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Generative mechanisms of AI implementation: A critical realist 

perspective on predictive maintenance 

Abstract 

Artificial intelligence (AI) promises various new opportunities to create and appropriate 

business value. However, many organizations – especially those in more traditional industries 

– struggle to seize these opportunities. To unpack the underlying reasons, we investigate how 

more traditional industries implement predictive maintenance, a promising application of AI in 

manufacturing organizations. For our analysis, we employ a multiple-case design and adopt a 

critical realist perspective to identify generative mechanisms of AI implementation. Overall, 

we find five interdependent mechanisms: experimentation; knowledge building and integration; 

data; anxiety; and inspiration. Using causal loop diagramming, we flesh out the socio-technical 

dynamics of these mechanisms and explore the organizational requirements of implementing 

AI. The resulting topology of generative mechanisms contributes to the research on AI 

management by offering rich insights into the cause-effect relationships that shape the 

implementation process. Moreover, it demonstrates how causal loop diagraming can improve 

the modeling and analysis of generative mechanisms.  

 

Keywords: Artificial intelligence, causal loop diagramming, experimentation, 

generative mechanisms, predictive maintenance, techno-organizational context 

1. Introduction 

Artificial intelligence (AI) offers various opportunities to challenge established value 

creation logics and redefine organizational practices (Stone et al., 2016; Vial, 2019; Wessel, 

Baiyere, Ologeanu-Taddei, Cha, & Jensen, 2021). Some proponents go as far as calling AI the 

next general-purpose innovation (Agrawal, Gans, & Goldfarb, 2019; Jöhnk, Weißert, & Wyrtki, 

2021). However, it is often not self-evident how organizations – especially in more traditional 

industries – can seize the opportunities presented by AI, nor how its use can improve their 

competitiveness (Benbya & Leidner, 2018; Yan, Leidner, & Benbya, 2018). As a result, many 

organizations struggle to realize value from their efforts to develop AI-enabled applications 

(Shollo, Hopf, Thiess, & Müller, 2022). 
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What makes the extraction of business value especially challenging is the fluid nature 

of AI as a moving frontier of computing technologies with the ability to perform cognitive 

functions associated with the human mind (Anderson, Rainie, & Luchsinger, 2018; Berente, 

Gu, Recker, & Santhanam, 2021; Rai, Constantinides, & Sarker, 2019). Many organizations 

struggle to navigate this fluid nature and the resulting shortcomings of AI technologies (M. C. 

Lee, Scheepers, Lui, & Ngai, 2023; Merhi, 2023; Rai et al., 2019). Some also have a hard time 

with the organizational capabilities required to successfully employ AI-enabled applications 

and to revise established value creation logics and organizational practices (Berente et al., 2021; 

Weber, Engert, Schaffer, Weking, & Krcmar, 2023).  

Especially with new AI technologies, it is often not clear how organizations can best 

navigate the implementation process (Sarker, Chatterjee, Xiao, & Elbanna, 2019; Teodorescu, 

Morse, Awwad, & Kane, 2021). In this study, we aim to clear some of this uncertainty by 

identifying and analyzing the cause-effect relationships that define this process. To better 

account for the perspective of more traditional organizations, we focus our study on AI-enabled 

predictive maintenance (PdM), a popular application of AI among manufacturing companies. 

AI-enabled PdM refers to the automated and intelligent scheduling of maintenance activities 

based on the continuous analysis of a system’s operating conditions. We ask: 

RQ: Which socio-technical dynamics shape the implementation of AI-enabled PdM? 

To answer this question, we examine two cases in which organizations in the 

manufacturing business adopted AI-enabled PdM systems. Throughout our analysis, we 

identify and unpack five “generative mechanisms” that describe the socio-technical dynamics 

that can constrain and stimulate the path to effective usability of AI-enabled PdM systems. We 

use causal loop diagramming (Sterman, 2000) to provide a comprehensive picture of these 

mechanisms and to identify how certain techno-organizational factors (such as organizational 

culture and structure as well as the pre-existing technological base) affect the implementation 

of AI-enabled predictive maintenance. Our analysis offers a deeper understanding of important 

cause-effect relationships that affect the implementation process and how organizations should 

approach their AI initiatives and projects. 

