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Abstract—Being part of the 6G ecosystem vision, Connected and Auto-

mated Vehicles (CAVs) will enjoy sophisticated tailored services offering

road safety and entertainment for users. As one of the 6G cornerstones,

Network Slicing (NS) allows the creation of various customized 6G-V2X

(Vehicle-to-Everything) use cases on the same physical infrastructure.

However, 6G-NS advances can open up breaches to cyber-attacks

aiming to break 6G-V2X Network slices to inflict maximum damage on

CAVs and their users. Crossing borders, where CAVs leave their V2X-

NS (V2X Network Slice) in the Home Mobile Network Operator (H-MNO)

toward a similar V2X-NS in the Visited MNO (V-MNO), is an attractive

opportunity to exploit by attackers. Detecting and mitigating attacks, in

this case, becomes a priority, confronted by NS requirements and MNOs

not ready to share their private data. To this end, this paper proposes a

3GPP-compliant privacy preservation collaborative learning scheme for

6G-NS security, focusing on V2X-NS cross-border areas. Our scheme

leverages multi-process Federated Learning (FL) architecture to build

efficient V2X-NS security-related models while preserving 6G V2X-NS

isolation. In addition, it uses differential privacy-enabled stacking to build

up attack detection knowledge at the V2X-NSs and MNOs levels while

ensuring privacy preservation. We conducted an experimental study

on the 5G-NIDD dataset, which is one of the most realistic publicly

available 5G datasets. Our results demonstrate that multi-process FL

with stacking can deliver high accuracy while ensuring isolation between

6G-V2X-NSs and privacy preservation between H-MNO and V-MNO.

Index Terms—6G-V2X; Network Slicing; Security; Machine learning;

Misbehaving Detection Systems, Federated learning

1 INTRODUCTION

The success of the 5th generation of mobile networks (5G) in
integrating innovative verticals with various requirements
under a unified communication framework has paved the
way for the following mobile generation. 6G will enforce
5G-enabling technologies and continue the development
of AI-empowering and fully-automated solutions [1]. Ad-
vanced Network Slicing (NS) is one of the cornerstones
of 6G ecosystems, enabling several verticals and use cases
with stringent network and security requirements to co-exist
in the same environment while sharing the same physical
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infrastructure [2]. However, 6G-NS will face a massive vec-
tor of cyberattacks from tactical adversaries continuously
exploring weak points to break 6G network slices [3].

Connected and Automated Vehicles (CAVs) are critical
verticals exploiting 6G-V2X direct communications via PC5
interface and 6G-V2X-NS to deliver reliable and efficient
road safety services [4]. Various 6G-V2X Network Slices (6G-
V2X-NSs) tailored to specified V2X applications, services,
and use cases with different purposes and requirements
can be requested by stakeholders (6G-V2X slice tenants),
such as road authorities, companies, and content publishers.
For example, road authorities can request the creation of
a 6G-V2X-NS dedicated to fully automated (autonomous)
vehicles requiring ultra-reliable communications. In addi-
tion, companies can request creating a dedicated 6G-V2X-
NS for their delivery/supply-chain platoons while ensuring
platoon stability. Media publishing can request a 6G-V2X-
NS to broadcast relevant content to the CAV’s passengers.

However, CAVs are attractive targets to adversaries who
aim to harm end-users, making noise that may cause them
to lose trust in 6G. An example of these impacts is recently
demonstrated in Denmark, where a cyberattack caused
trains to stop [5]. Moreover, mobility CAVs will facilitate
adversaries’ tasks in breaking 6G-V2X-NSs. Indeed, CAVs
moving on roads can perform frequent handovers and may
cross borders in open-border geographic areas like Schengen
space. Crossing boarding and roaming operations change
attachment from the Home Mobile Network Operator (H-
MNO) to a Visited MNO (V-MNO). In this case, the V-MNO
should allocate a 6G-V2X-NS with the same characteristics
as the home 6G-V2X-NS. This will open up several breaches
to break [6, 7].

While the current 3rd Generation Partnership Project
(3GPP) standard provides roaming security solutions for
control and data planes [8], security challenges are higher in
6G-V2X-NSs at cross-borders. Detecting cross-border attacks
required cooperation between H-MNO and V-MNO in train-
ing Machine Learning(ML)-based security-related models
while facing three main challenges (i) the first challenge
is to develop ML models for securing 6G-V2X-NSs while
ensuring that their respective networks and data remain
isolated from each other during the training process, (ii)



H-MNO and V-MNO belong to different countries; thus,
they are under different privacy regulations and policies em-
bedding them to share their security and network data for
training mutually. Specifically, each country’s telecommuni-
cations national regulatory authority (TNRA) manages poli-
cies and regulations that directly impact security. Therefore,
the challenge is to ensure collaboration between H-MNO
and V-MNO to detect attacks with adequate accuracy while
ensuring privacy preservation (iii) the third challenge is that
the proposed collaborative learning security architecture for
6G-V2X-NSs should comply with 3GPP standards.

To address these challenges, we extend 3GPP secu-
rity roaming standards for securing NS for 6G-V2X, espe-
cially in cross-border areas. We proposed a scheme using
multi-process Federated Learning (FL) to train 6G-V2X-NS
security-related models independently for preserving NS
isolation. The scheme offers two strategies for selecting
the global MNO models. Finally, it also uses differential
privacy-enabled stacking to build collaborative global deep-
learning models to detect slicing attacks with adequate
accuracy while preserving privacy.

The contributions of this paper can be summarized as
follows:

• We propose a security architecture compliant with
the 3GPP release 17, exploiting a hierarchical struc-
ture of multiple Network Data Analytics Functions
(NWDAFs) for the collaborative building of a se-
curity model for 6G-V2X-NSs while respecting the
requirements.

• We propose multi-process FL for building security-
related 6G-V2X models with two strategies for real-
izing the global model for each MNO.

• We propose differential privacy-enabled stacking for
combining global models built at each MNO for
building up meta-learner and accumulating detec-
tion capabilities while preserving the privacy of each
MNO.

