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Abstract

A software log is a sequence of log messages generated by log print-
ing statements in the source code. Logs are essential for various soft-
ware engineering tasks, such as model inference and anomaly detection,
since they are often the only data available that records the run-time
behavior of a software system. However, they cannot be directly pro-
cessed by log based analysis techniques that require structured input
logs instead of free-formed log messages. Log parsing aims to address
the issue by decomposing log messages into fixed parts called message
templates, characterizing the event types, and variable parts containing
the parameter values of the events, which are determined at run time.

Although, many log parsing techniques have been presented, they
have not been systematically compared and ranked using different cri-
teria. Additionally, logs have been used widely in log-based anomaly
detection and might affect anomaly detection accuracy; yet, the rela-
tionship between log parsing and anomaly detection has not been thor-
oughly investigated. With the emergence of non-log-parsing-based anomaly
detection techniques that would rule out the impact of log parsing, a
comprehensive evaluation to assess which approach is more suitable
for anomaly detection is required.

In this thesis we have made the following contributions:

1. We assessed and compared different log parsing techniques and
provided guidelines for evaluating the accuracy of log parsing tech-
niques considering different use cases.

2. We proposed a theoretical framework for understanding the re-
lationship between log parsing and anomaly detection, formally
defining the concepts of distinguishability and minimality of ideal
log parsing results.

3. We performed a comprehensive empirical study investigating the
impact of log parsing on anomaly detection accuracy.

4. We performed a comprehensive empirical study comparing the
accuracy and efficiency of log-parsed-based and non-log-parsing-
based anomaly detection techniques.
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Chapter 1

Introduction

1.1 Context and Motivation

Software logs are essential for various software engineering tasks, such as
model inference [WTD16, MPS17] and anomaly detection [NMA+16, DLZS17],
since logs are often the only data available that records the run-time behav-
ior of a software system. In general, a log is a sequence of log messages
generated by log printing statements in the source code. For example, the ex-
ecution of the log printing statement log("retry " + counter), when
the program variable counter evaluates to 1, will generate the log message
“retry 1”. While such log messages contain valuable run-time informa-
tion, they cannot be directly processed by log-based analysis techniques that
require structured input logs instead of free-formed log messages.

Log parsing (a.k.a. log message template identification) aims to address the is-
sue by decomposing log messages into fixed parts called message templates
(templates, in short), characterizing the event types, and variable parts con-
taining the parameter values of the events, which are determined at run time.
For the above example message, the event template would be “retry <*>”,
where symbol “<*>” indicates the position of the parameter value ( “1”) in
the variable part. Log template identification is straightforward when one
has access to the source code because one can derive message templates from
the log printing statements. However, often the source code is not available,
for example, when the system is composed of 3rd-party components, and, as
a result, many automated log template identification techniques have been
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1. INTRODUCTION

proposed in the literature (e.g., LogPPT [LZ23], AEL [JHFH08], Drain [HZZL17],
IPLoM [MZHM09], LenMa [Shi16], LFA [NV10], LKE [FLWL09], LogClus-
ter [VP15], LogMine [HDX+16], LogSig [TLP11], MoLFI [MPB+18], SHISO [Miz13],
SLCT [Vaa03], Spell [DL16]) to identify templates using only log messages [ZHL+19].
Although many log parsing techniques have been presented, they have not
been systematically compared and ranked using different criteria, making it
challenge to decide which one is the best with respect to certain criteria (e.g.,
accuracy, execution time). Therefore, an essential research question is: How
can we properly assess and compare different log parsing techniques?.

Logs have been widely used in log-based anomaly detection techniques
to automatically detect if the logs contain any anomalous patterns that do
not conform to the expected behavior of the system [HHC+21]. Many tech-
niques have been proposed for log-based anomaly detection based on Deep
Learning (DL) models, such as Long Short-Term Memory (LSTM) [DLZS17,
MLZ+19, ZXL+19] and Convolutional Neural Networks (CNNs) [LWLW18].
Most of these techniques have in common an essential pre-processing step.
This step is required because anomaly detection techniques require struc-
tured logs to automatically process them, whereas logs are generally often
free-formed or semi-structured. Therefore, log parsing might significantly
affect anomaly detection, and therefore, it is essential to thoroughly investi-
gate the relationship between log parsing and anomaly detection, to deter-
mine whether using a certain log parsing technique that yields a high accu-
racy score (according to a certain metric) leads to a higher accuracy score for
anomaly detection. Therefore, an essential research question is What are the
ideal log parsing results for better anomaly detection, and is there a corre-
lation between log parsing accuracy and anomaly detection accuracy?

As mentioned above, the impact of log parsing techniques on log-parsing-
based anomaly detection techniques might not be neglected. However, the
existence of an anomaly detection technique that does not rely on log pars-
ing might be another solution that would eventually rule out the impact of
log parsing on anomaly detection accuracy. Recently, an anomaly detection
technique namely NeuralLog [LZ21] has been proposed; it does not use log-
parsing as a pre-processing step. Although non-log-parsing-based and log-
parsing-based techniques utilize the same logs, they differ in the way they
process the logs. NeuralLog processes the raw log messages to represent se-
mantic information in the form of semantic vectors. These semantic vectors
are used by a Transformer-based classification model to capture the contex-
tual information from the log sequences, and to detect anomalies. Le and
Zhang [LZ21] have shown that the performance of anomaly detection mod-
els is highly influenced by log parsers; the reason is that log-parsing errors
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1.2. Research Contributions

can lead to extra log events and wrong log templates that are utilized by
many anomaly detection models. Due to this very reason, one might specu-
late that, without the pre-processing step (log parsing) involved, the non-log-
parsing-based anomaly detection technique might be more accurate than log-
parsing-based anomaly detection techniques. This leads to our last question:
Is a non-log-parsing-based approach more suitable for anomaly detection
than a log-parsing-based approach?.

1.2 Research Contributions

The overall goal of this dissertation is to investigate the answer to the afore-
mentioned questions through theoretical and empirical studies.

To answer the first question How can we properly assess and compare differ-
ent log parsing techniques?, we provide guidelines for assessing the accuracy
of log message template identification techniques and assessed the applica-
tion of such guidelines through a comprehensive evaluation of 14 existing
template identification techniques. More specifically, to address the issue re-
lated to the choice of accuracy metrics, we first describe new metrics, called
Template Accuracy (TA) metrics, that, unlike GA and PA, are not sensitive to
the number of log messages. The accuracy metric, sensitive to the number of
log messages, might lead to misleading results when there are many repeti-
tive but non-essential messages (e.g., heartbeat messages). We then discuss
which metrics (GA, PA, or TA) are more appropriate depending on the na-
ture of the log analysis task in which log message templates are used. Ad-
ditionally, we propose a set of heuristic rules for correcting oracle templates
in order to minimize the negative bias in experimental results introduced by
manually generated oracle templates. Furthermore, to provide additional in-
formation about incorrectly identified templates for a detailed analysis, we
propose a technique for analyzing incorrect templates.

To answer the second question What are the ideal log parsing results for bet-
ter anomaly detection, and is there a correlation between log parsing accuracy and
anomaly detection accuracy?, we propose a theoretical framework for defining
and discussing what are ideal log parsing results for anomaly detection. As
mentioned, log-based anomaly detection techniques require log-parsing as a
pre-processing step and thus acts as an information abstraction process, as it
converts the log messages (specific form) to a more generic form (i.e., event
templates). Since automated anomaly detection relies on structured logs, its
best operating conditions are when the minimum amount of information that
is necessary to distinguish normal from abnormal behaviors is present in
such logs. To this end, we formally define the concepts of distinguishability

3



1. INTRODUCTION

and minimality, which further lead to the definition of ideal log parsing re-
sults. Additionally, we performed a comprehensive empirical study using 13
log parsing techniques and five deep learning-based anomaly detection tech-
niques on three publicly available log datasets. In the study, we provided (1)
a systematic and comprehensive evaluation of the impact of log parsing on
anomaly detection, (2) an investigation of the impact of the distinguishability
of log parsing results on anomaly detection, and (3) a discussion of the prac-
tical implications for the application of log parsing in the context of anomaly
detection.

To answer the third question Is a non-log-parsing-based approach more suit-
able for anomaly detection than a log-parsing-based approach?, we compared log-
parsing-based anomaly detection techniques with non-log-parsing-based tech-
nique using 8 datasets and evaluated them in terms of accuracy, and effi-
ciency, aiming to guide practitioners in selecting the most suitable anomaly
detection technique for their specific use cases.

1.3 Dissemination

The publications resulted from our research work are listed below. These
publications are arranged in chronological order based on their publication
date.

Published papers

• Zanis Ali Khan, Donghwan Shin, Domenico Bianculli, and Lionel Briand.
Guidelines for assessing the accuracy of log message template identifi-
cation techniques. In Proceedings of the 44th International Conference on
Software Engineering (ICSE’22), page 1095–1106, New York, NY, USA,
2022. ACM, ACM. doi:10.1145/3510003.3510101. This paper is
the basis for Chapter 3.

• Donghwan Shin, Zanis Ali Khan, Domenico Bianculli, and Lionel Briand.
A theoretical framework for understanding the relationship between
log parsing and anomaly detection. In International Conference on Run-
time Verification (RV’21), pages 277–287, Cham, 2021. Springer, Springer.
doi:10.1007/978-3-030-88494-9_16. This paper is the basis for
Chapter 4.

Unpublished reports

• Zanis Ali Khan, Donghwan Shin, Domenico Bianculli, and Lionel Briand.
Impact of log parsing on log-based anomaly detection, 2023. arXiv:

4

https://doi.org/10.1145/3510003.3510101
https://doi.org/10.1007/978-3-030-88494-9_16
https://arxiv.org/abs/2305.15897
https://arxiv.org/abs/2305.15897
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2305.15897. This paper is the basis for Chapter 5. It is under review
for publication in the EMSE journal.

• KHAN, Zanis Ali, SHIN, Donghwan, BIANCULLI, Domenico, and BRIAND,
Lionel. Deep Learning-Based Anomaly Detection: A Comparison of
Non-Log-Parsing-Based and Log-Parsing-Based Approaches. This pa-
per is the basis for Chapter 6.

1.4 Organization of the Thesis

Chapter 2 provides fundamental concepts for the thesis. We define logs,
messages, and templates, explain log parsing, delve into log-based anomaly
detection, and distinguish between log-parsing-based and non-log-parsing-
based anomaly detection techniques.

Chapter 3 presents guidelines for assessing the accuracy of log message
template identification techniques.

Chapter 4 presents a theoretical framework for understanding the rela-
tionship between log parsing and anomaly detection.

Chapter 5 presents an empirical study on the impact of log-parsing on
deep learning-based anomaly detection.

Chapter 6 presents an empirical study on the comparison of non-log-
parsing-based and log-parsing-based approaches for anomaly detection.

Chapter 7 summarizes the thesis contributions and discusses perspec-
tives on future works.
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Chapter 2

Background

In this section, we provide an overview of the main concepts that will be
used throughout the thesis. We first introduce the definitions of logs, mes-
sages, and log templates (§ 2.1.1). We then explain the concept of log parsing
(also known as log template identification) (§ 2.1.2). We discuss log-based
anomaly detection and the corresponding accuracy metrics in § 2.2. Addi-
tionally, we discuss the differences between log-parsing-based anomaly de-
tection and non-log-parsing-based anomaly detection techniques.

2.1 Logs and Log Parsing

2.1.1 Logs, Messages, and Templates

A log is a sequence of log entries1. A log entry contains various information
about the event being logged, including a timestamp, a logging level (e.g.,
INFO, DEBUG), and a log message. A log message can be further decomposed
into fixed and variable parts since it is generated by executing a logging
statement that can have both fixed (hard-coded) strings and program vari-
ables in the source code. For example, the execution of the logging statement
“logger.info("Deleting block " + blkID + " file " + fileName)”

1Note that a log is different from a log file. In practice, one log file may contain many logs
representing the execution flows of different components/sessions. For example, an HDFS
(Hadoop Distributed File System) log file contains many logs, distinguished by file block IDs,
each representing an independent execution for a specific block.
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2. BACKGROUND

when the program variables blkID and fileName evaluate to blk-1781
and /hadoop/dfs, respectively, will generate a log entry “11:22:33 INFO
Deleting block blk-1718 file /hadoop/dfs” where the log mes-
sage “Deleting block blk-1718 file /hadoop/dfs” can be decom-
posed into the fixed parts (i.e., “Deleting block” and “file”) and the
variable parts (i.e., “blk-1718” and “/hadoop/dfs”). A (log message) tem-
plate masks the various elements of each variable part with a special character
“<*>”; this representation is widely used in log-based analyses (e.g., log pars-
ing [HZZL17, JHFH08], anomaly detection [ZXL+19, DLZS17], and log-based
testing [Ely12, JJSL20]) when it is important to focus on the event types cap-
tured by a log message. For instance, the template corresponding to the ex-
ample log message “Deleting block blk-1178 file /hadoop/dfs”
is “Deleting block <*> file <*>”.

2.1.2 Log Parsing (Log Template Identification)

Although software execution logs contain valuable information about the
run-time behavior of the software system under analysis, they cannot be di-
rectly processed by log-based downstream analysis techniques that require
structured input logs (containing templates) instead of free-formed log mes-
sages. Extracting log templates from log messages is straightforward when
the source code with the corresponding logging statements is available. How-
ever, often the source code is unavailable, for example, due to the usage of
3rd-party, proprietary components. This leads to the problem of log pars-
ing (log template identification): How can we identify the log templates of log
messages without accessing the source code?

To address this problem, many automated log-parsing approaches, which
take as input log messages and identify their log templates have been pro-
posed in the literature. Such log parsing techniques are based on different
approaches, such as:

1. Frequent Pattern Mining: A group of items that regularly appear in a
data collection is known as a frequent pattern. The same may be said of
event templates, which are a collection of consistent tokens that are regularly
seen in logs. Therefore, frequent pattern mining is a simple method for au-
tomating log parsing. SLCT [Vaa03], LFA [NV10], and LogCluster [VP15] are
examples of log parsing techniques using frequent pattern mining.

2. Clustering: Log parsing can be considered a clustering problem, as log
templates form a natural pattern of a group of log messages. LogMine [HDX+16],
LogSig [TLP11], SHISO [Miz13], and LenMa [Shi16] are few techniques using
clustering.

8



2.2. Anomaly Detection

3. Heuristics: Log messages have unique characteristics that can be used
by log parsing techniques to extract log templates, for example, AEL [JHFH08]
separates log messages into multiple groups by comparing the occurrences
between constant tokens and variable tokens. Drain [HZZL17] is another
technique using heuristics, as it applies a fixed-depth tree structure to repre-
sent log messages and extract common log templates efficiently.

2.2 Anomaly Detection

(Log-based) anomaly detection is a technique that aims to identify anomalous
patterns, recorded in input logs, that do not conform to the expected behav-
iors of the system under analysis [HHC+21]. It takes as input a sequence of
log templates and determines whether the given sequence represents a nor-
mal behavior of the system or not.

With the recent advances in Deep Learning (DL), many anomaly detection
approaches, which leverage DL models to learn various aspects of log tem-
plate sequences of normal and abnormal behaviors and classify them, have
been proposed in the literature; for example, DeepLog [DLZS17],
LogAnomaly [MLZ+19], and LogRobust [ZXL+19] are based on Long Short-
Term Memory based (LSTM), CNN [LWLW18] is based on Convolutional
Neural Network, and PLELog [YCW+21] is based on Gated recurrent units
(GRUs).

To assess the accuracy of anomaly detection approaches, it is common
practice to use standard metrics from the information retrieval domain, such
as Precision, Recall, and F1-Score. These metrics are defined as follows: Precision =

TP
TP+FP , Recall = TP

TP+FN , and F1-score = 2×Precision×Recall
Precision+Recall where TP (True Pos-

itive) is the number of abnormal logs correctly identified by the model, FP
(False Positive) is the number of normal logs incorrectly identified as anoma-
lies by the model, and FN (False Negative) is the number of abnormal logs
incorrectly identified as normal.

2.2.1 Log-parsing-based Anomaly Detection

For the sake of understanding the difference between non-log-parsing-based
and log-parsing-based anomaly detection techniques, we can look at three
different anomaly detection techniques proposed in the literature:

• DeepLog [DLZS17] detect log anomalies by employing LSTM. DeepLog
captures log patterns by analyzing the sequential relations between log
events, wherein each log message is represented by its respective log
event index. Furthermore, it also utilizes a limited portion of normal

9



2. BACKGROUND

event subsequences to train the LSTM model, and consequently, this
enables the model to subsequently identify and classify normal event
subsequences accurately.

• LogRobust [ZXL+19] incorporates an attention mechanism into a Bi-
LSTM model. This mechanism assigns different weights to log events,
known as attentional BiLSTM. Specifically, LogRobust adds a fully con-
nected layer as the attention layer to the combined hidden state (ht).
It calculates an attention weight (at) to indicate the importance of the
log event at time step t. This weight is then determined by applying a
tangent function (tanh) to the product of (W a

t ) (the weight of the atten-
tion layer) and (ht). To generate the classification result (whether it is
an anomaly or not), LogRobust sums the hidden states at different time
steps based on their respective attention weights. It then uses a softmax
layer, using the weight W , to calculate the maximum value among the
summed values (

∑T
t=1 at · ht). Here, T corresponds to the length of the

log sequence.

• LogCluster [LZL+16] uses a clustering-based approach method for iden-
tifying online system problems. The methodology comprises of two
training phases: knowledge base initialization and online learning. In
the initialization phase, log sequences are vectorized using event count
vectors, which are then revised with Inverse Document Frequency (IDF)
and normalized accordingly. Agglomerative hierarchical clustering is
used to separately cluster normal and abnormal event count vectors,
creating distinct knowledge base sets. Representative vectors for each
cluster are computed as centroids by assigning a score to each log se-
quence in a cluster by measuring the distance of each log sequence to
other log sequences, and selecting a log sequence as centroid with min-
imal score. In the online learning phase, clusters are refined by incre-
mentally adding event count vectors and updating representative vec-
tors based on distances. LogCluster is subsequently used for anomaly
detection by computing distances to representative vectors. If the small-
est distance surpasses a predefined threshold, the log sequence is iden-
tified as an anomaly; otherwise, it is categorized as normal or abnormal
based on proximity to the nearest cluster.

Note that all three aforementioned anomaly detection techniques require
log-parsing as a preliminary step.

10



2.2. Anomaly Detection

2.2.2 Non-log-parsing-based Anomaly Detection

Compared to the log-parsing-based anomaly detection as described with ex-
amples in Section 2.2.1, Le and Zhang [LZ21] proposed an anomaly detection
technique called NeuralLog that does not use log-parsing as a pre-processing
step. It consists of three main steps.

1. Preprocessing: A log message is first tokenized into a set of word tokens
by using common delimiters in the logging system (i.e., white space, colon,
comma, etc.) to split a log message. All non-character tokens (operators,
punctuation marks, and number digits) are removed from the word set since
they usually represent variables in the log message and are not informative.

2. Neural Representation: NeuralLog focuses on extracting meaningful in-
formation from log messages, including both the message header and con-
tent. Unlike existing methods that typically use the message content, while
NeuralLog uses all textual information available, such as component, ver-
bosity, and content, to capture the semantic meaning of log messages. Fur-
thermore, it consists of: (a) Subword Tokenization: WordPiece tokenization
is utilized to handle out-of-vocabulary (OOV) words. This incorporates all
characters and symbols into a base vocabulary and iteratively selects the
most likely pair based on training data likelihood. This technique reduces
the number of OOV words and captures their meanings effectively. (b) Log
Message Representation: NeuralLog uses the BERT base model, which consists
of 12 transformer encoder layers and 768 hidden units per transformer. Each
layer generates embeddings for the subwords in a log message. The word
embeddings from the last encoder layer are averaged to compute the em-
bedding of the log message. This approach enables BERT to handle out-of-
vocabulary (OOV) words by learning their representation vectors based on
subword meanings. BERT’s positional embedding layer captures word rep-
resentations in the context of the log message, while its self-attention mecha-
nisms effectively measure word importance.

3. Transformer-based Classification: Transformer-based classification con-
sists of two phases: (a) positional encoding, and (b) transformer encoder.
(a). Positional encoding [LYDH20, SQ19, CTZ+21]: The order of log messages
in a log sequence is crucial for anomaly detection. BERT encoder represents
log messages with similar meanings closer together but lacks relative posi-
tion information. To address this, a sinusoidal encoder generates embeddings
using sin and cos functions for each position in the log sequence. These em-
beddings are added to the semantic vectors, allowing the transformer-based
model to learn the relative position information and distinguish log messages
at different positions.
(b). Transformer encoder: This model is based on the transformer architec-
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ture [VSP+17], featuring self-attention and position-wise feed-forward lay-
ers. Positional embeddings are added to the input before entering the trans-
former. Multi-head attention layers calculate attention score matrices for each
log message, employing different attention patterns. The model combines
these scores through a feed-forward network. The output undergoes pool-
ing, dropout, and a fully connected layer. Class probabilities for identifying
normal/abnormal log sequences are obtained using a softmax classifier.

12



Chapter 3

Guidelines for Assessing the
Accuracy of Log Message
Template Identification
Techniques

3.1 Overview

Given the number of available techniques for log message template identifi-
cation, it is important to evaluate and rank them using different criteria (e.g.,
accuracy, execution time). However, most of the proposed techniques have
been evaluated, in terms of accuracy, in isolation or with respect to a few al-
ternatives, often using ad-hoc benchmarks. A notable exception is the study
by Zhu et al. [ZHL+19], which provides the first comprehensive evaluation
of the 13 aforementioned techniques using a benchmark composed of 16 log
datasets collected from real-world systems. Dai et al. [DLC+20] recently used
the same benchmark to compare their new technique (Logram) with the five
techniques that achieved the highest accuracy scores as reported by Zhu et al.
[ZHL+19]. Nevertheless, in both studies, we observed three important issues
regarding the accuracy evaluation of template identification techniques.

First, both studies used different accuracy metrics, namely Grouping Ac-
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curacy (GA)1 and Parsing Accuracy (PA), leading to different rankings for
several techniques. However, these evaluation results have not been com-
pared with each other yet, making it hard to clearly understand how and why
the rankings of template identification techniques vary when using different
accuracy metrics. Furthermore, some accuracy metrics can return mislead-
ing results since they are sensitive to the number of repeated log messages.
This can be a significant issue for systems whose logs contain repeated log
messages (e.g., heartbeat messages) that are not important in terms of the
system’s business logic, a common situation.

Second, both studies determined the oracle templates (which represent
the ground truth of template identification results) by manually inspecting
log messages, which is an error-prone process. Though such a process is
unavoidable when the source code is not accessible, the impact of using in-
correct oracle templates on the assessment of the accuracy of template iden-
tification techniques is unclear for the various accuracy metrics.

