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Parkinson’s disease (PD) is a highly heterogeneous disorder influenced by several environmental and
genetic factors. Effective disease-modifying therapies and robust early-stage biomarkers are still
lacking, and an improved understanding of the molecular changes in PD could help to reveal new
diagnostic markers and pharmaceutical targets. Here, we report results from a cohort-wide blood
plasmametabolic profiling of PDpatients and controls in the Luxembourg Parkinson’sStudy to detect
disease-associated alterations at the level of systemic cellular process and network alterations. We
identified statistically significant changes in both individual metabolite levels and global pathway
activities in PD vs. controls and significant correlations with motor impairment scores. As a primary
observationwhen investigating sharedmolecular sub-network alterations, we detect pronounced and
coordinated increasedmetabolite abundances in xanthine metabolism in de novo patients, which are
consistent with previous PDcase/control transcriptomics data froman independent cohort in terms of
known enzyme-metabolite network relationships. From the integrated metabolomics and
transcriptomics network analysis, the enzyme hypoxanthine phosphoribosyltransferase 1 (HPRT1) is
determined as a potential key regulator controlling the shared changes in xanthine metabolism and
linking them to a mechanism that may contribute to pathological loss of cellular adenosine
triphosphate (ATP) in PD. Overall, the investigations revealed significant PD-associated metabolome
alterations, including pronounced changes in xanthinemetabolism that aremechanistically congruent
with alterations observed in independent transcriptomics data. The enzyme HPRT1may merit further
investigation as a main regulator of these network alterations and as a potential therapeutic target to
address downstream molecular pathology in PD.

The diagnosis of Parkinson’s disease (PD) is typically based on clinical
symptoms, such as tremors, rigidity, and bradykinesia, following standard
guidelines for previously validated clinical assessments. While clinical

diagnosis has improved continuously over the past decades and includes
indicators for differential and early diagnosis, many of the covered symp-
toms are nonspecific. These may overlap with other neurological disorders
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or only show up in later stages of the disease, often resulting in a mis-
diagnosis or delayed diagnosis1. One of the main challenges in the clinical
diagnosis is a long pre-motor phase of the disease, during which many
common symptoms may not yet be present or may be subclinical. Differ-
entiating PD from other neurological disorders, such as atypical or sec-
ondary parkinsonism, during this pre-motor phase can be challenging2. In
addition, PD phenotypes can vary substantially, highlighting a need for
objective biological biomarker signatures rather than diagnosis based solely
on a subjective judgment.

Molecular signatures have the potential to provide more specific,
accurate, and cost-effective indicators of a complex disorder such as PD.
While clinical indicators mostly rely on assessing broad categories of
symptomatic and disease-associated changes, molecular markers may
reveal more granular pathological changes occurring already in the pre-
symptomatic disease stages. By facilitating an earlier, more reliable, and
specific diagnosis, molecular signatures may enable more patient-tailored
and effective treatments.

In recent years, omics technologies have significantly contributed to
discovering PD biomarkers. Numerous genetic, protein, and metabolic
changes associated with PD have been identified through these approaches,
and new insights into the disease pathogenesis were gained3. For instance,
several genetic variants have been linked to an increased risk of developing
PD4. Additionally, proteomic studies have revealed altered protein levels in
PD brain tissue, including an increased abundance of alpha-synuclein,
which plays a central role in Lewy body and Lewy neurites formation as a
hallmark pathological feature of PD5. Finally, prior metabolomic studies in
PD have identified changes in disease-relevant cellular pathways, particu-
larly in those related to energy metabolism6.

Despite these advances, omics-based biomarker discovery for PD
is still hampered by several limitations and challenges. While high
cross-validated accuracies for PD diagnosis have been reported for
some of the published omics signatures7,8, the training and test set
sizes used to evaluate the corresponding machine learning (ML)
models are often small. In addition, the signatures for the most pre-
dictive models have often been derived from tissues or body fluids
with limited practical accessibility, e.g., cerebrospinal fluid (CSF),
which requires a lumbar puncture for sample collection. A further
common limitation of the multidimensional patterns in PD mole-
cular biomarker signatures is that they can emerge as black-box
models that are not fully intuitive to interpret9. Considering this and
the limited sample sizes in many prior studies, more research is
needed to find robust and interpretable PD-specific molecular
signatures.

To contribute to the ongoing research efforts in this field, we have
conducted a cohort-wide blood plasma metabolic profiling of 549 PD
patients and 590 controls in the Luxembourg Parkinson’s Study
(LuxPARK10) combined with subsequent statistical and bioinformatics
pathway and network analyses. As a distinctive characteristic of other stu-
dies focusing on PD patients who have already received dopaminergic
medication, we included biospecimens from all 56 untreated de novo
patients available in the cohort. This subset of samples was used to distin-
guish between treatment-associated and treatment-independentmetabolite
changes.

Tomechanistically interpret PD-associated alterations in the context of
cellular networks and exploit prior information fromcomplementary omics
data,wehavemapped themetabolomics statistics onto a dedicated genome-
scale enzyme-metabolite network together with transcriptomics data from
an independent PD case/control study. Through the integrated analysis of
these omics data, we identified coordinated sub-network alterations, par-
ticularly in xanthine metabolism, which displayed regulatory consistent
changes between metabolite abundances and the expression of enzyme-
encodinggenes.These consistent sub-network changesmayhelp to pave the
way towards more robust blood-based biomarker signatures and provide
new insights into coordinated, disease-associated cellular process altera-
tions in PD.

Results
When studying metabolite abundance changes in de novo PD patients
compared to controls and in all PD patients (including subjects who had
received dopaminergic treatments) vs. controls, we identified several
metabolites with a statistically significant alteration (adjusted p value <=
0.05). Figure 1 presents a volcano plot for the de novo PD vs. control
comparison, highlighting the metabolites with both high statistical sig-
nificance and pronounced effect sizes. Table 1 shows the top 25 most sig-
nificant metabolites in de novo PD vs. controls, and Table 2 shows the
metabolites with shared significance in de novo PD vs. controls and all PD
vs. controls (complete ranking tables of all significant metabolites for the
individual comparisons are provided in Supplementary Tables 5 and 6;
rankings for treated patients only are provided in Supplementary Table 7).
The metabolites with shared significance also display the same direction of
the change, i.e., the signs of the log fold-changes are identical. We grouped
the significantly altered metabolites by shared functional categories to dis-
cuss them in the context of the prior literature on molecular mechanisms
in PD.

Xanthine metabolites (inosine, xanthosine, xanthine,
hypoxanthine)
Among the significant abundance alterations, xanthine metabolites
stand out with a shared increased abundance in de novo PD vs.
control for four representatives of this group: inosine, xanthosine,
xanthine, and hypoxanthine (highlighted by the star symbol in the
first column of Table 1). While these changes are highly significant in
de novo patients, they are not observed when comparing only treated
PD patients vs. controls after multiple hypothesis testing adjustments
(see Supplementary Table 7). Since the effect of dopaminergic med-
ication on blood metabolite levels in the group of treated patients
cannot be removed entirely by the conducted filtering and statistical
adjustments, a higher measurement variation in this group as com-
pared to the de novo PD subgroup is in line with our expectations.
However, the difference between treatment-naïve and treated

Fig. 1 | Volcano plot for the differentially abundant metabolites.Volcano plot for
the differentially abundant metabolites when comparing de novo PD vs. control
blood plasma samples. Metabolites displaying abundance changes with high effect
size (absolute log. fold-change effect size (abs(logFC)) > 0.3) and high significance
(adjusted p value <= 0.05) are highlighted in green, metabolites with only a high
effect size are shown in orange, and metabolites with only a high significance in red.
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patients may also reflect the later disease stage of the latter group (see
Table 3).

Interestingly, xanthine metabolites have already been implicated
in PD through multiple mechanisms. One of the proposed functional

links to molecular hallmarks of PD is the generation of reactive
oxygen species by xanthine oxidase (also known as xanthine dehy-
drogenase or XDH). When XDH catalyzes the conversion of
hypoxanthine to xanthine, the reactive oxygen species (ROS) O2

- and
H2O2 are generated11. ROS can induce oxidative stress, which may
damage cellular components such asmitochondria and dopaminergic
neurons. In PD, this can contribute to the loss of dopaminergic
neurons in the substantia nigra as one of the main pathological
characteristics of the disease. Indeed, increased levels of XDH in the
blood of PD patients have previously been reported12, matching our
observed metabolite changes in this pathway. Changes in oxidative
stress signaling in PD are further evidenced by the significant PD-
associated decreased abundance of gamma-glutamylalanine (see
Table 2), which is involved in the metabolism of glutathione, an
antioxidant that is essential for cellular protection against oxidative
damage13.

In addition to this association with ROS generation, xanthine and
someof its derivatives, including paraxanthine, theophylline, and caffeine,
have been linked to neuroprotective mechanisms in PD. In an MPTP (1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of PD, Xu et
al. demonstrated that the administration of paraxanthine, theophylline,
and caffeine significantly attenuatedMPTP-induced dopamine depletion,
as reported in their study14. For caffeine in particular, several epidemio-
logical studies have also consistently shown a significant negative corre-
lation between its consumption and a PD diagnosis15, although this may
be explained by inverse causation (e.g., reduced caffeine consumption due
its effects as central nervous system stimulant, potentially worsening PD
symptoms). Furthermore, the substituted xanthine molecule has been
used as a scaffold to synthesize new drug-like compounds as a non-
dopaminergic strategy for neuroprotection16. The main proposed
mechanisms for the protective actions of xanthines and caffeine in this
context include the antagonism of the adenosine A2A receptor
(ADORA2A) and inhibition of monoamine oxidase type B (MAO-B).
Indeed, A2A is targeted by the drug istradefylline, a xanthine derivative
with a particularly longhalf-life,whichhas been approved by theFood and
Drug Administration (FDA) as an add-on treatment to levodopa (L-
DOPA) for Parkinson’s patients withmotor fluctuations17. For the second
proposed xanthine target, MAO-B, pharmacological inhibitors belong to
the first drugs developed for treating PD18.

In summary, multiple different pathways have been proposed to link
alterations in xanthine metabolism with pathological or protective
mechanisms in PD. To better understand the specific processes involved in
xanthine abundance alterations in PD and identify the potential enzymes
involved,wehave further investigated xanthinemetabolismas part of a joint
network analysis of the metabolomics data and independent PD case/
control transcriptomics data (see section on “Integrative network analysis of
metabolomic and transcriptomic changes in PD”).

