that would lead to a ”trustworthy” AI system.

While these frameworks will be detailed further later in this chapter, the majority of publi-

cations, regulations, and policies calling for Trustworthy AI include the following concepts

[113, 175, 197]:

• Accountability: Accountability refers to the obligation to explain and justify the ac-

tions and decisions of an AI system to the users to which the system interacts or to a

relevant authority (such as a regulatory body and/or policy-makers) [256].

• Explainability & Interpretability: �ese concepts refer to the need to explain, inter-

pret, and understand the operations and outcomes of an AI system [210].

• Fairness & Non-Discrimination: Fairness refers to the fairness and lack of discrimina-

tion in the outcomes of an AI system, particularly toward the absence of bias toward

any speci�c group or individual based on characteristics irrelevant to the decision-

making process [236, 311].

• Privacy: Privacy primarily refers to the protection of personal data, particularly from

the unauthorized or unlawful gathering and use of data. Privacy typically includes

calls for users’ ability to consent and control the use of their private data, users’ rights

to restriction, recti�cation, and erasure, and privacy by design [113].

• Robustness & Reliability: Robustness calls for AI systems to be technically robust to

errors, incorrect inputs, or unseen data [197], and reliability refers to consistency in

behavior and results of an AI system [156].

• Safety & Security: Safety of an AI system refers to the safe design and function of an

9
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AI system, ensuring that anAI system does not harm living beings or the environment

by design or misuse [113]. Security refers to the ability of an AI system to remain

secure against external threats, such as cyber-a�acks, data breaches, and malicious

actors [174].

�e development of a truly ’trustworthy’ AI requires careful consideration of the interplay

between these concepts and the requirements that need to be ful�lled to satisfy each during

development.

In the following sections, the relevant publications, regulations, and policies on Trustwor-

thy AI will be discussed to explore Trustworthy AI as de�ned by the various groups. �en,

the commonality between these frameworks will be further detailed to understand their

importance in Trustworthy AI development.

2.1 Ethical and Regulatory Guidelines for Trustworthy

AI
In recent years, many policy-makers, government agencies, academic institutions, and pri-

vate organizations have published guidelines, principles, and frameworks for the develop-

ment of Trustworthy AI [53, 114, 115, 175, 197, 245, 272, 346]. However, currently, there is a

lack of agreement on the exact requirements that should be focused on in the development

of Trustworthy AI, with each report producing a di�erent set of guidelines. As stated in

the previous section, these publications share a common set of concepts, each mentioning

in some way the concepts of accountability, explainability & interpretability, fairness &

non-discrimination, privacy, robustness & reliability, and safety & security.

Among the publications on Trustworthy AI, three are particularly relevant in the context

of this dissertation for de�ning Trustworthy AI and guiding regulation toward the develop-

ment of Trustworthy AI systems: Ethics Guidelines for Trustworthy AI: European High Level

10
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Expert Group on AI [142], theArti�cial Intelligence Act [142, 338], and the Executive Order on

the Safe, Secure, and Trustworthy Development and Use of Arti�cial Intelligence [43]. �e con-

cepts previously de�ned are re�ected in each of these publications with subtle di�erences in

de�nition and application. Additionally, each publication includes unique concepts to the

interests or priorities of the group of interest. Each of these publications will be discussed

with a focus on the di�erences in how trust is de�ned in each.

2.1.1 Ethics Guidelines for Trustworthy AI: European High Level

Expert Group on AI

In 2019, the European High Level Expert Group (HLEG) [142] made signi�cant progress in

de�ning TrustworthyAI by de�ning a set of guidelines and requirements for trustworthyAI

development. �e established guidelines are driven by three components that make an AI

trustworthy: law, ethics, and robustness. �e text proposed that a Trustworthy AI should

be lawful (abide by relevant laws and regulations), ethical (adhere to ethical values and

principles), and robust (perform in a safe and reliable manner). �is proposal was based

on fundamental rights, de�ning four ethical principles to which trustworthy AI should

adhere to: respect for human autonomy, prevention of harm, fairness, and explicability. �e

principle of respect for human autonomy ensured the fundamental rights of the freedom

and autonomy of human beings, encouraging Trustworthy AI systems to be developed

with a human-centric design that allows for human choice and primarily supports humans

in pursuit of life and work. Prevention of harm is the concept that AI systems should not

do undue harm to humans, protecting the mental and physical health of humans as well

as human dignity. �e principle of fairness refers to ensuring that AI systems are free

from bias and discrimination, as well as calling for human choice, social fairness, and equal

opportunity. Lastly, the principle of explicability calls for transparency, traceability, and/or

auditability in the communications on the capabilities, purposes, and decision-making of

an AI system.
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Within these guidelines, the group identi�ed seven requirements: Human agency and over-

sight, technical robustness and safety, privacy and data governance, transparency, diversity,

non-discrimination and fairness, society and environmental well-being, and accountability.

�ese requirements are brie�y described below:

• Human Agency and Oversight: �e AI system should have a human-centric approach,

supporting human autonomy, decision-making, and fundamental rights. �is re-

quirement proposes human-in-the-loop, human-in-the-loop, and human-in-command

approaches to ensure human agency and oversight.

• Technical Robustness and Safety: AI systems should be reliable, secure, safe, and re-

producible. Results of AI systems should be reliable and reproducible, and the AI

system should be robust to malicious actors, with recovery plans in case of a�ack

or failure. �ere is a strong emphasis on preventing unintended harm by ensuring

proper preparation, remediation, and action in case of issues with robustness, accu-

racy, and/or safety.

• Privacy andDataGovernance: Privacymust be guaranteed via proper data governance

procedures throughout an AI systems lifecycle. Private data must be kept protected,

secured, with proper access protocols in place. Further, quality of data should be

ensured by tests for biases, inaccuracies, errors and mistakes throughout.

• Transparency: �e AI system, models, and data should be transparent. �is require-

ment calls for clear documentation on the processes taken during AI development,

including data gathering and labelling. Further, this requirement calls for explain-

ability in AI systems, their decision-making processes, their capabilities, and their

limitations.

• Diversity, Non-Discrimination and Fairness: Inclusion and diversity should be consid-

ered throughout the AI systems lifecycle, avoiding unfair biases and discrimination
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for sensitive groups. Accessibility and feedback from stakeholders should be priori-

tized.

• Societal and Environmental Well-Being: AI systems should bene�t society, including

bene�ting human beings and being environmentally friendly and sustainable. It is

important to consider the societal and social impacts of an AI system throughout its

lifecycle, now and in the future.

• Accountability: AI systems should be held responsible and accountable for outcomes

during the entire lifecycle, and should be able to report, respond, and remedy ac-

tions and decisions in each stage. �is requirement calls for auditability to assess

algorithms, data, and design processes.

�e HLEG expanded upon this report by presenting the ”Assessment List for Trustwor-

thy Arti�cial Intelligence (ALTAI) for self-assessment” [143], which establishes particular

questions that AI developers and creators can ask to assess their a�ention to each of the

key requirements.

2.1.2 Arti�cial Intelligence Act

�e Arti�cial Intelligence Act (AIA) is a proposed regulation by the European Union. It was

proposed on April 21st, 2021 and a provisional agreement was reached between lawmakers

on December 9th, 2023. At the time of writing this dissertation, the �nal agreement has not

been published; therefore, an analysis of only the proposed AIA is provided here. For this

section, the AIA proposal published on April 21st, 2021 is primarily referenced, taking into

account the amendments to the act published on June 14th, 2023 [338, 340].

�e AIA is a proposal towards establishing ”harmonized” AI rules, taking a risk-based ap-

proach by de�ning risk levels and regulatory processes. �e primary objectives of the AIA

are to provide a set of rules for AI within the European Union and its markets to create law-
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ful and safe AI that are aligned with existing legal structures. Like the HLEG report, there

is a focus on protecting the fundamental rights of persons, as well as respecting Union

values and encouraging e�ective enforcement of existing Union laws and safety require-

ments. Further, the act aims toward fostering a market for ”lawful, safe and trustworthy AI

applications”, providing an avenue toward assessing the risk-levels and safety of AI systems

without incurring large costs and constraining the ability of creators to place AI systems

on the market. Regarding the elements of Trustworthy AI, as both the AIA and the HLEG

publication were wri�en and published by the European Union, the AIA references the

principles laid out by the HLEG for the development of ethical and trustworthy AI.

�ere are two major elements proposed by the AIA to be discussed: classifying AI systems

by risk-level and establishing rules and regulations for such systems based on their risk

level. �e act de�nes several di�erent risk levels (Title II): unacceptable-risk, high-risk,

low- or minimal-risk.

Unacceptable risk systems are detailed in Title II, specifying unacceptable risk systems as

those systems that ”whose use is considered unacceptable as contravening Union values”.

�is includes systems such as social scoring systems, AI systems that manipulate individu-

als through subliminal messages, systems that exploit vulnerable and protected individuals,

and other systems that may violate fundamental rights. AI systems that are classi�ed in the

unacceptable risk category are prohibited from use within the European Union as well as

from export to third-party countries.

High-risk systems (Title III) are those that pose a high risk to health, safety, or fundamental

rights. A high-risk system is classi�ed as an AI system that (i) is indented to be used as

a safety component and (ii) the safety component is subject to a third-party conformity

assessment. Any system that ful�lls both conditions as a safety system classi�es it as a

high-risk system. In addition, the act de�ned several speci�c types of AI systems that may
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be classi�ed as high-risk, including [339]:

• systems utilizing biometric data for identi�cation and/or classi�cation of persons

• systems involved with the management of critical infrastructure, such as those in-

volved with safety for transportation and utilities

• systems involved with the assessment or access for educational or vocational training

• systems involved with employment (recruitment, promotion, termination)

• systems that determine access to essential private and public services, such as as-

sessing eligibility by governments for public assistance bene�ts, credit worthiness

assessments, and the dispatching of emergency services

• systems involved with law enforcement

• systems involved with asylum, migration, and/or border control

• election systems, and systems involved with democratic or judicial processes

Low-risk and minimal-risk systems include any other systems that are not considered as

high-risk or higher. �is risk classi�cation level include a wide variety of AI applications.

�e requirements for these systems are minimal, the Union calling for minimal trans-

parency requirements (Title IV). In particular, these transparency requirements are targeted

to systems that interact and engage with humans in such a way that it can detect emotions,

determine social group membership based on biometric data, or generate or manipulate

certain content. �e transparency requirements in this case require that an individual be

informed and given the choice on whether to proceed.

�e AIA also de�nes a set of regulatory principles that applies both to providers and users

of AI systems within the European Union. Namely, it applies to 1) providers of AI sys-

tems placing such systems onto the market anywhere in the Union, 2) users of AI systems
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physically located within the Union, and 3) providers and users located in a third country,

provided that the output of the AI system is used in the Union.

Unacceptable-risk systems are considered too risky, and prohibited. Limited-risk andminimal-

risk systems do not have mandatory regulatory requirements. Instead, a Code of Conduct

has been developed to encourage the voluntary application of the rules that apply to high-

risk systems (Title IX).

�e majority of requirements are speci�cally targeting high-risk systems, and these re-

quirements are laid out in Title II, Chapter 2 of the AIA. High-risk systems must comply

with a list of requirements, including (but not limited to):

• Article 9: Risk management system: �e establishment of a risk-management system

for the entire lifecycle of the AI system. �is risk-management system should include:

(i) identi�cation of any known and foreseeable risks that the AI system might be

associated with; (ii) evaluation of any risks that may occur due to the intended use

of the AI system, as well as an estimation of risk during misuse of the AI system;

(iii) evaluation of risks foreseen a�er entering the market; (iv) adoption of a risk

management system that complies with the requirements of the article, including

elimination/reduction of foreseen risks during design, communication of risk with

users, implementation of mitigation measures, among others.

• Article 10: Data and data governance: For systems that use data processing techniques

that segment data into training, testing, and validation sets, data and data governance

techniques shall be implemented. �e data and data governance practices include

assessment of design choice, data collection and preparation tasks, assessments of

relevant a priori assumptions, availability, quantity, and suitability of data, assess-

ment of possible biases, and identi�cation of any data ”gaps and shortcomings” and

establishing mitigation strategy for them.
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• Article 11: Technical documentation: �e establishment of thorough technical doc-

umentation. �is technical documentation, further detailed in Annex IV [339], in-

clude general descriptions of the AI systems purpose and speci�cations (so�ware,

�rmware, hardware), description of the development processes and design speci�ca-

tions, description of the functionality and monitoring of the AI system (including a

description of expected accuracy, foreseen risks and unintended outcomes, and hu-

man oversight measures).

• Article 12: Record-keeping: �e design and development of AI systems with the ability

to automatically collect logs during the operation of the system for the automated

record-keeping of events. �ese logswill ensure traceability andmonitoring of events

throughout the systems lifecycle.

• Article 13: Transparency and provision of information to users: �e output of an AI

system should be transparent and interpretable to the users of the system. �is article

de�nes transparency requirements for the design and development of an AI system

such as the need to include instructions for users with information on the intended

use, level of accuracy, robustness and cybersecurity to which the system has been

validated, risks to safety during use/misuse, input data, human oversight measures,

and other relevant quali�cations.

• Article 14: Human oversight: �e design and development of an AI system should

be with human oversight in mind. �e AI system shall enable a human overseeing

the functioning of an AI system to: (i) understand the capabilities and limitations of

the system and monitor its operation for ”anomalies, dysfunctions, and unexpected

performance”; (ii) remain aware of automation bias; (iii) interpret the output; (iv)

bypass in some way the output of the system; (v) intervene to stop or interrupt the

operation of the AI system.

• Article 15: Accuracy, robustness and cybersecurity: Achieve an ”appropriate” level of
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accuracy, robustness, and cybersecurity. Accuracy (and other relevant metrics) shall

be reported in the instructions to users (Article 13). Robustness shall be achieved

with back-up or fail-safe processes or procedures. �e system shall also be consid-

ered robust to security threats, with appropriate cybersecurity mechanisms given the

intended purpose of the AI system, and resiliency to malicious actors.

�e act continues by de�ning the obligations of both users and providers of high-risk AI

systems (AIA Chapter 3), requirements for notifying bodies (AIA Chapter 4), speci�c details

on standardization, conformity, certi�cation, and registration. �e regulatory requirements

of the AIA for high-risk systems will be further discussed in Chapter 6.

�roughout the AIA, there is a strong focus on the protection of the fundamental rights

of persons, with several mentions of the respect for the privacy, non-discrimination, trans-

parency, reliability, safety, security, and the promotion of the fundamental rights of peo-

ples.

2.1.3 Executive Order on the Safe, Secure, and Trustworthy Devel-

opment and Use of Arti�cial Intelligence

�e Executive Order (EO) on the Safe, Secure, and Trustworthy Development and Use of

Arti�cial Intelligence was issued by President Joseph Biden on October 30th, 2023 [43].

�e EO establishes standards for AI safety and security toward protecting the privacy of

individuals, civil rights, consumers, and workers. Further, there is a focus on promoting

innovation and competition, as well as working with other nations to further Trustworthy

AI e�orts.

�e EOde�nes eight principles for the development and advancement of AI (Section 2):

• Arti�cial Intelligence must be safe and secure: �is principle requires evaluations of

AI systems to understand and mitigate the risks that AI systems post. It also calls
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for addressing security risks, including cybersecurity threats, and performing testing

and evaluation on the AI system for any risks due to misuse. Further, this principle

mentions that output should be labelled as such that users can identify if the content

is generated using AI.

• Promoting responsible innovation, competition, and collaboration: �is principle calls

for investments in ”AI-related education, training, development, research, and capac-

ity” and IP protection e�orts. �e government pledges to promote opportunities for

marketplace development in AI to drive innovation.

• Commitment to supporting American workers: Encouraging job creation, training, and

education to increase access to job opportunities created by AI development.

• Advancing equity and civil rights: �e use of AI to disadvantage sensitive groups is not

tolerated. AI systems shall comply with all Federal laws to avoid discrimination and

bias with technical evaluations and oversight to advance ”civil rights, civil liberties,

equity, and justice for all”.

• User and consumer protections: Users and purchases of AI systems are still protected

by existing consumer protection laws and principles. In particular, existing laws

should be leveraged to protect consumers against ”fraud, unintended bias, discrimi-

nation, infringements on privacy, and other harms”.

• Protection of privacy and civil liberties: Personal data should be protected, and the

collection, use, and retention of data should be lawful, secure, and con�dential. Pri-

vacy tools and technologies shall be used to protect privacy and mitigate any risks to

privacy.

• Responsible use of AI by the Federal Government: �is principle focuses on the re-

sponsible use of AI by the government. It largely calls for recruitment of su�ciently

trained sta� to ensure responsible AI adoption at the governmental level.
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• Global societal, economic, and technological progress: �is principle calls for the United

States’ involvement in promoting safe, secure, and trustworthy AI around the world,

via engagement with international groups to promote responsible AI.

Section 4 outlines the actions the Federal government will undertake to foster safe and se-

cure AI technology. �e EO established that following publication of the EO, the following

actions shall be taken: development of further guidelines and standards by leading govern-

mental and academic authorities (Section 4.1), de�ning of requirements for AI systems tar-

geting national defense and critical infrastructure (Section 4.2 and 4.3), identi�cation and

reduction of risks from AI associated with chemical, biological, radiological and nuclear

threats (Section 4.4), identi�cation and reduction of risk of synthetic content produced by

governmental agencies (Section 4.5), seeking input on widely available model weights for

dual-use foundation models (Section 4.6), promotion of the safe release of Federal data for

AI training (Section 4.7).

Section 5 focuses on promoting innovation and competition, Section 6 on promoting work-

ers, Section 7 on advancing civil rights and equity, Section 8 on protecting ”consumers,

patients, passengers, and students”, Section 9 on protecting the privacy of individuals and

private data, Section 10 on AI utilization in the Federal government, and Section 11 on en-

couraging collaboration with other nations on the development of safe, secure, and trust-

worthy AI.

At the time of writing this dissertation, no further actions have been taken on enforcing

the requirements established in the EO.

2.1.4 TrustworthyPrinciples in Ethical andRegulatoryGuidelines

As is evident, many of these principles and requirements overlap among the publications

listed in this section. For example, each publication makes mention of the need for fairness
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and non-discrimination, privacy, reliability, robustness, safety, security, and the promotion

of societal well-being. In each, the concept of accountability is approached, with both the

AIA and EO approaching accountability with a regulatory and standardization, and the

HLEG suggesting auditability. However, the European publications had a signi�cant focus

on explainability, interpretability, and transparency that was not re�ected as strongly in the

EO. Mentions on this concept in the EO are limited to ensuring that users understand when

content is generated by AI, rather than the need to explain and interpret outputs.

With these works, it is clear that there are commonalities in the de�ning of Trustworthy

AI, including both technical and societal/ethical qualities that AI systems can exemplify to

be considered Trustworthy AI. In the next section, these concepts will be further explored

to understand their greater role in trustworthy AI design and development.

2.2 Trustworthy AI Concepts
Building upon the culmination of works de�ning Trustworthy AI, in this dissertation the

following concepts are held paramount in developing a Trustworthy AI system: account-

ability, explainability & interpretability, fairness & non-discrimination, privacy, robustness

& reliablity, and safety & security. While no consensus has been found on the formal def-

inition of trustworthy AI, focus has been placed on these key principles. Increasing trust

in AI requires that providers, creators, designers, and developers closely analyze how they

address these key principles during the development of their systems. In this section, these

key principles will be further explored to uncover the challenges they pose in the develop-

ment of trustworthy AI systems, both from an ethical and technical perspective.

2.2.1 Accountability

With AI becoming increasingly prevalent in society, there is increasing concern about who

will be accountable for the decisions and impact of AI technologies. �e principle of ac-

countability calls for an obligation to explain, justify, and in cases of failure, mediate the
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actions and decisions of AI systems, as well as calling a�ention to the need for auditing,

regulatory requirements, and responsibility [174]. Fjeld et al. [113] found that 97% of the

relevant documents published prior to 2020 on principled AI in all sectors (private, civil so-

ciety, government, inter-governmental, multi-stakeholders) mentioned the concept of ac-

countability: 69% mentioned accountability in terms of identifying a party that is responsi-

ble for the technology and any harms it may cause, particularly identifying responsibility

in terms of the AI systems creators, developers, and/or providers; 53% recommended regu-

latory systems and impact assessments, and 47% mentioned a need for auditability.

Assigning responsibility for the outcomes of AI systems could potentially prevent sig-

ni�cant failures and harm to society, particularly for AI systems involved in high-stakes

scenarios. Consider, for example, the case of the Boeing 737 MAX crashes in 2018 and

2019 where signi�cant errors with the maneuvering characteristics augmentation system

(MCAS) caused two fatal accidents claiming the lives of 346 people [159]. While this case

is rather extreme, many other AI failures have captured international a�ention, such as

a robotic arm in a car factory malfunctioning and killing a man, a self-driving car caus-

ing a fatal accident, and cases of malfunctioning AI systems resulting in bias, racism, and

malicious behavior [365]. Proper regulation, audit structures, governance, and otherwise

system and outcome veri�cation could have prevented these failures. However, there is no

consensus on who is responsible for failures. Who is responsible, ethically and/or lawfully,

for these failures: creators who develop the AI systems, data collectors of training and vali-

dation data, stakeholders and providers who deploy the systems, or even governments that

do or do not regulate how AI systems interact with their citizens?

�e need for accountability is paramount for building trust. Accountability requires both

answerability [256] and explanation [92]. Accountability requires that something or some-

one is answerable to another, such as to a higher power, authority, or entity [256]. Expla-

nations increase trust in a multitude of ways: explanations can reveal information about
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decisions made during the design, development, and deployment of an AI system without

revealing the precise technical details about the AI system’s decision-making process, ex-

planations can be used to determine whether proper procedures were followed, and they

can be used to prevent and/or correct failures or errors [92].

�erefore, considering these two aspects, accountability is an important aspect of devel-

oping trust in AI. Establishing accountability mechanisms during the design, development,

and planning of anAI system is equally as important asmaintaining accountability through-

out deployment and, in cases of error, a�er problems have occurred.

Proposed Solutions

Researchers have proposed a number of solutions to increase accountability in AI systems.

Accountability in AI can be proactive or reactive. Proactive accountability occurs before

the development and deployment of algorithms, focusing on the design, development, and

subsequent planning for events and failures; reactive accountability occurs a�er the de-

ployment of an AI system, or a�er a failure/errors, and concerns primarily the reporting

and enforcement of mitigation and sanctions.

Proactive accountability focuses on developing AI systems to be accountable from the o�-

set, including the planning for adverse behaviors. Research in this area focuses primarily

on the design speci�cations and implementing mechanisms during the development of the

AI system. Impact assessment methods are proposed to report potential impacts to stake-

holders and users, such as the Human Rights Impact Assessment (HRIA) [177], Privacy

Impact Assessment (PIA) [293], Ethical Impact Assessment (EIA) [360], and Surveillance

Impact Assessment (SIA) [361]. Kaminski and Malgieri [162] propose impact assessments

via a multi-layer transparency process based on the Data Protection Impact Assessments

in the European Union (EU)’s General Data Protection Regulation (GDPR) [353]. However,

Metcalf et al. [240] argue that these impact assessment frameworks are disconnected from

23



Trustworthy Arti�cial Intelligence

assessing the actual harms of an AI system, and argue for adaptations to such assessments

to increase accountability and foster public trust.

Further, researchers have proposed mechanisms for increased accountability during devel-

opment, such as developing AI systems with signi�cant human oversight in the AI sys-

tems lifecycle from the o�set, enhancing human agency without removing responsibility

[350]. Many researchers propose human-in-the-loop frameworks that prioritize human in-

terpretability and control over outputs [182] and emphasize the need for documentation

[186].

Reactive accountability focuses on the developed/deployed AI system and reacting to the

outcomes and/or failures of AI systems. Risk management and assessment mechanisms are

proposed to assess AI systems for risk upon deployment [230, 262, 338], as well as for iden-

tifying, explaining, and mitigating failures [259]. Researchers in this area have proposed

audit architectures that collect information from AI system outputs to monitor, repair, and

potentially redirect AI systems [242, 270, 306]. Regulatory and policy frameworks typi-

cally fall under this type of accountability, applying recommendations for transparency,

compliance, certi�cation, and risk assessments to existing AI systems [52, 57, 103].

Other researchers focus on providing end-to-end accountability frameworks. Raji et al.

[282] propose a process to increase governance utilizing audits, outlining an internal au-

dit framework to be utilized during AI development. �ey de�ne �ve stages: scoping,

mapping, artifact collection, testing, and re�ection, wherein providers of AI systems in-

crease accountability by the design of their systems aligned with trustworthy principles,

collect documentation throughout development including interviews with stakeholders,

audit checklists, model cards, data sheets, and technical documentation, and develop re-

mediation plans, among other quali�cations. Broeders et al. [52] propose a framework for

the use of Big Data, including considerations for the use of Big Data from the design to reg-
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ulation of a system. Toward establishing accountability in ML, Kim and Doshi-Velez [181]

analyze proposed techniques to increase accountability in ML, outlining �ve categories of

approaches to increase accountable ML: transparency, interpretability, post-hoc inspection

of model outputs, pre-market and post-market performance evaluation, and design prop-

erties.

Technical Challenges

�ere is no clear solution to increase accountability in AI. While many solutions have been

proposed, there is li�le consensus on how exactly accountability can be developed, such

as if accountability can be reached a�er the development of an AI system via audits or

assessments, or if accountability must be built into each stage of the AI systems lifecy-

cle. �e concept of accountability also o�en overlaps with other aspects of trustworthy

AI, particularly transparency, explainability, fairness, and human oversight, indicating that

accountability requires an interplay of several domains. �erefore, it is di�cult to create

just one method of increasing accountability; rather, focus should be placed on a holistic

approach to improving trustworthy AI, and accountability will follow.

2.2.2 Explainability & Interpretability

AI decision-making has replaced human decision-making in many aspects of day-to-day

life. In order to trust the decisions that AI systems make, users must understand the out-

comes of the system. However, as these systems are increasingly complex and di�cult

to understand, explaining and interpreting their processes and outcomes is a signi�cant

challenge.

Increasing trust in AI requires increased explainability and interpretability of AI systems.

