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Abstract. In this article, we propose a new tool to evaluate the security of instances of FiLIP cipher.
TooLIP is user friendly, it automatically evaluates the cost of several attacks on user-defined Boolean
functions. It allows to test new families of filters that are more homomorphic friendly for recent tech-
niques of evaluations, and is designed to easily add new attacks, or change parameters in the considered
attacks. To demonstrate our tool we apply it in three contexts. First we show how the keysize can be
reduced for former instances with XOR-Threshold functions when the amount of encrypted plaintext
obtained by the adversary is limited. Then, we use TooLIP to determine secure instances with filters in
less variables for two new families of Boolean functions, leading to a more efficient evaluation and/or a
reduced bandwidth. Finally, we apply it to find other instances with filters where we know only (bounds
on) the algebraic immunity and resiliency.
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1 Introduction

With the growing interest of practical Fully Homomorphic Encryption (FHE), in the last decade multiple sym-
metric ciphers have been designed to be efficient in the context of Hybrid Homomorphic Encryption [NLV11]
(HHE). After considering standard symmetric ciphers such as AES [GHS12,CLT14] or SIMON [LN14], ded-
icated symmetric schemes have been introduced in the context of HHE since traditional ciphers are hard to
efficiently evaluate homomorphically. For example, the first of these ciphers, LowMC [ARS+15] has a drasti-
cally reduced number of multiplications to be more FHE-friendly. The cipher FLIP [MJSC16] introduces a
new stream cipher paradigm where a significant part of the cipher evaluation can be performed without homo-
morphic cost. This strategy has been generalized with extendable output functions and is common in recent
ciphers for HHE such as in e.g. [DEG+18,CHK+21,HKL+22,HKC+20,DGH+21,CHMS22,HMS23]. All these
designs for HHE are still recent and improvable, as witnessed recently with improvements on building blocks
of the symmetric scheme [HL20,CIR22] or new techniques of homomorphic evaluation [CDPP22,MPP23].

In this article we focus on FiLIP, introduced in [MCJS19b]. FiLIP is a binary stream cipher following
the improved filter permutator paradigm, extending the paradigm of FLIP. The main advantage of this
cipher is that both its security and performance when it is homomorphically evaluated depend on a sole
Boolean function, the one used as filter. On the homomorphic side, it allows to obtain a small latency in the
context of HHE, as experimented in [MCJS19b], and more recently in [HMR20] and [CDPP22] reaching a
latency of only 2.62ms, using the multiples progresses on the so-called third generation of FHE schemes such
as FHEW [DM15], TFHE [CGGI16] and FINAL [BIP+22]. On the symmetric security side, in addition to
the security analysis relying on the cryptographic criteria of the filter, the security of the filter permutator
has been studied in an idealized model in [CT19]. Moreover, the design is similar to a popular pseudoran-
dom generator design by Goldreich [Gol00] which asymptotic security has been thoroughly investigated e.g.
[AL16,AL18,CDM+18,YGJL22,Üna23].

In [MCJS19b], FiLIP is instantiated using two families of functions, i.e. direct sum of monomials and XOR-
Threshold functions. The security of these instances is determined by a procedure bounding the complexity
of different attacks via cryptographic criteria (namely, the algebraic immunity, resiliency, and nonlinearity).
Producing an efficient algorithmic implementation of this procedure is not trivial, because it requires to
evaluate the parameters of all the sub-functions that are obtained by fixing up to λ variables1, together with
their probability. In fact, the authors needed to introduce specific optimisations to compute the suggested
parameters for aforementioned families. Therefore, a major bottleneck for finding alternative instances of
FiLIP is evaluating their security. Our work aims to facilitate this task by introducing a tool designed exactly
for this purpose.
1 λ being the security parameter.



Having an automated tool to assess the security of constructions is always a plus to help the community
in broadening the field of cryptography. Indeed, when designers of schemes, protocols, or any cryptographic
application propose something new, they often face the challenge of finding secure parameters. While some-
times, an ad-hoc security evaluation has to be performed due to the specificity of the proposal, it is often the
case that the new construction simply relies on well-known assumptions or designs with unusual parameters.
Then, it greatly simplifies the task of the designers if they can solely specify those parameters to a tool and
get a security estimation. A notable example in the field of lattice-based cryptography is the estimator first
proposed in [APS15a]. Not only a common tool helps for simplicity, but it also importantly sets a common
ground for everyone. Indeed, estimating the cost of an attack for an adversary is often made under specific
assumptions on parameters of the attack, this might lead to unfair comparisons between works that were
both analyzed in good faith. Because attacks, as well as the accuracy of their bounds, might evolve over time,
a unified tool is often a collaborative effort and should also evolve, this is why the current ePrint version
of [APS15a]( [APS15b]), starts with a disclaimer to warn the reader that the state of the art advanced since
its initial publication.

Our contributions. In this article, we propose straightforward Python scripts to estimate the security of
FiLIP when used with a given filter function and register size. The code has been written with user-friendliness
in mind. The goal is that the user who wishes to study a new function can simply write a new Python class
with a specific interface evaluate the cost of well-known attacks. This new piece of code must provide methods
that compute Boolean criteria such as algebraic immunity, resiliency, and nonlinearity and also what are the
direct descendants of the function obtained when fixing an input variable to 0 or 1. While testing new
functions on fixed attacks is probably the simplest use case of the tool, it is also possible to implement new
attacks or to modify the existing one by changing parameters such as the number of ciphertexts that the
adversary can observe. Since we put emphasis on user-friendliness and re-usability, the scripts are written
in pure Python. This naturally comes with a performance penalty. However, this has not been problematic
for the functions we tested and should not be a problem unless the security parameter is severely increased.
Since the tool is quite modular, it should be possible to rewrite and integrate optimized code for some parts
if efficiency is the bottleneck.

More precisely our contributions are the following. First, based on [MCJS19a], we describe a general
framework in which the security of FiLIP can be bounded for a given filter function and register size N .
Then, we propose a user-friendly tool called TooLIP that automatically runs several attacks on user-defined
functions. The tool can be used to test new families of filters that are more homomorphic friendly for recent
techniques of evaluations. To demonstrate the applicability of the tool, we use it in three contexts:

– First, we consider the improvements on XOR-THR filters, which are studied in [MCJS19a] and used in the
context of HHE in [HMR20] and [CDPP22]. We show that for the same functions the register size N can
be significantly reduced when we take into consideration a limit on the quantity of encrypted plaintext
(2λ/2 for our examples). A reduced N leads to bandwidth improvements in HHE. Then, we exhibit filters
with fewer variables in the same family for the same security level, which would lead to better HHE
general performances.

– We determine secure instances for two new families of filters, XOR-QUAD-THR and XOR-THR-THR
functions. First we investigate the Boolean criteria of these two families, then we exhibit new instances
of FiLIP with smaller register sizes as for XOR-THR functions or direct sum of monomials as used
in [MCJS19b]. For example, we propose several instances with N lower than 500 for 80-bit security and
lower than 1000 for 128-bit security.