The remainder of this paper is structured as follows. In section 2, we provide a brief 

review of the literature on the implementation of AI and AI-enabled PdM and discuss the basics 

of generative mechanisms. We present our research approach in section 3 and provide a detailed 

description of our findings in section 4. Lastly, we discuss these findings as well as their 

implications in section 0, and then share concluding thoughts in section 6. 
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2. Theoretical background 

2.1. AI-enabled predictive maintenance 

Over the past ten years, interest in AI has increased steadily. This surge is made possible 

by the availability of large amounts of training data, a substantial increase in computational 

power, and the identification of a growing number of use cases in a variety of professional, 

educational and domestic contexts (Stone et al., 2016). Today’s AI-enabled systems can master  

various cognitive functions, such as perceiving, learning, reasoning, problem-solving, planning, 

decision-making, natural language processing, and interacting with their environment (Fabri, 

Häckel, Oberländer, Rieg, & Stohr, 2023; Rai et al., 2019; Russell & Norvig, 2016). 

However, realizing actual business value from the implementation of AI-enabled 

systems remains a challenge for many – especially more traditional - organizations (Shollo et 

al., 2022). Barriers to successful implementation in these organizations can be manifold, 

ranging from problems with data quality, quantity, and governance, inert IT infrastructures, 

security, privacy, ethical and legal constraints as well as the organizational culture (M. C. Lee 

et al., 2023; Merhi, 2023). Some organizations also struggle with questions of professional 

identity that may arise when employees feel substituted by AI-enabled systems (Strich, Mayer, 

& Fiedler, 2021). Others have a hard time adjusting to the loss of unique human knowledge 

(Fügener, Grahl, Gupta, & Ketter, 2021) and coming to terms with an increasing disconnect 

between codified knowledge and human expert know-how (Lebovitz, Levina, & Lifshitz-Assa, 

2021).  

AI initiatives and projects need to identify and address these challenges to realize the 

potential business value. As with many other change processes, organizational decision-makers 

need to lead the way and foster strategic alignment, cultural change, and organizational learning 

(M. C. Lee et al., 2023; Li, Li, Wang, & Thatcher, 2021; Merhi, 2023; Shollo et al., 2022). 

Organizational learning is especially crucial for the sustainable integration of AI-enabled 

systems in an organization and should extend across departments and sometimes organizational 

boundaries to manage the high degree of uncertainty associated with most AI-enabled systems 

(M. C. Lee et al., 2023; Roy, Stark, Tracht, Takata, & Mori, 2016; Shollo et al., 2022; Weber 

et al., 2023). Organizational learning can even be facilitated through a proper design of the 

collaboration between AI-enabled systems and humans (Fabri et al., 2023; Shin, Han, & Rhee, 

2021; Sturm et al., 2021). Moreover, organizations need to build technological capabilities, 

such as mature data infrastructures, user experience, and lifecycle management for AI models 

(M. C. Lee et al., 2023; Merhi, 2023; Shollo et al., 2022; Weber et al., 2023). 
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Yet no AI project or initiative will be the same. Implementing AI-enabled systems thus 

also requires a deep understanding of the underlying cause-effect relationships in the specific 

context (Raisch & Krakowski, 2021). This need is supported by a growing body of research on 

guidelines and success factors for implementing AI-enabled systems (M. C. Lee et al., 2023; 

Merhi, 2023). However, little attention has so far been paid to how these factors interact and 

the cause-effect relationships that underly these interactions. In this study, we employ a 

generative-mechanisms lens to identify and unpack these relationships (Bygstad, Munkvold, & 

Volkoff, 2016). 

We focus our analysis on AI-enabled predictive maintenance (PdM). AI-enabled PdM 

systems continuously collect, monitor, and analyze a machine’s condition to predict and 

preemptively mediate maintenance needs as well as system failures. Based on the intelligent 

scheduling of maintenance activities, these systems promise to optimize process availability, 

safety, quality, and productivity (Christer, Wang, & Sharp, 1997; Mobley, 2002; Zarte, 

Wunder, & Pechmann, 2017). We selected AI-enabled PdM for three reasons: It offers several 

opportunities to improve organizational performance (Christer et al., 1997; Mobley, 2002; Zarte 

et al., 2017), it is comparatively mature (LaRiviere, McAfee, Rao, Narayanan, & Sun, 2016), 

and many more traditional organizations have found its implementation to be challenging 

(Wagner & Hellingrath, 2019).  

