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Abstract 

 

Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To 

investigate longitudinal epigenetic evolution of gliomas in response to therapeutic 

pressure, we performed an epigenomic analysis of 132 matched initial and recurrent 

tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt 

gliomas showed a stable epigenome over time with relatively low levels of global 

methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-

wide DNA methylation that was progressively reduced to levels similar to those of IDHwt 

tumors. Integration of epigenomics, gene expression, and functional genomics identified 

HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse 

of IDHmut tumors was accompanied by histological progression that was associated 

with survival, as validated in an independent cohort. Finally, the initial cell composition 

of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed 

differentially following treatment, suggesting increased neo-angiogenesis and T-cell 

infiltration upon treatment of IDHmut gliomas. This study provides one of the largest 

cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and 

genomic profiling and suggests that treatment of IDHmut glioma is associated with 

epigenomic evolution towards an IDHwt-like phenotype. 
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Statement of Significance 

Standard treatments are related to loss of DNA methylation in IDH-mutant glioma, 

resulting in epigenetic activation of genes associated with tumor progression and 

alterations in the microenvironment that resemble treatment-naive IDH-wildtype glioma.  
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Introduction 
 

Despite advances in our biological understanding, molecular classification and 

surgical techniques, management of diffuse gliomas of adulthood remains challenging 

making it an incurable disease (1,2). Compared to gliomas of the same grade that carry 

intact isocitrate dehydrogenase (IDH) 1 and 2 genes, gliomas with IDH mutations exhibit 

a less aggressive clinical course which has led to their separation as distinct tumor 

types in the 2016 World Health Organization (WHO) classification of Tumors of the 

Central Nervous System (CNS) (3). Based on the revised 2021 WHO Classification (4), 

IDH-mutant tumors now comprise two distinct tumor types, namely “oligodendroglioma, 

IDH-mutant and 1p/19q-codeleted, CNS WHO grade 2 or 3”, and “astrocytoma, IDH-

mutant, CNS WHO grade 2, 3 or 4”. Yet, there is controversy on the morphological 

criteria used to distinguish CNS WHO grades 2 and 3, and homozygous CDKN2A loss, 

a signature lesion of CNS WHO grade 4 among IDH-mutant astrocytomas, which is 

currently the only diagnostic molecular marker in these tumors (5–7). Thus, additional 

molecular characterization is needed to establish which of these tumors will rapidly 

progress and which will remain quiescent for several years with or without adequate 

therapy (2).  

Epigenetics play a vital role in stratifying CNS tumors and gliomas into clinically 

relevant subtypes (8,9). Studies enlightened that oncometabolite 2-hydroxyglutarate (2-

HG) produced by IDH-mutant leads glioma cells to encompass subtypes with different 

DNA methylation patterns, named glioma CpG island methylator phenotype (GCIMP), 

which is associated with distinct chromatin remodeling processes and better clinical 

outcome than gliomas not carrying this phenotype (1,10,11). Further investigation 
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revealed a subset of IDH-mutant gliomas that presented with a lower degree of DNA 

methylation and poorer outcome, named GCIMP-low, distinct from the previously 

described highly methylated tumors that have a better outcome, now renamed as 

GCIMP-high (9). However, the longitudinal trajectory of evolution of the glioma 

epigenome remains incompletely characterized and it is unknown whether the 

epigenetic changes marking glioma progression occur in concert with other molecular 

and biological changes (genome, transcriptome, immune cell infiltrates, etc). Even less 

clear is the impact exerted by standard-of-care treatment on the epigenetic evolution of 

glioma, especially when considering the frequent transition to more aggressive forms of 

the disease at recurrence (12–15).  

Current treatments for gliomas include surgery followed by radiotherapy and/or 

alkylating chemotherapy (e.g. temozolomide [TMZ]). Recent studies have revealed 

fundamental molecular genetic changes associated with glioma treatment including the 

development of a hypermutation phenotype (12,16), increase in small deletion burden 

and acquisition of CDKN2A homozygous deletions associated with radiotherapy and 

acquired aneuploidy associated with cell cycle related genes and overall poorer 

outcome (17,18). Interestingly, not all TMZ-treated gliomas develop a hypermutator 

status which challenges the possible mechanisms driving this TMZ treatment-induced 

molecular phenotype (19,20).  

In the current study, by leveraging the Glioma Longitudinal AnalySiS (GLASS) 

international consortium (17,21,22), we analyze an epigenetic cohort of 132 glioma 

patients with matched initial and first recurrent tumors, and include additional molecular 

data and clinical data to characterize the evolution of both IDH-wildtype and IDH-mutant 
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gliomas. This is the largest cohort of paired initial and recurrent glioma samples profiled 

with epigenomics, transcriptomics and genomics, that we know of being used in the 

literature. Also, the GLASS in the Netherlands (GLASS-NL), a collaboration of several 

centers in the Netherlands treating patients with glioma, was included in this study to 

evaluate the effects of treatment in the epigenome of gliomas in an independent cohort. 

This consortium has collected material from 100 astrocytoma, IDH-mutant patients who 

underwent at least two surgical resections (surgical interval > 6 months). Our study 

aimed at identifying key master regulators of tumor progression, identifying changes in 

the tumor microenvironment and epigenetic drivers of glioma evasion to treatment and 

examining differences in these processes between IDH-wildtype and IDH-mutant 

gliomas to derive better informed tailored treatments.  

Methods 

Biospecimens/GLASS Datasets 

Datasets added to GLASS came from both published and unpublished sources. The 

GLASS epigenomic cohort consists of 354 DNA methylation samples (total of 143 

patients; 132 of them with high-quality molecular data from at least two-time points 

which were used in this study) profiled by either Illumina 450K or EPIC Beadchip 

methylation arrays and described below. For those same patients, we also profiled DNA 

sequencing data from 64 patients, whole genome sequencing (WGS) or whole exome 

sequencing (WXS); and RNA sequencing from 54 patients, available through the 

GLASS consortium, resulting in the largest cohort of matched glioma samples profiled 

with epigenomics, transcriptomics and genomics platforms (Tables S1 and S2). 

Newly generated DNA methylation data was collected from four different institutions: 

Henry Ford Hospital (N=103), University of Leeds (UK) (N=8), Chinese University of 

Hong Kong (N=6), and Luxembourg Institute of Health (N=54). The DNA was extracted 
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at each institution. New DNA methylation data from Henry Ford Hospital and from 

Chinese University of Hong Kong was generated at the University of Southern 

California. Briefly, the DNA was bisulfite-converted (Zymo EZ DNA methylation Kit; 

Zymo Research) and profiled using an Illumina Human EPIC array (EPIC). For the 

Luxembourg Institute of Health samples, DNA methylation data was generated by the 

Illumina EPIC array at the Helmholtz Zentrum München (Research Unit of Molecular 

Epidemiology, Institute of Epidemiology, German Research Center for Environmental 

Health, Neuherberg, Germany) or by the Laboratoire National de Santé 

(Neuropathology Unit, National Center of Pathology, Dudelange, Luxembourg). 

Samples from University of Leeds were profiled locally using Illumina 450K Beadchip 

methylation arrays. The raw DNA methylation intensity data files (IDAT) were processed 

with the minfi package (23). We performed noob (Normal-exponential convolution using 

out-of-band probes) background correction (24) and dye bias correction using the minfi 

package (v 1.36.0) (23). The DNA methylation value for each locus is presented as a 

beta (β) value (β = (M/(M+U)) in which M and U indicate the mean methylated and 

unmethylated signal intensities for each locus, respectively. β-values range from zero to 

one, with scores of zero indicating no DNA methylation and scores of one indicating 

complete DNA methylation. A detection p-value also accompanies each data point and 

compares the signal intensity difference between the analytical probes and a set of 

negative control probes on the array. Any data point with a corresponding p-value 

greater than 1E-4 is deemed not to be statistically significantly different from 

background and was thus masked as “NA”. All processed data files that were used in 

our analysis can be found at Synapse https://www.synapse.org/glass.  