– Finally, we investigate instances with arbitrary filters: functions in n variables such that the main cryp-
tographic parameters are known but not the specific structure of the functions nor its descendants. For
example we show that a 512-variable function with optimal algebraic immunity in direct sum with a
196-variable XOR function is sufficient for 128-bit security since N ≥ 2500.

The code is available here2. It will be made public once the paper publicly appears.

2 Preliminaries

Additionally to usual notations we denote the set of integers {1, . . . , n} by [1, n], and use + instead of ⊕ for
the addition in F2.
2 https://drive.google.com/file/d/1FhySzEpBFNWE8S6-edZsiamTss1I22pd/view?usp=sharing
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2.1 Boolean functions and cryptographic criteria

We give some preliminaries on Boolean functions and their cryptographic criteria, for a deeper introduction
on these notions we refer to the book of Carlet [Car21].

Definition 1 (Boolean Function). A Boolean function f in n variables is a function from Fn2 to F2. The
set of all Boolean functions in n variables is denoted by Bn.

Definition 2 (Balancedness and Resiliency). A Boolean function f ∈ Bn is said to be balanced if
|f−1(0)| = |f−1(1)| = 2n−1. The function f is called k-resilient if any of its restrictions obtained by fixing
at most k of its coordinates is balanced. We denote by res(f) the maximum resiliency (also called resiliency
order) of f and set res(f) = −1 if f is unbalanced.

Definition 3 (Nonlinearity). The nonlinearity NL(f) of a Boolean function f ∈ Bn, where n is a positive
integer, is the minimum Hamming distance (dH) between f and all the affine functions in Bn: NL(f) =
ming, deg(g)≤1{dH(f, g)}, where g(x) = a · x+ ε, a ∈ Fn2 , ε ∈ F2 (where · is an inner product in Fn2 , any choice
of inner product will give the same value of NL(f)).

Definition 4 (Algebraic Normal Form (ANF), degree and monomials). We call Algebraic Normal
Form of a Boolean function f its n-variable polynomial representation over F2 (i.e. belonging to F2[x1, . . . , xn]/(x

2
1+

x1, . . . , x
2
n + xn)): f(x1, . . . , xn) =

∑
I⊆[1,n] aI

(∏
i∈I xi

)
where aI ∈ F2.

The (algebraic) degree of a non-zero function f is deg(f) = maxI⊆[1,n]{|I| | aI = 1}. If f = 0, deg(f) = 0.
Each term

∏
i∈I xi is called a monomial, and we refer to monomial functions as the ones having only one

coefficient aI = 1 in their ANF.

Definition 5 (Algebraic Immunity [MPC04], annihilators and ∆AN(f)). The algebraic immunity of
a Boolean function f ∈ Bn, denoted as AI(f), is defined as: AI(f) = ming 6=0{deg(g) | fg = 0 or (f +1)g = 0}.

The function g is called an annihilator of f (or f+1). Additionally we denote AN(f) = ming 6=0{deg(g) | fg =
0}, and ∆AN(f) = |AN(f)− AN(f + 1)|.

Definition 6 (Fast Algebraic Immunity, e.g. [Car21] page 94). The fast algebraic immunity of a
Boolean function f ∈ Bn, denoted as FAI(f), is defined as: FAI(f) = min{2AI(f),min1≤deg(g)<AI(f) deg(g) +
deg(fg)}.

Families of Boolean functions. We give the definition of families of Boolean functions that are used to
build FiLIP filters, and we recall their parameters.

Definition 7 (XOR function). For any positive integers k, XORk is the k-variable Boolean function such
that for all x = (x1, . . . , xk) ∈ Fk2

XORk(x) =
k∑
i=1

xi.

Definition 8 (QUAD function). For any positive integers q, Qq is the 2q-variable Boolean function such
that ∀x = (x1, . . . , x2q) ∈ F2q

2

Qq(x) =

q∑
i=1

x2i−1x2i.

Definition 9 (Threshold function). For any positive integers d and n such that d ≤ n+ 1 we define the
Boolean function Td,n as follows:

∀x = (x1, . . . , xn) ∈ Fn2 , Td,n(x) =

{
0 if Hamming weight wH(x) < d,
1 otherwise.

Definition 10 (Direct sum). Let f be a Boolean function of n variables and g a Boolean function of m
variables, the direct sum h of f and g is defined by h(x, y) = f(x) + g(y) where x ∈ Fn2 and y ∈ Fm2 .

Property 1 (Direct sum properties (e.g., [MJSC16] Lemma 3)). Let h be the direct sum of two functions f ,
in n variables, and g, in m variables. Then h has the following cryptographic properties:

1. Resiliency: res(h) = res(f) + res(g) + 1.
2. Nonlinearity: NL(h) = 2mNL(f) + 2nNL(g)− 2NL(f)NL(g).
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3. Algebraic Immunity: max(AI(f),AI(g)) ≤ AI(h) ≤ AI(f) + AI(g).

We focus on subfamilies obtained by the direct sum construction:

Definition 11 (Direct Sum of Monomials and Direct Sum Vector [MJSC16]). Let f be a non
constant n-variable Boolean function. We call f a Direct Sum of Monomials (or DSM) if the following holds
for its ANF:

∀(I, J) such that aI = aJ = 1, I ∩ J ∈ {∅, I ∪ J}.

In other words, in the ANF of such functions, each variable appears at most once. We define its direct sum
vector (DSV)mf = [m1,m2, . . . ,mk], of length k = deg(f), where mi is the number of monomials of degree
i, i > 0, in the ANF of f : mi = |{I ⊂ [n]}; aI = 1 and |I| = i}|.

Definition 12 (XOR-THR Function). For any positive integers k, d and n such that d ≤ n+ 1 we define
XORk + Td,n for all z = (x1, . . . , xk, y1, . . . , yn) ∈ Fk+n2 as follows:

(XORk + Td,n)(z) = x1 + · · ·+ xk + Td,n(y1, . . . , yn) = XORk(x) + Td,n(y).

The XOR and QUAD functions are common functions in different areas and their properties are considered
as folklore. The cryptographic properties of threshold and Xor-Threshold functions have been characterized
in [CM19,CM22]. We summarize the parameters they reach in the following:

Property 2. Let k ∈ N, then f = XORk has the following properties: res(f) = k−1,NL(f) = 0, and AI(f) = 0
if k = 0, 1 otherwise.

Let q ∈ N, then g = Qq has the following properties: res(g) = 0, NL(g) = 22q−1 − 2q−1, and AI(g) = 0 if
q = 0, 1 if q = 1, 2 otherwise.