2.2. Generative mechanisms 

The concept of generative mechanisms has its roots in critical realism. Critical realism 

is a philosophy of science that has proven useful for the study of various information systems 

phenomena (Bygstad et al., 2016; Volkoff & Strong, 2013). Critical realists conceptualize the 

world in three layers (Bhaskar, 1998; Mingers, 2004): the real, the actual, and the empirical. 

The layer of the “real” consists of physical and social structures associated with mechanisms 

that generate events or outcomes. These events or outcomes constitute the layer of the “actual”. 

Lastly, the layer of the “empirical” comprises the subset of events or outcomes that can be 

observed. Based on this conceptualization, we can understand generative mechanisms as the 

causal structures that trigger events or outcomes (Bhaskar, 1998). 

These causal structures can take several forms, be they physical, chemical, biological, 

psychological, social, or economic, or even, at times, unobservable (Bunge, 2004). They can 

either enable or constrain action (Volkoff & Strong, 2013). Yet rather than do so in a 

deterministic manner, generative mechanisms are “characterized by contingent causality” 
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(Henfridsson & Bygstad, 2013, p. 911). This means that a generative mechanism will not 

always produce the same events and outcomes but instead be contingent on the events or 

outcomes previously produced by other generative mechanisms (Elder-Vass, 2010; Sayer, 

1992; Smith, 2010). Some mechanisms may also never be actualized, so their potential to cause 

certain events can remain dormant (Fleetwood, 2011).  

These characteristics can make it difficult to identify generative mechanisms without 

in-depth process of retroduction (Bygstad et al., 2016), a “mode of inference in which events 

are explained by postulating (and identifying) mechanisms which are capable of producing 

them” (Sayer, 1992, p. 107). Since events often lend themselves to various generative 

mechanisms (particularly in technology adoption projects) and since generative mechanisms 

can affect and alter one another, it is typically impossible to identify all mechanisms at play. 

Rather, the art of generative mechanisms research is to focus on a topology of foundational 

mechanisms that best explains the outcomes observed (Gebre-Mariam & Bygstad, 2019). 

An understanding of those generative mechanisms can help to better analyze and explain 

certain phenomena. For instance, Gebre-Mariam and Bygstad (2019) use generative 

mechanisms to better understand the complex adoption process of health management 

information systems in developing countries. They identify four important mechanisms: 

projectification; informatization; embedded inscription; and scaling. Another example is J. Y. 

H. Lee, Hsu, and Silva (2020) use generative mechanisms to study the construction and 

evolution of smart technology. They find that the transformation of a smart technology into a 

real product or system is significantly affected by three mechanisms: a system-environment fit 

mechanism; a data exploitation mechanism; and a user expansion mechanism that builds on the 

data exploitation mechanism. 

In our own study, we draw on Bygstad et al. (2016) to identify a parsimonious topology 

of interrelated generative mechanisms that either stimulate or constrain the adoption of AI-

enabled PdM systems. We are particularly interested in how these mechanisms affect the early 

stages of adoption, when PdM is still new to the organization. Next, we turn to the two case-

studies we used to identify and unpack these mechanisms.  

3. Research method 

3.1. Case-study setting 

Case studies allow for the development of both a deeper understanding of a phenomenon 

and subsequent rich theoretical insights. They enable the iterative development of constructs, 
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measures, and theoretical arguments based on a constant comparison between theory and data 

(Eisenhardt, 2021). As the aim of our study is to identify and unpack (or rather “retroduce”) 

foundational generative mechanisms, we chose a multiple-case design (Yin, 2014) with two 

cases to balance in-depth insights with generalizability (Eisenhardt, 2021; Eisenhardt & 

Graebner, 2007). We sampled two cases, ProdAI and CarAI, based on the following criteria:  

Candidate cases must generate in-depth insights into implementation of AI-enabled 

PdM systems, including the challenges faced by implementing organizations. To improve 

cross-case comparability, candidate cases should have the same focus on implementing AI-

enabled PdM in a business-to-business context. They should, however, reflect different 

approaches to implementation. While small and medium-sized companies often join forces to 

collaborate and cut costs, large (multinational) companies tend to engage with new technologies 

on their own to secure a competitive advantage.  

