
Agent-based Model of Initial Token Allocations: Simulating

Distributions post Fair Launch

JOAQUIN DELGADO FERNANDEZ∗, TOM BARBEREAU, and ORESTIS PAPAGEORGIOU, In-
terdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg

With advancements in distributed ledger technologies and smart contracts, tokenized voting rights gained prominence within

Decentralized Finance (DeFi). Voting rights tokens (aka. governance tokens) are fungible tokens that grant individual holders

the right to vote upon the fate of a project. The motivation behind these tokens is to achieve decentral control within a

decentralized autonomous organization (DAO). Because the initial allocations of these tokens is often un-democratic, the

DeFi project and DAO of Yearn Finance experimented with a fair launch allocation where no tokens are pre-mined and all

participants have an equal opportunity to receive them. Regardless, research on voting rights tokens highlights the formation

of timocracies over time. The consideration is that the tokens’ tradability is the cause of concentration. To examine this

proposition, this paper uses an agent-based model to simulate and analyze the concentration of voting rights tokens post

three fair launch allocation scenarios under diferent trading modalities. The results show that regardless of the allocation,

concentration persistently occurs. It conirms the consideration that the ‘disease’ is endogenous: the cause of concentration is

the tokens’ tradablility. The indings inform theoretical understandings and practical implications for on-chain governance

mediated by tokens.

CCS Concepts: ·Applied computing→ IT governance; · Social and professional topics→ Centralization / decentralization;

· Computing methodologies→ Agent / discrete models.

Additional Key Words and Phrases: blockchain, governance, decentralized inance, voting rights tokens, fair launch, agent-

based modeling

1 INTRODUCTION

The digital representation of value and ownership, in the form of fungible and non-fungible tokens respectively,
provides the basis for the token economy. Unlike traditional economies, the token economy does not rely on trusted
third parties to verify transactions [61, 64], instead distributed ledger technology (DLT) and smart contracts ensure
integrity in a pseudonymous peer-to-peer network of interactions [7, 73]. Advancements in the token economy
with a focus on inancial services and products materialized under the heading of Decentralized Finance (DeFi)
[3, 6, 59, 71].

DLT enables people to coordinate themselves on-chain, that is, transactions and interactions are "mediated by
a set of self-executing rules [i.e., smart contracts] deployed on a public blockchain" independently from central
control [36, p. 1]. To achieve decentral control in DeFi, developers created and allocated so-called voting rights

tokens ś (fungible) tokens that stipulate voting entitlements to vote upon change proposals to a project [47]. An
example is the decentralized exchange (DEX) Uniswap, a project which uses smart contracts to automate the
exchange of fungible tokens of the Ethereum protocol. Its voting rights token, UNI, allows holders to cast votes and
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decide upon the use of resources stored in a treasury (deined in a smart contract). The participants and holders
of voting rights tokens are typically refered to as members of a Decentralized Autonomous Organization (DAO).

The distribution of voting rights tokens, however, is considered as controversial given that the initial allocation
often favors a minority of insiders (e.g., developers, investors, etc.). Tokens allocated to insiders are common
within Initial Coin Oferings (ICOs) [14], hence a diferentiation between initial allocations that favor insiders
(labeled, "private") or those that do not (labeled, "public") [28, p. 10]. History repeats itself as insider allocations
of voting rights tokens are common in DeFi DAOs [6].

One outlier to insider allocations is Yearn Finance. Its core developer, Andre Cronje, denoted that at inception
voting rights tokens are majoritarily allocated to "friends and family" [20] ś impossibly leading to decentral
control. As solution, he implemented a type of initial token allocation for the voting rights tokens of the Yearn
Finance (YFI) DAO Ð the fair launch ś whereby all community members have an equal opportunity to receive a
portion of the initial supply [63]. Though in theory this allocation strategy achieves equity through principles of
fairness [see, 54], reality looks dire in the long run: Barbereau et al. [5] demonstrate how, as with most other
voting rights tokens, for YFI concentration of wealth and voting power persists. Because holders rarely use these
to cast votes, Barbereau et al. [6] denote a common theme and propose a purposefully descriptive theory of
voting rights tokens as justiication for concentration: they are tradable assets on cryptocurrency markets. This
description may not seem surprising against the consideration that wealth in the token economy is concentrated
(c.f. concentration in Bitcoin and Ethereum [32]), and so are capital markets more broadly [see, 52]. Indeed, the
common feature of tradability appears to justify, on an intuitive level, the expectations that "wealth trickles up in
free-market economies" [12].
The hypothesis whether the experiment of Andre Cronje’s fair launch was inherently doomed to fail, given

that the underlying tokens are tradable remains, unaccounted for. Taking the principle of a ’fair’ launch (n.b.,
all tokens are allocated ‘fairly’), one can consider weather alternative allocations are successful in achieving
decentral control in the long run. Correspondingly, to challenge this consideration, this article addresses the
following two research questions:

RQ1: Does trading behavior afect voting rights token distributions over time?
RQ2: Do alternative, ’fair launch’ token allocations afect voting rights token distributions over time?

Provided the context in which these novel governance structures are deployed, our research topic ś ’fair launch’
token allocations ś is of importance to Information System (IS) and requires the adoption of multidisciplinary
perspectives [66]. Hence, we lean on previous theory on governance of public protocols / DAOs and token design,
and use quantitative methods rooted in agent-based simulation; i.e., agent-based modeling (ABM). Guided by an
ambition "for discovery and explanation" [8, p. 516], we speciically adopt ABM to simulate the trade and eventual
distribution of voting rights tokens post three distinct ’fair launch’ allocations (n.b., scenarios denoted ��). The
developed model is going from "real world to simulation world" [8, p. 516], an approach that is particularly
suitable for the exploration of understudied, novel phenomena ś here, the fair launch allocation. Within IS, the
utility of ABM for the study of phenomena with "nonlinear behavior" [35, p. 158] is well-recognized. At large,
the discipline is receptive of contributions emerging from simulation research [8, 21, 23, 72].