The raw DNA methylation IDAT files from public datasets were accessed and 

processed as described for the GLASS datasets above. Sample ID and tissue source 

site from our entire longitudinal glioma cohort are listed in Table S1. 

The generation and processing of gene expression data was described in previous 

GLASS publication (22). RNA expression data used in this study was downloaded from 

the GLASS Synapse portal and the transcripts per million (TPM) data matrix was filtered 

for selected protein coding genes only. Next, batch effects due to the different Aliquot 

Batches were corrected using the COMBAT algorithm with aliquots as covariates (25). 
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Whole exome and/or whole genome sequencing data were generated and processed 

as described during creation of the initial GLASS dataset (17). 

 

Quality control 

DNA methylation quality control was performed using the entire GLASS epigenetic 

samples to ensure the identity check of samples matched to their corresponding patient. 

The DNA methylation signals of probes querying high-frequency SNPs were used to 

calculate a pairwise agreement score across samples (26). Only samples that passed 

our pairwise agreement score cutoff were kept in the GLASS epigenetic cohort (N=354). 

Data analysis 

Data visualization and data analysis were performed using R version 4.1.0 software 

packages (www.r-project.org) and Bioconductor (27). Unless specified, all statistical 

tests were performed using two-tailed tests and significance was obtained with FDR < 

5%. Differential analysis between paired initial and first recurrent samples was 

performed using paired tests; other analyses were performed using independent-

samples tests (type of test is indicated in each method’s subsection). 

Classification of longitudinal gliomas 

Longitudinal glioma samples were classified as either IDH-wildtype (Classic-like, 

Mesenchymal-like, LGm6) or IDH-mutant (Codel, GCIMP-high, and GCIMP-low) DNA 

methylation subtypes using the CpG methylation signatures and method previously 

defined by our group (9). 

Our cohort was also classified into the Pan-CNS DNA methylation-based classification 

(8) by uploading idat files into the portal https://www.molecularneuropathology.org/mnp. 

Some samples could not be assigned to a Pan-CNS DNA methylation-based subtype 

due to the rigid calibrated classifier score cutoff, therefore their subtype is not available 

in Table S1. 

Additionally, the samples were classified into the recent transcriptomic pathway-based 

classification of glioblastomas (28) using MWW-GST on the basis of the highest positive 

Normalized Enrichment Score (29).  
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Estimation of 1p/19q codeletion status, IDH mutation, and MGMT promoter methylation 

using DNA methylation data 

The molecular status of 1p/19q codeletion status and the IDH mutation were determined 

according to TCGA molecular subtypes (9). The status of the MGMT promoter 

methylation was defined using data from microarray as described by (30). For some 

patients, the status of IDH, 1p/19q codeletion and MGMT promoter methylation were 

also provided by the original tissue source institution and this information is provided in 

Table S1 (Columns “idh_status”, “codel_status” and “mgmt_methylation”, respectively). 

There are a few cases with inconsistent information among the different methodologies. 

As all methodologies are well established, we used the status defined by DNA 

methylation microarray as the information is available for all samples. 

Estimation of tumor purity 

Tumor purity was estimated using the package InfiniumPurify (31) and we used  

combined normal samples from different tissue types to construct a panel of normal 

methylomes as reference, according to (32). 

Hypermutation status in gliomas 

Patients with known TMZ treatment status after initial surgery and known genomic data 

for both initial and recurrent samples were classified in hypermutator and non-

hypermutator phenotype. Hypermutation was defined for all recurrent tumors that had 

received TMZ after initial surgery and had more than 10 mutations per megabase 

sequenced, as described previously (17).  

Chromatin Immunoprecipitation Sequencing (ChIP-Seq)  

Sample selection 

Seventeen fresh-frozen GCIMP tumor samples (nine primary GCIMP-high samples,  

four primary GCIMP-low, and three recurrent GCIMP-low tumors) were collected from 

Hermelin Brain Tumor Center (HBTC) tumor bank at Henry Ford Hospital (HFH), with 

extensive clinical follow-up, to profile H3K27ac and H3K4me3. These samples were 
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selected based on data availability, such as RNA-sequencing, high tumor purity 

evaluated by neuropathologists, and sufficient amount of tissue.  

Sample preparation 

About 100-400 mg of fresh frozen tissues by sample were cut. Then, tissue 

samples were sent to Active Motif for the following steps, according to their protocol: 

samples were cross-linked for 10 minutes by adding fresh formaldehyde directly to the 

culture medium at a final concentration of 1%. Using 10X (1.15M) glycine for 5 minutes 

at room temperature to quench the reaction. Chromatin from fixed cells were sonicated 

using a Bioruptor Pico (Diagenode, Cat # B01060001) with 30 seconds on/30 seconds 

off cycles to produce fragments between 200 and 500 base pairs. For 

immunoprecipitation, 100 grams of sonicated chromatin were used and 10 grams (10%) 

were saved as an input control. To probe for active enhancers, samples were incubated 

at 4°C overnight with an H3K27ac antibody (Active Motif, Cat # 39133) or an IgG control 

(Sigma, Cat # R9133). As a secondary, protein A/G magnetic beads (Pierce, Cat # 

88802) were added to the samples prior to an additional incubation for 2 hours at 4°C. 

The beads were then washed with a series of salt buffers before elution. The 

immunoprecipitated and input control DNA were purified using A QIAprep Spin Miniprep 

Kit (Qiagen, Cat # 27104). Finally, the samples were single-end sequenced with read 

lengths of 75 bp each and an average coverage of ∼100x. 

Data processing 

First, FastQC (version 0.11.5) was used to do quality control checks by each 

sample on the raw sequence data, followed by MultiQC (version 1.4) (33) to combine all 

reports into a single report by experiment. All the samples, from both ChIP-Seq specific 

antibodies to H3K27ac and H3K4me3, showed average Phred scores above 30, low 

level of duplication and no adapter sequence content. The software used to map the 

sequence files to the most recent reference genome (hg38) was bwa-mem (version 

0.7.15). The output of this tool is a SAM file. After the alignment, SAM files were 
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converted to BAM, filtered to only include reads with mapping quality greater than 30 

and, finally, sorted using SAMtools (version 1.3.1) (34). Duplicated reads were tagged 

and removed using the picard MarkDuplicates tool (version 2.7.1). 

ChIP Peaks calling 

After mapping reads, peaks were called, by sample, to identify regions of ChIP 

enrichment (FDR ≤ 0.01) in gliomas compared to control (input) using MACS2 (version 

2.1.1) (35). The output of this tool contains the genomic location of each peak, followed 

by the absolute peak summit position, pileup height, fold enrichment over the control 

(input), log10 transformed p-value and FDR. 