Our first case, “ProdAI,” is a publicly-funded, applied research project in Germany 

featuring AI-enabled PdM. The goal of the project was to develop intelligent analytics solutions 

that increase transparency in production processes, and its partners envisioned creating new 

data-based services and business models. It began in February 2018 and lasted 13 months. The 

project started with the identification and specification of use cases for AI-enabled solutions 

within the respective organizational context. Building upon this specification, applied 

researchers other than the authors of this study collaborated with four medium-sized German 

companies in the mechanical engineering industry to examine and develop AI-enabled PdM 

systems for production machines. The participating organizations were particularly interested 

in using AI-enabled PdM to manage maintenance processes at scale of machines in remote 

locations. They envisioned establishing AI-enabled PdM as an additional feature when selling 

the machines. While most of the work was performed in smaller groups with separate weekly 

coordination meetings, the project’s steering committee met every three months to discuss the 

overall progress and adjust the goals, if required. Upon completion of the project, the 

participating companies all had working prototypes of AI-enabled PdM systems. Some of the 

companies then refined these prototypes into production-ready systems. 

Our second case, “CarAI,” investigates the AI-enabled PdM activities at a production 

site of one of Germany’s premium car manufacturers. The manufacturer developed a data 

analytics strategy that includes AI-enabled PdM activities that were geared towards reducing 

the maintenance costs of production tools. In 2018, the car manufacturer began looking for use 

cases in the pressure casting process and established a new data analytics team that would 
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support the implementation of an AI-enabled PdM system for this process. That is, contrary to 

the “ProdAI” case, “CarAI” did not intend to sell the feature, but rather to use it in its own 

processes. By January 2020, the CarAI project had successfully implemented several prototypes 

that either optimized the use time of tools or supported quality analysis. 

3.2. Data collection 

Our primary sources of evidence were semi-structured interviews that the first two 

authors of this work conducted between December 2018 and December 2019. Throughout the 

interviews, they took comprehensive notes. Furthermore, they made audio recordings and 

transcribed them for further analysis and reference. The interviews lasted between 45 minutes 

and two hours. Table 1 presents an overview of the interviewees for both cases and their 

organizational roles.  

The interviews followed a semi-structured protocol to elicit stories about the 

participating organizations (Myers & Newman, 2007; Rubin & Rubin, 2012). At the beginning 

of each interview, the interviewers provided the necessary contextual information by 

introducing themselves along with the research project. Subsequently, the interviewees briefly 

discussed their relevant backstories, current organizational positions, and pertinent experiences 

within the respective organizations. Once the introductions were complete, the interviewers 

took care to minimize social dissonance during the interview by explaining how each interview 

was to be anonymized and made secure in order to protect the confidentiality of all concerned. 

Next, we sought to foster a good relationship between the interviewer(s) and the interviewee 

by encouraging each interviewee to discuss their personal background and involvement in 

recent AI-enabled PdM projects.  

Table 1 

Overview of the interview participants in each case. 

ProdAI Organization Role of the 
Interviewee 

 CarAI Organization Role of the 
Interviewee 

1 
Company 1 

Manager  15 

Company 5 

Engineer 
2 IT specialist  16 Data scientist 
3 

Company 2 
Data scientist  17 Engineer 

4 Pre-sales manager  18 Engineer 
5 

Company 3 

Engineer  19 Manager 
6 IT specialist  20 IT specialist 
7 Manager  21 Data scientist 
8 Engineer  22 Manager 



 

8 

 

9 Company 4 Manager  23 IT specialist 
10 

Applied research 
organization 1 

Applied researcher      
11 Applied researcher     
12 Applied researcher     
13 Applied researcher     
14 Applied research 

organization 2 
Applied researcher     

 

At all times, the interviewers were careful to conduct themselves in a way that not only 

mirrored the tone and vocabulary of the interviewee, but also used terms with which the 

interviewee was comfortable. Doing so offered the interviewee the flexibility to take the 

conversation in any direction that they wanted (Orlikowski & Baroudi, 1991). Moreover, we 

focused our initial questions on recent experiences and projects which were familiar to the 

interviewees. We asked company employees about how they use or intend to use AI-enabled 