Davis et al. [21, p. 482] advise to ground the model within "simple theory"; theory, that provides the "basic con-
cepts and process that describe a phenomenon" [8, p. 506]. Here, we focus on governance of public-permissionless
systems in general, and DeFi DAOs in particular (Section 2). To establish further "epistemic credibility in the
simulation model" [8, p. 517], aside from theory (deductive approach) we use empirical data (inductive approach)
from Yearn Finance (Section 3). The development of our model (Section 4) is informed by the artiicial cryp-
tocurrency markets designed in Cocco et al. [19] and Roşu and Saleh [57]. Therein, agents represent traders
that are endowed with an amount of iat currency and seek to acquire the (artiicially created) voting rights
tokens (TKNs). The market rules are loosely based on understandings of clearing houses [41]. To investigate
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RQ2, we developed two alternative scenarios to Andre Cronje’s fair launch scenario (�0) which respectively
consider fairness in egalitarian terms (�1) and ’at random’ (�2). The principles underlying these allocations build
on political philosophy [43, 53]. We measure concentration in terms of the Gini Coeicient [31] and the Shannon
Entropy [62]. With our work we make the following three contributions:

• We provide an agent-based model for the analysis of token distributions under various market conditions
relective of trading.

• Our simulation results show how over time, regardless of the ‘fair’ initial token allocation, concentration is
imminent.

• We extend understandings on the governance of DAOs and tokenomics to formerly include initial token
allocations as part of governance parameters.

2 RELATED WORK

2.1 Governance in public-permissionless Systems

Bitcoin [46] led to a burgeoning movement of developers that saw decentralization beyond technical terms;
not least, as an ambiguous mix of political, economic, and organizational ideals [60] that materialized in the
emergence of alternative protocols. Commonly the next generation of DLT includes smart contracts and the
possibility to deploy tokens [7, 73]. Collectively, these technologies enable new, decentral business opportunities,
modes of organization, and governance frameworks [61, 64].
While in public-permissionless systems, ’decentralization’ in technical terms is achieved, in political terms,

it is often contentious [11, 60]. Over the decision to increase the size of Bitcoin blocks, community debates led
to an outright "civil war" [22, p. 8] that pitted parties against each other over socio-political motives. The core
developers, who act as gatekeepers to protocol changes and are de facto in charge of governance, eventually took
an autocratic decision against that increase ś a behavior pejoratively described as "senatorial" [49]. Ethereum,
too, faced its share of controversy. Following an exploited smart contract bug the Ethereum Foundation’s leaders
decided to irreversibly fork the ledger [26]. Against this backdrop, Penzo and Selvadurai [51, 19] denote how in
public-permissionless systems, governing communities resort to informal adjudications, typically łimmune [...]
from state scrutiny".
Consequently, scholars distinguish between on-chain and of-chain governance of DLT systems. The former

refers to rules that enforce the ’code-is-law’ dictum; in other words, using smart contracts (and tokens) to
deine governance mechanisms and structures (łnow the code runs itselfž) [55]. The greatest degree of on-chain
governance, is typically achieved within and as part of DAOs [see the deinition proposed in 36]. The informal
resolution mechanisms in Bitcoin and Ethereum, however, are examples that demonstrated the shortcomings of
the ditcum and shed light on ulterior powers and politics that are at play [22, 26]. Of-chain governance refers to
the formalization of control via the intermediary of endogenous (e.g., through the foundation of institutions such
as consortia, cooperatives, etc.) or exogenous (e.g., national laws, regulations, standards, etc.) structures [55, 74]
that are typically registered and held liable [4].

2.2 Voting rights token-based governance

Within DeFi, beyond improvements made to the inancial value chain [3, 59], experiments were made at imple-
menting governance structures fully on-chain; most notably, by embedding voting rights into tokens. These
tokens grant holders the ability to cast votes on proposals. While the features of these tokens are contextual to the
individual project, the majority of these follow the fungible token standard ERC-20. Like most cryptocurrencies,
they are tradable on regular and decentralized exchanges [5]. By nature, the study of these tokens is at the
intersection of research of blockchain governance and tokenomics ś subdomains of cross-disciplinary research on
DLT ś and contribute to research on DAOs [see, 6, 9, 34, 36, 58]
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Oliveira et al. [47, p.8] deine "Governance Parameters" of tokens as those parameters that "relate to what [it]
efectively represents and how this connects to the way the platform is governed and managed". The authors
introduce three parameters (Table 1): (1) "Representation" (the type of asset represented by a token), (2) "Supply"
(the way tokens are distributed), and (3) "Incentive system" (the way a token exerts inluence over the network
and/or its holder). Given the focus on on-chain governance, our scope is on token allocations and distributions;
hence, the prime subject of study being on the "Supply" parameter. Oliveira et al. [47, p. 9] note how "Supply"
strategies can either be on a one-time basis ("ixed") or following increments ("schedule-based"). Tokens can also
be "pre-mined" (or "pre-sold" [28]), that is a portion of the tokens is created and distributed before the oicial
launch date. As such, they are means to overcome the chicken-and-egg problem [25].

Table 1. Excerpt of the Token Classification proposed in Oliveira et al. [47].