Table 2 | Shared significant blood plasma metabolites

Metabolite LogFC (DPD) P value (DPD) Adj. P value (DPD) LogFC (APD) P value (APD) Adj. P value (APD)

Inosine* 1.79 4.44E-06 3.19E-03 0.63 3.57E-03 3.71E-02

Hypoxanthine* 0.85 2.00E-04 2.87E-02 0.45 2.26E-04 5.92E-03

Gamma-glutamylalanine −0.29 0.000323 0.032301 −0.13 4.71E-03 4.44E-02

Benzoylcarnitine −0.34 3.64E-04 3.23E-02 −0.25 9.15E-06 7.76E-04

Retinal 0.30 3.73E-04 3.23E-02 0.13 3.30E-03 3.48E-02

4-hydroxycoumarin −0.57 5.92E-04 4.48E-02 −0.30 1.10E-03 1.62E-02

Tartronate (hydroxymalonate) −0.27 7.12E-04 4.89E-02 −0.18 3.45E-04 7.65E-03

X-12812 −0.53 7.14E-04 4.89E-02 −0.28 1.28E-03 1.80E-02

Shared significant blood plasmametabolites in the comparisons of de novo PD (DPD) patients vs. controls (first three columns) and all PD (APD) patients vs. controls (adjusted for dopaminergic treatment;
last three columns). The columns show themetabolite names (Metabolite), the log fold-changebetween patients vs. controls (logFC), the nominalp value significance (P value) and the adjustedp value (adj.
P value). Metabolites involved in xanthine metabolism have been highlighted by the star symbol (*). In addition to the column headers highlighted in bold, the log fold-changes are shown in bold for
metabolites with increased abundance in PD, and in regular font for metabolites with decreased abundance.

Table 1 | Top 25 most significantly differentially abundant
blood plasma metabolites

Metabolite LogFC P value Adj.P value

Oxazepam (sedative, likelymedication effect) 0.12 1.83E-07 2.63E-04

Inosine* 1.79 4.44E-06 3.19E-03

X-15674 −0.54 3.12E-05 1.49E-02

3-methylcytidine −0.37 4.49E-05 1.61E-02

2-butenoylglycine 0.50 8.18E-05 2.14E-02

Xanthosine* 0.26 1.17E-04 2.14E-02

Oxalate (ethanedioate) −0.22 1.19E-04 2.14E-02

21-hydroxypregnenolone disulfate 0.32 1.19E-04 2.14E-02

Butyrate/isobutyrate 0.43 1.86E-04 2.87E-02

Hypoxanthine* 0.85 2.00E-04 2.87E-02

X-24494 0.43 2.23E-04 2.91E-02

Gamma-glutamylalanine −0.29 3.23E-04 3.23E-02

4-hydroxyphenylacetate 0.42 3.59E-04 3.23E-02

Benzoylcarnitine −0.34 3.64E-04 3.23E-02

Retinal 0.30 3.73E-04 3.23E-02

Cysteine s-sulfate 0.16 3.79E-04 3.23E-02

Xanthine* 0.29 3.82E-04 3.23E-02

2-hydroxy-4-(methylthio)butanoic acid 0.20 4.93E-04 3.94E-02

4-hydroxycoumarin (anticoagulant
medication)

−0.57 5.92E-04 4.48E-02

Tartronate (hydroxymalonate) −0.27 7.12E-04 4.89E-02

X-12812 −0.53 7.14E-04 4.89E-02

Heptanoate (7:0) 0.34 9.33E-04 5.86E-02

3-carboxy-4-methyl-5-pentyl-2-fur-
anpropionate (3-CMPFP)

−0.18 9.41E-04 5.86E-02

3-hydroxybutyroylglycine 0.30 9.79E-04 5.86E-02

Gamma-glutamylcitrulline −0.22 1.02E-03 5.87E-02

The top 25most significantly differentially abundant blood plasmametabolites in the de novoPDvs.
control comparison. Shown is the metabolite name (column 1), the log fold-change between de
novo PD vs. control (column 2), the nominal p value significance (P value) and the adjusted p value
(adj. P value). Compounds reflecting likely medication effects for PD comorbidities have been
indicated in brackets behind the metabolite name. Metabolites involved in xanthine metabolism
have been highlighted by the star symbol (*). In addition to the column headers highlighted in bold,
the log fold-changes are shown in bold for metabolites with increased abundance in de novo PD,
and in regular font for metabolites with decreased abundance.
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Catecholamine metabolism (retinal, ALDH1A1)
Besides the xanthines, the carotenoid retinal was the only other
metabolite exhibiting a significantly higher abundance in both de
novo PD vs. controls and all PD patients vs. controls. Retinal is the
oxidized form of retinol, most well-known as a constituent of visual
pigments. Interestingly, the enzyme aldehyde dehydrogenase 1A1
(ALDH1A1), responsible for converting retinal into retinoic acid, has
already been implicated in the catecholaldehyde hypothesis of PD19,20.
This hypothesis proposes that long-term increased build-up of
DOPAL (3,4-Dihydroxyphenylacetaldehyde), a toxic catecholalde-
hyde metabolite of dopamine which is converted by ALDH1A1 into
its non-toxic formDOPAC (3,4-Dihydroxyphenylacetic acid), plays a
pathogenic role in the development of the disease. It suggests that
DOPAL contributes to the damage to neurons in the substantia nigra
pars compacta, resulting in the typical motor symptoms associated
with PD. Consistent with the increased levels of retinal in PD, we
detected a matching PD-associated decrease in the gene expression of
ALDH1A1 in the studied PD case/control transcriptomics data
(adjusted p value = 5.65E-04), which could result in reduced con-
version of retinal to retinoic acid.

Metabolites associated with nutrition and the microbiome (oxa-
late, tartronate, 4-hydroxyphenylacetate, 3-CMPFP, 3-
methylcytidine)
The identifiedmetaboliteswith significant PD-associations includemultiple
compounds previously linked to microbiome composition or diet. Among
these compounds, oxalate is a naturally occurring substance present in large
quantities in many plants but only found in very low concentrations in
animal tissues21. It may therefore serve as an indicator for a predominantly
plant-baseddiet. It displayeda significantly decreased abundance in denovo
PD vs. controls (adj. p value = 0.021), whereas in the all-PD patients vs.
control comparison, the decrease was only close to the significance
threshold (adj. p value = 0.051). As previous studies suggested that adher-
ence to plant-based diets, which are typically high in antioxidants and anti-
inflammatory compounds, may be associated with a reduced risk of
developing PD22 or improved motor performance23 and slower disease
progression24, oxalatemaywarrant further study asmarker for aplant-based
diet and potential associated beneficial effects.

A further metabolite with known dietary associations is tar-
tronate, which displayed a significantly reduced abundance in both all

PD patients vs. controls (adj. p value = 7.65E-03) and de novo PD vs.
controls (adj. p value = 0.049). Tartronate is a monosaccharide that
has been detected in several natural foods, including sourdough and
ground cherries, among others25, and linked with the presence of
various bacterial species in the human microbiome26. While potential
mechanisms linking tartronate to PD are still unknown, significant
decreased serological abundances in early-stage PD have already been
reported for an independent cohort for both tartronate and oxalate27,
matching with the findings of our study.

Among the diet-associated metabolites with increased abundance,
4-hydroxyphenylacetate (4-HP) displayed significance specific only to the
de novo PD vs. control comparison (adj. p value = 0.032). 4-HP can be
found naturally in human tissues and biofluids and in several natural foods,
and it is also producedbymultiplemicrobial species25. However, since 4-HP
does not provide a sufficiently specific marker for individual food items or
bacterial species, further research is needed to link the observed increase in
de novo PD to specific mechanisms.

Next, the metabolite 3-carboxy-4-methyl-5-pentyl-2-furanpropionate
(3-CMPFP), which showed a significantly decreased abundance in all PD
patients compared to controls (adj. p value = 1.34E-04) and a nominally
significant decrease in de novo PD vs. control (p value = 9.41E-04; adj. p
value = 5.86E-02), is a furan fatty acid previously suggested as a marker for
fish oil intake28, which could indicate a diet with high levels of omega-3 fatty
acids. The metabolite was also reported to act as a protein-bound uremic
toxin and interact with reactive oxygen species (ROS), resulting in cellular
damage28. Thus, the decrease of 3-CMPFP in PDmay be linked to disease-
relevant processes through indirect dietary associations or direct mechan-
istic pathways.

Finally, the metabolite 3-methylcytidine (m3C), which was sig-
nificantly decreased in de novo PD vs. controls (adj. p value = 0.016;
with a similar trend in the all PD vs. control comparison, but no
statistical significance, adj. p value = 0.18), is a pyrimidine nucleoside
previously proposed as a urinary biomarker of whole grain intake29. In
tRNA molecules, m3C is a frequently observed epigenetic
modification30 and a lack of m3C32 modifications in tRNAs has been
shown to impair cytoplasmic and mitochondrial translation31. Fur-
thermore, significant differences in m3C modifications have been
reported in prefrontal lobe cortex samples of Alzheimer’s disease
patients32, and further studies suggested functional links between
defects in tRNA modifications and neurological disease33.

Table 3 | Tabular overview of baseline subject characteristics

PD De novo PD Controls P value (PD vs. controls) P value (de novo PD vs.
controls)

N (female/male) 549 (189/360) 56 (14/42) 590 (206/384) 0.9 0.14

Age at assessment 66.0 ± 10.7 67.2 ± 11.4 61.7 ± 11.7 2.2E-10 8.2E-4

MDS-UPDRS III 32.8 ± 14.6 32.3 ± 14.2 3.69 ± 5.0 < 2.2E-16 < 2.2E-16

H&Y scale 2.1 ± 0.7 1.8 ± 0.57 – – –

Disease duration since initial symptom 12.3 ± 7.3 6.68 ± 5.4 – – –

BMI (kg/m2) 27.5 ± 4.8 28.2 ± 4.8 27.6 ± 4.8 0.67 0.4

MoCA 25.4 ± 3.2 24.9 ± 3.3 26.9 ± 2.6 < 2.2E-16 4.7E-7

SCOPA-AUT 14.4 ± 8.0 8.9 ± 5.3 7.3 ± 5.6 < 2.2E-16 0.052

Diabetes (yes/no) 46/503
8.4%/91.6%

4/52
7.1%/92.9%

48/542
8.1%/91.9%

0.91 1.0

Hypercholesterol-emia (yes/no) 210/339
38.3%/61.7%

27/29
48.2%/51.8%

219/371
37.1%/62.9%

0.71 0.11

History of cancer (yes/no) 60/489
10.9%/89.1%

4/52
7.1%/92.9%

49/541
8.3%/91.7%

0.16 1.0

Tabular overview of baseline subject characteristics for Parkinson’s disease (PD) patients and controls from the Luxembourg Parkinson’s Study (MDS-UPDRSMovement Disorder Society-Unified
Parkinson’s Disease Rating Scale,H&Y scaleHoehn and Yahr scale,BMI bodymass index,MoCAMontreal Cognitive Assessment,SCOPA-AUTScales for Outcomes in Parkinson’s disease-Autonomic).
The study groups (PD = all PD patients, de novo PD = PD patients who have not yet been treated with dopaminergic medication; Controls = healthy control subjects) and the compared characteristics are
both highlighted in bold.
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Metabolites involved in fatty acid metabolism and β-oxidation
(benzoylcarnitine, butyrate, 2-butenoylglycine)
Among the significant metabolites, we identified multiple compounds
involved in fatty acid metabolism, particularly in the β-oxidation pathway.
One of the most pronounced changes was observed for an acylcarnitine,
benzoylcarnitine, showing a shared decreased abundance in de novo PD vs.
controls and all PD patients vs. controls (see Table 2). Alterations in acyl-
carnitine metabolism have been associated with a dysregulation of mito-
chondrialβ-oxidation inPD34.β-oxidationbreaksdown fatty acids into acetyl
CoA (coenzyme A), which can then enter the TCA (tricarboxylic acid) cycle
to generate ATP, fulfilling cellular energy needs. Acylcarnitines, such as
benzoylcarnitine, are used as carriers to transport activated long-chain fatty
acids into themitochondria forβ-oxidation. InPD, increased long-chain fatty
acids anddecreased long-chain acylcarnitines have been observed, suggesting
an impairment of mitochondrial β-oxidation34. Interestingly, the drug zoni-
samide,whichhas beenused to treat resting tremor andmotorfluctuations in
PD, was previously shown to increase the abundance of multiple long-chain
acylcarnitines associated with improved fatty acid β-oxidation35.