Differentially bound peaks 

At the beginning of all analyses, we compared nine GCIMP-high primary samples 

vs. four GCIMP-low primary samples (only primary status) to identify which differentially 

bound peaks are specific for each GCIMP condition, regardless of tumor recurrence 

status. R/Bioconductor package DiffBind (36) was used. This tool allows the user to 

input peak calling files from MACS2 and is composed of several steps. First, DiffBind 

reads in the files and associated metadata and then detects common peaks across all 

the samples towards creating a single set of binding site intervals. Next, DiffBind counts 

the number of reads that overlap each binding site interval, by sample, using sequence 

read files. To do the differential analysis, DiffBind divides the samples by group 

according to the metadata provided by the user and then compares the groups by 

performing differential binding affinity analysis using DESeq2, by default. Finally, each 

peak is assigned with a fold-change, p-value, and FDR representing the confidence in 

which they are differentially bound. Differentially bound peaks identified by DiffBind 

(version 3.4.11) were then assigned to discrete categories based on genomic position, 

using gencode (version 39) (37) as reference for gene location: promoter (2,000 bp 

window surrounding known TSS) or intergenic (non-promoter) regions. 
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Identification of the putative master epigenetic regulator gene 

We used RNA-sequencing data TCGA GCIMP-high and GCIMP-low samples and 

performed a paired Wilcoxon rank-sum test followed by FDR to identify differentially 

expressed genes (FDR < 0.05). Based on the fold-change (FC) between GCIMP-high 

and GCIMP-low, genes with FDR < 0.05 were classified into upregulated and 

downregulated when FC > 0 and FC < 0, respectively. Integration between 

transcriptomic and epigenomic data was initially performed by mapping the RNA-seq 

results to  active TSS regions obtained from H3K27ac and H3K4me3 data. As a 

preliminary result, we characterized the regions with gains and losses of epigenetic 

biomarkers in GCIMP-low and we were able to relate these marks to gene expression 

level. To visualize the distribution of the H3K27ac and H3K4me3 peaks in the regulatory 

regions of the gene identified as a putative epigenetic regulator of the progression from 

GCIMP-high to GCIMP-low, we used Integrative Genomics Viewer (IGV version 2.15.2). 

 

Functional validation – putative epigenetic master regulator gene 

CRISPR - HOXD13 KO 

Knockout of the HOXD13 target gene was performed using the CRISPR methodology. 

The experiment using the IDHwt cell line (HF3016) derived from a patient  and 

expressing high levels of HOXD13, was conducted in six biological replicates: Negative 

control (represented by Control 1 and Control 2), HOXD13 KO 1 (represented by 1a and 

1b) and HOXD13 K0 2 (represented by 2a and 2b). The construction HOXD13 KO 1 

was built using gRNA VSGHSOH-28531007 lot#V19080103 and HOXD14 KO 2 was 

constructed using gRNA VSGHSOH-28552455 lot#V19080103, both obtained from 

ORIGENE. 

In compliance with institutional regulations tissue sample freshly resected from 

glioblastoma patient HF3016 was enzymatically dissociated and cultured in serum-free 

neurosphere media consisting of Dulbecco's Modified Eagle Medium (DMEM)/F12 

media (Invitrogen), N2 supplement (Gibco) and 0.5 mg/ml BSA, supplemented with 

growth factors 20 ng/ml EGF and 20 ng/ml bFGF (Peprotech) (NMGF), to select for 
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cancer stem cells and used prior to achieving passage 20. A subset of media samples 

was tested and identified to be absent of mycoplasma contamination (ATCC Universal 

Mycoplasma Detection Kit 30-1012K). The identity of cell lines was confirmed by 

comparing the genotype with the patient germline using Short Tandem Repeat (STR) 

analysis. The experiment was carried out for 8 days. On day 1 and day 2, the 

neurospheres were decanted and dissociated into single cells in DPBS (Mg and Ca-

free). The single cells were counted using a hemocytometer and Trypan Blue. Next, the 

total amount of cells was resuspended in NMGF medium supplemented with 2% FBS to 

achieve 4x105 cells/mL. The viral suspension was prepared in a microtube to achieve 

the indicated multiplicity of infection (MOI) of 1. The equation to calculate a volume of 

lentiviral stock for a given MOI was: 𝑉 =  𝑀𝑂𝐼 𝑥 𝐶𝑁/ 𝑉𝑇 𝑥 1000, where: V = volume of 

lentiviral stock in μL; MOI = desired multiplicity of infection; CN = number of cells in the 

well at transduction; VT = viral titer in TU/mL (indicated in the Certificate of Analysis) 

and multiplied by 1000 to convert the volume from mL to μL. 

Next, the solution was carefully mixed by pipetting up and down and placed in a viral 

tissue culture incubator for 6 hours. Next, we added 2% FBS NMGF medium to the 

wells and the plate was incubated in a viral tissue culture incubator for 48 hours. On day 

3, the cells were observed under microscope and from day 4 to day 8 the cell 

morphology was recorded by performing a partial change of antibiotic-containing 

medium every 2-3 days. Surviving cells were harvested from each well with TrypLe 

express at 37°C, transferred to 15 mL tube and resuspended in NMGF containing no 

FBS and no antibiotic. 

 

Cell proliferation assay 

The cell proliferation assay related to the HOXD13 KO was performed in four different 

time points: day 0, day 3, day 6 and day 9. The experiment was conducted using 1000 

cells/well of black bottom transparent 96-well plate per time point. In total, we used 6 

wells/cell line/day in 100 ul of medium. The measurement of cell viability (per time point) 

was performed adding 100 ul  of CellTiter-Glo® Reagent (substrate pre-diluted in buffer) 

to the cell culture medium, mixing the contents for 2 minutes on an orbital shaker to 

induce cell lysis and stabilizing the luminescent signal keeping the plate at room 
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temperature for 10 minutes. The luminescence was recorded using a cell imaging multi-

mode microplate reader (Cytation 3). 

 

Quantification of the relative HOXD13 expression levels  

We analyzed the quantification of HOXD13 expression using the real-time polymerase 

chain reaction (qPCR) technique. Total RNA was isolated from 1 well of 6 well plate 

cells on 50-80% confluence using Rneasy total RNA isolation kit from Qiagen 

(#217004). DNA-se digestion step (Dnase I Qiagen) was incorporated into the RNA 

isolation process to eliminate potential genomic DNA contamination. Reverse 

transcription of about 0.5 mg/rxt total RNA was performed using thermoFisher 

Superscript III RT kit/oligodt priming , according to the manufacturer. The c-DNA 

obtained was diluted 1/20 and used 8 ml/rxt in real-time PCR (about 7ng/rxt if we 

consider RT 100% efficient). For real-time PCR we used SYBR green I dye detection, a 

highly specific double-stranded DNA binding dye, which allows the detection of product 

accumulation during PCR, including non-specific reaction products (primer dimmers). 

We designed (vector NTI software) highly specific primers for genes of interest: 

B2Microglobulin (housekeeping gene) = TAAGTGGGATCGAGACATGTAAGC; 

HOXD13 forward (fw) = TAAGTGGGATCGAGACATGTAAGC, HOXD13 reverse (rev) = 

CTAGAGCTACCTGTGGAGCA.   

Longitudinal DNA methylation changes of IDHmut-noncodel gliomas 

We selected IDHmut non-codel initial and first recurrent pairs with available DNA 

methylation data (N=59) and performed a paired Wilcoxon rank-sum test followed by 

FDR to identify differentially methylated probes (FDR < 0.05). Based on the mean DNA 

methylation difference between initial and first recurrent tumors, the CpG probes with 

FDR < 0.05 were classified into hypomethylated and hypermethylated. Only 

hypomethylated probes were selected for further analysis (81,958 hypo methylated 

probes).  

To integrate the data, we combined the DNA methylation and the corresponding gene 

expression of 11 IDHmut non-codel samples with both DNA methylation and RNA 

expression data available and mapped each differentially methylated CpG probe to the 
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nearest 20 genes (10 upstream and 10 downstream genes, independent of the 

distance). We then calculated the Spearman's rank correlation between DNA 

methylation and gene expression data with the associated p-value corrected by FDR. 

Pathway analysis was performed using Reactome (38). Finally, we searched for 

previously identified/validated HOXD13 targets at ChEA (39) and CISTROME  (40) 

databases. 