Governance Parameters

Representation Digital Physical Legal

Supply Schedule-based
Pre-mined,
scheduled
distribution

Pre-mined, one-of
distribution

Discretionary

Incentive system Enter Platform Use Platform Stay Long-Term Leave Platform

For the supply of voting rights tokens, whose fair deployment is motivated by a normative ambition of
political decentralization, the story is more ambiguous. Uniswap developers pre-mined a part of all voting rights
tokens (UNI) and allocated some to a group of insiders. Among others, the DeFi projects SushiSwap (SUSHI)
and MakerDAO (MKR) followed similar paths, opting for an allocation that favored insiders. Over time, in all
of these cases, wealth concentration was eminent [6]. Voting rights tokens are not exclusive to DeFi projects Ð
they are also used to distribute governance power in blockchain-based metaverse projects ś where, similarly,
concentration was observed [34].
Concentration of wealth and power is inherent to human societies and economic systems [52]. Pareto [48]

exposed the land concentration in the Italian novecento (XXth Century); subsequently lending his name to the
Pareto Principle. Financial markets are no exception to the principle [42]. In cryptocurrency markets the same
phenomena may be observed. Both Bitcoin and Ethereum have centralized token distributions, and the trend
appears to only increase [32]. This is true even in the case of Proof-of-Stake cryptocurrencies where the project’s
security is closely tied to the level of dispersion [57]. Likewise, Nadini et al. [45] and Klein et al. [38] observe
concentration of wealth in markets for non-fungible tokens. When it comes to voting rights tokens, Barbereau
et al. [5] identiied that the level of concentration among voting rights tokens is even higher, highlighting cases
where a handful of people hold more than 50% of all tokens. Interestingly, these tokens are barely used by their
holders to vote [6].

Andre Cronje’s project Yearn Finance (YFI) sought to eliminate favoritism and insider allocations [63]. By opting
for the irst, "ixed" supply strategy, YFI were not allocated to a minority of insiders. Instead, the implemented fair
launch allocation followed the principle of ’fair equality of opportunity’ [see, 54]; efectively, the idea that each
user has the same opportunity to obtain YFIs. Despite its failure to achieve an equitable distribution over time
[5, 6], at least in theory, a ixed initial token allocation that is ’fair’ would help achieve ambitions of decentral
control. Evaluating this proposition is the subject of this study.

2.3 Agent-based modeling

To evaluate the phenomenon of initial token allocations and concentration of tokens we designed an agent-based
modeling (ABM). ABM is a computational method used to simulate the actions and/or interactions of autonomous
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agents in order to understand how systems behave and what determines outcomes [40]. As analytical method,
applications of ABM are found in a variety of disciplines from energy and pathology to risk management and
inance. In IS research, the value of ABM was acknowledged given its methodological versatility to investigate
systems whose "emergent properties unfold over time" [35, p. 158] and its supportive value in the development
and/or veriication of theory [10, 21, 23]. The literature studies of Beese et al. [8] and Dong [23] illustrate the
breadth of ABM applications in IS research ś citing the potential for scholars to embed theory in the exploration
of complex phenomena.
For the study of cryptocurrencies and DLT-based systems, numerous works applied ABM. Bornholdt and

Sneppen [13] proposed a model to study the emergence of cryptocurrencies vis-à-vis Bitcoin ś considering factors
such as trading, mining of new coins, and agent-to-agent interactions. Their indings show that Bitcoin may be
interchangeable with cryptocurrencies of similar characteristics. Cocco et al. [19] built an artiicial cryptocurrency
marketplace based on an order book simulation of the Bitcoin market where agents trade autonomously. Their
model is able to reproduce real price formations and market volatility; hence, our adaptation of it in this work.
Roşu and Saleh [57] propose an environment to model the behavior of investors/agents in a Proof-of-Stake (PoS)
based blockchain of cryptocurrency issuance. They denote, contrary to expectations, that agents seek to stabilize
their portfolio instead of accumulating more wealth.

3 DATA PREPARATION

Given their open and auditable characteristics, DeFi projects, for the most part, are built on public-permissionless
ledgers [3, 59]. These ledgers provide a rich source for the collection and analysis of quantitative data. Chen and
Bellavitis [17] observe that 80% of DeFi platforms, are in fact, built on the Ethereum ledger. Ethereum records a
variety of details, not least on tokens, data about their creation, their initial distribution, and transaction histories.

The fair launch was originally created as part of Yearn Finance, hence it’s practice informs our study inductively
[8]. Speciically, data on Yearn Finance is used to (1) deine the base scenario �0 ("Cronje"), (2) ’feed’ our model
based on reality, (3) calibrate the model, and (4) validate our model. For (2), we also extracted the price of YFI
(from CoinGecko.com) and the Crypto Fear & Greed Index (FGI). The graphs for these two additional data sources
are presented in Figure 1.
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Fig. 1. Graphs for the Crypto FGI and YFI price.
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Yearn Finance is built on Ethereum and uses the ERC-20 token standard for its voting rights token YFI. YFI
was launched with a ixed supply whereby no tokens were allocated to insiders. Instead, the initial supply of
30,000 tokens in circulation was distributed via a liquidity providing scheme. Users could earn YFI by supplying
liquidity into three distinct pools, allowing every user, regardless of their initial capital or other restrictions, to
earn a portion of YFI’s supply proportionate to the contributed liquidity. This type of allocation strategy was
coined as a fair launch [63].
To generate data for our model, we used Dune to extract those addresses that have been holding YFI from

Ethereum’s public ledger. Then, we organized the data such that we could determine how many tokens are owned
daily by each address. Finally, we excluded a number of address ’types’ from the dataset: smart contracts (since
they never utilized their voting rights, despite holding YFI [6]); addresses holding YFI valued less than $1 (since
these rarely vote or trade their tokens owing to Ethereum’s gas fees being signiicantly higher than the token’s
value), and; addresses used to burn tokens (e.g., 0x000. . . 0000) (since no one controls them and YFI is efectively
taken out of circulation). Table 2 presents our inal data set.

Table 2. Overview of data extraction.

Extracted Addresses 96,227
Addresses used in Analysis 86,752
Extraction Period 2020-07-17 - 2021-08-15

Following the inalization of our data set, we utilized Exploratory Data Analysis (EDA) to determine the model’s
initial conditions and variables. We chose September 1st, 2020 (i.e., 45 days after the project’s launch) as the
starting date since at that point the Yearn Finance fair launch took place; in other words, all tokens were allocated
to and claimed by liquidity providers. Using the Anderson-Darling test [2] and the Akaike information criterion
[1], we identiied that the probability distribution of the initial YFI allocation follows a Lomax distribution (� = 0.4,
� = 0.5). Relying on the same methods, we found that the daily number of new addresses that have been holding
YFI increases following an asymmetric Laplace distribution ���� (0.71, 58, 76).