A furthermetabolite associatedwith fatty acidβ-oxidation isbutyrate, a
short-chain fatty acid formed by bacterial fermentation of carbohydrates,
e.g., from dietary fiber, in the intestine25. Butyrate is found ubiquitously in
plant oils and animal fat and is contained in many dairy food products25.
Here, a significant increase in butyrate, or, respectively, its isomer iso-
butyrate, was observed in de novo PD vs. control but not when comparing
treated PD to controls. Differences in butyrate levels may result from
changes in its production or utilization. For example, differences in diet or
medicine intake can influence gut bacterial butyrate production, and the gut
microbiome in PD patients has been reported to have a reduced fraction of
butyrate-producing bacteria in multiple studies36–42. Similar to the acylcar-
nitines, butyrate is involved in fatty acid ß-oxidation, where it serves as an
intermediate metabolite. Its increased abundance may therefore indicate
dysfunctional β-oxidation in PD.However, butyrate has also beenproposed
to influence PD symptoms through a variety of other mechanisms. For
instance, sodium butyrate intake was reported to reduce PD-related motor
symptoms via mechanisms associated with gut microbial dysbiosis
regulation43, intestinal barrier protection through the activation of G-
protein-coupled receptor 109 A (GPR109A)44, and stimulation of glucagon-
like peptide-145. In contrast to these proposed protective effects, a study in a
mouse model of neurodegeneration using the toxin MPTP reported wor-
sening effects of sodium butyrate administration on motor function, asso-
ciated with upregulation of pro-inflammatory cytokine expression and
increased colonic inflammation46. Overall, the potential effects of butyrate
on gut dysfunction and inflammation warrant further investigation.

Finally, as a further change associated with fatty acid ß-oxidation,
2-butenoylglycine was significantly increased in de novo PD vs. controls.
This metabolite belongs to the class of acylglycines, which can be produced
through glycine conjugation of acyl-CoA esters. Glycine conjugation in
mammals is often used as a detoxificationmethod to promote the excretion
of carboxylic acids, and the increase of crotonylglycinemay therefore reflect
the response to a pathological accumulation of crotonyl-CoA. Similar to
butyrate, crotonyl-CoA is an intermediate in fatty acid ß-oxidation, and the
alterations in crotonylglycine match with previously reported changes in
fatty acid β-oxidation in PD47. Moreover, in anaerobic bacteria, crotonyl-
CoA serves as an intermediate for butyrate production48, and the shared
increase in crotonylglycine and butyrate may therefore reflect the same
pathway alteration.

In summary, multiple observed metabolite abundance changes point
to PD-associated alterations in fatty acid metabolism, specifically in fatty
acid β-oxidation, where a dominant increase of intermediate metabolites
matches previous independent reports of incomplete β-oxidation in PD34,47.

Metabolites associated with non-dopaminergic medication
While the comparison of de novo patients vs. controls reveals PD-related
metabolite changes that are independent of dopaminergic treatments, de
novo patients may still take other non-dopaminergic medications that can

be detected in the metabolomics profile. We therefore investigated the
metabolite changes in de novo patients vs. controls for potential effects of
non-dopaminergic drugs and identified two significant drug-related
metabolites: oxazepam and 4-hydroxycoumarin (see Table 1). Oxazepam
is the active ingredient in many sedatives and is used to treat anxiety and
depression, which commonly occurs in PD49. While sufficiently detailed
medication data for participants in the cohort was not available to confirm
the intake of corresponding drugs, treatment with sedatives is the most
plausible explanation for the significantly increased oxazepam abundance
observed in de novo PD. By contrast, 4-hydroxycoumarin was significantly
reduced in de novo PD. This compound serves as an anticoagulant for
conditions caused by a blood clot50. However, coumarins also have anti-
inflammatory, antioxidant and neuroprotective actions51 with potential
relevance for PD. In particular, coumarins can inhibit monoamine oxidase
(MAO) enzymes52, which are well-established PD drug targets (see the
section above on the actions of xanthines on MAO-B). Thus, potential
protective actions of 4-hydroxycoumarin resulting in a preferential detec-
tion of this compound in controls may merit further study.

Altered metabolites with unknown identity
Among the top 25 most significant metabolites in the de novo PD vs.
controls comparison, the chemical identity could not be resolved for one
metabolite with an increased abundance in PD (metabolite ID: X-24494)
and twometabolites with a decreased abundance (metabolite IDs: X-15674,
X-12812; the latter also showed a significant decrease in all PD patients vs.
controls). Possible reasons for this include the lack of a reference standard
for thesemolecules or the chemical interference of othermetabolites. As the
libraries and annotations by the metabolomics service provider Metabolon
and the reference databases are continuously updated, we will complement
the current annotations with every significant update in the future and
publish relevant new findings on the GitLab repository associated with this
study (see section “Data availability”).

Pathway enrichment analysis of metabolite changes in PD
While the analysis of individual metabolites already revealed multiple sig-
nificant PD-associated changes in metabolites with similar functions, we
performed further complementary pathway analyses to identify and inter-
pret coordinated alterations in the data. For this purpose,we tested the over-
representation of differentially abundant metabolites in de novo PD vs.
controls in pathways from the KEGG (Kyoto Encyclopedia of Genes and
Genomes) database53 (RRID:SCR_012773) andmetabolite sets representing
chemical structure classes in the software MetaboAnalyst54

(RRID:SCR_015539), using the entire set of named metabolites as back-
ground reference (see Supplementary Table 8) and focusing on the meta-
bolite sets with at least 5 metabolites.

For both databases only nominally significant pathways were identi-
fied, including “Fatty Acids and Conjugates” (p value = 1.9E-3, adj. p
value = 0.25), and “Fatty Acyls” (p value = 4.96E-02, adj. p value = 1) for the
chemical structure classes (see Fig. 2 and Supplementary Table 9), and
“Ubiquinone and other terpenoid-quinone biosynthesis” (p value = 2.26E-
02, adj. p value = 1), “Retinol metabolism” (p value = 2.26E-02, adj. p
value = 1), and “Tyrosinemetabolism” (p value = 4.96E-02, adj. p value = 1)
for the KEGG database (see Fig. 3 and Supplementary Table 10).

Changes in “FattyAcids andConjugates” and “FattyAcyls”matchwith
the statistically significant alterations in individual metabolites in fatty acid
metabolism already discussed (see section “Fatty acid metabolism /
β-oxidation”). A suppression of mitochondrial fatty acid ß-oxidation in an
early stageofPD(HoehnandYahr stage I), characterizedbydecreased levels
of long-chain acylcarnitine, has been described before and proposed as a
potential diagnostic biomarker for PD34. While the mechanism behind this
dysregulation is still unclear, an overexpression of amutant formof the gene
encoding alpha-synuclein (A53T-SNCA) linked to familial cases of PD has
been shown to increase triacylglycerol levels and associated with increased
activity of acyl-CoA synthetase, which catalyzes fatty acyl-CoA formation as
a substrate for β-oxidation47.
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Fig. 3 | Dot plot visualization of pathway enrichment analysis results. Dot plot
visualization of pathway enrichment analysis results for the de novo PD vs. control
comparison using the KEGG database. The horizontal axis shows the negative
decadic logarithm of the p value, and the vertical axis shows the pathways, sorted by

decreasing significance from the top. The color gradient from red to yellow reflects
increasing p values, and the size of the dots reflects the effect size for each pathway
(enrichment ratio; see the legend on the right).

Fig. 2 | Metabolite set enrichment analysis results. Metabolite set enrichment
analysis results for the de novo PD vs. control comparison using chemical structure
classes (main set) in the software MetaboAnalyst. The horizontal axis shows the
negative decadic logarithm of the p value, and the vertical axis shows the pathways,

sorted by decreasing significance from the top. The color gradient from red to yellow
reflects increasing p values, and the size of the dots reflects the effect size for each
metabolite set (enrichment ratio; see the legend on the right).
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The identified nominally significant alteration in “Retinol
metabolism” matches with the observed change for the carotenoid
retinal (see section “Catecholamine metabolism (retinal,
ALDH1A1)”), while the changes for “Ubiquinone and other
terpenoid-quinone biosynthesis” and “Tyrosine metabolism” may
both reflect alterations in the network around the amino acid L-
tyrosine, which is involved in both of these KEGG pathways and
displays a nominally significant change in de novo PD vs. con-
trols (p = 0.013).

Overall, the pathway enrichment analysis results, while only providing
nominally significant findings, match with the relevance of the functional
annotations for individually significant metabolites involved in fatty acid
β-oxidation and indicate further putative changes in the network around
L-tyrosine for follow-up study.

Comparison with previously reported metabolomic pathway
alterations in PD
To assess the consistency of our findings with previously reported
metabolomics cellular process alterations in PD, we have compared
the main coordinated changes in the PD blood metabolomics bio-
marker identification study by Hatano et al.55 with our results. The
experimental set-up used by Hatano et al. differed from our approach
in multiple relevant aspects: Serum samples were analyzed instead of
plasma samples, the study focused on patients who had already
received antiparkinsonian treatment (35 subjects) and age-matched
healthy controls (15 subjects), and it used measurements from
ultrahigh-performance liquid chromatography/tandem mass spec-
trometry (UPLC/MS/MS) optimized for basic species, UPLC/MS/MS
optimized for acidic species, and gas chromatography/MS (GC/MS).