However, in AI research and publications these terms are intertwined. While uses of the

terms o�en overlap, there are subtle di�erences in how each term is de�ned and utilized

[208]. Explainability is primarily concerned with ensuring that the operations and out-
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comes of an AI model are understandable to a human, such that a human can understand

the decision-making process [243], whereas interpretability concerns the intuition behind

how inputs are mapped to outputs of a system [4]. Researchers o�en use these terms syn-

onymously, o�en with calls for increased transparency in outcomes and decisions, data

use and governance, development, and deployment processes via transparency by design

[109, 362].

Both explainability and interpretability play a vital role in increasing trust in AI systems

and outcomes. Indeed, DARPA highlights the importance of explainability in trust, claiming

that producing explainable models and enabling e�ective explanation techniques improves

trust in AI systems [131]. Further, many researchers argue that building understandable

systems leads to increased user trust, such as Mercado et al. [239] who found that increased

transparency resulted in increased trust and perceived usability of an automated AI system.

Similarly, Shin [316] found that if users understand the decisions and limitations of an AI

system, a higher level of trust and acceptance was observed. Establishing explainability

and interpretability mechanisms during the design, development, and deployment of an AI

system is important in fostering trust from users.

Proposed Solutions

�is area of research is quite active, with many researchers proposing various methods

for increasing transparency and explainability in AI systems. Arrieta et al. [18] identi�ed

nine primary goals in explainable and interpretable AI research: trustworthiness, causality,

transferability, informativeness, con�dence, fairness, accessibility, interactivity, and privacy

awareness. �e authors reveal that the literature makes a clear distinction between AI sys-

tems that are interpretable by design, and those that require external tools or methods to

be applied to explain them a�er the fact, classifying two types of explainability as (1) trans-

parency in modeling and (2) post-hoc explainability.
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Transparency in modeling, also called intrinsic interpretability, refers to the concept that

the models themselves should be interpretable via algorithmic transparency, decomposabil-

ity, and simulatability [18]. Typically, this type of explainability includes simplistic models

such as linear/logistic regression, decision trees, K-Nearest Neighbors, rule-based systems,

general additive models, and Bayesian methods [244]. Each of these exhibits some level

of transparency in the modeling process itself, such as the ability of the model to be eas-

ily thought about by a human, the ability to explain every input, parameter, or calculation

of a model, and/or the ability of a human to understand the process by which the system

produced an output from a given input via mathematical analysis and methods. For exam-

ple, some researchers have proposed techniques to foster explainability in their modeling

processes [64, 195].

Post-hoc explainability occurs when the model itself is not interpretable by design, but

rather methods can be undertaken to enhance interpretability via explanations [18]. �e

goal of these explanations is to increase the level of interpretability, whether via explaining

the whole logic, processes, and decision-making of a model (Global Interpretability), or ex-

plaining individual decisions made by the system (Local Interpretability) [4]. �ese types

of explanations include text explanations, visual explanations, local explanations, explana-

tions by example, explanations by simpli�cation, and feature relevance explanations [18].

For example, Local Interpretable Model-Agnostic Explanations (LIME) and its variations

were proposed to provide simplications and local explanations for predictions of ML mod-

els [289, 290]. Further, feature relevance explanations methods to explain feature in�uence,

relevance, and importance have been proposed, such as SHapley Additive exPlanations

(SHAP) [220], �antitative Input In�uence (QII) [85], Automatic STRucture IDenti�cation

method (ASTRID) [139], and others [184, 294, 330]. Visualization techniques have also been

proposed in a variety of ways to explain the data, guide feature selection, and assess the

performance of algorithms [7].
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�e goal of explainability and interpretability is to increase understandability, foster trust,

and increase transparency in AI systems. �ere are a multitude of methods and solutions

focused on making AI systems explainable by design or via providing post-hoc explana-

tions. For a more comprehensive review of explainability and interpretability methods,

please reference Arrieta et al. [18], Linardatos et al. [208], and Adadi and Berrada [4].

Technical Challenges

As modeling becomes more complex, understanding becomes more di�cult and opaque.

Providing an interpretation of how an AI model works becomes a signi�cant issue, as does

providing a metric for measuring a model’s explainability. In addition, the type of explana-

tion needed depends on the user andmodel type, and therefore so does the metric needed to

measure explainability, further complicating the issue [146]. Although this is a very active

research area, it is not clear how these methods are being used in deployment. Bha� et al.

[41] �nd that the methods are being used primarily by ML engineers during development

and debugging, not by the users and stakeholders themselves, revealing a gap between

theory and practice. It is clear that an explanation of some sort is required, but there is

li�le consensus on the audience, depth, and degree of speci�cation of explanations for AI

systems.

2.2.3 Fairness & Non-Discrimination

With the proliferation of AI systems in society, there is increased a�ention on the fairness

of such systems, especially in high-stakes scenarios. �e fairness and non-discrimination

principle calls for the consideration, detection, and prevention of discrimination and bias in

the development of AI systems. As these systems are o�en used in sensitive or high-stakes

areas, it is vital that decisions are made without discriminatory or biased in�uence toward

particular demographic groups or populations. In recent years, biased and discriminatory

practices in AI have been identi�ed in nearly every type of system, including advertise-

ments, chatbots, employment decisions, legal decisions, facial and voice recognition, and
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search engines [234]. For example, several notable examples of biased criminal detection

and criminal recidivism systems have been found, where racial bias has been revealed in

the predictions [11, 234]. Gender bias is also prevalent, with notable AI systems producing

bias in predictions, particularly due to biased data sources [296]. For example, gender bias

in AI systems has been demonstrated in medical se�ings where inconsistency in diagnosis

accuracy was observed for males and females based on x-ray images [190].

Fairness of an AI system implies that the outcomes are fair if they do not cause disparate

harm against any particular subgroup [26]. Fairness in AI has a clear relationshipwith trust.

Fairness, non-discrimination, and the mitigation of bias are mentioned in the majority of

Trustworthy AI literature, with claims that fairness in the development, deployment, and

outcomes of AI systems is vital to increasing user trust [113]. However, there is no con-

sensus on the formal or mathematical de�nition of fairness, as ”fairness” in an AI system

is largely context-dependent and varies from application to application. Fairness litera-

ture de�nes individual fairness and group fairness, where individual fairness seeks equality

among similar types of individuals, whereas group fairness seeks equality across groups

[228]. Regardless of the type of fairness, this principle calls for methods that both miti-

gate discrimination and measure bias impacting the AI system. One common focus in the

literature is that fairness in AI is strongly related to measuring and mitigating bias.

To mitigate biases, it is important to understand them and their causes. Several types of

bias are prevalent in AI literature. Kaur et al. [175] broadly de�ne three types of bias: data

bias, model bias, and evaluation bias.

Data bias concerns the inputs to the AI system. �is type of bias refers to the systematic

skew of data that leads to unfair or discriminatory outcomes when processed by AI sys-

tems. Data bias can be a result of data collection, processing, or how it is leveraged during

algorithmic development. Indeed, this is a signi�cant focus in fairness research, where it
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has been demonstrated that inherent biases in how humans structure their datasets can

lead to bias in their AI systems [191]. Data bias generally occurs because population dy-

namics of a dataset do not align with reality, such as an imbalance of representation among

classes (particularly protected classes such as age, gender, race, socioeconomic status, etc.),

unlearned data cases, or manipulation of the data to skew the distribution [296].

Model bias occurs at the algorithmic level when the algorithm itself introduces the bias

due to errors or improper development practices resulting in a model that does not re�ect

the full logic of the prediction. For example, this may occur when nonsensical features are

being used during prediction or features are being given more weight than others without

valid logic. Obermeyer et al. [260] found that a widely used health-tech algorithm incor-

rectly predicted patient risk levels in a racially biased way because it was using �nancial

information rather than health information. In another case, it was discovered that the

way that textual data was processed in a popular ML method was leading to gender bias

[46].

Evaluation bias occurs when models are evaluated incorrectly, such as when an unsuitable

evaluation metric is used or when an inappropriate and disproportionate benchmark is

used [234]. For example, this might occur when biased datasets are used to evaluate the

performance of an algorithm [56], or during the use of the AI system user behavior results

in a feedback loop that biases outcomes [193].

�erefore, to develop a fair AI system, it is crucial to ensure that a�empts are made to

mitigate bias at the data level, model level, and during evaluation. Establishing fairness

and non-discrimination mechanisms during the design and deployment of AI systems can

help mitigate bias and reduce discriminatory practices, thereby increasing trust in these

systems.
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Proposed Solutions

Research in this area provides many solutions for auditing, and improving bias and fair-

ness in AI systems. Approaches to increase fairness in AI can be broadly classi�ed as pre-

processing, in-processing, and post-processing methods [234].

Pre-processing methods a�empt to transform or process the data to remove any bias or

discrimination [82]. Zhang et al. [388] demonstrated that causal models and graphs can be

leveraged to identify meaningful partitions for proving discrimination in datasets and pro-

pose amethod to remove discriminatory data points from datasets. Messaging is also shown

to have strengths in removing bias in datasets by changing class labels to produce a more

balanced dataset [163]. Building upon that work, Kamiran and Calders [164] introduces a

preferential sampling to remove bias without relabeling [165]. Brunet et al. [54] propose

a method to remove bias on word embedding via approximation of di�erential bias. Cal-

mon et al. [61] propose a probabilistic framework for data transformation that controls for

discrimination, limits distortion in samples, and preserves utility, demonstrating reduced

discrimination in criminal recidivism applications. Sharma et al. [314] perform data aug-

mentation to improve fairness in data using an ”ideal world” metric to sample datasets for

bias and simulate equality by augmenting additional data points. Other approaches include

removal of disparate impact [108], discrimination prevention [223, 300], and input feature

modi�cation [303].

In-processing methods directly act upon the algorithms to prevent and mitigate bias dur-

ing the development process [82]. For example, augmented cost functions with augmented

’fairness’ regularizer can reduce discrimination by penalizing the algorithm depending on

how it learns protected vs. non-protected classes [167, 378]. Berk et al. [37] propose a

weighted regularizer that computes the accuracy-fairness tradeo� of an algorithm. Kamiran

et al. [166] alter Decision Tree architecture to minimize the impact of discriminatory data
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and improve performance. Similarly, Calders and Verwer [60] propose three methods to re-

duce bias in the naive Bayes classi�er via modi�cations to the algorithm. Other approaches

include fairness via decision boundaries [376], application of Simpson’s paradox[192], and

adversarial learning [382].

Post-processing methods are concerned with mitigating bias using the outputs of the AI

system. �ese methods typically include alteration of outputs to produce an unbiased result

or post-hoc testing of the trained algorithm using data unseen during training. For example,

in the earlier model of gender bias, Bolukbasi et al. [46] remove bias by modifying the

embedding from the learned model. Hardt et al. [137] demonstrate a method to optimally

adjust any learned predictor to remove bias and discriminatory behavior while preserving

the privacy of the system. Other approaches include applying decision thresholds to reduce

bias based on known groups [80, 238].

Another approach to address fairness is via fairness toolkits. For example, IBM developed

the AI Fairness 360 toolkit, a set of tools that can be used in industry to evaluate algorithmic

fairness [33]. �e toolkit includes fairness metrics for both datasets and models, algorithms

to mitigate bias, as well as a web interface to educate users on fairness principles. Another

toolkit was developed by Saleiro et al. [302] for the auditing of fairness and bias in sys-

tems. �ese types of toolkits are useful for evaluating bias in their systems and reducing

discrimination.

It is clear that many methods have been proposed to improve fairness in AI systems. �is

section could not provide an exhaustive analysis of all methods, and for a more thorough

survey fairness methods, please reference the work by Mehrabi et al. [234].

Technical Challenges

Although research into fairness in AI is very active, there are many challenges to its de-

velopment. A signi�cant challenge in this domain is in clearly de�ning fairness, and what
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constitutes a ”fair” system. Mehrabi et al. [235] argue that while much a�ention has been

placed on equality, not enough a�ention has been placed on equity. �ey propose that

fairness should be motivated by equity, considering the existing and historical biases that

are present today, and making decisions based on those biases. However, the majority of

de�nitions do not account for this, revealing a disconnect in how di�erent groups view

fairness. In further de�ning the de�nition of fairness, existing methods can be applied to

reduce unfairness in data, modeling, and evaluation processes.

2.2.4 Privacy

Privacy is a signi�cant concern in all systems where the use of personal data has signi�cant

social and economic impact [157]. As the performance of AI systems largely depends on

the data that it is trained on, the availability and usage of that data is very important. In

particular, privacy principles in Trustworthy AI focus on private and personal data, where

unlawful gathering, misuse, and/or loss of data can lead to harmful consequences. Con-

cerns over privacy in AI systems are particularly prevalent with the high volume of data

used for sensitive decisions, such as in advertisement, surveillance, health-care decisions,

and money lending [113]. For example, consider the case of the Equifax data breach in

2017: 145 million US consumers had sensitive information leaked, exposing them to iden-

tity the� and potential �nancial and legal repercussions [36]. Further, threats to privacy are

prevalent, such as adversarial a�acks to expose data, expose and poison models, or other-

wise manipulate the results of the AI system [386]. Increasing trust in AI systems is closely

connected with protecting the privacy of the system and users.

Privacy is not only an issue from a systems’ and users’ perspective, but also at regulatory

and governmental levels as well. For example, in the European Union, the GDPR highly

regulates the use of personal and private data in AI, with large �nancial penalties levied

on businesses who do not comply [353]. In particular, the clause that provides users with

the ”right to be forgo�en”, where users have the right to request that their personal data
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be deleted, is particularly important in AI privacy. Researchers have called a�ention to the

issues with applying this clause to AI, pointing out that the complete deletion of private

data in AI may be impossible as AI systems do not ”forget” data in the same way as humans

[352].

To develop a trustworthy AI system, privacy protection is vital. �e use of personal data

in AI systems is a�ected during all phases of AI development, including data collection,

model development, and deployment as well as the storage and utilization of data. To secure

against issues at each stage, privacy protections must be in place, including user consent,

privacy by design, control over the use of data, and the ability to restrict processing, among

others [113].

Proposed Solutions

Research in increasing privacy in AI systems primarily targets ensuring that data is kept

secure and private. Methods to ensure privacy target the data and system development

with techniques such as de-identi�cation, privacy-preserving modeling, risk identi�cation,

and customized data use and management.

De-identi�cation techniques aim to remove identifying information from datasets to pre-

vent data from being linked with speci�c individuals [121]. �is includes anonymized and

pseudo-anonymized data practices, where data is processed to remove or obscure any per-

sonal information [155]. For example, k-anonymity algorithms have been utilized to de-

identify data by ensuring that each data record is similar to a set threshold of other records,

ensuring that individual data cannot be easily identi�ed [29, 100]. Improvements upon

these methods include L-Diversity [227] and t-closeness [201]. However, these methods

have several weaknesses, including including a loss of data utility and relevancy [375], and

potential re-identi�cation [101].

Other data protection methods include censoring, suppression, encryption, exclusion, and
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obfuscation [189]. For example, encryption techniques aim to protect data con�dential-

ity and integrity through encryption, such as utilizing homomorphic encryption for the

development of secure and robust systems [153]. Another example is obfuscation, where

data is modi�ed with methods such as data masking, tokenization, or scrambling, such as

Ardagna et al. [14] who utilize obfuscation techniques on location data taken by sensing

technologies to protect the private location of individuals.

Privacy-preserving technologies are another approach to enable AI to use data without

compromising individual privacy. For example, di�erential privacy techniques have been

leveraged in a variety of domains and use cases, becoming a popular choice for data pri-

vacy [99]. Another approach is Federated Learning (FL), which has speci�c applications

in protecting user data via decentralized model sharing [202]. Other privacy-preserving

approaches in recent years include Multi-Party Computation [94], Zero Knowledge Proof

[111], Partial sharing [211, 317], and data augmentation [118].

Technical Challenges

Protecting the privacy of personal data in AI systems is paramount in building trust. How-

ever, the protection of data comes with a multitude of challenges. While de-identi�cation

methods are common, there are risks associated with the data remaining useful and rel-

evant for decision-making systems [375], and signi�cant risks of re-identi�cation, where

previously personal information and links are revealed about de-identi�cation data [101].

Additionally, while many privacy-preserving techniques have been proposed, there is vari-

ability in the e�ectiveness and cost of each, requiring a balance between performance and

overhead [67].

Further, there are several risks to data privacy posed by adversarial a�acks, including at-

tacks on the data and models [263]. While the security of AI systems will be further dis-

cussed in 2.2.6, there are signi�cant implications that a�ackers may be able to access per-
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sonal data, threatening the privacy of AI systems. It is vital that these challenges are ad-

dressed in developing a trustworthy AI system.

2.2.5 Robustness & Reliability

A majority of Trustworthy AI texts place a signi�cant focus on the performance of AI sys-

tems. �e principles of both robustness and reliability concern the performance of AI sys-

tems. Speci�cally, robustness calls for AI systems to be technically robust to errors, in-

correct inputs, or unseen data [197], and reliability refers to consistency in behavior and

results of an AI system [156].

Both of these concepts are paramount for building trust. �e lack of either of these may re-

sult in unintended behavior by the system. �e de�nitions of these two terms o�en overlap,

but here they are de�ned as two separate concepts that both contribute to the trustworthi-

ness of an AI system. �e two concepts are interlinked, in part, due to the impact that errors

with robustness might have on the reliability of the system.

For example, consider the example of autonomous driving. Autonomous driving systems

must be trained on diverse datasets, including data from di�erent scenarios and environ-

ments, such as ensuring the inclusion of training data taken in all weather conditions and at

all hours of the day. While autonomous driving works well in sunny and clear conditions,

quite a lot of research has been conducted on improving performance in conditions that are

dark or with inclement weather [337, 389]. �is research has both an impact on the robust-

ness of autonomous driving systems to perform equally on all inputs, and the reliability of

autonomous driving under all environmental conditions. �is example demonstrates the

link between these two concepts: robustness to errors, inputs, and unseen data guarantee

reliability in the behavior of AI systems.

Robustness and reliability can apply to the data, algorithms, and overarching developed
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and deployed systems. Data-level robustness focuses on the data that is used to train AI

systems. For example, the above example demonstrates ”Robustness to distributional shi�”

[9]. AI systems are reliant on the data used to train them, and if that data is very di�erent

from unseen data it may be di�cult for the AI system to generalize new inputs. AI systems

must be robust to distributional shi�s, or it may result in undesired behavior in the AI

system.

�e robustness of algorithms highly focuses on robustness to adversarial a�acks [197]. Ro-

bustness to a�acks refers primarily to ensuring that AI systems are defended against a�acks

and that malicious actors or inputs cannot alter the behavior of a system. Adversarial at-

tacks and robustness to malicious actors will be further explored in Section 2.2.6.

At the system level, robustness primarily concerns robustness to errors of execution or

robustness to illegal inputs. For example, Li et al. [197] refers to system-level robustness

as robustness against illegal inputs such as high-resolution images in an image recognition

system causing the system to crash. Some researchers expand reliability at the systems

level to include reliability to perform at a certain accuracy or with high performance on

another metric [23].

Robustness and reliability also depend on the veri�ability, replicability, and reproducibility

of AI systems. Results of an AI system must be reproducible to ensure that outputs can

be repeated, veri�ed, and trusted [19]. Reproducibility concerns the methods, results, and

inferences of an AI system [130]. For example, if another cannot repeat the results of one

researcher, how can those results be trusted for accuracy?

Ensuring the robustness and reliability of AI systems is paramount to increasing trust in

AI. Without either, users cannot have con�dence in the results and outputs of such sys-

tems.
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Proposed Solutions

�is section has already discussed a multitude of methods that have an impact on the ro-

bustness and reliability of AI systems. Solutions for robustness and reliability concern en-

hancing all principles of Trustworthy AI. For example, a biased system is not robust to

diverse inputs, and therefore unreliable in unseen cases. Additionally, many approaches

focus on robustness to adversarial a�acks, discussed further in Section 2.2.6. As solutions

for robustness and reliability largely overlap with other principles of Trustworthy AI, this

section focuses primarily on solutions that directly target ensuring robustness through per-

formance and maintenance.

Testing and monitoring the performance of AI systems can be conducted at each stage of

the AI lifecycle to con�rm that the expected behavior of an AI system aligns with its real be-

havior [197]. Many researchers propose testing and monitoring of AI systems throughout

development and deployment, such as testing for correctness, relevance, security, privacy,

e�ciency, fairness, and interpretability [387]. Simulation techniques allow developers to

verify that systems are performing as expected in real-world scenarios [96], allowing ro-

bust design and deployment. Performance benchmarking can be leveraged to assess per-

formance on standardized datasets to test AI systems and algorithms for robustness and

reliability in its outputs [401].

Additionally, the performance of AI systems concerns its generalizability. �e concept of

generalization refers to the ability of an algorithm to learn and properly predict pa�erns

of unseen data [126]. Li et al. [197] argue that generalization is closely related to AI trust-

worthiness, expanding that the problem of ”Robustness against distributional shi�s” is a

problem of generalization. Ensuring and evaluating the generalization of AI systems may

therefore improve robustness and reliability. Solutions to increase generalization include

benchmarking [401], measures of generalization error [31], and targeting robustness and
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generalization during algorithmic modeling [32, 384, 402].

Other approaches for robustness and reliability focus on increasing the transparency of AI

system development and deployment processes, including the provenance of data and al-

gorithms. As the outcomes of AI systems depend directly on training data use (and misuse),

data transparency, including transparency in data collection, utilization, and storage, is an

area of signi�cant concern in trustworthy AI.

AIOps [84], and MLOps [150, 229] aim toward streamlined, e�cient, and e�ective AI sys-

tem design, development, and deployment. �ese methods develop work�ows for building

AI, providing the backbone for the development of trustworthy AI [197]. Research has

focused both on end-to-end tracking of provenance information and on the evaluation of

models for performance and trust. Several algorithm-provenance solutions have been pro-

posed. Schelter et al. [312] propose a system for the extraction and storage of meta-data

and provenance information commonly observed in the modeling lifecycle. Hummer et al.

[150] propose ModelOps, a cloud-based framework for end-to-end AI pipeline manage-

ment, including support for addressing several trustworthy principles, such as reliability,

traceability, quality control, and reproducibility. Further, several tools for complete asset

tracking of AI pipelines have also been developed, focusing on tracking modeling inputs,

results, and production processes [124, 152, 377].

Building upon this, data provenance (or data lineage) methods aim to improve replication,

tracing, quality assessment in data use, and data transformation processes [141]. Several

researchers have proposed data provenance and lineage solutions for the tracking of data

and data transformations during the AI lifecycle [326, 327, 395].

While these solutions assist with internal data provenance, several researchers have also

advocated for private, secure, and standardized methods for data tracking. Gebru et al.
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[123] proposed datasheets for datasets, a standardization method for the documentation of

datasets. �ese datasheets include information on ”operating characteristics, test results,

recommended uses, … motivation, composition, collection process, [and] recommended

uses”, o�ering a detailed questionnaire for dataset creators to provide [123]. Similarly, Ben-

der and Friedman [35] propose data statements for dataset characterization in natural lan-

guage processing, also considering the generalization of experiments and composition of

datasets concerning bias. Further, Holland et al. [147] propose a standardized diagnostic

method for an overview of the core components of a dataset with the dataset nutrition la-

bel.

Many researchers argue that AI documentation is a step toward robustness and reliability

via an increase in transparency. For example, a recent trend is the use of FactSheets. Arnold

et al. [17] proposes FactSheets to communicate ”purpose, performance, safety, security, and

provenance information” from the creator to the user of an AI service. Sokol and Flach [323]

extended this with a taxonomy for characterizing and assessing explainability in AI with

Explainability FactSheets. However, Hind et al. [144] found that developers found these

FactSheets challenging and time-consuming to complete, noting issues with developer re-

call about modeling details, data transformation documentation, privacy, and ownership

concerns. Considering legality and regulations, Yanisky-Ravid and Hallisey [372] propose

the AI Data Transparency Model, encouraging data audits by both stakeholders and third

parties to assess data use and storage, to encourage replicability and compliance.

Technical Challenges

Achieving robustness and reliability in AI systems is complex and challenging. One sig-

ni�cant challenge is the interplay between these concepts and others in Trustworthy AI,

indicating that a robust and reliable system requires a�ention to other principles. Addition-

ally, AI systems are typically trained on historical data, whichmay not fully represent future

conditions, leading to issues with generalization and performance consistency when faced
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with unseen scenarios [402]. �e threat of adversarial a�acks, where data, algorithm, or

system inputs can be perturbed to lead to incorrect outputs, further complicates robustness

(discussed further in Section 2.2.6). Further, while several approaches have been proposed

for end-to-end provenance and tracking, AI systems are still prone to errors and robustness

shortcomings. Balancing the trade-o�s between performance and provenance, along with

ongoing validation across diverse real-world conditions, makes building truly reliable and

robust AI systems a di�cult task.

2.2.6 Safety & Security

In recent years, advancements in the �eld of AI have drawn a�ention to concerns about

the large-scale impacts of such AI systems [9], urging awareness of the potential harm that

these systems may cause. With the increasing utilization of AI systems, particularly in

high-stakes areas such as autonomous vehicles, healthcare services, and surveillance, we

must consider their trustworthiness.

Safety and security are both vital to consider when developing trustworthy AI. In recent

years, damages caused by autonomous vehicles, manipulation of public-facing AI systems,

and so�ware problems have harmed public perceptions of the safety and security of AI

systems in society [9]. �is principle covers assessing the safety of AI systems, how secure

an AI system is, and ensuring the robustness of an AI system from adversarial a�acks.

AI safety is both a technical and ethical concern, where potentially negative impacts on so-

ciety could occur due to unintended accidents or failures [349]. Amodei et al. [9] de�ne AI

safety problems based on where they occur in the AI lifecycle, with safety threats includ-

ing negative side e�ects, reward hacking, non-scalable oversight, unsafe exploration, and

distributional shi�. ”Robustness to distributional shi�” appears again here, as systems may

be impacted by this phenomenon and result in harm to their environments. For example,

using the automotive car example from the previous section, systems trained on only sunny
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data may crash in rainy weather, potentially harming their occupants or pedestrians.

