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The evolutionary processes that drive universal therapeutic resistance in adult 
patients with diffuse glioma remain unclear1,2. Here we analysed temporally separated 
DNA-sequencing data and matched clinical annotation from 222 adult patients with 
glioma. By analysing mutations and copy numbers across the three major subtypes of 
diffuse glioma, we found that driver genes detected at the initial stage of disease were 
retained at recurrence, whereas there was little evidence of recurrence-specific gene 
alterations. Treatment with alkylating agents resulted in a hypermutator phenotype 
at different rates across the glioma subtypes, and hypermutation was not associated 
with differences in overall survival. Acquired aneuploidy was frequently detected in 
recurrent gliomas and was characterized by IDH mutation but without co-deletion of 
chromosome arms 1p/19q, and further converged with acquired alterations in the cell 
cycle and poor outcomes. The clonal architecture of each tumour remained similar 
over time, but the presence of subclonal selection was associated with decreased 
survival. Finally, there were no differences in the levels of immunoediting between 
initial and recurrent gliomas. Collectively, our results suggest that the strongest 
selective pressures occur during early glioma development and that current therapies 
shape this evolution in a largely stochastic manner.

Diffuse glioma is the most common malignant brain tumour in adults 
and invariably relapse despite treatment with surgery, radiotherapy 
and chemotherapy. The molecular landscape of glioma at diagnosis has 
been extensively characterized3–9. Although these efforts have led to 
the identification of driver genes and clinically relevant subtypes10,11, 
how the glioma genetic landscape evolves over time and in response 
to therapy is unknown.

Intratumoral heterogeneity is a well-recognized characteristic of glio-
mas and results from selective pressures such as a limited availability of 
nutrients, clonal competition and treatment12–15. Tumours are thought 
to circumvent these growth bottlenecks by dynamic competition of 
subclones that result in the most favourable environment for tumour 
sustenance1. Recent studies have suggested that stochastic changes in 
clone frequency (that is, neutral evolution) and immune surveillance 
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may further contribute to the observed intratumoral heterogeneity16,17. 
An understanding of evolutionary dynamics at several time points is 
needed to develop strategies aimed at delaying or preventing the onset 
of tumour progression.

To investigate clonal dynamics over time and in response to thera-
peutic pressures, we established the Glioma Longitudinal Analysis 
(GLASS) Consortium. GLASS is a community-driven effort that seeks 
to overcome the logistical challenges in constructing adequately 
powered longitudinal genomic glioma datasets by pooling datasets 
from patients treated at institutions worldwide18. We have analysed 
longitudinal profiles across the three molecular glioma subtypes to 
identify the molecular processes active at initial and recurrent time 
points. These analyses identified few common features of glioma evolu-
tion across subtypes, and instead pointed towards highly variable and 
patient-specific trajectories of genomic alterations.

GLASS cohort
We pooled existing and newly generated longitudinal DNA sequencing 
datasets from 288 patients treated at 35 hospitals (Supplementary 
Table 1, Extended Data Fig. 1). After applying quality filters, tumour 
samples from 222 patients with high-quality data in at least two time 
points were classified according to molecular markers into three major 
glioma subtypes: (1) IDH-mutant and chromosome 1p/19q co-deleted 
(hereafter referred to as IDH-mutant-codel; n = 25); (2) IDH-mutant 
without co-deletion of chromosome 1p/19q (hereafter IDH-mutant-
noncodel; n = 63); and (3) IDH-wild-type (n = 134), in alignment with 
the World Health Organization (WHO) classification of tumours of 
the central nervous system10,11. For each patient, we selected two time-
separated tumour samples, henceforth termed initial and recurrence, 
for further analysis.

Mutational burdens and processes over time
We first evaluated temporal changes in mutational burden and pro-
cesses to understand general patterns of glioma evolution. Mutation 
burdens in initial tumours were comparable with previously reported 
rates6,7,19. There were 2.20 mutations (single-nucleotide variants and 
small insertions or deletions) per megabase (Mb) for IDH-mutant-
codels; 2.52 mutations per Mb for IDH-mutant-noncodels; and 2.85 
mutations per Mb for IDH-wild-type glioma (Fig. 1a, Extended Data 
Fig. 2a). Excluding DNA hypermutation cases (more than 10 muta-
tions per Mb, n = 35), the mutation burden increased after recurrence 
in 70% of the cohort (Extended Data Fig. 2a). To study changes during 
tumour progression, we separated mutations into three fractions: 
initial only, recurrence only, or shared. Notably, the mutation burdens 
of the private fractions, but not the shared fraction, were comparable 
between subtypes (Extended Data Fig. 2b). Patient age at diagnosis 
was significantly associated with the shared mutational burden (P = 
1.7 × 10−7), and to a lesser extent with the burden of mutations private 
to the initial tumour (P = 0.0256) (Extended Data Fig. 2c). On average, 
a longer time to recurrence was associated with a larger increase in 
mutation burden (P = 0.0043, Extended Data Fig. 2d).

These fraction-specific differences in mutational burden sug-
gested that the activity of distinct mutational processes may also be 
time-dependent. We therefore classified mutations in each fraction 
according to the Catalogue of Somatic Mutations in Cancer (COSMIC) 
signature database20. As expected, signature activity was closely related 
to subtype and fraction (Fig. 1b, Extended Data Fig. 3a). Signature 1 
(ageing) was nearly always the dominant signature among shared 
mutations in IDH-wild-type tumours, whereas the shared fraction in 
IDH-mutant-noncodel and IDH-mutant-codel tumours—tumour sub-
types that are associated with a younger age of diagnosis—also showed 
a strong presence of signature 16 (unknown aetiology). Signatures 3 
(double-strand break repair), 15 (mismatch repair) and 8 (unknown 

aetiology) were mostly confined to the private fractions, which suggests 
that these processes were of lesser importance to tumour maintenance 
than those associated with ageing.

The treatment of glioma includes alkylating agents that can induce 
hypermutations after treatment21–23. We observed enrichment of the 
associated signature 11 in recurrent tumours treated with alkylating 
agents and with a mutational load exceeding 10 mutations per Mb 
(Fig. 1a, Extended Data Fig. 3b). Treatment-associated hypermuta-
tion occurred most frequently among IDH-mutant-noncodels (47%), 
followed by IDH-mutant-codels (25%), and IDH-wild-type gliomas 
(16%) (Fig. 1c). The proportion of hypermutation events was signifi-
cantly different between the three glioma subtypes (Fisher’s exact test 
P = 2.0 × 10−3), which suggests that IDH-mutant-noncodels are most 
sensitive to developing a hypermutator phenotype24.

Treatment-induced hypermutation has been associated with dis-
ease progression23. We did not find any differences in overall survival 
between hypermutators and non-hypermutators treated with alkylat-
ing agents independent of age, subtype and MGMT methylation status 
(Fig. 1d, Supplementary Table 2a, b). To assess the pathogenicity of 
acquired mutations further, we studied their clonality25. Newly acquired 
clonal mutations have penetrated most of the tumour (that is, a selec-
tive sweep) between initial and recurrence and mark clonal expan-
sion26. Conversely, acquired subclonal mutations are less prevalent, 
and therefore less likely to drive disease progression. Previous reports 
have suggested that mutations associated with alkylating agents are 
frequently clonal27. We found that in 48% of hypermutated tumours, 
most of the recurrence-only mutations were clonal, potentially reflect-
ing cases in which a selective sweep occurred (Extended Data Fig. 4a). 
However, IDH-mutant-noncodel hypermutators with predominantly 
clonal mutations did not show differences in survival compared with 
those containing predominantly subclonal mutations (log-rank test 
P = 0.38, Extended Data Fig. 4b). Alkylating agents such as temozolo-
mide prolong the survival of adult patients with glioma28,29. Our results 
show that treatment-induced hypermutation is common across sub-
types and does not associate with reduced overall survival, supporting 
the noted benefit of alkylating agent therapy.