Despite these methodological differences, when comparing the main
pathway alterations in this prior study with our liquid
chromatography–mass spectrometry (LC-MS) metabolomics data
for all PD patients vs. controls, we observe largely consistent quali-
tative results.

In particular, as a key finding, Hatano et al. report that the levels of
caffeine and its main metabolites were consistently lower in PD than in
controls, which matches our observations (see Fig. 4, which seeks to
reproduce the visualization of changes in caffeine metabolism presented in
Fig. 2 in the study by Hatano et al.55).

Although the corresponding effect sizes are small and only
nominal significance is observed in most cases, our metabolomics
data confirms a consistent pattern of average decreased caffeine
metabolite abundances in PD. However, the nominally significant
decrease in caffeine levels in treated patients vs. controls (p = 0.033) is
not observed in the de novo patients vs. controls (p = 0.7). These
findings match with prior knowledge on complex associations
between caffeine intake and PD. On the one hand, caffeine has been
reported to have neuroprotective effects and has been associated with
a lower risk of developing PD14. On the other hand, as a central
nervous system stimulant, it could potentially worsen PD symptoms,
such as tremors, possibly resulting in reduced caffeine intake among
patients. Furthermore, interactions between dopaminergic medica-
tion and caffeine may occur56, which could explain why the nominally
significant decrease in caffeine levels in all PD patients vs. controls is
not seen in de novo PD vs. controls. Further research will be essential
to understand these variation patterns, considering factors such as
dietary caffeine intake, symptom profiles, and specific dopaminergic
treatments.

Fig. 4 | Box plot visualization of alterations in caffeine metabolism. Box plots
showing alterations in caffeine metabolism in PD vs. controls, reproducing the
results reported in the study by Hatano et al. (see Fig. 2 in Ref. 55, which was used as a
model). Vertical axes represent log-scale normalized abundances, and the horizontal

axes show the two conditions: control (Ctrl, in blue) and PD (in pink). Arrows
indicate enzymatic reactions which relate the source metabolites to their conversion
products (the source of the arrows represent the educts, and the arrow targets the
products).
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Interestingly, the same pattern of nominally significant altera-
tions specific to treated patients is also observed for caffeine meta-
bolites, including multiple xanthine alkaloids such as paraxanthine
(treated PD vs. controls: p = 0.015; de novo PD vs. controls: p = 0.47),
1-methylxanthine (treated PD vs. controls: p = 0.02; de novo PD vs.
controls: p = 0.78), and 7-methylxanthine (treated PD vs. controls:
p = 0.029; de novo PD vs. controls: p = 0.33, see Supplementary Tables
5 and 7). Thus, while the xanthines involved in purine metabolism
(inosine, xanthosine, xanthine, and hypoxanthine) display a sig-
nificantly increased abundance in de novo PD vs. controls (see Table 3
and discussion above), xanthine alkaloids involved in caffeine
metabolism only display nominally significant changes in treated
patients, with a trend of decreased abundances consistent with their
predecessor metabolite caffeine. This matches with prior data indi-
cating that interactions between caffeine metabolism and dopami-
nergic treatment effects need to be considered, as caffeine intake has
been reported to shorten the maximal plasma concentration of
L-DOPA56.

As a secondmain pathway alteration,Hatano et al. reported changes in
tryptophan metabolism, with a pronounced reduction in tryptophan levels
and slight reductions in some of its downstream conversion products. Our
study observed a similar trend in directional change, but the effect sizes for
individualmetabolites were not large enough to reach statistical significance
(see Fig. 5, which qualitatively reproduces the directional changes from Fig.
1B in the study by Hatano et al.).

In line with previous reports of changed tryptophan levels in L-DOPA
treated rats57, alterations in tryptophan metabolism may mainly represent
anL-DOPAtreatment effect andnot a disease-specific change.However, we
note that tryptophan displayed at least a nominally significant decrease
(p = 0.003) for the comparison of de novo PD vs. controls. Independent of
the cause, the observation of decreased tryptophan levels in PD may be
relevant for the choice of adjuvant treatments, as reduced plasma and serum
levels of tryptophan have been linked with depression by multiple
studies58,59.

Overall, we observe qualitatively similar results for treated patients in
this study compared to themain pathway alterations reported byHatano et
al., indicating coordinated changes in caffeine and tryptophan metabolism.
Additional studieswill be required to assess thephysiological implicationsof
these changes and their precise relationship with PD medication.

Metabolite associations with MDS-UPDRS motor scores
To examine if bloodmetabolite levels are linked to the severity ofmovement
impairments in Parkinson’s Disease (PD), as measured by the MDS-
UPDRS-III (Movement Disorder Society-Unified Parkinson’s Disease
Rating Scale Part III), we fitted linear models, adjusting for sex, age, and
L-DOPAmedication effects.

The results showed that eight metabolites were significantly associated
with the MDS-UPDRS-III after adjusting p values for multiple hypothesis
testing (see Table 4). Except for one unidentified metabolite, all displayed
negative correlations with MDS-UPDRS-III scores with small effect sizes.
Five of the seven significant metabolites with known identity are caffeine-
related metabolites, including caffeine itself and its conversion products
theophylline, paraxanthine, 1,3,7-trimethylurate, and 1,7-dimethylurate.
Considering this result together with our observation of consistently lower
levels of caffeine metabolites in PD vs. controls discussed above and the
qualitatively similar results reported by Hatano et al.55, the inverse asso-
ciation of thesemetaboliteswith both the presence of PDandmotor severity
matches with their protective role as suggested in epidemiological studies
and experimental models (see section on “Xanthine metabolites”). How-
ever, it is important to also consider the possibility of inverse causation, e.g.,
severemotor symptomsmight lead tobehavioral changes including reduced
caffeine consumption. Additionally, a potential influence of other PD-
related molecular factors on caffeine metabolites cannot be excluded.
Interestingly, a previous study thatmonitored both total caffeine intake and
measured serum levels of caffeine and nine of its downstreammetabolites in
108 PD patients and 31 age-matched healthy controls concluded that the
observed significantlydecreased levels of thesemetaboliteswereunrelated to
total caffeine intake and may serve as a potential diagnostic biomarker
signature60.

Besides caffeine metabolites, only two other metabolites, 2 S,3R-dihy-
droxybutyrate and behenoyl sphingomyelin, also showed significant nega-
tive associationswith theMDS-UPDRS-III score. 2 S,3R-dihydroxybutyrate
(also known as 4-deoxythreonic acid) is a secondary metabolite and sugar

Fig. 5 | Box plot visualization of alterations in tryptophanmetabolism. Box plots
showing alterations in tryptophan metabolism in PD vs. controls, reproducing the
results reported in the study byHatano et al. (see Fig. 1B inRef. 55, whichwas used as a
model). Vertical axes represent log-scale normalized abundances, and the horizontal

axes show the two conditions: control (Ctrl, in blue) and PD (in pink). Arrows
indicate enzymatic reactions which relate the source metabolites to their conversion
products (the source of the arrows represents the educts, and the arrow targets the
products).

Table 4 | Ranking of metabolites with significant associations
with MDS-UPDRS-III scores in PD patients

Metabolite Spearman’s rho P value Adj. P value

2 S,3R-dihydroxybutyrate −0.13 3.30E-07 4.91E-04

Theophylline −0.18 2.52E-06 1.88E-03

Paraxanthine −0.15 4.78E-06 2.00E-03

Caffeine −0.16 5.38E-06 2.00E-03

X-23648 0.22 2.35E-05 7.00E-03

1,3,7-trimethylurate −0.13 4.71E-05 1.17E-02

Behenoyl sphingomyelin −0.23 6.38E-05 1.36E-02

1,7-dimethylurate −0.16 9.53E-05 1.77E-02

The columns show the metabolite names (Metabolite), the Spearman correlation between meta-
bolite abundance levels and theMDS-UPDRS-III (Spearman’s rho), the nominalp value significance
(P value) and theadjustedpvalue (adj.P value). In addition to thecolumnheadershighlighted inbold,
for metabolites with positive Spearman correlations, the value of Spearman’s rho is shown in bold,
and for metabolites with negative correlations, in regular font.
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acid. It has been described as an L-threonine metabolite which correlates
negatively with age in adults61, but has to our knowledge not been linked
directly to PD. The last metabolite with a negative association, behenoyl
sphingomyelin, is a sphingolipid contained in animal cell membranes, in
particular in the myelin sheath surrounding certain nerve cell axons25.
Sphingomyelins have been implicated in several cellular processes with
potential relevance in PD, including nerve impulse transmission, pre-
synaptic plasticity, and the localization of neurotransmitter receptors62.
Furthermore, intralysosomal accumulation of sphingomyelins is a patho-
logical mechanism in lysosomal storage disorders, such as Gaucher disease
andNiemann-Pick disease, which are both associatedwith an increased risk
of developing PD62. A proposedmechanism linking these disorders to PD is
that sphingolipid changes promote a pathological conversion of alpha-
synuclein into a proteinase K-resistant conformation and induce its
oligomerization63. However, while saturated sphingomyelin species are
depleted in the putamen of post-mortem tissue samples from PD patients64,
the processes involved remain under investigation.

Overall, MDS-UPDRS-III associations were identified for eight
metabolites, which are predominantly involved in caffeine metabolism (no
further pathway enrichment analysis was therefore conducted in this case).
The resultsmatchwith thefindingsonaltered caffeinemetabolism in thePD
vs. control comparison.

Integrative network analysis of metabolomic and transcriptomic
changes in PD
To better understand the molecular mechanisms behind the observed
metabolite alterations, we performed an integrated molecular network
analysis of the metabolomics data with complementary PD case/control
transcriptomics data. In line with the statistical findings for individual
metabolites, this analysis identified a coordinated sub-network alteration
associatedwithxanthinemetabolism. Specifically, it highlighted a regulatory
consistent sub-network change with increased abundances in three xan-
thinemetabolites (xanthine,hypoxanthine, and inosine) anddecreasedgene
expression for the associated enzyme hypoxanthine phosphoribosyl-
transferase 1 (HPRT1), which catalyzes the conversion of hypoxanthine and
phosphoribose diphosphate into inosine monophosphate (IMP) and pyr-
ophosphate (see Fig. 6).

Given the role of HPRT1 in hypoxanthine conversion, the decreased
HPRT1 expression in PD may contribute to the increased abundances of
xanthines by inhibiting the processing of hypoxanthine and its precursor
inosine through this branch of the conversion pathway (see Fig. 6, right
side), and thereby indirectly increase the levels of the alternative hypox-
anthine conversion product xanthine (see Fig. 6, left side). Importantly, the
relevant xanthines (inosine, hypoxanthine and xanthine) all pass the blood-
brain-barrier65–67, and in patients with an HPRT1 deficiency, both plasma
and CSF levels of xanthine and hypoxanthine are elevated compared to

controls68,69, indicating that changes in plasma xanthine abundances may
indeed be linked to HPRT1 expression changes in the brain. Interestingly,
themost severe human formofHPRT1deficiency, knownasLesch-Nyhan’s
syndrome and caused by HPRT1 mutations, is a neurological disorder
characterized by hyperkinetic movements and by loss of dopamine in the
basal ganglia. This suggests that the PD-associated changes we identified in
HPRT1 and in the associated xanthinesmay reflect amechanism relevant to
basal ganglia dysfunction in PD.