O�en, the principles of safety and security are interconnected, where issues in one domain

are likely to have an impact on the other [212]. Security �aws can contribute signi�cantly

to safety failures, where a�acks by malicious actors can misclassify inputs to worsen or

manipulate performance or gain information about the model and data it was trained on

[151].

Security in Trustworthy AI can apply to the data, algorithms, and overarching developed

and deployed systems. At the data level, unauthorized access to data via a�acks or other

data breaches threatens user privacy, potentially exposing the private information of users

and pu�ing the provider at risk of violating compliance with privacy laws [197]. At the

algorithm level, adversarial a�acks threaten the performance and security of AI systems.

�reats at the algorithm level might expose the data used to train algorithms [214] or some-

how alter the performance [5]. For example, poisoning a�acks inject perturbed samples

into the training data to impact the behavior of the model in a way that bene�ts the at-

tacker [283]. At the systems level, the hardware, so�ware, and networks must be secured

against vulnerabilities that could compromise the AI system [148]. Protecting and defend-

ing against these security threats is vital to ensure a safe and trustworthy AI system.

Proposed Solutions

Several solutions have been proposed to improve the safety and security of AI systems.

To achieve safety, one may consider the four principles of safety: Inherently safe design,

Safety reserves, Safe fail, and Procedural safeguards [244]. Ensuring safety involves com-

prehensive risk assessments, adherence to ethical guidelines, and the implementation of

fail-safes and redundancy mechanisms to mitigate potential harm. Safety constraints, such

as fail-safe mechanisms, cause the system to fall into a ”safe” state upon error using active

or passive controls to prevent harm from the system [196]. Other approaches include risk
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assessment to measure potential points of failure of AI systems and any resulting safety

concerns [52, 57, 103].

In regards to security, while no solution is complete, systems can be developed to detect

and address adversarial issues and a�acks [253]. In particular, anomaly monitoring and de-

tection can be leveraged to identify adversarial inputs and defend against a�acks that can

a�ect the robustness and safety of systems [65, 266]. Further, adversarial robustness at-

tempts to mitigate malicious behavior at the algorithm level by introducing perturbed data

to the model training stage [127] or introducing a regularization term to penalize malicious

inputs [129]. In addition, Raghunathan et al. [280] proposes certi�cations of robustness

against adversarial a�acks.

While every solution for ensuring the safety and security of AI systems cannot be men-

tioned here, comprehensive reviews on the various areas of AI security can be found in the

literature [5, 263].

Technical Challenges

Defending against security risks at the data, algorithms, and systems levels is vital to secure

the AI system and ensure trustworthiness. A multitude of a�acks can impact the behavior

of an AI system, potentially threatening user privacy, system robustness, and potentially

the safety of its users. However, truly securing against adversarial a�acks is a challenge,

particularly with the various types of a�acks and goals of a�ackers, and the ever-changing

landscape of adversarial threats [263].

2.3 �e Role of Transparency
All of the above aspects are important in developing a trustworthy AI system. For example,

Shin [315] found that fairness, accountability, and explainability in�uence how users of

an AI system perceive an AI system. AI systems that are perceived as fair, accountable,
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transparent, and explainable are seen as more trustworthy.

However, developing a trustworthy AI system that addresses all of these guidelines is a

di�cult task. �e development of such systems leads to problems with scalability and

feasibility: with the development of complex models, how do companies and individuals

ensure that each is accounted for, and at what cost? For example, consider the privacy

requirements of the GDPR, such as the ”right to explanation”: addressing this regulatory

requirement increases technical challenges required in the development of an AI system

[353, 355], and is o�en infeasible for smaller scale operations. Even if this requirement is

satis�ed, proper care must be given to the other elements of trust as well, further compli-

cating the development of a trustworthy AI system. Developing such systems is costly and

time-consuming, a barrier to entry to trustworthy AI development.

�at said, all aspects of trustworthy AI can be improved in some way by increasing trans-

parency; transparency in design, transparency in purposes, transparency in fairness, trans-

parency in security, and so on. Fundamentally, transparency is the key to trustworthy AI.

At its core, transparency involves clear communication about howAI systems are designed,

function, and their decision-making processes. �is communication is crucial for allowing

assessments of fairness and bias, understanding the risks to privacy, security, and safety due

to potential errors or unexpected behavior, enabling users to understand the outcomes of

systems, and ensuring that AI systems perform robustly throughout their lifecycle. Trans-

parency aids in regulatory and compliance, enabling regulatory and governmental bodies

to assess AI systems for compliance with local, national, and international rules. It also can

serve as an indicator as to what other aspects are lacking, guiding improvements in other

areas.

Transparency is a signi�cant theme in Trustworthy AI literature and is mentioned in each

of the texts mentioned at the beginning of this chapter. Increasing transparency is the �rst,
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�nal, and most vital step in building trust in AI systems.

2.3.1 Summary

Academia and industry alike have called for practices to encourage transparency and in-

crease trust in AI development and deployment. Various ways that trustworthiness can

be established have been proposed, with the majority of calls focusing on the concepts

described in this chapter. Trustworthy AI seeks to ensure that AI systems are developed

and deployed ethically, transparently, and with a�ention to the greater principles of trust-

worthiness: accountability, explainability & interpretability, fairness & non-discrimination,

privacy, robustness & reliability, and safety & security.

However, the literature on Trustworthy AI is diverse and inconsistent, with the various

frameworks, guidelines, and principles proposed by di�erent organizations, researchers,

and policy-makers using di�erent de�nitions and targeting varying principles of trustwor-

thiness. For example, the HLEG proposal discussed in Section 2.1.1 places a strong emphasis

on the ethical considerations of AI deployment in society, but falls short in guiding tech-

nical implementations. �e AIA (Section 2.1.2) provides more of a targeted approach for

technical implementation regarding accountability, bias, privacy, robustness, and safety,

but falls short when it comes to explainability and interpretability. Likewise, the EO dis-

cussed in Section 2.1.3 targets accountability, privacy, safety, and security, but makes li�le

reference to the other principles and lacks any implementation guidance. �ese inconsis-

tencies and varying emphasis on di�erent principles can lead to challenges in implementing

AI systems.

Moreover, an important distinction should be made between the trustworthiness of AI sys-

tems vs. the trustworthiness of AI models. An AI model can be simply de�ned as a spe-

ci�c algorithm or set of computational processes that are typically designed to perform

a speci�c task, such as learning, decision-making, classi�cation, or problem-solving. For
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example, Sarker [310] argue that AI models can be broken down into ten categories: ML;

neural networks and deep learning; data mining, knowledge discovery, and advanced ana-

lytics; rule-based modeling and decision-making; fuzzy logic-based approaches; knowledge

representation, uncertainty reasoning, and expert system modeling; case-based reasoning;

text mining and natural language processing; visual analytics, computer vision, and pat-

tern recognition; hybridization, searching, and optimization. AI models are a component

of AI systems, playing an important role in the application of an AI model toward real-life

problems in various domains.

An AI system, by that logic, encompasses a broader scope. AI systems include not only

the AI models but also the infrastructure, interfaces, and mechanisms that enable models

to function in a real-world environment. For example, in health tech, an AI model might

be used to predict abnormalities in a patient scan to predict illness, but an AI system would

take a broader approach and use additional patient information (potentially including the

predicted result of the scan) to provide a treatment plan [241].

Increasing trust in AI models and AI systems involves di�erent approaches and consider-

ations. While all components of Trustworthy AI apply to both, the primary focus of trust

may be di�erent for each. For AImodels, trust primarily depends on accountability, explain-

ability & interpretability, fairness & non-discrimination, privacy, robustness & reliability,

and safety & security. �e challenge primarily lies in making model and model outcomes

transparent, understandable, and fair, particularly as perceived by a human user. Whereas,

for AI systems, the expectations may expand to the infrastructure supporting them and

become more complex. Trust not only encompasses the principles above, but also includes

the overall safety, security, and accountability of the system. For example, Hengstler et al.

[140] found that trust in an AI system depends on operational safety, data security, contex-

tualization of the purposes of an AI system, and clear communication about stakeholders

and developmental processes. Further, they found that there is a connection between a
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user’s perceived opinion of the AI system and their values, indicating that the principle of

promotion of human values is also a stronger focus for AI systems.

�erefore, it is important to consider trust from both perspectives. Increasing trust in both

AI models and AI systems is crucial for the widespread acceptance and e�ective use of AI

in various domains. Current solutions focus primarily on one stage of the AI lifecycle, or

only a handful of trustworthy principles, neglecting to give proper a�ention to the ”whole

picture” required in developing a trustworthy system. In the next chapters, methods to

increase trust will be discussed.
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Chapter 3

Establishing Requirements for

Trustworthy AI

�e previous chapter established that the trustworthiness of an AI system implies that the

development of such a system addresses issues with accountability, explainability & inter-

pretability, fairness & non-discrimination, privacy, robustness & reliability, and safety &

security. �ese concepts should be at the forefront of consideration when we think about

AI development and deployment into society. However, developing a completely trustwor-

thy AI system is a di�cult task. �e summary of Trustworthy AI literature in the previous

chapter reveals inconsistencies in which requirements are truly necessary to build trust in

AI systems. While some texts focus on only one principle of trustworthiness, some call

for a�ention to a combination of principles. Likewise, some texts place great emphasis on

technical aspects such as security and privacy, while others emphasize the ethical and so-

cietal impact of AI systems. To design, develop, and deploy a Trustworthy AI system, there

must be formalized methods for tracking and reporting how developers address issues of

trust.

48



Establishing Requirements for Trustworthy AI

While some methods have approached this goal, there are no formal methods that address

all principles of trustworthiness. For example, FactSheets and its variations take a step

toward increasing transparency via documentation to approach many trustworthy princi-

ples, but they lack direct technical implementations for issues such as fairness and non-

discrimination [17]. Likewise, MLOps methods go far toward technical measurements of

processes, provenance, robustness, and reliability, but they do not speci�cally focus on ad-

dressing issues with fairness, explainability, or accountability [150]. Without a targeted

method of addressing each principle of Trustworthy AI, the wide-scale development of

trustworthy AI systems is greatly hindered.

Providers, creators, developers, and all other stakeholders involved in the development and

deployment of an AI system must pay careful a�ention to these aspects, as they govern

how users will trust the system outcomes and results. Errors in implementation, such as

improper a�ention to fairness, data storage, security mechanisms, and explainability, may

impact how an AI system makes decisions about vulnerable populations, protects user pri-

vacy, and maintains security against malicious actors, as well as impacting the way a user

understands and trusts the decisions it makes. To encourage large-scale AI adoption and

increase trust, the burden is on the creators to address these principles in their deployed

systems.

Further, in the previous chapter, a clear distinction between AI models and AI systems was

established, clarifying the unique approaches to trustworthiness that must be taken with

each. While the ultimate goal is to develop trust in AI systems, it is vital to �rst develop

trust speci�cally in AI models. AI models play a critical role as the core of AI systems,

with the capacity for learning, decision-making, classi�cation, problem-solving, and other

functionalities. However, the e�cacy and acceptance of these models largely hinge on the

degree of trust users place in their outcomes.
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Toward developing trust in AI, this chapter introduces the concept of Know Your Model

(KYM), the idea that all models have a unique identity and that model characteristics can

be leveraged to know and trust models. To ”know” a model implies collecting, recording,

and storing detailed records of the processes undergone during the development of a model,

subsequently establishing model identity.

To know amodel, this chapter proposes 20 key guidelines that creators can address to estab-

lish a model’s identity, particularly around 4 core principles: e�cacy, reliability, safety,

and responsibility. �ese guidelines provide a general framework that applies to any AI

implementation, rather than prescribing a particular implementation. �e proposed guide-

lines are concise suggestions of important aspects that creators should be able to address

about their AI systems regarding processes, methodology, and trust. �ese guidelines can

be leveraged by creators to increase transparency and trustworthiness in their AI develop-

ment processes.

�e goal of KYM is not to provide a de�nitive solution for developing trust in AI, but rather

to encourage the need for transparency in AI toward establishing model identity and trust-

worthiness in AI. �e guidelines bridge the gap between current Trustworthy AI texts by

providing simplistic guidelines that target all principles of trustworthiness. �e guidelines

suggest key areas for increased a�ention in development, considering technical, ethical, and

legal aspects in addition to trust. �erefore, the primary aim of this chapter is to outline

a method to establish model identity with a general framework that all creators can apply

to AI system development. �e information required to ful�ll the guidelines will vary by

the complexity of each system, with more complex systems requiring greater a�ention to

nuances in their use of data and modeling processes. �is a�ention to detail will bene�t

creators by ensuring that the appropriate information is collected during each stage of AI

development and easing the burden of proof for the e�ectiveness and trustworthiness of

their systems.
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3.1 Related Work
�e �elds of Know Your Customer (KYC) and Know Your Data (KYD) have paved the way

for the collection of relevant information toward the goal of transparency, auditing, ver-

i�cation, and compliance. KYM is tangentially related to both of these �elds, collecting

relevant information on AI models and systems rather than on customers and data.

KYC refers to the requirement for �nancial institutions to ”monitor, audit, collect, and an-

alyze” relevant information about their customers before engaging in business with them

[44]. KYC policies are utilized to comply with a variety of �nancial regulations and laws,

governing illegal behavior by customers such as money laundering, identity the�, fraud,

and terrorist �nancing [44, 116]. �is collection of customer data increases the legibility

for a �nancial institution about a customer before and during their business with them,

allowing them to assess whether the customer is engaging in legal behavior, and enabling

them to comply with legal and regulatory requirements. Know Your Transaction (KYT)

builds upon this to evaluate transactions for fraudulent behavior [180].

�e �eld of KYD has recently been established to encourage data-driven assessments and

regulation. �e processes involved with data collection, management, use, and storage

are very complex and nuanced, o�en complicated by regulatory or legal requirements [16].

KYD focuses on understanding the datasets utilized in AI development, assessing data qual-

ity and issues such as bias and explainability [295]. For example, Hawken and Munck [138]

identi�ed issues with common corruption benchmark datasets, revealing that data needs

to be assessed for quality and validity. Toolkits are available for KYD, including Google’s

Know Your Data tool [128].

Various other �elds apply this same concept. For example, in the medical sciences, ”Know

your target, know your molecule” [55], and ”Know your dose” [265] also provide a similar
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basis for knowledge sharing targeting speci�c problems in science, biology, and medicine.

Know Your Employee (KYE) encourages pre-employment screening for businesses to hire

appropriate employees and to encourage anti-bribery and anti-corruption [104]. KnowYour

Vendor (KYV) advocates for laws and regulations on third-party vendors and suppliers to

prevent fraud and ensure ethical business practices [87].

�e concept of ”knowing” something in this context typically involves assessing the target

with speci�c inquiries or questions, such as assessing bias in datasets in KYD or gathering

customer data in KYC. For example, Bunnage et al. [55] establish a list of questions to

understand drug candidates, in an a�empt to understand drug discovery targets and enable

targeted research.

�is same concept is leveraged in KYM. KYM applies the concept of knowledge gathering

and sharing to AI systems and models to assess, audit, and manage their e�cacy, reliability,

safety, and responsibility.

3.2 Know Your Model (KYM)
Developing trust in AI models is paramount. For a user to trust the outcomes of an AI

model, increasing trust primarily depends on accountability, explainability & interpretabil-

ity, fairness & non-discrimination, privacy, robustness & reliability, and safety & security.

Models are the backbone of AI systems, and building trust in these models is the �rst step

toward building a truly trustworthy AI system.

To build a trustworthy AI system, the trustworthy principles cannot be considered in silo.

All principles of Trustworthy AI must be accounted for at the forefront of AI development.

It is to this end that the KYM framework is proposed. �e goal of the KYM framework

is to increase trust in AI development by outlining a method in which providers, creators,

developers, and other stakeholders can establish trust in their AI models and systems.

52



Establishing Requirements for Trustworthy AI

�e KYM framework is built upon the idea that all models have a unique identity. �is

unique identity is established by model characteristics, such as model application, model

type, features of the models, robustness, and reliability of model outcomes, mechanisms

used to protect the privacy and other safety of users, and the individuals who are involved

in the development and deployment of an AI system. �ese model characteristics can be

leveraged to know and trust models. To this end, to ”know” a model implies collecting,

recording, and storing detailed records of the processes undergone during the develop-

ment of a model, subsequently establishing model identity. Here, model identity refers to

the minimum information to distinguish one model from another, or establish a model’s

uniqueness. KYM strives for all models to have a unique model identity, allowing model

characteristics to be leveraged to know and trust models.

As established in the previous chapter, transparency is key to trust, with research showing

that increased transparency in many aspects of an AI system also increases trust in the

AI system in turn. �erefore, to encourage large-scale AI adoption, transparency is vital

to increase the trust that users have in the AI systems’ processes and outcomes. While a

holistic solution to create a perfect trustworthy AI system is not currently available, by

increasing transparency in how developers address each Trustworthy AI principle, users

will have the information needed to assess a model’s trustworthiness.

�e need for transparency highlights the necessity of the KYM framework. KYM provides

a framework for providers, creators, developers, and other key stakeholders to increase

transparency and trust in their AI models and systems. To establish trust, a provider has

the responsibility to clearly establish its identity. �is framework leverages four principles

to guide increased transparency in AI models and systems: e�cacy, reliability, safety,

and responsibility. �ese four key concepts aim to encompass the requirements of Trust-

worthy AI in a simple, concise, and widely applicable framework.
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While the framework of KYM addresses a multitude of trustworthy principles, it is the

creators’ responsibility to decide which guidelines are most important to address for their

system. Of course, focus must be placed on increasing transparency in the use of data, the

development of models, and how issues of AI trustworthiness are addressed. However, at

the same time, it is important to recognize that this transparency is di�erent among the

various types of AI systems. As de�nitively proving that a model is trustworthy is quite

di�cult, a developer should keep andmaintain thorough records on the application of KYM

on their system. Developers should record techniques and tools they used to address issues

in each area, and justi�cations for why a check was not completed or required. Due to the

rapidly evolving nature of AI development and AI research, KYM suggests that developers

remain vigilant in addressing issues of trust with regular checks and updates, particularly

in respect to fairness, privacy, security, safety, user understanding, and reliability.

3.2.1 Key Principles of KYM

�e four key principles of KYM summarize Trustworthy AI literature in an approachable

and applicable manner. �ese principles distill the principles of trustworthy AI down into

four targeted concepts that can be applied to the design, development, and deployment of

AI models toward trustworthy AI systems.

E�cacy

E�cacy in KYM ensures that models produce an honest, fair, understandable, and desir-

able result. With the increase in the use of AI in everyday applications, it is vital to ensure

that the outcomes of models are appropriate for their intended purpose, that the model

performs well, and that outcomes are fair and bene�cial to society. As systems can have

unintended outcomes, it should be veri�ed that models perform in the way that the devel-

oper intended.

In KYM, the principle of e�cacy calls for:
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• Transparency in the purpose, intentions, and outcomes of models, including intended

purpose, target groups, and expected outputs.

• E�orts toward improving human understanding of processes, operations, and out-

comes of the AI pipeline.

• Careful a�ention to fairness and non-discrimination in data and modeling to reduce

bias and discrimination in outcomes.

�is �rst principle establishes a strong basis for establishing trust in the intents and expec-

tations of AI systems. A strong focus is placed on transparency in the inputs and outcomes

of the system and model(s), including the expected applications, the use and treatment of

data, and expected generalizability. As model outcomes are heavily in�uenced by model in-

puts, this principle also targets how data is utilized toward the model or system’s intended

purpose. �is may include transparency in the treatment of data, feature extraction, train-

ing and testing, and prediction outcomes.

Towards addressing fairness and explainability in modeling and outcomes, E�cacy pro-

poses transparency in how bias, discrimination, and understandability were addressed.

Careful a�ention to fairness and non-discrimination is encouraged to reduce bias and dis-

crimination in outcomes. Further, e�orts to increase the explainability and understandabil-

ity of the results and outcomes are encouraged to increase user trust.

Reliability

Reliability in KYM ensures that models are reliable in their outputs and developmental pro-

cesses. Here, it is important to consider the processes that are used in development: Are

the methods and processes leveraged during design and development appropriate and ro-

bust? Are the outcomes and processes veri�able, reproducible, and reliable? Would another

method produce more reliable results? Are the appropriate regulatory and legal processes

followed?
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�e principle of reliability calls for:

• Transparency in developmental processes, including the use and transformation pro-

cesses of data, feature extraction, training, testing, and prediction outcomes.

• Reliability in outcomes and developmental processes, including the appropriate use

of methods, availability, and consistency.

• Replicability or veri�ability of outcomes and processes.

• A�ention to data quality to avoid bad, inadequate, or inappropriate data collection,

utilization, or transformation processes.

• Data and model provenance.

• Adherence to ethical, legal, and regulatory environments and requirements.

Of critical importance in this concept is replicability: developers should be able to repro-

duce the outcomes of their models and trace the model back to its origin. �is includes

ensuring proper provenance with records of data used, data transformations undergone,

modeling processes (development environment, model type, hyperparameter tuning, etc.),

and inference veri�cation. Users should be able to verify the developmental products of

models. Reliability advocates for clear documentation of data and model provenance, mod-

eling processes and methods, and initial and ongoing performance so that a thorough au-

diting process is possible.

A�ention should be given to data and modeling quality. �e collection, preparation, and

treatment of data are vital to consider when considering model identity. Data has a pro-

found impact on the modeling process. �e type and quality of data used for the develop-

ment of an AI system have direct consequences on the quality of the models and inferences.

For instance, data of poor quality or poorly leveraged data can lead to unreliable and incor-
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rect models [305]. �erefore, careful a�ention to data processes is required. �is principle

requires reliability in the data use and data transformation in modeling systems.

Reliability does not speci�cally outline all of the speci�c requirements with data treatment.

Instead, focus is placed on the major issues directly required to establish model identity.

Developers should pay close a�ention to their use and treatment of data and be aware of

any regulatory or legal requirements to determine the level at which they record their data.

Modeling requirements are perhaps the most detailed records that developers should keep.

Developers should ensure that their models are reliable and replicable. KYM advocates that

developers keep clear records of their model development so that a clear auditing process

can be completed.

�is concept is especially relevant in regulatory environments, where developers may be

required to verify the exact processes undergone during model development and reproduce

relevant results.

Safety

�e large-scale adoption of AI requires that users are con�dent that AI systems are safe to

use and do not pose undue harm to the user or society as a whole. �e need for safety is

considered with great importance in KYM. Here, the concept of Safety includes assessing

the safety, security, and privacy of AI systems from unintended accidents, breaches, and

threats to user privacy.

�is principle calls for:

• Building AI systemswith careful a�ention to safety, including safe design, contingen-

cies in case of error or failure, and audits or standards to assess initial and continuous

system safety.

• System and model stability, including a�ention to failures and their causes, mainte-
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nance to address and �x failures upon occurrence, and reducing failure rates [309].

• Robustness to threats to security, including robustness to a�acks from adversaries or

malicious actors and continual a�ention to state-of-the-art security techniques.

• Careful a�ention to user privacy, including (personal) data collection, utilization, and

storage. �is also includes any legal or regulatory requirements for securing user

information.

�is principle considers safety with a holistic approach: safety of the system from failure,

security against breaches and errors that would cause harm to individual privacy, robust-

ness against security threats, and otherwise safety against the AI system causing harm to

humanity. Namely, this principle calls for risk-assessment measures of the AI system’s im-

pact on users and society and safety, security, and privacy failure points. �is encourages

developers and creators to conduct critical assessments of their systems to identify, assess,

and mitigate failure points. By conducting these risk assessments, AI safety risks should be

reduced.

One critical component of Safety in KYM is user privacy. Privacy is a signi�cant issue in

Trustworthy AI, especially due to the increased threat of personal data breaches in modern

times. Protecting the private data utilized for the AI system is vital to ensure user trust.

�erefore, this principle places a strong emphasis on the storage, use, and protection of

personal data to ensure trust in the AI system.

Lastly, as security threats contribute to safety threats, securing AI systems from malicious

actors is important [151]. Safety encourages measures of security robustness, such as com-

pliance with security requirements and/or securing AI systems from malicious threats and

a�ackers.
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Responsibility

�e principle of Responsibility targets the impact and bene�t of AI systems on society, in-

cluding the impact professional entities involved in the design, development, and deploy-

ment of an AI system, the societal and social impact of AI systems, the role of explainability

and human control, and the regulatory and legal landscape relevant for the AI system. Re-

sponsibility in KYM bridges the gap between technical implementations and the legal and

ethical implications of AI systems. It speci�cally calls a�ention to social and ethical respon-

sibility and accountability. In addition to technical information about AI systems, creators

must pay close a�ention to societal, social, and developer roles in the overarching impact

of their systems.

�e principle of responsibility calls for:

• Transparency about the developer or creator identity, including transparency about

stakeholders and entities involved in the design and deployment of AI systems.

• Careful a�ention to the level at which human control is required and provided, in-

cluding clarity on the implementation of human control in a system, opportunities

for human intervention and review, and safeguards in the absence of human control.

• Consideration of the societal impact, purpose, and value of AI systems, and methods

to maximize their bene�t to society.

�e principle of responsibility in KYM is perhaps themost abstract. With the large variation

in the applications of AI systems, responsibility will have a di�erent meaning for each

creator. Rather than providing concrete guidelines in this area, KYM encourages creators

to be transparent about the impacts and purposes of their systems, who was involved in

their creation, and the level at which human control is required and provided.
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An important aspect of responsibility is developer identity. In some cases, it is important to

be transparent about what entity or entities were involved in the development of a model.

It may be important to consider the experience and credentials of developers and the in-

vestments and interests of developers in model development.

Further, the aspect of human-AI interactions targets the explainability of an AI system.

It highlights the need for transparency between the AI system and its users. Interactions

between AI and user should be transparent, and it should be clear where the AI system

makes decisions alone, requires human review, and/or allows for human intervention. �is

may be particularly relevant in today’s landscape, where many regulators are calling for

there to be transparency between the AI system and the user in that the AI system cannot

a�empt to conceal its nature and pretend to be a human [142].

�is principle encourages transparency in the impact, bene�t, and value of an AI system.