4 THE MODEL

The proposed model for initial allocations builds on an agent-based artiicial cryptocurrency market (c.f. [19]).
Subsequently, we describe the model in terms of the agents, the market rules, and the trading behavior. Then, we
describe the initial token allocations of the three fair launch scenarios. Finally, we introduce the metrics used to
evaluate concentration over time.

4.1 Agents

For our model, we take time steps � ∈ N+ = {1, 2, 3, ...} which correspond to a single day and a new, individual
trading round. The irst time step in our model is at � = 45 (all tokens were allocated, claimed and are in
circulation). For each time step, we deine agents � ∈ � as the addresses that hold voting rights tokens (TKNs)
at the beginning of each trading round. The number of agents at time step � is given by �� (�) ∈ N+. At the
beginning of each trading round, a subset of � is selected to trade TKNs (the selection mechanism as well as the
trading strategy of agents is described subsequently) and new agents (endowed solely with iat currency) enter
the market with the desire of placing buy orders to acquire TKNs. The new agents entering (�� (� + 1) − �� (�))

follows ���� (0.71, 58, 76) for every � > 45. In other words, at each trading round the 95% conidence interval (CI)
of the number of new agents is [114, 119]. We run our model for 347 days (� = 392) and the 95% CI for the inal
number of agents (�� (392)) is [47113, 50890].
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Agents are endowed with iat holdings �� (�) and TKN holdings �� (�). Based on Dragulescu and Yakovenko
[24] and Brzezinski [15], the amount of iat held by both, individual agents at � = 45 and those agents entering
the market at each trading round, is drawn from a Pareto distribution with � = 2.1 and���(�� (�)) = $400� for
the richest 10% of our agents and from an ��� ( 1

40000 ) for the remaining, bottom 90%. The amount of TKNs held
by agents at � = 45 depends on the chosen fair launch scenario �� with � ∈ {0, 1, 2}.
Independently of iat or TKN holdings, each agent � is assigned to one of two populations, Diamond Hands

(DH) and Random Traders (RT), representative of respective trading strategies. DHs are risk averse traders, who
pragmatically invest in the market and are more likely to not incur in trades. RTs, then, are agents who enter to
market for a variety of reasons (e.g., portfolio diversiication, gambling, etc.). Following Cocco et al. [19], the
agent populations is split into 30% DHs and 70% RTs.

4.2 Market rules

The TKN market is given by a mechanism comparable to a clearing house; whereby, buy and sell orders are
accumulated over time and cleared (’matched’) periodically [41]. The purpose of the model and developed market
is not exploring how price is formed; instead, it is to simulate how tokens circulate (and concentrate) based
on clear conditions. The mechanism we utilize is not a formal clearing house as it does not account for price
formation, nor does it include adjustments of price after every transaction over time. Instead, at each time step
the TKN price �� (�) is updated based on YFI’s historical price data. Agents can autonomously decide whether
they are willing to trade. Agents do not, however, have information about the orders other agents are placing. The
scope of this work and the developed ABM is on token concentration, and not the way price is formed. Clearing
houses ofer a simple and efective system for matching orders between agents, requiring limited computation
overhead and facilitating a realistic low of tokens, which makes them suitable for large ABMs [18]

At � ≥ 45, the total number of tokens in circulation is given by the constant �� = 36666. For the trade of TKNs,
we model a two-sided market with a number of buyers, each willing to buy TKNs, and several sellers, each willing
to sell TKNs. Additionally, at every time step the buy/sell orders created by the agents are matched in a irst in
irst out method, and at the end, the unmatched orders are canceled.

4.3 Trading behavior

Depending on the population agents belong to, they exert a choice ś to trade (� ) or not to trade ś at every time
step � . This decision is given by the probability �� (� ). For RTs, who randomly wish to trade following a uniform
distribution, �� (� ) = 0.5. For DHs, �� (� ) is dependent on two independent variables. First, the Fear & Greed Index
(��� (�)) which luctuates between a value of 0 ("Extreme Fear") and 100 ("Extreme Greed") [70]. In our case, we
consider the values of the index as "Extreme" (���� ) when ��� (�) > �ℎℎ or ��� (�) < �ℎ� , and "Normal" (����)
when �ℎℎ > ��� (�) > �ℎ� with �ℎℎ and �ℎ� thresholds for the extreme values of Fear & Greed Index. Second, the
agent’s wealth (� ), given by an agent’s individual holding denominated in iat �� (�). An agent’s wealth at time �
is considered "High" (�ℎ) when �� (�) is above the 90

th percentile of the wealth distribution and "Low" otherwise.
Therefore, the probability of a DH agent to trade is given by:

�� (� ) = � (� ∥���� ,�ℎ)� (���� )� (�ℎ) + � (� ∥���� ,�� )� (���� )� (�� )

+ � (� ∥����,�ℎ)� (����)� (�ℎ) + � (� ∥����,�� )� (����)� (�� )
(1)

If an agent is willing to trade, the subsequent decision to execute a buy or sell order depends on the population
they belong to. For RT, the buy and sell orders follow a Bernoulli distribution with � = 0.5. Initially, the same
holds for DH but in their case the probability is calibrated at a later stage based on the data from Yearn Finance
(c.f. Section 5). In the trading behavior, we do not consider protocols that allow to stake/sell voting rights token
entitlements (e.g., Bribe Protocol) as these add yet another degree of complexity. At each time step the amount of

ACM Trans. Manag. Inform. Syst.



8 • Fernandez et al.

iat currency an agent spends on buying tokens follows a N(� =
�� (� )

2 , � =
�

3 ) and the number of TKNs an agent

sells follows a N(� =
�� (� )

2 , � =
�

3 ). In our model, the average buy and sell values are considerably higher than
those in [19]. This choice was intentional in order to increase the trading volume since agents trade at most once
per day.

