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ABSTRACT
The quantum Drude oscillator (QDO) model has been widely used as an efficient surrogate to describe the electric response properties of
matter as well as long-range interactions in molecules and materials. Most commonly, QDOs are coupled within the dipole approximation so
that the Hamiltonian can be exactly diagonalized, which forms the basis for the many-body dispersion method [Phys. Rev. Lett. 108, 236402
(2012)]. The dipole coupling is efficient and allows us to study non-covalent many-body effects in systems with thousands of atoms. However,
there are two limitations: (i) the need to regularize the interaction at short distances with empirical damping functions and (ii) the lack of
multipolar effects in the coupling potential. In this work, we convincingly address both limitations of the dipole-coupled QDO model by
presenting a numerically exact solution of the Coulomb-coupled QDO model by means of quantum Monte Carlo methods. We calculate the
potential-energy surfaces of homogeneous QDO dimers, analyzing their properties as a function of the three tunable parameters: frequency,
reduced mass, and charge. We study the coupled-QDO model behavior at short distances and show how to parameterize this model to enable
an effective description of chemical bonds, such as the covalent bond in the H2 molecule.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0196690

I. INTRODUCTION

The quantum Drude oscillator (QDO) model, first applied
by London to describe dispersion interactions between atoms and
molecules,1 was derived from Drude’s2 classical model of absorp-
tion and refraction3,4 introduced in 1900. As stated in 1957 by
Bade,5 “the Drude model provides a means of deriving the second-
order dipole–dipole contribution to the London dispersion energy in
an especially simple way” and is nowadays at the foundation of
many modern van der Waals (vdW) theories6–14 used in quantum
chemistry and solid-state physics, such as the many-body dispersion
(MBD) method.11,15,16

Beyond the original usage of QDOs to model dispersion
interactions, this model has been proven to be unusually ver-
satile and extended to capture polarization interactions,11,17–19

Pauli repulsion,19–21 and optical excitations22 and as a quantum
embedding approach for describing molecules in environments.23

Furthermore, recently, a universal model for the full van der Waals
potential between closed-shell atoms has been derived starting from
QDOs coupled by multipolar interactions.24 Such versatility of the
QDO model raises the question of whether coupled QDOs can be
used as a building block for an effective quantum force field with
the capacity to describe both short-range (bonded) and long-range
(non-bonded) interactions. This work focuses on the fundamental
assessment of this question and presents initial evidence for the suc-
cess of the Coulomb coupled QDO model for constructing efficient
and accurate quantum force fields.

Within the QDO model, the response of each atom or
molecule25 is represented as an isotropic quantum harmonic oscil-
lator centered at R with a mass μ and a characteristic frequency ω,
described by the following well known Hamiltonian:

ĥ D
(r) = −

1
2μ
∇

2
r +

1
2

μω2
∣d∣2, (1)
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FIG. 1. Schematic representations of the interaction between ith and jth quantum
Drude oscillators with force constants ki = μiω2

i and k j = μ j ω2
j coupling via the

dipole (a) and full Coulomb (b) potentials.

where d = r − R is the vector distance between the quantum particle,
i.e., the drudon, and its center.1 For a system of N QDOs interacting
via the dipole potential, the full Hamiltonian5,26,27

Ĥ D
=

N

∑
i=1

ĥD
i (ri) +

N

∑
j>i=1

VD
i j (2)

is written as the sum of the Hamiltonians of independent oscilla-
tors ĥi(ri) plus the sum of the two-body dipole coupling between the
ith and jth oscillators [Fig. 1(a)], written as

VD
i j =

qiqj

R3
i j
[di ⋅ dj −

3
R2

i j
(di ⋅ Rij)(dj ⋅ Rij)], (3)

where Rij = Ri − Rj is the vector of the distance between two QDO
centers, Ri j = ∣Ri j ∣ is its module, and qi and qj are the charges of
the dipoles. The parameters of the QDOs are chosen to repro-
duce the leading order polarizabilities and dispersion coefficients
of real matter18,20,21 obtained from accurate ab initio or exper-
imental data.15,20,21,28,29 A considerable advantage of the dipole
Hamiltonian in Eq. (2) is that it can be diagonalized,5 leading to a
simple and efficient way to introduce dispersion interactions,30,31

for example, in density-functional theory (DFT) with semilocal
exchange–correlation functionals.15,32 However, the solution of the
dipole Hamiltonian is not defined at all distances4 since in the
short range, the solution has an imaginary component (see, for
example, the solution for the dimer in Ref. 33). Thus, the desire
to overcome this pathological behavior, and to extend the QDO
model to further improve the description of interatomic interac-
tions, has stimulated a long list of recent theoretical and numerical
developments.17,19–21,23,34