DNA methylation changes associated with treatment 

Only patients with known TMZ and RT treatment status after initial surgery were 

included in the analysis. In total, we identified 6 patients who received both TMZ and 

RT, 12 patients who received only TMZ, 18 patients who received RT only and 33 

patients who did not receive additional treatment besides surgery. We used the 

Kruskal–Wallis test by ranks followed by multiple testing corrections using the Benjamini 

& Hochberg (BH) method for FDR estimation (41) to identify differentially methylated 

sites between these four groups at first recurrence. To define differentially methylated 

CpG probes, we selected probes with FDR < 0.01 and absolute mean DNA methylation 

difference between each group > 20%. Known motif discovery analysis was conducted 

using HOMER as previously described and hypomethylated CpG probes overlapping 

the top DNA motif were selected for further investigation. To understand the biological 

context of these probes, we integrated the DNA methylation at these CpGs with the 20 

nearest genes and the Mann-Whitney U test was used to test the null hypothesis that 

overall gene expression in the treated group (TMZ-only, RT-only or combination of TMZ 

and RT) is greater than that in the untreated group. The p-value was corrected for 

multiple hypotheses using FDR. The CpG-gene pairs with FDR < 0.01 were then sent to 

our collaborators who are part of the GLASS-NL consortium for validation of our results. 

DNA methylation and gene expression data from the GLASS-NL cohort 

The GLASS-NL consortium has collected material from 100 IDH-mutant astrocytoma 

(1p19q non-codeleted) patients who underwent at least two surgical resections. Material 

for analysis had to be available for both resections, and the surgical interval between 

resections was > 6 months. Detailed clinical data, imaging, and treatment data of 
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patients was collected within the consortium. All institutions obtained ethics approval 

from their institutional review boards or ethics review committees before initiation of the 

project. All patients provided written informed consent according to local and national 

guidelines. 

DNA and RNA were isolated from formalin-fixed paraffin-embedded (FFPE) tumor 

samples as previously described (42). Evaluation of the area with highest tumor content 

was done by the pathologist (PW) on a hematoxylin and eosin stained section. 

Macrodissection of the marked area was then done on 10-20 10μm consecutive slides. 

DNA and RNA extraction was performed using the QIAamp DNA FFPE and RNeasy 

FFPE kit respectively (both Qiagen, Venlo, The Netherlands). DNA methylation profiling 

was performed with the Infinium MethylationEPIC BeadChip according to the 

manufacturer’s instructions making use of the Infinium FFPE DNA Restoration Kit. RNA-

sequencing was done by Genomescan (Leiden, the Netherlands) and data processing, 

alignment and further analysis of read counts was done as described (43). 

Deconvolution analysis 

We first constructed a signature matrix from reference DNA methylation profiles of pure 

flow-sorted populations of cells from the literature. This signature matrix represents a 

set of differentially methylated CpGs selected and weighted to reflect specificity for a 

given cell type and is used as the basis of cell deconvolution by methylCIBERSORT. 

Our final signature matrix consisted of 10 cell types: CD19+ cells (B cells) (N=6), CD8+ 

T cells (N=6), CD56+ (natural killer cells) (N=6), and neutrophils (N=12) were from the 

FlowSorted.Blood.450k Bioconductor package version 1.30.0 (44). CD4+ effector T 

cells (N=6) and T regs (N=4) were from (45), accessed through the MethylCIBERSORT 

R package (46). Vascular endothelial cells (N=2) data was from (47). Monocyte-derived 

macrophage (N=4) data was from (48). Neuron (N=31) and glia cells (N=31) were from 

(49). The MethylCIBERSORT R package was used to derive the DNA methylation 

signature for the deconvolution and the signature matrix was exported and uploaded to 

the CIBERSORTx portal to be deconvoluted using 1,000 permutations without quantile 

normalization. 
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Validation of tumor cell composition 

Sections of formalin-fixed, paraffin-embedded human glioma surgical samples were 

deparaffinized with xylene and rehydrated through graded alcohol into deionized H20. 

Antigens were unmasked by incubation for 45 mins at 95°C in Diva Decloaker (Biocare, 

DV2004) using Biocare’s Decloaking chamber, and sections were stained with the 

antibodies listed on the Reporting Summary, visualized with intelliPATH FLX™ DAB 

Chromogen Kit (Biocare, IPK5010) and counterstained with intelliPATH™ Hematoxylin 

(Biocare, IPCS5006L).  

Images of the tissue sections stained by immunohistochemistry using CD163, CD31, 

and CD8 antibodies were captured by an Olympus IX70 microscope and a digital 

camera. For quantitative analysis, we selected eight representative areas in each 

section. Images of the representative areas were captured at a 10X magnification. For 

CD163 and CD31 stainings, individual cells per area were identified by strong brown 

stain and counted by using ImageJ (NIH, Bethesda USA) by an algorithm to evaluate 

staining using hematoxylin and DAB staining specific built-in color deconvolution plug-

in. For CD8 immunostaining, positive cells identified in each area by strong brown stain 

were manually counted. The cell counting was repeated three times. All images were 

analyzed in a blinded fashion.  

Data availability 

The newly generated data analyzed in this study were obtained from GLASS at 

https://www.synapse.org/glass. All the processed molecular data accompanied by the 

corresponding clinical data for the GLASS consortium is available on Synapse. 

Raw DNA and RNA sequencing data generation and data processing were described in 

previous GLASS publications (17,22). Newly generated epigenomic data, including DNA 

methylation array idat files, can be accessed in Gene Expression Omnibus (GEO) at 

GSE248471. 

Public data included in the GLASS cohort were downloaded from TCGA/GDC 

(https://portal.gdc.cancer.gov) and in the European Genome-Phenome Archive (EGA) 

at EGAS00001001255 (50), EGAS00001001854 (51), and EGAS00001001588 (15,50–

52). 
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DNA methylation processed data used in the deconvolution analysis was downloaded 

from GEO at GSE66351 (neuron and glia) (49), GSE35069 (CD19+, CD8+ T, CD56+, 

neutrophils) (44), GSE49667 (CD4+ effector T cells and T regs (45), GSE122126 

(vascular endothelial cells) (47), and GSE118696 (monocyte-derived macrophage) (48).  

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-23-2093/3392055/can-23-2093.pdf by guest on 16 February 2024

https://sciwheel.com/work/citation?ids=5847103&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1113803&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1489311&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6089609&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9746347&pre=&suf=&sa=0


20 

Results 

Molecular evolution of matched initial and recurrent gliomas 

The GLASS-international DNA methylation cohort consists of 132 patients with 

high-quality molecular data from at least two-time points, resulting in a total of 354 

samples profiled by either Illumina 450K or EPIC Beadchip methylation arrays (Tables 

S1 and S2). A few patients have multiple fragments from the same tumor profiled by 

DNA methylation and were excluded from most of the analyses whenever we found 

heterogeneity. We selected 132 patients with available initial and first recurrence tumors 

for further analysis (Table S2). The patients at initial diagnosis represented the three 

major glioma subtypes, which here were defined by DNA methylation signatures (9): 

IDH-mutant and 1p/19q-co-deleted oligodendroglioma (IDHmut-codel; n = 13); IDH-

mutant astrocytoma without 1p/19q co-deletion (IDHmut-noncodel; n = 59); and IDH-

wildtype glioblastoma (IDHwt; n = 60).  Among the 132 patients with profiled DNA 

methylation, 54 patients had RNA sequencing data, 64 had DNA sequencing genomic 

data, either whole genome sequencing (WGS) or whole exome sequencing (WXS), and 

49 had all three molecular data sets (Figures 1A - patient level, and S1A - sample level).  