PdM and how AI-enabled PdM changes the way they work. We also asked the applied 

researchers working with the ProdAI organization about how to align AI-enabled PdM with 

business requirements and how to deploy AI-enabled PdM applications. Moreover, we asked 

about any preconditions that the organizations were required to meet. Example questions 

included: 

 Which fields of application for predictive maintenance are you currently pursuing? Can 

you think of an AI-enabled PdM project you have recently carried out? Why did you 

carry out this project? (Request examples) 

 How do you use AI-enabled PdM systems, and how did these systems change the way 

you work? (Request examples) 

 How do you think the organizational structure, culture, and leadership affect the 

implementation of AI-enabled PdM? Why do you think so? (Request examples) 

In several instances, we contacted the interviewees a second time to clarify any 

ambiguities perceived during the analysis of the interviews. We produced a full case write-up 

for each interview and, wherever necessary, asked for supplementary information to triangulate 

our results (Yin, 2013). As secondary sources of evidence, we used field observations and 

project-related documents, such as project reports and documents describing the use of AI-

enabled PdM systems among the various organizations. In addition to taking factory tours at 

both case sites and watching system demonstrations, we spent 10 hours observing three 

strategic PdM-related workshops at ProdAI. 



 

9 

 

3.3. Data analysis 

We analyzed our case data using the MAXQDA software package. For our analysis, we 

drew on and adapted Bygstad et al.’s (2016) framework for the retroduction of generative 

mechanisms. We employed causal loop diagraming to develop a topology of mechanisms and 

their dependencies in the modelling software Vensim (Sterman, 2000). Table 2 outlines the 

steps in our adapted framework. Consistent with the principles of building theory from case 

studies, we iterated between theory and data and employed both within- and cross-case analyses 

in steps three to six of the retroduction process (Eisenhardt, 2021; Eisenhardt & Graebner, 

2007; Yin, 2014). 

Table 2 

Steps in the retroduction of generative mechanisms (framework adapted from Bygstad et al. (2016)). 

Step Description Result 
1. Description 
of events and 
outcomes 

The first step concerns the 
coding of events and outcomes. 
This step is important because 
observed events and outcomes 
are the centerpieces of critical 
realist research.  

We analyzed the collected data to establish a 
chronology of events and outcomes in the two 
cases. For this analysis, we applied an initial 
coding scheme (Saldaña, 2016). Section 3.1 
contains a brief description of the two cases. 
Appendix A includes a chronology of events 
and outcomes.  

2. 
Identification 
of key entities 

The second step concerns the 
identification of the “key 
entities” present in the different 
cases. The term key entity can 
refer to individual actors and 
organizational units but also to 
technological objects that 
interact and form causal 
structures.  

We identified the key entities in the two cases 
as being the individuals (managers, AI 
specialists, etc.) and the organizational units 
(departments and divisions) who were either 
involved in the development of the AI-enabled 
PdM systems or constituted the target group. 
The involved individuals included not only 
employees but also customers and partners 
(e.g., researchers).  

3. Theoretical 
re-description 
(abduction) 

The third step concerns the 
exploration of different 
theoretical perspectives and 
explanations of key events and 
outcomes (Bygstad et al., 2016; 
Danermark, Ekstrom, Jakobsen, 
& Karlsson, 2002). 

We analyzed the collected data and codes 
repeatedly, while also leaving time for 
reflection. This led to a broader 
conceptualization of our analysis. Having 
initially focused on how organizational 
knowledge and capabilities affect the 
implementation of AI-enabled PdM systems, 
we later also examined the effect of techno-
organizational context factors, such as 
organizational culture. This second round of 
analysis involved both open and axial coding 
(Saldaña, 2016; Strauss & Corbin, 1998) to 
develop conceptual categories and 
subcategories.  
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4. 
Retroduction 
of mechanisms 

The fourth step concerns the 
identification of the actual 
mechanisms by means of 
retroduction, which is the central 
activity in critical realist 
research. Retroduction is the 
“mode of inference in which 
events are explained by 
postulating (and identifying) 
mechanisms which are capable 
of producing them.” (Sayer, 
1992). 

From our coded data, we retroduced five 
generative mechanisms that best explain the 
observed events and outcomes. 