Third, both studies did not provide any information regarding the tem-
plates incorrectly identified by template identification techniques. Due to
such lack of information, we cannot understand the weaknesses and limi-
tations of the various techniques for log template identification, making it
difficult to select the best technique for a given application context.

Contributions. In this chapter, we address the above issues by (1) provid-
ing guidelines for assessing the accuracy of log message template identifica-
tion techniques and (2) assessing the application of such guidelines through
a comprehensive evaluation of 14 existing template identification techniques.

More specifically, to address the issue related to the choice of accuracy
metrics, we first describe new metrics, called Template Accuracy (TA) metrics,
that, unlike GA and PA, are not sensitive to the number of log messages.
We then discuss which metrics (GA, PA, or TA) are more appropriate de-
pending on the nature of the software engineering task in which log message
templates are used. The idea behind TA metrics is that template identifica-
tion should be regarded as an information retrieval process in which mes-
sage templates are identified from a collection of log messages. Therefore,
based on standard information retrieval metrics, i.e., precision and recall, we
define Precision-TA (PTA) and Recall-TA (RTA) metrics for template identifi-
cation. As for determining oracle templates, we propose a set of heuristic
rules for correcting oracle templates in order to minimize the negative bias
in experimental results introduced by manually generated oracle templates.

1The metric is called Parsing Accuracy in the original paper [ZHL+19]; in this chapter, we
follow the naming convention proposed by Dai et al. [DLC+20].

14



3.2. Motivation

Furthermore, to provide additional information about incorrectly identified
templates for a detailed analysis, we propose a technique for analyzing in-
correct templates.

From an empirical software engineering point of view, we assess the ap-
plication of the proposed guidelines by investigating, using a benchmark
composed of 14 existing template identification techniques, the following re-
search questions:

RQ1: How does the ranking of techniques vary when using different accu-
racy metrics?

RQ2: What is the impact of oracle template correction on different accuracy
metrics?

RQ3: Can the analysis of incorrect templates provide any insight to improve
template identification techniques?

Significance. Log message template identification is an essential pre-processing
step for automated log analysis research and practice. Therefore, adopting
an adequate evaluation and comparison methodology for log message tem-
plate identification is of great importance for both researchers and practition-
ers. The contributions of this chapter can impact the field of log analysis
by providing practical guidelines for accurately selecting the most adequate
template identification techniques for a given software engineering applica-
tion. Specifically, our empirical evaluation results show that following the
guidelines is indeed critical in assessing and comparing the accuracy of log
template identification techniques. The results also shed very different in-
sights than existing studies and in particular a much less optimistic outlook
on existing techniques. The insights will be useful for improving log template
identification techniques in future research.

Chapter structure. The rest of the chapter is organized as follows. Sec-
tion 3.2 reviews the state of the art and motivates our work with a running
example. Section 3.3 describes the guidelines for assessing the accuracy of
log template identification techniques. Section 3.4 reports on the evaluation
results and Section 3.5 concludes the chapter.

3.2 Motivation

Given the number of available log template identification techniques, it is im-
portant to evaluate and rank them using all relevant criteria (e.g., accuracy,
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execution time); in this chapter, we focus on the evaluation of the accuracy,
informally defined as a measure of the ability of a technique to correctly iden-
tify log templates. In particular, our starting point are the two notable studies
of Zhu et al. [ZHL+19] and Dai et al. [DLC+20], which represent the state of
art in empirical software engineering in terms of assessment of the accuracy
of template identification techniques.

Zhu et al. [ZHL+19] provided the first comprehensive evaluation of 13
log template identification techniques using 16 real-world log datasets. They
made the replication package publicly available, including the implementa-
tion of the log template identification techniques, the real-world log datasets,
and the oracle templates for the logs. Using these artifacts, Zhu et al. [DLC+20]
compared their new technique (called Logram) with the five techniques that
achieved the highest accuracy scores reported by Zhu et al. [ZHL+19]. Dai
et al. [DLC+20] also proposed a new accuracy metric after raising an issue
about the accuracy metric previously used by Zhu et al. [ZHL+19]. Though
both studies made essential steps towards a comprehensive assessment of the
accuracy of log template identification techniques, we observed three impor-
tant issues: 1. the choice of accuracy metrics, 2. determining oracle templates,
and 3. incorrectly identified templates. The three issues are discussed in de-
tail in the following subsections.

3.2.1 The Choice of Accuracy Metrics

The choice of accuracy metrics is naturally of great importance in evaluat-
ing the accuracy of log template identification techniques. Initially, Zhu et
al. [ZHL+19] used the Grouping Accuracy (GA) metric to assess the accu-
racy of log template identification. The idea behind the GA metric is that
template identification can be regarded as a clustering process in which log
messages with different log events are clustered into different groups. There-
fore, this metric checks if log messages that are grouped together by having
the same identified template indeed form the same group as in the ground
truth. Specifically, the GA metric is defined as the ratio of “correctly parsed”
log messages (thanks to the identified templates) over the total number of log
messages, where a log message is considered “correctly parsed” if and only
if it is grouped with other log messages in a way consistent with the ground
truth. However, Dai et al. [DLC+20] used another metric, called Parsing Ac-
curacy (PA), since the GA metric does not consider whether the identified
templates are identical to the oracle ones but only accounts for how the iden-
tified templates support the log message grouping activity. The PA metric is
defined as the ratio of “correctly parsed” log messages over the total number
of log messages (the same as for the GA metric), where a log message is con-
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Table 3.1: Log messages, oracle templates, and templates identified by two
techniques A and B in our running example

Template GA PA

Message (Mex ) Technique A (TA) Technique B (TB) Oracle (O) Technique A Technique B Technique A Technique B

(m1) retry 1 (tA1 ) retry <*> (tB1 ) retry 1 (o1) retry <*> ✓ ✗ ✓ ✗
(m2) retry 2 (tA1 ) retry <*> (tB2 ) retry 2 (o1) retry <*> ✓ ✗ ✓ ✗
(m3) x is 3.5 (tA2 ) x is <*>.<*> (tB3 ) x is <*> (o2) x is <*> ✓ ✓ ✗ ✓
(m4) tot 4 MB (tA3 ) <*> <*> MB (tB4 ) <*> <*> MB (o3) tot <*> MB ✗ ✗ ✗ ✗
(m5) usd 1 MB (tA3 ) <*> <*> MB (tB4 ) <*> <*> MB (o4) usd <*> MB ✗ ✗ ✗ ✗
(m6) adr=0xff (tA4 ) <*>=0xff (tB5 ) adr=<*> (o5) adr=<*> ✓ ✓ ✗ ✓

sidered to be “correctly parsed” if and only if “all its static text and dynamic
variables (i.e., fixed and variables parts) are correctly identified” [DLC+20,
p. 7]. As a result, the GA and PA metrics return different results in assessing
the accuracy of log template identification techniques.

To better understand the GA and PA metrics, let us consider the scenario
in which a software engineer (or a researcher) wants to assess the accuracy
of two template identification techniques (called A and B), using the set of
example log messages Mex = {m1, . . . ,m6} and the corresponding set of or-
acle (i.e., ground truth) templates O = {o1, . . . , o5} in Table 3.1; the example
is based on a simplified version of real log messages and templates extracted
from the log datasets provided by Zhu et al. [ZHL+19]. Running the imple-
mentation of each of the two techniques on Mex yields the corresponding set
of identified templates TA = {tA1 , . . . , TA

4 } and TB = {tB1 , . . . , TB
5 }, as shown

Table 3.1. Notice that one template matches one or more messages, e.g., tem-
plate tA1 matches both m1 and m2.

According to the definition of correctly parsed log messages adopted for
computing the GA metric, messages m1 and m2 can be correctly parsed by
technique A because , according to tA1 , they are exactly grouped together as
they would be by o1 (i.e., the oracle template of m1 and m2). However, mes-
sage m5 cannot be correctly parsed using tA3 since the latter groups m5 with
another message m4 while o4 (i.e., the oracle template of m5) does not. For
readability, the correctly parsed log messages are marked under column GA
in Table 3.1. Overall, only four messages (i.e., m1, m2, m3, and m6) out of
six can be correctly parsed using the templates in the set TA = {tA1 , . . . , tA4 },
resulting in a GA score for technique A equal to 4

6 ≈ 0.67. Similarly, the GA
score for technique B is 2

6 ≈ 0.33 since only two messages (i.e., m3 and m6) out
of six can be correctly parsed using the templates in the set TB = {tB1 , . . . , tB5 }.
Just by looking at the GA score, one could think that technique A is better
than technique B.

However, even if template tA4 can be used to correctly parse message m6

in terms of the GA metric, it is quite different from oracle template o5. More
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specifically, template o5 contains string adr in the fixed part, informally sug-
gesting that this template matches log messages that record different values
for the memory location adr. On the other hand, the fixed part of template
tA4 is represented by string 0xff, meaning that this template will match log
messages that record the value Oxff at any memory location. Such a limita-
tion of the GA metric is addressed in the PA metric, which considers both the
fixed and variable parts of identified templates. In the same running exam-
ple, the PA score for technique A is 2

6 ≈ 0.33 since two messages (i.e., m1 and
m2) out of six can be correctly parsed by the template tA1 (since tA1 is identical
to its oracle template o1 in both fixed and variable parts). Similarly, the PA
score for technique B is 2

6 ≈ 0.33 since two messages (i.e., m3 and m6) out of
six can be correctly parsed by the templates tB3 and tB5 . For readability, the
log messages correctly parsed in terms of PA are marked under column PA
in Table 3.1. By looking at the PA score, one could think that both of the tech-
niques A and B are equally accurate in log template identification, which is
clearly different from the result obtained when using the GA metric.

While the GA and PA metrics are clearly different, both metrics share the
same issue: they are sensitive to the number of messages contained in the log
(and not to the number of templates). This can be problematic for systems
whose logs contain repeated log messages that are not important in terms
of the system’s business logic. For example, if a log contains many heart-
beat messages that are repeated every second, then the GA and PA scores of
a template identification technique can appear sufficiently high even if the
technique is only able to correctly identify one template for the heartbeats. In
our running example, we can already see that, though technique A correctly
identifies only one template (i.e., tA1 ), the PA score is 2

6 ≈ 0.33 since two mes-
sages (i.e., m1 and m2) out of six can be correctly parsed by the template tA1 . If
we focus on the number of correctly identified templates, technique B is “bet-
ter” than technique A since technique B correctly identifies two templates (tB3
and tB5 ).

We want to note that choosing a template identification technique based
on the GA metric is not an issue per se when a template identification tech-
nique is only used for grouping log messages based on the identified tem-
plates. For example, for performance anomaly detection [NMA+16, JYC+17],
it is sufficient to monitor occurrence patterns (e.g., a repetition of the same
event in a short period of time) of the (events corresponding to) log messages,
without considering the message parameter values. However, in other sce-
narios in which the parameter values of messages (e.g., 1 in m1) matter—such
as model inference with guard conditions [WTD16] and advanced anomaly
detection using parameter values [DLZS17]—it is important to choose a log
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template identification technique based on another accuracy metric that ac-
counts for the correctness of both fixed and variable parts in identified tem-
plates. Section 3.3.1.3 further describes how to choose appropriate metrics in
detail.

To address the limitations of the GA and PA metrics, in Section 3.3.1 we
propose to use alternative metrics for assessing the accuracy of template iden-
tification techniques. We then replicate the comprehensive evaluations of
Zhu et al. [ZHL+19] and Dai et al. [DLC+20] in Section 3.4.2, additionally
using different accuracy metrics, including the proposed alternative ones, to
better understand how and why the ranking of log template identification
techniques vary when using different techniques.

3.2.2 Determining Oracle Templates

Oracle templates are essential to evaluate the accuracy of template identifica-
tion techniques. Both of the existing studies used the same oracle templates
generated by Zhu et al. [ZHL+19]. The oracle templates were determined
by manually inspecting log messages. However, when we compare them
with the corresponding log printing statements in the source code, the oracle
templates are not always correct. For example, for a log message “status
is false” generated by a log printing statement log.info("status is
" + var), an engineer with no access to the source code has mistakenly
defined an oracle template “status is false” instead of “status is
<*>”, by incorrectly assuming that the token “false” was hard-coded in
the log printing statement.

Nevertheless, manually determining oracle templates (in the context of
the study by Zhu et al. [ZHL+19]) was unavoidable since some of the bench-
mark log datasets were collected from real-world systems that do not provide
access to the source code. Furthermore, from a more pragmatic perspective,
this strategy is acceptable considering the fact that manually generated ora-
cle templates are, in most cases, very similar to the actual templates extracted
from the source code. However, the impact of using slightly incorrect oracle
templates on the assessment of the accuracy of template identification tech-
niques may vary depending on the accuracy metrics used. For example, the
GA metric only accounts for how log messages are grouped and does not
consider whether the Technique Under Evaluation (TUE) correctly identifies
templates by accurately decomposing fixed and variable parts; therefore, one
could speculate that the impact of using slightly incorrect oracle templates
could be limited. Proving such assumptions is an open problem.

To correct such potentially-incorrect oracle templates without accessing
the source code, in Section 3.3.2, we propose a set of heuristic rules that can

19



3. GUIDELINES FOR ASSESSING THE ACCURACY OF LOG MESSAGE

TEMPLATE IDENTIFICATION TECHNIQUES

automatically correct many oracle templates. Furthermore, we empirically
investigate the impact of using the oracle template correction on different
accuracy metrics in Section 3.4.3.

3.2.3 Incorrectly Identified Templates

Regardless of the accuracy metric used, simply ranking the log template iden-
tification techniques by their accuracy scores may not be sufficient. It is also
important to analyze why the techniques incorrectly identify some templates.
For example, let us consider a technique that has a low accuracy score only
because it does not correctly recognize IP addresses as variable parts. In
practice, such an issue can be easily addressed by modifying the TUE to
support user-defined regular expressions for pre-processing structured text
strings like IP addresses. However, without additional information about in-
correctly identified templates, the TUE could be perceived as being severely
inaccurate, even if this is not really the case.

However, both existing studies did not provide any information regard-
ing the templates incorrectly identified by template identification techniques.
Such missing information hinders the possibility to improve existing tech-
niques by addressing the limitations discovered by experimental assessment.

To address this issue, in Section 3.3.3, we propose a technique for ana-
lyzing incorrect templates that can help software engineers and researchers
understand in which way templates are incorrectly identified. We also dis-
cuss the insights one can get by applying the proposed analysis technique to
the empirical evaluation results presented in Section 3.4.4.

3.3 Guidelines

In this section, to address the issues discussed in Section 3.2, we present
three guidelines for assessing the accuracy of log template identification tech-
niques:

1. Do use appropriate accuracy metrics (§ 3.3.1),

2. Do perform oracle template correction (§ 3.3.2), and

3. Do perform analysis of incorrect templates (§ 3.3.3).

3.3.1 Do Use Appropriate Metrics

As discussed in Section 3.2.1, since existing accuracy metrics rely on different
definitions for “correctly parsed” log messages, it is essential to use a metric
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that adequately assesses the accuracy of template identification techniques
in the context of the targeted use cases. Before we present our guidelines
for choosing an appropriate accuracy metric considering a use case, we first
introduce new metrics to address the common limitations of the existing met-
rics.

3.3.1.1 Template Accuracy (TA) Metrics

Recall that both GA and PA are sensitive to the number of messages con-
tained in the log, which is possibly misleading when there are many repet-
itive yet useless messages, commonly found in real-world system logs. To
address this, we propose alternative accuracy metrics that take into account
how many templates are “correctly” identified by the TUE.

First, we define the concept of correctly identified templates. A template
(determined by a template identification technique) is correctly identified from
log messages if and only if it is identical (token-by-token) to the oracle tem-
plate(s) of the log messages. In other words, the correctness of an identified
template must be determined by comparison to its “corresponding” oracle
template(s).

More precisely, let M be a set of log messages, O be the set of oracle
templates for M , and Tv be a set of templates for M identified by a TUE
v. We introduce two auxiliary functions: msg : Tv → 2M , which, given an
identified template t, returns the set of messages from M whose template
is t; ot : M → O, which, given a message m, returns the oracle template of
m included in O. We define the set of corresponding oracle templates in O for
a template t, denoted and defined as corrOT (t) = {ot(m) | m ∈ msg(t)}.
For instance, in our running example Mex , Oex , and TA shown in Figure 3.1,
corrOT (tA1 ) is {o1} because msg(tA1 ) = {m1,m2} and ot(m1) = ot(m2) = o1.

Based on the definition of corresponding oracle templates, we say that
a template t ∈ Tv is correctly identified (correct, for simplicity) by TUE v if
and only if corrOT (t) = {t}; otherwise, we say t is incorrectly identified (in-
correct, for simplicity) by v. For the running example above, tA1 is correct
since corrOT (tA1 ) = {o1} = {tA1 }; on the other hand, tA3 is incorrect since
corrOT (tA3 ) = {o3, o4} ≠ {tA3 }.

Notice that our definition of correctly identified template relies on the
set of oracle templates corresponding to a certain message. It is not enough
that the identified template is included in the set of oracle templates O; to
be correct, the identified template has to be identical to the one and only
oracle template corresponding to the messages for which it was identified. For
instance, in our running example, even if there were an additional oracle
template o6 ∈ O′

ex (where O′
ex = Oex ∪ {o6}) that is identical to tA4 such that
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tA4 ∈ TA ∩ O′
ex , tA4 could not be considered correct because corrOT (tA4 ) =

{o5} ≠ {tA4 }.
Using the definition of correctly identified template, we introduce two TA

metrics: Precision-TA (PTA) and Recall-TA (RTA) — collectively denoted by
PTA‡RTA — which are based on the standard metrics precision and recall used
in the information retrieval domain. PTA is defined as |{t∈Tv |corrOT (t)={t}}|

|Tv | ,
the ratio of correctly identified templates over the total number of identified tem-
plates, indicating the precision of the TUE at the template level. RTA is de-
fined as |{t∈Tv |corrOT (t)={t}}|

|O| , the ratio of correctly identified templates over the
total number of oracle templates, indicating the recall of the TUE at the template
level.

These two metrics range between 0 and 1. For our running example, in
the case of technique A, its PTA score is 1

4 = 0.25 because only one template
(i.e., tA1 ) out of the four in TA is correct; the RTA score is 1

5 = 0.2 since the total
number of oracle templates in Oex is five. In the case of technique B, its PTA
score is 2

5 = 0.4 because two templates (i.e., tB3 and tB5 ) out of the five in TB

are correct; the RTA score is 2
5 = 0.4.

3.3.1.2 Relationship among the Metrics

There are interesting relationships among GA, PA, and PTA‡RTA. Specifi-
cally, when PTA = RTA = 1 we have GA = 1 because log message groups
determined by oracle templates must be the same as the groups determined
by identified templates, given that all identified templates are correct and the
total number of identified templates is the same as the number of oracle tem-
plates. For the same reason, when PA = 1 we have GA = 1. On the other hand,
having GA = 1 does not imply PTA = 1, RTA = 1, or PA = 1 since completely
incorrect templates can group messages in the same way as oracle templates
do (like tA4 in our running example). Meanwhile, since PTA‡RTA and PA
consider the correctness of fixed and variable parts of identified templates
(though PA counts correctly parsed log messages while PTA‡RTA count cor-
rectly identified templates), having PTA = RTA = 1 imply PA = 1, and vice
versa.

3.3.1.3 How to Choose Appropriate Metrics

Given a target use case, one should choose an appropriate metric to evaluate
the accuracy of the TUE. The two important criteria to consider when per-
forming this choice are 1. whether the variable parts of log messages are used
and 2. whether the importance of a message is proportional to its frequency.
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When the variable parts of log messages are not used in the target use
case, then one should use the GA metric. For example, the log key anomaly
detection model of DeepLog [DLZS17] aims to detect behavioral anomalies
using the system’s event sequences recorded in the log. It uses log template
identification to convert a sequence of log messages into a sequence of log
keys (i.e., template ids). Therefore, the GA metric — that only considers mes-
sage grouping — is the best to assess the accuracy of template identification
in this use case.

When the variable parts of log messages matter in the target use case,
one should additionally consider the second criterion above: if the impor-
tance of a log message is proportional to its frequency, then PA should be
used; otherwise, PTA‡RTA should be used. This is because PA is sensitive
to the proportion of log messages whereas PTA‡RTA are not. For example,
DeepLog [DLZS17] has another model for detecting irregular parameter val-
ues, which is not detected by the above log key anomaly detection model.
Since the irregular parameter detection model needs different parameter val-
ues (i.e., variable parts) of log messages accurately extracted by log template
identification, GA cannot be used to adequately assess the accuracy of tem-
plate identification in this case. Furthermore, if the importance of system
events recorded in the log does not depend on the frequency of the event
messages, then using PA can yield misleading accuracy evaluation results,
as PA counts the number of log messages parsed by correctly identified tem-
plates. In this case, PTA‡RTA should be used to assess the accuracy of the
TUE.

To summarize, by evaluating the two aforementioned criteria in the con-
text of the target use cases, one can choose an appropriate metric among GA,
PA, and PTA‡RTA to assess the accuracy of log template identification tech-
niques.

3.3.2 Do Perform Oracle Template Correction

As discussed in Section 3.2.2, when oracle templates are manually deter-
mined (e.g., because there is no access to the source code), they may be incor-
rect. To address this issue, we propose to perform oracle template correction
using heuristic rules.

3.3.2.1 Heuristic-based Oracle Template Correction

The idea of correcting oracle templates is based on our analysis of manu-
ally determined oracle templates provided by Zhu et al. [ZHL+19], a pub-
licly available, widely-used template identification benchmark. After a de-
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Table 3.2: Heuristic rules for oracle template correction

Rule Description Example (before→ after)

Double Spaces (DS) Replace double spaces with a single space Input: <*>→ Input: <*>
Digit (DG) Replace digit tokens with variables euid=0→ euid=<*>
Boolean (BL) Replace True/False with a variable cancel=false→ cancel=<*>
Path String (PS) Replace a path-like token with a variable /lib/tmp started→ <*> started
User-defined String (US) Replace user-defined strings with variables status=idle→ status=<*>
Mixed Token (MT) Replace a token containing both fixed and variable parts with a variable python v<*>→ python <*>
Consecutive Variables (CV) Replace consecutive variables as a single variable value=<*><*>→ value=<*>
Dot-separated Variables (DV) Replace dot separated variables as a single variable <*>.<*> seconds→ <*> seconds

tailed analysis of the oracle templates, we noticed that some of them con-
tain fixed parts that are unlikely to be hard-coded in log printing statements.
For example, one of the oracle templates for the Hadoop system in LogHub
is “nodeBlacklistingEnabled:true”; hard-coding the value “true” in
the log printing statement seems wrong. Indeed, we checked the source code
of Hadoop and found that the actual log printing statement is “LOG.info
("nodeBlacklistingEnabled:" + nodeBlacklistingEnabled)”, mean-
ing that the correct oracle template is “nodeBlacklistingEnabled:<*>”.
Note that such an incorrect oracle template is not an issue for the GA met-
ric, as long as the incorrect oracle template can group log messages in the
same way as the correct oracle template does. However, the presence of such
an incorrect oracle template may introduce a bias in the computation of the
PA and TA metrics, which directly compare identified and oracle templates.
Therefore, we propose a set of heuristic rules, based on the manual investiga-
tion of the oracle templates in LogHub, that converts fixed parts into variable
parts using regular expressions. The regular expressions are provided in our
replication package (§ 3.4.7).