To investigate the temporal differences, we evaluated the most relevant 

molecular and clinical features in gliomas. Our cohort includes the previously described 

DNA methylation-based glioma TCGA subtypes: Three IDH-mut-specific DNA 

methylation subtypes (Codel, GCIMP-high, and GCIMP-low) and three IDHwt-specific 

subtypes (Classic-like, Mesenchymal-like, LGm6) (9) (Figure 1B) and we used this 

molecular classification throughout the analyses in this study. Over time the majority of 

patients retained the original subtype, with only a minor fraction of patients switching 
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subtypes. Specifically, 20% (14/71) of IDHmut and 27% (16/60) of IDHwt tumors 

switched subtypes. Among IDHmut cases that switched subtypes, tumors of 10 patients 

(10/14, 71%) switched from GCIMP-high to GCIMP-low, a subtype associated with 

worse overall survival (time from initial surgery to death or last follow-up) (Table S3A). 

Patient GLSS-SF-0001 showed spatial subtyping heterogeneity at recurrence (two 

fragments showed transition to GCIMP-low subtype and one fragment retained the 

GCIMP-high phenotype) and was excluded from this statistic. Among IDHwt cases that 

switched subtype, tumors of 8 patients (8/16, 50%) switched from classic-like or LGm6 

to the mesenchymal-like subtype. Conversely, 7 patients (7/16, 44%) switched from 

mesenchymal to classic-like or LGm6. Less frequent subtype shifts were also observed. 

We tested if tumor purity, which was estimated by DNA methylation, affects subtype 

switches in our bulk samples and we did not find purity differences between initial and 

recurrent tumors from patients that switched versus those that did not switch subtype 

(Figure S1B). The only subtype change affected by tumor purity was switches to LGm6, 

which showed lower tumor purity at recurrence (Figure S1B; T-test, initial vs recurrent p-

value = 0.021), corroborating with a previous study that reported the tumor 

microenvironment contributing to LGm6 subtype assignment (53). 

 A Pan-CNS DNA methylation-based classification (8) and a recent pathway-

based classification of glioblastomas (28) were also assigned to our cohort (Figure 1B). 

Based on the Pan-CNS DNA methylation-based classification, 20 IDHmut astrocytomas 

(20/49, 41%) progressed to high-grade astrocytoma upon first recurrence; whereas the 

IDHwt cases, tumors of 7 patients (7/21, 33%) switched from mesenchymal to RTK II, 7 

cases (7/17, 41%) switched from RTK II to mesenchymal and 3 (3/9, 33%) from RTK I 
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to mesenchymal. Patient GLSS-SF-0017 showed spatial heterogeneity at recurrence 

and patient GLSS-SF-0018 showed heterogeneity at initial tumor and were excluded 

from this statistic.  

When the patients were stratified according to the genome-wide gain or loss of 

DNA methylation groups upon first recurrence, patients with IDHmut gliomas showed a 

higher proportion of samples losing DNA methylation than patients with IDHwt gliomas 

(39% (28/72) vs 8% (5/60); Fisher’s test, p-value = 0.0006; Figure 1B). Interestingly, 3 

of 5 (60%) of IDHmut tumors that switched TCGA subtypes and had genomic data 

available evidenced hypermutator phenotype at first recurrence (Figure 1C, Table S3B). 

Two of these switched from GCIMP-high to GCIMP-low. The tumor of one patient 

switched from IDHmut Codel to GCIMP-high (non-codel subtype). In contrast, only 1 of 

23 (4%) IDHmut patients which retained their subtype became hypermutator at 

recurrence (Fisher's test, p-value=0.01). All switches in IDHmut tumors were toward a 

more aggressive phenotype (e.g. GCIMP-low and/or grade 4), suggesting an 

association between DNA methylation change, tumor progression, and hypermutation 

acquisition.  

 

Master regulators associated with IDHmut glioma progression 

To further investigate the changes in the epigenome that occur over time in 

gliomas, we compared the genome-wide DNA methylation characteristics of the initial 

compared to first recurrent tumor samples, stratified by IDH status (Figure S1C). IDHwt 

gliomas showed a more stable epigenome over time (i.e., zero CpG probes presented a 

differentially methylated mean difference greater than 15%; N=60), while the epigenome 
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of IDHmut gliomas showed genome-wide loss of DNA methylation (674 CpG probes 

with DNA methylation difference > 15%; N=72) throughout the disease evolution (Figure 

S1C). IDHmut patients that progressed from GCIMP-high to GCIMP-low showed the 

most prominent loss of DNA methylation, particularly at intergenic regions, reinforcing 

the association between the loss of DNA methylation and tumor progression in this 

subtype (Figures S1D, S1E and S1F), confirming previous findings of our group and 

others (15,54). Compared to patients with tumors that remained GCIMP-high at 

recurrence, those with recurrent GCIMP-low more often had histologically higher-grade 

astrocytoma, were less often managed by a watch-and-wait strategy and exhibited 

inferior survival (Figure S1G; Log rank p-value = 0. 06; Table S3A). 

Next, we investigated the impact of the epigenomic changes on the 

transcriptional landscape of GCIMP-high and GCIMP-low tumors using an integrative 

approach that combines epigenome and transcriptome data to define master regulators 

(MR). We profiled 9 IDHmut GCIMP-high and  4 GCIMP-low tumors at diagnosis with 

ChIP-seq for the H3K27Ac and H3K4me3 active promoter marks. We compared 

GCIMP-high and GCIMP-low tumors and identified an increase of both H3K27Ac and 

H3K4me3 peaks at known transcription start sites (TSS) with corresponding increase  in 

gene expression levels in GCIMP-low (Figure 2A) (Fold Change > 0 representing loss in 

GCIMP-low; Fold Change < 0 representing gain in GCIMP-low; and pvalue < 0.05). 

Among the 45 activated genes enriched by epigenetic peaks in GCIMP-low, we 

identified several members of the HOX and FOX family of transcription factors (Figure 

2A), known to play a role in cancer (55–58). Notably, we identified HOXD13, a member 

of the HOX transcription factor family previously associated with the development and 
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maintenance of brain cancer (59,60). This gene also showed an increase of H3K27Ac 

and H3K4me3 peaks in matched recurrent GCIMP-low (N=3) that progressed from 

GCIMP-high (N=3) (Figure 2B), suggesting a role in glioma progression. We next 

expanded our analysis and identified the overexpression of HOXD13 in the matched 

recurrent IDHmut non-codel GLASS transcriptomic cohort (N=24 paired samples) (T-

test, p-value = 0.0019; Figure 2C). HOXD13 was shown to contribute to glioma 

progression by regulating tumor invasion, growth, and cell stemness (60). Here we 

show that recurrent IDHmut tumors have higher stemness activity than their 

corresponding initial tumors (Figure 2D), as defined by their degree of undifferentiation 

based on a pluripotent stemness epigenomic signature described in our previous study 

(61). To evaluate the oncogenic role of HOXD13 in glioma, we used CRISPR to 

knockout its expression in vitro using two distinct constructions (Figure 2E) in a patient-

derived IDHwt cell line expressing high levels of HOXD13. It is important to note,  that 

we did not observe expression of HOXD13 in a primary IDHmut cell line and since 

recurrent IDHmut resembles the epigenetic and clinical phenotype of IDHwt, HOXD13 

knockout resulted in a decrease of cell proliferation in a time-dependent manner in a 

glioma cell line, reinforcing its role in glioma evolution (Figure 2F).  