5. Analysis of 
dependencies 
and 
interactions 

The fifth step concerns 
analyzing the interaction and 
dependencies between the 
identified mechanisms and the 
development of a contextual 
topology. 

We established a detailed visual topology of 
the interaction and dependencies between the 
identified mechanisms. For this purpose, we 
turned to the system dynamics literature, 
which provides useful means for the analysis 
and modeling of complex systems (Sterman, 
2000). More specifically, we used causal loop 
diagramming to capture variables and the 
causal links among them (see Fig. 1). As a 
result, we developed a single model that 
explains the interaction between the identified 
mechanisms (see Fig. 5). 

6. Assessment 
of explanatory 
power 

The sixth and final step concerns 
assessing the explanatory power 
of the proposed mechanisms and 
finding the causal structures that 
best explain the observed events. 
This requires repeated analysis. 

During the development of the model, we 
regularly returned to the data and evaluated 
other plausible mechanisms, patterns of 
interactions, and feedback loops. Moreover, 
we regularly discussed our results within the 
research team to identify any needs for 
additions or clarifications. In this way, we 
iteratively developed and improved our model 
until we reached a state of theoretical 
saturation. In other words, we re-iterated 
through the modeling process until we were 
convinced that the model provided the best 
explanation for our observations. Additionally, 
we reviewed the causal links between the 
outcomes against existing literature. This 
helped ensure that the model is grounded in the 
case data and is consistent with existing 
theoretical insights. 
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Fig. 1. Notation of the causal loop diagramming method (based on Sterman (2000)). 

4. Findings 

We now turn to the five mechanisms that emerged from our analysis, and the topology 

of their interaction and dependencies. We gradually build this topology from a description of 

the two cases in the next subsections. Our point of departure is the experimental approach that 

the organizations in the ProdAI and CarAI cases took to the adoption of PdM. 

4.1. The experimentation mechanism 

Both cases began with a strong focus on experimentation due to the lack of established 

use cases that could serve as a blueprint for the ability to effectively use AI-enabled PdM. To 

support this experimentation, they mobilized substantial financial, personnel, and technical 

resources. Those organizations that made more resources available for experimentation not 

only made more speedy progress, but they also developed more specific use cases, which in 

turn strengthened their subsequent, more applied experiments with PdM. Interviewee 7 

emphasizes how the mobilization of resources in the ProdAI project helped them: 

 

“[ProdAI] was extremely helpful for us because without it, we would not have had the 

time to experiment, to program something, and to examine the data for days.” 

 

Depending on the level of experience of the organization, experimentation included 

different activities. For instance, some organizations in the ProdAI case only had little prior 

knowledge of PdM. These organizations first had to develop a conceptual understanding before 
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being able to proceed to more material experimentation activities. In this process, they benefited 

substantially from the external input of other more experienced organizations which were 

working within the project, as well as the input of the participating applied researchers. 

Interviewee 5 explains these background differences and the influence of external input: 

 

“The companies had different backgrounds in this area. Some only had little to no 

experience, and others already had been able to gain some initial experience. Here, we 

just tried to share this knowledge with all companies.” [I5, ProdAI] 

 

Once the organizations in both projects had established a solid conceptual understanding 

of PdM and its use cases, they started to adapt it to their specific context in order to progress 

toward effective usability. They also began to mitigate constraints (i.e., restrictions and barriers 

that stand in the way of effectively using AI-enabled PdM) that arose from organizational 

barriers, such as the pre-existing technological base and organizational culture. Interviewee 1 

emphasizes the importance of these constraint mitigation activities and the cultural changes that 

were required: 

 

“Agility, experimenting, lean management, etc. are characteristics that support 

organizational success, rather than intensive requirements management and strict 

execution according to plan. These are cultural differences that we fight for every day.” 

[I1, ProdAI] 
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 Fig. 2. Experimentation mechanism. 

Fig. 2 summarizes the observed relationship between the lack of established use cases, 

resources for experimentation, experiments, and effective usability of AI-enabled PdM. As it 

took both cases a considerable amount of time before they were able to complete the first 

experiments, Fig. 2 features a delay in the effects of experimentation. Moreover, it features a 

balancing (or negative) feedback loop (B1) because organizations (ceteris paribus) reduce the 

investment of resources for experimentation when they can use PdM effectively. 