Selective pressures during glioma evolution
Environmental and treatment-induced pressures may drive changes 
in clonal architecture at recurrence. To evaluate selection over time, 
we clustered copy number changes and mutations on the basis of their 
cancer cell fraction (CCF). CCF values represent the fraction of cancer 
cells that contain a given alteration and reflect the relative timing of 
events, because alterations that are present in a subset of cancer cells 
probably occurred later than events present in all cancer cells (Fig. 2a). 
Most tumours (84%) demonstrated a mutational cluster with a CCF 
greater than 50% that persisted from the initial tumour to recurrence, 
probably reflecting the tumour trunk and containing the tumour-initi-
ating driver mutations30 (Fig. 2b, Extended Data Fig. 5a). To determine 
changes in clonal dominance over time, we ranked clusters within each 
sample by their CCF value and found similarities in clonal architecture 
throughout the course of disease (Kendall rank correlation, tau = 0.20, 
P = 3.76 × 10−24; Fig. 2b, Extended Data Fig. 5b–d). These results sug-
gested that the clonal structure at initial disease mostly persisted into 
recurrence.

To deepen our assessment of selective pressures, we evaluated selec-
tion in initial and recurrent tumours by determining the normalized 
ratio between non-synonymous and synonymous mutations (dN/dS)31. 
Higher ratios (above one) suggest positive selection, and ratios less 
than one suggest negative selection. We found evidence for positive 
selection at both time points despite differences between subtypes 
(Fig. 2c). Separating mutations into mutational fractions demon-
strated that shared but not private mutations showed positive dN/dS 
ratios in all three glioma subtypes, which indicates that only shared 
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mutations (including truncal mutations) are likely to be subject to 
positive selection (Fig. 2c). The dN/dS ratio of initial-only mutations 
showed that these are neither positively nor negatively selected for, 
whereas recurrence-only mutations were subject to negative selection 
in IDH-wild-type gliomas.

To verify the reduced selective pressure in the private mutations, 
we used an orthogonal method to test for evidence of selection32. The 
method uses distributions of variant allele frequencies and estimated 
mutation rates to detect whether profiles significantly deviate from 
a model of neutral evolution (that is, as depicted by a linear relation-
ship in Fig. 2d). In accordance with results of the dN/dS ratios, private 
mutations demonstrated dynamics that were consistent with neutral 
evolution (Fig. 2d). Shared subclonal mutations deviated from lin-
earity and were consistent with selection both in non-hypermutators 
and hypermutators (Fig. 2d, Extended Data Fig. 6a, b), which provides 
further evidence that the strongest selective forces occur early in glio-
magenesis.

Cohort-level analysis of selection masks the heterogeneity that 
exists in individual evolutionary trajectories. To determine the selec-
tive effects at each tumour time point, we used a Bayesian frame-
work (SubClonalSelection algorithm) that simultaneously provides 

sample-specific probabilities for both selection and neutrality while 
modelling sources of noise in sequencing data. The classification of a 
sample as ‘selection’ or ‘neutral’ is determined by whichever model has 
the greater probability. Classification as neutral reflects the accumula-
tion of random mutations that are not subject to selection. Given the 
stringent algorithm requirements, 183 patients were included in this 
analysis with at least one time point, and 104 patients with both time 
points (16 IDH-mutant-codels, 29 IDH-mutant-noncodels, 59 IDH-wild-
type; Supplementary Table 3). Neutral-to-neutral was the most common 
evolutionary trajectory across all three subtypes (52%), and IDH-wild-
type tumours displayed the highest observed selection at any time 
point, with selection detected in 64% of tumours (Fisher’s exact test 
P = 0.01; Fig. 2e, Supplementary Table 3). IDH-wild-type gliomas with 
evidence for selection at recurrence had a shorter overall survival than 
IDH-wild-type gliomas classified as neutral at recurrence (P = 0.027; 
log-rank statistic, Fig. 2f), which suggests that subclonal competition 
associates with more aggressive tumour behaviour. To address the 
limitations of smaller sample sizes in the IDH-mutant subtypes, we 
performed a Cox proportional hazards model including age at first diag-
nosis, all three glioma subtypes, and mode of selection at recurrence. 
This analysis revealed that selection at recurrence was significantly 
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associated with shorter survival across subtypes (Hazard ratio = 1.53, 
95% confidence interval 1.00–2.41, P = 0.048; Supplementary Table 4). 
We next investigated whether radiation and chemotherapy imposed 
a selective effect, by comparing the evolutionary status at recurrence 
with treatment and other clinical variables. We did not observe signifi-
cant associations between subclonal selection and radiation therapy 
or chemotherapy (Fisher’s exact test P > 0.05; Supplementary Table 5), 
which suggests that standard therapeutic approaches for glioma have 
limited effect on the subclonal tumour architecture. Although high-
depth sequencing datasets may be required to detect subtle selective 
effects26, our analyses raise the possibility that the survival benefit 
derived from standard chemoradiation results from the elimination 
of tumour cells in which treatment sensitivity of individual cells is not 
determined by genetic factors.

Driver alteration frequencies across time
We evaluated how stability, acquisition and the loss of mutation and 
copy number drivers6 over time affect glioma evolution. We used the 
dN/dS ratio to nominate 12 candidate mutation driver genes at both 
time points (Q < 0.05, Fig. 3a, Extended Data Fig. 7a) and determined 
significant alterations in copy number that recapitulated previously 
identified drivers (Extended Data Fig. 7b). Mutations in IDH1 and 

co-occurring loss of the 1p/19q chromosome arms have been suggested 
as glioma-initiating events1, which was corroborated by the observation 
that these events were not lost or acquired during the surgical interval 
(Fig. 3a, Extended Data Fig. 8a). Similarly, we observed that mutations in 
the TERT promoter were almost always shared in the IDH-mutant-codel 
and IDH-wild-type samples, although many samples lacked sufficient 
coverage in this GC-rich region. Chromosome 7 gains and chromo-
some 10 losses were present in a large majority of IDH-wild-type initial 
tumours and persisted into recurrence.

Shifts in the fraction of cancer cells containing an event may also 
indicate a time dependency of drivers. We determined changes in cel-
lular prevalence of shared driver events by ordering events in each 
sample by their CCF value (Extended Data Fig. 9). ATRX mutations in 
IDH-mutant-noncodel initial tumours demonstrated lower CCFs than 
TP53 (P = 0.03) and IDH1 (P = 0.10) mutations, suggesting that IDH1 and 
TP53 mutations precede ATRX inactivation1. There was no difference 
in CCF values between IDH1 and TP53 among initial gliomas (P = 0.98); 
however, IDH1 mutations demonstrated significantly lower CCF val-
ues than TP53 mutations (P = 0.0018) in recurrent gliomas. We did 
not observe any CCF differences among driver mutations detected in 
IDH-wild-type tumours at either time point. Chromosome 10 deletion 
CCFs were higher than chromosome 7 amplifications (P = 0.0036), 
which indicates that chromosome 10 deletions arise earlier33. Similarly, 
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there was no difference in CCF values between CDKN2A deletion and 
EGFR amplification (P = 0.70). EGFR and chromosomal arm events sig-
nificantly differed (that is, 10p del versus EGFR amp, P = 0.0019) but 
not CDKN2A deletion and chromosomal events (that is, 10p del ver-
sus CDKN2A del, P = 0.33). The consistently high CCF values for EGFR 
amplifications could indicate that these events precede even some 
larger chromosomal aberrations, while not excluding the possibility 
that high levels of extrachromosomal EGFR34 artificially inflate CCF.