A first direction to extend the QDO model beyond the dipole
approximation is that of considering full Coulomb interactions
between the particles16–18,23,34,36 of the different QDOs [Fig. 1(b)],
i.e., introducing the full Coulomb QDO (CQDO) model, which
is the main subject of study in this work. As we will show
below, the CQDO model not only allows us to consistently capture

FIG. 2. Binding energy of the Argon dimer obtained with CCSD(T),35 compared
to the Coulomb coupled QDO (CQDO) model obtained with the DMC method (the
QDO parameterization from Ref. 18) and the Mol. + J wavefunction, and to the
dispersion energy (Edisp.) from SAPT-CCSD in Ref. 35. We also show the potential
energy surface of the QDO model in the dipole approximation limit (QDO).33

multipolar dispersion interactions between atoms but also intro-
duces additional contributions at the short range due to quantum
delocalization.

In Fig. 2, we demonstrate the high promise of the CQDO
model for capturing the contribution of correlation energy to
the binding energy of Argon dimer due to its ability to describe
multipolar interactions. The reference binding energy curve is com-
puted by the CCSD(T) method, and the contribution of correlation
(or dispersion) energy to binding was calculated using the elec-
tronic symmetry-adapted perturbation theory (SAPT) based on the
coupled-cluster (CCSD) wavefunction for Ar monomers. Interest-
ingly, when solving the CQDO model for the Argon dimer (Fig. 2)
using the diffusion Monte Carlo (DMC) method with the param-
eterization presented in Ref. 18, the dispersion energy is captured
with excellent accuracy at all relevant distances compared to CCSD-
SAPT.23,35 Achieving such accuracy with the CQDO model is a
highly non-trivial result as the interactions between 16 valence elec-
trons in Ar2 are effectively described by just two harmonic oscillators
without using any empirical information about bonding. Similarly,
accurate results are obtained for other noble-gas dimers, including
Ne2, Kr2, and Xe2, as discussed in Ref. 23. In contrast, the dipole
approximation, using the same set of parameters, tends to under-
estimate the binding energy of Ar2 and other noble-gas dimers,
although the dipole approximation becomes sufficiently accurate at
interatomic distances beyond 4.6 Å for Ar2 (see Fig. 2).

These results, which show the advantage of the full CQDO
model in comparison to the dipole approximation, also highlight
the limitations of the CQDO with a fixed parameterization, which
can describe the dispersion contribution to the energy but is unable
to describe the full potential-energy surface from the repulsive to
the attractive regime. To achieve this challenging goal, further gen-
eralization of the CQDO model is required, and an important first
step is to obtain the exact solution for all values of the interatomic
distance.

In the numerous works that have attempted to tackle the gen-
eralization of the CQDO model to better reproduce the potential-
energy surface (PES) of dimers or molecular clusters, the authors
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have solely focused on the description of the large distance regimes,
characteristic of dispersion interactions, in which the model has
been shown to be efficient, without attempting to discuss the
exact solution for all values of the relative distance between
QDOs.16–18,23,34

In particular, Full Configuration Interaction (FCI)17 has been
applied to the CQDO model, however, without converging the solu-
tion to the complete basis set limit (as will be discussed and shown
in Fig. 4). Quantum Monte Carlo (QMC) methods have also been
applied to solve the CQDO Hamiltonian, yet employing empir-
ical damping functions to remove the divergences arising from
the Coulomb potentials, which were not treated with the correct
variational wavefunction.37

In this work, we construct an accurate solution of the CQDO
model at all distances by proposing a general wavefunction that can
be optimized using QMC methods and eventually FCI approaches
(with an appropriate change of one-particle basis set). We focus,
without loss of generality, on the homogeneous CQDO dimer in
order to study its potential-energy surface (PES) as a function of the
three parameters that characterize the QDOs, i.e., frequency, charge,
and reduced mass. Through such analysis, we show that, following a
similar procedure to the one proposed in Refs. 19–21, it is possible
to extend the applicability of the model to describe chemical bonds
beyond dispersion interactions, such as the PES of the covalent bond
in the H2 molecule.