• We evaluate the accuracy of our scheme on the 5G-
NIDD dataset, which contains attack traces from a
realistic 5G testbed, and qualify the impact of differ-
ential privacy.

The remainder of this paper is organized as follows.
Section 2 discusses the related work. Section 3 describes the
system model. Section 4 describes the adversary model. Sec-
tion 5 presents the building blocks of our scheme. Section 6
describes our experimental setup and obtained results. Sec-
tion 7 discusses results and some future perspectives. Sec-
tion 8 concludes the paper.

2 RELATED WORK

Research communities have already identified attacks
against NS in 5G. The Next Generation Mobile Networks
(NGMN) Alliance document [9] has identified early vul-
nerabilities in 5G NS and given recommendations. How-
ever, the attacks on NS have kept developing. The au-
thors of [10] have explored a distributed slice mobility
attack that exploits the user equipment-initiated inter-slice
mobility, causing performance and economic damage to
the 5G network slices. The authors of [11] focused on

security threats in 5G-V2X network slices from multiple
perspectives, namely CAVs and the underlying network
slicing technologies and procedures. The authors of [12]
surveyed many ML-based intrusion detection systems for
CAVs, highlighting the threats from network slicing and
the need to develop similar systems for detecting such
attacks. The authors of [13] developed a Deep-Learning
(DL) model to select suitable network slices and proactively
prevent Distributed Denial of Service attack (DDoS) attacks
on a 5G network based on the incoming network connec-
tions before they even reach the core network. The authors
of [14] proposed a framework based on a Long Short Term
Memory DL technique that detects user equipment (UE)
network traffic as a DDoS or normal traffic and assigns an
appropriate slice to a legitimate UE request. The authors of
[15] have developed a DL module to detect DDoS attacks,
automatically creating a sinkhole-type slice with a small
portion of physical resources and isolating the malicious
users within this slice to mitigate the attackers’ action. The
authors of [16] proposed an FL-based architecture that co-
ordinates security orchestration to centrally handle security
operations of network slicing while preserving data privacy.
However, the previous works [13–15] have only focused on
attacks on the 5G-Core focusing DoS attacks, and without
considering 5G-V2X verticals. The authors of [17] have cat-
egorized attacks against network slicing into intra-slice and
inter-slice attacks. Specifically, intra-slice attacks in which
the attacker(s) and the target(s) belong to the same V2X
Network Slice (V2X-NS), while inter-slice attacks in which
the attacker(s) and/or the target(s) belong to different V2X-
NSs. The authors in [18] proposed a DL-based approach
to detect V2X network slicing attacks, such as end-to-end
from vehicles to the core network. However, the paper only
focuses on intra-slice V2X attacks and does not consider
inter-slice. The authors in [19] proposed an FL approach to
detecting inter-slice V2X attacks. The proposed scheme is
hierarchical and deploys a set of DL-empowered security
Virtual Network Functions (sVNFs) over V2X-NSs as FL
clients and FL coordinators. However, this scheme focuses
on detecting the slice inside one MNO and does not consider
roaming and cross-border areas. In addition, unlike [19], this
paper uses multi-process FL to build multiple ML models
for V2X network slices and then combines them to have a
single global model for the MNO. Then, this paper builds
ML models tailored for cross-border areas by combining
global models from the interconnecting MNOs. The authors
of [7] have recently identified a set of threats on CAVs
at cross borders. Table 1 presents a comparative analysis
between related work and our proposed scheme. This com-
parison is based on five criteria ”V2X”, ”Attack detection”,
”Network slicing”, ”Cross-border”, and ”Privacy Preserva-
tion”. As we can see in this table, unlike all the previous
works, our scheme focuses on detecting 6G-V2X network
slicing attacks in cross-border areas. It proposes collabo-
rative learning based on federated and ensemble learning
while considering slice isolation and privacy preservation.
Specifically, unlike [16, 19], our scheme leverages multi-
process federated learning and complies with the current 5G
standards and promises for 6G networks. Table 2 describes
the frequent abbreviations used in the paper.
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TABLE 1: Comparison table

Scheme V2X ML-based Attack detection Network Slicing Cross-border Privacy Preservation
[13] X X
[14] X X
[15] X X
[16] X X X (FL)
[18] X X X
[19] X X X X (FL)
Our scheme X X X X X (Multi-process FL)

TABLE 2: Abbreviations used throughout the paper.

Abbr Description

3GPP The 3rd Generation Partnership Project
6G The 6th generation mobile network
6G-V2X-NS 6G-V2X Network Slices
CAV Connected and Automated Vehicle
DDoS Distributed Denial of Service
DL Deep Learning
ETSI European Telecommunications

Standards Institute
FL Federated learning
MEC Machine Learning
MEC Multi-access Edge Computing
MNO Mobile Network Operator
NS Network Slicing
NWDAF Network Data Analytics Function
SMF Session Management Function
UPF User Plane Function

3 SYSTEM MODEL

This section describes the system model considered by our
scheme. Figure 1 illustrates a cross-border 6G-V2X NS archi-
tecture scenario. The main parties of the architecture are the
H-MNO and the V-MNO. Each MNO consists of a 6G cloud-
native core network, Multi-access Edge Computing (MEC)
layer, and New Radio (NR), including CAVs, Vulnerable
Road Users (VRUs) (e.g., pedestrians, cyclists, motorcycle
riders), and gNodeBs. More specifically, we refer here to
a Public Land Mobile Network (PLMN), a combination of
wireless communication services offered by a specific MNO
in a specific country. The home and visited MNOs are inter-
connected through N9 and N32 are 6G standards reference
points. Specifically, the N32 connects the 6G core networks
(visited and home) at the control plane, and N9 allows
connection between the V-MNO and H-MNO at the data
plane level.

Two strategies are provided by 6G to manage the data
session of CAVs. In the Local Break Out (LBO) strategy, only
the Visited MNO manages data sessions using the visited
User Plane Function (V-UPF) and Visited Session Manage-
ment Function (V-SMF). In contrast, in the Home-Routed
(HR) strategy, the data is routed to the H-MNO, which
manages data sessions. Although specified by the 3GPP,
the LBO architecture is rarely used in practice [20]. For this
reason, our scenario adopts HR architecture. For example,
in our scenario, 6G-V2X application data is routed from the
H-MNO to the V-MNO first through the N4 interface and
then through the N9 interface between H-UPF and V-UPF.