�is may align with accountability principles of explaining the purpose of an AI system,

but it may also align with justifying the value of an AI system to society. For example, the

EO calls for AI development to ”positively augment human work”, calling for responsibility

in the development of AI to encourage human work rather than remove humans fromwork

entirely [354]. �is principle supports this notion by encouraging developers to justify the

value and bene�t of their systems toward users and/or society.

3.3 Key Guidelines of KYM
�is section outlines the 20 guidelines of KYM, aligned with the four core principles ef-

�cacy, reliability, safety, and responsibility. �ese guidelines summarize the information

developers are encouraged to record to establish model identity. �e keywords ”MUST”,

”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD NOT”, ”REC-

OMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be interpreted as de-

scribed in RFC 2119 [49].
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Each guideline is followed by an example application. A summary of the KYM guidelines

and additional, shortened explanations can be found in Table 3.1, Table 3.2, Table 3.3, and

Table 3.4.

3.3.1 E�cacy

E1: Creators MUST describe the intended purpose, use, target user, and outputs of

the system.

Creators MUST record information on the intentions of their AI systems. d and time-frame-

of-validity of the system. Where possible, clear communication of the target user of the

system or its outcomes should be provided. Further, Creators MUST be transparent about

the expected outputs of the system, as the expected and observed outputs may di�er.

In cases where intentions and outcomes are misaligned, the extent of the misalignment

and any positive and/or negative impacts MUST be known and recorded. As it is vital to

understand the impact of an unexpected output, creators have the responsibility to identify

the causes of any misalignment in intents and outcomes.

Consider the following example:

�is AI system is an Agricultural Drone Monitoring System. �is system

is designed to optimize agricultural practices by providing high-resolution

drone imagery for crop monitoring, health assessment, climate assessment,

and yield prediction. It is speci�cally intended for farmers, agricultural con-

sultants, and businesses aiming to improve farming techniques and crop as-

sessment and yield. �e system utilizes aerial drones equipped with sensors

and cameras to collect data on crop conditions, moisture levels, pest presence,

and overall crop health. �e expected outputs from this system include de-

tailed maps on crop growth pa�erns. Based on these maps, the system pro-
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Table 3.1: �e Know Your Model (KYM) Guidelines for E�cacy (E#). An example applica-
tion of each guideline is provided. �ese examples are simpli�ed. Real-world applications
may require longer and more technical justi�cations.

Know Your Model Guidelines Example Application of Guideline

E1 Creators MUST describe the in-
tended purpose, use, target user,
and output of the system.

[Navigation] ”�e system is a navigation system that users
can use to map the most e�cient path from one location to
another. �e system outputs the shortest path as de�ned
by the estimated travel time from one input to another, uti-
lizing available geographical information at the time of re-
quest. �e targeted users are individuals who utilize iOS
devices for navigation. ”

E2 Creators MUST record (statistical)
metrics about training and test
datasets.

[Logistics AI] ”�e system was trained on a combination
of our weekly, quarterly, and annual volume information.
�is data shows an average purchase of 10,000 units. (sd =
1,000), with higher throughput events with an average of
15,000 units (sd=2,500) occurring around holidays. It was
con�rmed that the training and test datasets exhibit iden-
tical distributions.”

E3 Creators SHOULD describe the
expected performance on unseen
data

[Medical AI] ”Data from low-quality or outdated equip-
ment will result in poor performance. Shadowing or blur-
ring in images may negatively a�ect model performance.”

E4 Creators MUST record methods
taken to reduce bias, discrimina-
tion, and fairness issues in data and
modeling outcomes, and SHOULD
record speci�c metrics on bias,
discrimination, and fairness.

[Criminal Sentencing AI] ”In order to ensure fairness
in sentences, all potentially identifying sensitive demo-
graphic information has been removed from the dataset.
Additionally, the system was evaluated by experts in jus-
tice and equality in order to mitigate potential problems
with bias. Bias remediation was performed using [state-
of-the-art tool]. A bias was identi�ed and mitigated with a
re-weighing method.”

E5 Creators SHOULD aim for in-
creased understandability.

[Medical AI] ”�is model is designed to be used by trained
doctors. �e system provides diagnostic information and
justi�cations that explain the features utilized for each de-
cision with importance ranking. Furthermore, the sys-
tem provides documentation to provide additional infor-
mation.”

vides recommendations for targeted interventions such as irrigation, pesticide

application, and fertilizer distribution.

�is example illustrates the level of detail required for this principle. �e creators demon-
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strate transparency in the purpose, target users, and expected outputs of their systems.

E2: CreatorsMUST record (statistical)metrics about training and test datasets.

Creators must be transparent about the data utilized during the development of an AI sys-

tem. Creators MUST record relevant metrics about the training (and test, where relevant)

datasets. For example, this might include the volume of data utilized, dataset split utilized,

class distributions, data quality metrics, data sources, feature distribution, feature corre-

lation, temporal metrics, and geographical metrics. If applicable, this SHOULD include

metrics on demographic representation and bias indicators.

�e information required to ful�ll this requirement will vary depending on the system. In

cases of private data and strict regulations governing the reporting on private data, report-

ing on dataset metrics might be limited to less speci�c factors such as the volume of data

utilized, quality metrics, and bias indicators.

Consider the following example:

Regarding a Medical Image Diagnosis System designed to identify and clas-

sify tumors from medical imaging scans, detailed statistical metrics about

both the training and test datasets used during the system’s development were

recorded. �esemetrics included the number of images, patient demographics,

distribution of tumor types, distribution of tumor location, and geographical

distributions of the location the patient received care. All images were assessed

for quality by se�ing inclusion criteria of a speci�c resolution threshold. �e

dataset features a representative sample of each tumor type and location. An

imbalance is noted in the distribution of the treatment center in which a pa-

tient received care, revealing that more data is available for care centers in

city centers compared to rural treatment facilities.
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�is documentation provides insights into the system’s potential limitations and biases. It

aids in identifying where the dataset may need to be expanded to improve the system’s

performance and reliability. It can also reveal the system’s relevance to di�erent problems,

in case users would like to apply the system to use cases outside of the established pur-

pose.

E3: Creators SHOULD describe the expected performance on unseen data.

Once deployed, AI systems may experience data that is vastly di�erent than the data used

to train/test the system. Creators SHOULD describe the expected performance on unseen

data, such as data from di�erent distributions or data collected in di�erent conditions.

For example, consider a speech recognition system developed to perform medical dicta-

tion:

�e system has an expected accuracy rate of 95% on standard medical dicta-

tions in clear, noise-free environments. However, a slight decrease in perfor-

mance to an accuracy of 90% is expected in real-world clinical se�ings where

there is a lot of background noise, such as emergency rooms or busy clinics.

�is variance is caused by ambient sounds not fully represented in the dataset.

�is explanation reveals that the developers have noted a di�erence in model performance

in rare conditions. �is a�ention to detail and anticipation of variations in performance

guides users in their use of the system.

Of course, it is not always feasible to anticipate performance on unseen data. Utilizing

robust development processes is therefore encouraged to avoid issues with generalizabil-

ity.
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E4: Creators MUST record methods taken to reduce bias, discrimination, and fair-

ness issues in data and modeling outcomes, and SHOULD record speci�c metrics

on bias, discrimination, and fairness.

Creators SHOULD record any methods taken to address bias, discrimination, and fairness

issues in data or modeling outcomes. �is may include data treatment techniques and re-

mediation, model checks and remediation, and outcome veri�cation.

Even in cases where careful a�ention is paid to reducing bias in input data, algorithms may

still exhibit biased behaviors. Developers are encouraged to pursue methods to measure

fairness in their outcomes, using state-of-the-art methods and tools.

For example, consider a criminal sentencing AI that suggests sentencing ranges utilizing

historical data, legal precedents, and case-speci�c details. �e developers clearly describe

identi�ed bias and a�empts made to mitigate it.

During development, the data was carefully reviewed and sanitized to remove

any variables that could directly or indirectly lead to biased outcomes, such

as race, gender, zip code, or socioeconomic factors. �e data represented a

balanced group of cases and demographic groups. �e team utilized measures

of group fairness to assess the sentencing recommendations across the various

demographic groups. A minor bias was noted in drug-related o�enses related

to certain socio-economic groups and was mitigated utilizing [state-of-the-

art] techniques. Before deployment, the decision-making process was audited

for bias by a panel of external experts who analyzed model decisions across

various demographic groups.

As this principle is primarily targeting bias, discrimination, and fairness in personal data,

it may not be relevant for systems that do not utilize private data.
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E5: Creators SHOULD aim for increased understandability.

Developers SHOULD a�empt to increase understanding of all stages of AI development to

di�erent users and groups. Detail e�orts are taken to improve explainability & interpretabil-

ity, and human-AI interactions (review, validation, etc.) of the developmental processes and

outcomes of AI systems. �is may include providing explanations on model decisions, clar-

ity in model processes and techniques utilized, and interpreting model development and

functionality in language appropriate to the target user.

For example, an AI system trained to provide educational content recommendations to

educators based on individual student needs, learning styles, and performance levels might

provide the following explanation:

�e system’s recommendations are easily understood by both educators and

students due to the implementation of transparent explanations of the decision-

making process. Each recommendation is accompanied by a clear explana-

tion of which features of a student’s pro�le contributed to the decision-making

process. Further, the system has a user-friendly interface that highlights the

student’s strengths, areas of improvement, and how the recommended content

aligns with their learning goals. �is interface can be updated by students and

educators to adapt the recommendations.

Where possible, developers can greatly increase trust by improving explainability, inter-

pretability, and understandability. By enabling users to understand the decision-making

process and its in�uences, trust can be developed.
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3.3.2 Reliability

RL1: Creators MUST record the processes followed in the development of the AI

system.

Document and justify the requirements, design speci�cations, data collection, preparation,

and storage processes, implemented algorithms and techniques, veri�cation and testing

methods, output generation, ethical/legal/regulatory compliance, and deployment moni-

toring of an AI system. Documentation MUST be thorough and include all information

needed to identify and justify utilized methods, identify storage locations, and replicate

outcomes. �e extent of the required information will vary greatly depending on the sys-

tem type.

For example, considering an AI personal �nance advisor:

�e AI system was designed with a user-friendly interface, secure data in-

tegration with banking institutions, and real-time �nancial analytics. Data

collection included gathering �nancial transactions from accredited partner

institutions, market trends, and user feedback. All data was anonymized and

stored in compliance with �nancial regulations and data protection laws. Re-

inforcement and natural language processing algorithms were leveraged for

the decision-making process based on individual user pro�les and preferences.

Veri�cation and testing were conducted through simulated �nancial scenarios

and A/B testing. �e system is continually monitored for performance, user

satisfaction, and compliance with �nancial regulations.

�is documentation should provide a summary and justi�cation of all processes followed,

whereas the following rules will provide a more in-depth explanation of data and model

provenance.
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�is guideline ensures transparency in the development process, allowing all stakeholders,

users, regulators, and other relevant entities to understand how the system was designed,

built, and deployed. �e decisions made at each stage should be explained and justi�ed.

�is documentation increases accountability, enables reproducibility, encourages quality

assurance, allows for assessment and management of risks, and allows brief assessments of

ethical and legal compliance.

RL2: Creators MUST ensure adequate provenance for data.

Creators MUST maintain clear records of data collection, utilization, and transformation

processes. Records MUST be adequate, clear, and complete enough to determine the origin

of the data, assess data quality, and understand any transformations that occurred. Records

may include but are not limited to, data collection process and techniques, the identity

of data owner or licensing entity, dataset creation time, type and amount of data utilized,

dataset utilization in development, and data updating practices.

Consider an example of a tra�c management system that utilizes AI to optimize tra�c �ow,

reduce tra�c congestion, and improve road safety:

�is system leverages data from a variety of sources, including tra�c cam-

eras, sensor data from roads, GPS data from vehicles and smartphones, and

historical tra�c pa�erns. Data management includes records of the origin

of each dataset, including locations where data was collected, device meta-

data, time stamps, and data prepossessing steps. Metadata describing the data

provenance was stored alongside the datasets in a structured format, includ-

ing information about the data’s source, collection time, and any processing

it underwent. Historical data was collected for tra�c pa�erns between 1990

- 2020, and real-time data was collected at 30-second intervals. Data stor-

age included secure cloud storage and on-premises data centers. All data was
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Table 3.2: �e Know Your Model (KYM) Guidelines for Reliability (RL#). An example appli-
cation of each guideline is provided. �ese examples are simpli�ed. Real-world applications
may require longer and more technical justi�cations.

Know Your Model Guidelines Example Application of Guideline

RL1 Creators MUST record the pro-
cesses followed in the develop-
ment of the AI system.

[E-Commerce AI] ”�is model leverages neural network
technology, building on research previously published in
the domain. Model training and testing were tracked lo-
cally and will be stored for three years following the end-
of-life of the product. Data is collected and stored in ac-
cordance with international regulation.”

RL2 Creators MUST ensure adequate
provenance for data.

[Social Media AI] ”Textual data was parsed from three
social media websites between the dates of January and
May 2020, and stored on a private server. Data were not
checked for quality. Datasets are documented internally.
�e system maintains an index of all data as well as a log
of all changes to the data set. Unigram transformation and
punctuation removal were utilized.”

RL3 Creators MUST ensure adequate
provenance for end-to-end model
development.

[Advertising AI] ”Complete records of metadata from
model training, testing, and prediction were taken utiliz-
ing an end-to-end asset tracking tool.”

RL4 Creators MUST record evaluation
and performance metrics.

[Classi�cation AI] ”Models were trained using a 70/30
test/train split, 10-fold cross-validation, and evaluated us-
ing prediction accuracy and AUC. �e chosen model has
an 80.2% accuracy rate, with a sensitivity/speci�city rate
of 74.5%/61.8% respectively.”

RL5 Creators SHOULD trackmodel up-
date performance and information
ingestion.

[Social Media AI] ”We capture user data upon each de-
ployment and retrain the model with the captured data.
Model performance is analyzed with each update and
must remain within ±15%.”

RL6 Creators SHOULD record metrics
on outcome replicability.

[Robotics AI] ”In order to reproduce the system results, a
docker �le has been provided. By leveraging this dataset
and docker �le, the system will produce the same results.
�is docker �le was created using the following dataset
and model se�ings.”

encrypted both at rest and in transit.
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RL3: Creators MUST ensure adequate provenance for end-to-end model develop-

ment.

Developers MUST maintain clear records of developmental processes undergone in AI de-

sign, development, and deployment. �ese records MUST be complete enough to be able

to replicate model results and outcomes. Records may include data (and/or metadata) on

feature extraction, training and testing, and prediction outcomes, date and time of model-

ing stages, development environment (development language, packages used, etc.), model

version, time of the last update, changes in performance between updates, algorithms, and

techniques used, training conditions (i.e. hyperparameters), use of the dataset in each stage,

testing performance & results, etc.

Expanding upon the AI system for educational content described in E5:

Each stage ofmodel development, including initial training, testing, andmodel

re�nements, was documented utilizing end-to-end ModelOps tools. �e devel-

opment environment utilized Python 3.10 and scikit-learn packages for ma-

chine learning and Pandas for data processing. Package requirements and

version control were maintained with each iteration of the model. Detailed

logs of each update were collected, including changes to model performance

and recommendation e�ectiveness.

Technical documentation to ful�ll this requirement MUST be thorough. Leveraging asset

management tools such as MLOps and ModelOps is highly encouraged.

RL4: Creators MUST record evaluation and performance metrics

Developers MUST record detailed records of the evaluation and performance processes

used. Creators MUST maintain a record of the metrics and techniques that were used to

measure the performance of their systems, such as accuracy, precision/recall, error rates,

70



Establishing Requirements for Trustworthy AI

F1 scores, AUC, etc. It is suggested that signi�cant technical data is recorded. Metrics for

both intermediary and �nal models are encouraged.

For example, consider the Medical Image Diagnosis System from guideline E2:

Standard evaluation metrics were utilized during training of the AI model,

including accuracy, precision, recall, and F1 score. Area Under the Receiver

Operating Characteristic Curve (AUROC) was utilized to evaluate the model’s

ability to distinguish between di�erent tumor types. To benchmark perfor-

mance, a well-known and widely utilized benchmarking dataset was utilized

to assess performance on unseen data. �e system achieved an accuracy of

94%, with a precision of 92% and a recall of 93%, indicating a high level of

reliability in identifying tumors. �e F1 score was recorded at 92.5%.

�ese records SHOULD be speci�c enough to assess the performance of the model and if

the appropriate metrics are being utilized.

�e example above illustrates transparency in recording evaluation metrics. �is allows for

auditing of the performance of the AI system and may provide information on the e�ec-

tiveness of the performance assessments. For example, if the benchmark utilized to assess

the performance was found externally to be biased, it may reveal bias in the AI system and

warrant further assessments.

RL5: Creators SHOULD track model update performance and information inges-

tion.

Developers SHOULD clearly track model updates and how new data is used and a�ects

performance. If new data is ingested a�er deployment, developers SHOULD record the

origin of the new data, how it is integrated into the system, and if there are any bounds for

performance changes.
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For example, anAI system trained on socialmedia data tomonitor sentiment and trends:

A monitoring system captures key performance indicators a�er each model

update. Accuracy, precision, recall, and F1 score of sentiment classi�cation are

assessed with each model iteration. �e system continuously monitors various

social media platforms and feeds, collecting new data at regular intervals.

�e monitoring system tracks the rate of messages processed per minute and

measures latency in processing times. Model performance is analyzed with

each update and reaches a minimum F1 score of 85%.

RL6: Creators SHOULD record metrics on outcome replicability.

Developers SHOULD measure the replicability of outcomes of their AI systems, utilizing

state-of-the-art metrics.

Consider an AI news recommendation system:

A reproducibility measurement process was developed. �e [state-of-the-art]

metric was utilized to assess how well the recommendations were replicated

across multiple user interactions. �e system aimed for a replicability rate of

at least 90%.

3.3.3 Safety

S1: Creators MUST assess safety to users and society.

�e development of systems MUST consider safety at the forefront. Developers MUST pay

careful a�ention to safe design, failure contingencies, and safety standards. Consideration

MUST be given to how the AI system impacts its surroundings, individuals, and society as

a whole, and whether its use or deployment poses any safety risks. In the case that there

are safety concerns, creators MUST be transparent about any safety concerns or issues the

AI system may have.
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Consider an AI-powered autonomous vehicle was designed to autonomously navigate traf-

�c:

A comprehensive risk assessment was conducted, including an evaluation of

potential safety risks such as collisions, pedestrians, and adverse weather con-

ditions. Simulations and real-world testing were conducted to identify behav-

ior in these various conditions. Mitigation strategies were identi�ed to address

safety concerns, and human-override features were prioritized in the design

of the AI system. �e system adheres to all international and national safety

standards applicable to motor vehicles. Continuous monitoring and feedback

mechanisms were implemented to adapt the system to unknown scenarios.

Assessments of safety are vital to ensure user and stakeholder trust.

S2: CreatorsMUSTassess potential security, safety, andprivacy failure points.

Assessments of potential security, safety, and privacy failure points present in models (and

solutions if available) MUST be undertaken.

For example, consider an AI chatbot system:

�e system was assessed for potential failure points, and a number of areas of

concern were identi�ed. �e system was found to be vulnerable to potential

data breaches. Robust security measures were implemented to protect user

data, including encryption and vulnerability assessments. Safety risks were

identi�ed associated with the chatbot providing improper feedback and/or

incorrect information. �ese risks were mitigated through continuous moni-

toring, frequent updates, and warnings on the system about inaccuracies.

�ese assessments MUST assess potential failure points concerning data breaches, system
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Table 3.3: �e Know Your Model (KYM) Guidelines for Safety (S#). An example application
of each guideline is provided. �ese examples are simpli�ed. Real-world applications may
require longer and more technical justi�cations.

Know Your Model Guidelines Example Application of Guideline

S1 Creators MUST assess safety to
users and society.

[Robotics AI] ”In the event of detected compromise, the
system can be placed into a fail-safe state by the activa-
tion of a hardware cuto� or a so�ware shutdown. To com-
ply with safety standards, this system has several human-
tracking safety features that override the AI in situations
where humans can potentially be harmed.”

S2 Creators MUST assess potential se-
curity, safety, and privacy failure
points.

[Finance AI] ”�e system was designed with the follow-
ing threat model in mind. �e system is an online banking
platform with the potential for both denial-of-service and
database a�acks. Additionally, the model is trained on user
data that has been anonymized, however, a�acks do exist
that could de-anonymize users. Finally, the model itself is
vulnerable to data poisoning or similar a�acks. ”

S3 Creators SHOULD record metrics
for security robustness.

[E-Commerce AI] ”Our system is regularly tested to com-
plywith PCI DSS standards. We have also received ISO/IEC
27001:2013 certi�cation for our handling of critical data.”

S4 CreatorsMUST ensure user privacy
and appropriate treatment and use
of private data.

[E-Commerce AI] ”Only data that is relevant to the product
is collected, with the consent of the individual. Private data
is stored on an encrypted server.”

S5 Creators SHOULD ensure secure
data utilization and storage.

[Personal Services AI] ”Data is stored on an encrypted disk,
where access is granted by keys. All data changes are
signed by key, for easy traceability.”

and/or component failure, and potential unauthorized access to the system.

S3: Creators SHOULD record metrics for security robustness.

Creators SHOULD record metrics taken for improving the robustness of their systems from

adversarial a�acks and malicious actors (i.e. checks undergone for adversarial concerns).

�e previous requirement (S2) requires the identi�cation of security issues, and in cases

where security risks are identi�ed, creators SHOULD record the metrics taken to mitigate

these security risks.
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Continuing the previous example of the AI chatbot:

�e security assessment revealed the potential for security issues associated

with unauthorized access. A potential SQL injection vulnerability was iden-

ti�ed. To measure the impact of this security threat, a simulation was con-

ducted to explore detection time, response time, data compromise, and e�ec-

tiveness of the mitigation strategies. To mitigate this type of a�ack, user in-

puts were sanitized to ensure malicious code was not executed.

Due to the rapidly evolving nature of AI security, developers SHOULD continuously engage

in improving security robustness by utilizing state-of-the-art techniques.

S4: Creators MUST ensure user privacy and appropriate treatment and use of pri-

vate data.

Developers MUST be acutely aware of the treatment of user data and the role of user data

in their systems development and outcomes.

Regarding an AI personal �nance assistant:

Private user data, including �nancial transactions, account details, and com-

munications, were encrypted both in transit and at rest. Explicit user consent

was required before the collection and processing of user data. Only data rel-

evant to the core functioning of the system was collected. Personal �nancial

data was pseudo-anonymized whenever possible.

Private data is not utilized in every system, and therefore this requirement will vary de-

pending upon the data relevant to the AI system. For private data, creators MUST consider

regulatory requirements for storage, deletion, and use of data, including requirements for

consent.
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S5: Creators SHOULD ensure secure data utilization and storage.

Creators SHOULD ensure that all data is used and stored securely.

For example, consider a smart home automation system for the control of in-home IoT

devices:

User data, including voice commands, were encrypted end-to-end. Data was

stored on an encrypted database. Robust access controls were implemented

to restrict access to unauthorized authorities. Data retention policies were

adopted to remove data a�er a speci�c time period to reduce the risk of data

exposure. Logging and monitoring policies were implemented to track unau-

thorized access a�empts and real-time alerts were con�gured to identify ad-

ministrators of any potential threats.

3.3.4 Responsibility

RP1: Creators SHOULD disclose or record all entities involved in system develop-

ment.

Creators SHOULD record the identities (or a�liations), quali�cations, and diversity of all

entities involved (including stakeholders, businesses, domain experts, individuals, teams,

etc.) in the design, development, and deployment of the AI system. �is may include the

experience and credentials of developers, team diversity, and the investments and interests

of developers (and other stakeholders) in model development.

Consider an AI translation program:

�e core development team is comprised of engineers, data scientists, and lin-

guists. Each individual’s role in design and development was clearly docu-

mented. A third-party company was engaged for data collection and security
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Table 3.4: �e Know Your Model (KYM) Guidelines for Responsibility (RS#). An example
application of each guideline is provided. �ese examples are simpli�ed. Real-world appli-
cations may require longer and more technical justi�cations.

Know Your Model Guidelines Example Application of Guideline

RP1 Creators SHOULD disclose or
record all entities involved in
system development.

[Human Resource AI] ”Our team is composed of machine
learning engineers, statisticians, and social scientists, all
graduates of accredited universities. We consulted with
an AI domain expert during development.”

RP2 Creators SHOULD detail the im-
plementation of human-AI inter-
actions.

[Medical AI] ”�e system uses patient characteristics and
health information to formulate diagnoses. �e decisions
must be con�rmed by a human before a diagnosis can be
made.”

RP3 Creators SHOULD describe the im-
pact, value, and bene�t of the sys-
tem.

[Chatbot] ”�e system allows for rapid interactions with
customers. �is increases availability, provides immedi-
ate assistance to customers, and reduces the need for cus-
tomer service sta�. �e system is only used for our busi-
ness and does not have any larger foreseen societal im-
pacts.”

RP4 Creators MUST comply with legal
and regulatory requirements.

[Finance AI] ”Our system complies with GDPR regula-
tions on the use of private data, and internal regulations
on the use of private data and clarity in decisions.”

robustness assessments. Further, translators of rare languages were consulted

during the evaluation of the system.

�e disclosure of the entities involved in the design, development, deployment, and man-

agement of an AI system enforces accountability and transparency. Transparency in this

regard may allow users and regulators to assess robustness, honesty, and compliance with

relevant regulations.

RP2: Creators SHOULDdetail the implementation of human-AI interactions.

Creators SHOULD understand the implementation of human-AI interactions in the system.

�is may include areas where human review is allowed and/or required, opportunities for

human intervention, and human role in AI decisions.
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Consider an AI personal assistant:

�e system involves user interactions via web interfaces and mobile apps. �e

AI system interacts directly with the user on all platforms. �e system takes

user input in the format of text and audio and responds to the user based

on sentiment analysis, voice recognition, and context prediction. User feed-

back is collected to assess the system’s e�ectiveness and user satisfaction. All

communication occurs between the AI system and the human user. Customer

service agents do not participate in the communication with the human user

through the interface and must be contacted separately.

�e implementation of human-AI interactions SHOULD consider both elements of explain-

ability and safety of an AI system. Transparency on where a user is interacting with AI is

encouraged.