Admittedly, the agents of our model have limited intelligence since the only market factor that inluences their
decisions is the FGI. Although agents with more sophisticated decision-making (e.g., taking into consideration the
price volatility of YFI) could potentially enhance the accuracy of the model, they are challenging to implement in
our case due to the large number of agents considered. Despite that, existing literature indicates that ABMs that
are composed of even less sophisticated agents (also known as zero-intelligence agents) have been able to capture
some of the core characteristics of inancial markets [see, 27, 33].

4.4 Fair launch scenarios

Our simulation is set up around three distinct scenarios representative of initial token allocations understood as
’fair’. Their design is informed on the basis of the epistemic dichotomy described in Beese et al. [8] as well as
Dong [23].
The ‘base’ scenario, �0, is created following an inductive approach (its design is informed by data extracted

from Yearn Finance) and the distribution of�� is modeled to follow a Lomax distribution with � = 0.4 and � = 0.5.
The artiicially created fair launch scenarios �1 and �2 are designed following a deductive approach on the basis
of theory; here, philosophical interpretiations of what might be seen as ‘fair’.
The irst alternative scenario, �1 ("Bentham"), considers ’fairness’ in egalitarian terms: equity is achieved in

terms of uniformity such that the total supply of tokens is divided equally among the participants. Formerly,
it considers Jeremy Bentham’s dictum that "everybody to count for one, nobody for more than one" [see 43],
without consideration of individual interests or material situation. For �1, �� is uniformly distributed such that

each agent � at � = 45 holds �� (45) =
��

�� (45) .

The second alternative scenario, �2 ("Rawls"), considers randomness, and more speciically, the principle of
a lottery as ’fair’: equity is achieved in terms of a token allocation ś at random ś, and in our case, following a
Normal distribution. It re-hashes the idea that the outcome of each individual’s position, like the outcomes of
ordinary lotteries, is a matter of good or bad "luck" [53, p. 74-5]. Randomness and chance are central to the theory
of Darwinian evolution [68]. For �2, �� is distributed among agents following a truncated Normal Distribution
(� = 0.103, � = 0.192) deined on [0,∞].

In sum, we investigate two additional scenarios aside from the base scenario (Table 3). While keeping the
market conditions and parameters ixed, changing the initial allocation of tokens provides further insight into
the concentration of wealth.

Table 3. ‘Fair’ initial token allocation scenarios.

Scenario Allocation Perspective

�0 "Cronje" (Yearn Finance) Everyone gets the same opportunity Social liberalism
�1 "Bentham" Everyone gets the same Egalitarianism
�2 "Rawls" Everyone gets a random amount Darwinism

4.5 Metrics

Given the aim of analyzing the distribution of voting rights tokens post fair launch allocation, select metrics are
computed at every time step. These metrics are the Gini Coeicient [31] and the Shannon Entropy [62]. This
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choice was made based on an evaluation of related works seeking to quantify and measure the distribution of
tokens in a system; notably, as discussed in Gervais et al. [30], Gochhayat et al. [32], Barbereau et al. [6], and
Klein et al. [38].

The Gini Coeicient is typically used to assess the distribution of wealth in a given country. It was, however,
also applied to study wealth distribution in Bitcoin and Ethereum [32], in non-fungible tokens markets [38],
and the distribution of voting rights tokens in DeFi projects [5, 6]. For our model, the Gini � indicates the
concentration of TKNs amid agents. The Gini is given by:

� =

��
∑

�=1

��
∑

�=1
|�� − � � |

2�� ·
��
∑

�=1
� �

(2)

where �� corresponds to the share of TKNs held by agent � and �� the total number of agents. It is maximized
through the Dirac distribution ��0 , i.e., ��0 = 1 for some �0 ∈ {1, . . . , ��} and �� = 0 for all � ≠ �0, and minimized
through the uniform distribution, i.e., �� =

1
��

for all � .

The Shannon Entropy was initially developed to assess the information loss in telecommunication networks
[62]. It has found application in multiple areas predominantly as a measure of uncertainty or randomness. In
the context of blockchain technology, it was used to measure the level of decentralization in the consensus
mechanism [32], network structure [29], and governance [67], of both Bitcoin and Ethereum.

TheNormalized Shannon Entropy (NSE), then, takes values between 0 and 1, and determines the unpredictability
of a distribution.We assume that a systemwhere the voting tokens are distributed can exhibit high unpredictability
(1), given that more agents inluence the outcomes. The NSE is given by:

NSE = −

��︁

�=1

�� log(�� )

log��
(3)

where 0 log(0) ≡ 0 by convention since lim
�→0

� log(�) = 0. It is 0 for ��0 and 1 for the uniform distribution (i.e., the

extremes are interchanged compared to the Gini coeicient). To ease graphical observation, we opted to consider
1-NSE instead of NSE such that, as in Gini, higher values correspond to higher degrees of centrality.

5 IMPLEMENTATION AND CALIBRATION

The model was implemented in Python using the MESA framework [37]. The simulation and calibration of the
model was performed in a High Performance Computing (HPC) facility. The hardware provided, depending on
the allocation of the HPC, were a Dual Intel Xeon Broadwell or Skylake with 128GB of RAM.

For the calibration, we followed the recommendations of Richiardi et al. [56, p. 4] whereby a łfull explorationž
of the parameters is required. To do so, we implemented a grid search (GS) to ind a set of optimal values of
parameters. GS performs an exhaustive search over all the possible combinations of parameters until inding the
optimal one. The goodness of the it and the stopping condition of GS are computed using Root Mean Squared
Error (RMSE) and Mean Absolute Percentage Error (MAPE) between the actual (extracted from the dataset) and
calibrated model. The respective equations are given by:

RMSE =

√

√

(

1

�

) �︁

�=1

(�� − �̂� )2 and MAPE =
100

�

�︁

�=1

�

�

�

�

�� − �̂�

��

�

�

�

�

(4)

where �� is the actual observation and �̂� is the simulated value.
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The optimization was executed over all eligible parameters. The FGI threshold takes values from 0 to 100. For
all other parameters, we considered values between 0 and 1. The optimal parameter values are displayed in Table
4.

Table 4. Optimal parameter values.