6G-V2X-NSs are created and managed by the Network
Slice Manager (NSM) upon establishing a Service Level
Agreement (SLA) between the tenant (the stakeholder) and
the MNO. The MNO should ensure the security of the
6G-V2X-NS and the service continuity even after crossing
the borders. Moreover, different isolation levels could exist
between the 6G-V2X-NSs, ranging from complete isolation,
where each 6G-V2X-NS has its own Cloud Native Functions
(CNFs), to partial isolation, where 6G-V2X-NSs share few or
several CNFs. Our scenario, illustrated in Figure 1, adopts
6G-V2X-NS isolation at the data plane. More specifically,
6G-V2X-NS share 6G-Core control CNFs, and each 6G-V2X
network slice has a dedicated UPF. This function is usually
placed close to the users at the MEC layer to provide better
performance [21].

Three strategies can be applied to ensure the continuity
of 6G-V2X slice services [22]: (i) the V-MNO provides a 6G-
V2X-NS with equivalent functionality of the V2X-NS used
in the H-MNO, (ii) the H-MNO can export the blueprint of
6G-V2X-NS to the V-MNO, so the latter can instantiate a
similar V2X-NS administrated by it, and (iii) the H-MNO
can extend the 6G-V2X-NS into the V-MNO and provide
it with authorization to control the resources. In the real-
world scenario, it is up to the V-MNO to determine the
best strategy to ensure service continuity service. The first
strategy seems more realistic for the standardized types of
6G-V2X-NSs. Therefore, when registering to the V-MNO,
V2X nodes can be mapped to 6G-V2X-NS, meeting the same
requirements as V2X-NS of the H-MNO [20].

From a security perspective, the cross-border scenario
differed from the general multi-MNO scenario since H-
MNO and V-MNO are under different policies and regu-
lations. For example, policies and regulations regarding cer-
tain tools and technologies and data processing procedures
can embed the V-MNO to provide the same security level for
the 6G-V2X-NS as at the H-MNO [7]. Therefore, in the cross-
border scenario (international roaming), the interconnecting
MNOs should harmonize their different-level security solu-
tions to meet the hosting countries’ policies and regulations
while maintaining the security of 6G-V2X during roaming,
which is not easy and requires cooperation between the H-
MNO and home V-MNO.

The current 3GPP standard proposes a Security Edge
Protection Proxy (SEPP) at the edge of the core network
to protect control plane exchange through the N32 inter-
face, providing security features such as topology hiding,
message filtering, and many other policy enforcement ca-
pacities. The SEPPs of H-MNO and V-MNO communicate
through the Internet Protocol Exchanges and have Transport
Layer Security (TLS) as the authentication protocol. How-
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ever, the SEPP offers security only for the messages of the
control plane. The data plane protection is provided by the
Inter-PLMN User Plane Security (IPUPS) feature enabled
in H-UPF and V-UPF, which H-SMF and V-SMF manage,
respectively. IPUPS protects the GTP-U (GPRS Tunneling
Protocol-User) data traffic by detecting and removing in-
valid traffic passing via the N9 interface and forwarding
only valid data traffic [8].

4 ADVERSARY MODEL

While the current security standard provides security to
some extent, security challenges are higher in 6G-V2X-
NS at cross-borders. Specifically, due to the time-sensitive
nature of 6G-V2X applications, H-MNO and V-MNO should
execute low-latency roaming procedures to maintain the
performance of such applications. This may leave security
vulnerabilities attackers can exploit before, during, or after
CAVs cross borders. Specifically, the roaming of CAVs in
6G-NS could be separated into two phases. The first phase
is when CAVs approach or pass the cross borders and are
attached to the V-MNO. The priority for the V-MNO in the
phase is to ensure service continuity and road safety by
quickly assigning CAVs to a 6G-V2X-NS with functionalities
similar to one in H-MNO. In the second phase, the V-MNO
optimizes its selection and considers other parameters, such
as service quality and security.

Both phases are vulnerable to attacks. In the first phase,
attacks can exploit the non-synchronization of security poli-

cies between H-MNO and V-MNO related to CAVs to
launch attacks, such as disabled IPUP services for 6G-V2X-
NSs. In the second phase, attacks can exploit misconfig-
urations and information gained from system infiltration,
such as the maximum number of sessions supported by V-
UPF and the activation of security controls to launch the
attacks. To this end, our adversary model includes attacks
targeting the data plane, such as attacks that aim to break V-
UPF, H-UPF, and GTP-U data traffic passing through the N9
reference point (between H-UPF and V-UPF) [23], or GTP-
C passing through the N4 reference point (between H-SMF
and H-UPF) [24] or even the N6 reference point between
6G-V2X application and H-UPF [25].
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Fig. 2: Attacks on MEC-assisted automated highway-
overtaking use case at a cross-border
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These can critically impact 6G-V2X services such as
MEC-assisted services and applications. A concrete example
of such applications is related to the 5G-INSIGHT project1.
Considering that the MEC-assisted automated highway-
overtaking use case at a cross-border as illustrated in Fig-
ure 2. CAVs continuously send mobility-related to the MEC-
based 6G-V2X application in this particular use case. The
application processes the collected information and appro-
priately perceives the covered area. So, when a CAV re-
quests maneuver permission with the required information
attached, the MEC-based application processes the request
and sends the authorization back to the CAV. Due to the
mobility, this use case is attack-sensitive at the cross-border
in the highway. For example, when a CAV attaches the V-
MNO, it will route its messages to the MEC-based applica-
tion through the link between V-UPF and H-UPF (reference
point N9). So, if the attacker temporally breaks the link be-
tween H-UPF and V-UPF, the MEC-based application could
be unaware or have a partial perception of the environment.
Thus, the 6G-based V2X application can permit maneuver
requests which may lead to dangerous road situations.