II. COULOMB INTERACTING QUANTUM
DRUDE OSCILLATORS

The first difference between the QDO model in the
dipole approximation and that with full Coulomb interactions
(CQDO)17,18,23,34 can be found in the expression of the single
particle Hamiltonian in Eq. (1), namely, that for the ith drudon of a
system of N QDOs assumes the more general form

ĥC
i (ri) = −

1
2μi
∇

2
ri + v(ri), (4)

where the single-particle potential energy v(ri) also includes the
Coulomb interactions between the quantum particle and the other
QDO centers,

vi(ri) =
1
2

μiω2
i ∣di∣

2
−

N

∑
j≠i

qiqj

∣ri − Rj ∣
. (5)

This single particle potential is different for each drudon, as shown
for the QDO dimer in Fig. 3, meaning that each drudon, no matter
if characterized by identical parameters (q, μ, ω), is a distinguish-
able particle. The full Hamiltonian of N QDOs interacting via full
Coulomb potentials will have the following form:

Ĥ C
=

N

∑
i=1

ĥC
i (ri) +

N

∑
j>i=1

vij(ri, rj) + vext(R̄), (6)

where vi j(ri, r j) =
qiq j

∣ri−r j ∣
is the Coulomb interaction between two

drudons and vext(R̄) = ∑N
j>i=1

qiq j

∣Ri−R j ∣
is the constant contribution

coming from the Coulomb interaction between all the QDO centers.

FIG. 3. (a) Schematic representations of the one body potentials v1(r1) and
v2(r2) associated with each drudon for a system of two interacting CQDOs
[Eq. (5)]. (b) Single particle molecular orbitals of the two drudons [Eq. (9)] as linear
combinations of a Gaussian function and a Slater-type orbital.

In contrast to the dipole Hamiltonian, Eq. (6) is not exactly
diagonalizable; hence, solving it requires the construction of an
approximate yet robust wavefunction, which depends on the rela-
tive positions R̄ of the QDO centers, and this task will be discussed
in Sec. III.

III. APPROXIMATE WAVEFUNCTION
FOR THE QUANTUM DRUDE OSCILLATORS

As anticipated in the Introduction, the previous works that
approached the solution of the CQDO model focused essentially on
the correct description of the large distance regimes that character-
ize dispersion interactions.17,18,23,34 At these distances, the solution
can be written as a perturbation of the solutions of two non-
interacting QDOs, represented by isotropic Gaussian orbitals, which
are deformed by additional couplings.

For this reason, in the FCI approach of Sadhukhan and
Manby,17 the authors constructed a variational space of the homo-
geneous CQDO dimer as the linear combination of a set of single
QDO excitations of the two localized oscillators, highlighting the
convergence difficulties in the short-distance limit (see also Fig. 4).

FIG. 4. Binding energy Eb for the CQDO homogeneous dimer with ω = μ = q = 1.
The black dotted line represents the solution of the Hamiltonian in the limit of dipole
approximation [Eq. (2)]. The CI results are taken from Ref. 17. The VMC Dip.
+ J PES is not clearly visible since it almost corresponds to the VMC Mol. + J one.
The difference between the two at the equilibrium length is only of a few mHa.
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On the other hand, in the QMC approach from Martyna and
co-workers,18,37 the authors used a trial wavefunction built from
the product of the solution of non-interacting harmonic oscillators
adding a fixed three-body correlation function constructed analyt-
ically to reproduce the long-range interactions between the QDOs
that are responsible for the reciprocal polarization. Yet, this wave-
function was not built to describe the cusp conditions of the true
wavefunction that arise from the Coulomb interactions between par-
ticles, and therefore, damping functions were employed to remove
those divergences.

Finally, a more general form was used in the work of Ditte
et al.,23 in which the authors proposed a variational wavefunction
inspired by the exact solution of the QDO model in the dipole
interaction limit [Eq. (2)],

ΨDip.
(r̄) = exp{−d̄⊺Ad̄}, (7)

where A is a symmetric 3N × 3N coupling matrix and d̄ is the
3N vector of the distances between the drudons and their cor-
responding centers, i.e., {di = ri − Ri ∀ i ∈ [1, N]}.5,23 While the
diagonal elements of the parameters’ matrix A contain the Gaussian
solutions of the isolated QDOs and upon relaxation they describe
the on-site polarization of the oscillators, the off-diagonal elements
represent the coupling of the various oscillators along the three
dimensions. Despite the fact that for distances characteristic of the
dispersion interactions this solution is a good approximation, it fails
to converge to the proper state for the CQDO model for all values of
the QDO positions R̄ since it does not take into account the form of
the single-particle potential energies in Eq. (5).