While xanthines have been linked to multiple molecular mechanisms
in PD, including the generation of reactive oxygen species by xanthine
oxidase and the inhibition of the adenosine A2A receptor andMonoamine
Oxidase type B (see section on “Xanthine metabolites”), the observed sub-
network alteration involving decreased HPRT1 expression suggests an
additional mechanism by which xanthines may influence PD. Specifically,
the hypoxanthine conversion product inosine monophosphate (IMP),
resulting from the reaction catalyzedbyHPRT1, is a precursor for adenosine
monophosphate (AMP), which in turn is required for the synthesis of
adenosine triphosphate (ATP, see Fig. 6, right side). Thus, diminished
HPRT1 expression in Parkinson’s Disease (PD) and the resultant lower
conversion of hypoxanthine to inosine monophosphate (IMP) may con-
tribute to a deficiency of cellular ATP in PD. Indeed, rare genetic mutations
in theHPRT1 gene, linked to Lesch-Nyhan syndrome, are known to lead to
elevated xanthine levels and a concurrent reduction in cellular ATP70.
Defects in cellular ATP production found in several regions of PD brains
have been associated with mitochondrial dysfunction71, and previous stu-
dies showing that HPRT1 deficiency inhibits mitochondrial protein com-
plex I-dependent respiration72 indicate that HPRT1 may be involved in
energy metabolism dysregulations in PD. Additionally, a further indepen-
dent study reports that HPRT1 exhibits decreased expression in PD and in
other neurodegenerative disorders involving mitochondrial dysfunction,
including Alzheimer’s and Huntington’s disease73.

Interestingly, in an open-label, single-arm trial, 26PDpatients received
a combined treatment with inosine and an inhibitor of the enzyme XDH
that converts hypoxanthine to xanthine (see Fig. 6, left side), and this
treatment increased blood hypoxanthine and ATP levels, and lowered the
patients’ UPDRS III motor impairment score74. Considering the mechan-
isms linking hypoxanthine toATPmetabolism as outlined in Fig. 6,HPRT1
may therefore warrant further study as a potential alternative target for
pharmacological induction to achieve similar treatment effects as the
combination of inosine and XDH inhibition.

Finally,HPRT1 has been linked to PD also through its role in activating
Wnt/ß-catenin signaling, a pathwayknown toprotect dopaminergic neurons
in the 6-hydroxydopamine mouse model75. Reduced HPRT1 gene and pro-
tein expressionwas observed in the substantia nigraof thesemice, in linewith
our observations in human PD, and lentiviral over-expression of HPRT1 in
this model inhibited neuron loss. Interestingly, the study also suggested a

Fig. 6 | Molecular sub-network visualization of alterations in xanthine metabo-
lism. Molecular sub-network visualization, highlighting shared alterations in xan-
thine metabolism identified by a joint network analysis of PD vs. controls
transcriptomics and metabolomics data (increased abundances are highlighted by

red circles, decreased abundances by blue circles). The network analysis suggests
decreased expression of the gene HPRT1 as the main cause for an accumulation of
the metabolite hypoxanthine and further related xanthines in PD.
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possible upstream mechanism for HPRT1 under-expression in PD by
showing that LncRNA H19, which is also under-expressed in PD, normally
elevatesHPRT1 expressionby inhibitingmiR-301b-3p.Over-expressingH19
not only raised HPRT1 levels but also activated Wnt/β-catenin signaling,
reducing neuron loss. Thus, multiple lines of evidence suggest protective
effects of rescuing HPRT1 under-expression in PD.

In summary, the observed under-expression of HPRT1 in PD and
associated increases in the levels of xanthines may influence disease path-
ways via multiple independent mechanisms. Follow-up studies in inde-
pendent humanbiospecimens and complementary diseasemodelswill need
to further confirm and characterize the clinical relevance of these
mechanisms and associated rescue strategies.

Machine learning analysis
Classification and regression analyses were conducted to identify potential
metabolite markers helping to distinguish de novo PD and control subjects
(see Table 5) and to predict motor symptom severity in treated patients, as
indicated by the MDS-UPDRS III total score (see Table 6).

The top three identified metabolites for distinguishing de novo PD
from controls were xanthine, 2-ketocaprylate, and glutarylcarnitine, as
indicated by their higher average area under the Receiver Operating
Characteristic Curve (AUC) values across both linear and radial support
vectormachine (SVM) classifiers in training sets (5-fold cross-validation)
and test sets (see Table 5; a complete ranking table, including the AUC
values for unidentified metabolites, is provided in Supplementary Table
11). Xanthine, in particular, shows consistent performance in both clas-
sifiers, with its test set AUC scores (0.71 for the linear SVM, 0.72 for the
radial SVM) slightly exceeding the cross-validated training scores (0.68 for
the linear SVM, 0.63 for the radial SVM). This result is consistent with the
changes in xanthine metabolism observed in the statistical and network
analyses, although we note that it should not be considered as validation,
as the same input data was used for these analyses. By contrast,
2-ketocaprylate and glutarylcarnitine were not statistically significant in
thede novoPDvs. controls differential analysis, showing that themachine
learning-based feature ranking offers distinct information from the sta-
tistical analyses. Predictive changes in these two metabolites may reflect

disturbances in branched-chain amino acid metabolism and mitochon-
drial function, respectively, as 2-ketocaprylate is a branched-chain alpha-
keto acid that serves as an intermediate of branched-chain amino acids25,
and glutarylcarnitine is an acylcarnitine and an intermediate in lysine and
tryptophan metabolism76, processes that rely heavily on mitochondrial
efficiency.

In the regression analysis results (see Table 6, dopamine metabolites,
such as homovanillate (HVA) and various dopamine sulfates, rank highest
among the metabolite features for predicting MDS-UPDRS III total motor
scores, indicatedby the lowest sum-of-ranks across theperformancemetrics
for both linear and radial SVMregressionmodels (a complete ranking table,
including scores for unidentifiedmetabolites, is provided in Supplementary
Table 12). The presence and levels of these dopamine-related metabolites
are likely influenced by dopaminergic medication andmay reflect increases
in medication intake for patients impacted by more severe motor impair-
ments. While an accurate prediction model for UPDRS III total motor
scoreswould still havepractical value, the coefficient ofdetermination (R²) is
generally low even for the top-ranked features, suggesting a limited pre-
dictivity. However, the occurrence of sphingomyelin among the top-ranked
features matches with the significant UPDRS III total score association
observed for behenoyl sphingomyelin in the statistical analyses and with
previous studies on functional implications of sphingomyelins in PD (see
section on “Metabolite associations with MDS-UPDRS motor scores”).
Thus, potential links between sphingomyelin metabolism and PD motor
impairment may warrant further study.

Overall, the classification and regression analyses of highlighted
metabolites as most predictive that match with prior associations identified
for xanthines and sphingomyelins in the statistical analyses. However,
metabolites only provided limited predictive information when used indi-
vidually, and further analyses are needed to assess whether a panel of
multiple metabolites used in combination could potentially enhance pre-
dictive power. Follow-up machine learning analyses for multivariable pre-
dictive modeling, integration of metabolomics data with complementary
data types (clinical, omics, digital biomarkers, polygenic risk scores, among
others), and prediction of further disease outcomes (motor and non-motor
scores, comorbidities), which would extend beyond the scope of the current
manuscript, are currently in preparation.

Study limitations
This study recognizes limitations inherent in its design and methodology.

Assessment of diagnostic status
As an observational study, the Luxembourg Parkinson’s Study relies on
imaging performed during routine diagnostic examinations by patients’
treating physicians. The inclusion of DaTscan (Dopamine Transporter
Scan) and other structural imaging in our dataset supports the diagnostic
assessments made by the study physicians. In addition, the annual long-
itudinal follow-up of patients enhances the diagnostic confidence by
monitoring for sustained dopaminergic response and the absence of
warning signs that might lead to reconsideration of the diagnosis and
possible reclassification to atypical or secondary parkinsonism. Despite
these measures, a small proportion of misclassifications, particularly in the
early stages of PD and in de novo patients, cannot be completely excluded.
Suchmisclassifications are not expected to significantly affect the qualitative
results of our study, which consistently includes more than 50 subjects
per group.

Noise, bias, and confounding
Regarding possible sources of noise, bias, and confounding in the data, we
note that we did not record the time between the last meal and blood
sampling, and we did not sample after overnight fasting. Blood levels of
glucose, lipids, and amino acids, among other metabolites, can vary sig-
nificantlywith dietary intake, and in this study,wedidnot have themeans to
ensure that patients and controls received the same diet or participated in
the fasting state. Therefore, potential systematic differences in diet between

Table5 |Ranking tableof the top10knownmetabolite features
using supervised sample classification

Metabolite Linear
AUC
(Train)

Linear
AUC
(Test)

Radial
AUC
(Train)

Radial
AUC
(Test)

Average
AUC

Xanthine 0.68 0.71 0.63 0.72 0.68

2-ketocaprylate 0.58 0.74 0.54 0.78 0.66

Glutarylcarnitine (C5-DC) 0.64 0.68 0.62 0.66 0.65

4-hydroxyphenylpyruvate 0.57 0.68 0.61 0.66 0.63

N-palmitoyl-
sphingadienine
(d18:2/16:0)

0.57 0.58 0.70 0.65 0.63

3-hydroxyoleoylcarnitine 0.57 0.62 0.64 0.68 0.62

3-hydroxybutyroylglycine 0.61 0.62 0.66 0.60 0.62

Cortisol 0.53 0.70 0.56 0.69 0.62

Hypotaurine 0.60 0.66 0.59 0.63 0.62

Palmitoleoylcarnitine
(C16:1)

0.59 0.65 0.57 0.66 0.62

Ranking table of the top 10knownmetabolite features in termsof their estimatedpredictive value for
supervised sample classification of de novo PD and control samples, showing each metabolite
feature (column Metabolite), the Area Under the ROC Curve (AUC) for the training set (columns
Train_Linear_AUC, Train_Radial_AUC) and for the test set (columns Test_Linear_AUC, Test_Ra-
dial_AUC) for both linear and radial Support Vector Machine (SVM) classifiers. Rows are sorted by
the average AUC across training and test set AUC scores for both linear and radial SVMs (column
Average_AUC, all columnheaders are highlighted inbold). Thecomplete ranking table, including the
ranking scores for unidentified metabolites, is provided in Supplementary Table 10.
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the study groups could also lead to differences in themetabolite profiles. For
this reason, we have discussed potential dietary influences and gut micro-
biome influences in our interpretation of the individual metabolite changes
(see section on ”Significant metabolite changes in de novo Parkinson’s
disease and treated patients”). In general, these factors may contribute to
greater variability in the data, underscoring the need for a cautious inter-
pretation of the results.