Table 3.2 shows the rules, their descriptions, and simple application ex-
amples. The DS (Double Space) rule replaces any double (or more) whites-
pace with a single whitespace to eliminate trivial whitespace differences be-
tween oracles and identified templates. The DG (DiGit), BL (BooLean), PS
(Path String), and US (User-defined String) rules replace a fixed token, such
as digits, Boolean values, paths, and user-specific strings, with the place-
holder symbol “<*>”; the rationale behind these rules is that the type of token
they try to represent is rarely hard-coded in log printing statements. Unlike
the others, rule US is made for users who can indicate specific strings that
should be replaced with “<*>”. For example, a string “idle” could be hard-
coded in a log printing statement in a system, such as log.info("system
status is idle"); however, for another system, “idle” could be a value
for variable “ret” in a log printing statement like log.info("status=" +
ret). If all log messages containing “idle” have the form “...=idle”, one
could be drawn to consider token “idle” as a variable part in the template.
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Table 3.3: Number of oracle templates corrected using our heuristic rules for
the benchmark provided by Zhu et al. [ZHL+19]

Dataset —O— DS DG BL PS US MT CV DV

HDFS 14 1 0 0 7 0 0 0 0
Hadoop 114 6 4 2 3 1 3 0 5
Spark 36 0 0 0 0 0 0 0 0
Zookeeper 50 1 0 0 10 0 1 0 0
OpenStack 43 0 0 0 0 0 0 0 22
BGL 120 0 2 0 6 0 2 0 6
HPC 46 7 0 0 0 0 3 0 0
Thunderbird 149 0 4 0 9 10 5 3 37
Windows 50 0 0 2 0 1 2 0 10
Linux 118 12 13 0 3 3 6 2 41
Mac 341 20 0 5 9 13 6 4 167
Android 166 10 0 63 0 12 0 4 26
HealthApp 75 3 0 10 0 0 0 0 2
Apache 6 0 0 0 0 0 0 0 0
OpenSSH 27 1 0 0 0 4 0 0 0
Proxifier 8 0 0 0 0 0 0 0 0

Total 1363 61 23 82 47 44 28 13 316

In this case, “idle” can be indicated as one of the user-defined strings for the
application of rule US. The MT (Mixed Token), CV (Consecutive Variables),
and DV (Dot-separated Variables) rules replace a token containing variable
parts (such as “v<*>”, “<*><*>”, and “<*>.<*>”) with “<*>” because the
latter catches all the strings caught by the former, without loss of informa-
tion. For instance, “v<*>” is used in templates to indicate version informa-
tion (e.g., “v2”), “<*><*>” usually indicates a number with a unary operator
(e.g., “-1”), and “<*>.<*>” usually indicates a floating-point number (e.g.,
“0.5”). In all cases, these tokens can be simply replaced by “<*>”, which
captures all the strings captured by the original tokens.

Table 3.3 shows the number of corrected oracle templates for each dataset
in the benchmark provided by Zhu et al. [ZHL+19], when each of our heuris-
tic rules is applied to the manually determined oracle templates (columns DS,
DG, BL, PS, US, MT, CV, and DV); column |O| shows the number of manually
determined oracle templates for each dataset in the benchmark. In summary,
for a total of 1363 oracle templates in the benchmark, each rule corrected
from a minimum of 13 (CV) to a maximum of 316 (DV) oracle templates. We
manually checked the soundness of all the corrected oracle templates. Nev-
ertheless, we cannot guarantee that they are truly consistent with the corre-
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sponding log printing statements in the source code, which is unknown to
us. Section 3.4.6 will further discuss this issue.

3.3.2.2 Using Oracle Template Correction

The proposed oracle template correction is meant to be used when oracle
templates are manually determined (e.g., when the source code is inaccessi-
ble). In such a case, the oracle template correction should be used to make
possibly error-prone oracle templates more consistent with the general form
of log printing statements in the source code.

When manually determining oracle templates, the heuristic rules for ora-
cle template correction can be already taken into account. For example, given
a log message “status is false”, one can identify an oracle template
“status is <*>” by considering the rationale behind the BL rule.

3.3.3 Do Perform Analysis of Incorrect Templates

As discussed in Section 3.2.3, simply ranking different log template identifi-
cation techniques by their accuracy scores may not be sufficient, since such a
ranking does not provide any insight about the reason for which a TUE got
a certain accuracy score. We propose to perform an analysis of incorrect tem-
plates to further analyze the incorrectly identified templates to understand in
which way they are incorrect; this analysis may provide insights to engineers
and researchers on how to improve the TUE.

3.3.3.1 Analysis of Incorrect Templates

This analysis is based on the observation that template identification can also
be seen as the process of generalizing log messages by converting fixed parts
into variable parts. In our running example, shown in Figure 3.1, technique
A generalizes the two messages m1 (“retry 1”) and m2 (“retry 2”) to
the template tA1 (“retry <*>”) by converting the second token of both mes-
sages into a variable. Thus, incorrectly identified templates can be seen as
incorrectly generalized templates. Based on this idea, we classify incorrect
templates into three types: Over-Generalized (OG), Under-Generalized (UG),
and MiXed (MX). By doing this, we can understand whether the TUE suffers
from over-generalization, under-generalization, or both.

The core of this three-way classification is the generalization relationship
between templates, which is defined in terms of the formal language defined
by the templates. Since a template can be seen as a regular expression2, we

2Recall that “<*>” represents any characters except whitespace.
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denote by lang(t) the regular language defined by a template t. We say that a
template tx is more general than a template ty if and only if lang(ty) ⊂ lang(tx).
In our running example, o2 is more general than tA2 because all potential log
messages that match tA2 will also match o2 but the opposite does not hold
(e.g., message “x is 1” is in lang(o2) but not in lang(tA2 )).

Based on the generalization relationship between templates, we can clas-
sify an incorrectly identified template as OG, UG, or MX. Specifically, an in-
correctly identified template t is classified as OG if t is more general than all
oracle templates in corrOT (t), i.e., t is always more general than its corre-
sponding oracle templates. Similarly, t is classified as UG if all oracle tem-
plates in corrOT (t) are more general than t, i.e., t is always less general than
its corresponding oracle templates. If t is classified neither as OG nor UG, it
is classified as MX, meaning t is over-generalized in some cases while under-
generalized in others.

In our running example, template tA2 is UG because corrOT (tA2 ) = {o2}
and o2 is more general than tA2 . On the other hand, template tA3 is OG because
corrOT (tA3 ) = {o3, o4} and tA3 is more general than both o3 and o4. Template
tA4 is MX because corrOT (tA4 ) = {o5} and neither tA4 nor o5 is more general
than the other. Note that, with respect to o5, tA4 is over-generalized because of
the position of <*> but is also under-generalized because of the presence of
token 0xff. Based on this analysis, the three incorrect templates of technique
A cover all the three types, meaning that technique A needs to be improved
in all aspects.

3.3.3.2 Using Incorrect Template Analysis

The proposed incorrect template analysis can be performed without requir-
ing additional inputs other than oracle templates and identified templates,
which are already used to compute accuracy scores. Furthermore, as it is
based on the formal definition of the generalization relationship between
templates, it can be easily automated. We remark that the proposed incor-
rect template analysis is independent from the choice of accuracy metrics.

3.4 Evaluation

In this section, we assess the application of the guidelines proposed in the
previous section, using 14 existing template identification techniques. Specif-
ically, we answer the following research questions, already introduced in Sec-
tion 3.1:
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RQ1: How does the ranking of techniques vary when using different accu-
racy metrics?

RQ2: What is the impact of oracle template correction on different accuracy
metrics?

RQ3: Can the analysis of incorrect templates provide any insight to improve
template identification techniques?

3.4.1 Benchmark and Settings

To answer the research questions, we used the publicly available benchmark
proposed by Zhu et al. [ZHL+19] to assess different template identification
techniques. This benchmark is based on the LogHub benchmark [HZHL20],
which contains a large collection of log messages from 16 real-world systems
including distributed systems, operating systems, mobile systems, and stan-
dalone programs. To determine the ground truth in terms of templates, Zhu
et al. [ZHL+19] randomly sampled 2000 messages for each system and manu-
ally labeled them with oracle templates. Table 3.4 provides an overview of the
16 datasets (each of them containing 2000 log messages and the correspond-
ing manually generated templates) in the benchmark; column |O| shows the
number of oracle templates for each dataset. To support reproducibility,
Zhu et al. [ZHL+19]’s benchmark also includes the implementation of 13
log template identification techniques (i.e., AEL [JHFH08], Drain [HZZL17],
IPLoM [MZHM09], LenMa [Shi16], LFA [NV10], LKE [FLWL09], LogClus-
ter [VP15], LogMine [HDX+16], LogSig [TLP11], MoLFI [MPB+18], SHISO [Miz13],
SLCT [Vaa03], Spell [DL16]).

In our evaluation, we used the same logs, oracle templates, implementa-
tions of template identification techniques, and parameter settings (for each
template identification technique) used by Zhu et al. [ZHL+19]. We also
added the implementation of Logram [DLC+20] to our benchmark and used
the parameter values suggested by the authors. In total, we considered 14
log template identification techniques. Additionally, as discussed in Sec-
tion 3.3.2, the use of the US (User String) rule requires user-defined strings
as input. Based on our analysis of the templates in the Zhu et al. [ZHL+19]’s
benchmark, we used the following tokens as user-defined strings: null,
root, and admin.
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Table 3.4: Log datasets (each dataset has 2000 messages, —O— indicates the
number of oracle templates)

Dataset Description |O|

HDFS Hadoop distributed file system log 14
Hadoop Hadoop mapreduce job log 114
Spark Spark job log 36
ZooKeeper ZooKeeper service log 50
OpenStack OpenStack software log 43
BGL Blue Gene/L supercomputer log 120
HPC High performance cluster log 46
Thunderbird Thunderbird supercomputer log 149
Windows Windows event log 50
Linux Linux system log 118
Mac Mac OS log 341
Android Android framework log 166
HealthApp Health app log 75
Apache Apache server error log 6
OpenSSH OpenSSH server log 27
Proxifier Proxifier software log 8

3.4.2 RQ1: Ranking of Techniques

3.4.2.1 Methodology

To answer RQ1, we executed the 14 log template identification techniques on
each dataset in the benchmark and used their output to compute the accuracy
in terms of the GA, PA, and TA (PTA and RTA) metrics. For each execution
(of a technique on a dataset), we set a timeout of 24 hours. To account for the
randomness of LKE and MoLFI, we repeated the corresponding experiments
30 times and computed the average results. Notice that we did not use oracle
template correction because it will be investigated in RQ2.

3.4.2.2 Results

All techniques completed their execution on all datasets, except in one case:
the execution of IPLoM on the Android dataset timed out. Figure 3.1 shows
the GA, PA, and PTA‡RTA score distributions of the individual techniques
across all datasets for which the techniques completed their execution. Over-
all, it is clear that GA scores tend to be higher than PA and PTA‡RTA scores
for all techniques. This means that, for all techniques, there are many identi-
fied templates that are incorrect but happen to be able to group log messages
in a way consistent with the ground truth. This implies that the GA metric
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Figure 3.1: Accuracy results using the different metrics

is inadequate to measure the accuracy of a template identification technique
when identifying correct templates (both fixed and variable parts) is impor-
tant.

Table 3.5 and Table 3.6 shows the ranking of the different techniques in
terms of the GA, PA, and PTA‡RTA scores. The techniques are sorted, in de-
scending order, by average accuracy score (computed over the 16 datasets).
We can see that Drain is ranked 1st for GA and PTA‡RTA, but not for PA. In
other words, Drain outperforms all other techniques, both at correctly group-
ing messages and at identifying correct templates. However, SLCT outper-
forms Drain in terms of PA, meaning that SLCT is better than Drain at iden-
tifying correct templates when the number of log messages corresponding
to the correctly identified templates is also considered. Notice that SLCT is
ranked 10th for GA but 1st for PA. This is not the only case where the ranking
of the techniques differs depending on the metric used; for example, LenMa
is better than AEL in terms of GA, but AEL is better than LenMa in terms of
PA and PTA‡RTA. This happens because LenMa correctly groups more log
messages than AEL, even though AEL correctly identifies more templates
than LenMa. Such results strongly imply that the choice of the accuracy met-
ric matters a lot when comparing log template identification techniques.

To assess how the ranking of the techniques varies when using the dif-
ferent accuracy metrics, we measured Spearman’s rank correlation between
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Table 3.5: Ranking of log identification techniques based on the GA, PA, and
PTA‡RTA metrics (without Oracle Template Correction)

Ranking without Oracle Template Correction

GA PA PTA RTA

Technique Score Technique Score Technique Score Technique Score

Drain 0.87 SLCT 0.30 Drain 0.27 Drain 0.29
Spell 0.79 Drain 0.29 AEL 0.25 AEL 0.27
AEL 0.79 AEL 0.26 SLCT 0.22 LenMa 0.23
LenMa 0.77 LogMine 0.20 SHISO 0.16 LogCluster 0.22
IPLoM 0.76 LFA 0.20 LenMa 0.16 LogMine 0.20
LogMine 0.74 Logram 0.19 IPLoM 0.16 Spell 0.17
SHISO 0.68 IPLoM 0.19 LogMine 0.16 SHISO 0.17
LogCluster 0.65 Spell 0.18 Spell 0.15 SLCT 0.16
LFA 0.64 LenMa 0.18 LFA 0.14 IPLoM 0.15
SLCT 0.63 LogCluster 0.15 Logram 0.13 Logram 0.14
MoLFI 0.62 SHISO 0.13 LKE 0.12 LFA 0.14
LKE 0.56 LogSig 0.13 LogCluster 0.10 MoLFI 0.11
Logram 0.55 MoLFI 0.09 MoLFI 0.09 LKE 0.09
LogSig 0.53 LKE 0.08 LogSig 0.08 LogSig 0.07

Table 3.6: Ranking of log identification techniques based on the GA, PA, and
PTA‡RTA metrics (with Oracle Template Correction)

Ranking with Oracle Template Correction

GA PA PTA RTA

Technique Score Technique Score Technique Score Technique Score

Drain 0.86 Drain 0.34 Drain 0.29 Drain 0.31
AEL 0.80 AEL 0.28 AEL 0.24 AEL 0.27
Spell 0.79 SLCT 0.27 SLCT 0.19 LenMa 0.22
LenMa 0.76 LFA 0.24 Spell 0.16 LogCluster 0.19
IPLoM 0.76 LogMine 0.23 IPLoM 0.16 LogMine 0.19
LogMine 0.74 Spell 0.20 LenMa 0.15 Spell 0.19
SHISO 0.68 IPLoM 0.19 SHISO 0.15 SHISO 0.16
LogCluster 0.65 Logram 0.17 LogMine 0.15 IPLoM 0.15
LFA 0.65 LenMa 0.16 LFA 0.15 LFA 0.15
LKE 0.63 LogCluster 0.13 Logram 0.13 Logram 0.14
SLCT 0.63 LogSig 0.11 LKE 0.10 SLCT 0.14
MoLFI 0.63 SHISO 0.11 LogCluster 0.09 MoLFI 0.11
Logram 0.55 LKE 0.09 MoLFI 0.08 LKE 0.10
LogSig 0.53 MoLFI 0.09 LogSig 0.07 LogSig 0.06

31



3. GUIDELINES FOR ASSESSING THE ACCURACY OF LOG MESSAGE

TEMPLATE IDENTIFICATION TECHNIQUES

the rankings of each pair of accuracy metrics. A rank correlation coefficient ρ
ranges between 0 and 1; the more similar the compared rankings, the higher
the value of ρ. We found that, though the resulting rank correlation varies
depending on the accuracy metrics compared, ranging from 0.455 (between
PA and GA) to 0.846 (between GA and RTA), the average rank correlation
remains moderate (0.666), implying that the ranking of different log template
identification techniques can significantly vary depending on the accuracy
metrics used.

To see whether the difference between Drain and the other individual
techniques is statistically significant in terms of the GA and PTA‡RTA met-
rics, we additionally performed the Wilcoxon signed-rank test [Wil92], which
is a non-parametric statistical hypothesis test for paired samples (i.e., in our
context, pairs of techniques’ accuracy scores across log datasets). Given a
level of significance α = 0.05, Drain is significantly better than the others
only in terms of GA; the p-values comparing Drain and AEL in terms of PTA
and RTA are 0.1519 and 0.0663, respectively. As a result, we can conclude that
Drain is preferable only in terms of correctly grouping log messages as it is
significantly better than the other techniques with respect to GA. However,
we cannot say that Drain is significantly better than the others in terms of
identifying correct templates.

To conclude, the answer to RQ1 is that the ranking of template identifica-
tion techniques can vary a lot depending on the choice of accuracy metrics,
since different metrics consider different aspects of template identification.
When accuracy is measured using the PA and PTA‡RTA metrics, all tem-
plate identification techniques achieve a low accuracy score (less than 50%),
thus providing a much worse assessment than what was reported in existing
studies [ZHL+19, DLC+20]. This implies that empirical studies using the GA
metric were too optimistic due to the use of message-level grouping for cal-
culating the accuracy scores of template identification techniques. This there-
fore calls for further research on accurate template identification techniques;
some insights on how to improve existing techniques can be drawn from the
results of our analysis of incorrect templates. In Section 3.4.4, we will show
the analysis results and discuss the insights that can be drawn from them.

3.4.3 RQ2: Impact of Oracle Template Correction

3.4.3.1 Methodology

To answer RQ2, we assessed how the GA, PA, and PTA‡RTA scores change
when using oracle template correction. To compute the accuracy scores, we
followed the same methodology and settings used for RQ1, and corrected the
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Figure 3.2: Impact of Oracle Template Correction

oracle templates applying the rules described in Section 3.3.2. Then, we cal-
culated the difference between the accuracy scores obtained, hereafter de-
noted with the subscript Xotc (where X ∈ {GA,PA,PTA,RTA}), and those
computed as part of answering RQ1, hereafter denoted with the subscript
Xorg . We computed the following differences: ∆GA

otc = GAotc −GAorg , ∆PA
otc =

PAotc − PAorg , ∆PTA
otc = PTAotc − PTAorg , ∆RTA

otc = RTAotc − RTAorg .

3.4.3.2 Results

Figure 3.2 shows the distributions of the ∆GA
otc , ∆PA

otc , ∆PTA
otc , and ∆RTA

otc values
for the individual techniques on all datasets, except IPLoM whose execu-
tion timed out on the Android dataset. For all X ∈ {GA,PA,PTA,RTA},
the difference between Xotc and Xorg is statistically insignificant across log
datasets based on the Mann–Whitney U test [MW47], with a level of signifi-
cance α = 0.05. This means that the impact of the oracle template correction
on the GA, PA, and PTA‡RTA metrics is statistically insignificant, though
there are some outliers as visible in the figure.

Given that many oracle templates (28.5% on average for all datasets) were
incorrect and thus modified by applying oracle template corrections, it is sur-
prising to see such a limited impact of the corrections. Through a more thor-
ough analysis, we found that this was the case because many templates iden-
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tified by the techniques are different enough from the corresponding oracle
templates to such an extent that they are “incorrect” regardless of the correc-
tions that can be applied to the oracle templates. This implies that the impact
of oracle template corrections would be much larger if the techniques fared
better at correctly identifying templates.

Notice that ∆GA
otc is non-zero for many techniques, even though the GA

metric ignores whether the identified templates are correct in terms of their
fixed and variables parts. This is because the number of oracle templates
(and therefore the number of log message groups generated by the oracle
templates) can be changed by the oracle template correction step when two
or more incorrect oracle templates become the same oracle template, after
applying a correction.

Though the impact of the oracle template correction on the metrics is lim-
ited in terms of accuracy scores, the ranking of the techniques varies due to
oracle template correction. Table 3.6 shows the ranking of the different tech-
niques based on the accuracy scores with corrected oracle templates. We can
see that Drain is now ranked 1st independently from the metric used to deter-
mine accuracy. Furthermore, based on the Wilcoxon signed-rank test [Wil92]
with a significance level α = 0.05, the difference between Drain and the other
individual techniques is statistically significant for all the metrics. Compared
to the results without the oracle template correction, the difference between
Drain and the others becomes statistically significant for PA and PTA‡RTA,
mainly because the score of Drain has increased more than that of the other
techniques; for example, through the oracle template correction, the PA score
of Drain has increased from 29% to 34% while that of SLCT has decreased
from 30% to 27%. This happens because Drain identifies more templates that
are identical to correct oracle templates, whereas SLCT identifies more tem-
plates that are identical to slightly incorrect oracle templates. As a result, we
can conclude that Drain is preferable in all circumstances if the oracle tem-
plate correction is used.

The answer to RQ2 is that, for all template identification techniques, en-
abling the oracle template correction has a limited impact on their accuracy
scores in terms of GA, PA, and PTA‡RTA metrics. This is mainly because the
templates identified by the techniques are, in general, quite different from
oracle templates and therefore oracle template corrections have a limited ef-
fect. In other words, the limited impact of corrections are due to the relatively
poor accuracy of the techniques, to various degrees. Nevertheless, the rank-
ing of some template identification techniques, most particularly that of the
best ones, changes when applying the oracle template correction. This im-
plies that the oracle template correction may indeed be important for prop-
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Table 3.7: Average Percentage of OG, UG, and MX Types

Technique OG (%) UG (%) MX (%)

AEL 21.7 38.2 15.3
Drain 19.4 32.6 20.6
IPLoM 4.6 10.5 69.0
LFA 52.7 16.2 17.5
LKE 0.1 32.8 55.4
LenMa 5.5 44.5 33.8
LogCluster 0.0 72.9 17.0
LogMine 6.8 36.0 41.4
LogSig 0.1 14.2 77.7
Logram 27.3 26.4 33.2
MoLFI 0.0 8.4 82.5
SHISO 6.4 44.4 32.8
SLCT 17.5 28.9 31.7
Spell 7.7 13.1 64.2

erly ranking template identification techniques based on their accuracy, es-
pecially when the latter tends to be high.

3.4.4 RQ3: Insights from the Analysis of Incorrect Templates

3.4.4.1 Methodology

To answer RQ3, we followed the same methodology and settings used for
RQ1; in addition, we classified incorrectly identified templates into OG (Over-
Generalized), UG (Under-Generalized), and MiXed (MX) types, as described
in Section 3.3.3.