4.2. The knowledge building and integration mechanism 

Organizations can approach experimentation in different ways. They can do so 

exclusively with internal resources or decide to obtain external support. The premium car 

manufacturer behind the CarAI case opted for an internal approach because it felt that 

maintenance should be one of its core competencies. ProdAI – by its very nature – relied heavily 

on external support. However, both cases agreed on the need for heavy investments into internal 

capability building, that is, the building of organizational knowledge. Generally, organizational 

knowledge can be understood as the collective organizational memory and beliefs stored in 

“forms, rules, procedures, conventions, strategies, and technologies” (Levitt & March, 1988, 

p. 320). Organizations in both cases recognized that the implementation of AI-enabled PdM 

required organizational knowledge that the organizations did not have at the time (knowledge 

gap). As interviewee 18 points out: 
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“[PdM] definitely requires new capabilities and new expertise which […] are not 

available in a normal maintenance company. Let's put it this way: we must recruit, of 

course.” [I18, CarAI] 

 

In both cases, the employees involved were mostly mechanics and engineers with no 

prior skills in data science. To address this skills shortage, their organizations invested in 

training and hiring. Interviewee 4 emphasizes the success their organization had in this regard: 

 

“We now have highly trained developers in all areas […]. Since we work in the field of 

e-mobility, we have specialists in this field as well. The same applies to the field of 

additive manufacturing, and so on.” [I4, ProdAI] 

 

The training and hiring measures also provided them with additional possibilities to 

create interdisciplinary or interdepartmental teams to improve experiments with AI-enabled 

PdM. These teams were typically better at solving the multifaceted challenges of the early 

implementation stages. However, the process of building and integrating organizational 

knowledge through training and hiring proved to be tedious. Interviewee 20 nevertheless 

emphasizes the importance of knowledge integration for experimentation as part of CarAI: 

 

“It is not without reason that we have set up this overarching project so that the topics 

are not driven out of the individual departments, but interdepartmental, […].” [I20, 

CarAI] 

 

Knowledge integration and the experiments with AI-enabled PdM in interdisciplinary 

and interdepartmental teams also produced new insights that helped the organizations improve 

their conceptual understanding and, thus, contributed to building organizational knowledge. 

Interviewee 11 emphasizes this knowledge creation aspect of experimentation in ProdAI: 

 

“Learning from each other was a central point of the project. The organizations always 

had an interest in what the other participants were doing.” [I11, ProdAI] 

 

We refer to this self-reinforcing (or positive) feedback loop as the knowledge building 

and integration mechanism because it fosters the creation of organizational knowledge (R1) 
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and can stimulate experimentation (see Fig. 3). However, the investments in training and hiring 

will decrease as the gap in knowledge required for AI-enabled PdM narrows. We refer to this 

balancing (or negative) feedback loop as knowledge need reduction (B2). 

 
Fig. 3. Knowledge building and integration mechanism. 

4.3. The data mechanism 

In addition to positively influencing experimentation activities, the knowledge building 

and integration mechanism also contributes to a third mechanism which we refer to as the data 

mechanism (see Fig. 4). More specifically, an increase in organizational knowledge helped the 

organizations in the two cases to increase the number and quality of insights that can be 

generated from data analyses. First, the organizations in both cases were generally able to 

collect data from their machines to provide a basis for AI-enabled PdM as they equipped their 

machines with different sensors. As interviewee 9 describes: 
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“Well, [the machines] can already pick up sensor signals today; they can also store 

these sensor signals for a limited time period and transmit the data.” [I9, ProdAI] 

 

However, for all organizations involved, it was not enough to simply possess the data 

required for PdM, but also to understand and evaluate it. Expanding their organizational 

knowledge-base helped organizations in both cases address these issues. While interviewee 22 

describes the difficulties their organization had initially in this regard, interviewee 3 emphasizes 

how ProdAI helped their organization progress: 

 

“We often have a lot of data, but our department generally is not able to assess whether 

the data has the right quality or quantity.” [I22, CarAI] 

 

“With the project, we wanted to intensify reviewing our data and to better understand 

it. The researchers helped us especially also with knowledge about the formalities, the 

algorithms, but also with general thought impulses and ideas.” [I3, ProdAI] 

 