Parameter Description Optimal Value

��� (���) Buy probability of DH 0.7
��/�� (�) Population share of DH 0.3

�ℎℎ FGI threshold high 80
�ℎ� FGI threshold low 20

� (� ∥���� ) Trading probability under extreme market conditions 0.7
� (� ∥�ℎ) Trading probability under high wealth 0.7
� (� ∥����) Trading probability under normal market conditions 0.8
� (� ∥�� ) Trading probability under low wealth 0.9

The optimal values of the DH/RT population ratio were close to the ratio used by Cocco et al. [19]. Therefore,
we ixed it at 30% DHs and 70% RTs. Similarly, the buy probability was optimized to be 70% for DH. For the DHs,
we found that high trading probabilities indeed lead to lower error rates (Table 5). This, as demonstrated in Roşu
and Saleh [57], represents an expected behavior as more trading is linked with higher wealth concentration.
Diametrically opposed to the high trading probability parameter set, is an artiicially created parameter set, with
relatively low trading probabilities. The error rates for this parameter set are relatively worse than the optimal
set of high trading probabilities. We also artiicially generated and investigated a compromise between the two
sets (medium probability) without extreme trading probabilities.

Table 5. Diamond Hand trading probabilities parameter sets with their correspondent error rates

Parameters High Medium Low

� (� ∥���� ) 0.7 0.3 0.1
� (� ∥�ℎ) 0.7 0.4 0.1
� (� ∥����) 0.8 0.3 0.2
� (� ∥�� ) 0.9 0.5 0.2
�� (� ) 0.77 0.38 0.15

���� 0.1859 0.224 0.255
���� 0.007 0.009 0.012

In sum, we investigate three scenarios (Table 3) under three trading probabilities (Table 5). The results might
vary due to the stochastic nature of ABM. In anticipation of this variance and to ensure the robustness of our
results, we applied a Monte-Carlo method [39] by repeating the experiment of the three simulation sets within
the HPC; resulting in more than 1000 simulations (or, approximately 300 per set of trading probabilities). For all
simulations, the agents can place buy or sell orders depending on the probability deined in ��� = 0.7 for DH
(optimized value) and ��� = 0.5 for RT (constant) respectively.
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6 SIMULATION RESULTS

6.1 Efects of trading probabilities on the three scenarios

The irst simulation considers the model’s behavior under high trading probability (Figure 2). High trading
probability refers to a relatively high likelihood for DH agents to place an order. The second simulation is the
artiicially created edge case with low trading probabilities (Figure 3). It is diametrically opposed to the former,
and explores the behavior of DH agents when the market dictates a relatively low likelihood to place a trade.
(The graphs for �0 and �2 are visually coinciding.) The third simulation set was created artiicially as middle
ground between the high and low trading probabilities (Figure 4).
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Fig. 2. Simulations for the parameter set representative of high trading probabilities.
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Fig. 3. Simulations for the parameter set representative of low trading probabilities.
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Fig. 4. Simulations for the parameter set representative of medium trading probabilities.

Across all trading probabilities, for �0 and �2, the Gini values of the simulated data overlap considerably with
the extracted YFI data for � ≥ 100. Until the end of the simulation time frame, the Gini values of the extracted
data diverge by at most by 1.1% on �0 and 1.7% on �2 across all trading probability scenarios. The close it between
the extracted data from Yearn Finance and the three simulations, and in particular for �0, is expected given the
performed optimizations. The exception to the convergence is �1, whose graph is below the extracted data in
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all three simulations. It appears that an egalitarian initial token allocation would then lead to relatively less
concentration in the time frame of the simulation.

We expect variations in the initial values of Gini and NSE because, even though our model starts with the same
number of agents at each simulation, the initial token allocation is not ixed and as discussed above, the token
distribution in �0 follows a Lomax distribution. Regardless of the scenario and trading probability, after the 1-NSE
stabilizes, all distributions move in a lateral and parallel direction with regards to the extracted 1-NSE values
from YFI. Although our simulation results seem to coincide with the Yearn Finance data for Gini we observe high
variations of the NSE. This divergence may be interpreted in two ways.

At inception of Yearn Finance some contracts held a large amount of YFI and distributed them shortly after.
Given the scope of our model we did not consider such behavior. We argue that the smart contracts that emitted
YFI rapidly result in sharper rises in the metrics’ values. This is consistent with our indings which indicate that
when there is a large amount of YFI accessible for trading in a short period of time, the metrics rise.

The second interpretation pertains to the token supply (�� ). Formerly, the supply of YFI was "schedule-based"
[47]: it began with a supply of 30000 YFI allocated following the fair launch, and subsequently an additional
6666 YFI tokens were distributed. For simplicity, we start with 36666 supply dispersed to the starting holders
in our simulations. Again, the distribution of 6666 YFI in a short period of time theoretically results in higher
concentration than our model, which in contrast, distributes YFI more slowly over time. The schedule-based
supply of YFI can be observed in the ’bumps’ around t=100. While the change is more subtle in Gini, within
1-NSE the change is more clearly observable. This is due to the comparatively higher sensitivity of the latter
metric with regards to minor luctuations [see, 6] which can also be observed in the Figures above, where the
standard deviation of NSE is substantially higher than that of Gini.

6.2 Actual concentration of wealth amid whales

Following the three simulation sets focusing on the trading probabilities, we performed a more granular analysis of
the actual concentration of TKNs amid the population of agents (�� (392)). Particularly, we sought to investigate
the share of agents that hold 90% of all tokens in circulation. These agents are so called whales, "’wealthy’,
above-average token-holders" [6]. In consideration of the amount of available data following the Monte-Carlo
simulations, in Table 6 we present a more feasible analysis on the basis of the results from the irst simulation
round. For the sake of comparison, the extracted column refers to reality (i.e., the Yearn Finance data).

Table 6. Share of agents that control 90% of TKNs in circulation at t=392.