To further explore the epigenomic context of the DNA methylation changes 

associated with the progression of IDHmut-noncodel gliomas we compared initial and 

first recurrent tumors by DNA methylation (N=59 paired samples) and identified a total 

of 81,958 differentially methylated probes between the time-separated groups (paired 

Wilcoxon rank-sum test, FDR < 0.05, Table S4). We searched for nearby genes using a 

set of 11 IDHmut-noncodel samples with both DNA methylation and RNA expression 
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data available and identified 1,080 genes with anticorrelated expression, considered 

potential epigenetically regulated genes. A pathway-based analysis of these genes 

resulted in the  enrichment of cell cycle and proliferation-related activities (Table S4B). 

Interestingly, of those, 83 genes have been previously experimentally identified by 

ChIP-seq as HOXD13 target in human or mouse, according to the ChEA (39) and 

CISTROME (40) databases and are upregulated in our IDHmut-noncodel transcriptomic 

cohort (N=23 paired samples) (Table S4C), while no changes were observed in the 

IDHmut-codel cohort (data not shown). Some of these HOXD13 targets are well-

established oncogenes related to cell proliferation: Centromere protein F (CENPF) has 

been described to enhances the progression of adrenocortical carcinoma (62) and was 

associated to poor prognosis in breast cancer (63) and gliomas (64); Proliferating cell 

nuclear antigen (PCNA) has been reported as a prognostic indicator in gliomas (65,66) 

and has been tested as a potential target to inhibit tumor cell proliferation (67); 

Homeobox protein A7 (HOXA7) has been reported to promote tumor growth and 

metastasis in liver cancer (68).  

Our study revealed that IDHmut gliomas exhibit a more dynamic epigenome, 

characterized by significant loss of DNA methylation during disease progression and 

recurrence. This epigenetic landscape is accompanied by the epigenetic activation of 

HOXD13 and other oncogenes at recurrence. In contrast, the epigenome of IDHwt 

gliomas appears to be relatively preserved longitudinally, with minimal changes 

observed in DNA methylation patterns. These findings underscore the distinct molecular 

characteristics between IDHmut and IDHwt gliomas, suggesting a potential role for 

epigenetic alterations in driving disease progression in the former. 
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DNA methylation loss associated with recurrent IDHmut gliomas after standard 

treatment 

It has been shown that treatment (radiotherapy and alkylating chemotherapy) improves 

the progression-free survival of IDHmut gliomas (69). However, recurrence of IDHmut 

lower-grade glioma is frequently associated with progression to higher histological 

grades. Treatment of IDHmut lower-grade gliomas with TMZ and/or radiotherapy has 

been linked to many genomic alterations, such as a hypermutator phenotype (12,20), 

and a strong tendency towards aneuploidy and a specific radiotherapy-associated 

deletion signature by genetic analysis (18). Herein, we observe that treatment is 

associated with epigenomic changes. We sought to identify the DNA methylation 

changes triggered at recurrence by the different treatment choices made in our cohort. 

Towards this goal, we divided our cohort into 4 groups: patients who received TMZ only 

(N=12), radiotherapy (RT) only (N=18), the combination of RT and TMZ (RT+TMZ; N=6) 

and patients who did not receive additional treatment after the first surgery but were 

managed by a watch-and-wait approach (N=33) (Tables S3C, S3D, and S5). The 

methylome analysis of first recurrent IDHmut gliomas across the 4 groups defined 620 

DMP (Kruskal-Wallis test by ranks, FDR < 0.01 and absolute DNA methylation 

difference > 20%) (Figure 3A, Table S6). Upon first investigation, we determined that 

these CpGs were associated with consistent loss of DNA methylation in patients who 

received any treatment besides surgery after initial diagnosis (TMZ only, RT only or 

combined TMZ and RT) compared to their initial counterparts. On the other hand, the 

methylome of the recurrent sample of patients who did not receive treatment resembled 
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the initial tumor (Figure 3A). There were no CpG probes that distinguished the different 

groups that received any specific type of treatment (TMZ only, RT only or RT+TMZ), 

suggesting that the introduction of any treatment regimen involving TMZ and/or RT after 

initial surgery is associated to decrease of DNA methylation levels of treatment-naïve 

gliomas. The loss of DNA methylation after treatment is not affected by tumor purity 

(Figure S1H; T-test, initial vs recurrent p-value = 0.51 and 0.95 in the treated and 

untreated groups, respectively). The interrogation of the same CpGs corroborated this 

observation in IDHwt initial and recurrent gliomas, which showed a similar DNA 

hypomethylation profile to the IDHmut treatment arm (TMZ only, RT only and RT+TMZ) 

(Figure 3A). To evaluate whether the observed decrease of DNA methylation in our 

discovery cohort (GLASS-International; this study) is consistent in an independent 

cohort, we sought to validate our findings in a yet unpublished dataset of paired glioma 

samples from the GLASS in the Netherlands consortium (GLASS-NL; validation) (21). 

The validation cohort consists of 36 treated paired glioma samples and 64 untreated 

paired samples, all of which are IDHmut astrocytomas at diagnosis. The loss of DNA 

methylation pattern upon treatment after initial surgery was confirmed in the validation 

cohort (Figures 3B and 3C). Because the GLASS-NL cohort was comprised of only 

IDHmut astrocytomas, we repeated our discovery test on only the IDHmut astrocytomas 

of the GLASS-International cohort (excluding oligodendroglioma samples), separated by 

treatment group and selected a new set of DNA hypomethylated CpG probes (N=981) 

in the treated samples (FDR < 0.01 and absolute DNA methylation difference > 25%). 

Sixty-one percent (381/620) of the previously described CpG probe list overlapped with 

this new signature showing consistent DNA methylation changes. Again, the loss of 
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DNA methylation pattern after treatment was confirmed in the validation cohort (Figure 

S2A, Table S5). 

By comparing different clinical and molecular features of these tumors, we 

observed a significant enrichment of progression to IDHmut astrocytoma CNS WHO 

grade 4 in the treatment vs the non-treatment groups in the discovery set (Fisher’s test, 

p-value = 0.03; Figure 3D) but not with the validation datasets (Fisher’s test, p-value = 

0.3; Figure S2B). In addition, we noticed that 34% (10/29) of GCIMP-high tumors 

progressed to GCIMP-low in the treatment group vs 4% (1/27) in the non-treatment 

group (Fisher's test, p-value = 0.005). The same was observed with the molecular Pan-

CNS classification (8), in which 68% (15/22) of IDHmut astrocytomas progressed to 

high-grade astrocytoma in the treatment group vs 23% (6/26) in the non-treatment 

group (Fisher's test, p-value = 0.003, Table S1). As expected, only in the treatment 

group, we observed hypermutator samples (N=5) (Figure 3A). To consider whether the 

selection of the treatment regimen might have been biased by the age at diagnosis, we 

performed an analysis of variance (ANOVA) on age at the initial tumor resection and we 

did not find an age difference across the four groups (ANOVA F-test, p-value = 0.59). 

To explore the biological implications of these epigenomic changes, we searched for 

association between DNA methylation,  DNA sequence motif and gene expression. We 

identified 24 distal CpG-gene pairs (FDR < 0.01) enriched for the NEUROD1 motif 

resulting in 18 unique genes potentially regulated by DNA methylation after treatment 

(Figures 3E and S2C, Table S5D), which included known oncogenes and cancer-

related genes such as MYB, previously reported to control cell survival and proliferation 
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(70–72),  and RSPO4, an agonist of Wnt/B-catenin pathway and known to play a role in 

multiple cancers (73). 