3.4.4.2 Results

Table 3.7 shows the average percentage of OG, UG, and MX templates for the
individual techniques on all datasets, except IPLoM whose execution timed
out on the Android dataset. We can see that different techniques have dif-
ferent distributions of OG, UG, and MX types. The results provide insights
on the main limitations of the techniques and how to improve them. For ex-
ample, LFA generated over-generalized (OG) templates in 52.7% of the cases;
in other words, LFA’s main limitation is over-generalization. This informa-
tion can then be used to improve the algorithm, e.g., by adjusting it to make
it less likely to convert fixed tokens into variables. On the other hand, Log-
Cluster — which generated under-generalized (UG) templates in 72.9% of the
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cases — could be improved by making it more likely to convert fixed tokens
into variables. Techniques with many MX templates, such as MoLFI (82.5%),
LogSig (77.7%), and IPLoM (69.0%), generated both under-generalized and
over-generalized templates; they require a more thorough analysis to deter-
mine where to intervene for improving the underlying algorithms.

To conclude, the answer to RQ3 is that the analysis of incorrect templates
can provide insights to improve template identification techniques by high-
lighting the limitations of individual techniques through the percentages of
OG, UG, and MX types among identified templates.

3.4.5 Discussion

In RQ1, the results obtained for the GA metric are exactly the same as those
computed by the replication package3 of the original study [ZHL+19]. How-
ever, the results obtained for the PA metric are quite different from those
reported by Dai et al. [DLC+20]. For example, on average for all datasets,
Drain achieved a PA score of 29% (without oracle template correction, see
Table 3.5), which is much lower than the PA score of 75% reported by Dai
et al. [DLC+20]. We could not reproduce their results since 1. they manu-
ally checked the parsing results to calculate PA values and 2. their replica-
tion package4 contains an accuracy evaluation script only for calculating GA
scores, not PA scores.

One of the most surprising results from our evaluation is the significant
gap between GA and the other metrics in terms of accuracy scores for the
same template identification techniques; for example, on average for all datasets,
Drain achieved a GA score of 87%, but its PA and PTA‡RTA scores were only
29%, 27%, and 29%, respectively. In other words, by taking into account the
correctness of fixed and variable parts of identified templates, we get a very
different picture of the accuracy of the techniques in comparison to the ex-
isting study [ZHL+19] relying on the GA metric. The results emphasize the
importance of using adequate metrics to assess template identification results
in the context of target use cases. For example, if the parameter values of log
messages are used by a log-based analysis task, e.g., model inference with
guard conditions [WTD16] and advanced anomaly detection using parame-
ter values [DLZS17], accuracy should be assessed using PA or TA scores since
they adequately measure a technique’s ability to correctly identify the vari-
able parts of log messages. However, one might argue that PA and TA met-
rics are too strict to fairly indicate the usefulness of template identification

3https://github.com/logpai/logparser (accessed: 2021-07-21)
4https://github.com/BlueLionLogram/Logram (accessed: 2021-07-21)
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techniques as no degree of correctness is accounted for individual templates,
even for the cases where the variable parts of log messages matter. More
studies are therefore required to better understand the relationship between
various accuracy scores of template identification techniques and their actual
usefulness in specific applications.

For some of the techniques (e.g., Drain), the importance of oracle tem-
plate corrections is confirmed by the evaluation results. However, overall,
the impact of such corrections on accuracy scores is limited. Based on our
analysis, we reckon that the more accurate the technique, the more likely its
ranking is to be significantly affected by oracle template corrections. Since
all techniques, to various degrees, fare relatively poorly, as discussed above,
this result in limited impact on accuracy. In the future, as template identifi-
cation techniques are expected to improve, oracle template corrections will
increasingly become important.

We also show that the analysis of incorrectly identified templates can pro-
vide insights on how to improve individual techniques by understanding
their limitations in terms of the over- and under-generalization of templates.
Nevertheless, since decreasing the over-generalization may increase under-
generalization and vice versa, how to practically improve the accuracy of the
techniques remains an open problem for future work.

3.4.6 Threats to Validity

Using a specific set of log datasets is a potential threat to external validity.
However, the benchmark contains 16 log datasets from real-world systems
and the corresponding oracle templates, and has been used in previous stud-
ies focused on log template identification techniques [ZHL+19, DLC+20].
Nevertheless, further experiments with different benchmarks are required to
improve the generalizability of our results.

The implementations of the template identification techniques used in
the evaluation may introduce threats to internal validity. To mitigate such
threats, we used the same set of implementations used in the previous stud-
ies (i.e., [ZHL+19, DLC+20]). Furthermore, as mentioned above, we checked
that the GA scores obtained by our experiments are exactly the same as those
computed by the replication package of Zhu et al. [ZHL+19].

The heuristic rules for oracle template correction can also be potential
threats to internal validity. Ideally, correct oracle templates extracted from the
source code are mandatory to validate the heuristic rules. At the same time,
such extraction task is very challenging, even for open-source programs. This
is because different versions of the same program may have different log
printing statements while the logs provided in the benchmark [ZHL+19] do
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not have the corresponding program version information. Therefore, for
each program, one should manually check many previous versions to find
log printing statements that would generate the given log messages; more-
over, older versions may no longer be available. Though this process is ex-
tremely time-consuming, we tried our best to find the matching versions for
the open-source program logs. We could find them only for HDFS, Hadoop,
and OpenStack logs, and confirmed that the oracle templates modified by
our heuristic rules are indeed correct with respect to the logging statements
in the source code.

3.4.7 Data Availability

The replication package of our empirical evaluation — including the Python
implementations for computing TA metrics and applying oracle template
correction and incorrect template analysis — is available on Figshare [KSBB22a].

3.5 Summary

In this chapter, we provide three guidelines for evaluating the accuracy of log
message template identification techniques. We also assess the application
of such guidelines through a comprehensive evaluation of 14 log template
identification techniques using a benchmark composed of 16 real-world log
datasets, previously used in the literature. The evaluation results show that
the accuracy assessment results for different techniques may significantly
vary depending on whether the guidelines are followed.
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Chapter 4

A Theoretical Framework for
Understanding the Relationship
between Log Parsing and
Anomaly Detection

4.1 Overview

Despite advances in log parsing and log-based anomaly detection, to the best
of our knowledge, no existing work has thoroughly investigated the impact
of the “quality” of log parsing results on anomaly detection. In particular, the
concept of “ideal” log parsing results with respect to anomaly detection has
not been defined and formalized yet. The lack of such a conceptual frame-
work makes it difficult, when performing empirical studies on anomaly de-
tection techniques, to determine if the root causes of inaccuracies in anomaly
detection are due to the limitations of log parsing techniques.

In this chapter, we propose a theoretical framework for defining and dis-
cussing what are ideal log parsing results for anomaly detection. In particu-
lar, we consider log parsing as an information abstraction process that con-
verts collected logs into structured logs. Since automated anomaly detection
relies on structured logs, its best operating conditions are when the minimum
amount of information that is necessary to distinguish normal from abnor-
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mal behaviors is present in such logs. To this end, we formally define the
concepts of distinguishability and minimality, which further lead to the defini-
tion of ideal log parsing results. We also discuss practical implications related
to log parsing and anomaly detection and present future research directions
derived from our theoretical framework.

The rest of the chapter is organized as follows. Section 4.2 explains the
notations and basic definitions that will be used throughout the chapter. Sec-
tion 4.3 formalizes the key concepts regarding ideal log parsing results for
anomaly detection. Section 4.4 discusses practical implications of the pro-
posed theoretical framework. Section 4.5 discusses related work. Section 4.6
concludes the chapter.

4.2 Preliminaries

This section introduces basic notations and concepts that will be used through-
out the chapter.

We use uppercase letters to denote collections (i.e., sets and sequences) and
lowercase letters to denote elements in a collection. Specifically, {. . . } denotes
a set and ⟨. . . ⟩ denotes a sequence. For simplicity, we use the same notation
|S| to denote the cardinality of a set S and the length of a sequence S.

Definition 1 (Log Messages and Logs). A log message m is a string printed by
a logging statement in the source code. A log l is a finite sequence of log messages,
denoted by l = ⟨m1,m2, . . . ,mn⟩.

For instance, Figure 4.1 shows a simplified1 example from the actual log
produced by running HDFS [HZHL20]. In this case, the example log can be
denoted by lex = ⟨m1,m2, . . . ,m14⟩where m14 is the string “Verification
succeeded for
blk 471078”.

Definition 2 (Normal and Abnormal Logs). For a set of logs L, a log l ∈ L is said
to be normal if and only if it represents a normal behavior of the system. Otherwise,
l is said to be abnormal. Normal and abnormal logs are denoted by Ln ⊆ L and
La ⊆ L, respectively; for a given L and the corresponding Ln and La, we have
Ln ∩ La = ∅ and Ln ∪ La = L.

Notice that Definition 2 is independent from the nature of anomalies (e.g.,
point and collective [CBK09]). The definition only assumes that normal and

1In general, logs may contain extra information, such as timestamps and logging levels
(e.g., info, debug) for individual log messages. However, we omit such information since log
parsing deals with log messages characterizing the states or events of the system.
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Index Log Message

1 Receiving block blk 471078 src: /1.2.3.4:56 dest: /1.2.3.4:78
2 Receiving block blk 471078 src: /4.3.2.1:65 dest: /4.3.2.1:78
... ...
14 Verification succeeded for blk 471078

Figure 4.1: Example from HDFS Logs [HZHL20]

abnormal behaviors of the system are known and distinguishable in logs.
This assumption can be easily satisfied when the accuracy of anomaly detec-
tion techniques, including log parsing techniques, are evaluated in controlled
experiments using known benchmarks; furthermore, enhancing the quality
of logs to distinguish normal and abnormal behaviors has been actively stud-
ied [LXL+21, YPH+12, YZP+12, ZRL+17]. In the rest of the chapter we adopt
this definition and make its underlying assumption.

4.3 Ideal Log Parsing Results for Anomaly Detection

4.3.1 Log Parsing as Abstraction

Intuitively, log parsing is a process that converts original logs composed of
free-formed messages into structured logs, by extracting key information
from individual log messages. For example, some log parsing approaches,
such as Drain [HZZL17] and MoLFI [MPB+18], may extract key information
from m1 in Figure 4.1 as an event template “Receiving block <*> src:
<*> dest <*>” characterizing the event of receiving a block, where sym-
bol <*> indicates the position of a parameter value determined at runtime.
With respect to these approaches, all messages that match the template, such
as m2 in Figure 4.1, represent the same event of receiving a block. In this
sense, we can consider log parsing as an abstraction process that generates
“abstract” key information that represents multiple “specific” messages. No-
tice that different log parsing approaches yield different abstraction results
(not even necessarily in the form of templates). For example, a log parsing
approach that simply counts the number of tokens would abstract m1 as the
integer 7 (as m1 contains seven tokens). To keep our presentation general, we
introduce an abstraction function τ that represents a log parsing approach.

Definition 3 (Log Parsing as an Abstraction Function). Given a set of log mes-
sages M and a generic set of parsing results A, a log parsing approach can be repre-
sented as an abstraction function τ : M → A.
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Notice that the definition of A is left generic, to accommodate different
types of results yielded by log parsing techniques.

Using the concept of τ , the results obtained by a parsing approach can be
seen as an abstraction of the original log itself.

Definition 4 (Abstraction of Log). Given an abstraction function τ representing
a log parsing approach and a log l = ⟨m1,m2, . . . ,mn⟩, the abstraction of l using τ ,
denoted by τ∗(l), is defined as τ∗(l) = ⟨τ(m1), τ(m2), . . . , τ(mn)⟩.

In other words, τ∗ can be considered as an abstraction function for a log,
extended from τ . Similarly, we can further extend τ∗ to consider a set of logs
as follows.

Definition 5 (Abstraction of Set of Logs). Given an abstraction function τ rep-
resenting a log parsing approach and a set of logs L, the abstraction of L using τ ,
denoted by τ∗∗(L), is defined as τ∗∗(L) = {τ∗(l) | l ∈ L}.

Based on these definitions, τ∗∗(L) represents the results of using a log
parsing approach (abstracted by τ ) on a set of logs L; in our context, it rep-
resents the structured input logs provided as input to an anomaly detection
approach.

4.3.1.1 Running Example

To better understand the above definitions, let us consider a set of logs Lex =
{l1, l2, l3} where l1 = ⟨ma,mb,mc⟩, l2 = ⟨mb,ma,mc⟩, and l3 = ⟨ma,mb,md⟩
and each message in {ma,mb,mc,md} is different from the others. Let us as-
sume to use a log parsing approach that yields an integer value, such that
both ma and mb are mapped to 1 while mc and md are mapped to 2 and
3, respectively. We can represent the log parsing approach as the abstrac-
tion function τex defined such that τex (ma) = τex (mb) = 1, τex (mc) = 2,
and τex (md) = 3. Using τex , we can see that the abstraction of l1 is τ∗ex (l1) =
⟨τex (ma), τex (mb), τex (mc)⟩ = ⟨1, 1, 2⟩. Similarly, τ∗ex (l2) = ⟨1, 1, 2⟩ and τ∗ex (l3) =
⟨1, 1, 3⟩. As a result, the abstraction of Lex is τ∗∗ex (Lex ) = {τ∗ex (l1), τ∗ex (l2), τ∗ex (l3)} =
{⟨1, 1, 2⟩, ⟨1, 1, 3⟩}.

This example shows that different logs (e.g., l1 and l2) can be indistinguish-
able when abstracted using a certain log parsing approach. This is directly
related to one of the key concepts for defining the ideal log parsing results
for anomaly detection, which will be detailed in the next section.
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4.3.2 Ideal Log Parsing Results

As described above, log parsing abstracts L to τ∗∗(L), possibly resulting in
different logs indistinguishable from each other as a result of abstraction. For
the main anomaly detection step that takes τ∗∗(L) as input, if normal and ab-
normal logs are indistinguishable in τ∗∗(L), then it is impossible to correctly
identify abnormal behaviors from it. It is thus important to formalize the
concept of distinguishability of log parsing results:

Definition 6 (Distinguishability of Log Parsing Results). Given a non-empty
set of normal logs Ln ⊂ L and a non-empty set of abnormal logs La ⊂ L (where
Ln∪La = L and Ln∩La = ∅), an abstraction function τ distinguishes Ln and La

if and only if τ∗∗(Ln) ∩ τ∗∗(La) = ∅. In this case, τ∗∗(L) is called d-maintaining
(maintaining the distinguishability) between Ln and La.

In other words, d-maintaining log parsing results maintain the distinction
between Ln and La after the abstraction of log parsing. For our running ex-
ample used in Section 4.3.1, let us additionally consider Ln = {l1, l2} and
La = {l3}. Since τ∗∗ex (Ln) = {⟨1, 1, 2⟩} and τ∗∗ex (La) = {⟨1, 1, 3⟩}, τ∗∗ex (Ln) ∩
τ∗∗ex (La) = ∅, and therefore τ∗∗ex (Lex ) is d-maintaining between Ln and La.

However, distinguishability is only a necessary condition for log parsing
results to be ideal. For example, if we consider an abstraction function τ=
such that τ=(m) = m for every message m, τ∗∗= (L) is d-maintaining between
arbitrary Ln and La (since τ∗∗= (Ln) = Ln, τ∗∗= (La) = La, and Ln ∩ La = ∅ by
definition). However, τ∗∗= (L) does not represent the ideal log parsing results
because τ= does not produce an actual abstraction (since it is just defined as
the identity function). Indeed, as long as log parsing results maintain the
distinguishability between Ln and La, a higher degree of abstraction (i.e.,
mapping more messages to the same parsing result) leads to better operat-
ing conditions for anomaly detection, as it minimizes the “information” con-
tained in the structured input logs (i.e., the log parsing results) that must be
analyzed by the main anomaly detection step. Furthermore, since anomaly
detection is largely based on Machine Learning (ML) [HHC+21], including
Clustering, Support Vector Machine (SVM), and Long Short-Term Memory
(LSTM), the abstraction of log parsing can significantly improve the learning
performance of anomaly detection by reducing dimensionality (i.e., the num-
ber of features)2. Therefore, we should additionally consider the concept of
minimality of the information contained in log parsing results.

2This is because distinct τ(m) for each message m that appear in L can lead to one or
more dimensions. In ML, dimensionality reduction is an essential topic to improve predictive
power [MRT12].
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To formalize the minimality concept, we first need to define the informa-
tion contained in log parsing results. Since the core of log parsing is to ab-
stract individual messages, we consider the information contained in τ∗∗(L)
in terms of its unique entities (i.e., abstracted messages) as follows.

Definition 7 (Information in Log Parsing Results). Given a set of logs L and an
abstraction function τ , the information contained in L as abstracted by τ , denoted
by I(L, τ), is defined as I(L, τ) =

⋃
l∈L{τ(m) | m ∈ l}.

For our running example, the information contained in Lex abstracted by
τex is I(Lex , τex ) = {τex (ma), τex (mb), τex (mc), τex (md)} = {1, 2, 3}, meaning
that τex reduces the information from {ma,mb,mc,md} to {1, 2, 3} through
abstraction.

Using I(L, τ), we can define the concept of ideal log parsing results by
considering both distinguishability and minimality as follows.

Definition 8 (Minimal Distinguishable Log Parsing Results). Given a non-
empty set of normal logs Ln ⊂ L and a non-empty set of abnormal logs La ⊂ L
(where Ln ∪ La = L and Ln ∩ La = ∅), we say that τ∗∗(L) is minimally d-
maintaining between Ln and La if and only if (1) τ∗∗(L) is d-maintaining be-
tween Ln and La and (2) there is no abstraction function τ ′ such that τ ′∗∗(L) is
d-maintaining and |I(L, τ ′)| < |I(L, τ)|.

Taking the running example again, τ∗∗ex (Lex ) is d-maintaining (but not min-
imally) because there exists τnew such that (1) τ∗∗new (Lex ) is d-maintaining and
(2) |I(Lex , τnew )| < |I(Lex , τex )|. Specifically, if τnew (ma) = τnew (mb) = τnew (mc) =
12 and τnew (md) = 3, then τ∗∗new (Ln) = {⟨12, 12, 12⟩}, τ∗∗new (La) = {⟨12, 12, 3⟩},
I(Lex , τnew ) = {12, 3}; therefore τ∗∗new (Ln) ∩ τ∗∗new (La) = ∅ and |I(Lex , τnew )| =
|{12, 3}| = 2 is less than |I(Lex , τex )| = |{1, 2, 3}| = 3. However, τ∗∗new (Lex )
is minimally d-maintaining because there is no τ ′ such that |I(L, τ ′)| = 1 and
τ ′∗∗(L) is d-maintaining. As a result, τ∗∗new (Lex ) represents the ideal log parsing
results for anomaly detection.

4.4 Applications

4.4.1 Localization of the Causes of Inaccurate Anomaly Detection

When anomaly detection accuracy is not 100% (i.e., some abnormal behaviors
are not correctly detected or some normal behaviors are incorrectly detected
as abnormal), it is important to know exactly where the problem lies (in the
log parsing step, in the main anomaly detection step, or in both), in order
to improve the results. Using our theoretical framework, we can localize the
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cause of inaccurate anomaly detection results. Specifically, for a set of normal
logs Ln and a set of abnormal logs La, we can distinguish the following three
cases.

Case 1. If the log parsing results is minimally d-maintaining between Ln

and La, the main anomaly detection step must be the cause of the inaccuracy,
because the log parsing results are ideal for anomaly detection.

Case 2. If the log parsing results is d-maintaining between Ln and La but
not minimally so, a perfect anomaly detection approach could achieve pin-
point accuracy. However, as discussed in Section 4.3.2, making the log pars-
ing results minimally d-maintaining could significantly increase anomaly de-
tection accuracy.

Case 3. Otherwise, inaccurate anomaly detection results are inevitable due
to the low-quality log parsing results. We can further investigate the issue
of log parsing results by focusing on exactly what prevents the log parsing
results from being d-maintaining between Ln and La.

The above characterization has important implications for researchers who
want to assess the accuracy of their anomaly detection approaches. As non-
ideal log parsing results decrease anomaly detection accuracy, it is recom-
mended to use ideal log parsing results in controlled experiments to properly assess
the performance of a technique, independently of log parsing. Also, if pos-
sible, using various log parsing results including minimally d-maintaining,
d-maintaining but not minimal, and non-d-maintaining ones, would provide
a better picture on how anomaly detection would work in practice, depend-
ing on the quality of the log parsing results.

4.4.2 Removal of Unnecessary Log Messages for Anomaly
Detection

As discussed in Section 4.3.1, some messages become indistinguishable through
the abstraction of log parsing. One may wonder whether simply removing
some of the messages could contribute to further reduce the amount of infor-
mation contained in the log parsing results. Indeed, in our running example,
τ∗∗y (Lex ) remains minimally d-maintaining even if we remove ma and mb

from Lex . However, this is not always true. For example, consider a normal
log ln = ⟨mx,my⟩ and an abnormal log la = ⟨my⟩. While we can consider an
abstraction function τ such that τ(mx) = τ(my) and τ∗(ln) ̸= τ∗(la), remov-
ing mx from the logs makes ln and la indistinguishable. This example shows
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that, though there are messages that can be abstracted to the same entity, it
does not necessarily mean that one of them can be removed without affecting
anomaly detection accuracy.

Notice that existing log parsing techniques do not reduce the length of in-
dividual logs3. However, we know, as discussed above, that having minimal
information necessary to distinguish normal and abnormal logs is the best
operating condition for anomaly detection. In this sense, further research is
needed to develop an automated approach for “greedy” log parsing tech-
niques that not only abstract but also remove log messages to achieve mini-
mality while maintaining the distinguishability of the results.

4.5 Related Work

To the best of our knowledge, there is no existing work that provides a frame-
work to formalize the concept of ideal log parsing results for anomaly detec-
tion. This is mainly because most of the existing log parsing approaches, in-
cluding AEL [JHFH08], Drain [HZZL17], IPLoM [MZHM09], LenMa [Shi16],
LFA [NV10], LogCluster [VP15], LogMine [HDX+16], LogSig [TLP11], MoLFI [MPB+18],
SHISO [Miz13], SLCT [Vaa03], Spell [DL16], and Logram [DLC+20], have
been proposed as general-purpose approaches rather than specialized for
anomaly detection. The accuracy of all these approaches has been assessed
with respect to the logging statements that produce individual messages. For
example, the execution of the logging statement printf("retry " + i)
in the source code, when the program variable i evaluates to 1, will gener-
ate the log message “retry 1”. Then a log parsing approach is expected
to reconstruct the form of the logging statement as a template “retry <*>”
without accessing the source code, where symbol “<*>” indicates the posi-
tion of the parameter value (i.e., “1”). In other words, the ground truth used
to assess the accuracy of general-purpose log parsing is determined based
on the logging statements that generated the input logs. On the other hand,
there is no ground truth that guarantees the best operating conditions for
anomaly detection. To address this challenge, we provide a theoretical foun-
dation to precisely define key concepts, including the distinguishability and
minimality of ideal log parsing results.

