
The decimal representation of a fraction 
A rational number can be expressed uniquely as a fraction where numerator and 
denominator are coprime integers and the denominator is strictly positive.


If the minimal denominator divides a power of 10, then the decimal representation of the 
number is finite (terminating decimal), namely the period is 0. Else, we have nevertheless 
a periodical representation: the digits eventually repeat periodically (only the periods with 
all digits 9 are not accepted, because in this case there is an alternative representation 
with period 0).


For later use, if we work with a period, then the minimal period can easily be determined 
(the length of the minimal period divides the length of any period; the minimal period can 
be determined by spotting repetitions inside the period). For example, having period 
123123 easily allows to say that the minimal period is 123.


From the decimal representation to the fraction we must evaluate an infinite sum. 
Luckily, all boils down to the formula for the geometric series. One has to pay attention to 
the fact that, if the digits in the period are 012 (and we tend to read this as the integer 
number 12) then this period has 3 digits so the ratio in the geometric series is 1/1000.


Converting a fraction into the decimal representation means performing the long 
division numerator : denominator. In fact, arithmetical considerations allow us to stop 
after computing finitely many decimal digits. Notice that knowing the first digits of a 
number after the comma, say 0,121212…, does not allow to conclude that we know the 
number (this could be for example the number 0,121212333… where all the missing digits 
are 3). While performing the long division numerator : denominator (removing the sign to 
the rational number) it’s possible to notice a repetition pattern and stop at the appropriate 
point. However, performing the long division could take long… luckily, there are 
alternatives way to proceed. 


Modular arithmetic comes to our rescue because it tells us that the denominator of the 
given fraction divides the product of a power of 10 times a power of 10 minus 1  

 . 
The smallest integer  that does the trick can be determined by inspecting the largest 
power of 2 and the largest power of 5 that divide the denominator (and taking the 
maximum of the two exponents).

The smallest integer  that does the trick is more complicated, and in fact it is not even 
clear a priori that such an integer should exist. We may consider the denominator 
deprived of the prime factors 2 and 5, and we call this integer . If , then we can 
take  Else, we consider the residue class of  modulo . Since  and  are 
coprime, Fermat’s Little Theorem tells us that there is some power of  that is congruent 
to  modulo . In other words,  divides an integer of the form . By that result, 
an  integer  that does the trick is  and we may also take , where 

 is the number of integers from  to  that are coprime to  (after having 
determined the prime factorisation of , the Euler’s totient function  can easily be 
computed by combining the following information: for a prime power  we have 
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; for coprime integers  and  we have . For 
example, we have .)

The smallest positive integer  such that  divides  is called the multiplicative 
order of  modulo . It is a divisor of  and it can be determined by trial and error. 
For example, for  we look for a divisor of  and luckily we may take 

 because  divides . However, as  fails to divide  and , then 
the smallest possible  for  is , and in fact  divides .


Provided we inspected the minimal denominator,  is precisely the amount of digits 
that we must take before the period, while  is precisely the length of the minimal 
period. In particular, it suffices to determine  digits after the comma. If we work 
with a multiple of  instead, then we still obtain a periodical representation and we need 
one more step to obtain the canonical one with the minimal period. Should we have 
worked with an unnecessarily large  (for example because the given fraction was not 
reduced), we need an additional step to make the period start as soon as possible, 
cyclically permuting the digits under the period.


Coming back to the problem of determining the decimal representation of a rational 
number given as a fraction: we could patiently perform the long division between the 
numerator (without sign) and the denominator. Or we could alternatively reason as 
follows:

- If the rational number is negative, we need to figure out the decimal representation for 

its absolute value. We then suppose that the rational number is positive.

- If the number is larger than one, then we can easily remove its integer part (determined 

by performing a division with remainder) which constitutes the digits before the 
comma. In short, we now reduced to a rational number strictly between 0 and 1.


- Write the given rational number between 0 and 1 as  . By performing the 

division with remainder  we can write the number as 





The digits of , possibly with 0 digits at the beginning as to obtain precisely  digits,        
are the digits for the decimal representation after the comma and before the period. The 
digits of , possibly with 0 digits at the beginning as to obtain precisely  digits, are the 
digits of the period for the decimal representation.

This can easily be observed with the geometric series because a purely periodical number 
between 0 and 1 with  digits in the period and such those digits represent the integer  
is precisely the rational number .


To conclude, the decimal representation of a rational number embeds nice results of 
arithmetics. In particular, such results are needed when a simple calculator is used to 
perform the long division (because such device only computes the first decimal digits and 
one needs to argument that enough digits have been computed).


An interesting exercise for talented pupils is adapting the above results and algorithm to a 
numeral system in a basis different from 10.

φ(pe) = pe−1(p − 1) a b φ(ab) = φ(a) ⋅ φ(b)
φ(80) = φ(24)φ(5) = 23(2 − 1)(5 − 1) = 32

N m 10N − 1
10 m φ(m)

m = 11 φ(11) = 10
N = 2 11 102 − 1 = 99 7 99 999

N m = 7 φ(7) = 6 7 999999 = 106 − 1

A
N

A + N
N

A

x
10A(10N − 1)

x : (10N − 1)
q

10A
+

1
10A

r
10N − 1

q A

r N

N r
r

10N − 1