Tumor microenvironment changes and clinical implications of treatment in IDH-mutant 

gliomas revealed by DNA methylation 

As the observed changes of DNA methylation may not only be driven by tumor 

cell-intrinsic-events but may also underscore changes in the methylome associated with 

non-tumor cell populations present in the glioma tumor microenvironment (TME), we 

applied a methylation-specific approach for the deconvolution of non-tumor cells to the 

longitudinal glioma cohort. MethylCIBERSORT (46) uses genome-wide DNA 

methylation data to deconvolute cell types from individual tumor samples. Our estimated 

cell populations consisted of 10 cell types: glia, neuron, endothelial cells (CD31+), B 

cells (CD19+), CD4 effector T cells, CD8+ T cells, T regs, natural killer cells (CD56+), 

macrophages and neutrophils. The detailed description is given in the Methods section. 

Compared to untreated recurrencies, recurrent IDHmut tumors which were treated after 

surgery were marked by increased infiltration of endothelial cells (CD31+) and CD8 T 

lymphocytes (CD8+) (Figure 4A, Table S6), suggesting that treatment might impact the 

tumor microenvironment and most notably angiogenesis. Our in silico cell fraction 

estimation was validated by immunohistochemical staining in representative IDHmut 

samples that received treatment after initial surgery (Figure 4B). As a further validation, 

the relative proportion of non-tumor cells estimated by methylCIBERSORT was 

significantly correlated with the glioma cell compartments estimated by gene expression 

for the GLASS-international transcriptomic cohort (22) (Figure S3A). Additional changes 
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in the TME were also observed within IDHmut and IDHwt longitudinally, particularly a 

significant increase in macrophage in recurrent IDHwt tumors (Figures S3B-S3D).  

We also investigated whether TME differs spatially in patients with multiple 

fragments available. We found that macrophages, neutrophils, and natural killer cells 

are the cell types that vary the most across spatially distinct samples, although most cell 

fractions are conserved in space (Figure S4A). Furthermore, the 3 tumors that showed 

spatial subtyping heterogeneity also showed TME and purity heterogeneity (GLSS-SF-

0001, GLSS-SF-0017, GLSS-SF-0018), although we did not observe consistent 

changes (Figure S4A). A previous report showed relative DNA methylation subtype 

stability across glioma specimens from the same patient, especially for IDH mutants, as 

we show here (74). 

To evaluate the clinical implications of these findings, we next assessed the 

clinical follow-up of the entire IDHmut GLASS-International cohort (including patients 

which do not have DNA methylation data) divided into treatment (N=73) or non-

treatment (N=37) groups. First, although the overall survival medians are close, in 

univariate analysis, patients receiving treatment after initial surgery had a worse survival 

than patients who did not receive treatment beyond surgery (log-rank p-value=0.03, 

Figure 4C, left). However, patients left untreated after initial surgery had a progression-

free interval (PFI) of 27 months that was significantly worse compared to a PFI of 40.5 

months in the treatment group (log-rank p-value=0.009, Figure 4C, middle), thus 

confirming the results of EORTC 22845 (75). When we focused on the survival interval 

from second surgery to the last follow-up we found a markedly worse survival in 

previously treated patients (log-rank p-value=0.0001, Figure 4C, right). The same 
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associations of treatment and clinical implications were observed in the validation 

GLASS-NL cohort (Figure 4D) and when we evaluated only grade 2 patients (Figure 

S4B). 
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Discussion/Conclusion 

This work reports and analyzes the largest cohort of matched glioma samples 

profiled with epigenomics, transcriptomics, and genomics platforms to uncover the 

diverse molecular routes that drive treatment-resistant gliomas during progression. By 

applying an integrative molecular approach, we highlight the critical epigenetic 

mechanisms by which gliomas evade treatment, in addition to known transcriptomic and 

genetic evolution mechanisms. We also identified epigenomic changes that may be 

useful as biomarkers for continuous monitoring of disease progression and treatment 

response prediction. 

Our cohort consisted of the three major glioma subtypes (IDHmut-noncodel, 

IDHmut-codel and IDHwt) and revealed key evolutionary differences across these 

subgroups. Earlier work from us and others described the GCIMP glioma phenotype in 

IDHmut glioma characterized by higher levels of DNA methylation likely as a direct 

result of the epigenetic effects of the oncometabolite 2-hydroxyglutarate that is 

generated by mutant IDH enzymes (10,11). These tumors exhibited favorable clinical 

outcomes compared with IDHwt gliomas, which have lower DNA methylation levels 

(10). Indeed, in our previous work, we reported that the extent of genome-wide DNA 

methylation showed broad positive correlation with clinical outcome for IDHwt glioma, 

now defined as “molecular GBM'' given their aggressive behavior independent of 

histological grading (4), with these tumors having the lowest levels of DNA methylation 

genome-wide. Here we confirm and extend these notions to tumor progression. In 

particular, we found that IDHwt gliomas presented an initial low genome-wide DNA 

methylation, which shows minimal changes during the course of the disease. This is 
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consistent with the malignant state of IDHwt gliomas at diagnosis and which does not 

appear to progress during treatment. 

Conversely, we uncovered pronounced epigenetic changes in IDHmut gliomas, 

which invariably converged toward lower DNA methylation levels in recurrent treated 

tumors compared to untreated neoplasms. In the most extreme cases, the treatment-

induced evolution of IDHmut glioma resulted in a state of DNA hypomethylation 

comparable to IDHwt gliomas. Thus, the epigenetic trajectory of glioma progression was 

associated with progressively lower levels of DNA methylation in IDHmut tumors or was 

essentially moot in the case of IDHwt gliomas as glioma initiation in the absence of IDH 

mutations coincided with the lowest possible levels of DNA methylation.  

Following diagnosis and surgery, IDHmut glioma patients may or may not 

undergo treatment with radiation or alkylating chemotherapy or both (76,77). A 

recognized phenomenon after using the alkylating agent temozolomide for glioma 

therapy is the acquisition of a hypermutator phenotype (12,17). Here, we found that 

treatment with radiation and/or chemotherapy individually or combined is associated 

with progressive loss of DNA methylation at recurrence. These findings were confirmed 

in an independent cohort. 

The treatment-associated epigenetic drift towards the hypomethylated state 

parallels the histopathological shift from a lower- to a higher-grade phenotype. 

Altogether, these results may indicate that the initial treatment with radiotherapy and/or 

temozolomide triggered a more aggressive evolution at the time of the tumor recurrence 

which compromised the survival probability of these patients at that recurrence. 

However, the retrospective and the non-randomized nature of our cohort leaves open 
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the possibility that, regardless of methylation status, the primary tumors undergoing 

treatment were in fact naturally more aggressive than those left untreated, thus 

explaining the worse survival. 

More specifically, in our limited and retrospective subset, the introduction of 

treatment after initial surgery in IDH-mutant gliomas is associated with a significant 

delay in tumor progression. However, the time from second surgery to progression or 

death is significantly shorter when compared to untreated patients which is likely 

associated with the loss of DNA methylation and activation of associated genes that we 

uncovered. These findings remain consistent with previous observations from large 

clinical trials that reported the beneficial role of chemotherapy and radiotherapy for 

patients survival (75). Further clinical and experimental studies will be needed, using 

our findings as a starting point, to elucidate the mechanisms and potential causal effect 

of treatment-associated molecular changes. 

The therapy-associated changes of the epigenetic evolution of IDHmut glioma 

were also mirrored by specific changes in the tumor microenvironment (TME) at 

recurrence. At recurrence, CD8 and endothelial cell-related signatures were elevated in 

treated IDHmut gliomas compared to untreated tumors. Together, these findings 

indicate that the epigenomic and genomic changes associated with more aggressive 

histotypes of IDHmut gliomas at recurrence coincided with specific changes of the TME 

(neo-angiogenesis and changes in T-cell composition), indicating the convergence of 

IDHmut glioma evolution towards features more typical to the most aggressive IDHwt 

subtype.  
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Having recognized the significance of epigenetic changes in IDHmut non-codel 

glioma evolution, our study specifically focused on this subtype to comprehensively 

analyze ChIP-seq, transcriptome, and methylome data. Our aim was to identify the 

distinctive features associated with the transition towards DNA methylation loss and 

subsequent transcriptional activation of key drivers of disease progression, referred to 

as master regulators (MRs). Through the integration of histone marks and transcriptome 

analyses, we successfully identified and validated HOXD13 as a candidate MR driving 

the progression of IDHmut astrocytomas. To establish its role, we performed in vitro 

editing experiments, which confirmed the involvement of HOXD13 in the activation of 

proliferation and stemness during recurrence compared to the initial tumor state. 