5 3GPP-COMPLIANT AND PRIVACY-

PRESERVATION LEARNING 6G-V2X SECURITY

AT CROSS BORDERS

Collaboration learning is required to protect 6G-V2X-NSs
at cross-border against threats described in the previous
section. Still, at the same time, networking and data privacy
requirements should be respected. To address this, we pro-
pose a 3GPP-compliant scheme based on FL and stacking
for security-related model training to detect 6G-V2X attacks
at cross-borders. Specifically, this scheme uses multi-process
federated learning to build multiple ML models for V2X
network slices and then combines them to have a single
global model for the MNO. More specifically, our scheme
builds an ML model of every 6G-V2X-NS via an FL process.
Every federated process runs for one V2X network slice with
a dedicated FL server and includes FL clients only from that
6G-V2X-NS. Then, once all the ML models are ready, one
of the models is selected, or all these models are combined
using stacking to have a global model for the MNO. More-
over, this scheme builds ML models tailored for cross-border
areas by combining models from the interconnecting MNOs.
This section aims to describe the building blocks of our
scheme. Specifically, we follow a top-button approach. We
start by presenting the 3GPP-complaint security architecture
for 6G-V2X NS. Then, we describe multi-process FL training
for building security-related models and strategies to realize
the global model of each MNO. After that, we describe how
stacking is used to build a unified security-related model for
accumulating attack-related knowledge of MNOs. Finally,
we present the technical details of how FL and ensemble
stacking are exploited in our scheme.

5.1 Hierarchical NWDAF architecture

Our approach exploits NWDAF and its services. NWDAF
primarily aims at analytic reports to help other 5G Core

1. https://5g-insight.eu/

network functions make optimal automated decisions. The
latest 3GPP TS 23.288 specified that multiple instances of
NWDAF may be deployed in a network [26]. We propose
to build a hierarchical network of NWDAFs. Specifically, to
maintain the isolation between 6G-V2X-NSs, we propose to
dedicate an NWDAF, named S-NWDAF, for each 6G-V2X-
NS. As shown in Figure 1, we propose to place S-NWDAF at
the MEC layer close to the UPF to have a real-time update
about network traffic and events. Moreover, we propose to
extend S-NWDAF functionalities by adding three modules:
1) Learning module, which will be involved in training
security-related ML models 2) Attack detection module,
which takes charge of the detection of attacks within target-
ing the 6G-V2X-NS, and 3) Attack mitigation module, which
automatically or in cooperation with the Security Operation
System (SOC) thwarts the attack and applies mitigation
mechanisms. While the second and third modules are part
of our solution, this article mainly develops the learning
module. This module enables FL processes within the 6G-
V2X-NSs for training ML-related models.

Specifically, the learning module of each S-NWDAF acts
as an FL server receiving model updates from FL clients
selected from 6G-V2X-NS elements such as CAVs, VRU,
gNodeB, and MEC nodes. After each round of the S-
NWDAF aggregates the update parameters of the local
models are to obtain the global model of each 6G-V2X-
NS. Within the same MNO, all S-NWDAFs are connected
to a global NWDAF, denoted G-NWDAF. This function
is to deploy in the 6G core network (connected to all
core functions via the (Service-Based Architecture (SBA)
interface) and is discovered by NRF. The interactions
between G-NWDAF and S-NWDAFs follow a producer-
consumer model. Specifically, G-NWDAF subscribes to ser-
vices provided by S-NWDAF as a Network Function (NF)
consumer. More specifically, G-NWDAF is subscribed to
Nnwdaf MLModelProvision service, enabling it to re-
ceive a notification when the slice global model becomes
available, and Nnwdaf MLModelInfo service enables the
G-NWDAF to request and get the global slice model [8].

5.2 Multi-process Federated and Realizing MNO’s

global model

Our approach proposes a multi-process FL architecture
for 6G-V2X network slicing. Specifically, each FL process
runs within each 6G-V2X-NS isolated from other FL pro-
cesses. This section describes the FL multi-processes exe-
cuted in each 6G-V2X-NS on both H-MNO and V-MNO.
As shown in Algorithm 1, the procedure starts when G-
NWDAF sends security parameters to every S-NWDAFi.
Security parameters consist of the initial parameters of
the global models (old model parameters if applicable),
and the number of FL rounds R to execute. Then, the G-
NWDAF subscribes to Nnwdaf MLModelProvision and
Nnwdaf MLModelInfo services of every S-NWDAFi to
receive a notification when the global model Mi is ready
and to get it respectively. Once a S-NWDAFi receives initial
parameters, it can start the FL training process. At each
round, the current global model Mi parameters are sent to
a set Di of selected data owners (FL client). A data owner
dj could be any V2X node in the NR, such as CAV, VRU,
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Algorithm 1: Cooperative model training

1 G-NWDAF sends initial model parameters ω and
maximum rounds R to every S-NWDAF ;

2 G-NWDAF subscribes to
Nnwdaf MLModelProvision and
Nnwdaf MLModelInfo services every
S-NWDAFi ;

3 for each S-NWDAFi do
4 for r=1 to to R do
5 for each data owner dj ∈ Di do
6 if (dj subscribed to 6G-V2X-NSi and selected

by S-NWDAFi) then
7 Conduct local training on dataset dsj

as described in subsection 5.4.1;
8 Send parameters of local model ωj(t)

to S-NWDAFi through a secure data
plane channel;

9 end
10 end
11 Aggregate the parameters in S-NWDAFi as

described in subsection 5.4.2;
12 Send back the parameters to dj ∈ D ;
13 end
14 end
15 if Mi is ready then
16 G-NWDAF receives a notification from

Nnwdaf MLModelProvision that the model
is ready ;

17 end
18 if G-NWDAF receives notification from all S-NWDAFs

then
19 G-NWDAF then requests from every S-NWDAFi

its Mi’s parameters;
20 end
21 if all models are received by G-NWDAF then
22 G-NWDAF applies one of the two strategies:

• Strategy 1 is to select the best-performing model.;
• Strategy 2 performs stacking as described in