It is important to note the time lag between blood collection and
processing: Samples collected in the morning (between 9 am and 12 pm)
were delivered to the biobank by ~1 pm and processed within 1–1.5 hours,
and derivatives were immediately frozen at −80 °C (pre-centrifugation
delaybetween1and4 h); samples collected in the afternoon (between12 pm
and 5 pm) were delivered to the biobank by ~9 am the next day and pro-
cessed within 1–1.5 hours, and derivatives were immediately frozen at
−80 °C (pre-centrifugation delay between 16 and 21 h). There were no
systematic differences in the handling of samples from different study
groups, and accordingly, no systematic differences in postprandial status or
circadian cycle are expected between the groups. However, stochastic var-
iation in these parameters and the time lags between sample collection and
further processing are limitations that may increase measurement variance.
All samples underwent two freeze-thaw cycles prior to analysis, and any
potential bias associated with this should be the same for all samples. To
identify blood samples and metabolomics measurements of insufficient
quality for further processing and analysis, multiple quality control analyses
were performed on both blood and metabolomics samples, including
quality control samples such as a solvent blank and ultrapure water as a
process blank, and multiple quality control standards (described and jus-
tified in detail in the Methods sections “Biospecimen collection, quality
control and sample accessioning” and “Metabolomics sample processing”).

Finally, we note that as the samples were randomly assigned across the
measurement batches in combination with samples from another inde-
pendent study, balanced sample group representations for the present study
could not always be ensured across the batches, which may have led to
increased data variance.

Missing value imputation and normalization
Missing values were imputed using the minimum detected value, fol-
lowingMetabolon’s routine approach. Since missing values in this type of
data are generally the result of data falling below the limit of detection, the
data in these cases are left-censoredwith informativemissingness. In total,
21.9% of the values were missing and imputed, but as they reflect data
falling below the detection limit, the percentage ofmissing values is not an
indicator of data quality in this setting. There were no significant differ-
ences in the percentage of imputed values between the study groups
(before imputation, controls had 21.8% missing values, PD samples had
22.0%missing values, andde novoPD samples had 21.4%missing values).
Because the imputation filled in missing values using the minimum
observed values, and because the proportion of missingness was very
similar across the batches, there was no significant change in the indivi-
dual median values and in the differences between the medians, and no
renormalization was required. The possible alternative approach of nor-
malizing with quality control samples was not chosen, because it relies on
fewer samples, which could potentially reduce the robustness of the
normalization.

Adjustment for treatment effects
For the study of PD patients receiving dopaminergic treatments, it is
important to note that using 3-O-Methyldopa (3-OMD, 3-methoxytyr-
osine) as a covariate toadjust for treatment effects has limitations. 3-OMDis
an imperfect indicator of the many different types of dopaminergic medi-
cations taken by PD patients and can be modulated by both catechol-O-
methyltransferase (COMT) inhibitors and the prolonged drug effects of
carbidopa. L-DOPA itself was not a covered metabolite in this LC-MS
profiling study and therefore could not be used instead of 3-OMD.
Therefore, adjustment for 3-OMD in the data for treated patients is not

expected to fully correct for the confounding effects of dopaminergic
medications, and the separate analysis of de novo patients is an essential
component of this profiling study.

Group differences in cognitive impairment
Significant group differences in cognitive decline, as assessed by theMoCA
(Montreal Cognitive Assessment) score, were observed in PD patients
compared with controls (see Table 3). Although there is evidence that PD
can cause cognitive decline, e.g., through a dysfunction of fronto-striatal
pathways77, to our knowledge there is no clear evidence suggesting that early
cognitive decline increases the risk of developing PD. A variable that is
affectedby theoutcomedoesnotmeet thedefinitionof a confounder, andby
adjusting for a covariate that predominantly represents a downstream effect
of the disease, we would risk removing the primary effects of the disease
itself. However, we note that some of the observed metabolite changes may
not be directly associated with PD, but rather reflect cognition-related
changes. Nevertheless, differences in MoCA scores between cases and
controls cannot affect our association analysis of motor scores (MDS-
UPDRS III), which is focused exclusively on PD patients.

Machine learning analyses
Given the limited sample size available for denovoPDpatients (56 subjects),
the impact of dopaminergic medications on blood metabolite levels in
treated patients, and the focus on a single cohort, the machine learning and
cross-validation results herein should be considered as preliminary esti-
mates of the achievable predictive power for case-control classification and
MDS-UPDRS III total score prediction. Furthermore, we focused on single
metabolites as predictors and the potential of multi-variable signatures to
improve the predictive performance will require further investigation. In
general, for both the optimization and robust validation of metabolite-
derived machine learning models, independent analyses with larger sample
sizes of de novo patients across multiple distinct cohorts are needed.

Discussion
The study of blood plasma metabolomics for the Luxembourg Parkinson’s
Study revealed several statistically significant disease-associated changes. In
statistical and machine learning analyses of de novo PD patients compared
to controls, xanthine metabolites stood out among the most significant and
predictivemetabolites. The xanthine alterationpatterns showed consistency
and coordination both in terms of the direction of changes, with a common
increased abundance for inosine, xanthosine, xanthine, and hypoxanthine
in de novo PD vs. controls, and in terms of the mechanistic matching of
changes with complementary PD vs. control transcriptomics data in an
enzyme-metabolite regulatory network analysis. As a main finding, the
integrated network analysis also highlighted a potential key enzyme,
HPRT1, which catalyzes the conversion of hypoxanthine to IMP, andwhose
decreased abundance in PD may explain the increased metabolite abun-
dances observed in the alternative hypoxanthine-to-xanthine pathway (see
Fig. 6).

While the case-control statistical comparison of metabolomics data
cannot distinguish causal from non-causal relationships, the coordinated
regulatory network changes identified in xanthine metabolism point to
potential clinically relevant diseasemechanisms, paving theway for targeted
follow-up validation studies. Furthermore, the detected coordinated sub-
network changes may have relevant applications in biomarker signature
modeling for PD due to their consistency and robustness across multiple
biomolecules in two different omics data types. In this context, we note that
in a previous study of CSF biomarkers in an independent PD cohort, the
metabolites xanthine, homovanillic acid, and their ratio were proposed as
biomarkers of PD status and severity78, suggesting that xanthine is altered in
multiple body fluids in PD and may indeed have diagnostic applications.

In addition to biomarker applications, xanthines and their derivatives,
including naturally occurring xanthine alkaloids such as caffeine, para-
xanthine, and theophylline, have previously been proposed as potential
neuroprotective agents for PD. Multiple studies using in vitro and in vivo
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models of PD have confirmed protective effects of these compounds14,16,79,
e.g., for paraxanthine, caffeine, and theophylline in an MPTP mouse
model14, and for inosine in a cellular PDmodel80. While the main proposed
protective mechanism for inosine and other xanthines links them to the
downstreammetabolite uric acid as amediator of neuroprotective effects via
induction of the Nrf2 signaling pathway81, other studies suggest that the
protection by inosine is independent of uric acid80. Further alternative
candidateprotectivemechanisms for xanthines and their derivatives include
inhibition of the adenosine A2A receptor and the enzymeMAO-B, both of
which are well-established PD drug targets with associated clinically
approved drugs (e.g., the xanthine derivative drug Istradefylline, which
targets A2A82, and the MAO inhibitor selegiline83).

In addition to these known actions of xanthine derivatives, the inte-
grated metabolomic and transcriptomic network analysis performed here
suggests another possible pathway by which xanthine alterationsmay affect
PD-related processes. The observed decreased expression of the enzyme
HPRT1, which converts hypoxanthine to IMP, provides both amechanistic
explanation for the observed increased abundance of xanthines in PD and is
associated with a shortage of cellular ATP as a further pathological down-
streameffect (see Fig. 6). This potential diseasemechanism is supported by a
previous single-arm, open-label trial in PD patients, targeting the same
pathway by a combined treatment with inosine and an inhibitor of the
enzyme XDH to block the conversion of hypoxanthine to xanthine75. This
inhibition favors the conversionof hypoxanthine to IMPbyHPRT1andhas
been shown in the same study to increase downstreamATPproduction and
improve PD motor symptoms.

Besides the main finding of coordinated changes in xanthines, the
metabolite analyses also revealed significant alterations in other PD-related
cellular processes. In particular, pronounced changes in fatty acid
β-oxidation were observed, consistent with previous studies reporting
impaired mitochondrial β-oxidation in PD34. In addition, the combined
analysis of metabolomics and transcriptomics data revealed coordinated
changes in catecholamine metabolism, with significantly increased levels of
themetabolite retinal coinciding with a decreased expression of the enzyme
aldehyde dehydrogenase 1A1 (ALDH1A1), which converts retinal to reti-
noic acid. These findings are in line with the catecholaldehyde hypothesis of
PD, which links reduced ALDH1A1 levels to toxic accumulation of the
dopamine metabolite DOPAL19,20.

Themachine learning analyses for de novoPDvs. control classification
and for prediction of MDS-UPDRS III total motor score provided results
that matched with the associations for xanthines and sphingomyelins
observed in the statistical analyses. However, the predictive capacity of
individual metabolites was low to moderate, and further analysis is needed
to evaluate potential improvements of multi-metabolite signatures and
confirm the results across different cohorts.

Overall, the investigations revealed several significant metabolite
changes in de novo PD and treated patients. These findings highlight
coordinated and mechanistically congruent alterations in specific cellular
processes and sub-networks, laying the ground for follow-up mechanistic
intervention and validation studies in PD model systems.

Methods
Study cohort
The data used in this study were obtained from participants recruited from
the nationwide, monocentric, observational, longitudinal Luxembourg
Parkinson’s Study10 in the frame of the National Centre of Excellence in
Research on Parkinson’s disease (NCER-PD). All subjects signed a written
informed consent, and the study was approved by the National Research
Ethics Committee (CNER Ref: 201407/13) and complied with all relevant
ethical regulations. To characterize the cross-sectional metabolite altera-
tions in PD, blood plasma samples were obtained from 549 PDpatients and
590 controls from the Luxembourg Parkinson’s Study and submitted for
metabolomics profiling (study approved by the University of Luxembourg
Ethics Review Panel, ref. ERP 18-042). An overview of relevant baseline
subject characteristics for PD patients and controls from this dataset is

shown in Table 3. The clinical diagnosis of PD adhered to the United
Kingdom Parkinson’s Disease Society Brain Bank (UKPDSBB) diagnostic
criteria84. Criteria for the inclusionof controls in theLuxembourgParkinson
study were: (i) no evidence of neurodegenerative disorders according to all
clinical assessments and imaging information available to the assessing
study physician; (ii) age above 18 years, (iii) absence of pregnancy or active
cancer. De novo PDwas defined as dopaminergic treatment-naïve patients
within one year of PD diagnosis.