3Though the length of logs can be reduced in a pre-processing step by omitting certain
messages or events based on domain knowledge, this is independent from log parsing, which
just abstracts messages.
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4.6 Summary

In this chapter, we proposed a theoretical framework that formalizes the con-
cepts of distinguishability and minimality, showing that log parsing results
that minimally maintain distinguishability between normal and abnormal
logs provide the best operating conditions for anomaly detection. Using
our theoretical framework, we also identified practical implications for re-
searchers regarding the root causes for inaccuracy in anomaly detection and
the removal of log messages that are unnecessary for anomaly detection.
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Chapter 5

Impact of Log Parsing on Deep
Learning-Based Anomaly
Detection

5.1 Overview

The frequent combination of log parsing and anomaly detection clearly im-
plies the importance of the former for the latter. Nevertheless, assessing in a
systematic way the impact of log parsing on anomaly detection has received
surprisingly little attention so far. In chapter 4, we investigated what ideal
log parsing results are in terms of accurate anomaly detection, but purely
from a theoretical standpoint. Le and Zhang [LZ22] empirically showed that
different log parsing techniques, among other potential factors, can signifi-
cantly affect anomaly detection accuracy, but the accuracy of log parsing re-
sults was not adequately measured, and the correlation between log parsing
accuracy and anomaly detection accuracy was not reported. Although Fu et
al. [FYX+23] attempted to address the issue by measuring log parsing and
anomaly detection accuracy, they used only one log parsing accuracy metric
among those proposed in chapter 3; moreover, the log parsing results used
to measure the accuracy of anomaly detection techniques represented only a
small subset (less than 1%) of all logs used by the techniques considered in
the study, thus limiting the validity of the results.
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To systematically investigate the impact of log parsing on anomaly detec-
tion while addressing the issues of the aforementioned studies, this chapter
reports on an empirical study, in which we performed a comprehensive eval-
uation using 13 log parsing techniques and five deep learning-based anomaly
detection techniques on two publicly available log datasets. We considered
all three log parsing accuracy metrics (i.e., grouping accuracy [ZHL+19], pars-
ing accuracy [DLC+20], and template accuracy proposed in chapter 3.

Against all assumptions, our results show that there is no strong correla-
tion between log parsing accuracy and anomaly detection accuracy, regard-
less of the metric used for measuring log parsing accuracy. In other words,
accurate log parsing results do not necessarily increase anomaly detection
accuracy. To better understand the phenomenon at play, we investigated an-
other property of log parsing, distinguishability, a concept proposed in chap-
ter 4, that was theoretically shown to relate to anomaly detection accuracy.
Our empirical results confirm that, as far as anomaly detection is concerned,
distinguishability in log parsing results is the property that really matters and
should be the key target of log parsing.

In summary, the main contributions of this chapter are:

• the systematic and comprehensive evaluation of the impact of log pars-
ing on anomaly detection;

• the investigation of the impact of the distinguishability of log parsing
results on anomaly detection.

The rest of the chapter is organized as follows. Section 5.2 motivates our
study and introduces the research questions. Section 5.3 describes the ex-
perimental design, including the log datasets, log parsing techniques, and
anomaly detection techniques used in the experiments. Section 5.4 presents
the experimental results. Section 5.5 discusses the practical implications, de-
rived from the results, for the application of log parsing in the context of
anomaly detection. Section 5.7 concludes the chapter.

5.2 Motivation

Log parsing converts unstructured logs into structured ones, which can then
be processed by log-based analysis techniques like anomaly detection. It is
quite natural to speculate that log parsing results can affect anomaly detec-
tion results. Intuitively, the research literature has assumed that inaccurate
log parsing results leads to inaccurate anomaly detection results. However,
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this hypothesis has not been fully investigated in the literature, except for one
empirical study [LZ22] and one analytical investigation, i.e., chapter 4.

Le and Zhang [LZ22] recently presented an empirical work investigating
several aspects that can impact Deep Learning (DL)-based anomaly detec-
tion approaches, such as training data selection, data grouping, class distri-
bution, data noise, and early detection ability. One of their experiments con-
sidering data noise assessed the impact of noise deriving from log parsing
results. Specifically, they used four log parsing techniques (Drain [HZZL17],
Spell [DL16], AEL [JHFH08], and IPLoM [MZHM09]) to generate log pars-
ing results for two log datasets (BGL [OS07] and Spirit [OS07]). Then, for
each log dataset, they used the different log parsing results as input of five
anomaly detection approaches (DeepLog [DLZS17], LogAnomaly [MLZ+19],
PLELog [YCW+21], LogRobust [ZXL+19], and CNN [LWLW18]), and mea-
sured the accuracy of the latter. Their experimental results showed that log
parsing approaches highly influence the accuracy of anomaly detection; for
example, the F1-Score of DeepLog on Spirit logs [OS07] decreases from 0.755
to 0.609 when Drain is used instead of IPLoM for log parsing.

Although this is the first clear evidence showing the impact of log parsing
results on anomaly detection accuracy, the scope of the underlying study is
limited. For example, it simply uses different log parsing results (produced
by different tools) without quantitatively assessing the accuracy of the log
parsing tools; therefore, the relationship between log parsing accuracy and
anomaly detection accuracy remains unclear. To this end, we define our first
research question as follows: RQ1 - To which extent does the accuracy of log
parsing affect the accuracy of anomaly detection?

In chapter 4, we proposed a theoretical framework determining the ideal
log parsing results for anomaly detection by introducing the concept of “dis-
tinguishability” for log parsing results. It is argued that, rather than accuracy
as previously assumed, what really matters is the extent to which log parsing
results are distinguishable. However, to the best of our knowledge, there is
no empirical work assessing quantitatively distinguishability in log parsing
results and its impact on anomaly detection accuracy. Therefore, we define
our second research question as follows: RQ2 - How does the accuracy of
anomaly detection vary with the distinguishability of log parsing results?

Answering the above questions will have a significant impact on both
research and industry in the field of log-based anomaly detection. For exam-
ple, if the answer to the first question is that, regardless of the log parsing
accuracy metrics, there is no relationship between log parsing accuracy and
anomaly detection accuracy, then it means that there is no need to use the
existing accuracy metrics to evaluate log parsing results for anomaly detec-
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tion. This would completely change the way log parsing tools are evaluated.
Similarly, if the answer to the second question is that the distinguishability of
log parsing results indeed affects anomaly detection, as expected from chap-
ter 4, then this must be the focus of log parsing evaluations. As a result, our
answers will provide essential insights on better assessing the quality of log
parsing techniques for more accurate anomaly detection.

5.3 Experimental Design

All experiments presented in this chapter were carried out using the HPC
facilities of the University of Luxembourg (see https://hpc.uni.lu). Specif-
ically, we used Dual Intel Xeon Skylake CPU (8 cores) and 64GB RAM for
running individual log parsing and anomaly detection techniques.

5.3.1 Datasets

To answer the research questions introduced in Section 5.2, we used pub-
licly available datasets based on the LogHub benchmark [HZHL20], which
contains a large collection of log messages from various types of systems in-
cluding operating systems (Linux, Windows, and Mac), distributed systems
(BGL, Hadoop, HDFS, Thunderbird, and OpenStack), standalone programs
(Proxifier and Zookeeper), and mobile systems (Android). The benchmark
has been widely used in various studies focused on log parsing [KSBB22b,
ZHL+19, DLC+20] and anomaly detection [LZ22, FYX+23].

Among the benchmark datasets, we selected HDFS, Hadoop, and Open-
Stack datasets because of the following reasons: (1) they have labels for nor-
mal and abnormal logs to be used for assessing the accuracy of anomaly de-
tection techniques and (2) the source code of the exact program version used
to generate the logs is publicly available; this allows us to extract correct ora-
cle templates (i.e., ground truth templates) for each log message. The oracle
templates are especially important in our study as we need to carefully as-
sess both log parsing accuracy and anomaly detection accuracy. Although
the benchmark provides some oracle templates for all log datasets, they are
manually generated (without accessing the source code) and cover only 2K log
messages randomly sampled for each dataset. As discussed in chapter 3,
those manually generated oracle templates are error-prone; therefore, we used
the logging statements in the source code to extract correct oracle templates.
Table 5.1 shows all the log datasets in the LogHub benchmark and whether
they meet each of the above-mentioned criteria; the rows highlighted in gray
meet both criteria.
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Table 5.1: Datasets in LogHub benchmark [HZHL20]

Datasets Anomaly Label Source Code

Android ✗ ✗
Apache ✗ ✗
BGL ✓ ✗
HDFS ✓ ✓
HPC ✗ ✗
Hadoop ✓ ✓
HealthApp ✗ ✗
Linux ✗ ✗
Mac ✗ ✗
OpenSSH ✗ ✗
OpenStack ✓ ✓
Proxifier ✗ ✗
Spark ✗ ✗
Spirit ✓ ✗
Thunderbird ✓ ✗
Windows ✗ ✗
Zookeeper ✗ ✗

During our preliminary evaluation, we found an issue with HDFS. The
original HDFS logs were too large to be processed by the slowest anomaly
detection technique (i.e., LogAnomaly [MLZ+19]) when setting a two-day
timeout. Due to the large number of experiments we needed to conduct (i.e.,
all combinations of log parsing and anomaly detection techniques with ad-
ditional repeats for distinguishable and indistinguishable log parsing results,
see § 5.3.4 and § 5.3.5), we decided to reduce the log dataset size. As we found
that the slowest log parsing technique (i.e., LogAnomaly) could process up
to n = 300K messages within 2 hours, we randomly and iteratively removed
logs (i.e., sequences of log messages) from the HDFS dataset to reduce it until
the total number of remaining messages was less than 300K. Notice that each
HDFS log is a sequence of log messages having the same block ID, represent-
ing either a normal or abnormal sequence of events. To preserve individual
(normal or abnormal) sequences, we randomly selected and removed them
by sequence, not by message.

Table 5.2 reports on the size of our datasets, in terms of the number of
oracle templates (O), the number of all logs (Lall ), the number of normal logs
(Ln ), the number of abnormal logs (La ), the number of all messages (Mall ),
the number of messages in normal logs (Mn ), and the number of messages in
abnormal logs (Ma ). Note that the number of log messages is the same as the
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Table 5.2: Size information of the log datasets used in our experiments. Num-
ber of oracle templates (O); Number of all logs (Lall ); Number of normal logs
(Ln ); Number of abnormal logs (La ); Number of all messages (Mall ); Num-
ber of messages in normal logs (Mn ); Number of messages in abnormal logs
(Ma ).

Dataset O Lall Ln La Mall Mn Ma

HDFS (reduced) 26 15295 15026 269 299971 292776 7195
Hadoop 175 54 11 43 109968 14392 95576
OpenStack 21 2068 2064 4 79925 79817 108

number of log entries (see Chapter 4)

5.3.2 Log Parsing Techniques

We aimed to use as many log parsing techniques as possible, among those
available in the literature. Since, in chapter 3 we provided a comprehensive
evaluation of 14 log parsing techniques (i.e., AEL [JHFH08], Drain [HZZL17],
IPLoM [MZHM09], LenMa [Shi16], LFA [NV10], LKE [FLWL09], LogClus-
ter [VP15], LogMine [HDX+16], Logram [DLC+20], LogSig [TLP11], MoLFI [MPB+18],
SHISO [Miz13], SLCT [Vaa03], and Spell [DL16]), we decided to reuse the
replication package, including all the aforementioned techniques.

However, we had to exclude LKE since our preliminary evaluation results
showed that it could not complete its run for all of our log datasets within the
2-day timeout. Notice that we have already reduced our log datasets (in par-
ticular, HDFS), as discussed in Section 5.3.1, based on the slowest anomaly
detection technique (i.e., LogAnomaly). Although we could additionally re-
duce the datasets based on the slowest log parsing technique (i.e., LKE), we
found that it would result in small logs that are not representative of the size
and complexity of real-world logs.

As a result, we considered 13 log parsing techniques in our experiments.
For all the log parsing techniques, we used their default parameters.

5.3.3 Anomaly Detection Techniques

Similar to the case of log parsing techniques, we considered the work of Le
and Zhang [LZ22], a recent empirical study that evaluated five DL-based
anomaly detection techniques (i.e., DeepLog [DLZS17], LogAnomaly [MLZ+19],
LogRobust [ZXL+19], PLELog [YCW+21], and CNN [LWLW18]), and de-
cided to use their replication package, including all the aforementioned tech-
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niques. For all anomaly detection techniques, we used their default param-
eters. These techniques are representative of the state of the art of DL-based
anomaly detection techniques.

We want to note that we did not consider anomaly detection techniques
based on traditional machine learning models (e.g., PCA, Logistic Regres-
sion, and Decision Tree) since Fu et al. [FYX+23] recently showed that they
are significantly less effective than DL-based techniques.

5.3.4 Methodology for RQ1

To answer RQ1, for each dataset, we first executed the log parsing techniques
to generate log parsing results and computed their accuracy in terms of GA,
PA, and FTA (see Chapter 2). We then executed the anomaly detection tech-
niques on each of the log parsing results and computed their accuracy in
terms of precision (PR), recall (RE), and F1 score. By doing so, we obtained a
tuple of accuracy values ⟨GA,PA,FTA,PR,RE ,F1 ⟩ for each combination of
datasets, log parsing results, and anomaly detection techniques.

For log parsing, we executed each of the log parsing techniques with a
2-day timeout. Since MoLFI is non-deterministic, we executed it three times.
In total, we obtained 16 log parsing results (three from the three different
executions of MoLFI and 13 from the remaining log parsing techniques) for
each dataset. For each log parsing result, we computed ⟨GA,PA,FTA⟩ using
the oracle templates (and the messages matching them) for the corresponding
datasets.

For anomaly detection, we randomly divided the individual log parsing
results into two disjoint sets, i.e., a training set and a test set, using a split
ratio of 80:20. We trained the anomaly detection techniques on each of the
training sets with a 2-day timeout, and used the corresponding test sets to
compute ⟨PR,RE ,F1 ⟩. To account for the randomness of anomaly detection
techniques, we repeated the train-and-test process five times and used the
average F1 score.

As a result, we obtained 160 tuples ⟨GA,PA,FTA,PR,RE ,F1 ⟩ from the
combinations of two datasets, 16 log parsing results, and five anomaly detec-
tion techniques.

5.3.5 Methodology for RQ2

To answer RQ2, we need distinguishable and indistinguishable log parsing
results to compare in terms of anomaly detection accuracy. Although the log
parsing results generated for RQ1 are available, they are mostly distinguish-
able, leading to unbalanced data for RQ2. To systematically assess the impact
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of the distinguishability of log parsing results on anomaly detection accuracy
using balanced data, we generate pairs of distinguishable and indistinguish-
able log parsing results.

Specifically, let d(R) be the distinguishability — expressed as a Boolean
value, either true (T ) or false (F ) — of a log parsing result R. For each log
parsing result R generated in the context of RQ1 (i.e., 16 log parsing results
for each of the two datasets), we first created a pair of log parsing results
⟨R,R′⟩ by artificially generating R′ from R such that d(R′) = ¬d(R) using Al-
gorithms 1 and 2, detailed further below. By definition, if R is distinguishable
then R′ will be indistinguishable and vice versa. For the sake of simplicity, we
denote the distinguishable result (be it R or R′) as Rdst and the indistinguish-
able one (respectively, either R′ or R) as Rind . We then executed, for all pairs
⟨Rdst , Rind ⟩, all the considered anomaly detection techniques twice: the first
time using Rdst as input and the second time using Rind as input; for each run
of each anomaly detection technique we computed its accuracy in terms of
precision, recall, and F1 score. By doing so, we obtained the anomaly detec-
tion accuracy scores for pairs of distinguishable (Rdst ) and indistinguishable
(Rind ) versions of log parsing results, and then compared them.

For the generation of R′ from R, it is important to minimize the difference
between R and R′ while achieving d(R′) = ¬d(R). This is to ensure that
if there is a difference in anomaly detection scores between R and R′, it is
mostly due to distinguishability and not to other differences between R and
R′ (e.g., the number of templates or the size of log parsing results). To do this,
we need to distinguish the two cases when d(R) = T and when d(R) = F , as
described below.

5.3.5.1 Generation of Indistinguishable from Distinguishable Log
Parsing Results

When d(R) = T (i.e., R = Rdst ), it means that templates for different log mes-
sages in R are different enough to distinguish between normal and abnormal
logs in R, as explained in Chapter 4. For example, let us consider two logs
l1 = ⟨m1 ,m2 ⟩ and l2 = ⟨m3 ,m4 ⟩ where the templates of the four messages
are identified as τ(m1) = t1, τ(m2) = t2, τ(m3) = t3, and τ(m4) = t2, respec-
tively, using a log parsing technique τ . Figure 5.1 shows the logs, messages,
and templates. In this case, the log parsing result of τ for {l1, l2} is distin-
guishable, as highlighted in blue in the figure, since τ∗(l1) = ⟨τ(m1), τ(m2)⟩ =
⟨t1, t2⟩ and τ∗(l2) = ⟨τ(m3 ), τ(m4 )⟩ = ⟨t3, t2⟩ are different (due to τ(m1) ̸=
τ(m3), i.e., t1 ̸= t3). However, if the templates of m1 and m3 were the same,
then the log parsing result would be indistinguishable. In other words, as high-
lighted in red in the figure, we can make the distinguishable log parsing re-
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Log Template Parsed Log (original) Parsed Log (after mer-
-ging t1 and t3 into t13)

l1 = ⟨m1,m2⟩ τ(m1) = t1 , τ(m2) = t2 τ∗(l1) = ⟨t1, t2⟩ τ ′∗(l1) = ⟨t13, t2⟩

l2 = ⟨m3,m4⟩ τ(m3) = t3 , τ(m4) = t2 τ∗(l2) = ⟨t3, t2⟩ τ ′∗(l2) = ⟨t13, t2⟩

Figure 5.1: An example of making a distinguishable log parsing result indis-
tinguishable by merging templates

sult of τ indistinguishable by merging the templates of m1 and m3 (e.g., by
introducing a dummy log parsing technique τ ′ that behaves the same as τ ex-
cept for τ ′(m1) = τ ′(m3) = t13). Notice that τ ′ changes only (a few) templates,
not the corresponding log messages, meaning that the original datasets re-
main the same. Using this idea, to generate R′ = Rind from R = Rdst , we
generated the templates of Rind by iteratively merging the templates of Rdst

until d(Rind ) = F . Furthermore, to minimize the difference between Rdst

and Rind in terms of the number of templates (i.e., to minimize the number
of templates being merged), we start with merging the templates with the
highest number of matching messages in the log. This is based on the intu-
ition that the more messages affected by merging templates, the more likely
normal and abnormal logs are to become indistinguishable.

One might object that artificially merging templates corresponding to dif-
ferent messages could introduce incorrect templates in Rind , leading to an
unfair comparison between Rdst and Rind . However, it is common for the log
parsing techniques to identify many templates that are already incorrect, as
mentioned in chapter 3 Furthermore, the focus of RQ2 is not the correctness
of templates but rather the distinguishability of log parsing results. Our goal
is to generate a pair of Rdst and Rind that are as similar as possible except for
the distinguishability property.

Algorithm 1 summarizes the above-mentioned idea into the pseudocode
for generating Rind from Rdst . After initializing Rind (line 1) as a copy of
Rdst , the algorithm extracts the set of templates T of Rdst (line 2) and sorts
the templates in T in ascending order by the number of matching messages
(line 3). The algorithm then iteratively merges the last n templates (starting
from n = 2 as initialized at line 4) in the sorted templates list Ts (i.e., merging
the top-n templates that have the highest number of matching templates) un-
til Rind becomes indistinguishable (lines 5–9). Notice that the while loop does
not continue endlessly since Rind must be indistinguishable when n becomes
|Ts| (i.e., all templates are merged into one) by definition. The algorithm ends
by returning Rind .
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Algorithm 1: Generating an indistinguishable log parsing result
from a distinguishable one

Input : Distinguishable Log Parsing Result Rdst

Output: Indistinguishable Log Parsing Result Rind

1 Log Parsing Result (Set of Parsed Logs) Rind ← copy(Rdst)
2 Set of Templates T ← getTemplates(Rdst)
3 Sorted List of Templates Ts ← sortByNumMessages(T )
4 Integer n← 2
5 while d(Rind ) = True do
6 Set of Templates Tm ← getLastTemplates(Ts, n)
7 Rind ← mergeTemplates(Tm, Rdst)
8 n← n+ 1

9 end
10 return Rind

5.3.5.2 Generation of Distinguishable from Indistinguishable Log
Parsing Results

When d(R) = F (i.e., R = Rind ), although one could do the dual of merging
templates (i.e., dividing templates), it would require to determine which tem-
plates to divide and how many templates to generate from a given template.
Instead, we adopted another heuristic: we removed the normal (or abnormal)
logs that are indistinguishable from abnormal (or normal) logs. This is based
on our observation that, when d(R) = F , only a small number of normal and
abnormal logs are indistinguishable. To minimize the impact of removing
logs, we removed normal logs when the total number of normal logs is larger
than that of abnormal logs (as it is the case for the HDFS dataset); otherwise,
we removed abnormal logs (in the case of the Hadoop dataset).

Algorithm 2 shows how to generate Rdst from Rind based on the above
idea. It first extracts the set of indistinguishable logs Lind from Rind (line 1).
It then removes either normal or abnormal logs in Lind from Rind to generate
Rdst depending on the total number of normal and abnormal logs (lines 2–6).
Since Rdst is the result of removing indistinguishable (normal or abnormal)
logs from Rind , Rdst is distinguishable. The algorithm ends by returning Rdst .
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Algorithm 2: Generating a distinguishable log parsing result from
an indistinguishable one

Input : Indistinguishable Log Parsing Result Rind

Output: Distinguishable Log Parsing Result Rdst

1 Set of Indistinguishable Logs Lind ← getIndistLogs(Rind )
2 if numNormalLogs(Rind ) ≥ numAbnormalLogs(Rind ) then
3 Set of Parsed Logs Rdst ← Rind \ getNormalLogs(Lind )

4 end
5 else
6 Set of Parsed Logs Rdst ← Rind \ getAbnormalLogs(Lind )
7 end
8 return Rdst

5.3.5.3 Treatment for Anomaly Detection Techniques using Semantic
Information of Templates

Some of the anomaly detection techniques (i.e., LogRobust [ZXL+19],
PLELog [YCW+21], LogAnomaly [MLZ+19]) use the semantic information
of templates, instead of simply using template IDs, by converting them into
semantic vectors [JM19]. Therefore, the notion of “identical” templates for
determining the distinguishability of log parsing results must be revised in
terms of the semantic vectors used by these anomaly detection techniques. To
do this, for each log parsing result R, we applied a clustering algorithm to the
semantic vectors of all templates and considered the templates in the same
cluster to be identical. Specifically, we used DBSCAN [BHN11] for clustering
since it does not require the number of clusters as an input parameter. For
instance, in the above example τ with m1 and m3, if the semantic vectors of
τ(m1) and τ(m3) belong to the same cluster, then the templates of m1 and
m3 are considered the same. We then followed the same heuristics described
above to generate R′ from R based on the clustered templates.