In order to construct a more general and accurate solution to
Eq. (6), here we address all the main aspects and properties that
the solution should incorporate, following a similar approach to
the one used for many-electron systems in the basis of molecular
orbitals.38–40

If we consider the ith drudon, since the quantum particle inter-
acts with its center through a harmonic potential, it is known that the
solution in this region must reflect a Gaussian-type orbital (GTO)
of the type ϕi(ri)∝ exp (− μiωid2

i
2 ). Yet, the same drudon will inter-

act with all the other N − 1 QDO centers via a Coulomb potential,
meaning that the wavefunction must satisfy the cusp conditions,41

1
⟨Ψ⟩

∂⟨Ψ⟩
∂dij
∣

dij=0
= qiqjμj ∀ j ≠ i, (8)

where ⟨Ψ⟩ represents the angular average of the wavefunction and
dij = ∣ri − Rj∣ is the absolute distance between the ith drudon and
the jth QDO center. Thus, around the jth center, the single-
particle orbital of the ith drudon will have the form of an expo-
nential function, i.e., a Slater-type orbital (STO), proportional to
φj(ri)∝ exp(−qiqjμjdij).

Considering these characteristics, approximate single particle
orbitals should be written as a linear combination of Gaussian and
Slater-type functions (see Fig. 3),

Φi
(ri) ≈ αi

ie
(−

μiωi
2 d2

i ) +
N

∑
j≠i

αi
je
(−qiqj μj dij), (9)

where αi
j are a set of parameters, with indices i, j ∈ [1, N].

These orbitals can be generalized following the same approach used
to define electronic molecular orbitals, and thus, in this work, they
are written as a linear combination

Φi
(ri) =

Q

∑
q=1

αi
qϕq(ri) (10)

of Q atomic-like orbitals ϕq(ri) constituting the basis set of the sys-
tem of QDOs and are written as a linear combination of Gaussian-
type orbitals (GTOs) centered on the positions of various QDOs
R̄, whose linear and exponential parameters are fully optimized. In
particular, in all our calculations, each QDO is represented through a
(3s1s)/[1s1s] contracted basis set, where the uncontracted 1s orbital
is used to describe the Gaussian solution around the quadratic
potential and the contracted (3s)/[1s] orbital is used to describe
the Slater solution centered on the drudon–nucleus Coulomb
potential.

The use of GTOs in the place of exponential functions clearly
introduces an error in the description of the one-body cusp in Eq. (8)
that can be eliminated through a Jastrow factor42,43 that is normally
used in quantum Monte Carlo trial wavefunctions of the form

J1(r̄) = exp
⎛

⎝

N

∑
i≠j

qiqjμj f1b(dij ; γ)
⎞

⎠
, (11)

where f1b(dij; γ) is a parametric function that only depends on the
distance between two particles (in this case the ith drudon and the
jth QDO center) that for dij → 0 has the property of going linearly
to zero, i.e., f (dij) ≈ dij, and decays to zero as the distance increases
f (dij)→ 0 as dij →∞.

Another property of the wavefunction will be the explicit cor-
relation between the pairs of drudons, which is introduced through
two-body Coulomb potential vij(ri, rj) in Eq. (6). A first correlation
function between drudonic pairs can be introduced, considering that
in the limit of two overlapping drudons, the exact wavefunction has
a two-body cusp of the form

1
⟨Ψ⟩

∂⟨Ψ⟩
∂rij
∣

rij=0
= qiqj

μiμj

μi + μj
∀ j ≠ i. (12)

This requisite can be satisfied again through a Jastrow factor of the
type

J2(r̄) = exp
⎛

⎝

N

∑
i>j

qiqj
μiμj

μi + μj
f2b(rij ; η)

⎞

⎠
, (13)

where f2b(rij; η) is a parametric function with similar properties
to the one defined in Eq. (11) to reproduce the one-body cusp
condition.