High probability Medium probability Low probability Extracted

Scenario Percentage Actual Percentage Actual Percentage Actual Percentage Actual

S0 Cronje 2,59% 1137 / 43830 2,63% 1188 / 45092 3,63% 1499 / 41248 2,02% 849/41926

S1 Bentham 10,80% 4777 / 44214 10,73% 4847 / 44950 11,38% 4999 / 43895

S2 Rawls 0,76% 376 / 49397 1,29% 572 / 44300 2,83% 1250 / 44056

Unsurprisingly, in consideration of the values metrics took in the previous analysis, we observe a concentration
of TKNs in the hands of the few. These few individuals are de facto in control as they may exert signiicant political
pressure. In relative terms, as relected in the metrics, the egalitarian allocation �1 shows that the actual number
of whales is higher. Regardless, our results align and support the timocratic description of DeFi governance by
Barbereau et al. [6] and the observations on whales (in metaverse DAOs) by Goldberg and Schär [34].
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6.3 Extending the simulation of S_1 "Bentham"

After running the irst set of simulations, we opted to run a separate simulation to explore whether �1 indeed
demonstrates more or less concentration over time. To do so, we extended the simulation rounds from t=392
(August 15th 2021, the last data point extracted from Yearn Finance) to t=545 (March 1st 2022, the last point of
the simulations). This represents an extension of 44.39%. The results of the simulation are presented in Figure 5.
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Fig. 5. Simulation for the Bentham scenario under the three trading probabilities.

From our previous simulations on the efects of diferent trading probabilities, we observe how �1 Bentham’s
initial token allocation positively afects both metrics. It is to be expected that an equal distribution of tokens at
origination will reduce concentration, at least early on. In this simulation we observe similar phenomena to what
was demonstrated in Roşu and Saleh [57]: even though the delayed efect of an egalitarian initial token allocation
(like the one simulated) might generate, concentration is, judging from our simulation results, inevitable in
the long run. To corroborate this observation, we itted linear regressions (LR) on Gini from the three trading
scenarios. In the worst case scenario, the slope of the LR is 4 ∗ 10−4.

7 VALIDATION OF THE MODEL

Validation is an essential part of ABM [8, 21, 23]. There are numerous techniques for validation, all of which are
used to establish credibility in the simulations [8]. To validate our model we opt to use three diferent techniques:
event validity, parameter variability (sensibility analysis), and extreme condition tests.

7.1 Event validity

For the event validity, simulated events are compared with those occurring in real world systems [8]. Speciically,
we take the share of agents that control 90% of TKNs in circulation between t=1 and t=392 for �0 Cronje. (The
values at t=392 are identical to those displayed in Table 6.) The real world (extracted) data is taken from Yearn
Finance (c.f. Section 3). The comparison between these datasets is displayed in Figure 6.
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Fig. 6. Validation through event validity for the share of agents that control 90% of the circulation between Yearn Finance
and �0.

The model during calibration was not given any information regarding the token concentration. From Figure
6, we visualize how both the simulated and real world values converge after approximately 100 steps (100 natural
days). At the end of the simulations the diference is 0.4 percent points. These results present a solid base for the
validity of the model as it closely replicates reality [21].

7.2 Parameter variability

For the parameter variability, input parameters are modiied and the resulting changes analyzed [8]. We evaluated
the impact of alternative DH/RT population ratios ś with 10%, 30%, 50%, 70%, and 90% DH ś on the scenario
�0 relative to reality. The change was observed in terms of the metrics. Here too, we applied the Monte-Carlo
method using the HPC. Figure 7 gives the simulated metrics for the ive ratios along the actual distribution of the
Yearn Finance token.

The procedure yields variability between the diferent population ratio and reality. We deine the Δ as the
diference between the simulated scenario and the extracted data. The simulations with 90% (Δ����=1.95%;
Δ���=34.89%), 70% (Δ����=1.30%; Δ���=29.42%), and 50% DH (Δ����=0.71%, Δ���=25%) perform relatively worse
than those with 30% (Δ����=0.015%; Δ���=19.65%) and 10% (Δ����=0.4%; Δ���=16.52%). In consideration of the Δ
values and Cocco et al. [19] (who take 70% irrationality), the 30% DH is most appropriate and therefore justiies
the models’ validity [21].

7.3 Extreme conditions test

For the extreme conditions tests, we tested whether our model behaves reasonably when extreme values are
selected for speciic parameters [8]. To do so, we selected parameters to be tinkered with, all while keeping the
other parameters at their optimal value (refer to Table 4). Here, the considered scenario is �0 relative to reality.
In the irst analysis, we considered extreme values for the ratio of DH. Figure 8 displays our model if the

population share of DH (��/�� (�)) is at 0.01 and 0.99. The results displayed here support our argument that
the more the tokens are traded, the more concentration is to be observed. Conversely, fewer trades yield less
concentration.
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Fig. 7. Impact of diferent population allocations on Gini and NSE
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Fig. 8. Impact of extreme population allocations on Gini and NSE

In the second analysis, we considered extreme values for the FGI threshold (�ℎ). Figure 9 displays our model
under diferent �ℎℎ and �ℎ� . As we note minor diferences (0.33 < Δ���� < 0.54; 2.71 < Δ��� < 4.56) between the
extreme FGI scenarios and the optimal scenario, we conclude that the impact of extreme values for the FGI
threshold is moderate on the model. This meets expectations as the model ought to behave łreasonablyž when
extreme values are selected [8, p. 512].
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Fig. 9. Impact of extreme FGI thresholds on Gini and NSE

8 DISCUSSION

Using agent-based modeling (ABM), we evaluated how trading probabilities afect distribution over time within
three distinct scenarios representative of ’fair’ initial token allocations. Our indings are consistent with Barbereau
et al. [6] timocratic description as the ability to trade voting rights tokens appears to be one of the causes of
concentration (RQ1). Amid all three simulation sets with high, medium, and low trading probabilities, the three
scenarios tend towards concentration (RQ2). Subsequently, we discuss our contributions, implications, and
limitations.