5.4 Results

5.4.1 RQ1: Relationship between Log Parsing Accuracy and
Anomaly Detection Accuracy

All 13 log parsing techniques and 5 anomaly detection techniques completed
their executions on the HDFS and Hadoop datasets. However, none of the
anomaly detection techniques detects abnormal logs in the OpenStack dataset
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Table 5.3: Spearman correlation coefficients between log parsing accuracy
(GA, PA, and FTA) and anomaly detection accuracy (F1 score)

HDFS (reduced) Hadoop

AD technique GA PA FTA GA PA FTA

DeepLog −0.166 0.259 0.198 - - -
LogAnomaly 0.265 0.142 0.215 - - -
LogRobust 0.360 0.193 0.165 - - -
CNN 0.425 0.575 0.508 - - -
PLELog 0.155 0.611 0.605 −0.233 −0.017 −0.144

(i.e., the F1 score is zero). This could be due to the very small number of ab-
normal logs in the dataset (only 4 out of 2068, as reported in Table 5.2). There-
fore, we disregard the results for OpenStack. For all tuples ⟨GA,PA,FTA,PR,RE ,F1 ⟩
we collected for HDFS and Hadoop, Figure 5.2 and Figure 5.3 show the re-
lationship between ⟨GA,PA,FTA⟩ (x-axis) and F1 (y-axis) for HDFS and
Hadoop, respectively, in the form of a scatter plot. To additionally distin-
guish the main results for different anomaly detection techniques, we used
different shapes and colors: = DeepLog, = LogAnomaly, = LogRobust,

= CNN, and = PLELog. For example, the top left subfigure in Figure 5.2
shows 13 data points where 13 log parsing techniques are used in combina-
tion with DeepLog.

Table 5.3 additionally shows the values of the Spearman’s rank correlation
coefficient σ⟨X ,Y ⟩ between X = ⟨GA,PA,FTA⟩ and Y = F1 for each pair
of anomaly detection technique and dataset. The value of σ⟨X ,Y ⟩, ranging
between −1 and +1, is an indication of the strength of the monotonic (not
necessarily linear) relationship between X and Y ; when σ⟨X ,Y ⟩ ≥ +0.7 (or
σ⟨X ,Y ⟩ ≤ −0.7), there is a strong positive (or negative) correlation between
X and Y [AAAH22]. Note that, on the Hadoop dataset, σ⟨X ,Y ⟩ could not
be computed for DeepLog, LogAnomaly, LogRobust, and CNN since the F1
score does not vary at all with ⟨GA,PA,FTA⟩, indicating no relationship.

Overall, Figure 5.2, Figure 5.3, and Table 5.3 clearly show that there is
no strong correlation between ⟨GA,PA,FTA⟩ and F1 in all the cases where
⟨GA,PA,FTA,PR,RE ,F1 ⟩ tuples were successfully collected. For example,
in Figure 5.2, LogAnomaly ( ) achieved an F1 score ranging between 0.2 and
0.5 regardless of the GA score. This means that increasing log parsing accu-
racy does not necessarily increase (or decrease) anomaly detection accuracy.
This is counter-intuitive since anomaly detection uses log parsing results, and
having “better” log parsing results is expected to increase anomaly detection
accuracy. However, this happens because even inaccurate log parsing results
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Figure 5.2: Relationship between TI accuracy and AD accuracy (HDFS)
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Figure 5.3: Relationship between TI accuracy and AD accuracy (Hadoop)
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can lead to accurate anomaly detection results, for reasons explained below.
To better understand the reason for the above results, let us consider the

following two extreme cases separately:

(C1) The log parsing accuracy values for input logs are the same, but the
resulting anomaly detection accuracy values are different (i.e., the data
points located on the same vertical lines in Figure 5.2 and Figure 5.3).

(C2) The log parsing accuracy values for input logs are different, but the re-
sulting anomaly detection accuracy values are the same (i.e., the data
points located on the same horizontal lines in Figure 5.2 and Figure 5.3).

To identify the root cause of C1, we manually investigated several pairs of
data points in Figure 5.2 and Figure 5.3, such as two different HDFS log pars-
ing results having almost the same log parsing accuracy value (GA scores of
0.37 and 0.40) but resulting in significantly different anomaly detection ac-
curacy values (F1 scores of 0.73 and 0.10) for the same anomaly detection
technique (DeepLog). It turned out that, although the log parsing accuracy
values are similar, different log messages are correctly parsed in the two dif-
ferent log parsing results. This happened because the log parsing accuracy
metrics (GA, PA, and FTA) summarize the log parsing results based on an
implicit assumption that all log messages (and templates) are equally impor-
tant. However, this assumption does not hold when it comes to anomaly
detection, which must discriminate different log message templates to learn
abnormal sequences of templates. Therefore, this mismatch of assumptions
between log parsing and anomaly detection leads to case C1.

As for case C2, similar to the above case, we manually investigated sev-
eral pairs of data points in Figure 5.2 and Figure 5.3, such as two different
Hadoop log parsing results having significantly different log parsing accu-
racy values (GA scores of 0.12 and 0.77) but resulting in the same anomaly
detection value (F1 score of 0.98) for the same anomaly detection technique
(DeepLog). We found that anomaly detection techniques can distinguish be-
tween normal and abnormal patterns even when input log message tem-
plates are incorrect. To best explain this using a simplified example, let us
consider a normal log ln = ⟨mn

1 ,m
n
2 , . . . ⟩ and an abnormal log la = ⟨ma

1 ,m
a
2 , . . . ⟩,

where mx
i indicates the i-th log message in lx for x ∈ {n, a}. Using oracle tem-

plates, we can group the log messages having the same template and repre-
sent ln and la as groups; specifically, let gorc(lx) be a sequence of message
group indices (i.e., the i-th element of gorc(lx) is the message group index of
mx

i ). In this context, let us take two logs from the Hadoop dataset as a con-
crete example where gorc(ln) = ⟨1, 2, 3, 4, . . . ⟩ and gorc(la) = ⟨5, 5, 5, 6, . . . ⟩.
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When templates generated by LogMine are used to group messages instead
of oracle templates, the sequences of message group indices change to gLM (ln) =
⟨1, 2, 3, 3, . . . ⟩ and gLM (la) = ⟨7, 8, 9, 10, . . . ⟩. These are clearly different from
gorc(ln) and gorc(la), respectively; in particular, mn

3 and mn
4 are incorrectly

grouped together in gLM (ln) while ma
1, ma

2, and ma
3 are incorrectly separated

in gLM (la). The incorrect groupings of LogMine clearly reduce the GA score
(as well as PA and TA scores since incorrect groupings imply incorrect tem-
plates). However, even the incorrect gLM (ln) and gLM (la) are still different
enough from each other for anomaly detection techniques to distinguish be-
tween normal and abnormal patterns. This example not only shows why
case C2 happened, but also demonstrates the importance of distinguishability
in log parsing results for anomaly detection; we will further investigate this
aspect in RQ2.

Before we conclude RQ1, one might be curious to know why DeepLog,
LogAnomaly, LogRobust, and CNN result in the same anomaly detection
accuracy value on the Hadoop dataset (as shown in Figure 5.3 [GA-Hadoop]
and Table 5.3). This happens because (1) the test set of Hadoop contains only
11 logs (1 normal and 10 abnormal logs, although the number of log messages
is in the same order of magnitude as HDFS; see Table 5.2 for more details) and
(2) the four anomaly detection techniques classified all the 11 logs in the test
set as abnormal. We speculate that PLELog shows different results from the
other anomaly detection techniques because PLELog uses a very different
deep learning model (i.e., an attention-based GRU [CvMBB14]). Notice that,
in all cases, the results still corroborate that log parsing accuracy and anomaly
detection accuracy do not have any strong relationship.

We want to note that the log parsing accuracy results shown in Figure 5.2
and Figure 5.3 are inconsistent with the ones reported in previous studies [ZHL+19,
DLC+20] since the latter only considered 2K log messages, randomly sam-
pled from the original logs, to assess log parsing accuracy.

The answer to RQ1 is that there is no strong correlation between log
parsing accuracy and anomaly detection accuracy; increasing log pars-
ing accuracy does not necessarily increase anomaly detection accuracy,
regardless of the metric (GA, PA, or TA) used for measuring log pars-
ing accuracy.
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Table 5.4: Impact of the distinguishability log parsing results on anomaly
detection accuracy for the HDFS (reduced) dataset

DeepLog (F1) LogAnomaly (F1) LogRobust (F1) CNN (F1) PLELog (F1)

Log Parser Rdst Rind ∆ Rdst Rind ∆ Rdst Rind ∆ Rdst Rind ∆ Rdst Rind ∆

AEL 0.747 0.561 0.186 0.509 0.320 0.189 0.663 0.456 0.207 0.772 0.662 0.110 0.760 0.033 0.727
Drain 0.714 0.523 0.191 0.499 0.400 0.099 0.703 0.454 0.250 0.757 0.682 0.075 0.796 0.286 0.510
IPLoM 0.760 0.590 0.170 0.481 0.268 0.213 0.556 0.380 0.176 0.810 0.588 0.222 0.849 0.041 0.808
LFA 0.803 0.693 0.110 0.606 0.378 0.228 0.355 0.299 0.056 0.755 0.548 0.207 0.100 0.000 0.100
LenMa 0.808 0.625 0.184 0.484 0.285 0.199 0.659 0.436 0.223 0.814 0.607 0.207 0.681 0.271 0.411
LogCluster 0.263 0.097 0.166 0.380 0.243 0.138 0.542 0.300 0.241 0.498 0.306 0.192 0.426 0.317 0.108
LogMine 0.732 0.552 0.180 0.453 0.363 0.090 0.554 0.329 0.225 0.792 0.612 0.179 0.817 0.439 0.378
Logram 0.544 0.420 0.124 0.836 0.625 0.212 0.330 0.163 0.167 0.100 0.000 0.100 0.100 0.000 0.100
MoLFI 0.794 0.630 0.164 0.427 0.282 0.144 0.565 0.319 0.246 0.781 0.621 0.160 0.172 0.109 0.063
SHISO 0.778 0.629 0.149 0.544 0.238 0.306 0.679 0.446 0.233 0.796 0.589 0.207 0.839 0.341 0.498
SLCT 0.743 0.570 0.173 0.268 0.160 0.108 0.394 0.244 0.150 0.743 0.607 0.136 0.725 0.534 0.191
Spell 0.765 0.598 0.167 0.289 0.176 0.113 0.401 0.241 0.160 0.805 0.616 0.189 0.665 0.304 0.361

Average 0.704 0.541 0.164 0.481 0.312 0.170 0.533 0.339 0.194 0.702 0.536 0.165 0.577 0.223 0.355

Table 5.5: Impact of the distinguishability log parsing results on anomaly
detection accuracy for the Hadoop dataset

DeepLog (F1) LogAnomaly (F1) LogRobust (F1) CNN (F1) PLELog (F1)

Log Parser Rdst Rind ∆ Rdst Rind ∆ Rdst Rind ∆ Rdst Rind ∆ Rdst Rind ∆

AEL 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.785 0.507 0.278
Drain 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.900 0.000 0.900
IPLoM 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.848 0.000 0.848
LFA 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.888 0.799 0.090
LenMa 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.900 0.505 0.395
LogCluster 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.952 0.180 0.772
LogMine 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.848 0.530 0.318
Logram 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.842 0.797 0.046
MoLFI 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.900 0.739 0.161
SHISO 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.900 0.000 0.900
SLCT 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.842 0.000 0.842
Spell 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.703 0.188 0.515

Average 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.947 0.847 0.100 0.859 0.354 0.505

5.4.2 RQ2: Log Parsing Distinguishability and Anomaly
Detection Accuracy

Table 5.4 shows the anomaly detection accuracy values (F1 scores) when
different log parsing techniques (rows) and anomaly detection techniques
(columns) are used together on the HDFS (reduced) dataset; under each of
the anomaly detection technique columns, sub-columns Rdst and Rind indi-
cate the F1 scores for distinguishable and indistinguishable log parsing re-
sults, respectively, and ∆ indicates the difference between Rdst and Rind . For
example, if we choose AEL for log parsing and DeepLog for anomaly detec-
tion, the F1 score decreases from 0.747 to 0.561 when Rind is used instead of
Rdst . The same structure applies to Table 5.5, which shows the results on the
Hadoop dataset. In Table 5.5, except for PLELog, the values for all anomaly
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detection techniques are identical due to the reasons explained in the last
paragraph of Section 5.4.1.

In all cases, ∆ is positive, ranging from 0.056 (LFA-LogRobust on the
HDFS (reduced) dataset) to 0.9 (SHISO-PLELog on the Hadoop dataset). This
means that the anomaly detection accuracy decreases up to 90 percentage
points (pp) when Rind is used instead of Rdst . To see if the differences be-
tween Rdst and Rind are significant, we applied the non-parametric Wilcoxon
signed rank test [Wil92] for paired samples to the F1 scores of Rdst and Rind ,
for each of the five anomaly detection techniques and the two datasets. The
results show that, for all the anomaly detection techniques and datasets, the
differences between Rdst and Rind are significant (p-value < 0.005) in terms
of anomaly detection accuracy.

Considering the definition of distinguishability for log parsing results, it
is intuitive that indistinguishable log parsing results should lead to lower
anomaly detection accuracy. However, it is surprising that this decrease in
accuracy is, in some cases, rather limited, e.g., only 0.046 for Logram on the
Hadoop dataset when PLELog is used for log parsing. This happens because
an indistinguishable log parsing result may only have a few logs that are in-
distinguishable in terms of normal and abnormal behavior. Recall that we did
not explicitly control the number of indistinguishable logs since we aimed to
minimize the difference between distinguishable and indistinguishable ver-
sions of each log parsing result as described in Section 5.3.5. Nevertheless, the
results shown in Tables 5.4 and 5.5 are sufficient to confirm the strong impact
of distinguishability in log parsing results on anomaly detection accuracy.

The answer to RQ2 is that the impact of the distinguishability of log
parsing results on anomaly detection accuracy is significant for all
anomaly detection techniques.

5.4.3 Threats to Validity

The used oracle templates determine log parsing accuracy values. For ex-
ample, as mentioned in chapter 3, manually extracting oracle templates by
investigating log messages without accessing the corresponding source code
could result in biased, incorrect oracle templates. This could be a significant
threat to the validity of our results. To mitigate this, we perused the source
code (of the exact version that generated the logs) for each software system
and used the templates directly extracted from the source code. Although
this made us exclude a few log datasets whose source code was unavailable,
it was beneficial to ensure the validity of our results.
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Individual log parsing and anomaly detection techniques have distinct
hyper-parameters, which might significantly affect the log parsing and anomaly
detection results. To mitigate this, we used the same hyper-parameter values
proposed by the authors, when available; otherwise, we ran preliminary ex-
periments and used the values that resulted in the same results reported in
the corresponding papers.

Using a specific set of log datasets is a potential threat to external validity.
Though the datasets we considered include the logs of various systems, we
had to select HDFS, Hadoop, and OpenStack due to the reasons discussed
in Section 5.3.1. Therefore, even though the datasets have been widely used
in existing literature [LZ22, CLG+21] on log-based anomaly detection, they
may not capture diverse characteristics of log data. Further experiments with
different datasets are required to improve the generalizability of our results.

In RQ2, we artificially generated pairs of distinguishable and indistin-
guishable log parsing results to systematically assess the impact of the dis-
tinguishability of log parsing results on anomaly detection accuracy using
balanced data. To mitigate any bias introduced during the process, we care-
fully designed Algorithms 1 and 2 to minimize the difference between each
pair of log parsing results, except for their distinguishability property. Note
that, although the pair generation process (by merging templates) might look
unrealistic, it reflects what frequently happens in real-world scenarios; for
example, it is not uncommon for log parsing techniques to misidentify tem-
plates so that messages with different oracle templates are mapped to the
same (misidentified) template.

5.5 Findings and Implications

One of the most surprising results from our evaluation is that, using all ex-
isting log parsing accuracy metrics in the literature, we did not find any sig-
nificant correlation with anomaly detection accuracy. In other words, more
accurate log parsing results are not necessarily better for anomaly detection
accuracy. This implies that log parsing accuracy is not a good indicator of the
quality of log parsing results for anomaly detection purposes. As explained
with an example in Section 5.4.1, this happens because inaccurate log parsing
results can still be useful for anomaly detection as long as normal and abnor-
mal logs are distinguishable. At the extreme, a log parsing result R50 with
50% accuracy could be better for anomaly detection than a log parsing re-
sult R100 with 100% accuracy if R50 distinguishes normal and abnormal logs
while R100 does not.
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This surprising finding leads to an important practical implication: When
used for anomaly detection purposes, we can no longer choose a log parsing
technique based on accuracy. Instead, as shown in Section 5.4.2, the distin-
guishability of log parsing results should be the main selection criterion. For
example, since normal and abnormal logs are often used for training anomaly
detection models, candidate log parsing results should be compared in terms
of their capability to distinguish normal and abnormal logs. If there are mul-
tiple techniques that can equally distinguish between normal and abnormal
logs, then the one with the lowest number of identified templates would be
preferred since reducing the number of templates would increase the perfor-
mance of anomaly detection by reducing dimensionality (i.e., the number of
features considered in machine learning models), as mentioned in chapter 4.

Though our objective here is not to identify the “best” log parsing and
anomaly detection techniques, through our experiments, we found that there
is no single best technique that significantly outperforms the others in all
cases. In the future, to develop better log parsing techniques targeting anomaly
detection, it would beneficial to focus on distinguishability, which has not
been the case so far.

5.6 Related Work

Although individual techniques for log parsing and anomaly detection have
been studied for a long time, systematic studies covering several techniques
have only recently begun to emerge. For example, the most comprehen-
sive evaluation studies on many log parsing techniques [ZHL+19, DLC+20,
KSBB22b] were conducted over the last four years. Similarly, the relationship
between log parsing and anomaly detection has received little attention until
very recently. Below, we summarize the recent studies related to this topic.

In chapter 4, we presented the first theoretical study considering the re-
lationship between log parsing and anomaly detection. We established the
concept of ideal log parsing results for anomaly detection. We adopted the
theoretical foundation, especially the notion of distinguishability in log pars-
ing results, and empirically showed that distinguishability is indeed essen-
tial for anomaly detection. To the best of our knowledge, our work is the first
empirical study showing the importance of log parsing distinguishability for
anomaly detection.

As explained in Section 5.2, Le and Zhang [LZ22] presented an empiri-
cal study on factors that could affect anomaly detection accuracy. Although
a part of their study investigated the impact of log parsing on anomaly de-
tection accuracy, they investigated four log parsing techniques but did not
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Table 5.6: Comparison with related empirical studies

Category Le and Zhang.
[LZ22]

Fu et al. [FYX+23] Our work

Objective Investigate different
factors that might
affect anomaly de-
tection accuracy

Investigate the
impact of log pars-
ing techniques on
anomaly detection
accuracy

Evaluate the im-
pact of log parsing
accuracy and the
distinguishability
of log parsing re-
sults on anomaly
detection accuracy

Log parsing accu-
racy metrics

N/A PA PA, GA, and TA

Oracle templates N/A Manually generated
for 2K sample log
messages

Extracted from
the corresponding
source code

Logs used for mea-
suring log parsing
accuracy

N/A Only a small frac-
tion of logs actually
used for anomaly
detection

All logs used for
anomaly detection

Log parsing tech-
niques

Drain, Spell, IPLoM
and AEL

Drain, Spell, IPLoM,
LFA, Logram, and
LenMa

Drain, Spell, IPLoM,
AEL, LFA, Logram,
LenMa, LogSig,
LogCluster, Log-
Mine, SHISO,
MoLFI, and SLCT

Anomaly detection
techniques

DeepLog, LogRo-
bust, LogAnomaly,
PLELog, and CNN

DeepLog, LogRo-
bust, Principal
Component Anal-
ysis (PCA), Log-
Clustering, Logistic
Regression (LR),
and Decision Tree
(DT)

DeepLog, LogRo-
bust, LogAnomaly,
PLELog, and CNN

Distinguishability [SKBB21]Not considered Not considered Considered
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assess the impact of log parsing accuracy. As a result, they only showed that
using different log parsing techniques leads to different anomaly detection
accuracy scores. In our study, on the other hand, we explicitly measured log
parsing accuracy, collected 160 pairs of log parsing accuracy and anomaly
detection accuracy values using different combinations of log parsing and
anomaly detection techniques, and showed that there is no strong correlation
between log parsing accuracy and anomaly detection accuracy.

During the writing of this thesis, Fu et al .[FYX+23] also presented an em-
pirical study on the impact of log parsing on anomaly detection performance.
Although their motivation and research questions are close to ours, there are
several key differences. First, for measuring log parsing accuracy, they used
the manually generated, error-prone oracle templates [KSBB22b] provided
with the 2K log messages randomly sampled by Zhu et al. [ZHL+19]. In
other words, only a very small fraction of the logs used for anomaly detec-
tion was used to measure log parsing accuracy in their study. In our study,
however, the same logs used for anomaly detection are used to measure log
parsing accuracy, and the oracle templates are directly extracted from the
corresponding source code. Second, they considered only one log parsing ac-
curacy metric (GA), whereas we considered all three log parsing metrics (GA,
PA, and TA) since different metrics assess complementary aspects of log pars-
ing, as mentioned in chapter 3. Third, log parsing distinguishability, which
is an essential factor that substantially affects anomaly detection accuracy (as
shown in our RQ2), is only considered in our study. Finally, they only con-
sidered two deep-learning-based anomaly detection techniques (DeepLog
and LogRobust), and focused also on more traditional machine learning ap-
proaches (such as Principal Component Analysis, clustering, logistic regres-
sion, and decision trees). Such differences allow us to report new findings
and provide concrete recommendations, as summarized in Section 5.5.

Wu et al. [WLK23] recently presented an empirical study on the effec-
tiveness of log representation for machine learning-based anomaly detec-
tion. They considered different log representation techniques, such as Fast-
Text [JGB+16], Word2Vec [MCCD13], TF-IDF [SB88] and BERT [DCLT18],
used to convert textual log data into numerical feature vectors for machine
learning algorithms, such as Support Vector Machine, Logistic Regression,
Random Forest, CNN, and LSTM. As a part of their study, they investigated
the impact of log parsing on anomaly detection when used with different log
representation techniques (in particular, FastText and Word2Vec). The empir-
ical results showed that, in general, using log parsing (i.e., Drain [HZZL17])
improves the quality of log representations (over raw, unparsed data) and
thereby the performance of anomaly detection; they also reported that some
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models (e.g., CNN and LSTM) are less sensitive to whether the log data is
parsed or not, possibly due to the strong feature extraction and representa-
tion ability, and can offset the impact of noise generated by log parsing. In
addition to these results, they also investigated the impact of additionally
refining log parsing results using regular expressions and the impact of us-
ing different log parsing techniques. The results showed that refining log
parsing results do not significantly increase anomaly detection performance
but using different log parsing techniques yields slight variations in anomaly
detection performance. However, for these additional investigations, they
used only one anomaly detection technique (i.e., Logistic Regression) and
two log parsing techniques (i.e., Drain [HZZL17] and LogPPT [LZ23]). Fur-
thermore, they did not study the relationship between log parsing accuracy
and anomaly detection accuracy. On the contrary, we use 13 log parsing tech-
niques and 5 DL-based anomaly detection techniques to comprehensively
investigate the relationship between log parsing accuracy and anomaly de-
tection accuracy.