Longitudinal changes in CCF values provide additional insights into 
evolutionary dynamics. For instance, the CCF value may increase when a 
driver event is linked to clonal expansion, or conversely, decrease when 
a clone is outcompeted. Most individual drivers did not demonstrate 
significant consistent CCF changes between the initial tumour and 

recurrence (Extended Data Fig. 10a). A notable exception was the TP53 
mutation CCF that increased over time (P = 0.037) in IDH-mutant-non-
codels, but not IDH-wild-type gliomas (P = 0.13, Extended Data Fig. 10b). 
We did not observe any differences in IDH1 CCF over time among IDH-
mutant-noncodel tumours, possibly because the general trend of these 
tumours to increase in CCF is counteracted by the biological loss of 
relevance of mutant IDH1 over time (Extended Data Fig. 10c). Indeed, 
a gross comparison of all shared mutation CCFs revealed an increase 
in recurrent IDH-mutant-noncodel tumours (P < 0.0001), which may 
reflect increased clonality and a reduction in intratumoral heteroge-
neity (Extended Data Fig. 10d). By contrast, shared CCFs decreased in 
IDH-wild-type tumours, potentially indicating a general increase in 
intratumoral heterogeneity at recurrence (P < 0.0001, Extended Data 
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Fig. 3 | Patterns of glioma driver frequencies over time. a, Driver dynamics for 
single-nucleotide variants (SNVs) nominated by the dN/dS ratios and copy 
number alterations (CNVs) nominated by GISTIC (n = 222). Each column 
represents a single patient at two separate time points stratified by subtype 
and ordered left-to-right by the number of driver alterations. The degree of 
aneuploidy difference (recurrence − initial) offers a summary metric for 
increases (>0) or decreases (<0) in aneuploidy at recurrence. Variants are 
marked and different shapes indicate whether a variant was shared or private. 
The variant type is depicted by its colour. Stacked bar plots accompanying each 
gene/arm provide cohort-level proportions for whether the alteration was 

shared, lost or acquired. Rec, recurrence; evo, evolution. b, Aneuploidy 
comparison in matching initial and recurrent IDH-mutant-noncodel tumours. 
c, Within-sample CCF comparison of CDKN2A homozygous deletion (homdel) 
to genome-wide CCF as a proxy for aneuploidy. A relative higher CCF indicates 
temporal precedence. P value determined by Wilcoxon signed-rank test.  
d, Kaplan–Meier curve comparing survival in IDH-mutant-noncodel tumours 
with an alteration in the cell cycle, acquired aneuploidy, or both (shades of red) 
versus unaltered IDH-mutant-noncodel tumours (blue). P value determined by 
log-rank test.
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Fig. 10d). We confirmed that IDH-mutant-noncodel CCF increases and 
IDH-wild-type decreases were not biased by patients with high muta-
tional burden through the classification of patient-specific shared 
mutation CCF change (Extended Data Fig. 10e).

We next investigated whether specific somatic alterations were 
acquired or lost over time. Gene-specific enrichment of many recur-
rence-only mutations was found in hypermutated tumours, but there 
was no enrichment for somatic gene alterations in non-hypermutators, 
which suggests that glioma recurrence is not directed by particular sets 
of mutations (Extended Data Fig. 8b). Within subtypes, we detected 
an enrichment in CDKN2A homozygous deletions (Fig. 3a, Extended 
Data Fig. 8a) in recurrent IDH-mutant-noncodels, which was corrobo-
rated by additional alterations to cell cycle genes (focal gain of CCND2, 
CDK4 and CDK6, and mutation or homozygous loss of RB1). Mutations 
in cell cycle checkpoint control genes are associated with genomic 
instability35. Therefore, we analysed aneuploidy levels by determining 
the proportion of the genome that had undergone aneuploidy events 
(Extended Data Fig. 11a, b). We observed that IDH-mutant-noncodel 
tumours had a higher level of aneuploidy at recurrence (Wilcoxon rank 
sum test P = 1.4 × 10−6 total aneuploidy, P = 8.6 × 10−3 arm-level ane-
uploidy; Extended Data Fig. 11c, d) with tumours carrying acquired cell 
cycle gene alterations displaying the largest increases in aneuploidy 
(P = 7.6 × 10−6; Wilcoxon rank sum test, Fig. 3b). We reasoned that 
CDKN2A deletions may precede aneuploidy. Homozygous CDKN2A 
deletions had significantly higher CCFs than the average somatic copy 
number variation CCF across the genome (as a surrogate for aneu-
ploidy-related copy number changes), suggesting that CDKN2A loss 
occurred before aneuploidy (Fig. 3c). These alterations may hasten 

disease progression as patients with either alterations in cell cycle genes 
or the largest increases in aneuploidy at recurrence demonstrated 
significantly shorter survival than patients without these alterations 
(log-rank test P < 0.0001, Fig. 3d). Together, the persistence of drivers 
over time and the paucity of consistent change indicate that therapy 
does not result in selection of specific sets of molecular changes.

Immunoediting activity in glioma
We next investigated how the immune microenvironment affects 
evolutionary trajectories. The immune system may prune tumour 
cells carrying immunogenic (neo-)antigens, resulting in the selection 
of subclones capable of evading the immune response. Evidence of 
this immunoediting process has been shown in several cancer types, 
including glioma36–39, and suggests active immunosurveillance that 
may be therapeutically exploited40. We computationally predicted 
neoantigen-causing mutations41. As expected, the neoantigen load 
across the GLASS cohort was strongly correlated with exonic mutation 
burden (Spearman’s rho = 0.89), with 42% of nonsynonymous exonic 
mutations giving rise to neoantigens on average. This fraction did not 
significantly differ by glioma subtype or between initial and recurrent 
tumours (P > 0.05, Wilcoxon rank-sum test; Fig. 4a). The most common 
neoantigen arose from the clonal R132H mutation in IDH1 and was 
present in of 22 out of 88 IDH-mutant initial and recurrent tumours. 
Beyond mutations in IDH1, no mutations gave rise to a neoantigen 
found in more than three tumours at a given time point (Supplemen-
tary Table 6). Across the dataset, neoantigens and non-immunogenic 
mutations exhibited similar changes in CCF values between initial and 
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Fig. 4 | Neoantigen selection during tumour progression. a, Mean proportion 
of coding mutations giving rise to neoantigens (neoantigens/nonsynonymous 
mutations) stratified by glioma subtype and time point (n = 222). Data are 
mean ± s.d. b, Box plot depicting the distribution of observed-to-expected 
neoantigen ratios in the GLASS cohort stratified by glioma subtype. P value 
determined by t-test. Each box spans quartiles, with the lines representing the 
median ratio for each group. Whiskers represent absolute range, excluding 
outliers. c, Scatterplot depicting the association between the observed-to-
expected neoantigen ratio in a patient’s initial versus recurrent tumours. Each 
point represents a single patient tumour pair. R denotes Pearson correlation 
coefficient. Panels b and c only include samples from pairs with at least three 

neoantigens in the initial and recurrent tumours (n = 131, 63 and 24 pairs for 
IDH-wild-type, IDH-mutant-noncodel, and IDH-mutant-codel, respectively).  
d, Ladder plot depicting the difference in observed-to-expected neoantigen 
ratio between a tumour’s clonal and subclonal neoantigens. Each set of points 
connected by a line represents one tumour. Tumours are stratified by whether 
they were a patient’s initial or recurrent tumour. Lines are coloured by each 
patient’s glioma subtype. Panel d only includes samples from pairs with at least 
three clonal neoantigens and at least three subclonal neoantigens in both the 
initial and recurrent tumours (n = 35, 20 and 9 for IDH-WT, IDH-mutant-
noncodel and IDH-mutant-codel, respectively). P value determined by paired 
two-sided t-test. Colours in each panel represent the glioma subtype.
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recurrent tumours indicating a lack of neoantigen-specific selection 
processes over time (Extended Data Fig. 12a).

We then examined the extent to which immunoediting occurred by 
comparing the observed neoantigen rate of each sample to an expected 
rate that was empirically derived from our dataset. The output of this 
approach is a normally distributed set of ratios centred at 1. Samples 
with an observed-to-expected neoantigen ratio less than 1 exhibit evi-
dence of neoantigen depletion relative to the rest of the dataset, and 
thus are more likely to have been immunoedited. We found that none 
of the three glioma subtypes contained observed-to-expected ratios 
that significantly differed from 1 (P > 0.05, one sample t-test), although 
IDH-wild-type tumours exhibited significantly lower scores than IDH-
mutant-noncodels (t-test, P = 0.04; Fig. 4b). We also did not observe an 
association between the observed-to-expected ratio and survival when 
adjusting for subtype and age (Wald test, P > 0.05), nor was there a dif-
ference between samples with neutral evolution dynamics compared 
to those exhibiting evidence of subclonal selection. When compar-
ing samples longitudinally, we found that the observed-to-expected 
neoantigen ratio was strongly correlated between initial and recurrent 
tumours of each patient (Pearson’s R = 0.73, P = 5 × 10−38), which suggests 
that the neoantigen depletion level in the recurrence reflects that of 
the initial tumour (Fig. 4c).