Let d, n ∈ N∗ and k ∈ N∗ such that d ≤ n+1 the function h = XORk +Td,n has the following properties:

1. Resiliency: res(h) =
{
k if n = 2d− 1,
k − 1 otherwise.

2. Nonlinearity:

NL(h) =



2n+k−1 − 2k
(

n−1
(n−1)/2

)
if d = n+1

2 ,

2k
n∑
i=d

(
n

i

)
if d > n+1

2 ,

2k
d−1∑
i=0

(
n

i

)
if d < n+1

2 .

3. Algebraic Immunity: if k = 0, AI(h) = min(d, n− d+ 1) otherwise:

AI(h) =

{
n+1
2 if d = n+1

2 ,
min(d+ 1, n− d+ 2) otherwise.

4. ∆AN(h): ∆AN(h) = |n− 2d+ 1| if k = 0, 0 otherwise.

We recall the notion of descendant functions [MJSC16] introduced to study the guess and determine
attacks on FLIP [DLR16], and the concept of bit-fixing stable functions.

Definition 13 (Depth-` descendants). Let f(x1, . . . , xn) be a n-variable function with n > 1 and ` ∈ N
such that 0 ≤ ` < n. Let S` be the collection of subsets I = {i1, . . . , i`} ⊆ {1, . . . , n} such that |I| = `. The
depth ` descendants D`(f) is the set of functions in n − `-variables that can be obtained by setting xij = bj
for j = 1, . . . , ` and xj ∈ I for every possible pair of (I, b1, . . . , b`) ∈ S` × F`2.

For I in {1, . . . , n} and b ∈ F|I|2 we denote by fI,b the descendant of f where the variables indexed by I
are fixed to the values of b.

Definition 14 (Bit-fixing stability).
Let F be a family of Boolean functions, F is called bit-fixing stable, or stable relatively to guessing and

determining, if for all functions f ∈ F such that f is a n-variable function with n > 1, all its (depth-`)
descendants are such that fI,b ∈ F , or fI,b + 1 ∈ F , or deg(fI,b) = 0.
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Fig. 1: Improved filter permutator paradigm.

2.2 Improved filter permutator and FiLIP

FiLIP is a family of stream ciphers following the Improved Filter Permutator paradigm (IFP) [MCJS19b],
represented in Figure 1.

The IFP is composed of 6 parts, a register where the key is stored, a forward secure PseudoRandom
Number Generator (PRNG) initialized with a public IV, a generator of wire-cross permutations a generator
of subsets, a generator of binary strings called whitenings, and a filter function which produces the keystream.

For a security parameter λ, to encrypt m ≤ 2
λ
κ bits under a secret key K ∈ FN2 , the public parameters of

the PRNG are chosen and then the following process is executed for each keystream bit bi (for i ∈ [m]):

– The PRNG is updated, its output determines the subset Si of n-out-of-N elements, the permutation Pi
from n to n elements at time i, and the whitening wi, that is a n-size binary vector,

– the subset is applied to the key,
– the permutation is applied,
– the whitening is added,
– the keystream bit bi is computed, bi = f(Pi(Si(K)) + wi) through the n-variable Boolean filter f .

FiLIP [MCJS19b] stream cipher family is an instantiation of the IFP paradigm. The PRNG is instantiated
with the forward secure PRG construction from [BY03] using AES as the underlying block cipher. So far,
two kinds of instances have been introduced, with DSM functions, and with Xor-Threshold functions in the
long version [MCJS19a], we recall them in Table 1.

n N XORk + Td,m λ

144 2048 113, 16, 31 80

144 2048 81, 32, 63 80

256 1536 129, 64, 127 80

512 1024 257, 128, 255 80

256 8192 129, 64, 127 128

512 4096 257, 128, 255 128

n N DSM with mf λ

512 16384 [89, 67, 47, 37] 80

430 1792 [80, 40, 15, 15, 15, 15] 80

320 1800 [80, 40, 0, 20, 0, 0, 0, 10] 128

1216 16384 [128, 64, 0, 80, 0, 0, 0, 80] 128

1280 4096 [128, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64] 128

Table 1: FiLIP instances [MCJS19a].
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2.3 Attacks applying on IFP

In this part we recall the attacks studied on the IFP and FiLIP so far, necessary to understand the functions
implemented in the tool, we refer to [MCJS19b,MCJS19a] for the security analysis of the cipher. In a nutshell,
the attack considered are adaptations of the ones applying on filtered Linear Feedback Shift Register (LFSR)
as considered for FLIP [MJSC16], combined with guess and determine attacks, since these attacks been shown
efficient on filter permutator designs [DLR16].

An IFP produces keystream bits by applying first linear operations and then a filter Boolean function.
The usage of a PRNG avoids biases in the intermediate operations, i.e. subset selection, permutation and
whitening, and leaves as principal target for the security analysis the filter function. Méaux et al. [MCJS19b]
observed that resemblance to filter generators may expose IFPs to the attacks developed for these stream
ciphers. Namely, they described a framework to bound the security of IFPs by analyzing the impact of known
key-recovery attacks and their combinations, based on the evaluation of complexities via the estimation of
Boolean criteria. The authors identify three main types of attack in the known-ciphertext model: algebraic-
type attacks, correlation-type attacks, and guess-and-determine strategies. While the first two kinds of attack
exploit properties of a given function, the guess-and-determine strategies consists in first guessing a few key
bits and determining the security in such case, i.e. by using properties of functions in less variables. In fact,
guess-and-determine strategies include algebraic and correlation type attacks as building blocks and profit
from a time/data complexity trade-off.3

More precisely, let us consider an n-variable Boolean function and a fixed subset set of ` variables. Then,
guessing ` bits of the input corresponds to pre-set those `-variables and produce 2` descendants, i.e. 2`

Boolean functions in n − ` variables. Hence, each descendant can be independently studied and contributes
to the full strategy according to the impact of the chosen type of attack on the descendant itself. Therefore,
to claim a level of security λ for a specific filter function, one has to take into account both data and time
complexities of all the possible classes of descendants up to ` ≤ λ.

We will thoroughly explain the procedure to compute the complexity of a guess-and-determine strategy
associated with one or more attacks in Section 3. While, we summarise here the algebraic-type and correlation-
type attacks that we will use as building blocks. For both classes we consider a few significant algorithms,
as suggested in [MCJS19b], and we identify the suitable Boolean criteria for estimating the data and time
complexities.

Algebraic-type attacks. We refer to algorithms generating systems of equations from the key-stream and using
algebraic techniques to retrieve the secret key as algebraic attacks. Algebraic attacks [CM03], fast algebraic
attacks [Cou03a] and use of Gröbner bases, e.g. [Fau99,Fau02], belong to this class. For simplicity, we take
into account the first two types as representative of this class.

Following [CM03], the so called algebraic attack (AA) aims to solve an over-defined system of equations,
possibly via linearization, previously processed to reduce the degree. In fact, if f is the n-variable input
Boolean function, one can find a non null function g such that the algebraic degree of gf is lower. Hence,
since the equations in the system have form f(yi) = bi where yi is a linear transformation of the original
variables, by multiplying the equations by g the degree system decreases and consequently the cost of the
algorithm. The minimal reachable degree is determined by AI(f) the algebraic immunity of f (Definition 5),
since for instance by multiplying by a non null annihilator g we obtain an equation g(yi)bi = f(yi)g(yi) = 0.