RP3: Creators SHOULD describe the impact, value, and bene�t of the system.

Creators SHOULD justify the impacts, values, and bene�ts that the AI system has to society.

�is may also include any potential detriments to society (and justi�cations for why the AI

system maintains value).

An example of an e-commerce recommendation system for online shoppers:

�e system analyzes user behavior, purchase history, and user preferences to

provide tailored product recommendations. Users experience high satisfaction

with the relevance of the products recommended to them compared to other

recommendation systems, resulting in a 25% increase in user satisfaction and

a 30% increase in user retention rates. �e system improved user engagement

and sales, resulting in a 10% increase in sales over a three-month period.
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�e value and bene�t of the system should be clearly communicated to assess the impact

of the AI system. In the example above, this is clearly demonstrated with concrete impacts

on customer satisfaction and sales.

RP4: Creators MUST comply with legal and regulatory requirements.

With the rising legal and regulatory requirements for AI development, careful a�ention

MUST be given to national, international, and vocational requirements for AI design, de-

velopment, and deployment.

Consider a �nancial fraud detection system:

�e system was developed in compliance with �nancial regulations regard-

ing requirements for data security, transaction monitoring, and reporting of

suspicious activities. Additionally, the system adhered to GDPR data privacy

regulations on the use of private data and data handling processes.

�ese legal and regulatory requirements will vary greatly depending on the system. It is

advised for developers to be keenly aware of the relevant laws and regulations during the

design of the AI system.

3.4 Discussion and Future Work
With the proliferation of AI in greater society, members of academia and industry alike

should strive for the development of robust, trustworthy systems. �e complexity and

wide array of applications in AI systems complicate the process of creating trust, plac-

ing the burden on each creator to establish a method for building and maintaining trust.

Further, the complex landscape of Trustworthy AI literature, guidelines, regulations, and

recommendations makes it di�cult to de�ne and apply trustworthy principles in regard to

AI development.

79



Establishing Requirements for Trustworthy AI

�e Know Your Model (KYM) framework guides the development of trustworthy AI via a

simplistic, straightforward approach. �e KYM guidelines aim to provide a comprehensive

framework for creators to leverage to address both provenance and principles of trust in

the design, development, and deployment of their AI systems. A set of 20 guidelines was

established, centered around four key principles of trustworthiness: e�cacy, reliability,

safety, and responsibility. �ese four principles highlight the critical areas that need to be

addressed by creators and developers in all stages of AI development. �ese guidelines can

be leveraged to establish model identity and increase transparency and trust in AI.

�is chapter has explored the 20 proposed guidelines. Each of the 20 guidelines has a direct

connection to the principles of Trustworthy AI explored in Chapter 2. Further, example

applications of guidelines were provided for various AI systems that have relevance today.

�ese example applications provide only brief summaries of the type of information sug-

gested to ful�ll each guideline. In practice, explanations, justi�cations, and documentation

should be more extensive and detailed.

Although previous e�orts have been made to increase transparency and trust in AI, the

focus has been placed primarily on provenance rather than trust. In those methods that do

address trust, a�ention is only given to one or two principles, neglecting the importance of

others. �e KYM framework aims to merge provenance methods with a focus on trust, pro-

viding a complete framework for creators to assess their current and future AI processes.

Further, this framework considers the importance of technical, ethical, and legal responsi-

bility, providing guidelines that bridge the gap between research and industry.

As de�nitively proving that a system ormodel is trustworthy is quite di�cult, it is suggested

that developers maintain thorough records on methods taken to address trust concerns.

KYM assists developers in improving transparency toward increasing trust. By increasing

transparency, developers ensure clarity on how key issues are addressed, and users have the
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information needed to assess trust where necessary. Developers should record techniques

and tools they used to address issues in each area, and justi�cations for why a check was

not completed or required. �ese should be frequently assessed and updated for every new

model or model update. Increasing transparency in this way is the next step in increasing

overall trust in AI. However, it is important to note that KYM is not an exhaustive list

of requirements. Developers should continuously ensure that they engage in transparent

practices in tracking their modeling e�orts.

Further, it should be noted that while KYM provides a set of guidelines for creators to

leverage, it does not provide a method for sharing this information among users, or outside

of an organization. �is distinction should be made by the creator depending on the unique

factors of their systems. In general, thorough records and complete transparency within

the development team and internal users (where applicable) are advised. In many cases, it is

unlikely that full transparency in external sharing of data and model provenance is feasible

for a multitude of creators due to proprietary or privacy concerns. �e guidelines discussed

in this chapter provide the ability for creators to guide internal records on these topics

but do not provide an avenue for securely sharing this information. Additional a�ention

will be needed in situations where this level of transparency with external stakeholders is

required.

Additional a�ention is warranted on developing a formalized system for KYM. As the state

of AI research is rapidly evolving, it would be bene�cial to develop a formalized system that

includes up-to-datemethods to analyze the guidelines. Further, it would be of extreme value

if these guidelines could be streamlined into an automated system for record-keeping for

creators to leverage. Future work may include clear avenues for the sharing of information

with external users, such as customers or the general public.
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Chapter 4

Collaborative Learning: Leveraging

Federated Learning to Increase Trust

Developing Trustworthy AI systems is a di�cult task, requiring an interplay between a

multitude of concepts and principles during all stages. While many solutions have been

proposed, there are no complete solutions that address all principles of Trustworthy AI.

In recent years, FL has emerged as a compelling solution, addressing several key principles

of trustworthiness such as fairness & non-discrimination, privacy, robustness, and security.

FL represents a groundbreaking step forward toward collaborative learning, fundamentally

altering how data is utilized and processed while allowing multiple actors to build a robust

and secure model.

In traditional architectures, data, and modeling are centralized, o�en leading to issues with

robustness, transparency, and fairness. AI systems rely heavily on the data they are trained

with, and issues with data quality and volume o�en result in fairness issues [191], privacy

[36], and algorithmic robustness [88]. As algorithms become more complex, the amount
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of data required to train them signi�cantly increases [88]. Traditional approaches require

providers and developers to train algorithms on their own data. �is can potentially lead to

issues when there is a scarcity or lack of diversity in the data that is available to them, re-

sulting in algorithms that are poorly trained and are not able to generalize to reality. While

large organizations or state actors may be able to collect su�cient data, it is a signi�cant

challenge for many smaller organizations or researchers to obtain the appropriate volume

and quality of data to train robust algorithms.

For example, AIs utilized in healthcare are o�en observed to be biased due to training on

data predominantly from a speci�c demographic group, data collected in speci�c clinical

conditions, or data collected withmisspeci�ed outcomes [66]. �e algorithms that underpin

these models do not perform on unseen data, producing results that potentially amplify

existing medical biases [260]. �e collection of robust healthcare datasets is o�en hindered

by requirements to protect patient privacy [250], and therefore healthcare organizations

are o�en limited to training algorithms on the data available to them, potentially resulting

in poorly trained and non-generalizable algorithms. While a large hospital may be able to

collect su�cient data, how would small clinics get su�cient data to train robust algorithms

when they are likely to see only a small subset or a speci�c demographic of patients?

FL addresses these issues by enablingmultiple clients or participants to collaboratively train

a model while keeping their data local and secure. FL is an ML se�ing where the training of

a model is distributed across multiple clients to create a collaborative model that can learn

from a larger subset of data than is available locally. FL maintains data privacy by design,

as it trains algorithms across multiple decentralized clients, devices, or servers without

exchanging the data itself [233].

�e growth in popularity of FL is primarily due to the ability to bene�t from private data

without having access to it, the power of multiple clients collaborating to update the model
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without sharing private data between themselves, and the vast number of clients that can

participate, up to thousands or even millions for large-scale systems [161, 185, 233, 370].

However, privacy is not the only bene�t of FL from a trustworthy perspective. FL can

also improve fairness in AI due to its ability to learn from a wide array of data sources,

providing opportunities for the AI model to learn from more diverse and heterogeneous

datasets [24, 344]. Additionally, FL can enable transparency in AI systems operations and

governance, allowing for be�er understanding and accountability of AI systems [321]. As

such, FL stands as a robust approach in the pursuit of Trustworthy AI, fostering con�dence

in AI systems among users and stakeholders.

In this Chapter, FL is described with its relevant implications on trust. Some relevant use

cases of FL are explored, and challenges are identi�ed. �e strengths of FL are explored

brie�y with a case study on transaction monitoring for applications in Anti-Money Laun-

dering. �is case study reveals the bene�ts of FL in encouraging collaborative learning

without the sharing of data, ensuring privacy without performance loss. In Chapters 5, and

6, FL is further explored to assess its impact on trust in AI.

4.1 Federated Learning
McMahan et al. [233] proposed FL in 2016 to address the privacy concerns with data acqui-

sition in decentralized devices performing collaborative training. Simply, FL is a distributed

ML se�ing where multiple clients can collaboratively train a model without sharing private

data [233]. �e decentralized approach ensures that sensitive user data remains private and

secure by enabling collaborative model training without the need for data sharing. Tradi-

tional ML methods require centralizing the data, which can be challenging when dealing

with large-scale or distributed data. In contrast, FL enables the training of models across

multiple devices, such as smartphones or Internet of �ings (IoT) devices, while keeping

the data localized. �is allows organizations or platforms to leverage the collective knowl-
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edge from a vast number of devices without compromising data privacy. Due to its strength

in allowing many participants to collaborate, FL has gained popularity, with applications

in mobile devices [206], speech and image recognition [222], �nance [215], and medicine

[200].

Typically orchestrated by a central server, FL follows a multi-round, multi-agent-based

strategy. In each round, the server distributes a current global MLmodel to a random subset

of participants, who then separately leverage private data to locally update the model. Each

participant separately and concurrently sends the di�erence between the current global

model and their updated model back to the server, potentially in the form of masked gradi-

ents or weights with encryption [13, 383], di�erential privacy [317], or secret sharing tech-

niques [47]. �e updated models are sent back to the server, which aggregates the updates

into a new global model. �is type of FL is referred to as the client-server, or centralized

architecture [281].

However, decentralized architectures exist as well, removing the need for a central server

and replacing it with peer-to-peer architecture [281]. In this se�ing, the central server is re-

placed with speci�c aggregation mechanisms that entire peer-to-peer communication and

privacy. Participants have local models, and improvements are made with communication

with their neighbors [348]. Decentralized architectures are out of scope for this disserta-

tion; for further information about these methods please reference [34].

In both cases, aggregation is performed by an aggregation algorithm, a critical component

that combines the learning updates from multiple devices to create a global model. �ese

aggregation mechanisms are the core of FL research. Various aggregation mechanisms

have been proposed, with each having a unique ability to handle various challenges in the

FL environment. �ese challenges include (among others): data heterogeneity, where data

across di�erent clients may not be independent and identically distributed (iid); system het-
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erogeneity, considering client-level capacity for communication, computation, and storage;

communication e�ciency, particularly targeting update size and security; and robustness

against a�acks such as model poisoning and backdoor a�acks [281].

Perhaps the most common and straightforward aggregation mechanism is Federated Aver-

aging (FedAvg) [233]. In FedAvg, selected clients or participants in the federated network

train a local model on their own data using the procedure described above. Orchestrated by

a central server, selected participants receive a pre-trained or basic generic global model.

Participants separately train this global model locally using their own data for multiple

epochs on a stochastic gradient descent (SGD) optimization algorithm and send the up-

dated model to the central server. FedAvg aggregates these models to update the global

model using a simple weighted average of the received updates. �is process is repeated

iteratively until the server outputs a �nal global model.

Other types of aggregation mechanisms include methods such as FedBoost [134], Sca�old

[170], FedProx [203], FedMA [358], Adaptive Federated Optimization [285], and Secure

Aggregation [47], among countless others. Each aggregation mechanism di�ers in the ap-

proach for combining model updates, and each has strengths and weaknesses. For example,

Adaptive Federated Optimization is the only one that has an adaptive learning rate, but it

exhibits issues with client dri� [281].

However, the type of aggregation mechanism is also informed by the type of FL utilized.

�ere are three main types of FL systems: horizontal FL, vertical FL, and transfer FL [370].

�e type utilized is characterized by the type of data partitioning and communication ar-

chitectures used. Speci�cally, data partitioning concerns the sample space and feature space,

where the sample space includes all dataset instances (i.e. samples), and the feature space

includes all dataset a�ributes (i.e. features) [370].
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Horizontal FL is utilized in scenarios where datasets share feature spaces but di�er in the

sample space. For example, di�erent hospitals might collect records on the same type of

data (feature space), but collect that data for di�erent sets of patients (sample space). Hor-

izontal FL enables model updates using the same model architecture due to the overlaps

in feature space. Using their local data, participants train the local model using the same

architecture and send the updates back for aggregation into the global model. �e approach

proposed by McMahan et al. [233] utilizes this type of learning: utilizing Android phone

updates, individual Android phones update model parameters locally and upload them,

where all model updates are aggregated into a global model to improve the model for all

users. Other approaches utilizing horizontal FL include approaches utilizing Federated Op-

timization [185], Deep Gradient Compression [207], and Stochastic Gradient Descent [324],

among others [120, 317].

Vertical FL, on the other hand, applies to scenarios where datasets share sample spaces

but di�er in feature space [370]. For example, di�erent types of �nancial institutions such

as investment �rms and retail banks, may have the same customers (sample space), but

gather di�erent data on those customers (features space). Vertical FL aggregates the dif-

ferent features and calculates the model parameters in a privacy-preserving manner. One

such method is Secureboost, a privacy-preserving tree-boosting algorithm [75]. Proposed

methods for vertical FL include secure linear regression [95, 122, 171, 307], ridge-regression

[125], and privacy-preserving logistic regression [255].

Transfer FL applies in se�ings where datasets di�er in both sample and feature space, but

common representations of their overlapping feature and/or sample spaces can be leveraged

to learn [213]. �is is an extension to existing FL systems to solve problems that exceed the

bounds of the other two types of systems. An example of this type of FL might be when

di�erent types of companies (such as an e-commerce company and a �nancial institution)

in di�erent locations or markets (such as di�erent countries) want to collaborate. Due to
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di�erences in the types of business conducted and geographical location, there is likely

very li�le overlap in feature and sample spaces. �is type of FL might be leveraged as a

solution to build a common system. Methods of transfer FL include Fedhealth, a transfer

FL method for wearable medical devices [73], and others [160, 178, 313, 368, 393].

4.2 Federated Learning Use Cases
FL has a wide array of practice use cases across various domains, with applications in IoT

devices, speech and image recognition, and predictive analysis in domains such as health-

care, �nance, manufacturing, transportation, infrastructure, e-commerce, and other indus-

tries [200].

Speech, text, and image recognition tasks are incredibly prevalent in FL research. In partic-

ular, several approaches have been proposed for text prediction using mobile device key-

boards to predict user input [136, 194, 329]. Language modeling, text classi�cation, speech

recognition, sequence tagging, and recommendation systems are other popular natural lan-

guage processing (NLP) tasks observed in FL research [209]. Image recognition tasks are

also prevalent, with researchers training FL systems on a variety of computer vision tasks

[179]. For example, Yang et al. [368] propose FedSteg for secure image steganalysis that

improves upon existing steganalysis methods.

Applications of FL apply these methods to solve problems in speci�c domains. In health-

care, FL is enabling collaboration between healthcare institutions to develop diagnostic

tools, personalized healthcare, andmonitoring tools. For example, Chen et al. [73] proposed

FedHealth, a transfer FL solution for integrating wearable medical device data to build per-

sonalized models of activity. Learning digital medical information from electronic health

records (EHR) is another signi�cant application, enabling collaborative analysis between

healthcare institutions that protect patient data [51, 83, 219, 347]. Several researchers have

also applied FL tomedical imaging, with applications inMRI imaging of the brain [133, 319],
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x-ray and medical imaging radiology scans [107, 249, 287], and pathology [218]. Applica-

tions in electroencephalography (EEG) signal classi�cation problems also show signi�cant

promise [120, 160]. Other applications in healthcare include remote health monitoring,

disease diagnosis and detection, and other health monitoring [252, 363].

In the �nance sector, FL has been leveraged to enhance how �nancial institutions handle

data and collaborate for problems such as fraud detection, risk management, and person-

alized �nancial services. Cheng et al. [76] utilize FL for loan risk assessment, Kawa et al.

[176] for assessment of credit risk, and Yang et al. [371] and [58] apply it to credit card fraud.

Long et al. [215] propose leveraging FL for open banking to develop superior AI models for

�nancial services. Other researchers apply it to �nancial text classi�cation [27], predicting

�nancial distress [154], credit scoring [398], and �nancial crime detection [333, 334].

Further, there have been several notable contributions to the manufacturing and supply

chain. Kevin et al. [178] propose a transfer FL method for cross-domain prediction in smart

manufacturing and production processes. Similarly, Zhang and Li [393] proposes a fault-

diagnosis method.

In the transportation domain, FL has been applied for the development of route planning,

tra�c management, and autonomous vehicle guidance, among others [336]. Applications

in this domain include vehicular communications [304], energy demand prediction for ef-

�cient use of charging stations by electric vehicles [308], tra�c management [232], and

other intelligent transport systems [391]. Likewise, FL has been applied to infrastructure,

where FL has been applied to the development of smart grids [209, 209, 331], smart utility

meters [359], and smart cities [400].

�e use cases in this section are perhaps the most prevalent in FL research, but the rele-

vance of FL goes beyond these use cases. Additional use-cases include e-commerce [199],
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recommendation systems [356, 369], personalized systems [335], and information retrieval

[275], among others. For a more thorough review of applications in FL, please reference

[200].

4.3 Case Study: Anti-Money Laundering
In the previous section, a multitude of FL applications were explored. Building upon this,

this section aims to provide a more focused exploration of a speci�c use case, Anti-money

laundering (AML). �ite a few applications mentioned concern the �nance sector, where

FL has applications in risk assessment, fraud prediction, and the improvement of �nancial

services. �is section aims to explore how FL can improve performance in AML applica-

tions.

Money laundering is the illegal process of concealing the origin of money by converting it

to an o�cial source. Money laundering involves three steps: placement (introducing the il-

legal funds into the �nancial system), layering (concealing the source of the money through

a series of transactions and other tricks), and integration (the money is reintroduced into

the economy and is used for legitimate purposes) [81].

Preventing money laundering is a critical concern in the �nancial sector. AML refers to

the laws, regulations, and procedures intended to prevent money laundering [116]. AML

e�orts include a wide range of measures and activities taken by �nancial institutions and

regulatory bodies to detect and prevent money laundering, such as customer due diligence

(CDD), KYC,monitoring and reporting of suspicious transactions, and compliancewith reg-

ulatory requirements [110]. AML frameworks are designed to combat money laundering

by requiring �nancial institutions to report activities that might be associated with criminal

activity. �ere are a multitude of techniques already utilized for AML, including transac-

tion monitoring systems, risk assessment methods, and algorithmic detection using AI. [8].

Further, CDD and KYC procedures require �nancial institutions to collect, monitor, and
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analyze relevant information about their customers to prevent identity the�, fraud, money

laundering, and terrorist �nancing [44].

In AML, a successful detection system can identify trends and/or pa�erns indicative of sus-

picious behavior and levy an alert that signals potentially fraudulent behavior. However,

several challenges in the AML domain make it di�cult to develop a su�cient system, such

as quality and volume of data, class imbalance, concept dri�, class overlap, and class mis-

labelling [74].

�is section explores the use of FL in creating a robust AML detection system. FL shows

great promise in the �eld of AML due to the ability to learn from data from heterogeneous

sources. O�en, �nancial institutions are hindered by a lack of quality or plentiful data on

fraudulent transactions. Financial institutions process vast amounts of transactions per

day, and only a small proportion of those are fraudulent [74]. Further, current approaches

o�en result in low detection rates and high false positive (FP) alerts, as fraudulent cases are

not always caught, and some valid transactions are incorrectly labeled as fraudulent [264].

By enabling multiple institutions to collaborate to create a global model utilizing multiple

resources, detection rates may improve, and FPs may become less frequent.

�e experiments were conducted to understand three primary research questions:

1. Can FL be leveraged to encourage collaboration between �nancial institutions with-

out a decrease in model performance?

2. How can FL be leveraged to speci�cally target a reduction of false-positive alerts?

3. How can participant contribution be assessed?
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Related Work

FL applications in AML have shown signi�cant strengths in improving model performance

and improving fraud detection. Suzumura et al. [334] demonstrate the strengths of feder-

ated graph learning on detecting money laundering using the UK FCA TechSprint dataset,

resulting in a 20% performance increase over local models. Similarly, Du et al. [93] propose

GraphSni�er, a graph-based learner that they demonstrate on malicious Bitcoin transac-

tions. Kanamori et al. [168] propose DeepProtect to detect �nancial fraud in both transac-

tions and bank accounts using a real dataset from �ve banks in Japan. Myalil et al. [247]

perform federated learning on fraud detection where active and malicious adversaries are

involved and propose a method to remove malicious participants. Several approaches have

been proposed for credit card fraud detection [367, 371, 399], credit risk assessment [176],

and credit scoring [398].

Experimental Setup

Due to the privacy associated with �nancial data, there are few publicly available datasets

for the study of AML. To solve this problem, several researchers have proposed simula-

tors for generating transaction data based on real datasets [217]. Here, AML detection is

explored utilizing the PaySim dataset [216]. �is dataset is a simulated dataset composed

of mobile money transactions generated based on real transactions from a multinational

company providing mobile �nancial services to over 14 countries. A portion of the PaySim

dataset with 6.3 million transactions was used.

Metrics Value
Total Transactions 6,362,620
Legitimate Transactions 6,354,407
Fraudulent Transactions 8,213
Average Legitimate Transactions $178,197
Average Fraudulent Transactions $1,467,967

Table 4.1: A summary of the PaySim dataset, regarding the total transactions, legitimate
transactions, fraudulent transactions, and average transaction amount for each.
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Transaction Type Count Average Amount
CASH IN 1,399,284 $168,920
CASH OUT 2,237,500 $176,274
DEBIT 41,432 $5,484
PAYMENT 2,151,495 $13,058
TRANSFER 532,909 $910,647

Table 4.2: A summary of the type variable in the PaySim dataset. A total of �ve payment
types are recorded with variable frequencies.

�e dataset contains 11 variables including featuresmeasuring transaction type, transaction

amount, time passed, and several features representing the origin and destination account

information and balances. Transactions are labeled with ’0’ if they are legitimate, and ’1’ if

they are fraudulent. Further, the authors added an additional feature that measures if the

transaction is �agged by a simple rule-based system. Categorical variables representing

client identi�cation codes were removed from the dataset, leaving seven variables. �e

models were trained with an 80%/20% train/test ratio. A summary of the dataset can be

found in Table 4.1, and the number of transactions for each transaction type can be found

in Table 4.2.

One signi�cant challenge in this domain is the lowproportion of positive samples in datasets.

In the domain, fraudulent transactions make up less than 1% of transactions [38]. �is is

re�ected in this dataset with 0.13% of all transactions being fraudulent. Due to this imbal-

ance, detection systems are a challenge to train. If the system is trained poorly, it could

completely miss all positive cases, alerting in very few cases, or it could result in too many

alerts, adding more work to �nancial institutions to check each alert for legitimacy. Neither

case is ideal, so a balance must be struck.

�e experiments were conducted using Flower, a comprehensive framework designed to

facilitate the development and testing of federated learning algorithms [39]. A centralized

architecture was employed, utilizing the FedAvg aggregation mechanism in conjunction
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with an XGBoost model for enhanced performance and e�ciency [70]. All FL experiments

were conducted for 10 rounds, with 5 clients per round. For comparison purpose, a global

model trained on all data, and local models trained only on a proportion of the dataset.

Area Under the Precision-Recall Curve (AUCPR) was utilized as the primary evaluation

metric to assess model performance, due to its strengths with imbalanced datasets [48].

�e following metrics were also utilized to analyze the model results in this section:

Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 Score = 2⇤Precision⇤Recall
Precision+Recall

F0.5 Score = (1 + 0.5)2 ⇤ Precision⇤Recall
(0.52⇤Precision)+Recall

False Positive Rate (FPR) = FP
TN+FP

False Negative Rate (FNR) = FN
TP+FN

where TP is the number of True Positives, TN the number of True Negatives, FP the

number of False Positives, and FN the number of False Negatives.

Experiment 1

�e �rst experiment aims to understand how FL can be leveraged to encourage collabora-

tion between �nancial institutions. �e goal is to demonstrate the strength of FL in enabling

collaboration between �nancial institutions, without negatively impacting performance.

As mentioned, �nancial institutions are o�en hindered in their AML detection e�orts by

a lack of data, particularly correctly labeled fraudulent transactions. FL can greatly im-

prove the detection of fraudulent transactions by enabling collaboration between �nancial

institutions, allowing each to bene�t from a larger volume of data without directly sharing

data.
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In this experiment, the dataset is split between 5 participants (i.e. �nancial institutions). To

simulate equality between participants, the dataset is split equally among classes to ensure

that each has an equal proportion of each type of transaction. To analyze the federation,

the following are considered: (1) global model: a model trained on the entire dataset; (2)

local models: each participant trains a local model utilizing only their data; (3) FL model:

the results of the FL model trained iteratively with all participants. �e average result of

�ve runs for each model is taken. �e results are displayed in Table 4.3.

Accuracy F1 F0.5 FPR FNR Precision Recall
Global 0.9995 0.83 0.78 0.0004 0.06 0.75 0.94
Local 1 0.9994 0.80 0.75 0.0005 0.09 0.72 0.91
Local 2 0.9994 0.80 0.75 0.0005 0.09 0.71 0.91
Local 3 0.9994 0.80 0.75 0.0005 0.09 0.72 0.91
Local 4 0.9994 0.80 0.75 0.0004 0.09 0.72 0.91
Local 5 0.9994 0.81 0.76 0.0004 0.1 0.73 0.90
FL 0.9997 0.88 0.93 >0.0001 0.19 0.87 0.81

Table 4.3: Experiment 1: Results include model performance for a global model (a model
trained on the entire dataset), local models (models trained on only data available for each
participant), and an FL model trained on all participant data. �e results demonstrate the
superior performance of the FL model.

�e global model, trained with the entire dataset, performs as expected. �e classi�er per-

forms with a high accuracy of 99.95%. However, due to the large misbalance in the dataset,

using accuracy is not the best metric. In this case, perhaps the best metric is the F1 score.