Immunoediting is most likely to take place in the tumours with high 
cytolytic activity and low levels of immunosuppressive activity39. Hyper-
mutators, which have high loads of neoantigens, have previously been 
associated with highly cytolytic microenvironments38. However, we did 
not observe any differences in the observed-to-expected neoantigen 
ratio between hypermutated recurrent tumours and their initial coun-
terparts, nor did we observe differences between hypermutated and 
non-hypermutated recurrent tumours, indicating that immunoedit-
ing activity is not related to the total number of mutations in a sample 
(Wilcoxon rank-sum test P > 0.05; Extended Data Fig. 12b). To more 
directly determine whether there were immunological factors asso-
ciated with neoantigen depletion, we analysed CIBERSORT immune 
cell fractions from a subset of samples that had undergone expression 
profiling in a previous study (n = 84 from 42 tumour pairs)38,42. Initial 
tumours with an observed-to-expected neoantigen ratio greater than 
1 exhibited significantly higher levels of CD4+ T cells than those with a 
ratio less than 1, whereas recurrent tumours with a ratio greater than 1 
exhibited significantly higher levels of macrophages and neutrophils, 
and significantly lower levels of plasma cells relative to those with ratio 
less than 1 (P < 0.05, Wilcoxon rank-sum test; Extended Data Fig. 12c).

Although we did not detect many factors associated with the 
observed-to-expected neoantigen ratio, we did observe that the ratio 
was significantly associated with the total number of unique HLA loci 
in a patient (Spearman’s rho = 0.28, P = 2 × 10−9), reflecting similar find-
ings in lung cancer43. This may bias analyses comparing the ratio across 
patients. To determine whether immunoediting varies over time in a 
patient-agnostic manner, we compared the observed-to-expected neo-
antigen ratio derived from the clonal mutations of a sample, which likely 
arose earlier in tumour evolution, to that derived from their subclonal 
mutations, which arose later. We did not observe a significant difference 
in the observed-to-expected neoantigen ratio of each patient’s clonal 
and subclonal neoantigens, regardless of glioma subtype or whether 
the sample was an initial tumour or recurrence (P > 0.05, paired t-test; 
Fig. 4d). Together, these analyses suggest that neoantigens in glioma 
are not exposed to differing levels of selective pressure throughout 
their development.

Discussion
We reconstructed the evolutionary trajectories of 222 patients with gli-
oma to help to understand treatment failures and tumour progression. 
The longitudinal molecular profiles revealed common features such 
as acquired hypermutation and aneuploidy, and also highlighted the 

individualistic paths of glioma evolution after treatment. Our results 
provide evidence that the current standard of care therapies do not fre-
quently coerce glioma down predictable paths. Instead, an unexpected 
number of gliomas appeared to evolve stochastically after early driver 
events. We expect that continuing to profile patient tumours over time 
using comprehensive sequencing approaches will identify other com-
mon evolutionary paths. Our results highlight the prospects of several 
ongoing efforts that may inform new glioma therapies.

The observation that treatment-induced hypermutation occurred 
across subtypes, but did not confer a detrimental effect on patient sur-
vival, leaves the clinical importance of glioma hypermutation uncer-
tain21–24,27. Future analyses that consider the number of therapy cycles 
and MGMT DNA methylation status will help to determine factors that 
predispose tumours to hypermutation and identify therapies that effec-
tively exploit the vulnerabilities of this phenotype (for example, high 
mutational burden). Acquired cell cycle alterations and aneuploidy in 
recurrent IDH-mutant-noncodel gliomas also provide a rationale to 
target these more aggressive phenotypes with CDK inhibitors44 or with 
compounds that disrupt microtubule dynamics45. Finally, our analyses 
revealed that immunoediting activity does not vary in glioma over time, 
although we did observe variation between individual patients. Further 
molecular and immunological data are needed to fully understand the 
effect that this variability has on glioma evolution and to devise thera-
pies directed at the glioma immune response17. To this end, we found 
that clonal neoantigens arising from the IDH1(R132H) mutation per-
sisted from the initial tumour into the recurrence, justifying neoantigen 
vaccine approaches as treatments for initial and recurrent glioma46,47.

Collectively, these findings help shape our perspective on what 
constitutes an optimal treatment, and what approaches would result 
in the greatest removal or killing of glioma cells possible. Genomic 
characterization efforts such as The Cancer Genome Atlas (TCGA) 
have greatly increased our understanding of glioma biology but were 
limited to a single snapshot in evolutionary time. The GLASS resource 
provides a framework to study the patterns of glioma evolution and 
treatment response.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized, and investigators were not blinded 
to allocation during experiments and outcome assessment.

DNA sequencing and data collection
The GLASS dataset consists of both unpublished and published 
sequencing data as outlined in Supplementary Table 1. Among the 
cohort were exomes from 436 glioma samples (200 patients), whole-
genome data from 165 glioma samples (78 patients), with overlap-
ping exome/whole-genome data on 78 glioma samples (38 patients). A 
matching germline sequence was available for all patients. The dataset 
includes 257 sets of at least two time-separated tumour samples, 17 
standalone recurrences, and 19 patients with at least two geographi-
cally distinct tumour portions. More specifically, the dataset includes 
exome or whole-genome sequencing data on 211 primary gliomas, 234 
first recurrences, 32 second recurrences, 11 third recurrences and 1 
fourth recurrence (Supplementary Table 7).

Newly generated whole-genome sequencing data for the Chinese 
University of Hong Kong (HK), Northern Sydney Cancer Centre (NS) 
and MD Anderson Cancer Center (MD) cohorts were subjected to 
150 base paired-end sequencing. The HK samples were sequenced 
using HiSeqX, whereas the NS and MD cohorts were sequenced using 
NovaSeq, according to Illumina’s protocols. Whole-exome capture 
was performed using the following platforms as reported in previous 
publications7,21–23,48–52.

The Agilent SureSelect Human All Exon 50 Mb capture kit was used for 
patients SF-0001–SF-0021, and the Agilent SureSelect Human All Exon 
V4 capture kit was used for patients SF-0024–SF-0029 in the University 
of California San Francisco cohort. The Agilent SureSelect Human All 
Exon v4 or v5 kit was used to capture samples in the Kyoto University 
cohort. The Samsung Medical Center cohort reported using the Agilent 
SureSelect kit for patients SM-R056–SM-R071, SM-R075, SM-R076 and 
SM-R095–SM-R114, whereas the Illumina TruSeq Exome-capture kit 
was used for patient SM-R072. Exome capture was performed using the 
Agilent SureSelect Human All Exon 50 Mb kit in the TCGA glioblastoma 
(GBM) cohort and the Agilent SureSelect Human All Exon v.2.0 44 Mb 
kit in the TCGA low grade glioma (LGG) cohort. Columbia University 
cases were captured using the Agilent V3 50 Mb kit, sequencing 90 bp 
paired-end reads for samples R009-TP, R009-R1, R011-TP, R011-R1, 
R014-TP, R014-R1, R017-R1, R018-R1 and R019-R1. Mapping files of ini-
tial tumour and normal samples of patients R017–R019 were obtained 
from the TCGA through the CG-hub. All other samples were captured 
using the Agilent SureSelect XT Human All Exon v.4 Kit, 80 million 
paired-end reads, 150× on-target coverage. Samples in the Henry Ford 
Hospital cohort were multiplexed and sequenced using Illumina HiSeq 
2000 by the Sequencing and Microarray Facility at an average target 
exome coverage of 100× using 76-bp paired-end reads. Samples in 
the HK cohort were subjected to 75 base paired-end sequencing for 
HK-0001–HK-0004, as performed using NextSeq in high output mode. 
In the Leeds Cohort (LU), the SureSelectXT V5 kit (PE100) was used to 
construct exome libraries. The Illumina TruSeq Exome capture kit was 
used for samples at the Medical University of Vienna – Research Center 
for Molecular Medicine (CeMM).

GLASS identifiers
A GLASS barcode system was created, based on TCGA barcode design, 
in an effort to de-identify patient information and provide an organized 
framework for the different pieces of the dataset.