Biospecimencollection,qualitycontrolandsampleaccessioning
Blood plasma samples were collected for all study participants from the
Luxembourg Parkinson’s Study and were submitted for liquid
chromatography–mass spectrometry (LC-MS) metabolomics profiling
using the Metabolon untargeted global metabolomics screening platform
(www.metabolon.com). Plasma was recovered from ethylenediaminete-
traacetic acid (EDTA) coated blood collection tubes (Becton Dickinson Ref.
367525)by centrifugationat 2000g for 10minutes at roomtemperature.The
entire plasma supernatant was transferred to a 15ml polypropylene conical
mixing tube (VWRRef. 525-0401) taking care not to aspirate from the buffy
coat layer between the plasma and the erythrocytes, either by automated
script on a TECAN liquid handling platform (Freedom EVO, TECAN) or
manually with sterile serological pipettes. The collected supernatant was
homogenized by repeated aspiration and dispense cycles and then pipetted
into 220 μl aliquots into barcode labeled screw-cap cryovials of approxi-
mately 700 μl capacity (Thermo MATRIX 0.5ml, Thermo-Fisher ref.3744
or FluidX0.7ml,Azenta ref, 68-0703-10) and frozen and stored at−80 °C in
96-position SBS-format lockable racks. Up to 12 aliquots of 220 μl could be
obtained from each 10ml EDTA blood collection tube.

To detect and filter blood samples of low quality, the Integrated Bio-
bankof Luxembourg (IBBL),whichprocessed the study samples, performed
the following assays as part of its routine quality control: 1) Complete blood
cell counting using an ABX Micros 60 Hematology Analyzer on a small
aliquot of the whole blood before centrifugation, providing the following 6
parameters: White blood cell count (WBC), red blood cell count (RBC),
hemoglobin (HGB), mean corpuscular volume (MCV), hematocrit (HCT),
C-reactive protein (CRP); 2) HIL (hemolysis, icterus and lipemia) indices
are tested using a COBAS Integra SI4 assay on the recovered pooled and
mixed plasma prior to aliquoting. In addition, IBBL conducts an annual

Table6 |Ranking tableof the top10knownmetabolite features
for regression analysis of motor scores

Metabolite Linear
RMSE

Linear
R²

Radial
RMSE

Radial
R²

Sum
of
ranks

Homovanillate (HVA) 13.74 0.07 13.76 0.07 11

Dopamine 3-O-sulfate 13.80 0.07 13.80 0.07 16

Vanillactate 13.74 0.06 13.73 0.06 17

3-methoxytyramine
sulfate

13.81 0.06 13.81 0.06 30

Dopamine 4-sulfate 13.83 0.05 13.82 0.06 36

Sphingomyelin 13.90 0.05 13.82 0.06 45

Urea 13.88 0.04 13.99 0.05 64

3-methoxytyrosine 13.74 0.07 14.10 0.06 70

4-acetamidobenzoate 13.88 0.05 14.07 0.05 78

11-ketoetiocholanolone
glucuronide

13.97 0.04 14.02 0.04 95

Ranking table of the top 10knownmetabolite features in termsof their estimatedpredictive value for
regression analysis of UPDRS III total motor scores in treated PD patients, displaying each meta-
bolite feature (column Metabolite), the Root Mean Square Error (columns “Linear RMSE,” “Radial
RMSE”), the coefficient of determination (columns “Linear R²,” “Radial R²”) for both linear and radial
SVMregressionmodels, and thesumof ranksof theseperformancemetrics for both linear and radial
SVM models (column “Sum of Ranks”) indicating overall performance (all column headers are
highlighted in bold). The complete ranking table, including the ranking scores for unidentified
metabolites, is provided in Supplementary Table 11.
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program of continuous quality control monitoring of all its processing
methods, which includes assays performed on derivatives of EDTA blood
samples collected and processed under the same conditions throughout the
year specifically for IBBL’s annual quality control (QC) program. Assays
performedon the plasmaderivatives include the following: 1) Platelet count;
2) Interleukin-16 (IL-16) concentration; 3) HIL (hemolysis, icterus and
lipemia) indices are testedusing aCOBASIntegra SI4 assayon the recovered
pooled and mixed plasma prior to aliquoting; 4) Consistency of aliquot
volumes (automated process). Hemolyzed blood samples and samples
highlighted as abnormal or problematic by instrument flags or measure-
ments for the above readouts are not included in any further analyses, such
as the metabolomics profiling analyses conducted for our study. Further
quality control analyses were performed as part of the metabolomics pro-
filing (see sub-section on “Quality analysis and quality controls (QC)” in the
section on “Metabolomics sample processing”).

Following receipt of the samples at Metabolon on dry ice, the samples
were inventoried and immediately stored at −80 °C. Each sample received
was accessioned into the Metabolon Laboratory Information Management
System (LIMS) and assigned a unique identifier associated with the source
identifier only. This identifier was used to track all sample handling, tasks,
and results. All samples were maintained at −80oC until processed.

Metabolomics sample processing
Theprocessing of themetabolomics samples, including sample preparation,
profiling, quality analyses and quality controls (QC), followed the standard
procedure by Metabolon as described below (extracted from the doc-
umentation provided by Metabolon along with the experimental data).

Sample preparation for metabolomics
Samples were prepared using the automatedMicroLab STAR® system from
HamiltonCompany. Several recovery standardswere addedprior to thefirst
step in the extraction process for QC purposes. To remove protein, dis-
sociate small molecules bound to protein or trapped in the precipitated
proteinmatrix, and to recover chemically diversemetabolites, proteinswere
precipitated with methanol under vigorous shaking for 2min (Geno-
Grinder 2000 by the supplier Glen Mills) followed by centrifugation. The
resulting extract was divided into five fractions: two for analysis by two
separate reverse phase Ultrahigh Performance Liquid Chromatography-
TandemMass Spectroscopy (RP/UPLC-MS/MS)methodswith positive ion
mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS
with negative ionmode ESI, one for analysis by HILIC/UPLC-MS/MSwith
negative ion mode ESI, and one sample was reserved for backup. Samples
were placed briefly on a TurboVap® (Zymark) to remove the organic sol-
vent. The sample extracts were desolvated under nitrogen and stored at
−80 °C before preparation for analysis. In total, the samples underwent two
freeze-thaw cycles during the entire course of the study, including one for
the experimental processing at Metabolon. The aliquots were always pro-
cessed in parallel for the samples, i.e., all samples experienced consistent
handling, undergoing the same number of freeze-thaw cycles.

Metabolomics profiling
The metabolomics measurements for all samples were conducted using
Ultra-Performance Liquid Chromatography-Tandem Mass Spectroscopy
(UPLC-MS/MS). Allmethods used aWaters ACQUITYultra-performance
liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high
resolution/accuratemass spectrometer interfacedwith a heated electrospray
ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000
mass resolution. The sample extract was dried, then reconstituted in sol-
vents compatible with each of the fourmethods. Each reconstitution solvent
contained a series of standards at fixed concentrations to ensure injection
and chromatographic consistency. One aliquot was analyzed using acidic
positive ion conditions, chromatographically optimized for more hydro-
philic compounds. In this method, the extract was gradient eluted from a
C18 column (Waters UPLC BEH C18-2.1 × 100mm, 1.7 μm) using water
andmethanol, containing 0.05%perfluoropentanoic acid (PFPA) and 0.1%

formic acid (FA).Another aliquotwas also analyzedusing acidicpositive ion
conditions, however it was chromatographically optimized for more
hydrophobic compounds. In this method, the extract was gradient eluted
from the same aforementioned C18 column using methanol, acetonitrile,
water, 0.05% PFPA and 0.01% FA and was operated at an overall higher
organic content. Another aliquot was analyzed using basic negative ion
optimized conditions using a separate dedicated C18 column. The basic
extracts were gradient eluted from the column using methanol and water,
however with 6.5 mMAmmoniumBicarbonate at pH 8. The fourth aliquot
was analyzedvianegative ionization following elution fromaHILICcolumn
(Waters UPLC BEH Amide 2.1 × 150mm, 1.7 μm) using a gradient con-
sisting ofwater and acetonitrilewith 10mMAmmoniumFormate, pH10.8.
The MS analysis alternated between MS and data-dependent MSn scans
using dynamic exclusion. The scan range varied between methods but
covered 70–1000m/z. Raw data files were archived, extracted and further
processed as described below.

Quality analysis and quality controls (QC)
Multiple types of controls were analyzed in concert with the experimental
samples: a pooledmatrix sample generated by taking a small volume of each
experimental sample served as a technical replicate throughout the data set;
extractedwater samples served as process blanks, aliquots of solvents used in
extraction served as solvent blanks; and QC standards that were carefully
chosen not to interfere with the measurement of endogenous compounds
were spiked into every analyzed sample, allowed instrument performance
monitoring and aided chromatographic alignment (Supplementary Tables
1 and 2, and Supplementary Fig. 1 describe these Metabolon QC samples
and standards).

The use of ultrapure water as a blank sample is part of the standard
operating procedures byMetabolon to assess the contribution to compound
signals from the analytical procedures. This same process is used for all
sample types processed at Metabolon including those not involving blood/
plasma. Water is used instead of phosphate-buffered saline (PBS), because
while PBS has comparable osmolarity and buffering capacity to plasma, it
also contains salts and other components that could potentially interfere
with the detection and quantification of metabolites. The use of water
ensures that the blank does not introduce any extraneous peaks or signals
into the mass spectrometry data, allowing for clearer interpretation of the
results from the experimental samples. In addition, the use ofwaterprovides
a “clean” background against which the performance of quality control
(QC) standards can be evaluated. As the blank sample is also used to assess
any contamination or carry-over effects during the sample preparation and
analysis process, the use of water helps to identify any such issues more
clearly than using a more complex matrix such as PBS.

Instrument variability was determined by calculating the median
relative standard deviation (RSD) for the standards that were added to each
sample prior to injection into the mass spectrometers. Overall process
variability was checked by calculating the median RSD for all endogenous
metabolites (i.e., non-instrument standards) present in 100% of the pooled
matrix samples (see the median RSD values for instrument variability and
process variability in Supplementary Table 3). Experimental samples were
randomized across the batches, and withQC samples spaced evenly among
the injections.