The linearization of a multivariate system of degree AI(f) in n variables produces a linear system in
D =

∑AI(f)
i=0

(
n
d

)
variables. The AA consists in solving such reduced system. Then, we consider a bound for

the time complexity and the data complexity O(Dω) and O(D/
(

n
AI(f)

)
), respectively, where we denote by ω

the constant of linear algebra.
Relaxing the condition on the minimality of the degree and introducing intermediate elimination steps can

improve the attack’s performance. This variation was proposed by Courtois in [Cou03a], we refer to it as fast
algebraic attack (FAA). The main idea is to consider also functions g of degree e < AI(f) and such that gf has
low degree d, and later remove monomials of degree larger than e, via Berlekamp-Massey algorithm. We refer
to [Cou03a,ACG+06] for details. Letting E =

∑e
i=0

(
n
i

)
and D =

∑d
i=0

(
n
i

)
, for filter functions we consider in

this context we expect the time complexities of the algorithm to be O(D log2(D) + ED log2(D) + Eω) and
the data complexities being O(D/

(
n
d

)
)). In our tool we will consider only e = 1, i.e. E = n+1, and d = AI(f),

which is always giving a lower bound of the complexities, and in this case the Boolean criterion to take into
account remains the algebraic immunity.

3 Notice that in this context time complexity refers to the expected running time of the algorithm, while data
complexity refers to the size of the keystream bits’ sample.
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Correlation-type attacks. We refer to algorithms exploiting properties of the distribution’s outputs as correlation-
type attacks. More precisely, these attacks aim to distinguish the key-stream from a random sequence to learn
properties of the functions and later apply more specific algorithms. Among the possible attacks we consider
here those which take advantage of either proximity to affine functions or non balancedness of the filter
function. In fact, we can characterize the effectiveness of the related attacks by studying its nonlinearity and
resiliency of the filter function, respectively.

More precisely, if we consider the higher order correlation attack with XL algorithm [Cou03b], its com-
plexity grows with the degree. Then an attacker would rather prefer working with functions of low degree if
possible. If the filter function f has high degree, to reduce the complexity of this approach, one can search
for a low degree approximation, i.e. a function g that has a low algebraic degree d and such that f(x) = g(x)
with probability 1− ε for a real ε ∈ [0, 1], and apply the XL algorithm to the system associated to this new
function. We call this attack (HCA) and refer to [Cou03b] for the details. In particular, an affine approxi-
mation (d ≤ 1) results into an attack having time complexity at least O(nω(1 − ε)−n) and data complexity
O((1− ε)−n), (using the lower bounds from [MCJS19a] Section 9.1). Since the distance to the closest affine
function is the nonlinearity, we consider ε = NL(f)/2n.

Furthermore, we recall that the resiliency of a Boolean function is the maximum value k such that every
restrictions of f obtained by fixing at most k of its coordinates is balanced. If a function is unbalanced, the
keystream generated can be distinguished from one uniformly at random by comparing the expectations of
the output. If the function is balanced, we can similarly analyze descendants at level its resiliency plus one,
to distinguish the distributions. The quantity of bits necessary to determine the presence of a bias in the
keystream depends on the value is O(δ−2) where

δ(f) =
1

2
− NL(f)

2n
(1)

We consider as lower bound from the time and data complexity of this simple correlation attack (CA)
2res(f)δ(f)−2 and δ(f)−2, respectively (and refer to [MCJS19a], Section 9.1 for more details).

Remark 1. We explained in this section a few algorithms and determined “safe” (but meaningful) bounds
on their complexity in order to evaluate the security of IFP. In the following, we will use the results about
the algebraic and correlation-like attacks algorithms as building blocks inside the main guess-and-determine
strategy. Although the list of algorithms we consider is not exhaustive, the design of the tool allows to plug
other algorithms. Hence, different and future attack can also be included in the security evaluation.

3 Tool’s description

3.1 Attacks and profiles

The problem of bounding the security of IFP was first addressed in [MCJS19a]. We recall the suggested
procedure in this section. Previously, we discussed several attacks for which the complexity can be evaluated
by computing the parameter of the filter function relatively to a criterion of Boolean functions. In practice,
a well-know strategy is to perform guess-and-determine. In our case, instead of computing the complexity
only on the initial function, one can first find a descendant (See Definition 13) by guessing a few bits of
the input and then determine the complexity on this smaller instance of the problem. Since a single guess
might not to lead to a significantly simple instance, one likely has to repeat the process multiple times and
target a weakness that share various descendants. As the number of smaller instances is exponential in the
number of guessed variables of the Boolean function, evaluating the complexity on all of them independently
is unfeasible for concrete security parameters.

Nevertheless, we can optimize this computation by merging equivalent descendants. For instance, consider
fn(x1, . . . , xn) = XORn = x1 + x2 + · · ·+ xn. By setting any variable to 0, we always obtain a descendant of
the form fn−1(y1, . . . , yn−1) = y1 + y2 + · · ·+ yn−1. Namely, we get n equivalent descendants. Similarly, after
` guesses we can have only two types of descendant fn−` and fn−` + 1. While in this example the number of
descendant stays moderate, for other functions it might not be the case. In fact, the merging procedure has
a major impact on the running time of the algorithm evaluating the security.

Furthermore, one can group descendants according to a specific criterion since all the attacks’ complexities
depend only the number of variables and some criterion4. See Section 2.3. For the function fn considered
above, it actually means that all descendants at depth ` (that is to say, after fixing ` variables) are equivalent
since the values of the criteria considered in the attacks are the same for fn−` and fn−` + 1.
4 If the complexity of the attack depends on more than one criterion, one has to categorize the function according to
all of them. The overall strategy remains unchanged.
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Eventually, the crucial point for evaluating the impact of an attack on the security of IFP, via this
guess-and-determine strategy, is to compute the distribution of selected Boolean criteria over the set of all
descendants up to the security level. Indeed, the core of the strategy consists in running the attack on the
initial function and descendants that are obtained by guessing some bits. This implies that we have to consider
the probability to find by guessing descendants leading to a certain complexity. For instance, a descendant at
depth ν might be easy to attack but the probability of guessing it could be only 2−ν , i.e. making this attack
unpractical.

Since the probability of getting an object with a certain Boolean criterion (or criteria) is relevant to the
computation of the expected complexity, we define the following:

Definition 15 ((π, `)-profile). Let π be a function defined over the set of all Boolean functions to an ordered
discrete set. Let pj : π(Dj(f)) → [0, 1] be probability distribution function pj(a) = P (π(g) = a|g ∈ Dj). The
(π, `)-profile of f is the sequence C0, . . . , C` of the cumulative functions of p0, . . . , p`, respectively.

