

FIGURE S1: Average values of key variables and fluxes vs. [IP₃] as complementary figures to the bifurcation diagrams shown in Fig. 2D and Fig. 3B bottom and portrait phases in Fig. 4C. Note that \bar{J}_{IDH} and \bar{J}_{KGDH} are indistinguishable. Empty and filled dots correspond to steady-state or period-averaged quantities, respectively. Parameter values are the same as in Fig. 2D.

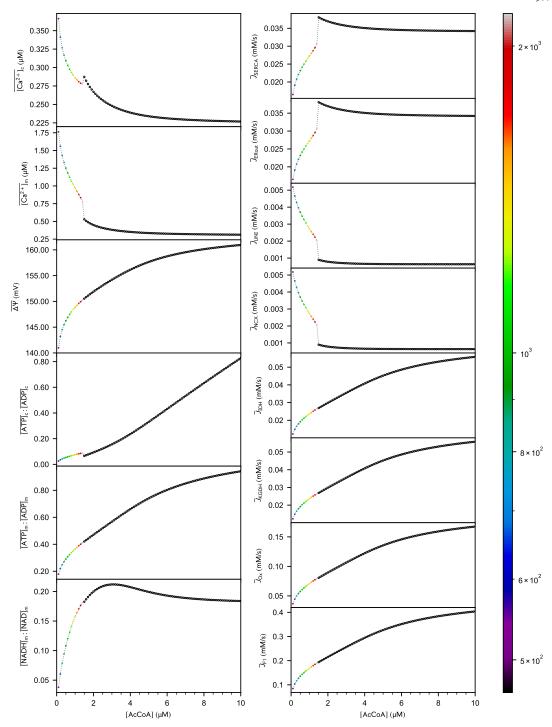


FIGURE S2: Average values of key variables and fluxes vs. [AcCoA] as complementary figures to the bifurcation diagrams shown in Fig. 2E and Fig. S3B bottom. Note that \bar{J}_{IDH} and \bar{J}_{KGDH} are indistinguishable. Empty and filled dots correspond to steady-state or period-averaged quantities, respectively. Parameter values are the same as in Fig. 2E.

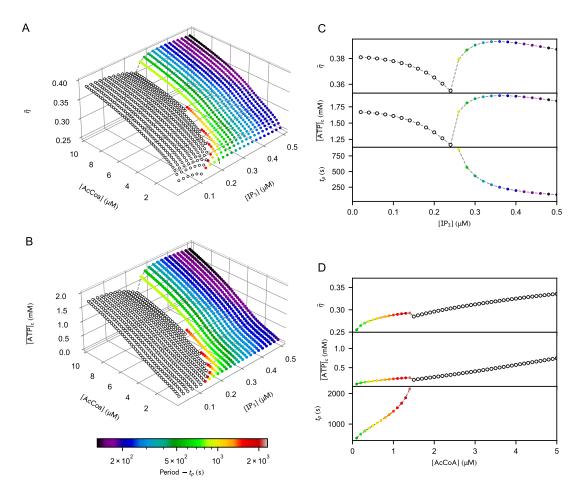


FIGURE S3: Efficiency of mitochondrial metabolism (η) , average cytosolic ATP concentration ($\overline{[\text{ATP}]_c}$ (mM)) and period of Ca²⁺ oscillations (t_p) as functions of [AcCoA] and [IP₃]. (A-B) Summary 3D plots. IP₃ plays a dominant role in the transition between steady-state and oscillations, which usually takes place for concentrations of IP₃ between 0.2 and 0.3 μ M. The onset of oscillations can be triggered for smaller [IP₃] in the presence of a very low level of AcCoA (e.g. [AcCoA] $\leq 1 \mu$ M), which supports the role of Ca²⁺ oscillations as a rescuing mechanism aiming to improve the efficiency of energy production in stressing situations such as substrate-limited. For more clarity, representative behaviors of the efficiency (top panels), $\overline{[\text{ATP}]_c}$ (mM) (middle panels) and period (low panels) were plot for (grey lines - C) [AcCoA] = 10μ M and (brown lines - D) [IP₃] = 0.20μ M, as complementary figures to the bifurcation diagrams shown in Fig. 2D and 2E, respectively. Note that maxima in efficiency and in $\overline{[\text{ATP}]_c}$ (mM) can also be observed when [AcCoA] is varied. Increments in concentrations are of 0.2μ M (A-B) or 0.1μ M (D) for AcCoA and of 0.2μ M (A-C) for IP₃.