Here, the global model has a high score as compared to the local models, but there are clear

issues with model precision.

All �ve local models are trained on only a portion of the dataset. In this case, each partici-

pant had access to 1/5 of the dataset with a class distribution similar to the original dataset.

�is simulates individual �nancial institutions with limited datasets. �e results of the local

models indicate good performance but with metrics lower than the global model. �is is

to be expected as the local models are trained on less data, with each �nancial institution
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having access to less data than the global model. Precision is once again a concern with

these models.

�e FL model is trained iteratively for 10 rounds utilizing all �ve clients. �is model per-

forms well, demonstrating its strength in this domain. �e FL model has the highest accu-

racy, and F1 score, with the F1 score improving by 6% over the global model. Further, the

False Positive Rate (FPR) has decreased to below 0.0001, indicating improvements in reduc-

ing FP alerts. �is demonstrates the strength of the FL model in prioritizing a reduction

of FP alerts, while still performing well. A noted improvement in precision is observed,

along with a decrease in recall. �ese di�erences indicate strength in the FL model in more

balanced prediction compared to the global and local models.

However, a potential drawback is an increased False Negative Rate (FNR). �e FNR mea-

sures the proportion of actual positive fraudulent cases that are incorrectly classi�ed (iden-

ti�ed as negative). In the FL model, an increased FNR is observed as compared to the lo-

cal and global models, indicating that the FL model may misclassify truly fraudulent data

points.

�is experiment demonstrates that FL can be leveraged to improve model performance.

Both the global and federated models notably outperformed the local models as expected,

and the federated model outperforms the global model. While there was a performance

trade-o� between precision and recall, the federated model had a superior F1 score. Further,

the federated model preserved client privacy lowering the barriers to entry for di�erent

competitors.

Second-Layer System

Having demonstrated that an FL system can improve upon existing AML byway of improv-

ing access to data, the next set of experiments were designed to explore alternative methods

of AML detection. In particular, the second and third experiments examine FP alerts. One
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of the challenges in AML is that the class imbalance results in models that generate a large

amount of FP alerts, causing �nancial institutions to dedicate resources to check each alert

for validity. To combat this, Experiment 2 and Experiment 3 explores utilizing FL as a sec-

ond layer to existing detection systems. By taking only those transactions �agged as fraud

by existing detection systems, FL is leveraged to measure the improvement in identifying

positive alerts and reducing FP alerts.

Twoways to assess a reduction of FP alerts are considered. First, in Experiment 2, optimized

local detection systems were developed utilizing �ve commonly used ML methods. �e

positive predictions of these models were entered into the federation to train an FL model

to re�ne the prediction and reduce the FPR. Next, in Experiment 3, local detection systems

were purposely perturbed to prioritize a high recall value. �is ensures that the local models

miss very few positive predictions, but results in high FPRs.

Experiment 2: Optimized Local Detection Systems

For this experiment, �ve optimized local detection systems were simulated. To simulate

the detection systems, the dataset was split into �ve distinct datasets, representing sepa-

rate �nancial institutions. Customers do not overlap between datasets. Fraud detection

systems were trained using �ve highly utilized supervised algorithms in the domain, Deci-

sion Trees [325], Random Forest Decision Trees [50], XGBoost [70], Multilayer Perceptron

(MLP) Classi�er [276], and k-Nearest Neighbors (kNN) [271]. �ese algorithms have been

applied previously for transaction fraud detection [172, 292]. All local models were trained

utilizing scikit-learn [269].

�is scenario analyzes optimized detection systems. �ese models are optimized with bal-

anced prediction rates for each class (fraud and non-fraud). �e results of individual de-

tection systems can be found in Table 4.4. All models perform similarly, with an average

accuracy of 0.9994, precision of 0.75, and recall of 0.81. �ese models perform well on the
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dataset for both classes. As the goal of this experiment is to utilize FL as a second-layer

system to reduce FPs, only the data points predicted as positive (true positives and FPs)

were selected for inclusion in the federation. �e goal of the experiment is to retrain the

FL model on these samples to reduce the FPR.

As in the �rst experiment, the results of the FL model are compared to a global model

and local models. In this case, the global model is trained on the entire subset of data

collected by selecting only positive predictions from the �ve detection systems. �e local

models are trained using each �nancial institution’s data, simulating a scenario wherein

each institution decides to train its own second-layer system utilizing its own data. A FL

model was trained utilizing the predictions from all �ve local models. �e results of this

experiment are displayed in Table 4.5. Once again, the results of the FL model improve

upon the local models, providing a robust model for reducing FP counts. If both models are

utilized together, the participants would bene�t from a 75% reduction in FPs compared to

if only the �rst detection system were used.

One signi�cant point of note about this experiment is that the characteristics of the dataset

changed in the second model. In the local fraud detection models, each �nancial institution

had access to one-��h of the data with class partitioning equal to the original dataset.

However, as only the positive predictions were provided to the federation, this resulted in

a sample with approximately 25% negative samples (valid transactions) and 75% positive

Model Accuracy F1 F0.5 FPR FNR Precision Recall
DT 0.9994 0.8 0.77 0.0004 0.13 0.75 0.87
RF 0.9995 0.82 0.78 0.0004 0.12 0.76 0.88
XG 0.9993 0.78 0.72 0.0005 0.09 0.68 0.91
MLP 0.9994 0.75 0.79 0.0002 0.31 0.82 0.69
kNN 0.9993 0.74 0.74 0.0003 0.28 0.75 0.72
Average 0.9994 0.78 0.76 0.0004 0.19 0.75 0.81

Table 4.4: Experiment 2: Results of individual detection systems on the PaySim dataset.
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Model Accuracy F1 F0.5 FPR FNR Precision Recall
Global 0.9083 0.94 0.94 0.1885 0.06 0.94 0.94
Local 1 0.8561 0.91 0.89 0.3861 0.06 0.88 0.94
Local 2 0.8394 0.9 0.88 0.4027 0.08 0.87 0.92
Local 3 0.8411 0.9 0.88 0.4314 0.07 0.86 0.93
Local 4 0.8478 0.9 0.89 0.3292 0.09 0.89 0.91
Local 5 0.8072 0.89 0.85 0.5893 0.06 0.83 0.94
FL 0.8828 0.92 0.93 0.2135 0.09 0.93 0.91

Table 4.5: Experiment 2: Results of second-layer FL system.

samples (fraudulent transactions). �is changed the classi�cation problem, resulting in a

model with a high FPR and lower accuracy. It is critical to note that while the global model

slightly outperforms the federated model, it does so at the cost of sharing all of the data

between each of the institutions something with both privacy and business concerns.

Further, this approach does have drawbacks. For example, while each fraud detectionmodel

is optimally trained, the average FNR is 0.19. �is high FNR appears in the FL scenario for

Experiment 1 as well. In either case, this is not ideal as fraudulent transactions will be

missed.

Experiment 3: Local Detection Systems with High Recall

�e previous experiments revealed concerns with the high FNR. However, the imbalance

in classes in AML datasets, and models that are developed with a low FNR o�en results in a

large number of FPs. �is increases the burden on �nancial institutions to check each alert

for truly fraudulent transactions. To explore this problem, another set of experiments are

conducted to reduce both the FNR and the FPR.

In this experiment, the same logic as the previous experiment applies. �is experiment

also simulates utilizing FL as a second-layer detection system, but instead of optimizing the

fraud detection models using traditional evaluation metrics, the models are trained with

high recall for fraudulent transactions. �is results in the local detection methods (Table
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4.6) predicting positive cases with high accuracy, regardless of how many FPs it results in.

Compared to the previous experiments, the local models predict FPs at 10 times the rate as

previous.

�e FL system was trained utilizing FPs and TPs making up 75% and 25% of samples re-

spectively. Model training for this experiment (Table 4.7) once again improves upon local

detection models if each �nancial institution were to develop a second layer system lo-

cally.

To truly measure the bene�t of the second layer systems explored in both Experiment 2 and

Experiment 3, the results of local detection systems and the FLmodelwere combined. As the

goal of these experimentswas to reduce the FPs predicted by the local detection systems, the

results of both experiments were recalculated to account for the reduction of FPs predicted

utilizing both the local system and the second layer FL system. �e �nal metrics a�er the

second-layer system is applied to reduce FPs can be found in Table 4.8.

In particular, the second-layer system increased all performance metrics in both experi-

ments. However, the �rst se�ing maintains an increased FNR, due to the original per-

formance of the local detection models missing some positive predictions. However, the

results of the second se�ing with high recall reveal both a low FPR and a low FNR.�is im-

Model Accuracy F1 F0.5 FPR FNR Precision Recall
1 0.9961 0.4 0.29 0.0038 0.01 0.25 0.99
2 0.9961 0.4 0.29 0.0039 0.01 0.25 0.99
3 0.996 0.4 0.29 0.004 0.01 0.25 0.99
4 0.9961 0.4 0.29 0.0038 0.01 0.25 0.99
5 0.9963 0.4 0.29 0.0036 0.02 0.25 0.98
Average 0.9962 0.4 0.29 0.0038 0.01 0.25 0.99

Table 4.6: Experiment 3: Results of individual detection systems trained to prioritize high
positive prediction accuracy.
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Model Accuracy F1 F0.5 FPR FNR Precision Recall
Global 0.891 0.81 0.76 0.1209 0.07 0.72 0.92
Local 1 0.771 0.66 0.58 0.2694 0.11 0.52 0.89
Local 2 0.7563 0.65 0.56 0.291 0.11 0.51 0.89
Local 3 0.754 0.65 0.56 0.2899 0.12 0.51 0.88
Local 4 0.7583 0.65 0.56 0.2863 0.11 0.51 0.89
Local 5 0.785 0.68 0.59 0.2499 0.11 0.55 0.89
FL 0.9246 0.84 0.88 0.0266 0.22 0.91 0.78

Table 4.7: Experiment 3: Results of Second Layer FL System.

Model Accuracy F1 F0.5 FPR FNR Precision Recall
First Layer - Experiment 2 (Average) 0.9994 0.78 0.76 0.0004 0.19 0.75 0.81
First Layer - Experiment 3 (Average) 0.9962 0.4 0.29 0.0038 0.01 0.25 0.99
Second Layer - Experiment 2 0.9996 0.85 0.87 0.0001 0.2 0.89 0.8
Second Layer - Experiment 3 0.9999 0.96 0.94 0.0001 0.01 0.93 0.99

Table 4.8: Results Experiment 2 & 3 A�er Utilizing Both Local Detection Systems and FL
Model. �e �rst layer model results from Table 4.6 and Table 4.4 are repeated here for
comparison.

proves upon the results of the prediction of fraud greatly, producing a prediction accuracy

of 99.99% and F1 of 0.96. Additionally, the model results are be�er than those in Experiment

1, where the entire dataset was provided to the federation.

Experiment 4

In the previous experiments, it was demonstrated that FL can be leveraged to improvemodel

performance. It was assumed that each institution had access to an equal amount of data,

and bene�ted from the federation equally via an improvement in model outcomes. How-

ever, it is not always the case that participants will have the same amount of data, or will

bene�t from the federation in the same way.

�is experiment aims to understand how participants contribute to the federation, and how

variable contributions relate to the bene�t of being a part of the federation. To simulate

unequal contributions, the dataset is split into decreasing proportions of 50%, 25%, 12.5%,

6.25%, and 3.125%. For example, the �rst participant had access to 50% of the data, the
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second participant to 25% of the data, and so on. �e FL model is trained with 5 clients for

10 rounds.

�e results of this experiment can be found in Table 4.9. From the local models, it is clear

that the performance decreases as the proportion of data that the client has access to de-

creases. Once again, as the majority of the samples are negative, accuracy does not provide

a useful metric, and rather the F1 score is a be�er metric for model performance. Clients 1

and 2 have the highest performance, with a model that performs with an accuracy of 99.94%

with an F1 score of 0.96. �ese results are comparable to the global model, indicating that

model performance can be achieved with a relatively low proportion of the dataset. Com-

paratively, Client 5, with access to only 3.125% of the data, results in a model with F1 of

0.76, a notable decrease.

Similar to the previous experiments, the FL model outperforms all others with an accuracy

of 99.97% and F1 score of 0.86. Once again, there is a trade-o� between precision and recall,

with the FL model resulting in a very high precision of 0.98 and a recall of 0.77, signi�cantly

reducing FPs as a consequence of a slight increase in FNs.

Regarding the bene�t of client participation, the results demonstrate that in all cases, par-

ticipants see an increase in model performance. However, the bene�t for clients with a

larger proportion of the data is markedly less than for clients with a smaller proportion of

the data. For example, Client 1 bene�ts from the federation with a 0.03% increase in accu-

racy and a 6.17% increase in F1 score. However, Client 5 bene�ts with a 0.04% increase in

accuracy and a 13.16% increase in F1 score.

Summary

In this section, the use of FL in combating money laundering was explored. It was demon-

strated that FL can train a highly accurate and precise model, on par with a model trained

locally with all data. FL outperformed local models trained on only data available to each
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Model Proportion of Data Accuracy F1 F0.5 FPR FNR Precision Recall
Global 100% 0.9995 0.83 0.78 0.0004 0.06 0.74 0.94
Local 1 50% 0.9994 0.81 0.76 0.0005 0.07 0.73 0.93
Local 2 25% 0.9994 0.81 0.76 0.0004 0.09 0.73 0.91
Local 3 12.5% 0.9994 0.79 0.74 0.0005 0.1 0.71 0.9
Local 4 6.25% 0.9993 0.77 0.74 0.0004 0.16 0.72 0.84
Local 5 3.125% 0.9993 0.76 0.69 0.0006 0.1 0.66 0.9
FL 100% 0.9997 0.86 0.93 0.0001 0.23 0.98 0.77

Table 4.9: Results Experiment 4: Measuring the impact of unequal client participation

participant.

Four experiments were conducted to assess the bene�t of utilizing FL in AML se�ings.

In Experiment 1, FL was demonstrated to increase the performance of the model by 6%,

demonstrating the strength of utilizing FL for AML problems. Experiments 2 and 3 explored

applying FL to only positive predictions, a�empting to reduce the FPR.�e results of these

two experiments indicate that it is possible to decrease FPRs using a second-layer FL ap-

proach, resulting in a �nalmodel that predicts all caseswith 99.99% accuracy and an F1 score

of 0.96. Experiment 4 aims to assess client participation, revealing that clients with variable

access to data bene�t from participation di�erently. In this case, it was demonstrated that

all clients bene�ted from participation, but that participants with a larger proportion of the

data bene�ted less than those with access to a very small proportion of the data.

In all cases, a notable trade-o� between precision and recall was observed between the local

models and FL models. �is is likely due to the implementation of the FedAvg and XGBoost

aggregation mechanism architecture in Flower in conjunction with the class imbalance in

the dataset. FL is known to be sensitive to class imbalance, and the inherent averaging

process during aggregation can result in a bias toward the majority class [97]. Developers

who implement federated algorithms should consider this carefully when implementing FL

networks.
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Further, it should be noted that only iid data was explored. In the �eld of AML, the nature

and structure of �nancial transactions and related data tend to exhibit pa�erns and char-

acteristics that are inherently more uniform, aligning more closely with the assumptions

of iid data. �is uniformity is caused by regulated �nancial behaviors, standardized trans-

action protocols, and compliance frameworks. �erefore, non-iid data is not typical in the

AML domain, and was thus not explored here.

Overall, this use case shows the strengths of utilizing FL in AML.�e ability to collaborate

between �nancial institutions provides opportunities for be�er-performing models. �e

improved FL model has the potential to reduce the amount of FP alerts, thus reducing the

burden on �nancial institutions to check each for legitimacy. By utilizing the FL system as

a second-layer detection targeting the reduction of FPs, the performance on AML tasks is

improved greatly, showing great potential for leveraging FL for this domain.

Further, the assessment of client participation reveals that even when clients have access

to the majority of the data, they still bene�t from participation in the FL network. How-

ever, the bene�t of participation is variable and therefore there may be questions about

whether participation in the network is worth it for a small gain in performance. While not

discussed in this dissertation, incentivization strategies can be utilized to encourage client

participation [379]. Further, while participation while be bene�cial to performance, the is-

sue of client participation is more nuanced and may be impacted by other features such as

time and cost sensitivity [42].

4.4 Challenges in Federated Learning
While it o�ers signi�cant advantages in terms of privacy and data decentralization, FL also

faces several challenges that have been shown to impact its e�ectiveness and widespread

adoption.
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Several of these challenges occur during communication between clients and the server.

In particular, communication overhead is a signi�cant issue in FL systems due to both the

need to account for the size of the updates and the di�erences between the system ca-

pacities of each client. Researchers have addressed concerns over overhead due to com-

munication costs with several strategies including local updating, compression schemes,

decentralized training, and importance-based updating [281]. For example, local updating

schemes pass communication costs onto the client, such as using mini-batch optimization

[291] or distributed local-updating methods [390]. Compression methods reduce model

update size sent to the server each round, utilizing such methods as subsampling, proba-

bilistic quantization, sparsi�cation, dropout, and lossy compression [59, 135, 173]. Other

examples include Communication-Mitigated Federated Learning (CMFL), which prevents

unnecessary updates from being sent to the aggregator by enabling clients to measure their

contributions to each update and disregarding irrelevant updates [224].

An additional challenge is in systems heterogeneity, where the capabilities between clients

di�er in factors such as network connectivity, memory, CPU, or power level [366]. A popu-

lar approach to mitigate this issue is to select participants based on system resources avail-

able at each round. For example, Nishio and Yonetani [254] propose FedCS, a method to

increase aggregation e�ciency and reduce training time by aggregating only clients with

su�cient resources. Other methods include Federated Dropout [59], priority-aware aggre-

gation [10], dynamic compression of straggling clients [364], server-side algorithms that

ensure e�cient aggregation [12], and fault tolerance [322].

Data heterogeneity between clients is also a challenge. In many federated se�ings, the data

collected from participants is typically non-identically distributed [281]. In addition, there

is variation in the amount of data clients have and/or contribute, with some participants

potentially having a lot of data and some having very li�le. Data heterogeneity and volume

can cause issues with model performance, generalizability, and participation. Arivazhagan
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et al. [15] address issues with statistical heterogeneity by adding a personalization layer

to the global model, reducing performance issues, and increasing generalizability. Further,

participation can be an issue when participants are reluctant to participate in a network if

there is not a signi�cant bene�t. To this end, incentive mechanisms have been proposed to

incentivize clients to participate [381].

Privacy and security of FL networks are also of signi�cant concern. As participants update

the model during each round, they transmit relevant information about their contribution

to the server. �ese updates require careful a�ention to ensure that the information remains

truly local and that no information is leaked or otherwise available to others. A signi�cant

advantage of FL is the privacy protections a�orded by ensuring that model training occurs

without sharing data and thatmodel updates are secure. However, researchers have demon-

strated that sensitive information can be exposed during communication rounds [403]. To

address privacy concerns, methods integrating di�erential privacy, homomorphic encryp-

tion, and Secure Aggregation have been proposed. Di�erential privacy methods add noise

to the data or model updates, making it di�cult to expose participant information [102].

Homomorphic encryption secures model updates via a cryptographic method that allows

computations to be carried out without decryption, generating encrypted results that can

then be securely decrypted by the server without revealing participant information [21].

Secure Aggregation is a speci�c aggregation method where participant updates are aggre-

gated in a combined way, ensuring that the server can only see combined updates and

not individual contributions [47]. All of these methods aim to enhance the privacy of FL

systems and prevent the exposure of participant information.

However, even with these methods in place, researchers have revealed that FL has vul-

nerabilities during the model update process, and is not always su�ciently secure from

malicious actors. For example, researchers have demonstrated weaknesses to data poison-

ing [91, 258, 342], model poisoning[22, 40, 106], inference a�acks such as membership and
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training input inference [145, 237, 277, 396, 403], and other types of a�acks [225, 248]. For

example, Zhu et al. [404] demonstrates the vulnerability of FL toward free-rider a�acks,

where adversaries submit fake updates to participate in the network without providing

real information, showing that their free-rider a�ack where an a�acker can stealthily con-

struct counterfeit updates and evade existing defense mechanisms. To prevent these types

of a�acks, many researchers have proposed Byzantine-tolerant aggregation mechanisms

[45, 274, 332]. �ese types of a�acks and aggregation mechanisms will be further explored

in Chapter 5.

4.5 Implications on Trust
While the growth in popularity of FL is primarily due to the privacy a�ordances it pro-

vides, FL o�ers signi�cant bene�ts toward building trust in AI. Leveraging FL can increase

trust via increased data and participant privacy, improving fairness and reducing bias by

gathering data from diverse and heterogeneous resources, enabling transparency in the

robustness and accountability of systems, and fostering secure systems.

In this chapter, the privacy bene�ts of FL have been highlighted. �is approach enables

collaborative model training while keeping sensitive data localized and secure, mitigating

risks posed by data leaks and centralized data storage breaches [263]. By allowing data to

remain locally and only sharing model updates, FL provides a robust privacy-preserving

framework, greatly increasing privacy in AI systems [202]. Of course, trust can only be

maintained if the proper privacy-preserving mechanisms are in place [374].

Improving fairness is also made possible by FL, as the AI models can be trained by more

diverse and heterogeneous datasets. For example, FL may be able to reduce bias with het-

erogeneous and diverse datasets from clients in di�erent areas, locations, or domains [344].

Indeed, Zhang et al. [385] propose FairFL, a framework for reducing discriminatory bias uti-

lizing FL. Likewise, Ezzeldin et al. [105] propose Fairfed to reduce bias and enhance group
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fairness and Djebrouni et al. [90] propose ASTRAL for fair weight aggregation, While this

same heterogeneity may introduce bias, several methods have been developed to improve

fairness in FL systems with very skewed data distributions [3].

FL also provides opportunities to increase transparency and accountability. Toward increas-

ing accountability in FL, IBMResearch introduced the Accountable FL FactSheet framework

[25]. �is framework addresses the accountability of the parties involved in federated net-

works, providing opportunities to clearly demonstrate accountability in a federated se�ing

and enable auditing, transparency, and fact-checking. Further, FL networks can be audited

and kept accountable by several mechanisms, to ensure transparency and accountability of

both participants and the overarching global model [20, 86, 246]. Further, while FL is not

explainable by design, several methods have been proposed to increase the explainability

of FL predictions [69, 112, 288, 367].

Notably, several methods have been proposed for the inherent trustworthy design of FL

systems. Cao et al. [63] propose FLTrust, a method for FL trust bootstrapping by assigning

trust scores to model updates based on their contributions. Rehman et al. [286] propose

TrustFed, a method to detect malicious actors and a�acks, enable fair training se�ings,

and monitor participant behavior. Bao et al. [24] propose FLChain, a FL marketplace for

incentivized and trusted networks and learners. Papadopoulos et al. [267] propose Veri-

�ed Credentials as a method to increase trust in the users of an FL system, ensuring that

only reputable clients may participate. Further, several researchers also propose reputation

mechanisms to encourage trust and honesty from participants by providing them with rep-

utation scores [132, 169]. Blockchain has also been proposed as a mechanism to increase

trust in FL [24, 251, 286] All of these methods have enhanced the trustworthiness that FL

provides.

It is clear that there is a relationship between FL and trust. In this dissertation, this relation-
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ship will be further explored to identify the strengths and weaknesses of FL in developing

Trustworthy AI.�e use case with AML has already demonstrated that FL has a direct im-

pact on privacy and robustness & reliability. In the next chapter, methods for improving

safety & security in FL will be demonstrated. Following that, in Chapter 6, leveraging FL

for regulatory requirements is connected to the remaining trustworthy principles.
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Chapter 5

Defending Federated Learning

�e previous chapter demonstrated the potential of FL to increase trust in AI. Namely, the

bene�ts of FL on privacy and robustness & reliability were highlighted. �e bene�ts of FL

toward privacy are signi�cant, enabling participants to collaborate to train a shared ML

model without sharing data.

�is chapter aims to understand the potential for FL regarding the safety and security of

AI systems from malicious a�ackers. It has been shown that FL mitigates risks of data

leaks and breaches by keeping sensitive data localized and secure [263]. �is greatly en-

hances the privacy in AI systems; however, the proper security measures must be in place

to ensure these privacy bene�ts [374]. While FL has the potential to increase the security

of AI systems, and thus increase trust, current research has revealed several �aws in the

security of FL se�ings. �e crux of FL lies in the fact that no single entity owns or veri-

�es the training data that participants utilize to train model updates. In theory, this should

prevent many types of malicious a�acks and secure the federated system from malicious

actors. However, many scholars have shown that FL is still vulnerable to adversarial a�acks
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[22, 40, 72, 119, 161, 357]. As FL allows an a�acker to have access to the modeling process,

a�ackers can leverage model poisoning in a federated environment to signi�cantly impact

the performance of a global model. One way this can be done is through the insertion of

backdoors during the learning process, where the goal is to corrupt the global model to

lead to a misclassi�cation of a speci�c task, rather than a�ecting the performance of the en-

tire model. Model poisoning greatly outperforms traditional data poisoning and is of great

concern among FL researchers [161].

Along with this increase in concern about model poisoning has been an increase in research

on methods to defend and harden FL systems against adversarial a�acks through alterna-

tive aggregation mechanisms. Such aggregation methods are typically Byzantine-tolerant,

ensuring convergence even in the presence of Byzantine participants, and acting as a de-

fense mechanism against adversarial a�acks. However, many of these mechanisms can be

circumvented by sophisticated a�acks [22, 106, 119, 332, 357]. As such, creating robust FL

against model poisoning a�acks is an open problem. While the majority of works focus on

how a�ackers can circumvent speci�c defenses, there are no current works that address

the performance of such defenses on model poisoning in general.