For instance, if π is the function outputting the algebraic immunity, π(Dj) is the set of all possible values
of the AI. Then, the (AI, `)-profile at index i ≤ ` contains the probability that a depth-i descendant picked
uniformly at random has an AI of at most k for k ∈ π(Di). The practical computation of the profile is
discussed in Section 3.3.

To evaluate the complexity of an attack relatively to an IFP with filter function f in n variables and
register size N , we guess L bits of the key register. Then, we also have to take into account the probability
of ` out of L guessed bits actually being selected as input for the filter function, i.e.

PL=` =

(
L
`

)
·
(
N−L
n−`

)(
N
n

) .

Hence, for every value of the set of criteria k ∈
⋃L
`=0 π(D`(f)) the probability of getting a descendant with at

most such k is P (k, L) =
∑L
`=0 PL=` ·C`(k) For instance, if π is the algebraic immunity, this is the probability

of getting a descendant with AI at most k by guessing L bits of the key.
Therefore, to analyze, up to λ bits of security, the guess-and-determine strategy with a building block

attack associated to a function π encoding a set of criteria, time complexity function time(·) and data
complexity function data(·) we do the following operations: for every L ∈ N such that 0 ≤ L ≤ λ and for
each value k ∈

⋃λ
`=0 π(D`(f)) we compute:

– the time complexity given by tk,L = 2L · time(·);
– the data complexity is affected by the probability of getting a descendant g ∈

⋃L
`=0 π(D`(f)) having such

that π(g) ≤ k, i.e. P (k, L), so we set it to dk,L = P (k, L)−1 · data(·). Furthermore, since the adversary
is limited to observe λ/κ ciphertexts, this complexity can actually be scaled by κ.

Finally, the lower bound on the guess-and-determine strategy is given by

min
k,L
{max {tk,L, κ · dk,L}} . (2)

An algorithmic description can be found in Algorithm 1.

3.2 Implementation

We provide Python scripts to evaluate the security of new parameters for FiLIP. The code aims to be easy
to modify and reuse to study new instances. In particular, the user simply has to describe new functions in
order to study their security when used as filter in FiLIP. The code has three main components: the profiling
module, the attack module and the function objects.

Function objects New families of functions are created by writing a class following a given interface. While
it would be natural to have a hierarchy with an abstract class at the top representing a generic Boolean
function, we do not provide one since we felt that it is unnecessary and describing the interface is enough.
A documented blank class is provided as template for the user to create new functions with all the required
methods. In a nutshell, the class will contains methods to evaluate the criteria used in the attacks (Algebraic
Immunity, Resiliency and Nonlinearity), to compute the direct descendants of the function that are obtained
by fixing a variable to 0 or 1 (as well as their probability) and to compare with other functions in order to
detect equality. Instances of the class represent functions object with concrete parameters. For example f =
XOR_TR(2,5,10) will create an object corresponding to XOR2 + T5,10 and f.AI() will return its Algebraic
Immunity.
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Profiling module The profiling module is computing the different profiles corresponding to each criterion
of a function. A profile is represented by a matrix for which columns are indexed by the different values that
can be taken by the criterion. The row i contains at index j the probability that descendants obtained by
fixing i variables have a value below or equal to j for the given criterion. Hence, in the first row, where only
the initial function is considered, all the indexes will have value 0, except the ones that are superior or equal
to the criterion (in this case we have a 1). We note that if an attack depends on n criteria, we need a n+ 1
dimensional array. In our case we mostly consider matrices since most attacks depend on one criterion, the
only exception is the attack depending on the Resiliency and Nonlinearity.
The profiling phase starts with the creation of a profile of appropriate size for each criterion. In most of the
cases, the maximum value for the criterion is known without exploring the descendants. Indeed, Algebraic
Immunity can only decrease and δ and ε are in the interval [0, 0.5]. The exception is resiliency that can
increase when fixing a bit and thus the size of the array must correspond to the maximum resiliency among
all descendants.
Then, up to a maximal depth in the (rooted directed) graph of descendants equal to the security parameter,
we compute the descendants of each node at the current level, their probability, and update the profile
accordingly by computing the criteria on each descendant. Since we want each row of the profile for criterion
C to contain at index i the probability Pr[C ≤ i] and not Pr[C = i], we need to eventually accumulate the
values in each row.
Since, for a given function, two descendants are obtained by fixing a variable to 0 and 1, their amount should
grow exponentially at each level. Obviously, this would make the computation of the profile impossible since
we have to explore the descendants up to fixing a number of variables equal to the security parameter. This
is why an important aspect of profiling is to detect when two descendants are equivalent and merge their
node (this is why all the descendants form a graph and not a tree). In the implementation, we rely on Python
dictionaries to store descendants while detecting collisions. This forces us to define the hashing operator on
function objects in order to use the hash map structure offered by the dictionary.

Attack module Once the profiling phase is finished, the complexities of the attacks can be evaluated. All the
attacks are very similar and a generic code could be written to implement the guess and determine strategy.
For the sake of simplicity, and to potentially add some tweaks, we separated them in different classes having
the same interface. Each instantiation of an attack requires a profile, a function and a register size. Being
associated to one or several criteria, it requires methods to obtain data and time complexities with respect
to the criteria. The main method actually computing bounds for the complexities implements Algorithm 1.

Configuration Since we want the code to be flexible in terms of modeling the attack scenario, we added a
small configuration file containing the main constants. In particular, the user can easily modify

– κ the ratio between the time and the data security parameters,

– the granularity of the discretization for the criteria depending on the non-linearity,

– the value ω used in some algebraic and correlation attacks.

An algorithmic description can be found in Algorithm 1. Notice that the tool never actually runs the
chosen building block attack.
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Algorithm 1 Guess-and-determine attack

Require: A filter function f , a profile P , a depth λ a range for the criterion [minC ,maxC ] and a scaling
factor κ modeling the limited amount of queries of the adversary.

Ensure: Complexity c
1: lowest_complexity ←∞
2: for L = 0 to λ do
3: c← minC
4: while c ≤ maxC do
5: time_complexity ← L+ time(·)
6: proba← 0
7: for ` = 0 to L do
8: proba` ←

(
L
`

)
·
(
N−L
n−`

)
/
(
N
n

)
9: proba← proba+ proba` · P [`][c]
10: if proba 6= 0 then
11: data_complexity ← data(·)/proba
12: complexity ← max(κ · data_complexity, time_complexity)
13: lowest_complexity ← min(complexity, lowest_complexity)
14: end if
15: end for
16: c← c+ 1
17: end while
18: end for
19: return lowest_complexity

3.3 Implementation

We provide Python scripts to evaluate the security of new parameters for FiLIP. The code aims to be easy
to modify and reuse to study new instances. In particular, the user simply has to describe new functions in
order to study their security when used as filter in FiLIP. The code has three main components: the profiling
module, the attack module and the function objects.