Section 5.5;

23 end

gNodeB, and MEC node. Every round dj receives the pa-
rameters of the global model Mi, trains its local model based
on its local dataset dsj , and sends back the parameters of
its local model to S-NWDAFi. The communication between
S-NWDAFi and data owner/FL-clients passed through the
control plane and is encrypted and secured using TLS.
Once the slice global model Mi is ready in S-NWDAFi, the
Nnwdaf MLModelProvision service sends a notification
to G-NWDAF to inform it that the model is ready. Once
the G-NWDAF gets all notifications, it requests for models
from Nnwdaf MLModelInfo services. Once G-NWDAF
receives all global models of 6G-V2X-NS, two strategies can
be used. The first strategy is to select the best-performing
model among the global models M= {M1, M2,..., Mi}.
The selection can be automated using a validation data set
provided by the SOC. In this case, all the models in M
are tested on the validation data set. The model Mi∗ with

the best accuracy is selected as a national global model to
deploy as attack detection. This selection could also be made
manually by the SOC. The second strategy is to perform
the stacking among the set of models M as described in
Section 5.5.

5.3 Differential privacy-enabled of building a unified

global model

This section presented the proposed differential privacy-
enabled stacking protocol. We first present some prelimi-
nary information on differential privacy. Then, we present
the protocol steps.

5.3.1 Preliminaries on Differential privacy

Assume that Mi and Mj are two models. Mi is trained on
Di and Mj is trained on Dj for two nearby datasets Di and
Dj that differ only in one data point x. Let S represent the
output space so that for an input of x, Mi(x) and Mj(x)
are included inside S. Differential privacy (DP) ensures
that an observer (adversary) cannot tell if a randomized
mechanismN (Mi(x)) orN (Mj(x)) was based on Di or Dj ,
i.e., whether or not x was used as a training example for
Mi(x)) or Mj(x), respectively [27]. The non-identifiability
of x is safeguarded by the membership of x in Di or Dj

being indistinguishable. In (ϵ − δ)-DP, ϵ (also known as
the privacy budget) parameterizes the indistinguishability
of the outputs of Mi(x) and Mj(x), and δ denotes the
failure probability of the mechanism N . Lower epsilon
values signify more robust privacy protection. (ϵ − δ)-DP
is formalized in Equation 1, when δ = 0, N is ϵ-DP.

P [N (Mi(x)) ∈ S] ≤ eϵ ∗ P [N (Mj(x)) ∈ S] + δ (1)

To guarantee (ϵ−δ)-DP, we apply a gradient perturbation
technique with Differentially Private Stochastic Gradient
Descent (DP-SGD) [28]. The algorithm aims to limit the
privacy loss per gradient update by post-processing the
gradient update in 2 steps:

• Clipping the gradients. In other words, scaling the
gradients to have a C maximum L2 norm.

• Adding noise to the gradient updates proportionally
to our clipping norm C. The noise is taken as a
sample from a Gaussian with a (C * σ) standard
deviation. σ is the so-called noise multiplier.

θt+1 = θt − ηtg̃t (2)

Equation 2 gives how DP-SGD updates the gradients at
each training step. ηt is the learning rate and g̃t is the clipped
gradient after adding noise. The hyperparameters C and σ
can be adjusted to provide a certain (ϵ−δ) guarantee at each
training phase.

5.3.2 Differential privacy-enabled stacking

Once each MNO finishes building its security-related ML
model, the MNOs exchange the parameters of their models
via the secured N32 interface. This will help MNO collabo-
rate by accumulating knowledge residing in ML models by
applying the stacking method. However, sharing the MNO’s
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ML model can make it vulnerable to inference attacks and
violate privacy preservation. To overcome this issue, we
propose a differential privacy-enabled stacking protocol.
Specifically, the MNOs first agree on a dataset used for
stacking. This dataset is shared N32 interface and periodi-
cally maintained. Each NWDAF runs a stacking ensemble
algorithm to build a unified global model, described in
Section 5.5, with a few modifications. More specifically,

1) Each G-NWDAF (H/V) applies differential privacy
to inject noise into its global model.

2) Each G-NWDAF (H/V) uses the global model of
the local MNO (H/V) with the DP-enabled model
of the other MNO (V/H) to execute the first stage of
the stacking algorithm.

3) Each G-NWDAF (H/V) executes the second phase
of the stacking algorithm as described in Section 5.5.

5.4 Federated Learning

FL is a distributed ML technique to reduce privacy issues,
enabling several parties to train a global model collabora-
tively without revealing individual data sets [29]. Several
FL clients work with the FL server to train a global ML
model in the FL architecture[30]. The FL server trains the
global model throughout several rounds until it produces
a good global model. The FL server chooses a group of
FL clients for each round and transmits either the original
model or a model acquired after the previous round. Several
criteria can contribute to the selection of FL clients [31].
Each FL client calculates its local updates of the global
model using Stochastic Gradient Descent (SGD) based on
the received model using its locally labeled data set. All of
the chosen FL clients communicate their local updates to
the FL server following the conclusion of the round. The FL
server employs the Federated averaging (FedAvg) method
to combine local updates to calculate the parameters of the
global model. This section gives technical details on both
local training and global averaging stages.

5.4.1 Local training

The local update of the model is computed using an objec-
tive function given in Equation 3, which aims at minimizing
a loss function Lk(ω) of an FL client (k) with respect to ω.
Lk(ω) can be calculated (across nk data points). fi (xi,yi;ω)
is the loss of the prediction on the data point (xi,yi) made
with model parameters ω.

min
ω∈Rd

1

nk

∑

i∈Dk

f(xi, yi;ω) (3)

As we can see in Algorithm 2 (step 4), nk data points
are split into B sized batches by an FL client (k). In steps
(5-9), k locally trains the received global model on E epochs.
Specifically, k updates a local vector of weights ω ∈ Rd over
B in each epoch e. Then, in step 10, k updates the global
weight vector, where η is the learning rate, and ∆ ℓ (ω; b) is
the gradient of the local objective function of k.