However, it is worth noting that the limited availability of patient-derived IDHmut cell 

lines, consequently these cells are very challenging for genetic manipulation (e.g. 

CRISPR-CAS9) (78). Furthermore, the few IDHmut glioma cell lines have exclusively 

been generated from primary glioma classified into the codel or G-CIMP-high state, 

rather than the G-CIMP-low phenotype of interest in our study. Additionally, these cell 

lines predominantly originate from the initial tumor stage, where HOXD13 expression 

levels are low. Consequently, utilizing IDHmut cell lines as a suitable model was not 

feasible for our investigation. Ideally, an ideal model would involve a recurrent patient-

derived cell line specifically exhibiting the G-CIMP-low transition. Nevertheless, our 

validation experiments, despite the limitations of the available cell line models, provide 

support for the role of HOXD13 as a master regulator in the progression of IDHmut 

glioma. Furthermore, our findings indicate that IDHmut non-codel tumors that progress 

towards the G-CIMP-low phenotype share molecular similarities with IDHwt tumors, 
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including low methylation levels, as well as clinical outcomes associated with poorer 

prognosis. Therefore, we believe that the validation experiments conducted in this study 

contribute to establishing HOXD13 as a crucial regulator of glioma progression in the 

IDHmut context. 

In summary, we found loss of DNA methylation associated with standard 

treatment in IDHmut tumors, which results in epigenetic activation of genes associated 

with early tumor progression and alterations in the TME contexture towards 

angiogenesis and a T-cell composition that resembles a treatment-naive IDHwt glioma. 

In untreated IDHmut patients the epigenome does not change significantly, and tumors 

progress later than the treated ones, either spontaneously or after subsequent 

treatment. Further studies are needed to elucidate the mechanisms and potential causal 

effect of treatment-associated molecular changes. 
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Figure Legends 

Figure 1. Epigenomic evolution of matched initial and recurrent gliomas. A) Venn diagram 

of number of patients who had DNA methylation, genomic (WGS/WXS) and/or RNAseq 

profiling. B) Clinical and molecular overview of matched initial and first recurrent DNA 

methylation cohort. Each column represents a single patient (N=132) at two separate time 

points grouped by IDH status and ordered by increase of gain of DNA methylation at recurrent 

tumor from left-to-right. The gain of DNA methylation represents the percentage of probes that 

showed an increase of DNA methylation at recurrence. Top plot shows the surgical interval of 

each patient. C) Frequency of patients with hypermutator tumors that switched or retained 

molecular subtype at recurrence. Patients are distinguished by IDH status. 

 

Figure 2. Master regulators associated with IDHmut glioma recurrence/progression. A) 

Starburst plot of all H3K27ac and H3K4me3 peaks overlapping known transcription start sites. 

Significant gains or losses of H3K27ac (y-axis) and H3K4me3 (x-axis) are highlighted. Each dot 

indicates a gene and the shape indicates the expression difference between GCIMP-low vs. 

GCIMP-high. Triangles are upregulated and squares are downregulated genes. If a gene is 

enriched for both H3K27ac and H3K4me3, this implies active TSS and the associated gene 

expression is defined as upregulated (highlighted in turquoise, upper right corner). If a gene is 

depleted for both H3K4me3 and H3K27ac, this implies weak or quiescent expression of the 

associated gene (highlighted in green, lower left corner). Grey means not significant gene 

promoter enrichment. Only the most significant upregulated genes are labeled in this plot. B) 

Genome browser representation focused on the HOXD family. The region related to HOXD13 

gene (hg18.chr2: 176,092,721-176,095,944) is highlighted in turquoise. HOXD13 is more 

enriched by the H3K27ac and H3K4me3 peaks in the GCIMP-Low (recurrent) samples (N=3) 

than in their corresponding GCIMP-High (primary) pairs (N=3),  upper and lower graph, 

respectively. C) HOXD13 expression level by RNAseq of GLASS IDHmut samples stratified by 

initial/recurrent and codel status (N=11 codels and 26 non-codels patients). Each box 

represents quartiles, the center line represents the median of each group. The whiskers 

represent absolute range. D) Stemness activity in the GLASS IDHmut samples stratified by 

initial/recurrent and codel status. Each box represents quartiles, the center line represents the 

median of each group. The whiskers represent absolute range. E) Quantification analysis of the 

relative HOXD13 expression levels (2-ΔΔCT) between samples: Control N=2; HOXD13 1 

sgRNA HOXD13-07 N=2; HOXD13 2 sgRNA HOXD13-55 N=2 biological replicates. The 

boxplots represent the analysis of 3 technical replicates for each sample.  F) Proliferation 

growth curve over 9 days of analysis. (Control N=2; HOXD13 1 sgRNA HOXD13-07 N=2; 

HOXD13 2 sgRNA HOXD13-55 N=2 biological replicates), **p<0.01 

 

Figure 3. DNA methylation loss associates with malignant transformation of glioma after 

standard treatment. A) Heatmap of DNA methylation data. Hierarchical clustering analysis of 

620 CpG probes that are associated with different treatment strategies in IDH-mutant paired 

glioma samples. Columns represent glioma samples, rows represent CpG probes. Samples 

were stratified and clustered based on IDH mutation status and initial/recurrent status and CpGs 
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were ordered using hierarchical clustering methods. Non-neoplastic brain samples are 

represented on the left of the heatmap. DNA methylation beta-values range from 0 (low) to 1 

(high). Additional tracks are included at the top of the heatmaps to identify each sample 

membership within separate cluster analysis. B) Heatmap of DNA methylation data in the 

validation cohort - GLASS-NL, showing the same 620 CpG probes of panel A. C) Boxplot of the 

average DNA methylation beta-value of the 620 CpG probes from panel A, in IDHmut samples. 

Samples are stratified by initial/recurrent status and by treated/non-treated status. Left: GLASS-

International samples. Right: GLASS-NL samples. Each box represents quartiles, the center line 

represents the median of each group. The whiskers represent absolute range. D) Evolution of 

tumor histology (2021 WHO classification) from initial to recurrent samples after treatment 

compared to non-treated gliomas. E) Scatter plot of mean DNA methylation of CpG probes and 

mean gene expression of the epigenetically regulated genes after treatment (Table S5). Each 

dot is a sample. 

 

Figure 4. Tumor microenvironment and clinical implications of treatment in IDH-mutant 

gliomas. A) CD31 and CD8 proportions (range scaled from 0 to 100%) in samples originating 

from IDHmut matched initial and recurrent tumors in treated and non-treated patients. Each box 

in A and B represents quartiles, the center line represents the median of each group. The 

whiskers represent absolute range. B) Illustrative immunohistochemical stainings for two marker 

proteins (CD31 and CD8) in an individual patient showing change of levels of tumor-infiltrating 

immune cells between initial (left) and recurrent (right) tumors. CD8 stainings are shown in two 

different magnifications. Boxplots represent the number of CD31- (top) and CD8-positive cells 

(bottom) counted per area for individual patients. C/D) Overall survival and surgical interval 

analysis of IDHmut gliomas for the GLASS International (C) and GLASS-NL (D) cohorts. 
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