Function objects. New families of functions are created by writing a class following a given interface.
While it would be natural to have a hierarchy with an abstract class at the top representing a generic
Boolean function, we do not provide one since we felt that it is unnecessary and describing the interface is
enough. A documented blank class is provided as template for the user to create new functions with all the
required methods. In a nutshell, the class will contain methods to evaluate the criteria used in the attacks
(Algebraic Immunity, Resiliency and Nonlinearity), to compute the direct descendants of the function that
are obtained by fixing a variable to 0 or 1 (as well as their probability) and to compare with other functions
in order to detect equality. Instances of the class represent functions object with concrete parameters. For
example f = XOR_TR(2,5,10) will create an object corresponding to XOR2 + T5,10 and f.AI() will return
its Algebraic Immunity.

Profiling module. The profiling module is computing the different profiles corresponding to each criterion
of a function. A profile is represented by a matrix for which columns are indexed by the different values that
can be taken by the criterion. The row i contains at index j the probability that descendants obtained by
fixing i variables have a value below or equal to j for the given criterion. Hence, in the first row, where only
the initial function is considered, all the indexes will have value 0, except the ones that are superior or equal
to the criterion (in this case we have a 1). We note that if an attack depends on n criteria, we need a n+ 1
dimensional array. In our case we mostly consider matrices since most attacks depend on one criterion, the
only exception is the attack depending on the Resiliency and Nonlinearity.
The profiling phase starts with the creation of a profile of appropriate size for each criterion. In most of the
cases, the maximum value for the criterion is known without exploring the descendants. Indeed, Algebraic
Immunity can only decrease and δ and ε are in the interval [0, 0.5]. The exception is resiliency that can
increase when fixing a bit and thus the size of the array must correspond to the maximum resiliency among
all descendants.
Then, up to a maximal depth in the (rooted directed) graph of descendants equal to the security parameter,
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we compute the descendants of each node at the current level, their probability, and update the profile
accordingly by computing the criteria on each descendant. Since we want each row of the profile for criterion
C to contain at index i the probability Pr[C ≤ i] and not Pr[C = i], we need to eventually accumulate the
values in each row.
Since, for a given function, two descendants are obtained by fixing a variable to 0 and 1, their amount should
grow exponentially at each level. Obviously, this would make the computation of the profile impossible since
we have to explore the descendants up to fixing a number of variables equal to the security parameter. This
is why an important aspect of profiling is to detect when two descendants are equivalent and merge their
node (this is why all the descendants form a graph and not a tree). In the implementation, we rely on Python
dictionaries to store descendants while detecting collisions. This forces us to define the hashing operator on
function objects in order to use the hash map structure offered by the dictionary.

Attack module. Once the profiling phase is finished, the complexities of the attacks can be evaluated.
All the attacks are very similar and a generic code could be written to implement the guess and determine
strategy. For the sake of simplicity, and to potentially add some tweaks, we separated them in different classes
having the same interface. Each instance of an attack requires a profile, a function and a register size. Being
associated to one or several criteria, it requires methods to obtain data and time complexities with respect
to the criteria. The main method actually computing bounds for the complexities implements Algorithm 1.

Configuration. Since we want the code to be flexible in terms of modelling the attack scenario, we added
a small configuration file containing the main constants. In particular, the user can easily modify

– κ the ratio between the security parameter,
– the granularity of the discretization for the criteria depending on the non-linearity,
– the value ω used in some algebraic and correlation attacks.

4 Candidate secure functions

In this section, we discuss new functions that can be used to instantiate FiLIP as well as concrete parameters
at various security levels. All of the results were obtained by using the tool presented in Section 3.

4.1 Former instances with smaller key size

Unlike in [MCJS19a], we decided to limit the amount of ciphertext data that the adversary can obtain while
mounting the attack. In practice, we bound the number of queries to the square root of the computational
capabilities of the adversary. For example, if the targeted security parameter λ is equal to 80, we only consider
as successful attacks that require less than 240 ciphertexts. This correspond to setting the κ parameter to
2 in Algorithm 1. Thus, it was natural to have a second look at some of the instances that were described
in [MCJS19a] and to propose new parameters that would either reduce the register size or speed up the
homomorphic evaluation of the filter. The results are presented in Table 2.

For a security of λ = 80 bits, we can obtain a function in 144 variables with a register size as small as
N = 530, this size is almost four times smaller than what was proposed in [MCJS19a]. However, this requires
a threshold function in more variables, that might be more expensive to evaluate. Thus we also propose an
alternative with N = 982 and a threshold function in less variables.

For a security of λ = 128 bits, several trade-offs can be made depending on what the user of the filter
finds convenient. In the table, we highlighted two functions f1 = XOR65 + T32,63 and f2 = XOR58 + T35,70

which both have a minimal number of variable (n = λ). Surprisingly, f1 also exhibits a register size that is
almost twice as small as the smaller register size possible for this value of λ in [MCJS19a].

Reducing the value of N can lead to a significant save in practice, for example, in the framework
of [CDPP22], the bandwidth is directly proportional to the register size since they encrypt separately each
key bit of FiLIP. In their case, this comes with no penalty cost on the runtime since it is mainly driven by the
threshold size s which stays the same. In fact, f1 will even be slightly faster to evaluate since less additions
are required for the threshold part.
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k d s n N λ

40 52 104 144 530 80
100 24 44 144 982 80

65 32 63 128 2560 128

58 35 70 128 4096 128

k d s n N λ

80 260 520 600 1200 128
70 93 186 256 1499 128
65 96 191 256 1461 128
70 61 122 192 1777 128
160 48 96 256 1987 128

Table 2: For N and n the function XORk + Td,s provides λ-bit of security.

4.2 Instances with new families of direct sum of threshold functions (DST)

We remarked that both kind of filters previously used to instantiate FiLIP belong to a larger family, that
we call direct sum of thresholds, or DST. Indeed, a degree d monomial corresponds to the threshold function
Td,d, hence DSM functions are the direct sums of multiple threshold functions of highest threshold. The
Xor-Threshold functions are the sum of many thresholds T1,1 and one high threshold in more variables,
usually a majority function. Considering direct sums of threshold for FiLIP filters has different interest. First,
threshold function can be efficiently evaluated homomorphically (e.g. [HMR20,CDPP22,MPP23]), then the
resiliency and nonlinearity can be exactly determined based on the properties of threshold functions, finally
these functions are bit-fixing stable. We focus on two new subfamilies, interesting for their cryptographic
properties and mainly for their friendliness regarding homomorphic evaluation.

Definition 16 (XOR-QUAD-THR function). For any positive integers k, q, d and n such that d ≤ n + 1
we define XORk + Qq + Td,n for all
v = (x1, . . . , xk, y1, . . . , y2q, z1, . . . , zn) ∈ Fk+2q+n

2 as:

(XORk + Qq + Td,n)(v) = x1 + · · ·+ xk +

q∑
i=1

y2i−1y2i + Td,n(z1, . . . , zn)

= XORk(x) + Qq(y) + Td,n(z).