Data quality control, filtering, and pre-processing for the
metabolomics data
The quality control (QC) procedures encompassed the analysis of multiple
controls alongside the experimental samples, including process blanks,
solvent blanks, technical replicates, and carefully selected QC standards to
monitor instrument performance and assist in chromatographic alignment
(Supplementary Tables 1 and 2, and Supplementary Fig. 1 describe these
Metabolon QC samples and standards; details on the quality analyses are
described in the Supplementary Material section “Metabolomics sample
processing - Quality analysis and quality controls”). Additionally, median
relative standard deviations (RSD) were calculated for both instrument and
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process variability to ensure accurate and consistent results (see Supple-
mentary Table 3 and Supplementary Fig. 2).

The raw metabolomics data was pre-processed to obtain metabolite
abundances in the form of log-transformed, batch normalized and imputed
peak-area data (i.e., total ion counts, which represent the integrated area-
under-the-curve). Experimental samples were randomized across the bat-
ches, and with QC samples spaced evenly among the injections. The batch
normalizationwas performed so that for eachmetabolite, the raw values for
the samples were divided by the median in each instrument batch so that
each batch and metabolite has a median of one. For every metabolite, the
minimum value across the batches for the median-scaled data was used to
impute the missing values (limitations associated with missing values and
the rationale for the imputation approach are discussed in the section on
“Study limitations”). The batch-normalized and imputed data was trans-
formed using the natural logarithm. This wasmotivated by a comparison of
average density estimation plots of the peak-area data before and after log
transformation, suggesting that the log-transformed data better follows a
normal distribution (see Supplementary Fig. 3). The final metabolomics
dataset covered a total of 1490 biochemicals, covering 1207 compounds of
known identity and 283 compounds of unknown structural identity. A
complete list of these compounds, including information on their public
database IDs, chemical properties, and associated biochemical pathways, is
provided in Supplementary Table 4.

Transcriptomics data
For the PD case-control brain transcriptomics data analyzed in this study85,
pre-processed data was obtained from the database Gene Expression
Omnibus (GEO, ID: GSE8397). The used samples are from the lateral
substantia nigra midbrain region, covering 9 PD patients and 5 controls,
obtained in the GSE Series Matrix file format and analyzed at the log scale.

Statistical analyses of the metabolomics data
A detailed reporting form, providing standardized information on the
metabolomics data by integrating relevant recommendations from the
“Core Information for Metabolomics Reporting (CIMR)” by the Metabo-
lomics Standards Initiative86 and the Co-ordination of Standards in
Metabolomics87 is provided as a Supplementary Material. To avoid that
treatment effects resulting from standard drug therapy for PD patients
involving medications containing the active compound levodopa (L-
DOPA) affect themetabolomics data analysis, we first focused on the subset
of de novo PD patients. A differential abundance analysis comparing these
56 de novo patients against all 590 controls, was performed using the
empirical Bayes moderated t-statistic88 as implemented in the R software
package limma (v3.52.2, RRID:SCR_010943)89, adjusting for age and sex as
confounders. The resulting p values were corrected for multiple hypothesis
testing according to the Benjamini and Hochberg method90. Next, the dif-
ferential abundance analysis was repeated for the entire cohort of PD
patients, i.e., comparing 549 patients against 590 controls, using the same
statistical approach but including the abundance measurements for the
L-DOPAmetabolite 3-O-Methyldopa (3-OMD, 3-methoxytyrosine) as an
additional covariate to adjust for dopaminergic treatment effects (L-DOPA
itself was not covered among the measured metabolites, see section on
“Study limitations”). Prior to all differential abundance analyses, metabolite
features with zero variance across the considered samples were removed.
Since L-DOPA medication has a pronounced effect on blood metabolite
measurements, we additionally filtered out all metabolites from the data
with a minimum absolute Spearman correlation of 0.2 to the 3-OMD
abundances prior to the differential analysis. We note that weak indirect
treatment effects may persist in the data after these filtering and adjustment
steps. Therefore, we mainly rely on the prior de novo patient vs. control
comparison to assess treatment-independent effects.

By conducting the differential analysis for de novo patients and for the
entire cohort of PD patients, with the described additional filtering and
covariate adjustments, we identified the set of shared significant differential
metabolites with the same direction of the change in these two analyses as

the set of high-confidence PD-associated metabolites, whose alterations are
both independent of treatment effects (as confirmed by the de novo dif-
ferential analysis) and robust across a large sample size (as confirmed by the
analysis of the entire PD dataset).While the analysis of the entire PD cohort
(including de novo patients and treated patients) in addition to the de novo
patient-specific analysis allowed us to maximize statistical power to detect
PD-associated changes, we also performed a dedicated analysis for treated
patients only, using the same filtering and adjustment steps as for the entire
PD dataset, to better distinguish changes in treated from treatment-naïve
patients.

In addition, we used available clinical measurements of motor
impairment severity, quantified by the Movement Disorder Society‐Spon-
sored Revision of the Unified Parkinson’s Disease Rating Scale (MDS‐
UPDRS) Part III Motor Scores91, to build linear models for testing asso-
ciations between metabolite profiles and the severity of motor symptoms.
This analysis was conducted using the data from all patients, adjusting for
sex, age, andL-DOPAmedication, and correcting the significance scores for
multiple hypothesis testing in the same manner as for the differential
abundance analysis.

Statistical analyses of transcriptomics data
The gene expression data was analyzed by comparing PD vs. control
samples from the lateral substantia nigra brain region using the same
implementation of the empirical Bayes moderated t-statistic as for the
metabolomics data. We again adjusted the analysis for the available con-
founding factor variables age and sex and performed multiple testing cor-
rections for the p values using the Benjamini andHochberg method. MDS‐
UPDRS motor scores and data on dopaminergic treatment were not
available for the subjects covered for the transcriptomics profiling, and
therefore the comparison of metabolomics and transcriptomics data
focused on the case-control analyses and shared network alterations, con-
firming the treatment-independence using the metabolomics data (see
section on “Pathway and network analyses” below).

All statistical analyses and associated volcano plot and dot plot
visualizations were implemented in the R statistical programming software
(version 4.2.0)92. The resultswere computedon aphysicalmachine (CentOS
7.9.2009, Kernel: 3.10.0-1160.25.1.el7.x86_64).

Pathway and network analyses
Pathway enrichment analyses for the metabolomics data were conducted
using theMetaboAnalyst software54. As annotation data resources, we used
cellular pathway definitions from the database KEGG53 and metabolite sets
representing chemical structure classes directly fromMetaboAnalyst54. The
complete set of identifiable, experimentally profiledmetabolites was used as
a reference metabolome for the pathway analyses, and from the pathway
annotation databases only metabolite sets covering at least 5 metabolites
were considered. To obtain a comprehensive coverage of pathways enriched
inputativePD-associatedchanges,we tested theover-representationofboth
metabolites with false-discovery rate (FDR)-adjusted and nominal sig-
nificance (p <= 0.05) in pathways andmetabolite sets from these databases.

Next, to investigate the network relationships betweenmetabolites and
enzymes undergoing coordinated changes in PD, integrated network ana-
lyses of the differential metabolomics and transcriptomics data statistics
were implemented using the “Build Network” analysis workflow in the
GeneGoMetaCore™ software with a focus on humanmolecular interaction
data (filtered to species homo sapiens). All resulting p values for the pathway
and network analyses were adjusted according to Benjamini and
Hochberg90.

Machine learning analyses
To obtain a first estimate of the utility of the metabolomics data for
predictivemodeling of disease outcomes, we performedmachine learning
(ML) analyses for PD vs. control diagnostic discrimination (classification
analysis) and UPDRS III total motor score prediction (regression analy-
sis). To avoid the strong confounding effects of dopaminergic medication
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in the data from treated patients, only data from de novo patients and
controls were used for the PD vs. control classification analysis. By con-
trast, the regression analysis of the UPDRS III total motor score as a
measure of disease severity was performed only for treated patients,
excluding controls and de novo patients, because monitoring of motor
performance is arguably most relevant for themajority of treated patients
who areno longer in the initial stages of thedisease. The aimof this specific
analysis was to investigate whether metabolomics data could serve as a
surrogatemarker forUPDRS IIImotor assessments, potentially providing
a means to replace or complement some of the routine assessments in the
clinic withmolecularmeasurements thatmay be less time consuming and
burdensome for patients. Importantly, although regression models may
be influenced strongly by the impact of dopaminergic medication on the
metabolomics data, they may still be of practical use if they can accurately
predict UPDRS III motor performance, e.g., to monitor the effects of
medication.

For the ML analyses, the data was divided into training and
testing sets in a 66:34 ratio, using a predetermined random seed to
ensure reproducibility. Support Vector Machines (SVMs) were
employed for the model building considering both a linear kernel and
a radial basis function (RBF) kernel to detect both linear and non-
linear predictive patterns. The R software package e1071 was used to
train and apply the SVM models (https://cran.r-project.org/
package=e1071, version 1.7-11). To optimize hyperparameters, a
grid search was conducted on the training data within a 5-fold cross-
validation framework. A key aspect of our methodology was the
selection of the least complex model (with the lowest value of the
regularization parameter C in the SVM) that was within one standard
deviation of the best-performing model (in terms of cross-validated
area under the Receiver Operating Characteristic Curve (AUC) for
the classification analysis, and in terms of the rootmean squared error
(RMSE) for the regression analysis). This approach is grounded in the
principle of preferring simpler models with similar predictive ability
to avoid overfitting and increase generalizability. Once the most
suitable models in terms of this performance/complexity trade-off
criterion were identified, they were retrained with the selected
hyperparameters on the entire training set. The retrained models
were then applied to the test set to further evaluate their performance
on independent samples. To assess the discriminative power of
individual features, we conducted the above ML and cross-validation
analyses for each metabolite feature in isolation. This involved
training SVM models for each feature and assessing the predictive
performance for both the classification and the regression analysis.
Feature rankings were then consolidated by computing the average
AUC for the classification analysis, and respectively, the sum of
feature ranks for the regression analysis, for both linear kernel and
RBF kernel SVMs for the training set cross-validation and the inde-
pendent test set evaluation. This composite ranking provided a
summarized view of feature importance to distinguish the most
informative features for both classification and regression tasks.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Public transcriptomics data was obtained from the GEO database (ID:
GSE8397). Spreadsheet versions of the metabolite list and larger ranking
tables (Supplementary Tables 4–7, 11 and 12) have been made available on
the public GitLab repository (https://gitlab.lcsb.uni.lu/bds/pd_
metabolomics). The metabolomics dataset for this manuscript is not pub-
licly available as it is linked to the Luxembourg Parkinson’s Study and its
internal regulations.Any requests for accessing thedataset canbedirected to
request.ncer-pd@uni.lu.

Code availability
The statistical analyses were implemented in R (v4.2.0), and the code is
available under the MIT license in the following GitLab repository: https://
gitlab.lcsb.uni.lu/bds/pd_metabolomics.
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