From these considerations, by combining Eqs. (10), (11), and
(13), we can write a first approximation to the explicitly correlated
wavefunction as

ΨMol.+J
T (r̄) = [

N

∏
i=1

Φi
(ri)]J1(r̄)J2(r̄), (14)
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which will be referred to as Mol. + J in Secs. IV–VI, where the one-
body cusp function is written as

f1b(dij ; γ) = −
e−γ0dij

γ0
+

M

∑
m=1

γme−γM+md2
i j (15)

and the two-body has a form inspired by Padé’s approximation,44

f2b(rij ; η) = −
1

η0(1 + η0rij)
+

M

∑
m=1

ηme−ηM+mr2
i j . (16)

In Eqs. (15) and (16), the two vectors of 2M + 1 parameters γ and
η are both optimized. In our calculations, we assume M = 5.

In order to assess approximate wavefunctions, two alterna-
tive trial wavefunctions will be considered in this work: (i) dipolar
wavefunction in Eq. (7), referred to as Dip.; (ii) the same dipolar
wavefunction enhanced with the Jastrow factors defined in Eqs. (11)
and (13),

ΨDip.+J
T (r̄) = exp{−d̄⊺Ad̄}J1(r̄)J2(r̄), (17)

which will be referred to as Dip. + J.

IV. QUANTUM MONTE CARLO METHODS
To solve the general Hamiltonian in Eq. (6) over the explicitly

correlated trial wavefunctions [Eqs. (7), (14), and (17)] presented in
this work, the most common and efficient approach is to employ
quantum Monte Carlo (QMC)45–47 methods, which are integration
techniques based on stochastic procedures.

To recall the basic theory behind QMC, let us consider the
most common of these methods, i.e., the variational Monte Carlo
(VMC) method. In VMC, the integration of the energy functional
E[ΨT(x̄, α)] = (∫Ψ∗T(x̄, α)ĤΨT(x̄, α)dx̄)/(∫ ∣ΨT(x̄ , α)∣2dx̄) of the
Hamiltonian operator Ĥ over a chosen trial wavefunction
ΨT(x̄, α) is obtained by generating a set of configurations
x̄48 according to the probability density Π(x̄)∝ ∣ΨT(x̄ , α)∣2.
Through this sampling, the energy functional is estimated as the
statistical average of the local energy El(x̄) = ĤΨT(x̄, α)/ΨT(x̄, α)
values computed for each configuration, E ≈ E[El] =

1
N∑

N
i=1 El(x̄i),

with an associated error σE =
√

Var [El]/N that decreases as the
square root of the number of samples, and is proportional to
the square root of the variance Var [El] = ∑

N
i=1 (El(x̄ i) − E[El])

2

/(N − 1).
Within this framework, we optimize the full set of varia-

tional parameters α through the stochastic reconfiguration energy
minimization procedure introduced by Sorella in Ref. 49.

Moreover, since our systems are comprised of distinguishable
particles, the exact wavefunction will be strictly positive, and thus,
we can efficiently apply projection techniques, such as diffusion
Monte Carlo (DMC),45–47 to go beyond the limits of the optimized
variational trial wavefunctions ΨT(x̄, α), converging to the correct
value of the total energy. Here, we will apply the DMC algorithm
with importance-sampling guided by the already excellent approxi-
mations ΨT(x̄, α) to the ground state. The time step used in all the
calculations is of 0.001 au.

All calculations presented in this work are done with the
QMeCha50 QMC package, published in a private Github repository.

V. THE HOMOGENEOUS CQDO DIMER
Before analyzing the variation of the CQDO model’s properties

with respect to the frequency ω, the mass μ, and the charge q varied
independently with respect to the reference case μ = q = ω = 1, we
must study the convergence of the variational wavefunctions, Dip.,
Dip. + J., and Mol. + J, constructing the PESs at VMC and DMC
levels for the homogeneous CQDO dimer (μ = q = ω = 1).