GLASS barcodes are composed of 24 characters. The first four 
characters specify the project (either GLSS or TCGA). All datasets 
submitted to The GLASS Consortium, published and unpublished, 
were given the GLSS project ID. Samples that were part of the TCGA 

cohorts (TCGA-GBM and TCGA-LGG) were given a TCGA designation. 
The next two characters designate the centre where the samples were 
either acquired or sequenced (Supplementary Table 7). This is followed 
by the four-character centre-specific patient identification that was 
kept as close as possible to the patient identification provided by the 
collaborators to allow a simplified trace-back process. Patient data are 
divided by a relative sample type, such as initial tumour (TP), recurrent 
tumour (R1), normal tissue (NB or NM, for example), or metastatic 
tumour sample (M1). If there was more than one recurrence the rela-
tive number was specified following ‘R’. Some patients had surgeries 
for which a biospecimen was unavailable. Thus, a surgical number was 
also provided to indicate temporal ordering (Supplementary Table 8). 
To include spatially separated samples the portion designation was 
added, which is followed by one character specifying the type of ana-
lyte, either DNA (D) or RNA (R). As there is variation in the sequencing 
analysis, a three-character designation represents either whole-genome 
sequencing (WGS) or whole-exome sequencing (WXS). The last part 
of the GLASS barcode is a six-character designation unique to each 
barcode that was randomly generated.

Computational pipelines
All pipelines were developed using snakemake 5.2.253. Unless otherwise 
stated, all tools mentioned are part of the GATK 4 suite54. All data were 
collected at a central location (The Jackson Laboratory) and analysed 
using homogenous pipelines capable of processing raw fastq files as 
well as re-processing previously analysed bam files.

Alignment and pre-processing
Data pre-processing was conducted in accordance to the GATK Best 
Practices using GATK 4.0.10.1. In brief, aligned BAM files were separated 
by read group, sanitized and stripped of alignments and attributes using 
‘RevertSam’, giving one unaligned BAM (uBAM) file per readgroup. 
Uniform readgroups were assigned to uBAM files using ‘AddOrReplac-
eReadgroups’. Similarly, unaligned fastq files were assigned uniformly 
designated readgroup attributes and converted to uBAM format using 
‘FastqToSam’. uBAM files underwent quality control using ‘FastQC 
0.11.7’. Sequencing adapters were marked using ‘MarkIlluminaAdapt-
ers’. uBAM files were finally reverted to interleaved fastq format using 
‘SamToFastq’, aligned to the b37 genome (human_g1k_v37_decoy) using 
‘BWA MEM 0.7.17’, attributes were restored using ‘MergeBamAlignment’. 
‘MarkDuplicates’ was then used to merge aligned BAM files from multi-
ple readgroups and to mark PCR and optical duplicates across identical 
sequencing libraries. Lastly, base recalibration was performed using 
‘BaseRecalibrator’ followed by ‘ApplyBQSR’. Coverage statistics were 
gathered using ‘CollectWgsMetrics’. Alignment quality control was 
performed running ‘ValidateSamFile’ on the final BAM file and quality 
control results were inspected using ‘MultiQC 1.6a0’55. A haplotype 
database for fingerprinting was generated using a modified version of 
the code on https://github.com/naumanjaved/fingerprint_maps. The 
tool ‘CrosscheckFingerprints’ was used to confirm that all readgroups 
within a sample belong to the same individual, and that all samples 
from one individual match. Any mismatches were marked and excluded 
from further analysis.

Variant detection
Variant detection was performed in accordance to the GATK Best prac-
tices using GATK 4.1.0.0. Germline variants were called from control 
samples using Mutect2 in artefact detection mode and pooled into a 
cohort-wide panel of normals. Somatic variants were subsequently 
called in individual tumour samples (single-sample mode) and in entire 
patients using GATK 4.1 Mutect2 in multi-sample mode. Mutect2 was 
given matched control samples, the aforementioned panel of nor-
mals and the gnomAD germline resource as additional controls. Cross-
sample contamination was evaluated using ‘GetPileupSummaries’ and 
‘CalculateContamination’ run for both tumour and matching control 
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samples. Read orientation artefacts were evaluated using ‘Collect-
F1R2Counts’ and ‘LearnReadOrientationModel’. Somatic likelihood, 
read orientation, sequence context, germline and contamination filters 
were applied using ‘FilterMutectCalls’.

Variant post-processing
BCFTools 1.9 was used to normalize, sort and index variants56. A con-
sensus VCF was generated from all variants in the cohort, remov-
ing any duplicate variants. The consensus VCF file was annotated 
using GATK 4.1 Funcotator and the v1.6.20190124s annotation data 
source. Allele frequencies from multi-sample Mutect2 were used 
to compare allele frequencies between related samples. Multi-
sample Mutect2 calls and filters mutations across a patient as a 
whole and does not determine mutation calls in a single sample. 
Single-sample mutation calls were overlaid on the multi-sample 
calls to infer whether variants were called in individual samples. 
Single-sample called variants that were not present in the multi-
sample callset were discarded.

Mutational burden
Mutational burden was calculated as the number of mutations per Mb 
sequenced. A minimum coverage threshold of 15× was required for 
each base. DNA hypermutation was defined for recurrent tumours 
with greater than 10 mutations per Mb sequenced as these values were 
considered outliers (1.5 times the interquartile range above the upper 
quartile). Notably, there were a few initial gliomas that demonstrated a 
mutational frequency above 10 mutations per Mb. However, the ‘hyper-
mutation’ classification was restricted to only patients with this level 
at recurrence since these likely reflect different evolutionary paths.

Mutational signatures
The relative contributions of the COSMIC mutational signatures 
were determined from a patient’s initial-only, recurrence-only, and 
shared mutations by solving the non-negative-least squares prob-
lem for each set of mutations using the 30 signatures from version 
2 (March 2015). Six signatures were dominantly enriched in at least 
3% of the fractions and we resolved the non-negative-least squares 
problems using the reduced six-signature model to increase accuracy 
and reduce noise.

Copy number segmentation
Copy number identification was performed according to the GATK Best 
Practices and is outlined briefly here. The pipeline differs slightly for 
whole genomes and whole exomes. For whole genomes, the genome 
was segmented into 10kb bins using ‘PreprocessIntervals’. For exomes, 
overlapping regions between several commonly used capture kits 
(Broad Human Exome b37, Nextera Rapid Capture, TruSeq Exome, 
SeqCap EZ Exome V3, Agilent SureSelect V4, Agilent SureSelect V7) 
were identified using ‘bedtools multiIntersectBed’. The tool ‘Preproc-
essIntervals’ was used to apply 1-kb padding and to merge overlapping 
intervals. In parallel, ‘SelectVariants’ was used to subset the gnomAD 
resource of germline variants to variants with a population allele fre-
quency greater than 5%. Next, ‘CollectReadcounts’ was used to count 
reads in the bins generated by ‘PreprocessIntervals’ separately for 
autosomes and allosomes. In parallel, ‘CollectAllelicCounts’ was used 
to count reference and alternate reads at gnomAD variant sites with 
a population allele frequency greater than 5%. The cohort was sub-
sequently split into batches determined by sequencing centre and 
‘CreateReadCountPanelOfNormals’ was used to create a panel of 
normal for each batch. Panel of normals were created separately for 
allosomes and autosomes, and allosomes were separated further by 
sex. To improve the panel of normals further, GC content annotation 
of each interval as determined by ‘AnnotateIntervals’ were given. Next, 
‘DenoiseReadCounts’ was used to denoise the binned readcounts out-
put by ‘CollectReadCounts’, given a panel of normal determined by 

batch, chromosomes (allosomes or autosomes) and sex. Denoised copy 
ratios were plotted and inspected for quality concerns using ‘PlotDe-
noisedCopyRatios’. The tool ‘ModelSegments’ is an implementation 
of a gaussian-kernel binary-segmentation algorithm and was used to 
merge contiguous segments and assign copy and allelic ratios. The 
results of this segmentation were plotted using ‘PlotModelledSeg-
ments’ and inspected for quality concerns.

Copy number calling
A copy number caller loosely based on GATK ‘CallCopyRatioSegments’ 
(which in turn is based off of ReCapSeg) and GISTIC was implemented 
to call both arm-level and high-level copy number changes, respec-
tively57,58.

Segments (from ‘ModelSegments’) with a non-log2 copy ratio 
between 0.9 and 1.1 were determined to be neutral. These segments 
were then weighted by length and a weighted mean and standard devia-
tion non-log2 copy ratio (once-filtered) were determined again. Outlier 
segments are removed and once again a weighted mean and standard 
deviation non-log2 copy ratio (twice-filtered) were determined. Seg-
ments with a non-log2 copy ratio between 0.9 and 1.1 and segments 
within two standard deviations of the twice-filtered mean were deter-
mined to be neutral, and segments outside of these boundaries were 
determined to have a low-level amplification or deletion, depending 
on the direction.