In this chapter, an analysis of the behavior of byzantine aggregation mechanisms against

model poisoning in a FL se�ing is provided. In particular, the performance of popular

defenses such as Krum, Multi-Krum [45], Norm-Di�erence Clipping [332], and Robust Fed-

erated Averaging (RFA) [274] are analyzed, and model poisoning is conducted within FL

environments under various adversarial se�ings. �ese defenses are chosen due to their

applicability and strength in defending FL systems. �is is demonstrated using two con-

crete learning tasks commonly used in the domain: image classi�cation on the CIFAR-10

dataset and digit classi�cation on the EMNIST dataset, replicating the learning environ-

ments in [357] with a basic model poisoning a�ack scenario.
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�is chapter aims to understand how FL can be secured against adversarial a�acks. Security

against such a�acks is a signi�cant element of trust, as data breaches andmanipulation of AI

systems can result in privacy concerns via personal data loss, and potential safety concerns

if the system performs unexpectedly. While inherently FL has security bene�ts, assessing

the security of FL in this way enables a critical evaluation of its trustworthiness concerning

several key principles.

5.1 Background

5.1.1 Byzantine-Tolerant Aggregation

�e basic aggregation mechanisms utilized in FL were discussed in Chapter 4. �ese ag-

gregation mechanisms, while robust for performance and convergence, are vulnerable to

adversarial a�acks such as data and modeling poisoning [22]. �e most basic aggrega-

tion mechanisms work through averaging local model parameters but rely on the assump-

tion that all participants are honest. An a�acker can take advantage of simple aggregation

mechanisms to compromise worker devices [45, 373], or model updates [22, 40, 106], com-

promising the global model for all participants.

Recent work has focused on the development of Byzantine-Tolerant aggregation mecha-

nisms, where the goal is to ensure convergence in the presence of Byzantine participants

[45, 72, 332, 373]. �ese mechanisms are speci�cally designed to ensure the robustness and

reliability of the FL model in the presence of malicious participants. �ese malicious up-

dates can degrade or manipulate the performance of the global model. Instead of utilizing

averaging for model aggregation, these approaches use alternative aggregation approaches

such as geometric median or trimmed mean that are less sensitive to extreme or perturbed

values. �ese alternative aggregation mechanisms make them less vulnerable to malicious

updates, allowing the FL network to prevent the malicious actor from degrading or manip-

ulating the model.
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However, many of these byzantine-robust methods assume that the a�acker intends to pre-

vent convergence of themodel, which is not the case in a backdoor a�ack scenario. In a back-

door a�ack scenario, the adversary’s goal is to manipulate the model such that the model

performs its given task normally while behaving maliciously on a speci�c, a�acker-chosen

task [205]. Byzantine-tolerant aggregation mechanisms, while secure against a�acks that

prevent or slow convergence, have been demonstrated to be weak to backdoor a�acks in

FL [22].

In this chapter, several byzantine-tolerant aggregation mechanisms are explored for their

robustness against adversary backdoor a�acks. Namely, Krum,Multi-Krum, Norm-Di�erence

Clipping, and RFA are explored for their ability to defend against adversarial a�acks in var-

ious model poisoning a�acks.

Krum & Multi-Krum

Krum and Multi-Krum are alternative byzantine aggregation methods that intend to toler-

ate Byzantine participants in a distributed se�ing by selecting fewermodels for aggregation,

a�empting to exclude malicious participants [45]. In Krum, only one of the participants’

local models is chosen to be used as the global model. It is designed to tolerate c compro-

mised participants out of n. For each round, the pairwise distances between all local models

submi�ed are computed. �en, the server sums up the n� c� 2 closest distances, and the

model with the lowest sum is chosen as the global model for the next round. �is process

continues for each round, selecting one local model that is geometrically closest to all other

local updates as the update for the global model. Multi-Krum is a variation of Krum where

instead of onemodel being chosen, the topm = n�cmodels are chosen to be averaged into

a new global model. �is extension to Krum allows for a selection of multiple updates, in-

stead of limiting the updates to just one. �is is particularly advantageous in environments

with a larger subset of participants, leading to improved performance.

113



Defending Federated Learning

Norm-Di�erence Clipping

�is method relies on the theory that malicious models are likely to produce large norms

and that a simple clipping defense could thwart a�ackers [332]. Norm-di�erence clipping

works by examining the norm-di�erence of local models submi�ed to the server, as com-

pared to the current global model, and clipping model updates that have a norm di�erence

larger than threshold M . �is method modi�es participant updates before aggregation to

ensure that no single update disproportionately a�ects the aggregated result. In this way,

the contribution of any model with a large norm di�erence is small and therefore poisoned

models are in theory less in�uential to the global model.

RFA

Robust Federated Averaging (RFA) replaces the typical approach of aggregating utilizing

the arithmetic mean with a modi�ed method to compute a weighted geometric median

using the smoothed Weiszfeld’s algorithm [274]. �is aggregation mechanism leverages the

geometric median to aggregate model updates, minimizing the in�uence of malicious or

outlying participant updates. By utilizing this mechanism, the aggregated model update is

less vulnerable to skew by malicious contributions, enhancing the reliability and security

of the global model. �e authors demonstrate that this method is robust from federations

with up to half of the participants being corrupted.

5.1.2 Related Work

Traditional poisoning a�acks focus on altering model behavior at test time through poi-

soning of the data used to train models [149]. Such a�acks include data poisoning, where a

user’s training data is compromised to change the model behavior on a speci�c task [71],

or through the insertion of a backdoor directly into the model to compromise it [98]. How-

ever, it has been demonstrated that these a�acks are not e�ective in FL, where defense

and privacy-preservationmethods prevent compromise and a�ackermodels are aggregated

among thousands of participants, limiting the impact that a single a�acker can have on the
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global model [22].

Nonetheless, the presence of these protective mechanisms does not preclude FL from at-

tacks. Many recent works have discovered methods to insert backdoors in FL using model

poisoning. In FL, this is conducted with the aim of causing the global model to misclas-

sify a set of chosen inputs while maintaining high accuracy in the original classi�cation

tasks. �e �rst of such works demonstrated that model poisoning was e�ective in a FL

system, utilizing a novel method to allow the a�acker to send back any model they want to

be aggregated into the global model, known as model replacement [22]. Similarly, Bhagoji

et al. proposed a modi�cation that leveraged boosting to increase the learning rate of the

backdoor inputs [40]. Further, Wang et al. proposed a method of inserting edge-case back-

doors, further demonstrating that the FL se�ings are vulnerable to both model poisoning

and model replacement a�acks [357].

5.2 �reat Model
For these experiments, a number of assumptions are made.

It is assumed that the a�acker has control over the local training process and system of one

random participant, including training data, hyperparameters, and training process. At-

tackers are assumed to be singular entities and it is assumed that none are working toward

a common goal with other participants. In this se�ing, only the a�acker is behaving mali-

ciously and all other participants are behaving honestly and correctly. In all experiments,

the scenario is limited to having nomore than one a�acker per round. �e a�acker does not

have access to the training data of other participants, nor does it know their identities. �e

a�acker does not have control of the server and does not control the defense mechanism

utilized to aggregate local models into a new global model each round.
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5.2.1 Backdoor Attacks

For consistency with previous work in the domain, this threat model is inspired by existing

literature [22, 332, 357]. Here, only backdoor a�acks are considered, where an a�acker aims

to manipulate the performance of a model on a particular subtask (hereby called the ’a�ack

task’) while maintaining high accuracy on the model’s intended tasks (hereby called the

’main tasks’). �e main goal of the a�acker is to manipulate the FL system to produce a

global model that performs with high accuracy on the model’s intended tasks as well as an

a�acker-chosen subtask. For example, a given model’s intended task may be to correctly

classify pictures of animals or numbers. In these scenarios, the a�ack taskmay be to classify

pictures of cats as birds, or the number ’6’ as the number ’2’, without impacting the model’s

performance on its original tasks. By maintaining high accuracy on the model’s main tasks,

it is more likely that the a�ack task will go unnoticed.

5.2.2 Model Replacement

A�acks with and without model replacement are considered. In scenarios without model

replacement, the a�acker trains the current global model with their data to achieve high ac-

curacy in both the main tasks and the chosen a�ack task. �e poisoned model is submi�ed

to the server and aggregated into the global model, according to the associated aggregation

method.

Alternatively, in model replacement scenarios, the a�acker aims to replace the global model

with anymodel of their choice. Model replacement occurs in conjunctionwith the backdoor

a�ack. Generally, this can be achieved through a weight re-scaling method, where the

a�acker re-scales the weights of the global model to resubmit as an adversarial model along

with their goals. For all experiments, the weights are scaled using the constrain-and-scale

technique developed by Bagdasaryan et al. [22] �is approach typically requires that the

a�acker has knowledge about the current global model and the federated environment, and
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requires model convergence.

5.3 Experiments

5.3.1 Experimental Setup

�e simulated FL environment is modeled a�er [233]. �e setup consists of K clients, each

with access to data. �is data is not shared with the server S. For each FL round t, the

server randomly selects a subset of clients k and provides the current global model to each.

Participants conduct local model training separately and compute a model update. Each

participant sends back updated model weights to the server for aggregation.

Experiments are conducted on the e�ectiveness and limits of Byzantine-tolerant aggrega-

tion mechanisms in preventing a�acks by adversaries in a federated environment. Four

di�erent aggregation mechanisms are considered (Krum, Multi-Krum, RFA, and Norm-

Di�erence Clipping) and compared to a se�ing where no defense and the standard ag-

gregation method is used, Federated Averaging [204].

Several key things are explored, including (1) the impact of the frequency of adversarial

a�acks, and In particular, �xed-a�ack frequencies were explored by altering the a�ack rate.

�e following se�ings were explored: one a�ack per round (i.e. an a�ack every round),

one a�ack every 5 rounds, and one a�ack every 10 rounds. In all se�ings, only one random

Experiment Scenario 1 CIFAR-10 Scenario 2 EMNIST
Model VGG-9 LeNet

Data Points 50,000 341, 873
Classes 10 10
Clients K 3,383 200

Clients per Round k 10 10
Epochs E 2 5

Learning Rate 0.2 0.1

Table 5.1: Parameters for experimental set up including datasets and model type used.
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client is the a�acker.

As a baseline, a comparison to a se�ing with no adversaries is provided. In these se�ings,

hereby called a ’no a�ack’ scenario, there is no a�ack. However, the a�ack tasks are still

measured to provide an analysis of the behavior of the a�ack task. �is serves to ensure

that the a�ack task does not naturally increase in accuracy through normal model training.

For comparison purposes, the experiments utilize the same data and experimental setups

utilized by previous work in the domain [22, 332, 357], and the values of all hyperparam-

eters can be found in Table 5.1. For all experiments, the subset of clients k is set to 10 (i.e.

10 clients participate per round), and the number of federated rounds t is set to 500. All

experiments are implemented in PyTorch [268]. Experiments were run on a server with

two NVidia Tesla K80 GPUs and 132 GB of RAM.

5.3.2 Datasets & Learning Models

As the goal of this chapter is limited to analyzing the defense characteristics of aggrega-

tion mechanisms and not to introducing novel datasets or poisoning a�acks, only poisoned

datasets used previously in the literature were used [40, 332, 357].

Experiment Scenario 1 focuses on image classi�cation using the CIFAR-10 dataset [187].

�e experimental setup in [357] is replicated, where photos of Southwest Airlines planes

are collected and poisoned to be labeled ’truck’. In total, there are 784 and 196 examples in

the training and test sets. �e VGG-9 model [320] is initialized with 77.53% accuracy. �e

model is initialized with a learning rate of 0.2 for two epochs.

Experiment Scenario 2 focuses on digit classi�cation. In this experiment, the datasets in-

clude EMNIST [77] and ARDIS [188] datasets. �e EMNIST dataset is an extended version

of the MNIST handwri�en character digit dataset and the ARDIS dataset includes 15,000

handwri�en Swedish church records from the nineteenth and twentieth centuries.
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For the non-malicious participants, there are 660 images used for training. For malicious

participants, 66 images of the number ’7’ are labeled ’1’ and mixed with 100 randomly sam-

pled images from the EMNIST dataset. For evaluation, 1000 images from the ARDIS dataset

are used. �e LeNet-5 architecture for image classi�cation is utilized as in the PyTorch

MNIST example [278]. �e model is initialized with a model with 88% accuracy, with a

learning rate of 0.1 for �ve epochs.

5.3.3 Experimental Fairness

In general, Byzantine-tolerant aggregationmethods focus primarily upon ensuring the con-

vergence of the model in the presence of adversaries. However, this does not directly imply

that the aggregation method will be fair. Indeed, some aggregation methods have been

found to negatively impact the main performance of the model [45, 357].

In this context, the algorithm is considered ’fair’ if the success of the main task is le� un-

hindered while the defense is deployed, and ’unfair’ if the defense has a signi�cant nega-

tive impact on the success of the algorithm’s main tasks, regardless of whether or not the

defense was successful at mitigating a potential a�ack. Further, a ’fair’ model should ac-

curately classify all tasks consistently, without misclassifying one or more tasks (i.e. if the

algorithm classi�es 1 task incorrectly consistently, it is not a fair algorithm).

To measure the impact of this fairness concern, Accuracy Parity (AP) ratio as formulated

in [357] is used. �is ratio measures the fairness of the model on each task. As formulated,

AP ratio is calculated as APratio = pmin

pmax
. A classi�er satis�es AP if pi = pj for all pairs

i, j where pi is the accuracy of class i. �is metric would equal 1 if perfect parity exists

(i.e. all classes are measured correctly), and 0 only if one or more classes are completely

misclassi�ed.
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5.4 Experimental Results
�e results of Experiment Scenario 1 and 2 are displayed in Figure 5.1 and 5.2. �e accuracy

rates of the a�ack task can be found in Tables 5.2 and 5.3.

In all cases, the main model is una�ected by the backdoor poisoning method, and an in-

crease in the accuracy of the backdoor task is noted. �is indicates that the poisoning

method was successful in poisoning only a speci�c subtask and maintaining high accuracy

on the model’s intended tasks. For both datasets, there is no accuracy growth observed for

the a�ack task in the ’no a�ack’ scenario, indicating that the rise of the a�ack task is in fact

due to the backdoor a�ack. Further, as expected, the frequency of the a�ack highly impacts

its success, with more frequent a�acks resulting in higher a�ack task accuracy. In regards

to model replacement, in all cases, there is a clear delimitation between the e�ectiveness

of defenses with and without model replacement. �e e�ectiveness of mitigation of model

replacement by each defense method is detailed in the following sections.

No Defense Krum Multi-Krum RFA Norm-Di�erence
No A�ack minimum 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

maximum 11.1 (11.1) 43.9 (43.9) 15.6 (15.6) 10.6 (10.6) 10.0 (10)
mean 2.2 (2.2) 6.4 (6.4) 2.1 (2.1) 2.1 (2.1) 2.0 (2)

A�ack Every 10 Rounds minimum 0.0 (2.2) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
maximum 44.4 (94.4) 45.6 (45.6) 17.8 (11.7) 42.2 (49.4) 43.9 (73.9)
mean 11.4 (33.3) 6.2 (6.2) 1.8 (1.6) 8.2 (8.5) 10.0 (13.4)

A�ack Every 5 Rounds minimum 0.0 (1.1) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
maximum 58.9 (92.8) 55.0 (55) 39.4 (12.8) 70.6 (75.6) 61.1 (83.3)
mean 20.7 (39.7) 6.0 (6) 3.0 (2.2) 23.7 (25.7) 18.7 (28.2)

A�ack Every (1) Round minimum 1.1 (2.2) 0.0 (0) 0.0 (0) 2.8 (1.1) 1.7 (1.1)
maximum 74.4 (93.3) 53.9 (53.9) 75.0 (14.4) 77.8 (85) 71.7 (86.7)
mean 34.8 (53.6) 6.8 (5.6) 41.4 (2.1) 52.2 (57) 35.0 (47.9)

Table 5.2: Experiment Scenario 1: Without Model Replacement (With Model Replacement).
A�ack task accuracy percentages for all scenarios.
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No Defense Krum Multi-Krum RFA Norm-Di�erence
No A�ack minimum 2.0 (2) 3.0 (3) 1.0 (1) 2.0 (2) 2.0 (2)

maximum 17.0 (17) 42.0 (42) 23.0 (23) 20.0 (20) 17.0 (17)
mean 5.1 (5.1) 14.8 (14.8) 5.4 (5.4) 6.4 (6.4) 5.1 (5.1)

A�ack Every 10 Rounds minimum 11.0 (11) 2.0 (2) 2.0 (2) 11.0 (11) 11.0 (11)
maximum 93.0 (100) 40.0 (40) 23.0 (23) 93.0 (93) 93.0 (99)
mean 81.9 (90.8) 12.8 (12.8) 5.4 (5.4) 79.0 (79.5) 81.6 (89.2)

A�ack Every 5 Rounds minimum 11.0 (11) 3.0 (3) 2.0 (2) 11.0 (11) 11.0 (11)
maximum 95.0 (100) 54.0 (50) 96.0 (18) 95.0 (96) 95.0 (99)
mean 87.5 (91.8) 20.6 (15.7) 20.3 (5.4) 87.9 (88.2) 87.6 (90.8)

A�ack Every (1) Round minimum 11.0 (11) 4.0 (4) 9.0 (2) 11.0 (11) 11.0 (11)
maximum 97.0 (100) 55.0 (62) 97.0 (19) 98.0 (98) 97.0 (99)
mean 90.8 (92.6) 16.6 (13.8) 91.3 (5.6) 94.9 (95.6) 90.9 (92.3)

Table 5.3: Experiment Scenario 2: Without Model Replacement (With Model Replacement).
A�ack task accuracy percentages for all scenarios.

5.4.1 Aggregation Mechanisms & Defenses

No Defense

For comparison purposes, a ’no defense’ se�ing was utilized. In scenarios where the stan-

dard aggregation method is used (Federated Averaging), it is considered an undefended

federation due to the inability to prevent poisoning a�acks. �is is considered a scenario

where there is ’no defense’ for an adversarial a�ack, as this aggregation method simply

averages the contributions of all participants, including the malicious participant.

In both cases, where there is no defense and no a�ack, the a�ack task maintains low accu-

racy while the main task maintains a stable, high accuracy rate. �is is expected behavior

and indicates that the model is not poisoned at the start and that it improves over time

through iterations. However, in each case where an a�ack is observed (every 10 rounds,

5 rounds, and each round), an increase in the success of the a�ack task is observed, with

model replacement typically resulting in higher success rates. An increase in the success of

the a�ack task is observed in both scenarios, with more frequent a�acks typically resulting

in higher a�ack task accuracy rates.

Overall, these results indicate that 1) the a�ack task is successful in both cases, and 2) the
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experimental setup is robust enough to measure the success of the defenses in a basic model

poisoning scenario. Where there is no a�ack, the consistent observation of low a�ack task

accuracy indicates that this setup is robust enough to measure the impact of an a�ack on

both main and a�ack task accuracy. Further, this provides a benchmark of comparison for

the e�ectiveness of the byzantine defenses on decreasing a�ack success.

Krum

Overall, the Krum defense is successful in defending against the a�ack task in every case.

Even in the most aggressive case, it protects against the a�ack task, maintaining a low

accuracy (below 40% in all cases), with less than 20% accuracy observed a�er 500 rounds.

�is is observed in both cases with and without model replacement. However, the Krum

method negatively impacts the performance of the model even where there is no a�ack. A

notable decrease in the performance of the main tasks is observed in all cases. �is is likely

due to the protocol choosing only one local model to use as the global model, decreasing the

information gained in each round. �is issue will be discussed further in Section 5.4.2.

Multi-Krum

As an extension to Krum, Multi-Krum produces similar results. In all cases, Multi-Krum

successfully defends against model replacement scenarios, where the a�ack task accuracy

is kept below 20% throughout all 500 rounds. In scenarios without model replacement,

Multi-Krum fails in three cases.

In the �rst scenario, Multi-Krum can defend against a�acks successfully up to an a�ack

every round. When an a�ack is observed every round without model replacement, the ac-

curacy of the a�ack task oscillates throughout the 500 rounds, with a minimum accuracy of

0% and maximum accuracy of 75%. �e defense is overall not e�ective, as a steady increase

is observed in the a�ack task accuracy to 47.2% at 500 rounds, with a mean accuracy across

all rounds of 41.36%. A similar trend is observed in scenario 2 in regards to protecting from

a�acks with low frequency and failing to defend where an a�ack is conducted each round.
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However, with a frequency of �ve a�acks per round, the accuracy of the a�ack task rapidly

increases to nearly 40% by round 200, where it appears Multi-Krum detected and eliminated

the a�ack within the provided 500 rounds.

RFA

RFA is not successful in completely mitigating a�acks in any case but does indicate some

e�ectiveness in protecting against model replacement a�acks. In all experiments without

model replacement, RFA does not succeed in decreasing the e�ectiveness of the a�ack,

o�en actually increasing the overall accuracy of the a�ack task. It appears that this defense

is particularly weak to aggressive (frequent) a�acks, where the success of the a�ack task

increases even more aggressively than observed in the no-defense scenario.

However, RFA does show moderate success in the case of model replacement. At �rst

glance, the success of RFA appears consistent between replacement and non-replacement

scenarios, as nearly equal a�ack task accuracy levels in all sets of experiments were ob-

served. However, as model replacement is generally deemed more aggressive, this equality

indicates that RFA is more robust against replacement a�acks. Indeed, RFA greatly de-

creases the success of the a�ack in model replacement scenarios that without a defense

were observed to excel immediately. For example, in scenario 1 the mean a�ack success

decreased from 33.3% and 39.7% with no defense to 8.5% and 25.6% with RFA, for a�acks

every 10 and 5 rounds respectively. From these experiments, it appears that RFA does not

aid in scenarios without replacement in decreasing a�ack task accuracy, o�en increasing it

in more aggressive scenarios. Further, while RFA is not as successful as Krum and Multi-

Krum, there is no impact of the method on the overall success of the main tasks.

Norm-Di�erence Clipping

�e norm-di�erence clipping defense produces similar results as RFA. �e most notable

di�erence between the two is that norm-di�erence clipping does not exhibit the same be-

havior of increasing the e�ectiveness of the a�ack in any case.
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Figure 5.3: AP Ratio under each aggregation mechanism in Scenario 2.

Considering scenarios withoutmodel replacement, in all cases utilizing the norm-di�erence

clipping defense, observed a�ack task accuracy rates are nearly identical to those observed

in the no-defense scenario (Tables 5.2 and 5.3). However, this defense was successful in

decreasing the success of a�acks aided with model replacement, with varying degrees of

success.

5.4.2 Defense Fairness

�e scenarios focus on backdoor a�acks, where the goal of the a�acker is to increase the

accuracy of a poisoned sub-taskwhilemaintaining high accuracy on themodels’ main tasks.

In all cases, this assumption is con�rmed. However, there are some fairness concerns with

respect to defenses impacting the accuracy of the main tasks, even when there is no a�ack.

Utilizing AP Ratio, the fairness of the algorithm in correctly classifying the intended input

can be observed (Figure 5.3). Here, only the results of Scenario 2 are shown, however, these

results are similar to those observed in Scenario 1.

In all cases, the AP ratios of no defense, Multi-Krum, RFA, and Norm-Di�erence Clipping

are observed as higher than the AP ratios observed under Krum. �is indicates a problem

with the fairness of Krum. �is can also be readily observed in the accuracy values of

the main tasks. In the case of the �rst scenario, a signi�cant decrease in the accuracy of

the main tasks is observed. While the model should have an accuracy over 80%, the main
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tasks are observed to have an accuracy below 70%, with an average accuracy of 69% in all

cases. �is e�ect is less pronounced but still present in the second scenario, where the main

model accuracy drops to 93% on average. While the Krum defense is the most e�ective at

mitigating a�acks, it is the only defense that produces this behavior.

In an environment where the accuracy of the model is already low, such as scenario 1, this

decrease in the success of the model on its intended tasks could have signi�cant detrimental

impacts on the model’s performance and cause it to be completely ine�ective for legitimate

use. Although it is a variation of Krum, Multi-Krum does not exhibit this �aw. �is is likely

because choosing more than one model allows for richness in the global model throughout

rounds. Users should consider this fairness concern while utilizing Krum in regard to their

speci�c use case.

5.5 Discussion & Conclusion
It has been established here, and in the literature, that model poisoning is a signi�cant con-

cern in a FL environment. An a�acker can manipulate the global model to produce high

accuracy on hidden tasks while maintaining appropriate behavior on main tasks, poten-

tially exposing federated participants to manipulated models that produce an undesired

result.

However, defending against these a�acks is a di�cult task. It has been demonstrated that

current Byzantine defenses, such as Krum, Multi-Krum, RFA, and Norm-Di�erence Clip-

ping, have inconsistent e�ectiveness in defending against backdoor a�acks. �e results

of the experiments indicate that Krum is the most e�ective at mitigating a�acks, followed

by Multi-Krum, RFA, and Norm-Di�erence Clipping. All defenses perform be�er than a

no-defense scenario, indicating success in protecting against backdoor a�acks.

However, while Krum has themost success mitigating against malicious a�ackers in a back-
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door a�ack scenario, it has a negative impact on the main model, calling into question the

fairness of such a defense. Multi-Krum does not share this same fairness concern, indicating

that it may be a be�er defense for all cases except those with the most aggressive a�acks,

where Multi-Krummay not damage the main model but could fail to prevent a�acks.

Backdoor a�acks and Byzantine-tolerant aggregation mechanisms in FL have signi�cant

implications on trust. While these aggregation mechanisms aim to protect FL from ad-

versaries, backdoor a�acks represent a sophisticated threat against the robustness of the

global model. �is chapter has highlighted that the simplistic aggregationmechanisms such

as FedAvg cannot adequately prevent model poisoning a�acks without a�ecting the main

performance of the model. However, some aggregation mechanisms can counterbalance

this security threat, up to a certain threshold of malicious participants. While these mecha-

nisms show promise in securing a FL system, additional work is needed to harden FL against

a�acks, especially where the global model is used in sensitive areas, such as health care. Al-

ternative aggregation methods may provide more thorough protection without hindering

the success of the model.