Table 6.8 summarizes the key differences between the closely-related pre-
vious empirical studies (i.e., Le and Zhang [LZ22], Fu et al. [FYX+23]) and
our work.

5.7 Summary

In this chapter, we reported on a comprehensive empirical study investi-
gating the impact of log parsing on anomaly detection accuracy, using 13
log parsing techniques and five DL-based anomaly detection techniques on
two publicly available log datasets. When analyzing log parsing results for
anomaly detection, we were surprised not to find any significant relationship
between log parsing accuracy and anomaly detection accuracy, regardless of
the metric used for the former (including GA, PA, and FTA). This implies
that, as opposed to common research practice to date, we can no longer se-
lect a log parsing technique based on its accuracy when used for anomaly
detection. Instead, we experimentally confirmed existing theoretical results
showing that the distinguishability of log parsing results plays an essential
role in achieving accurate anomaly detection. It is therefore highly recom-
mended that in the future we rely on distinguishability to evaluate, compare,
and guide the development of log parsing techniques.
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Chapter 6

Deep Learning-Based Anomaly
Detection: A Comparison of
Non-Log-Parsing-Based and
Log-Parsing-Based Approaches

6.1 Overview

With the recent developments of many log-parsing techniques [JHFH08, HZZL17,
MZHM09, Shi16] and log-parsing-based anomaly detection techniques [ZXL+19,
MLZ+19, DLZS17] in the literature, the relationship between log parsing and
anomaly detection has gained more and more attention. For example, in
Chapter 4, we defined a theoretical framework for discussing ideal log pars-
ing results for anomaly detection. Specifically, we formalized the concepts
of distinguishability and minimality showing that log parsing results that
conforms to these two concepts between normal and abnormal logs achieve
the ideal operating conditions for anomaly detection. In Chapter 5, we thor-
oughly investigated the impact of log parsing on anomaly detection, and pro-
vided a comprehensive evaluation by quantitatively assessing the impact of
log parsing on anomaly detection accuracy. Other researchers also studied
the impact of log parsing on anomaly detection. Fu et al. [FYX+23] empiri-
cally investigated the impact of log parsing techniques on the effectiveness
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and efficiency of anomaly detection methods. Le and Zhang [LZ22] also em-
pirically showed that different log parsing techniques can affect anomaly de-
tection accuracy.

However, not all log-based anomaly detection techniques require log pars-
ing as a pre-processing step. One of the state-of-the-art anomaly detection
techniques, NeuralLog [LZ21], directly processes semi-structured logs. This
is done by representing log messages’ semantic information in the form of se-
mantic vectors, including information such as verbosity level and component
information. These semantic vectors are then used by the Transformer-based
classification model to capture the contextual information from the log se-
quences and to detect anomalies. This brings a clear advantage over the other
log-parsing-based techniques in that it is not affected by log parsing. How-
ever, the use of semantic information recorded in log messages would require
significant computations, which might result in a scalability issue. Neverthe-
less, how the log-parsing-based and non-log-parsing-based anomaly detec-
tion techniques fare in terms of accuracy and execution time remains unclear.

In this chapter, we comprehensively compare one state-of-the-art non-
log-parsing-based technique (NeuralLog [LZ21]) and five widely used log-
parsing-based anomaly detection techniques (DeepLog [DLZS17], LogAnomaly [MLZ+19],
LogRobust [ZXL+19], PLELog [YCW+21], and CNN [LWLW18]) in combina-
tion with two different state-of-the-art log parsing techniques (Drain [HZZL17]
and LogPPT [LZ23]) using eight datasets (HDFS, HDFS US, Hadoop, Hadoop
US, BGL, Spirit, Thunderbird, and Thunderbird US, where US stands for
under-sampled datasets).

We will focus on anomaly detection accuracy and execution time but ad-
ditionally consider other elements (e.g., the number of log templates) to fur-
ther investigate the results. To this end, we aim to guide practitioners in
selecting the most suitable anomaly detection technique for their specific use
cases.

The remainder of the chapter is organized as follows: Section 6.2 dis-
cusses the motivation of the study. Section 6.3 describes the evaluation sub-
jects, including the datasets utilized, and anomaly detection techniques used.
Section 6.4 presents the experimental results. Section 6.5 discusses the find-
ings and implications derived from the experiments conducted. Section 6.6
reviews the related work. Finally, Section 6.7 concludes the chapter.

6.2 Motivation

Many log-parsing-based anomaly detection techniques have been proposed
in the literature [DLZS17, ZXL+19, YCW+21, LWLW18]. As mentioned in
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chapter 2, these anomaly detection techniques require pre-processing log data
to extract essential patterns or features prior to applying anomaly detection
algorithms. Transforming semi-structured or free-formed log data into a
more structured representation using log parsing might enhance the perfor-
mance of anomaly detection techniques by utilizing not all the data available
in logs, but only the event template IDs identified [LWLW18, DLZS17] or the
semantic information in event templates [ZXL+19, YCW+21].

While these anomaly detection techniques have demonstrated promising
results, certain limitations still remain. One of the limitations of log-parsing-
based techniques is that they incur into pre-processing (log-parsing) over-
head, which can be time-consuming, specifically when dealing with large
amounts of log data. Moreover, the accuracy of these methods might rely
on the accuracy of the log parsing process. However, as mentioned in chap-
ter 5, there is no significant relationship between log parsing accuracy and
anomaly detection accuracy, regardless of the log parsing accuracy metric
used.

To investigate alternative approaches and alleviate the limitations of log-
parsing-based techniques, Le and Zhang [LZ21] proposed an anomaly detec-
tion technique called NeuralLog. What distinguishes NeuralLog from log-
parsing-based techniques is its ability to perform anomaly detection without
requiring log parsing as a pre-processing step. By leveraging neural net-
work architectures and transformers, NeuralLog claims more accurate and
streamlined anomaly detection while avoiding the overhead associated with
log preprocessing. They compared NeuralLog accuracy with traditional ma-
chine learning techniques, such as Support Vector Machine (SVM), Logistic
Regression (LR), Invariant Mining (IM), Log2Vec, and a deep-learning-based
technique called LogRobust. Their results show that NeuralLog is more ac-
curate than the others.

However, using one deep-learning-based technique to compare is not
enough to generalize the results, and thus it is crucial to compare more deep-
learning-based anomaly detection techniques to have a fair evaluation ground
for comparison. To this end, we define our first research question as follows:
How does the accuracy of anomaly detection compare between non-log-
parsing and log-parsing-based techniques? Furthermore, although Neural-
Log offers improved accuracy, Le and Zhang [LZ21] did not consider com-
paring anomaly detection efficiency, an important factor in real-time-based
anomaly detection use cases. Therefore, we define our second research ques-
tion as follows: How does the efficiency of anomaly detection compare be-
tween non-log-parsing and log-parsing-based techniques?

By evaluating the efficiency and accuracy of the two approaches, we in-
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tend to provide valuable insights into their respective limitations and strengths.
This comprehensive empirical study aims to serve as a guide for selecting the
most suitable anomaly detection technique based on specific constraints and
requirements. For example, applications or industries with strict real-time
processing demands might benefit from the efficiency gains of a certain tech-
nique; on the other hand, those requiring precise log data understanding may
still depend on log-parsing-based techniques.

Furthermore, the insights acquired from this study could motivate the de-
velopment of hybrid approaches that exploit the strengths of non-log-parsing-
based and log-parsing-based techniques. By bringing together the advan-
tages of each approach, researchers may develop more sophisticated and ro-
bust anomaly detection techniques capable of handling the challenges im-
posed by log data volumes being generated in vast quantities.

6.3 Evaluation Subjects

6.3.1 Datasets

To answer the research questions, we used publicly accessible datasets from
the LogHub benchmark [HZHL20]. This benchmark encompasses an ex-
tensive selection of log messages originating from diverse system types, in-
cluding operating systems (Linux, Windows, and Mac), distributed systems
(BGL, Hadoop, HDFS, Thunderbird, and OpenStack), standalone programs
(Zookeeper, and Proxifier), as well as mobile systems (Android). Among
them, we selected five datasets (HDFS, OpenStack, Hadoop, Thunderbird,
and BGL), since each log message in these datasets is manually labeled as nor-
mal or anomaly, which is necessary for anomaly detection models based on
supervised learning [ZXL+19, LZ21]. Furthermore, their widespread adop-
tion in the research community emphasizes their reliability and comprehen-
siveness. Using these datasets ensures a solid foundation for our research.

Among the five datasets, we had to exclude OpenStack because none of
the anomaly detection techniques detected any anomalies in the OpenStack
logs due to the very small number of abnormal logs. Instead, we included the
Spirit dataset [OS07], following a recently published paper [LZ22], to make
our study more comprehensive.

For the remaining five datasets (HDFS, Hadoop, Thunderbird, BGL, and
Spirit), we additionally generated variants of them using undersampling.
Undersampling is a technique to balance the majority and minority classes
in a training dataset in machine learning. We had to apply undersampling
to the original datasets because only NeuralLog internally performs a spe-
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cific undersampling1, which introduces a significant bias by modifying the
training dataset. Specifically, NeuralLog undersampling consists of two con-
ditions i.e., (i) if the dataset contains more normal instances than abnormal in-
stances, then limit the normal instances to five times the number of abnormal
instances, and (ii) if the dataset contains more abnormal instances than nor-
mal instances, then limit abnormal instances equal to the number of normal
instances. For example, Thunderbird has 7971548 and 28432 normal and ab-
normal logs, respectively, in a training set, so the number of normal logs is re-
duced to 142160 (= 28432×5) after the undersampling. Furthermore, Neural-
Log performs the special undersampling for supercomputer datasets (BGL,
Spirit, Thunderbird), although (1) Hadoop and HDFS also meet the condi-
tion for doing so, and (2) BGL and Spirit are not impacted by the undersam-
pling. To address such issues, we decided to apply the same undersampling
to all datasets consistently, resulting in new datasets dubbed Thunderbird-
US, Hadoop-US, and HDFS-US, where US refers to the undersampled ver-
sion. As a result, we have eight datasets (five original datasets and three US
datasets). This allows us to use the same datasets for all anomaly detection
techniques.

Table 6.1 provides detailed information about these datasets, in terms of
the number of all messages (Mall ), number of templates identified by Drain
(TDrain) [HZZL17], number of templates identified by LogPPT (TLogPPT ) [LZ23],
grouping strategy used, the number of all logs (Lall ), the number of normal
logs (Ln ), the number of abnormal logs (La ), the total number of instances
in the training set (TRtot), the number of normal instances in the training set
(TRnor), the number of abnormal instances in the training set (TRabn), the
total number of instances in the testing set (TStot), the number of normal in-
stances in the testing set (TSnor), and the total number of abnormal instances
in the testing set (TSabn). Note that TRtot and TStot are based on log parsing
results divided into two disjoint sets of training and testing using 80 and 20
ratios respectively, and the number of log messages is the same as the number
of log entries (see Chapter 2 for details).

6.3.2 Anomaly Detection Techniques

Our study involves a comparison between log-based anomaly detection tech-
niques and non-log-based anomaly detection techniques. To achieve this,
we leveraged five deep learning DL-based anomaly detection techniques:

1Although the specific undersampling of NeuralLog is not mentioned in the paper [LZ21],
it is implemented in the code [ZL21] in a way that it is enabled only for BGL, Spirit, and
Thunderbird logs.
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Table 6.1: Log datasets

Dataset Mall TDrain TLogPPT Grouping Strategy Lall Ln La TRtot TRnor TRabn TStot TSnor TSabn

HDFS 11,175,629 48 54 Session ID 575061 558223 16838 460048 446578 13470 115013 111645 3368

HDFS US 11,175,629 48 54 Session ID 195833 178995 16838 80820 67350 13470 115013 111645 3368

Hadoop 109,968 188 740 Session ID 54 11 43 42 8 34 12 3 9

Hadoop US 109,968 188 740 Session ID 28 11 17 16 8 8 12 3 9

BGL 4,747,963 631 1549 Sliding Wind. 899960 653391 246569 719980 481540 238440 179980 171851 8129

Spirit 7,983,345 1538 - Sliding Wind. 7983305 6343005 1640300 6386656 4755160 1631496 1596649 1587845 8804

Thunderbird 10,000,000 2641 1813 Sliding Wind. 9999960 9970615 29345 7999980 7971548 28432 1999980 1999067 913

Thunderbird US 10,000,000 2641 1813 Sliding Wind. 2170572 2141227 29345 170592 142160 28432 1999980 1999067 913

DeepLog [DLZS17], LogAnomaly [MLZ+19], LogRobust [ZXL+19], PLELog [YCW+21],
and CNN [LWLW18] on eight datasets. These techniques are considered
representative of the current state-of-the-art in DL-based anomaly detection.
For non-log-parsing-based techniques, we identified three anomaly detection
techniques (NeuralLog [LZ21], Logsy [NBA+20a], and HEART [MBJV23]),
for which the source code is available. For all the anomaly detection tech-
niques, we used their default parameters.

6.4 Experiments

6.4.1 RQ1: How does the accuracy of anomaly detection (AD)
compare between non-log-parsing and log-parsing-based
techniques?

6.4.1.1 Methodology

To answer RQ1, for each dataset, we executed the log parsing techniques
(Drain and LogPPT) to generate the log parsing results, as the input of log-
parsing-based anomaly detection techniques requires the sequence of iden-
tified templates. We selected Drain since it is the most widely used and ac-
curate log parsing technique on many datasets based on the results provided
by Zhu et al. [ZHL+19], Le and Zhang [LZ23] and in chapter 3. We also
selected LogPPT, since it has been recently proposed [LZ23], showing high
accuracy results.

Note that, we did not consider the Spirit dataset for LogPPT and thus
no results are available in Table 6.3. The reason is that LogPPT requires
shots (oracle templates), as it is few-shots based log-parsing technique, and
as mentioned in section 6.3.1, Spirit dataset is not included in the LogHub
benchmark, thus we do not have oracle templates (or shots) available. Ad-
ditionally, log parsing is not required for the under-sampled datasets since
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under-sampling is applied to the log parsing results.
For each log-parsing-based anomaly detection technique, we divided each

log parsing result into two disjoint sets: a training set and a testing set with
a ratio of 80:20. Similarly, for non-log-parsing-based anomaly detection tech-
niques (NeuralLog, Logsy, and HEART), we also divided the dataset into two
disjoint sets of 80% training and 20% testing set, as suggested in the RQ1 of
reference [LZ21]. We trained the anomaly detection techniques on each of the
training sets and used the corresponding test sets to compute the precision,
recall, and F1score ⟨PR,RE ,F1 ⟩. To account for the randomness of anomaly
detection techniques, we repeated the training and testing process five times
and used the average F1 score.

The experiments presented in this chapter were carried out using the HPC
facilities of the University of Luxembourg (see http://hpc.uni.lu).

6.4.1.2 Results

Table 6.2 and Table 6.3 show the anomaly detection accuracy values along
with the datasets and the number of templates identified by Drain and LogPPT,
respectively; Table 6.4 shows the anomaly detection accuracy for non-log-
parsing-based anomaly detection techniques. We can see that NeuralLog fails
to detect any anomaly on the Hadoop and Hadoop US datasets; the reason
is possibly due to a low number of log sequences in the training data, as
shown in Table 6.1. HEART did not complete the execution for the HDFS,
BGL, Spirit, and Thunderbird datasets due to their large size. This limitation
is attributed to HEART’s reliance on a transformer-based model, as the com-
putational intensity of transformer-based models, characterized by a large
number of parameters, poses challenges when handling extensive datasets.
Moreover, LogRobust gives out-of-memory (OOM) error on the BGL, Spirit,
Thunderbird, and Thunderbird US datasets. The reason is the use of se-
mantic information: initially, each word is replaced with FastText word vec-
tors [JGB+16]; later, event templates are transformed into a word vectors list.
Next, LogRobust represents a log event as a fixed-dimension vector by aggre-
gating all word vectors. LogRobust applies weighted aggregation using TF-
IDF [GdSTC23] which is a widely-used method in information retrieval. The
TF-IDF weight can effectively measure the importance of words in sentences,
while it is memory memory-intensive task, and consumes a lot of memory,
due to a high number of identified templates as shown in Table 6.1.

By looking at the average F1-score row of Table 6.2, Table 6.3, and Ta-
ble 6.4, we can see that non-log-parsing-based techniques generally exhibit
higher anomaly detection accuracy than log-parsing-based anomaly detec-
tion techniques. For instance, NeuralLog is the most accurate with an aver-
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Table 6.2: Anomaly Detection (AD) accuracy comparison results [Drain]

Deeplog LogAnomaly LogRobust CNN PLELog

Datasets PR RE F1 PR RE F1 PR RE F1 PR RE F1 PR RE F1

HDFS 0.8168 0.8991 0.8544 0.2578 0.7332 0.3814 0.9058 0.9762 0.9388 0.9422 0.9749 0.9569 0.8561 0.6391 0.7154

HDFS US 0.8525 0.8935 0.8722 0.2555 0.7420 0.3800 0.8020 0.9777 0.8811 0.8020 0.9790 0.8817 0.9659 0.6039 0.7427

Hadoop 0.9000 1.0000 0.9474 0.9000 1.0000 0.9474 0.9000 1.0000 0.9474 0.9000 1.0000 0.9474 0.7394 1.0000 0.8499

Hadoop US 0.9000 1.0000 0.9474 0.9000 1.0000 0.9474 0.9000 1.0000 0.9474 0.9000 1.0000 0.9474 0.7475 0.9500 0.8347

BGL 0.1822 0.9881 0.3076 0.1614 1.0000 0.2779 - - OOM 0.7409 0.7033 0.7159 0.6920 0.7861 0.7358

Spirit 0.3139 1.0000 0.4779 0.3138 1.0000 0.4777 - - OOM 0.9870 0.9761 0.9816 0.9347 0.9021 0.9181

Thunderbird 0.1566 1.0000 0.2708 0.1566 1.0000 0.2708 - - OOM 0.5313 0.9385 0.6750 0.6240 0.1133 0.1870

Thunderbird US 0.1566 1.0000 0.2708 0.1566 1.0000 0.2708 - - OOM 0.4753 0.9538 0.6101 0.0000 0.0000 0.0000

Average 0.5348 0.9726 0.6186 0.3877 0.9344 0.4942 0.8770 0.9885 0.9287 0.7848 0.9407 0.8395 0.6949 0.6243 0.6229

Std Deviation 0.3598 0.0473 0.3150 0.3213 0.1215 0.2887 0.0500 0.0133 0.032 0.1907 0.0982 0.1483 0.3046 0.3784 0.3375

age 98% F1-score on six datasets (HDFS, HDFS US, BGL, Spirit, Thunderbird,
and Thunderbird US) out of eight datasets. Following closely is Logsy, rank-
ing as the second most accurate anomaly detection technique with a 97%
F1-score. HEART, as a non-log-parsing technique, achieves an average F1-
score of 79.7% across four datasets (HDFS US, Hadoop, Hadoop US, and
Thunderbird) out of eight datasets. Although it attains a high accuracy of
99.9% on the Thunderbird US dataset, its accuracy falls below 74% on the
remaining three datasets, resulting in relatively lower accuracy. LogRobust
is the third most accurate anomaly detection technique with 92.8% F1-score
on four datasets (HDFS, HDFS US, Hadoop, and Hadoop US). In compari-
son, Logsy, DeepLog, LogAnomaly, CNN, and PLELog achieve an average
F1-score of 61.8%, 49.4%, 83.9%, and 62.2%, respectively, using log parsing
results from Drain. Meanwhile, their F1-scores drop to 45.9%, 37%, 51.6%,
and 35.4%, respectively, when using log parsing results from LogPPT.

To conclude, the answer to RQ1 is that the non-log-parsing-based anomaly
detection techniques achieves the highest average F1 score. Although LogRo-
bust achieves on average 92.8% while it does not detect any anomaly on four
out of eight datasets. NeuralLog, Logsy, and HEART also does not require
any pre-processing step, making them even more usable. Thus, NeuralLog,
and Logsy are better than the log-parsing-based AD techniques in terms of
accuracy. HEART, a non-log-parsing-based anomaly detection technique,
achieves high accuracy of 99.9% on the Thunderbird US dataset. However, it
fails to detect anomalies on four out of eight datasets due to timeouts, making
it less practical for real-world applications.
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Table 6.3: Anomaly Detection (AD) accuracy comparison results [LogPPT]

Deeplog LogAnomaly LogRobust CNN PLELog

Datasets PR RE F1 PR RE F1 PR RE F1 PR RE F1 PR RE F1

HDFS 0.6202 0.4624 0.5074 0.1566 0.3684 0.2197 0.8058 0.4732 0.5897 0.6459 0.5132 0.5357 0.6202 0.4624 0.5074

HDFS US 0.6140 0.4649 0.5112 0.1361 0.3301 0.1925 0.5824 0.5996 0.5353 0.4227 0.5761 0.4839 0.9744 0.5794 0.7246

Hadoop 0.9000 1.0000 0.9474 0.9000 1.0000 0.9474 0.9000 1.0000 0.9474 0.9000 1.0000 0.9474 0.9000 1.0000 0.9474

Hadoop US 0.9000 1.0000 0.9474 0.9000 1.0000 0.9474 0.9000 1.0000 0.9474 0.9000 1.0000 0.9474 0.0000 0.0000 0.0000

BGL 0.1771 0.9881 0.3003 0.1666 0.9974 0.2855 - - OOM 0.7839 0.6781 0.7029 0.1771 0.9881 0.3003

Spirit - - - - - - - - - - - - - - -

Thunderbird 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - - OOM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Thunderbird US 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - - OOM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.4587 0.5593 0.4591 0.3227 0.5280 0.3704 0.7971 0.7682 0.75495 0.5218 0.5382 0.5168 0.3817 0.4328 0.3542

Std Deviation 0.3958 0.4502 0.3934 0.4003 0.4633 0.4086 0.1498 0.2726 0.223329122 0.3926 0.4138 0.3960 0.4389 0.4499 0.3855

Table 6.4: Anomaly Detection (AD) accuracy comparison results (non-log-
parsing-based)

NeuralLog Logsy HEART

Datasets PR RE F1 PR RE F1 PR RE F1

HDFS 0.9998 0.9998 0.9998 0.9990 1.0000 0.9995 - - -

HDFS US 0.9783 0.8273 0.8912 0.9993 1.0000 0.9997 0.9948 0.5834 0.7352

Hadoop NaN 0.0000 NaN 0.8577 1.0000 0.9234 0.9932 0.5743 0.7276

Hadoop US NaN 0.0000 NaN 0.8923 0.8813 0.8645 0.9807 0.5883 0.7282

BGL 0.9972 0.9998 0.9985 0.9509 1.0000 0.9748 - - -

Spirit 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 - - -

Thunderbird 0.9999 0.9999 0.9999 0.9999 1.0000 1.0000 - - -

Thunderbird US 0.9998 0.9926 0.9962 0.9999 1.0000 1.0000 1.0000 0.9989 0.9994

Average 0.9958 0.9699 0.9809 0.9624 0.9852 0.9702 0.9922 0.6862 0.7976

Std Deviation 0.0086 0.0699 0.0440 0.0535 0.0393 0.0471 0.0071 0.1806 0.1166
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6.4.2 RQ2: How does the efficiency of anomaly detection (AD)
compare between non-log-parsing and log-parsing-based
techniques?