Algorithm 2: Local training (k, ω)

1 Input: nk

2 Output: ωk

3 Extract nk feature set (xi,yi)
4 b←− Split data nk into batches of size B
5 for each local epoch e from 1 to E do
6 for b ∈ B do

7 ωk ←− ωk - η ∆ ℓ (ω;b)
8 end
9 end

10 return ωk to server

Algorithm 3: Global Averaging (r)

1 Input: ω0

2 Output: ω
3 Initialize ω0

4 for each round r =1,2,... do
5 K←− desired number of FL clients
6 for each client k ∈ K do

7 ωk
r+1 ←− Local training(k, ω)

8 end

9 ωr+1 ←−
∑K

k=1

nk

n
ωk
r+1

10 ω ←− ωr+1

11 end

5.4.2 Global Averaging

The FL server uses the objective function given by Equa-
tion 4 to aggregate the global model.

min
ω∈Rd

l(ω) =
1

n

n∑

i=1

fi(ω) (4)

where,

l(ω) =
K∑

i=1

nk

n
Lk(ω) (5)

As nk might differ among the K clients, Equation 5
provides a weighted average from all the K FL clients.
As shown in Algorithm 3 (Step 3), the FL server initializes
global model weights. Then, in step 7, Local training(k, ω)
updates ωk

r+1 for each client k ∈K for each r round. Finally,
the weighted average of the aggregated client updates is
calculated using the federated averaging method at each
round r using Equation 6.

ωr+1 =
K∑

k=1

nk

n
ωk
r+1 (6)

ωr+1 is the global weight at round r + 1 for a total of K FL
clients over a total of n data points.

5.5 Stacked generalization

Stacked generalization is one of the ensemble methods. It
aims to train a new meta-learner model that combines the
predictions from multiple existing sub-models to deliver
better output predictions [32]. Specifically, the stacking pro-
cedure in Algorithm 4 takes sub-models as input and the
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stacking meta-learner as output. This procedure has two
stages.

• Stage 1 (lines 1-3): takes a set of sub-models EM=
{M1, M2,..., Ms} and makes the predictions based on
the training dataset S for generating a new dataset
S′.

• Stage 2 (line 4): takes the output of level 1 (S′) as an
input to train a meta-learner M ′ for making better
predictions.

Algorithm 4: Stacking

1 Input: Training data S = {xi, yi}
m
i=1, EM= {M1,

M2,..., Ms}
2 Output: The stacking model M
3 for i=1 to to m do
4 Construct a new data set S′ that contains x′

i, yi,
where x′

i = M1(xi),M2(xi), ...., Ms(xi) ;
5 end
6 Train on a meta-learner M ′ based on S′;

In our scheme, the stacking ensemble is used in two
stages. The first one is when the MNO selects the second
strategy to build its global model. In this case, the 6G-V2X-
NS security-related models serve as sub-models for that
stacking algorithm to build a meta-learner instead of choos-
ing the best-performing model between the slice models
of the same MNO. The second stage is building a unified
model between the two MNOs, as Section 5.3.2 describes.

6 PERFORMANCE EVALUATION

This section evaluates the performance of our scheme. This
section is divided into two subsections. We first describe our
experiment settings. Then, we discuss the obtained results.

6.1 Experiment settings

To evaluate the scheme’s performance, we have used the
5G-NIDD dataset [33], a recent dataset and one of the most
realistic publicly available 5G datasets. This dataset was
generated based on a 5G testbed connected to the 5G test
network at the University of Oulu. For our experiments,
we have used the combined version of 5G-NIDD available
in IEEEDataPort, which includes data for all attack sce-
narios [34]. The used dataset contains 1, 215, 890 instances
(rows).

Table 3 lists the rows’ distribution per each attack type.
The dataset originally included 50 features with two labels.
However, after performing feature selection, the number
of features becomes 48 with only one label. Specifically,
we removed the ”Attack tool” feature and selected ”At-
tack type” as a label for the training processes. In addition,
we normalized dataset features to values in the range of
[0,1] using the MinMaxScaler.

Furthermore, we have divided the dataset into three
sub-datasets (i) the first sub-dataset is used in the multi-
process FL architecture experimented for the H-MNO, (ii)
the second sub-dataset is used in the multi-process FL
architecture experimented for the V-MNO, and (iii) the third

sub-dataset is used in the stacking process of H-MNO and
V-MNO security-related models.

TABLE 3: Dataset distribution per attack

Attack type Support

Benign 477737
UDPFlood 457340
HTTPFlood 140812
SlowrateDoS 73124
TCPConnectScan 20052
SYNScan 20043
UDPScan 15906
SYNFlood 9721
ICMPFlood 1155

In our settings, we assumed that each MNO managed
three 6G-V2X-NSs. For each 6G-V2X-NS, we assumed five
FL clients. In addition, we adopted two strategies to dis-
tribute data among the 6G-V2X-NSs of each MNO.

• In the first strategy, data is independently and
identically distributed (IID) across 6G-V2X-NSs.
In other words, attacks on 6G-V2X-NSs are
independent and follow the same distributions
across the 6G-V2X-NSs.

• In the second strategy, however, the distribution of
attacks is different (non-IID). Specifically, 6G-V2X-NS
1, 2, and 3, respectively, include 80% of HTTPFlood
attacks, 80% of SlowrateDoS attacks, and 80% of
UDPFlood attacks. The remaining 20% of the pre-
viously mentioned attacks is equally shared between
the other 6G-V2X-NSs. In addition, all the rest of the
attacks are equally shared over 6G-V2X-NSs.