�is chapter has explored the concept of security in FL systems, revealing some strengths

and �aws in current aggregationmechanisms. �e adversarial se�ing explored in this chap-

ter demonstrates FL’s weakness to model poisoning backdoor a�acks. However, it is im-

portant to consider that this type of a�ack is only one of many types of a�acks that can be

utilized against FL. Here, it has been shown that FL can be protected against model poison-

ing utilizing the Krum defense methods. In other scenarios, solutions have been proposed

to mitigate data poisoning [91], sybil a�acks [119], and other targeted and untargeted at-

tacks [226]. Overall, FL has the potential to enhance security, as long as the proper security

techniques and aggregation mechanisms are leveraged.
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Chapter 6

AI Regulation: Leveraging Federated

Learning for the Arti�cial Intelligence

Act

6.1 Introduction
In Chapter 2, the AIA was introduced as a recently proposed AI law and regulatory frame-

work that was by the European Commission [338]. �e AIA de�nes a regulatory envi-

ronment that assigns AI applications to various risk categories, outright banning high-risk

applications such as AI-based social scoring by public authorities, and providing speci�c

legal requirements and rules for the development, marketing, and use of AI applications

and systems. �is law is one of the �rst of potentially many regulatory frameworks that

a�empt to regulate AI, fueled by the need for a uniform legal framework to encourage safe

and ethical AI systems, particularly encouraging the protection of health, safety, and the

fundamental rights of individuals and nations.
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�is proposed law has signi�cant implications for the development and deployment of AI. It

is a broadly de�ned set of regulatory rules that apply to all providers of AI systems in service

within the European Union and users of AI systems located within the EU. AI systems will

be categorized into one of four categories: unacceptable risk, high-risk, limited risk, and

minimal or no risk. �ose applications categorized as an unacceptable riskwill be prohibited

from deployment within the EU, while high-risk applications will be required to comply

with a set of strict regulatory rules. Breaches of these regulations can incur �nes of up to

EUR 40 million or 7% of the global annual turnover of the violating party.

Further, the AIA leverages other publications on Trustworthy AI to set standards for the

development of trustworthy systems. �e guidelines and rules outlined in the AIA take

a step toward increasing trust by placing emphasis on the concepts of transparency, pri-

vacy, safety & security, accountability, fairness, and robustness & reliability. In the AIA,

they propose regulatory sandboxes for the design, development, and safe deployment of AI

systems, providing for an enclosed environment for the development of trustworthy and

compliant AI.

In this chapter, it is ideated that FL can act as an adequate regulatory sandbox environment

at the national and international levels. �e bene�ts of utilizing FL as the basis for a sandbox

are proposed to increase trust, ease the regulatory burden on developers and providers, and

provide an avenue for connecting developers with the regulatory authorities securely and

privately.

6.2 Background

6.2.1 AI Regulatory Sandboxes

To foster innovation and ease the burden on developers, the AIA proposes that Union au-

thorities implement AI regulatory sandboxes (Title V). An AI regulatory sandbox is a con-
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trolled environment for developers and providers to develop, test, and validate AI systems

under the supervision of competent regulatory authorities. �ese authorities will provide

guidance on compliance with the requirements of the regulation, aiding developers in prop-

erly complying with the complex rules and regulations set forth. Regulatory sandboxes

have been largely applied in the �nance and �ntech industries [380], providing controlled

environments for technical innovation. In the context of the AIA, few sandbox frameworks

have been proposed [284, 345]. At this time, no federated regulatory environment exists in

the context of the AIA.

�e AIA has been criticized for its broad de�nition of AI and the signi�cant burden that will

be placed on providers and developers, particularly for high-risk systems. Many aspects of

the AIA can be misinterpreted or misapplied, some even lacking enough clarity or func-

tional tools for direct and practical application [351]. While these ethical and regulatory

principles are vital for encouraging responsible and trustworthy AI, applying these prin-

ciples during the technical development and deployment of such systems comes without

guidance. Each of these elements requires a speci�c metric for compliance analysis, and

while many tools exist to analyze trustworthiness, explainability, transparency, and data

governance, there are no such metrics that match all requirements laid out for compliance

[328]. Further, while regulatory sandboxes are meant to encourage innovation for start-ups

and small-scale innovators, compliance with strict regulations may widen the gap between

small- and large-sized entities in terms of AI development.

6.3 Federated Regulatory Sandbox
In this chapter, it is proposed that FL can be leveraged as a sandbox approach for appropriate

regulation of the AIA. Here, only the requirements for developers and providers regarding

the regulation of high-risk AI are considered. �ose AI systems classi�ed as unacceptable

risk are out-of-scope for this regulatory sandbox, as they are strictly prohibited by the AIA.
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Limited- and minimal-risk systems can also utilize the federated regulatory sandbox, bene-

�ting from increased compliance and diligence during development and deployment.

FL is primarily leveraged to allow collaborative ML development without the requirement

of sharing private data. An implementation of a centralized FL system involves integration

with a central server, where participating ’clients’, and users of the federated system send

model updates to the central server without sharing private data. Within the context of a

regulatory sandbox, the national regulators would take on the role of a central management

server maintaining a repository of AI models, and taking in training updates from approved

users. A federated regulatory sandbox can be leveraged in several ways. Here, two potential

applications are considered:

1. �e use of a federated regulatory sandbox to create use-case-speci�c AI systems.

2. �e use of a federated regulatory sandbox to create isolated and private individual

testing environments for model testing and compliance assessment.

In the �rst case, under a federated environment, regulatory agencies could provide a regu-

lated central model (speci�c to each use case). To encourage compliance with the rules, de-

velopers could join the federated sandboxing environment and provide their data or model

weights for training, receiving a trained model in return. �is shared model will be the re-

sult of all developers and providers in the region, leading to an accurate and robust model

that has continuous regulatory oversight. �e use of a federated system essentially pro-

duces one central model that is subject to regulatory requirements, reducing the need for

regulatory assessments for potentially thousands of entities.

In the second case, a federated regulatory sandbox can be used as a training, testing, and

validation environment that does not require the sharing of private data. Individual FL

environments can be opened by the regulatory agency, allowing developers and providers
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Figure 6.1: A potential architecture for a use-case speci�c FL system. �e FL sandbox would
include an aggregator, datasheet, and dashboard available to both the developer and regu-
latory agencies. Each institution or client would train a local model using their data, which
is then sent to the sandbox and aggregated into a global model. All the relevant data can
then be veri�ed by regulatory agencies.

to have a direct connection with the competent authorities for the assessment of their high-

risk systems.

In both cases, trust can be increased by providing a transparent environment for develop-

ers and regulators to assess the AI system. Regulators can assess the elements of trust-

worthiness disclosed by the creators, and developers can safely and securely demonstrate

the robustness of their AI systems. Further, in either case, FL can be leveraged to simplify
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the regulatory requirements in a sandbox environment. �e AIA requires the following

features: risk management systems, data protection and governance, technical documenta-

tion, record-keeping, and automatic logging, transparency of information to users, human

oversight, accuracy, robustness, cybersecurity, and quality management. Each of these will

be discussed with relevant context on how FL can ease the compliance burden.

�e following sections detail how the above regulatory requirements can be addressed with

an FL regulatory sandbox. Please note that the proposed regulatory sandbox only applies

to the above two scenarios. A federated regulatory sandbox would be particularly advan-

tageous in small, individual, or use-case-speci�c scenarios, but has limited feasibility in

generalized regulatory environments.

6.3.1 Risk Management system (Article 9)

�e AIA calls for a risk management system applied to the entire lifecycle of a high-risk AI

system, including the identi�cation and analysis of risks, estimation of risks that may occur

when the AI system is placed into production, evaluation of other potential risks, and the

adoption of risk management measures.

A centralized federated regulatory sandbox could be leveraged to decrease the need for

individual risk management systems. In the case that several systems have similar use cases

or components, it is reasonable that the risk management systems would be similar or only

di�er in small, very speci�c ways. �e competent authority could develop riskmanagement

systems by use-case and share risk management assets with end-users of the federated

systems. �is will provide the opportunity for the competent regulatory authorities to

de�ne precise risk management systems and reduce the need for continuous approval of

such systems when signi�cant di�erences are not noted.
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6.3.2 Data protection and data governance (Article 10)

FL has been leveraged to improve data protection and data governance. Inherently, FL pro-

tects user data by its design: data is not shared among users, ensuring data protection and

privacy in a multitude of domains and use-cases [202]. �e federated regulatory sandbox

ensures that user data is kept private and not shared among other participants. Developers

can leverage this functionality to ensure adequate data provenance and governance of their

data by reducing the requirements for the movement or transfer of data from their original

source.

Consider as an example a situation where several ISPs seek to develop an AI model to be�er

address customer needs. In a non-federated system, the participating ISPs share their data,

leading to a situationwhere the ISP that is the data controller for a client’s data has to elevate

every other participating ISP to the role of a data processor. If a data point has to be removed

from the model, such as the right to be forgo�en, each of the clients must communicate

that this data point must be removed, collaboratively remove that data point from the data

set, and then update the model training. Meanwhile, in a federated system only the data

controller ISP needs to ever interact with the customer’s data. �ey are a singular point of

contact for privacy concerns, vastly simplifying the exclusion of data.

From a regulator’s perspective, federated systems make data validation considerably easier

to process as each data controller can be evaluated individually, and issues can be corrected

on a client-by-client basis without requiring dataset audits.

6.3.3 Technical documentation, Record-Keeping, and Logs (Articles

11, 12, 20)

�e federated regulatory sandbox would act as a repository of AI use cases. By maintaining

a register of regulator-ve�ed datasheets containing detailed information on the technical
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documentation requirements, all stakeholders would bene�t by providing precedence. �is

would e�ectively mean sharing the burden.

By collaborating on a federatedmodel, participants can e�ectively reduce the overall amount

of data stored for historical and audit purposes, aligning with the data minimization princi-

ple of the General Data Protection Regulation (GDPR). It is important to maintain an audit

trail that records the necessary information while minimizing the storage of personal data.

In a FL context, the focus is on tracking the model updates rather than storing individual-

level data. �e audit trail can include information such as participant IDs, timestamps, and

aggregated statistics about the model updates. �is allows for accountability and trans-

parency at every stage of the learning lifecycle without compromising the privacy of indi-

vidual data points.

�e Central Server can store documentation alongside models. Models can be tracked and

reverted to address issues.

6.3.4 Transparency and provision of information to users (Article

13)

Transparency is a signi�cant challenge in many AI systems. �is article calls for the trans-

parency and provision of information to users. However, FL has few impacts on the trans-

parency of information to users. It is feasible that a federated regulatory environment

greatly improves the transparency between developers and the regulatory agency, and that

may increase the ability of developers to create transparent systems.

As a FL regulatory sandbox will provide an environment for collaboration between the de-

veloper and the regulatory agency, and transparency in the model development, training,

and validation process. Further, the model weights may be available to regulatory agen-

cies, depending on the se�ings of the federated environment. However, it is noted that
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the inherent data privacy mechanisms of FL decrease the transparency regarding any data

visibility and validity checks that the regulatory agency could conduct. Further, changes

to the AI system can be easily tracked between updates, allowing the regulatory agent to

rapidly ensure compliance.

Further, while there is no direct impact of transparency on end-users, it is possible that

developers in a use-case-speci�c federated environment would bene�t from a more inter-

pretable and generalizable model. When de�ning a scenario in the regulatory sandbox, par-

ticipants will de�ne the model to be collaboratively learned. During this process, di�erent

parties can propose and decide on a model that achieves the desired level of interpretability

for the end users. A transparency solution can be developed by one developer, or by the

regulatory agency, and applied to all developers or providers in the regulatory sandbox.

Regulators will have direct access to models to verify transparency standards.

6.3.5 Human Oversight (Article 14)

A federated framework with a human oversight layer added during the model training

would provide a four-eye principle into the collaborative model learning process, ensuring

enhanced transparency and accountability. �e four-eye principle refers to the concept of

having two or more individuals, involved in critical decision-making processes to minimize

errors and increase security. In the context of model learning, participants of the federation

would be able tomonitor and audit the di�erent stages of the collaborative learning process,

preventing potential cases of internal fraud.

6.3.6 Accuracy, Robustness, and Cybersecurity (Article 15)

While a federated system will not provide robustness in the running of an AI system or

directly improve the accuracy of an AI it still can provide bene�ts to both accuracy and

cybersecurity of models.
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In all cases, the regulatory agency can con�rm accuracy a�er users submit model updates

to the central server. In cases where there is collaboration, accuracy will likely be improved

with the increased quantity of training data available for model development. As multiple

actors collaborate, models can be developed with increased quantities of data, increasing

not only accuracy but also potentially providing opportunities to mitigate bias and discrim-

ination by improving data heterogeneity and robustness [3].

A federated system with a centralized entity and model repository requires a speci�c se-

curity focus. However, signi�cant a�ention has been given to addressing cybersecurity in

FL, including the development of Secure Aggregation [202], Di�erential Privacy [202], and

Homomorphic Encryption [202]. A careful design with su�cient security mechanisms and

good security hygiene will address this risk. Additionally, it is feasible for cooperation with

EU Security Operation Centers for security assessments [2].

6.3.7 Cost

�e increased security needs and the exchange of information among users required by the

proposed solution would result in an increase in overall costs when compared with a tra-

ditional data lake approach; however recent work has shown that there are cost-e�ective

designs that can be deployed which provide similar convergence speeds of the federated

models, while reducing overall costs [221]. In addition, these solutions can reduce the over-

all carbon footprint, particularly when deploying Deep Learning solutions [279].

6.4 Discussion
�is chapter proposes that FL can be leveraged as an AI regulatory sandboxing environ-

ment. It can be used as a regulatory sandbox in individual and use-case-speci�c scenar-

ios, where creators and developers can be connected with regulators e�ciently and se-

curely.
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�e proposed sandboxing environment would allow individual and use-case-speci�c feder-

ated environments to be created. Individual sandboxes would ensure isolated and private

individual testing environments. Use-case-speci�c federated environments would allow

regulators to provide a registered central model (speci�c to each use-case), which creators

can ensure is compliant with the current regulations. In both cases, working alongside

regulators allows for developers to have a ”seal of approval” for their models. �is not

only lowers the risk of deployment but the exchange and review of documents can be done

faster. In the use-case environment, regulators do not need to undergo the process for each

company, but can rather bene�t from the federated sandboxing environment and ensure

that all those involved are compliant.

In the future, additional regions will be deploying their regulation regarding AI, varying in

levels of stringency. While this chapter has focused on FL amongst EU participants only, it

would be feasible to achieve a collaborative model across regulatory borders. �ese groups

would consist of participants from speci�c jurisdictions or regions that share similar com-

pliance obligations, ensuring that all data used in the learning process is mutually com-

pliant. As participants from less demanding regulatory environments wish to participate,

di�erent groupings would be formed, allowing stricter regulatory zones to still monetize

their models, without infringing local regulation.

Further consideration should be given to collaboration with other EU and European Com-

mission services, groups, and entities. It is feasible that such a federated regulatory sandbox

can integrate with other EU-provided services. Namely, AI training and testing can be im-

plemented using computational services within the Union, such as those governed by the

European High-Performance Computing Joint Undertaking (EuroHPC JU) [1]. Integration

with existing services will simplify the introduction of regulatory sandboxes. Further, it

should be noted the FL regulatory sandbox would not aid regulatory agencies in broad,

generalized se�ings. It is not feasible for a regulatory agency to train a federated model on
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greatly di�erent topics, as the generalized model would not be useful to any participating

developer. Further consideration would be required to apply these concepts to generalized

FL scenarios.

Implementation of federated regulatory sandboxes by competent authorities allows for pro-

viding a safe and secure sandboxing environment. �is environment can leverage FL for

private and secure data sharing, removing any need for data sharing with regulatory agen-

cies. Further, FL and associated tools can be leveraged to reduce the compliance burden

regarding to the regulatory rules for high-risk systems.

In turn, this sandboxing environment also has the potent to increase trust in AI systems via

an increased transparency in design, development, and deployment. Developers have in-

creased opportunities to be transparent about their systems, particularly focused on trans-

parency in how accountability, developmental processes, robustness, risk management sys-

tems, data protection and governance, transparency of information to users, human over-

sight, safety, and security issues are addressed. �e AIA builds the stage for trustworthy

AI development, and by leveraging FL in hand with regulatory agencies, trustworthy AI

systems can be fostered in an innovative way.
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Chapter 7

Conclusions and Future Work

In this dissertation, the concept of trustworthiness in AI systems and models was de�ned,

and the challenges associated with designing, developing, and deploying trustworthy AI

systems were analyzed considering the greater ethical, technical, and legal implications.

Methods to increase trustworthiness by leveraging privacy-preserving collaborative ML

methods, speci�cally FL, were explored to assess the impact on trustworthy principles and

concepts.

�e key contributions of this dissertation included a critical assessment of the design, de-

velopment, and deployment of trustworthy AI systems and models. �e main principles

associated with Trustworthy AI were identi�ed as accountability, explainability & inter-

pretability, fairness & non-discrimination, privacy, robustness & reliability, and safety &

security. �ese key principles were identi�ed based on commonality in Trustworthy AI

texts, including academic literature and legal texts alike. �ese principles were leveraged

to create a simpli�ed framework for the design, development, and deployment of trustwor-

thy AI, the proposed Know Your Model framework. �is contribution provides a concise
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and straightforward framework to assess trustworthiness during all stages of AI develop-

ment.

�ese elements of trust were further explored in the context of privacy-preserving meth-

ods. Speci�cally, FL was explored for implications on the trustworthy principles of privacy,

accountability, robustness & reliability, and safety & security. Privacy was established as

a signi�cant bene�t of FL, enabling collaboration between participants such as �nancial

institutions without the sharing of private data. �e security of FL was explored via tar-

geted a�acks by malicious actors, demonstrating the ability of FL systems to defend against

such a�acks. Further, FL was leveraged to comply with proposed regulatory requirements,

revealing that FL can be utilized in a privacy-preserving manner to increase trust.

In the following sections, the contributions of this dissertation are summarized.

7.1 Principles of Trustworthy AI
Trustworthy AI literature and texts were critically analyzed for the key components as-

sociated with the design, development, and deployment of trustworthy AI. �is analysis

combined academic literature and legal texts, including an assessment of the High-Level

Expert Group (HLEG) reports, the Arti�cial Intelligence Act (AIA) in the European Union

[142, 338], and the Executive Order on the Safe, Secure, and Trustworthy Development and

Use of Arti�cial Intelligence in the United States of America [43]. �ese texts revealed six

key trustworthy principles: accountability, explainability & interpretability, fairness & non-

discrimination, privacy, robustness & reliability, and safety & security. While Trustworthy

AI literature is plentiful, this dissertation provides a clear analysis of this area to identify

the most vital concepts associated with trust in AI systems.
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7.2 Trustworthy AI Design, Development, and Deploy-

ment
�e de�ned trustworthy principles were composed of complex, abstract, and di�cult-to-

apply concepts. Few guidelines were identi�ed for the technical application of these prin-

ciples in real-world applications. �e second contribution of this thesis applies these trust-

worthy principles to de�ne guidelines for the design, development, and deployment of AI

systems. Twenty key guidelines toward trustworthy AI were de�ned with the KYM frame-

work. Concise guidelines were established and clear examples of each guideline were pro-

vided.

7.3 Leveraging Privacy-Preserving Methods to Increase

Trust
�is dissertation particularly focused on leveraging FL to increase trust in AI. In Chapter 4,

FL was described along with its applications and challenges. To analyze the bene�ts of FL, a

case study was provided to explore utilizing FL for transaction monitoring in Anti-Money

Laundering applications. It was demonstrated that FL has strengths in privacy, enabling

collaboration between multiple actors without the need for sharing data. Further, it has

implications for model robustness, allowing for models to be developed on larger volumes

of data and resulting in be�er-performing, more robust models.

7.4 Security Implications of Federated Learning
In Chapter 5, the security challenges of FL were assessed. �e robustness of FL against

adversarial a�acks, speci�cally model poisoning backdoor a�acks, was explored. A model

poisoning a�ack was demonstrated on FL, revealing that it is vulnerable to a�acks that

can remain hidden from participants while injecting a speci�c a�acker-chosen behavior.
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Various Byzantine-tolerant aggregation mechanisms were analyzed for their e�ectiveness

in preventing and defending against a�acks, including an assessment of the fairness of the

resulting robustness of models when the aggregation mechanisms are deployed.

7.5 Leveraging Federated Learning in Regulatory Envi-

ronments
In Chapter 6, FL was leveraged to act as a regulatory sandbox to ful�ll the requirements of

the regulatory framework proposed in the AIA. �is chapter proposes FL as a regulatory

sandbox, leveraging the inherent trustworthy elements and privacy-preserving bene�ts of

FL to propose an environment for collaboration between developers and regulators. �is

sandboxing environment may increase trust in AI in a private and secure manner by in-

creasing transparency in all areas of trustworthiness.

7.6 Future Work
�is dissertation explores a wide variety of elements of Trustworthy AI and explores the

bene�ts and challenges associated with FL. While many elements of trust are explored,

there are several areas that may be of interest for future research.

For example, while FL enables increased privacy, reliability, and robustness, and has im-

plications to increase accountability and transparency associated with other trustworthy

principles, the question of incentivization to participate in an FL network was not explored.

�e �eld of incentivization for FL is a busy domain, with many researchers proposing var-

ious incentive schemas to encourage participation [379]. �ese aspects may be of interest

for additional research for their role in trust.

�is dissertation primarily concerns centralized FL networks that utilize a centralized server

for model aggregation. �e trust implications of a decentralized FL system were not ex-
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plored. �ere may be di�erent implications on trust for decentralized systems that warrant

additional research.

Further, a signi�cant question associated with FL regards the individual contributions of

each participant. �ese contributions, and the implications on trust, were only limitedly

explored here. Free-rider a�acks, where a participant aims to bene�t from membership in

the federation without contributing [117], are an area of research that may have di�erent

implications on trust. Trustworthy participation may be an area of interest for further

analysis.

Finally, there is still much work to be done to move from requirements to tools that monitor

the trustworthiness of an AI system. �is dissertation lays the groundwork and provides a

directional guide for future research in this �eld.
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[152] S. Idowu, D. Strüber, and T. Berger. Asset management in machine learning: A survey. arXiv preprint

arXiv:2102.06919, 2021.

[153] M. Iezzi. Practical privacy-preserving data science with homomorphic encryption: an overview. In

2020 IEEE International Conference on Big Data (Big Data), pages 3979–3988. IEEE, 2020.

[154] A. Imteaj and M. H. Amini. Leveraging asynchronous federated learning to predict customers �nancial

distress. Intelligent Systems with Applications, 14:200064, 2022.

[155] C. Irti. Personal data, non-personal data, anonymised data, pseudonymised data, de-identi�ed data.

Privacy and Data Protection in So�ware Services, pages 49–57, 2022.

[156] ISO24028:2020. Information Technology–Arti�cial Intelligence–Overview of Trustworthiness in Arti-

�cial Intelli- gence. Standard, International Organization for Standardization, Geneva, CH, May 2020.

[157] Z. Ji, Z. C. Lipton, and C. Elkan. Di�erential privacy and machine learning: a survey and review. arXiv

preprint arXiv:1412.7584, 2014.

[158] F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, Y. Wang, Q. Dong, H. Shen, and Y. Wang. Arti�cial

intelligence in healthcare: past, present and future. Stroke and vascular neurology, 2(4), 2017.

[159] P. Johnston and R. Harris. �e boeing 737 max saga: lessons for so�ware organizations. So�ware

�ality Professional, 21(3):4–12, 2019.

[160] C. Ju, D. Gao, R. Mane, B. Tan, Y. Liu, and C. Guan. Federated transfer learning for eeg signal classi�ca-

tion. In 2020 42nd annual international conference of the IEEE engineering in medicine & biology society

(EMBC), pages 3040–3045. IEEE, 2020.

[161] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles,

G. Cormode, R. Cummings, et al. Advances and open problems in federated learning. arXiv preprint

arXiv:1912.04977, 2019.

[162] M. E. Kaminski and G. Malgieri. Multi-layered explanations from algorithmic impact assessments in

the gdpr. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pages

68–79, 2020.

157



[163] F. Kamiran and T. Calders. Classifying without discriminating. In 2009 2nd international conference on

computer, control and communication, pages 1–6. IEEE, 2009.

[164] F. Kamiran and T. Calders. Classi�cation with no discrimination by preferential sampling. In Proc. 19th

Machine Learning Conf. Belgium and�e Netherlands, volume 1. Citeseer, 2010.

[165] F. Kamiran and T. Calders. Data preprocessing techniques for classi�cation without discrimination.

Knowledge and information systems, 33(1):1–33, 2012.

[166] F. Kamiran, T. Calders, and M. Pechenizkiy. Discrimination aware decision tree learning. In 2010 IEEE

international conference on data mining, pages 869–874. IEEE, 2010.

[167] T. Kamishima, S. Akaho, H. Asoh, and J. Sukama. Fairness-aware classi�er with prejudice remover

regularizer. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML

PKDD 2012, pages 35–50, 2012.

[168] S. Kanamori, T. Abe, T. Ito, K. Emura, L. Wang, S. Yamamoto, T. P. Le, K. Abe, S. Kim, R. Nojima,

et al. Privacy-preserving federated learning for detecting fraudulent �nancial transactions in japanese

banks. Journal of Information Processing, 30:789–795, 2022.

[169] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani. Reliable federated learning for mobile

networks. IEEE Wireless Communications, 27(2):72–80, 2020.

[170] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Sca�old: Stochastic controlled

averaging for federated learning. In International conference on machine learning, pages 5132–5143.

PMLR, 2020.

[171] A. F. Karr, X. Lin, A. P. Sanil, and J. P. Reiter. Privacy-preserving analysis of vertically partitioned data

using secure matrix products. Journal of O�cial Statistics, 25(1):125–138, 2009.

[172] B. Kasasbeh, B. Aldabaybah, and H. Ahmad. Multilayer perceptron arti�cial neural networks-based

model for credit card fraud detection. Indonesian Journal of Electrical Engineering and Computer Science,

26(1):362–373, 2022.
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[291] P. Richtárik and M. Takáč. Distributed coordinate descent method for learning with big data. �e

Journal of Machine Learning Research, 17(1):2657–2681, 2016.

[292] J. Ri�, M. A. Mahraz, A. El Yahyaouy, H. Tairi, et al. Credit card fraud detection based on multilayer

perceptron and extreme learning machine architectures. In 2020 International Conference on Intelligent

Systems and Computer Vision (ISCV), pages 1–5. IEEE, 2020.

[293] S. Ritchie. Privacy impact assessment system and associated methods, Sept. 21 2017. US Patent App.

15/459,909.
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