Definition 17 (XOR-THR-THR function). For any positive integers k, d1, d2, n1 and n2 such that d1 ≤
n1 + 1 and d2 ≤ n2 + 1 we define XORk + Td1,n1

+ Td2,n2
for all

v = (x1, . . . , xk, y1, . . . , yn1
, z1, . . . , zn2

) ∈ Fk+n1+n2
2 as:

(XORk + Td1,n1 + Td2,n2)(v) =x1 + · · ·+ xk

+ Td1,n1(y1, . . . , yn1) + Td2,n2(z1, . . . , zn2)

=XORk(x) + Td1,n1(y) + Td2,n2(z).

Using Property 1 and Property 2 we can compute the resiliency, nonlinearity and a lower bound on the
algebraic immunity of these functions. Since the AI value is often the bottleneck for the security, we rely on
a better bound that we derive using a result from [Méa22] using the parameter ∆AN(f) (see Definition 5).

Property 3 ([Méa22], Corollary 3). Let n,m ∈ N∗, f ∈ Bn, g ∈ Bm, and ψ the direct sum of f and g, the
following bound holds on its algebraic immunity:

AI(ψ) ≥ max
(
AI(f) + min{∆AN(f),AI(g)},AI(g) + min{∆AN(g),AI(f)}

)
.

We detail the property of these two subfamilies in the following proposition:

Proposition 1 (Properties of XOR-QUAD-THR and XOR-THR-THR functions). Let k, q, d, n > 0,
and d ≤ n, then the function f = XORk + Qq + Td,n has the following properties:

1. Resiliency: res(f) =
{
k if n = 2d− 1,
k − 1 otherwise.

2. Nonlinearity: NL(f) = 2n+k(22q−1 − 2q−1) + 22qNL(XORk + Td,n)− (22q − 2q)NL(XORk + Td,n).

3. Algebraic Immunity: AI(f)

≥
n+1
2 if n− 2d+ 1 = 0,

≥ min(d+ 1, n− d+ 2) if |n− 2d+ 1| = 1,
= min(d+ 2, n− d+ 3) otherwise.
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Let k, d1, d2, n1, n2 > 0, d1 ≤ n1 and d2 ≤ n2 , then the function g = XORk + Td1,n1
+ Td2,n2

has the
following properties:

1. Resiliency: res(g) =

k + 1 if n1 = 2d1 − 1 and n2 = 2d2 − 1,
k − 1 if n1 6= 2d1 − 1 and n2 6= 2d2 − 1, ,
k otherwise.

2. Nonlinearity: NL(g) = 2n2NL(XORk + Td1,n1
) + 2k+n1NL(Td2,n2

) −2NL(XORk + Td1,n1
)NL(Td2,n2

).
3. Algebraic Immunity:

AI(g) ≥ max{min(d1, n1 − d1 + 1)+

+min(|n1 − 2d1 + 1|,min(d2, n2 − d2 + 1) + εg),

min(d2, n2 − d2 + 1)+

+min(|n2 − 2d2 + 1|,min(d1, n1 − d1 + 1) + εf )}.

where εg = 1 if n2 6= 2d2 − 1, 0 otherwise, and εf = 1 if n1 6= 2d1 − 1, 0 otherwise.

Proof. For the resiliency and nonlinearity, the exact number are directly derived from Property 1, and Prop-
erty 2, using the direct sum with XORk + Td,n and Qq for f , XORk + Td1,n1 and Td2,n2 for g.

Then we show the bounds on the algebraic immunity of f = XORk + Qq + Td,n. If n − 2d + 1 = 0
then min(d, n − d + 1) = d = (n + 1)/2 and using Property 1 Item 3, AI(f) ≥ AI(T(n+1)/2,n), that is
AI(f) ≥ (n+1)/2 using Property 2 Item 3. For the two other cases, we use Property 3, considering the direct
sum of Td,n and XORk + Qq. If |n − 2d + 1| = 1 then AI(Td,n) = min(n, n − d + 1) and ∆AN(Td,n) = 1 (by
Property 2), then the bound gives AI(f) ≥ min(n, n − d + 1) + min(1,AI(XORk + Qq)). Since XORk + Qq is
not a constant function its AI is at least 1, therefore in this case AI(f) ≥ min(n+ 1, n− d+ 2). For the last
case, |n − 2d + 1| > 1, using the same reasoning AI(f) ≥ min(n, n − d + 1) + min(2,AI(XORk + Qq)). Since
by definition k > 0 and q > 0, the function XORk + Qq is the direct sum of XOR1 + Q1 = XOR1 + T2,2 and
another function. Since XOR1 +T2,2 has algebraic immunity 2 using Property 2 Item 3, applying Property 1
Item 3 we get AI(XORk+Qq) ≥ 2, allowing us to conclude AI(f) ≥ min(d+2, n− d+3). In this case we have
AI(f) = min(d+ 2, n− d+ 3) since AI(f) ≤ AI(Td,n) + AI(XORk + Qq) using the upper bound of Property 1
Item 3 since AI(Td,n) = min(d, n−d+1) and AI(XORk+Qq) = 2 since it is a degree 2 function (of AI greater
than 1).

Finally, we demonstrate the bounds on the algebraic immunity of g = XORk + Td1,n1
+ Td2,n2

. Using
Property 3 with Td1,n1

and XORk + Td2,n2
we obtain (also using Property 2 Item 3 and 4)):

AI(g) ≥ AI(Td1,n1
) + min(∆AN(Td1,n1

),AI(XORk + Td2,n2
))

≥ min(d1, n1 − d1 + 1) + min(|n1 − 2d1 + 1|,min(d2, n2 − d2 + 1) + εg).

Similarly, using Property 3 with Td2,n2
and XORk + Td1,n1

we obtain:

AI(g) ≥ min(d2, n2 − d2 + 1) + min(|n2 − 2d2 + 1|,min(d1, n1 − d1 + 1) + εf ),

which allows us to conclude. ut

Remark 2. First, we note that XOR-QUAD-THR functions have already been suggested as filters for FiLIP,
as mentioned in [MCJS19a] Section 9.2, but with no concrete instantiation up to our knowledge. Second, for
functions using more threshold functions of different degrees more general results from [Méa22] could be used
to improve the lower bound on the AI of direct sums, such as Lemma 6 and Theorem 1. We did not find
improvements for the two subfamilies we consider.

We studied the security of several concrete functions in the two families with TooLIP. Table 5 shows
results for XOR-THR-THR. The practical goal of studying XOR-THR-THR was mainly to assess the impact of
splitting a threshold in two thresholds of half the size. It is thus natural to compare Table 5 and Table 2. We
can see that for non minimal values of n, splitting the threshold opens the possibility to reduce the register
size N . However, XOR-THR functions that were obtained by setting n = λ seems to still offer better register
size. That being said, having two smaller threshold to evaluate could be an efficiency gain (depending on the
method of homomorphic evaluation). For λ = 80, we have a straightforward improvement.