8.1 Contributions and implications

The concentration of wealth in the long term, as observed in our constructed ABM, aligns with indings on the
concentration of wealth in public-permissionless [6, 32, 34], and general understandings on the concentration of
wealth [52]. The implications of our indings are of theoretical and practical nature.

Our indings allow to "sharpen" theory [21, p. 440] on tokenomics and DAO governance. Speciically, we
contribute to the token classiication of Oliveira et al. [47] as we reine the "Governance Parameters" in favor a
distinction of the "Supply" parameter in terms of "Distribution" and "Allocation". The "Distribution" parameter
is accounted for already as it is equivocally used for the "Supply" of tokens. For "Allocations" we distinguish
between "Fair Launch" allocations (such as the ones described) and all other token allocations that may favor a
minority of insiders (e.g., like Uniswap did). This contribution parallels research on ICOs which account for these
’unfair’ allocations as so-called "private pre-sale[s]" [28, p. 10] ś a terminology we adopt here.

Table 7 showcases our reinement vis-à-vis the original classiication of Oliveira et al. [47]. While our indings
do not allow to distinguish causation or correlation between allocation and concentration of tokens over time,
the inclusion of "Allocations" in the token classiication provides an indication for the normative ambitions of
on-chain governance frameworks. Certainly, these are of value to research on DAOs, their governance, and
concentration of power [see, 6, 9, 34, 36, 58]
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Table 7. Italicized refinements to the Token Classification of Oliveira et al. [47].

Governance Parameters

Representation Digital Physical Legal

Supply
Distribution Schedule-based

Pre-mined,
scheduled
distribution

Pre-mined, one-of
distribution

Discretionary

Allocation Fair launch ’Unfair’ launch, pre-sale

Incentive system Enter Platform Use Platform Stay Long-Term Leave Platform

The practical implications of our indings are for the design of future governance frameworks that leverage
voting rights tokens. Our work provided additional evidence that trading largely determines the extent to which
governance power is concentrated. Hence, beyond the alternative to move governance of DAOs ‘of-chain’ (which
carries a high risk of concentration of power [see, 22, 26, 49, 55]), the possibility to transfer tokens must be
addressed.

In practice, this can be achieved through a new class of tokens described as soulbound. The introduced deinition
refers to "accounts, or wallets, that hold publicly visible, non-transferable (but possibly revocable-by-the-issuer)
tokens" [69, p. 2]. In other words, the (albeit pseudonymous) identity of a holder is encrypted into an Soulbound
Token (SBT) that is linked to the respective wallet. The opportunities for on-chain governance are promising:

• They mitigate Sybil attacks.
• They (could) grant more voting power to reputable holders.
• They enable for "proofs-of-personhood".
• They allow to correlate between SBTs which support particular causes and prevent a "tyranny of the
majority" [44].

These opportunities provide avenues for research as they require contextual analysis. To date, we note the
intended application of SBTs for Know-Your-Customer processes and user credentials as the cryptocurrency
exchange Binance stipulated the intent to explore SBT on its native blockchain. Binance’s SBT would grant access
to speciic functions of the BNB Chain [50]. Another, experimental application of SBTs is in electronic health
records [see, 65]. It remains to be seen how these are implemented in practice and to what extent they achieve
said promises.

8.2 Limitations

The research is subject to a number of limitations. In turn, some also ofer potential research directions in the
ield of modeling cryptocurrency/token markets and organizational works in IS research.
The irst limitation pertains to the deined market rules. Though these followed the principles stipulated in

Mendelson [41], the clearing mechanism lacks a formal price clearing method. As we aim to replicate the behavior
of YFI and evaluate the concentration of tokens, we acknowledge that the deined market mechanics may result
in an oversimpliication of reality. Fitting a model that accurately replicates the price of the mentioned asset
poses challenges due to the high volatility and stochasticity observed in cryptocurrency markets. (This limitation
was acknowledged in Cocco et al. [19].)

The second limitation pertains to the awareness of agents. In the designed model the decision making of
individual agent’s does not depend on past decisions or those of other agents. To address these shortcomings,
future work may build upon and extend our model to include a public order book where agents are aware
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about other orders. Further, a distinction may be made between trading mechanisms and clearing methods on
centralized and decentralized exchanges.

The third limitation pertains to the trading behavior of agents. For our simulations, we heavily rely on the FGI
as a proxy for market conditions. Subsequent work could opt for the use of more granular indicators, such as the
price or the volatility of diferent DeFi assets or social media data.

At last, because this study focused on initial token allocations, we did not consider the diferent techniques to
cast the actual votes. While the allocation might lead to concentration, speciic voting techniques may prevent
whales from skewing the outcomes of elections. Quadratic voting ś whereby preferences in terms of strength
instead of a simple ballot are cast [16] ś is now efectively used in some DAOs (e.g., Synthetix) and discussed in
others (e.g., OlympusDAO, CurveDAO). That method, however, is yet to prove fruitful in the long run: one of
the considered cases in Barbereau et al. [6], Synthetix, uses quadratic voting and although the indings reveal
relatively less concentration, all metrics are still high. The evaluation of diferent voting techniques represents a
notable research direction for interdisciplinary IS research.

9 CONCLUSION

Within the DeFi space, recent scholarship observed the implementation of on-chain governance frameworks
for DAOs that leverage tokens embedded with voting rights. The initial allocation of these voting rights tokens
ought to follow principles of fairness in order to achieve normative goals of political decentralization. The fair
launch allocation of Andre Cronje gained prominence as it did not allocate any tokens to a minority of insiders.
However, in practice it fell short as over time YFI tokens became highly concentrated.
The contributions of this study are threefold. First, on the basis of Cocco et al. [19] and Roşu and Saleh [57],

we proposed an agent-based modeling (ABM) to simulate fair launch initial token allocation. Using the model,
we simulated alternative initial token allocation scenarios understood as ’fair’ [43, 53]. Second, as our simulation
results show, over time, independently of market conditions and agents’ willingness to trade, concentration is
imminent. At last, the implications of our results allowed to extend understandings on DAOs and tokenomics to
formerly include allocations as formal part of developed governance understandings.
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