6.4.2.1 Methodology

To answer RQ2, we followed the same methodology used for RQ1; distinctly,
we calculated the execution time of each anomaly detection technique on
each dataset used. As mentioned in section 6.4.1.1, to account for the random-
ness of anomaly detection techniques, we repeated the training and testing
process five times and provided the average execution time for each anomaly
detection technique for each dataset used.

6.4.2.2 Results

Table 6.5 and Table 6.6 show the execution time of Drain and LogPPT, respec-
tively, for each dataset (in seconds) as well as the execution time of anomaly
detection techniques (in seconds) for log-parsing-based anomaly detection
techniques. Specifically, under each anomaly detection technique column,
there are four sub-columns: TR indicates the training time of the model,
TST indicates the testing time, TOT represents the total time taken by the
model for the training and testing phase, and TDrain or TLogPPT represents
the model’s total training and testing time, including the Drain or LogPPT
execution time, as log-parsing execution time should be included for log-
parsing-based anomaly detection techniques. Table 6.7 shows the execution
time of non-log-parsing-based anomaly detection techniques; similar to the
previous tables, under each anomaly detection technique column, there are
three sub-columns: TR, TST , and TOT . Table 6.5 and Table 6.6 lack re-
sults for LogRobust on BGL, Spirit, Thunderbird, Thunderbird-US, as well as
LogPPT on Spirit, respectively. The absence of these results is attributed to
the same reasons explained in Section 6.4.1. Additionally, Table 6.7 does not
include results for HEART on HDFS, BGL, Spirit and Thunderbird datasets
due to an execution timeout.

If we look at the average execution time row, we can notice that the non-
log-parsing-based anomaly detection techniques are the least efficient tech-
niques with an average execution time of 10 579 seconds (2 h : 56min : 19 s)
for NeuralLog, 26 965 seconds (7 h : 29min : 25 s) for Logsy, and 34 278 sec-
onds (9 h : 31min : 18 s). In contrast, all log-parsing-based anomaly detec-
tion techniques complete execution in less than 2088 seconds (0 h : 34min :
0 s) on average, with LogAnomaly requiring the longest time. The slower
performance of non-log-parsing-based anomaly detection techniques can be
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Table 6.5: Anomaly Detection (AD) efficiency comparison results [Drain]
Deeplog LogAnomaly LogRobust CNN PLELog

Datasets Drain Ex. TR TST TOT TDrain TR TST TOT TDrain TR TST TOT TDrain TR TST TOT TDrain TR TST TOT TDrain

HDFS 1535 810 12 823 2358 431 5 436 1971 400 4 404 1939 175 1 176 1711 114 6 120 1655
HDFS US 1535 830 13 843 2378 74 5 78 1613 69 4 73 1608 1711 30 1 31 132 7 139 1674
Hadoop 20 2 0 2 22 23 1 24 44 34 1 35 55 10 0 10 30 0 0 0 20

Hadoop US 20 2 0 2 22 13 1 14 34 13 1 14 34 4 0 4 24 0 0 0 20
BGL 578 622 9 631 1209 1383 17 1400 1978 - - - OOM 557 5 563 1141 319 21 340 918
Spirit 1538 833 25 858 2396 1996 52 2048 3586 - - - OOM 812 17 828 2366 339 41 380 1918

Thunderbird 1587 1126 42 1168 2755 2391 86 2476 4063 - - - OOM 1013 28 1042 2629 483 187 670 2257
Thunderbird US 1587 815 43 859 2445 1745 87 1833 3419 - - - OOM 2629 524 27 551 201 197 398 1985

Average 1050 630 18 648 1698 1007 31 1038 2088 129 2 131 909 863 75 331 1060 198 57 255 1305

Std Deviation 720 411 17 424 1128 981 37 1015 1538 182 1 183 1007 917 181 421 1072 171 84 232 882

attributed to two main factors: (1) they leverage additional data, beyond log
messages; for example NeuralLog uses verbosity and component-specific in-
formation, to facilitate the extraction of semantic information and (2) they
are based on transformer models, which have a significantly larger number
of parameters, requiring more computational resources and time for train-
ing. However, despite non-log-parsing-based techniques being inefficient,
they can still be considered for real-time-based anomaly detection, if model
training can be done in an offline manner because, as shown in Table 6.7,
model testing does not take much time.

By looking at the under-sampled datasets, we can notice that the model
training time decreases compared to the non-under-sampled datasets. For ex-
ample, the model training time of NeuralLog is reduced from 14 818 seconds
for HDFS dataset to 2824 seconds for HDFS-US, and from 22 005 seconds for
the Thunderbird dataset to 410 seconds for Thunderbird-US respectively as
shown in Table 6.7. This is because Neurallog is fast when undersampling
reduces the training dataset size; this is also why NeuralLog is reported as
fast in the corresponding paper [LZ21].

To conclude, the answer to RQ2 is that the non-log-parsing-based tech-
niques are generally less efficient. This presents a trade-off when selecting an
anomaly detection technique based on the desired balance between accuracy
and efficiency. NeuralLog is recommended for scenarios where efficiency is
not a critical factor, such as in quality control or environment monitoring,
where batch processing or delayed analysis is acceptable. If NeuralLog’s or
Logsy’s model training can be conducted offline, they could be suitable for
real-time anomaly detection use cases.

6.4.3 Threats to Validity

Individual anomaly detection techniques have pre-defined hyper-parameters,
which might affect the anomaly detection accuracy results. To mitigate this,
we used the same hyper-parameter values proposed by the authors, when
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Table 6.6: Anomaly Detection (AD) efficiency comparison results [LogPPT]
Deeplog LogAnomaly LogRobust CNN PLELog

Datasets LogPPT Ex. TR TST TOT TLogPPT TR TST TOT TLogPPT TR TST TOT TLogPPT TR TST TOT TLogPPT TR TST TOT TLogPPT

HDFS 5708 729 14 743 6451 248 2 250 5957 229 1 230 5938 84 0 84 5792 105 4 109 5817
HDFS US 5708 467 9 475 6183 47 2 49 5757 70 2 72 5780 27 1 28 5735 105 4 109 5816
Hadoop 234 2 0 2 236 54 1 55 289 39 1 40 274 24 1 25 259 0 0 0 234

Hadoop US 234 2 0 2 236 11 1 12 245 15 1 16 250 4 0 4 238 0 0 0 234
BGL 2902 572 9 581 3483 1372 17 1390 4292 - - - OOM 1320 21 1340 4242 382 26 408 3310
Spirit - - - - - - - - - - - - - - - - - - - - -

Thunderbird 5971 362 2 365 6335 838 4 842 6813 - - - OOM 271 1 272 6243 389 51 440 6411
Thunderbird US 5971 314 2 316 6286 759 5 764 6734 - - - OOM 460 3 463 6434 91 53 144 6115

Average 3818 350 5 355 4173 476 5 480 4298 88 1 90 3061 313 4 317 4135 153 20 173 3991

Std Deviation 2675 274 5 279 2882 523 6 529 2876 96 1 96 3232 474 8 481 2746 165 24 180 2761

Table 6.7: Anomaly Detection (AD) efficiency comparison results (non-log-
parsing-based)

NeuralLog Logsy HEART

Datasets TR TST TOT TR TST TOT TR TST TOT

HDFS 14818 143 14961 40823 598 41422 - - -
HDFS US 2824 143 2967 38570 509 39079 76144 9801 85945
Hadoop 10 1 10 828 3 831 1579 99 1677

Hadoop US 9 1 9 637 3 640 1573 99 1672
BGL 20685 208 20893 44501 349 44850 - - -
Spirit 22786 203 22989 71149 429 71577 - - -

Thunderbird 22005 203 22208 8248 282 8529 - - -
Thunderbird US 410 186 595 8507 286 8793 38918 8901 47819

Average 10443 136 10579 26658 307 26965 29554 4725 34278

Std Deviation 10600 87 10663 25782 216 25945 35702 5354 40738

available; otherwise, we ran preliminary experiments and used the values
that resulted in the same results reported in the corresponding papers.

Using a particular collection of log datasets poses a potential risk to the
external validity of the study. We considered to include the logs of various
systems, we selected HDFS, Hadoop, Spirit, Thunderbird, and BGL to make
our study as comprehensive as possible. Even though the selected datasets
have been widely used in existing literature [LZ22, WLK23] on log-based
anomaly detection, they may not encompass a variety of log data charac-
teristics. Further experiments with different datasets might be required to
improve the generalizability of the provided results.

As mentioned in section 6.3.1, we used under-sampling that reduces the
number of normal/abnormal instances in the datasets to make it balanced.
However, the selection process of instances to be kept is random to remove
any bias. This might be an internal threats-to-validity.
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6.5 Findings and Implications

One of the interesting results from our evaluation is that the non-log-parsing
based anomaly detection techniques accuracy is significantly higher than the
log-parsing-based anomaly detection techniques, while there is a trade-off
between anomaly detection accuracy and efficiency. NeuralLog is recom-
mended if the efficiency is not important, such as quality control or environ-
ment monitoring, where batch processing or delayed analysis is acceptable.
Additionally, if the NeuralLog’s model training can be done offline then it
will be considered both accurate and efficient at the same time, and hence
can be used in real-time anomaly detection use case.

Though the objective of our study is not to see the impact of using differ-
ent log-parsing techniques on the impact of accuracy or efficiency of anomaly
detection techniques, we added two log-parsing techniques to provide in-
sight. We found that the non-log-parsing-based anomaly detection technique
is much slower than the log-parsing-based anomaly detection techniques re-
gardless of log parsing results.

6.6 Related Work

To the best of our knowledge, very few empirical studies exist that compare
the non-log-parsing-based and log-parsing-based anomaly detection tech-
niques. Below we summarize the recent related studies.

Le and Zhang [LZ21], the authors of NeuralLog (non-log-parsing based
anomaly detection technique), mainly focused on comparison with tradi-
tional machine learning models, for example, Support Vector Machine (SVM),
Logistic Regression (LR), Invariant Mining (IM), and focused on two deep-
learning based techniques, i.e., Log2Vec and LogRobust. On the contrary, we
considered six deep-learning based anomaly detection techniques, namely
DeepLog, LogAnomaly, LogRobust, PLELog, CNN and NeuralLog. Addi-
tionally, their evaluation is based on four publicly available datasets, HDFS,
BGL, Thunderbird, and Spirit, while as mentioned in section 6.3.1, we evalu-
ated the used techniques on eight datasets, making our study as comprehen-
sive as possible. NeuralLog mainly focuses on (i) evaluating the effectiveness,
i.e., can NeuralLog effectively work on publicly available log datasets, (ii) the
ability of NeuralLog to capture the semantic meaning of log messages, and
(iii) effectiveness of NeuralLog under different settings, for example by re-
placing the BERT model with Roberta [CKG+19] and GPT2 [RWC+19] model.
We mainly focused on the accuracy and efficiency of anomaly detection tech-
niques.
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Table 6.8: Comparison with related empirical studies

Papers Techniques Datasets Source Code

Le and Zhang.
[LZ21]

Support Vector
Machine (SVM),
Logistic Regression
(LR), Invariant Min-
ing (IM), Log2Vec
and LogRobust

HDFS, BGL, Thun-
derbird, Spirit,

Available

Chen and
Liao [CL22]

PCA, IM, Log-
Cluster, SVM,
LR, LAnoBERT,
UniLog, DeepLog,
LogRobust, and
NeuralLog

HDFS, BGL Not Available

Tian et al. [TLWS23] Support Vector
Machine (SVM),
LogAnomaly,
DeepLog, Hi-
tAnomaly, CNN,
NeuralLog, LogRo-
bust

HDFS, BGL Not Available

Egerdoerfer et
al. [EZD22]

ClusterLog,
DeepLog, and
NeuralLog

HDFS, Lustre Not Available

Our Work DeepLog,
LogAnomaly,
LogRobust,
PLELog, CNN,
NeuralLog, Logsy,
and HEART

HDFS, HDFS US,
Hadoop, Hadoop
US, BGL, Thunder-
bird, Thunderbird
US, Spirit

Will be made avail-
able

Chen and Liao [CL22] recently proposed an anomaly detection approach
called BERT-Log. It regards the log sequence as a natural language sequence
and uses a pre-trained language model to learn the semantic representation
of normal and anomalous logs. Their evaluation is based on a comparison
of accuracy, different scales or sizes of datasets, and classification effect and
did not evaluate an important factor such as efficiency. Additionally, as com-
pared to traditional machine learning models, they utilized deep-learning-
based models such as DeepLog, LogRobust, and NeuralLog, but they only
used two datasets for the evaluation such as HDFS, and BGL. We did not
use BERT-Log in our evaluation study because the authors did not make the
source code available.

Tian et al. [TLWS23] proposed a technique called CLDTLog, which in-
troduces contrastive learning and dual-objective tasks in a BERT pre-trained
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model and performs anomaly detection on system logs through a fully con-
nected layer. Their approach does not require log parsing and thus can avoid
the uncertainty caused by log parsing. They compared the accuracy of their
technique with Support Vector Machine (SVM), LogAnomaly, DeepLog, Hi-
tAnomaly, CNN, NeuralLog, and LogRobust using only two datasets, i.e.,
HDFS and BGL, therefore the results can not be generalized due to very few
data points. Additionally, they compared different factors such as the impact
of log sequence length on CLDTLog using the BGL dataset, and the perfor-
mance generalization of CLDTLog, and CLDTLog uncl (CLDTLog without
contrastive learning) using the BGL dataset. We did not use BERT-Log in our
evaluation study because the authors did not make the source code available.

Egersdoerfer et al. [EZD22] proposed ClusterLog, a log pre-processing
method that clusters the temporal sequence of log keys based on their seman-
tic similarity. By grouping semantically and sentimentally similar logs, this
approach aims to represent log sequences with the smallest amount of unique
log keys, intending to improve the ability of a downstream sequence-based
model to effectively learn the log patterns. They compared the accuracy of
ClusterLog with DeepLog, and NeuralLog with different hyper-parameter
values using only two datasets i.e., HDFS, and Lustre. They also compared
their technique with DeepLog, and NeuralLog using different training dataset
sizes. We attempted to utilize the source code provided for the Cluster-
Log [CE23], but unfortunately, we encountered a broken or non-working link
when we accessed it on September 02, 2023.

Table 6.8 summarizes the key differences between the closely related stud-
ies and our work.

6.7 Summary

In this chapter, we provided a comprehensive empirical study comparing
the accuracy and efficiency of non-log-parsing-based and log-parsing-based
anomaly detection techniques. We used two log parsing techniques, eight
datasets, and six deep-learning-based anomaly detection techniques. While
analyzing the results for research questions, it became evident that though
the non-log-parsing-based anomaly detection technique exhibited superior
accuracy in the datasets we analyzed, its efficiency falls short, which could
limit its practicality for real-time applications when such efficiency is required.
This implies that the non-log-parsing-based anomaly detection technique should
be considered where appropriate, for example, in use cases where accuracy is
essential. It is worth noticing that NeuralLog’s model training phase can be
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done offline and not frequently, making the non-log-parsing based technique
useful, where the tradeoff can be diminished to some extent.
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Chapter 7

Conclusions & Future Work

7.1 Summary of the contributions

Software logs play a crucial role in numerous software engineering tasks,
such as model inference [WTD16, MPS17] and anomaly detection [NMA+16,
DLZS17], since logs are the sole source of data available that captures the
run-time behavior of a software system. While log messages contain valu-
able run-time information, they cannot be directly processed by log-based
analysis techniques such as log-based anomaly detection techniques to auto-
matically detect if the logs contain any anomalous patterns that do not con-
form to the expected behavior of the system [HHC+21]. Log message tem-
plate identification aims to address the issue by decomposing log messages
into fixed parts called message templates (templates, in short), characteriz-
ing the event types, and variable parts containing the parameter values of
the events, which are determined at run time. Though different log-parsing
accuracy metrics have been proposed in the literature to evaluate the log-
parsing accuracy, it is necessary to use appropriate accuracy metric for fair
comparison.

Additionally, log-parsing being preliminary step for log-based anomaly
detection techniques, one can speculate the impact of log-parsing on log-
based anomaly detection techniques. Thus, it is essential to investigate the
impact through an empirical study and provide insightful implications. More-
over, recently, a technique called NeuralLog [LZ21] is proposed that does not
use log-parsing as a pre-processing step, that rules-out the impact or log-
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parsing, so one can speculate that non-log-parsing-based technique might
be more accurate than log-parsing-based anomaly detection techniques, and
might be efficient as well. Hence, in depth analysis is required to validate the
speculation.

In this thesis we have made the following contributions:

1. We assessed and compared different log parsing techniques and pro-
vided guidelines for evaluating the accuracy of log parsing techniques
considering different use cases.

2. We proposed a theoretical framework for understanding the relation-
ship between log parsing and anomaly detection, formally defining the
concepts of distinguishability and minimality of ideal log parsing results.

3. We performed a comprehensive empirical study investigating the im-
pact of log parsing on anomaly detection accuracy.

4. We performed a comprehensive empirical study comparing the accu-
racy and efficiency of log-parsed-based and non-log-parsing-based anomaly
detection techniques.

The first contribution focuses on providing the guidelines for assessing
the accuracy of log message template identification techniques and assessing
the application of such guidelines through comprehensive evaluation using
14 existing log-parsing techniques and 16 datasets. More specifically, we de-
fined a new accuracy metric called Template Accuracy (TA) and provided
guidelines for using more appropriate metrics depending on the nature of
the software engineering task. We also proposed a set of heuristic rules to
correct the oracle templates, as based on manual analysis we found out that
the provided oracle templates are not correct. Moreover, we also provided
additional information about incorrectly identified templates the analysis of
incorrect templates, that can provide insights to improve template identifi-
cation techniques by highlighting the limitations of individual log-parsing
techniques.

The second contribution focuses on the theoretical framework for defin-
ing and discussing what are ideal log parsing results for anomaly detec-
tion, more specifically we formalized the concepts of distinguishability and
minimality, showing that log parsing results that minimally maintain distin-
guishability between normal and abnormal logs provide the best operating
conditions for anomaly detection. We also performed a systematic and com-
prehensive evaluation of the impact of log parsing on anomaly detection.
We showed that there is no strong correlation between log parsing accuracy
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and anomaly detection accuracy, hence increasing log parsing accuracy does
not necessarily increase anomaly detection accuracy, regardless of the log-
parsing accuracy metric. Additionally, the impact of the distinguishability
of log parsing results on anomaly detection accuracy is significant for all
anomaly detection techniques.

The third contribution involves guiding practitioners in selecting the most
suitable anomaly detection technique for their specific use cases by compar-
ing the anomaly detection accuracy between non-log-parsing-based and log-
parsing-based techniques, and comparing anomaly detection efficiency be-
tween non-log-parsing-based and log-parsing-based techniques. We showed
that the non-log-parsing-based anomaly detection technique is more accu-
rate than the log-parsing-based anomaly detection techniques, as it is not
impacted by the log-parsing errors generated by log-parsing techniques, and
thus recommended. Additionally, the non-log-parsing-based anomaly de-
tection technique is less efficient than log-parsing-based anomaly detection
techniques. Depending on the use case, one might be interested in efficiency,
such as real-time anomaly detection. This suggests that non-log-parsing-
based anomaly detection is not suitable for such a task. One should also
consider that if offline training can be done for non-log-parsing-based tech-
nique then it can be used for real-time anomaly detection use case, as the
time-consuming phase is model training, not the model testing phase (a.k.a.
model testing phase).

7.2 Future Research Directions

This dissertation sets the basis to follow different research directions in the
future:

Refining the log-parsing accuracy metrics: In chapter 3, we concluded that
the choice of log-parsing accuracy metrics matters based on the intended use
case, and one should use the appropriate log-parsing accuracy metric for
comparison. As part of future work, one can further refine the log-parsing
accuracy metrics, for example by incorporating the concept of edit distance
to compute the similarity between identified templates and their correspond-
ing oracles, leveraging the idea proposed by Nedelkoski et al. [NBA+20b].
Additionally extend the guidelines chapter by including more log-parsing
techniques, for example LogPPT [LZ23].

Efficient Ideal Log Parsing for Experiments. We saw that having ideal log
parsing results is important in controlled experiments to properly identify
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the cause of inaccurate anomaly detection results. However, getting ideal log
parsing results for a given set of logs is not that simple since, for the logs con-
taining n unique log messages, the number of all possible log parsing results
(i.e., the number of all possible abstraction functions) is equal to the Bell num-
ber Bn (i.e., the number of all partitions of a set of size n) [Aig99]. Indeed,
the problem of identifying the ideal log parsing results can be regarded as an
optimization problem to minimize the amount of information contained in
the log parsing results while maintaining distinguishability between normal
and abnormal logs. Also, there is additional information that is potentially
relevant to address this problem, such as the similarity between messages.
Therefore, developing an efficient approach is an appealing research direc-
tion. We plan to extend the theoretical framework to measure the degree of
distinguishability and minimality of given log parsing results and use such
measures as fitness functions in meta-heuristic search algorithms [Luk13] to
find the optimal log parsing results for anomaly detection.

Extension of empirical study: In chapter 5, we conducted an empirical
study to investigate the influence of log parsing on the accuracy of anomaly
detection. Our analysis revealed an absence of any significant correlation be-
tween log parsing accuracy and anomaly detection accuracy, irrespective of
the log parsing metric employed, such as GA, PA, and FTA. We plan to extend
our study on impact of log-parsing on deep-learning-based anomaly detec-
tion with more publicly available datasets and anomaly detection techniques
to increase the generalizability of our results. We aim to include state-of-the-
art few-shot anomaly detection techniques [HGJ+22, PDSH21], which require
only a limited amount of training data and could be more effective in prac-
tice. Additionally, given the high anomaly detection accuracy score obtained
without using log parsing, integrating semantic information from templates
(similar to non-log-parsing based anomaly detection techniques) alongside
clustering techniques [CM20, XQW+20] presents a promising avenue for en-
hancing the precision of log parsing in anomaly detection.We also plan to
provide a more granular analysis of the distinguishability for log parsing re-
sults by defining a new metric that assesses the degree of distinguishability.
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