Tables 3 and 4 gives secure parameters for XOR-QUAD-THR functions. The idea was to add quadratic
terms to heavily increase the nonlinearity without adding too many variables. Since this could have a negative
impact on the evaluation time of the function depending on the evaluation technique used, we first tried to
(arbitrarily) limit the number of quadratic terms in QUAD to 10 (see Table 3). Then, to broaden the result,
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we allowed the number of terms in QUAD to grow further (see Table 4). We can see that this eventually lead
to even smaller register size than the one we had with XOR-THR and XOR-THR-THR. While 10 quadratic
terms seems not enough to significantly improve over the XOR-THR-THR construction, 20 QUAD offers 128
bits of security for a register size of only 541. This is approximately 7 times smaller than the smallest function
proposed in [MCJS19a]. Furthermore, it also allows us to propose 256-bit secure instances for a reasonable
number of variables.

k q d s n N λ

40 10 52 104 164 329 80
100 10 21 44 164 329 80
70 10 93 186 276 789 128
65 10 96 191 276 780 128
70 10 61 122 212 834 128
160 10 48 96 276 864 128

Table 3: ForN and n the function XORk+Q10+Td,s(n)
provides λ-bit of security.

k q d s n N λ

60 20 85 170 270 541 128
60 20 65 150 250 873 128
50 40 80 160 290 617 128
50 60 65 150 320 640 128
60 40 65 150 290 581 128
60 60 50 100 280 560 128
60 60 60 120 300 600 128
160 15 60 120 310 5000 256
140 20 60 120 310 4800 256

Table 4: For N and n the function XORk +Qq +
Td,s(n) provides λ-bit of security.

k d1 s1 d2 s2 n N λ

40 26 52 26 52 144 360 80
100 11 22 11 22 144 397 80

54 19 38 19 38 130 6500 128

54 22 45 23 45 144 3072 128

70 30 61 31 61 192 841 128
65 47 95 48 96 256 830 128
70 46 93 47 93 256 736 128
60 26 53 27 53 166 1229 128
160 24 48 24 48 256 913 128

Table 5: For N and n the function XORk + Td1,s1 + Td2,s2 provides λ-bit of security.

4.3 FiLIP with arbitrary filter

We consider instances of FiLIP with arbitrary functions, in this case functions given by the their number
of variables, algebraic immunity, resiliency and nonlinearity only. We use that “arbitrary” functions is a bit-
fixing stable family (Definition 14), and we can track the parameters of the descendants using the following
proposition.

Proposition 2 (Parameter degradation by bit-fixing). Let n ∈ N∗ and f be an n variable Boolean
function, for all i ∈ {1, . . . , n} and ε ∈ {0, 1} the following bound applies on the properties of fi,ε:

– Resiliency: res(fi,ε) ≥ res(f)− 1.
– Algebraic immunity: AI(fi,ε) ≥ AI(f)− 1.

Proof. First, we show the result on the resiliency. By contradiction we assume there exists i and ε such that
res(fi,ε) < res(f)− 1. By the definition of resiliency, it means that after fixing res(f)− 1 variables, fi,ε is not
balanced anymore, hence fixing res(f)− 1 + 1 = res(f) variables (the ones for fi,ε and the i-th variable to ε)
of f gives an unbalanced function, which leads to a contradiction.
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Then, we prove the bound on the AI. By contradiction we assume there exists i and ε such that AI(fi,ε) <
AI(f) − 1. Therefore there exists an annihilator of fi,ε (respectively fi,ε + 1), gi, non null, of degree lower
than AI(f) − 1. Then we take the function h = (ε + xi) · gi which is not null since, and of degree at lower
than AI(f). Since (ε + xi)f = fi,ε we have that h is an annihilator of f (respectively f + 1), leading to a
contradiction. ut

Moreover, for the nonlinearity we use a lower bound derived from the AI given by Lobanov [Lob09]:

Property 4 ([Lob09]). Let f be an n variable Boolean function, then the following bound applies on its
nonlinearity:

NL(f) ≥ 2

AI(f)−2∑
i=0

(
n− 1

i

)

We consider two kinds of functions for our tests in this part. First, we use TooLIP on functions which are
the direct sum of a XOR function and an arbitrary function with high algebraic immunity and no resiliency.
Since a random function have high algebraic immunity and low resiliency with high probability (see [Did06]),
this test gives an idea on the number of variables necessary to have a secure instance of FiLIP by taking a
random function and adding it in direct sum with a XOR function. Then, we consider a type of function having
both optimal algebraic immunity and resilience, a dahu, whose existence is conjectured and investigated
in [DMR21]. The advantage of using such function is that no direct sum is necessary with a XOR function
to reach a high resiliency.

Definition 18 (Dahus, adapted from [DMR21] Definition 14). Let n ≥ 3, we call dahu an n-variable
Boolean function such that: AI(f) + res(f) + 1 = n and AI(f) = b(n+ 1)/2c.

Setting λ to 128, we obtain the following result:

– Writing f [α, n] an arbitrary function f in n variables with AI(f) = α and res(f) = 0, we fulfill the
security goal for a function f [213, 450] + XOR256 and key register size N = 6000. For the function
f [256, 512] + XOR196 we obtain the same result since N ≥ 2500.

– A dahu in 512 variables, that is to say with algebraic immunity 256 and resiliency 255 is a secure filter
for N = 2500. For n = 450 the same result apply for N ≥ 3000.

5 Conclusion and open questions

In this article, we discussed new instances for FiLIP by studying the security of different families of filter
functions. To automate this process, we propose a tool called TooLIP that runs several existing attacks on user
defined functions. While the functions studied in this article are already implemented in the tool, it should
be simple for an user to add new ones as long as computing (bounds on) the criteria and the descendant
is feasible. In particular, we focused on XOR-THR-THR and XOR-QUAD-THR which gave instances that are
more efficient in terms of bandwidth and/or evaluation time when FiLIP is used in an HHE protocol. We also
provided results for arbitrary filters in case the function used as some unknown properties. These different
contributions enable to easily update the state of the art on the attacks, and determine secure instances in
new families of functions that become more homomorphic friendly.

Two main open questions arose during this work. First, in [MCJS19b] various modifications are performed
on the algorithm to determine instances with DSM functions since the number of descendants prevents to use
the generic algorithms. It would be interesting to see if similar improvements could be implemented generically
with the tool, such as simplifying the graph of descendants by merging sub-paths when descendants with
worse properties are identified. Second, the throughput of FiLIP is less competitive than its latency compared
to other symmetric ciphers used in HHE due to the fact that it produces its keystream bit by bit. A multi-bit
output version of FiLIP could have a better throughput, and it raises the question of the tool to be adaptable
to such generalizations.
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