The weighted mean and standard deviation of the non-log2 copy 
ratio (once-filtered) was then determined individually for each chro-
mosome arm. Outlier segments were removed and the weighted mean 
and standard deviation of the non-log2 copy ratio (twice-filtered) was 
determined again. To determine a high-level amplification and deletion 
threshold, the most highly amplified and deleted chromosome arms 
were selected, respectively. The twice-filtered mean plus (high level 
amplification) or minus (high level deletion) two times the standard 
deviation of the selected arms were used as high-level thresholds.

Gene level copy numbers were called by intersecting the gene bound-
aries with the segment intervals and by calculating the weighted non-
log2 copy ratio for that gene. The copy number call for that gene was 
then determined by comparing the gene-level non-log2 copy ratio to 
the previously determined thresholds.

dNdScv
The dN/dS ratios were estimated using the R package dNdScv31 (https://
github.com/im3sanger/dndscv) was run using the default and rec-
ommended parameters for all mutations in initial tumour samples, 
recurrent tumour samples, and for each mutational fraction (unique 
to initial, unique to recurrent and shared). All analyses were conducted 
separately within the three main tumour subtypes.

Aneuploidy calculation
The most reductive metric of aneuploidy was computed by taking the 
size of all non-neutral segments divided by the size of all segments. The 
resulting aneuploidy value indicates the proportion of the segmented 
genome that is non-diploid.

In parallel, an arm-level aneuploidy score modelled after a previously 
described method was computed59. In brief, adjacent segments with 
identical arm-level calls (−1, 0 or 1) were merged into a single segment 
with a single call. For each merged/reduced segment, the proportion 
of the chromosome arm it spans was calculated. Segments spanning 
greater than 80% of the arm length resulted in a call of −1 (loss), 0 (neu-
tral) or +1 (gain) to the entire arm, or ‘NA’ if no contiguous segment 
spanned at least 80% of the arm’s length. For each sample the number 
of arms with a non-neutral event was finally counted. The resulting 
aneuploidy score is a positive integer with a minimum value of 0 (no 
chromosomal arm-level events detected) and a maximum value of 39 
(total number of autosomal chromosome arms excluding the short 
arms for chromosomes 13, 14, 15, 21 and 22).

https://github.com/im3sanger/dndscv
https://github.com/im3sanger/dndscv


Estimates of evolutionary pressures
Evolutionary pressures were evaluated both by variant status and 
glioma subtype using the neutralitytestr algorithm as previously 
described (R package: neutralitytestr v.0.0.2, https://github.com/
marcjwilliams1/neutralitytestr)32. Individual variant allele frequency 
vectors were merged at the level of glioma subtype by variant sta-
tus. Only mutations found in copy-neutral regions were included in 
these analyses. For all else, default parameters were used. Merged 
variant allele frequency distributions were deemed to be selected 
when the neutral null hypothesis was rejected using several met-
rics. Tests for neutrality required that both R2 < 0.98 and the area 
between the two curves of (1) merged variant allele frequency data 
and (2) a normalized distribution expected under neutrality to be 
significantly different.

The SubclonalSelection algorithm was applied to GLASS mutation 
data to measure the selection strength in individual tumour samples 
( Julia package: SubclonalSelection, https://github.com/marcjwilliams1/
SubClonalSelection.jl)16. Patients that had samples at both time points 
with a TITAN-defined purity estimate ≥ 0.5 and ≥ 25 subclonal mutations 
in diploid regions were included. Mean coverage across all mutations 
was used as the ‘read_depth’ input parameter and the model was run 
with the recommended 106 iterations and 1,000 particles. Samples 
were classified as neutral or selected based on the model that had the 
highest probability, in line with the prior applications to TCGA data16. 
Classification based on the highest model probability yielded stable 
results as there was not a significant change in proportions when set-
ting a higher classification probability threshold (P > 0.05, Pearson’s 
chi-square test, for both probability thresholds of 0.6 and 0.7). At all 
three probability thresholds (0.5, 0.6 and 0.7), Kaplan–Meier survival 
analyses between selection at recurrence and overall survival contin-
ued to indicate that patients with IDH-wild-type tumours that were 
selected had a worse overall survival (P = 0.03 (n = 81), P = 0.01 (n = 66) 
and P = 0.01 (n = 56), respectively).

Mutation clonality
Each patient’s clonal architecture was inferred using PyClone (v.0.13.1) 
by grouping SNVs into clonal clusters (https://github.com/aroth85/
pyclone)60. The patient-level input mutation matrix was reduced by 
limiting to sites with at least 30× coverage across all samples. PyClone 
was subsequently run using a binomial density model, connected ini-
tiation, and 10,000 iterations. Sample purities were provided for each 
patient and parental copy number (minor and major allele counts) from 
TITAN were given. PyClone results were post-processed using a burn-in 
of 1,000, thin of 1, minimum cluster size of 2 and a maximum number 
of clusters per patient of 12. Individual mutations were determined to 
be clonal if the PyClone CCF values were ≥ 0.5, subclonal for mutations 
with CCF ≥ 0.1 and CCF < 0.5, mutations were considered non-clonal 
when CCF < 0.1, as previously described61.

CNV clonality
Allele-specific copy number, tumour purity and ploidy estimates 
were derived using a probabilistic model (TITAN, v.1.19.1) for both 
whole-genome and whole-exome sequencing samples62. TITAN was 
supplied with the tumour denoised read counts output by GATK 
DenoiseReadCounts and the tumour allelic counts at loci found to 
be heterozygous in control samples output by ModelSegments. An 
‘alphaK’ (and ‘alphaKHigh’) parameter of 2,500 and 10,000 was used 
for exomes and genomes, respectively. The patient sex was provided 
to improve fitting allosomes. For each tumour–control pair, TITAN 
was run assuming an initial ploidy of two or three, and assuming one to 
three clusters, resulting in a total of six possible solutions per tumour/
control pair. To select the optimal solution, TITAN’s internal select-
Solution function was used with a threshold of 0.15 giving additional 
weight to diploid solutions.

Timing analysis
The CCF values output by TITAN or PyClone were used for separately 
timing copy number changes or mutations. To time specific copy num-
ber changes in genes, the average CCF for that gene was calculated. 
When timing mutations in genes, the highest CCF amongst the non-
synonymous mutations was taken.

Neoantigen analyses
Neoantigens in this analysis were defined as all 8–11-mer peptides that 
arose from an exonic nonsynonymous SNV or indel and bound their 
respective patient’s HLA class I molecules at a binding affinity score 
(half-maximal inhibitory concentration, IC50) that was ≤ 500 nM and 
better than or equal to the wild-type form of the peptide. Each patient’s 
four-digit HLA class I types were inferred using OptiType (v.1.3.1, https://
github.com/FRED-2/OptiType) run on each patient’s matched normal 
sample63. VCF files for each tumour sample were annotated using Vari-
ant Effect Predictor (ensembl) with the ‘downstream’ and ‘wildtype’ 
plugins. Neoantigens from these VCFs were then called using pVACseq 
(v.4.0.10, https://github.com/griffithlab/pVAC-Seq)41 run using netM-
HCpan (v.2.8, http://www.cbs.dtu.dk/services/NetMHCpan-2.8/)64. For 
each pVACseq run, epitope length was set to 8, 9, 10 or 11, minimum 
binding affinity fold change was set to 1, and downstream sequence 
length was set to full, with default parameters used for all other settings.