From the results displayed in Fig. 4, we can see how the Dip.
wavefunction is unable to properly reproduce the binding energy
profile in the short range since it cannot describe the tunneling
effects of the drudon from its center toward the attractive Coulomb
potential on the opposite QDO. The introduction of the Jastrow fac-
tor in the Dip. + J wavefunction greatly improves the variational
results since it is able to take into account both the correlation of the
drudon around the attractive Coulomb potential and the two-body
correlation of the two drudons that become important as the two
QDOs come together. In fact, at the VMC level, the latter wavefunc-
tion recovers more than 0.10 Ha in the binding energy with respect
to the former. Finally, a small improvement, of about 2 mHa at the
equilibrium distance, with respect to the Dip. + J wavefunction can
be obtained with the Mol. + J, since the single-particle orbitals also
account for the tunneling effects of the drudons in the short range.
Moreover, the VMC PES obtained with the Mol. + J trial wavefunc-
tion is nearly identical to the converged DMC energy obtained with
the same wavefunction, with a difference of about 2.3 mHa at the
equilibrium distance. As discussed in Sec. II, since the system is
built from distinguishable particles, DMC will always converge to
the exact solution no matter the trial wavefunction employed.

Taking this into account, in Fig. 4, we also compare our results
with the full CI PES, previously reported in Ref. 17 for the same
system. As previously anticipated, it is clear that due to restricted
configuration space, the CI calculations were not properly converged
toward the exact solution obtained with DMC, reporting a maxi-
mum discrepancy with our results of more than 0.05 Ha, i.e., about
20% error.

Considering these initial results, we will employ the Mol. + J
trial wavefunction as the guiding function for the DMC calculations
used to study the behavior of the CQDO model in the limit of full
convergence.

VI. PARAMETERIZATION OF THE CQDO MODEL
To better understand the behavior of the CQDO model in

describing atomic interactions, let us first study how the changes in
the three parameters μ, q, and ω affect the potential energy surface
of two interacting QDOs.

In Fig. 5, starting from the CQDO model with μ = q = ω = 1, in
each panel, we report the change in the PES obtained by varying one
by one the three parameters in a range between [0.25, 1.50], while
keeping the rest of them fixed.
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FIG. 5. DMC binding energies Eb for the CQDO homogeneous dimer obtained with the Mol. + J wavefunction [Eq. (14)]: (a) μ = q = 1 and variable ω ∈ [0.25, 1.50]. (b) ω
= q = 1 and variable μ ∈ [0.25, 1.50]. (c) ω = μ = 1 and variable q ∈ [0.25, 1.50]. All the curves are interpolated with the ELJ function described in Eq. (18).

Each PES is interpolated using the Extended Lennard-Jones
(ELJ) potential,51 which is reported to be the most accurate in repro-
ducing various types of chemical interactions.52 The ELJ potential
has a functional form of the type

E(R) = De[1 − (
Re

R
)

n(R)
]

2

, (18)

where

n(R) = β0 + β1ζ + β2ζ2
+ β3ζ3 (19)

with ζ = R−Re
zqR+Re

, where z = R−Re
R+Re

and q = 2. The interpolations are
obtained optimizing all the six parameters De, Re, β0, β1, β2, and
β3. From the results in Fig. 5, it is clear that the ELJ potential over-
all interpolates very well the PESs at all distances, except for those
obtained with low frequency or high charge, which correspond to a
strong delocalization of the drudonic particles.

As a matter of fact, since the frequency is directly connected
to the localization of the particles on their center, as it diminishes,
the drudons become progressively delocalized with the consequent
lowering of the binding energy and elongation of the equilibrium
“bond” length [Fig. 5(a)].

On the other hand, μ affects both the quadratic potential and
the kinetic energy of the particles of the system. In fact, the lowering
of the mass of the drudons has the effect of increasing their kinetic
energy and lowering the quadratic barrier, thus increasing polariz-
ability [Fig. 5(b)]. Yet, the quadratic potential quadratically depends
on the frequency ω and only linearly on μ; thus, the barrier changes
more slowly, and thus, the reduction of the mass, although increas-
ing the polarizability in the long-range, does not induce a strong
delocalization of the drudon on the other center.

Clearly, the delocalization effect that is observed with the
decrease of the frequency is also stimulated by the increase of
the charge q that regulates the Coulomb attraction between the

FIG. 6. Potential energy of the CQDO model shifted of its value in the dissociation limit Vb(R) = V(R) − 3
2

ω obtained with DMC. As for Fig. 5, (a) μ = q = 1 and variable
ω ∈ [0.25, 1.50]; (b) ω = q = 1 and variable μ ∈ [0.25, 1.50]; and (c) ω = μ = 1 and variable q ∈ [0.25, 1.50]. The vertical lines correspond to the equilibrium lengths of the
PES in Fig. 5.
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drudonic particles and the opposite centers [Fig. 5(c)]. This effect
is less visible in the long-range regime, for which the QDOs act as
effectively neutral systems,18,21,23 but it becomes important in the
short range for which the quadratic barrier that localizes the QDOs
becomes weaker, enabling the drudons to drift toward the opposite
center.