TABLE 4: Training parameters of the MNO’s global model

Parameter Value

Optimizer SGD
Learning rate 0.01
Batch size 32
Dropout 0.75
Activation functions ReLU, Softmax
The ratio of validation/test
dataset

10%

# Rounds 100

The FL multi-processes for each MNO was implemented
using Tensorflow and Keras Python libraries. Specifically,
FL clients have been implemented as Tensorflow instances
running local models. The global model was trained on the
Google Colab platform. For the training process at each
MNO, the dataset was split into training (80%), validation
(10%), and test (10%) sub-datasets. The training and valida-
tion sub-datasets are used for the FL processes, while the
test sub-dataset is used for stacking of 6G-V2X-NS security-
related models. Besides, we adopted the same multi-class
DL model for all FL processes, which consists of three layers:
an input layer with 48 nodes, two hidden layers with 85 and
42 ReLU-activated nodes for each with a dropout of 0.75,
and an output layer with 9 Softmax-activated nodes based
on one hot encoding to recognize attacks. The weights of
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local models are calculated using SGD with a learning rate
of 0.01 and mini-batches of size 32. After the end of each
round, we use FedAvg to calculate the weight of the global
model. The model’s hyperparameters for FL processes are
listed in Table 4.

For stacking, we have used a meta-learner consisting
of (i) one input layer, where the number of nodes equals
the number of stacked models, (ii) one hidden layer with
20 ReLU-activated nodes, and (iii) an output layer with 9
softmax-activated nodes. We have used ”ADAM” as an op-
timizer to train the stacking meta-learner for non-differential
privacy-enabled settings. Moreover, to enable differential
privacy, we use DP-SGD with the L2 norm clip equal to
one, the noise multiplier equal to 0.9, the number of micro-
batches equal to one, and the learning rate equal to 0.01. The
parameters of DP-SGD are listed in Table 5.

TABLE 5: The parameters of DP-SGD

Parameter Value

Optimizer DP-SGD
Learning rate 0.01
L2 norm clip 1
Noise multiplier 0.9
Num microbatches 1

0 20 40 60 80 100
# Rounds

0.55

0.60

0.65

0.70

0.75

0.80

0.85

F1
-s

co
re

H-MNO(Slice2)-IID
V-MNO(Slice1)-IID
H-MNO(Slice3)-non-IID
V-MNO(Slice3)-non-IID

Fig. 4: The training accuracy of the best-performing security-
related models of 6G-V2X-NSs for H-MNO and V-MNO on
IID and non-IID.

6.2 Results

This subsection discusses our obtained results. It is divided
into two parts. In the first part, we present the results
obtained in training security-related models without using
differential privacy. Then, in the second part, we study the
impact of differential privacy on the accuracy of security-
related models. We use the F1-score as a metric for our
evaluations since we have conducted our experiments on
an imbalanced dataset.

6.2.1 Training results

Figure 4 shows the training F1-score of the best-performing
6G-V2X-NS security-related models for each MNO on IID
and non-IID configurations. Specifically, for the H-MNO,
we found that the best security-related models are in 6G-
V2X-NS 2 in the case of IID and 6G-V2X-NS 3 in the case
of non-IID. On the other hand, for the V-MNO, the best-
performing models were found in 6G-V2X-NS 1 and 6G-
V2X-NS 3 for IID and non-IID, respectively. In addition, we
can see that the V-MNO 6G-V2X-NS models outperform the
H-MNO 6G-V2X-NS models on the validation dataset. This
is mainly due to the quality of data that each MNO has.
Moreover, we can see that the security-related models of 6G-
V2X-NSs trained on the IID data perform better than those
trained on non-IID data.

H-MNO V-MNO S_Best S_Stacked60
62
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66
68
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72
74
76
78
80
82
84
86
88
90
92
94

F1
-s
co
re
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Non-IID

Fig. 5: Accuracy detection rates in the presence of poisoning
attacks

In Figure 3, for each MNO, we compare the F1-score
of security-related models of 6G-V2X-NSs with the F1-score
of the MNO stacked model. The results show the F1-score
of these security-related models on the test dataset. Specif-
ically, Figure 3 (a) compares security-related models with
the stacked model for the H-MNO. As we can see in this
Figure, for the IID case, the security-related model of 6G-
V2X-NS 2 outperforms all other security-related models and
even the stacked model of H-MNO. On the other hand, for
the non-IID case, we can see that the security-related model
of 6G-V2X-NS 3 outperforms all other 6G-V2X-NS security-
related models and the stacked model. Figure 3 (b) compares
the F1-score of security-related models with the F1-score
of the stacked model for the V-MNO. We can see that for
both IID and non-IID cases, the stacked model outperforms
the 6G-V2X-NS security-related models. These results show
that stacking 6G-V2X-NS security-related models does not
enhance the F1-score at the H-MNO but improves the F1-
score at the V-MNO. The reason for that is stacking models
with poor F1-score can create noise in the stacked model,
preventing it from enhancing the F1-score, which is the
case at H-MNO. However, for the V-MNO, the F1-score of
the security-related models is high enough to improve the
stacked model’s F1-score.
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In Figure 5, we compare the stacked models of H-MNO
and V-MNO with the global stacked model. We compare
two strategies to produce the global stacked model. The
first strategy (S Best) consists in stacking the best 6G-
V2X-NS security-related-model of the H-MNO with the best
6G-V2X-NS security-related-model of the V-MNO. More
specifically,

1) In the case of IID, we stacked the security-related
model of 6G-V2X-NS 2 of the H-MNO with the
security-related model of 6G-V2X-NS 1 of the V-
MNO.

2) In the case of non-IID, we stacked the security-
related model 6G-V2X-NS 3 of the H-MNO with the
security-related model of V-MNO 6G-V2X-NS 3.

In the second strategy, S Stacked, we stacked the stacked
models of H-MNO and V-MNO. As a first observation, we
see that the global models produced by the two strategies
outperform the (inner) stacked models of the MNOs. In
addition, we see that the global model produced using
S Stacked is better than the global models produced using
S Best. It is worth mentioning that the two models are
tested on the same test dataset. Moreover, the stacked model
of the global models trained on the IID dataset produces
better results than the global model trained on the non-
IID dataset. The detailed results of the experiments done
in this part are listed in Table 6. These results demonstrate
that stacking helps aggregate security-related knowledge of
H-MNO and V-MNO, increasing attack detection accuracy.
Moreover, the results also show that stacking the stacked
models of MNOs is better than stacking the best security-
related models to take advantage of all 6G-V2X-NSs instead
of only one.