Downstream neoantigen analyses were performed using the pVACseq 
output linked to its respective mutation information. Neoantigen-causing 
mutations were defined as all mutations that gave rise to at least one neo-
antigen. The observed-to-expected neoantigen ratio was calculated using 
a previously developed approach that compares each tumour’s observed 
neoantigen rate to an empirically derived expected rate that assumes no 
selection against neoantigen-causing mutations39: From the gold set sam-
ples in the GLASS cohort (n = 222), define Ns to be the expected number of 
nonsynonymous missense SNVs per synonymous SNV with trinucleotide 
context s. Bs is then defined as the expected number of neoantigen-gen-
erating missense SNVs per nonsynonymous missense SNV with trinucleo-
tide context s. For a given sample i, define Yi as the sample’s set of 
synonymous SNVs and s(m) to be a synonymous SNV with trinucleotide 
context m. The expected number of nonsynonymous missense SNVs, Npred, 
and neoantigen-causing mutations, Bpred, can then be calculated as follows:
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m Y

s mpred,
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( )
i

∑B N B=i
m Y

s m s mpred,
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To obtain the final neoantigen depletion ratio, Ri, of sample i, the 
observed number of neoantigen-causing mutations in the sample, 
Bobs,i is divided by the sample’s observed number of nonsynonymous 
missense SNVs, Nobs,i, and then this ratio is divided by the ratio of Bpred,i 
and Npred,i. Thus:
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B N
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/
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For analyses examining clonal/subclonal neoantigen ratios, the 
observed and expected numbers were calculated by subsetting the 
SNVs of a sample by the respective criteria and then recalculating the 
ratio as described above. To mitigate overfitting, all analyses presented 
here used samples from patients with at least three neoantigen-causing 
mutations in their primary and recurrent tumours.

Immune cell analyses
CIBERSORT relative immune cell fraction data used in downstream 
neoantigen analyses were downloaded from a previous publication38.

https://github.com/marcjwilliams1/neutralitytestr
https://github.com/marcjwilliams1/neutralitytestr
https://github.com/marcjwilliams1/SubClonalSelection.jl
https://github.com/marcjwilliams1/SubClonalSelection.jl
https://github.com/aroth85/pyclone
https://github.com/aroth85/pyclone
https://github.com/FRED-2/OptiType
https://github.com/FRED-2/OptiType
https://github.com/griffithlab/pVAC-Seq
http://www.cbs.dtu.dk/services/NetMHCpan-2.8/
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Statistical methods
All data analyses were conducted in R 3.4.2, Python 2.7.15, PostgreSQL 
10.5, and Julia 0.7. All survival analyses including Kaplan–Meier plots 
and Cox proportional hazards models were conducted using the R 
packages survival and survminer.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All de-identified, non-protected access somatic variant profiles and 
clinical data are accessible via Synapse (http://synapse.org/glass). Raw 
data of the various sequencing datasets can be obtained in the Sup-
plementary Information.

Code availability
All custom scripts and pipelines are available on the project’s github 
page (https://github.com/TheJacksonLaboratory/GLASS).
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Extended Data Fig. 1 | Sample selection. a, Quality control workflow steps identifying all GLASS samples available as a resource and the identification of the 
highest quality set of patient pairs (n = 222) used for the presented mutational and copy number analyses. b, Additional available datasets.
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Extended Data Fig. 2 | Mutation burden by time point and subtype. a, Box 
plots and paired lines depicting coverage-adjusted mutation frequencies in 
initial and matched recurrent samples across three subtypes. Wilcoxon signed-
rank test P values and sample sizes are indicated. b, Bee swarm plot depicting 
coverage-adjusted mutation frequencies in fractions by subtype. Dashed line 
indicates the mean. P values comparing three subtypes were determined by 

one-way analysis of variance (ANOVA). c, Scatter plot showing the relationship 
between age at diagnosis and coverage adjusted mutation burdens by subtype 
and fraction. P values were determined by the linear model and adjusted by 
subtype. d. Similar to the analysis in c but showing the relationship between 
time to recurrence and coverage-adjusted mutation burdens.



Extended Data Fig. 3 | Mutational signatures by fraction and subtype.  
a, Correlation plot showing the Pearson’s chi-squared (χ2) residuals for each 
signature by fraction and subtype. A χ2 test was performed for each subtype 
and P values are indicated. Positive residuals (blue) indicate a positive 
correlation, whereas negative residuals (red) indicate an anti-correlation. The 

point size reflects the contribution to the χ2 estimate. b, Patients were ordered 
as in Fig. 1a, and relevant clinical information is provided alongside the 
fraction-specific mutational signatures. PyClone mutational clusters are also 
presented.
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Extended Data Fig. 4 | Hypermutator clonality. a, Bar plots represent counts 
of recurrence-only mutations per hypermutator tumour that were known to 
receive treatment alkylating agent and were successfully run through the 
PyClone algorithm. Colours indicate mutation clonality and colour intensity 
indicates whether the mutations resulted in coding changes. b, Kaplan–Meier 

curve comparing the survival of alkylating agent-treated IDH-mutant-noncodel 
hypermutator tumours that were predominantly clonal (n = 8), predominantly 
subclonal (n = 7) or non-hypermutator (n = 17). Limited to tumours with 
available PyClone data. P value determined by log-rank test.



Extended Data Fig. 5 | Clonal structure evolution over time. a, The minimum 
CCF of the most persistent (shared between initial and recurrence) PyClone 
cluster. b, Comparison of PyClone clusters ranked by CCF in matched initial and 
recurrent tumours, as in Fig. 2b, but separated by subtype. c, d, Examples of 

cluster CCF dynamics over time in three separate samples, including two multi-
time point samples (c) and one multi-sector sample (d). These additional data 
are available in the GLASS resource, but only two time-separated samples were 
used throughout to ensure clarity.
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Extended Data Fig. 6 | Distribution of variant allele fraction. a, Distributions 
of non-hypermutator variant allele fraction for copy-neutral variants in coding 
regions (n = 181 patients). Variants are separated by subtype, fraction and also 
the variant was non-synonymous or synonymous mutation in a coding region. 
R2 goodness-of-fit measure and associated P values are shown. Note that these 

data consider only the coding portion of genome, whereas Fig. 2d presents 
both coding and non-coding data. b, The cumulative distribution of the 
subclonal mutations in copy-neutral regions for hypermutators (n = 31 
patients). For each variant fraction and subtype, the R2 goodness-of-fit 
measure and P values are shown.



Extended Data Fig. 7 | Driver gene nomination. a, Local (gene-wise) dN/dS 
estimates by subtype (rows) and fraction (columns). Genes are sorted by Q 
value and P value. The Q value is shown in colour, whereas the P value is 
indicated in light grey. The Q value threshold of 0.05 is indicated by a horizontal 

red line. b, GISTIC significant amplification (red) and deletion (blue) plots in 
initial (left) and recurrent tumours (right). Chromosomal locations are ordered 
on the y axis, Q values are shown on the x axis, and selected drivers are indicated 
by their chromosomal location on the right.
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Extended Data Fig. 8 | Driver acquisition over time. a, Tabulated numbers of 
SNV (top) and CNV (bottom) driver events that were shared, initial-only or 
recurrence-only. P values were determined by a two-sided Fisher test 
comparing the initial-only fraction to the recurrence-only fraction testing for 
acquisition. b, One-sided Fisher test comparing the initial-only fraction to the 

recurrence-only fraction among previously implicated glioma drivers testing 
for driver acquisition. P values were adjusted for multiple testing using the false 
discovery rate (x axis). Hypermutators (red) and non-hypermutators (black) 
were separately analysed.



Extended Data Fig. 9 | Intra-tumour CCF comparison. Ladder plots 
comparing the CCF of co-occurring drivers in single tumour samples. The 
colour of the lines and points indicates whether the sample shown is an initial 

(brown) or recurrent (green) tumour. P values determined by two-sided 
Wilcoxon rank-sum test for all initial samples, recurrent samples, as well as all 
samples (black).
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Extended Data Fig. 10 | Between time point intra-patient CCF comparison.  
a, Driver gene CCF comparison between initial and matched recurrences. Lines 
are coloured by variant classification. P values determined by two-sided 
Wilcoxon rank-sum test. b, TP53 CCF by subtype, otherwise as in a. c, IDH1 CCF 
by subtype, otherwise as in a. d, Ladder plot visualizing change in CCF across all 
SNVs between initial and recurrent tumours, separated by subtype. P values 

determined by Wilcoxon rank-sum test. e, Initial and recurrent mutations in 
each patient were compared using a Wilcoxon rank-sum test. Bar plot with 
counts of patients in each subtype are shown. Patients lacking significant 
change are shown in yellow, and those with a significant increase or decrease 
are shown in dark and light blue, respectively.