The fact that in the long-range regime the QDOs act as neutral
systems can simply be observed by plotting the potential energy of
the CQDO minus the dissociation value, i.e., 3

2 ω (Fig. 6). This value
is always very small at distances around 4–5 bohr, meaning that in
those ranges, the interaction between the two QDOs originates from
dispersion contributions.

By analyzing these results, it becomes possible to choose the
set of parameters ω, μ, and q to reproduce PESs of chemical bonds,
beyond dispersion interactions. This can be, for example, achieved
by defining a set of parameters that are dependent on the relative
distances between the QDO centers (or by changing the effective
inter-QDO potential).

If we consider the simplest case of the H2 molecule, it is pos-
sible to reproduce its PES by varying the frequency ω of the QDO
model as a function of the distance (Fig. 7). As a matter of fact,
by varying the frequency (μ = q = 1), we can obtain a set of CQDO
PESs each intersecting the H2 PES at various values of the distance
R, i.e., E[H2(R)] + 2E[H] = E[CQDO2(ω; R)] − 2E[CQDO(ω)],
which corresponds to setting E[H2(R)] − E[CQDO2(ω; R)] + 1
+ 3ω = 0∀ R.

By plotting the values of the frequencies ω for which the
corresponding QDO curves intersect the H2 PES, as a func-
tion of the interatomic distance R, we obtain the data displayed
in Fig. 7(a).

FIG. 7. (a) ω as a function of the position R for which the corresponding CQDO(ω)
curves intersect the PES of the H2 molecule. For a small distance of ≈1 bohr,
we observe that the CQDO(ω) curves intersect the PES of H2 in two points. (b)
CQDO(ω;R) PES (red and blue circles) obtained by varying the frequency accord-
ing to the values in (a), compared with the PES of H2 (black line) obtained with
accurate DMC results.

By selecting for each R the values of ω to match the H2 PES, we
obtain the binding profile shown in Fig. 7(b).

Here, we must remark that these are only a set of preliminary
tests where only the frequency of the QDO model was changed to
reproduce a given binding energy curve for a chemically bonded
system. Yet, we hypothesize that matching the response properties
(polarizability and dispersion coefficients) for QDO and electronic
systems for different values of R might lead to a more promising
QDO model for chemical bonding. In addition, a QDO model for
all relevant interatomic distances might need to be based on a more
general effective single-particle potential. We defer the assessment
of these promising directions to future work.

VII. CONCLUSIONS AND OUTLOOK
The coupled QDO model has been successfully applied to

describe dispersion interactions in molecules and materials, being at
the basis of modern vdW approaches,10,11 such as the many-body
dispersion method.15 To describe these long-range interactions,
the QDO model is usually applied in the dipole approximation,
given that the Hamiltonian can be diagonalized without introduc-
ing a significant computational overhead in electronic-structure
calculations.32,53

Thus far, the focus of the coupled QDO model has primarily
been on capturing long-range interactions.19,21,34,54 However, in the
short-range regime, the bare dipole-coupled QDO model has imag-
inary solutions, and in general, it is unable to explicitly describe
correlations arising from the higher multipolar moments of the
charge distribution.

These limitations can be partially overcome through the use
of the Coulomb-coupled QDO model, for which we presented an
accurate solution without loss of generality for the case of the
homogeneous CQDO dimer.

The construction of this solution stands as an important mile-
stone since it presents a variational framework to pursue a more
general parameterization of the drudonic model to reproduce a
wider set of chemical interactions, beyond those governed by long-
range electron correlation. As shown in this work, for the case of
the H2 molecule, this can be achieved, for example, by introducing
an explicit dependence of the QDO parameterization on the relative
distances between the oscillation centers.

Among many possible directions, our future work will explore
a broader set of chemically bonded systems, different ways to param-
eterize one-particle and two-particle potentials in the CQDO model,
the transition regime between bonded and non-bonded interactions,
going beyond atomic dimers, and developing an efficient param-
eterization of the variational wavefunctions for Coulomb-coupled
QDOs.
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