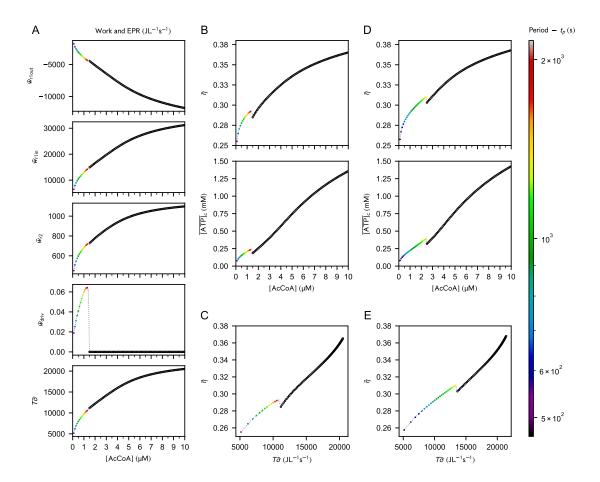


FIGURE S4: Stimulation of mitochondrial metabolism by AcCoA impacts Ca^{2+} dynamics via the Ca^{2+} -metabolism cross-talk. (A) Nonconservative work contributions, driving work and dissipation for different [AcCoA]. The driving work represents less than 0.0006% of the EPR. At high stimulation, oscillations disappear in the favor of a nonequilibrium steady-state regime. (B) Efficiency and ATP_c concentration as a function of [IP₃]. (C) Efficiency as a function of the total dissipation for the same range of [AcCoA] as in (A) and (B). (D-E) Plots corresponding to (B-C) for $V_{max}^{SERCA} = 0.096 \, \mu M \, s^{-1}$. Empty and filled dots correspond to steady-state or period-averaged quantities, respectively. Unless specified otherwise, parameter values are the same as in Fig. 2E.

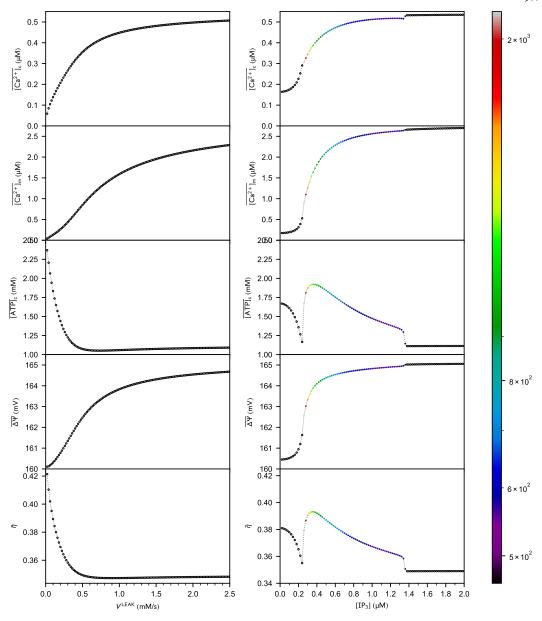


FIGURE S5: Average values of key variables $vs.\ V^{\rm LEAK}$ for [IP₃] = 0.10 μ M. The corresponding plots $vs.\ [IP_3]$ for $V^{\rm LEAK}$ = 0.15 mM s⁻¹ (cf. Table 4) are shown on the right for comparison. Empty and filled dots correspond to steady-state or period-averaged quantities, respectively. The other parameter values are the same as in Fig. 2D.

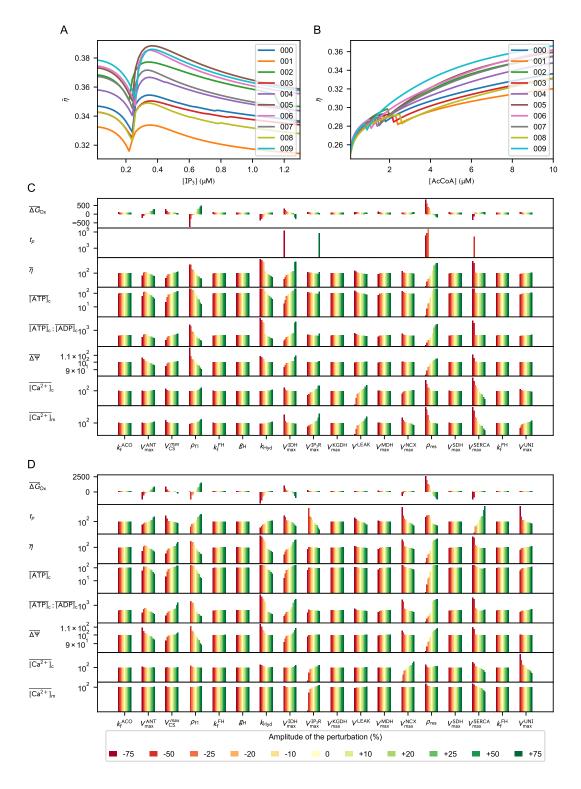


FIGURE S6: Sensitivity analysis. (A - B) Bifurcation diagrams for $[AcCoA] = 10 \ (\mu M)$ and $[IP_3] = 0.2 \ (\mu M)$. The values of the leading constants can be found in Table 6. (C - D) Fold-change in Gibbs free energy of cellular respiration, thermodynamic efficiency, cytosolic ATP concentration, ATP_c : ADP_c ratio, mitochondrial membrane potential, cytosolic Ca^{2+} concentration, mitochondrial Ca^{2+} concentration, and (change in) absolute period of Ca^{2+} oscillations. Oscillations can be induced by perturbations of the reference steady-state and *vice-versa*. If oscillations are present, the calculations are based on the period-averaged value of the quantity. For the period bar plot, the absence of a bar indicates a steady-state regime.