Extended Data Fig. 11 | Aneuploidy calculation. a, Heat map displaying the 
chromosomal arm-level events (x axis) with patients represented in each row. 
Patients are placed in the same order for both the initial (left) and recurrence 
(right). White space was inserted as a break between the three subtypes.  

b, Distribution of total aneuploidy difference. Acquired aneuploidy 
determination (upper-quartile) indicated with a red line. c, Comparison of 
aneuploidy score between initial and recurrent tumours separated by subtype 
d. As in c, comparing aneuploidy value.
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Extended Data Fig. 12 | Neoantigen evolution and cellular analysis. a, Bar 
plots representing the number of shared mutations that give rise to 
neoantigens (top row, ‘immunogenic’) and those that do not give rise to 
neoantigens (bottom row, ‘non-immunogenic’) stratified by longitudinal 
clonality (‘(clonality in initial) − (clonality in recurrence)’) and further 
separated by subtype. The percentage of longitudinal clonality per subtype 
and mutation is shown. b, Left, ladder plot depicting the difference in 
observed-to-expected neoantigen ratio between the initial and recurrent 
tumours of patients with hypermutated tumours at recurrence. Each set of 
points connected by a line represents one tumour (n = 70). Right, box plot 
depicting the distribution of observed-to-expected neoantigen ratios in 

recurrent tumours stratified by hypermutator status (n = 35 and 183 for 
hypermutators and non-hypermutators, respectively). Each box spans 
quartiles, with the lines representing the median ratio for each group. Whiskers 
represent absolute range, excluding outliers. P values were determined by a 
paired and an unpaired two-sided t-test, for left and right graphs, respectively. 
c, Stacked bar plots depicting the average relative fraction of 11 CIBERSORT cell 
types in the neoantigen depleted (<1) and non-depleted (>1) initial and 
recurrent tumour subgroups. P values to the right of each plot indicate a 
significant difference between the depleted and non-depleted groups for the 
noted cell type at that time.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis MultiQC version: 1.6a0 (quality assessment) 
FastQC 0.11.7 (quality assessment)
BWA MEM 0.7.17 (alignment)
R 3.4.2 (general data analyses)
Python 2.7.15 (general data analysis)
Julia 0.7 (general data analysis)
PostgreSQL 10.5 (data management) 
BCFTools 1.9 (normalize, sort and index variants) 
snakemake 5.2.2 (pipeline development) 
GATK (including Mutect2) version: 4.1.0.0 (SNV/CNV detection) 
freebayes version: 1.2.0 (variant filtering) 
vcf2maf version: 1.6.16 (variant filtering and annotation) 
MutationalPatterns version: 1.6.1 (mutational signatures) 
TITAN version: 1.19.1 (purity, ploidy, CNV clonality estimates) 
dndscv (R package) version: 0.0.1.0 (selection strength, nominate driver genes) 
alluvial (R package) version: 0.1-2 (visualize longitudinal neutrality) 
DBI (R package) version: 1.0.0 (database management) 
tidyverse (R package) version: 1.2.1 (data analysis and visualization) 
survival (R package) version: 2.42-6 (survival analyses) 
neutralitytestr version: 0.0.2 (subtype-level, variant-level selection) 
SubClonalSelection version: 0.0.0 (sample-level selection) 
PyClone version: 0.13.1 (mutational clusters) 
OptiType version: 1.3.1 (HLA class types) 
pVACseq version: 4.0.10 (neoantigen prediction) 
netMHCpan version: 2.8 (neoantigen prediction) 
All other custom scripts and pipelines are available on the project’s github page (https://github.com/TheJacksonLaboratory/GLASS) 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All deidentified, non-protected access somatic variant profiles and clinical data are accessible via Synapse (http://synapse.org/glass). A subset of whole genome and 
whole exome sequencing data has been deposited in the National Center for Biotechnology Information's Sequencing Read Archive and/or the European Genome/
Phenome Archive (EGA). Please see Supplementary Table 1 for availability and accession codes.

Field-specific reporting
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size.

Data exclusions We defined a quality control process to integrate whole exome and whole genome sequencing data collected from multiple cohorts. As 
shown in Extended Data Fig. 1, two datasets, Silver and Gold, were constructed to be used for each major analysis type, SNV and CNV, 
respectively. The two criteria used are intended to provide quality classifications for samples across fingerprinting, coverage, copy number 
variation (CNV) data and clinical annotation.Fingerprinting was performed using CrosscheckFingerprints (Picard), the purpose of this is to 
check that all of the input files (readgroups, libraries, samples, files) belong to the same patient, to remove duplicated cases, unmatched 
samples, and samples of poor quality. Any evidence of mismatch rendered the samples “blocked”, otherwise the sample was annotated as 
“allow”. To ensure suitable coverage for mutation calling, samples with near 0 mutation frequency as well as those 2 standard deviations 
below the mean for either WGS or WXS were annotated as “block”. Samples were categorized as “allow”, “review”, or “block”. Copy number 
data were excluded via manual review of all selected copy number solutions. Manual review consisted of identifying whether data had an 
atypical or noisy segmentation profile. While we recognize that this strategy is not objective it proved to be an effective strategy for 
identifying poor performing samples. Insufficient signal, noisy signal, TITAN run fail and unexpected genome stability (little to no copy number 
changes observed suggesting low purity) were the main reasons for sample exclusion or review. Clinical data was another source of sample 
filtering. Exclusion of samples was mostly related to sample pairs where surgical interval was very short (1-2 months) and thus did not appear 
to be a true recurrence. Caution should be used when considering whether a sample represents a true recurrence as no standard set time 
limits exist. Categories for clinical data include “allow”, “interval 1 or less months”, “interval 2 or less months”, “different location” and 
“surgical indication” (including “further debulking”). Those interested in using the dataset for further analysis are encouraged to make their 
own judgments on the criteria they select. The Silver set is filtered to include those pairs with no fingerprinting mismatches and sufficient 
coverage and is made up of 257 pairs. The Gold set contains 222 pairs, which in addition to the previously mentioned criteria also contain 
acceptable CNV calls in both samples. 

Replication Replication was limited to select patient samples where both whole genome sequencing and whole exome sequencing was available. All attempts
at replication were successful. 

Randomization There was no randomization in this study.

Blinding All patient samples were deidentified and were assigned a study-specific barcode. Blinding was not relevant to our study since there was no 
randomization of groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Sample size was a  function of availability.
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n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics The dataset includes 271 sets of at least two time-separated tumor samples and 17 standalone recurrences. The majority of sets 
contain two tumor samples (n=246, 85%), with 19 (6.6%) three-tumor sample sets, three (1%) four-tumor sample sets, one 
(0.3%) with a total of five tumor samples and 17 (5.9%) standalone post-treatment tumor samples. Basic clinical information 
including age (years), gender, overall survival (months), tumor grade, and tumor histology was available for 90% (260/288) of 
patients and for 92% (536/584) of tumor samples of the dataset.  

Temozolomide and radiation treatment information was available for 68% of the cohort (399/584), data on other treatment 
modalities was available for 119 patients. Median age at diagnosis of GLASS patients in the IDHmut-noncodel and IDHmut-codel 
subtypes were both 34 years old and in the IDHwt group age at diagnosis was 53 years old. This is compared with 46 years for 
IDHmut-codels, 38 years for the IDHmut-noncodels and 59 years in the TCGA cohort respectively. Patients in our dataset were 
biased toward longer survival as 261 patients were deemed fit for surgical resection or biopsy at recurrence. Median survival for 
primary glioblastoma patients was 21 months (95% CI 19–23) in the GLASS cohort versus 15 months in historical cohorts. 
Patients in this cohort were predominantly treated at teaching/academic centers, which have been shown to be an independent 
predictive factor of longer survival compared with non-teaching/community hospital settings 

All other relevant patient demographics for the GLASS cohort are presented in the Supplement. 

Recruitment Informed consent was obtained from all study subjects as part of each institution's individual IRB.

Ethics oversight All tissue source centers listed in Supplementary Table 1 obtained study approval by the corresponding institutional review board (IRB) and 
informed consent from all patients in the cohort. Data pooling at the Jackson Laboratory was performed under the oversight of the IRB at the 
Jackson Laboratory.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration NA.

Study protocol NA.

Data collection NA.

Outcomes NA.
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