TABLE 6: Dataset distribution for muli-class classification

Data Model Precision Recall F1-score

IID

H-MNO 0.73 0.73 0.65
V-MNO 0.85 0.87 0.84
S Best 0.91 0.90 0.88
S Stacked 0.92 0.92 0.91

non-IID

H-MNO (Stacked-M) 0.56 0.73 0.63
V-MNO 0.82 0.86 0.83
S Best 0.88 0.88 0.86
S Stacked 0.90 0.90 0.88
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Fig. 6: The impact of differential privacy on the accuracy of
H-MNO and V-MNO security-related models

6.2.2 Impacts of Differential Privacy

In this section, we evaluate the impact of differential privacy
on the F1-score of security-related models. Specifically, Fig-
ure 6 compares the accuracy of security-related models of
H-MNO and V-MNO without and with differential privacy
by training it using DP-SGD on both IID and non-IDD cases.
We can see, as expected, that using DP-SGD, the F1-score
of security-related models for both H-MNO and V-MNO
decreases a little bit due to the added noise for the sake of
privacy guarantee.
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Fig. 3: Comparison the accuracy of security-related models of 6G-V2X-NSs with the accuracy of the stacked model for each
MNO
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Figure 7 compares the F1-score of global stacked in both
H-MNO and V-MNO with and without differential privacy
on IID and non-IID datasets. Specifically, S Stacked H-
MNO (DP) stacked the H-MNO security-related model with
the DP-enabled V-MNO security-related model. Similarly,
S Stacked V-MNO (DP) stacked the DP-enabled security-
related model of H-MNO with the security-related model
of V-MNO. The results show that only S Stacked H-MNO
(DP) is impacted by the applied differential privacy mea-
sure. Indeed, for both cases IID and non-IID the accuracy of
S Stacked V-MNO (DP) equals to S Stacked (without DP).
The reason for this is that due to the low accuracy of the
security-related model of H-MNO its impact on the stacked
model is low compared to the security-related model of V-
MNO.
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Fig. 7: The impact of differential privacy on the accuracy of
the stacked global security-related model in H-MNO and V-
MNO

The details of results presented in Figure 6 and Figure 7
are given in Table 7. In addition, table 7 shows the training
time of the models. As we can see, using DP increases
training time with the stacked models of MNOs, but it has
no impact on stacking H-MNO and V-MNO global models.

TABLE 7: The impact of differential privacy

Data Model F1-score
training
time (s)

IID (No-DP)

H-MNO 0.66 7.42
V-MNO 0.83 6.13
S Stacked H-MNO 0.91 16.77
S Stacked V-MNO 0.91 15.58

IID (DP)

H-MNO 0.62 40.87
V-MNO 0.81 36.85
S Stacked H-MNO 0.88 15.76
S Stacked V-MNO 0.91 15.58

Non-IID (No-DP)

H-MNO 0.64 2.37
V-MNO 0.83 2.18
S Stacked H-MNO 0.88 16.77
S Stacked V-MNO 0.88 15.58

Non-IID (DP)

H-MNO 0.62 39.36
V-MNO 0.81 42.72
S Stacked H-MNO 0.87 14.39
S Stacked V-MNO 0.88 15.01

In Figure 8, we conduct a privacy analysis to quantify the
DP guarantee achieved in training security-related models.
Specifically, we analyze privacy budget ϵ, which is a metric

to evaluate an ML algorithm’s DP guarantee as described in
subsection 5.3.1. A smaller ϵ value indicates a better privacy
guarantee. We perform an analytic evaluation by comput-
ing ϵ using compute dp sgd privacy, a tool provided by
Tensorflow Privacy, varying the noise multipliers. As we
can see, increasing the noise multiplier will decrease the
privacy budget and, thus, more privacy preservation. In our
experiments, we set the noise multiplier to 0.9, which gives
a good trade-off between privacy and accuracy.
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Noise Multiplier
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2.2 Privacy budget

Fig. 8: Privacy budget analysis considering noise multiplier

7 DISCUSSION

This section discusses the results obtained in our paper.
The results demonstrate that muli-process FL with stacking
can deliver high accuracy while ensuring isolation between
6G-V2X-NSs and privacy preservation between H-MNO
and V-MNO. In addition, the results show that stacking
is efficient for accumulating knowledge of security-related
MNO models, especially when the accuracy of the models
to be stacked is good. Moreover, the results show the impact
of DP in stacking the global model is negligible when DP
is applied to the security-related MNO’s model with less
accuracy. Furthermore, it is important to highlight that the
solutions presented in this paper are also valid for multi-
MNO scenarios involving several countries, such as the case
of Luxembourg, France, Germany, and Belgium corridor.
In this case, security-related models can be peer-to-peer
stacked between MNOs or centrally stacked in a trusted
server. Finally, our approach shows high flexibility since the
security-related models of 6G-V2X-NSs can selectively be
stacked between MNOs depending on the accuracy, context,
attacks, or application. Besides, our scheme ensures the
isolation of 6G-V2X network slices by design. Specifically,
the FL processes are isolated from each other. Data, FL
server, and FL clients are private for 6G-V2X each slice.
Furthermore, it is worth mentioning that comparing our
scheme’s analytical results with related schemes will not
bring meaningful conclusions. This is mainly because no
related works have used the same dataset to demonstrate
the performance of their scheme.

8 CONCLUSION

The failure to protect 6G-V2X network slices in cross-border
scenarios may have catastrophic consequences. This paper
employed federated learning and stacking for collaborative
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privacy learning between home and serving MNOs for
securing 6G-V2X network slices. The results demonstrate
collaboration between MNOs through our scheme is effi-
cient in accumulating knowledge and better encountering
attacks on 6G-V2X network slices while ensuring isolation
between 6G-V2X network slices and privacy preservation.
In future work, we further study multi-MNO scenarios in
the case the global model is stacked in a common server
and how to ensure the security and privacy of the server
and MNOs. In addition, we plan to complement our scheme
with attack detection and mitigation building blocks and
establish the interactions between all these building blocks.
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