Gaining more insights into the data eventually also led to the identification of additional 

data requirements. For instance, the organizations found gaps in their data and needs new data 

that their sensors were not yet picking up (e.g., gearbox vibrations). Interviewees 1 and 6 

describe how ProdAI supported their organization in this regard: 

 

“This is one of the main findings. We must think explicitly about our error patterns to 

figure out which data are needed for predictive maintenance.” [I1, ProdAI] 

 

“We already had databases with all our data, but we have never studied them that 

closely. With the start of the project, however, we began to deeply engage with the data 

and recognized limitations to be addressed. […] There is a significant difference 

between telling people that we need more data for artificial intelligence and giving them 

the chance to do something and discuss the results. That was very important.” [I6, 

ProdAI] 
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Fig. 4. Data mechanism 
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However, gaining insights about the data not only contributed to the identification of 

additional data requirements, but also to the identification of quality deficits (i.e., deviations 

from the desired data quality). Interviewee 21 describes how it took their organization some 

time to translate these findings into data cleansing efforts: 

 

“We have done a lot of analysis projects where we looked at the process, and we simply 

noticed that the data quality did not suffice. And then [a group of employees] tried to 

work on elaborate models instead of doing their homework and improving the data 

quality.” [I21, CarAI] 

 

Together, data collection and data cleansing efforts allowed the involved organizations 

to create usable data (enrichment, R2). However, both cases also demonstrate that it can take 

considerable time to build such a usable database. Some organizations also struggled with data 

access. For instance, one company in the ProdAI case used a third-party software provider 

whose data encryption techniques proved troublesome. As interviewee 5 describes: 

 

“That is, data is to some extent encrypted. At the beginning of the project, we thus had 

problems to get the data. […] We had to approach the provider to find out how they 

encrypt the data.” [I5, ProdAI] 

 

Collectively, the links displayed in Fig. 4 between insights, requirements, and usable 

data form a mechanism that we refer to as the data mechanism. The data mechanism increases 

the set of usable data provides additional resources for both experimentation and effectively 

using AI-enabled PdM (e.g., training data). However, the data mechanism is not a self-

reinforcing process. On the contrary, the need for collecting additional data becomes smaller as 

the set of usable data grows. We refer to this balancing (or negative) feedback loop as saturation 

(B3).  

4.4. The anxiety mechanism 

In both cases, many mechanics and business-side employees had initial reservations 

about the introduction of AI-enabled PdM. These employees lacked knowledge about the 

technology, particularly concerning the ways in which AI-enabled PdM and its underlying 
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algorithms work and draw conclusions. Interviewee 7 describes the issues that they had with 

inscrutability: 

 

“We have a large conservative group that doesn’t understand those new solutions.” [I7, 

ProdAI] 

 

This inscrutability of AI-enabled PdM led to general insecurity with how it was used 

and resistance in both case studies. Interviewee 19 explains this process in the CarAI project: 

 

“I think that the fear of being replaceable still prevails here. That is, the fear that my 

professional know-how is replaced by a data model and I'm no longer useful. Therefore, 

there is a lot of resentment.” [I19, CarAI] 

 

At the same time, however, the data scientists depended on the knowledge of mechanics 

and business-side employees to interpret the results of their data analyses, especially during the 

training of the PdM models. The lack of willingness to support this training and to work with 

AI-enabled PdM led to organizational barriers and the introduction of constraints that limited 

the quality of the results. In due course, the lack of willingness to participate posed a significant 

obstacle to the progress of experimentation. Interviewee 7 emphasizes these challenges: 

 

“As I said, we are a traditional machine manufacturer. [Our company] has an 

incredibly hard time with change.” [I7, ProdAI] 

 

We refer to this balancing (or negative) feedback loop as the anxiety mechanism (B4). 

This sees the inscrutability of AI-enabled PdM, coupled with a fear among users of being 

replaced, gradually nourishing feelings of insecurity. These feelings contribute to conscious or 

unconscious desires by staff to obstruct AI-enabled PdM projects (see Fig. 5). 
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Fig. 5. Socio-technical dynamics of generative mechanisms shaping the implementation of AI-enabled PdM
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4.5. The inspiration mechanism 

Despite this negative feedback loop, organizations – particularly those involved with 

ProdAI – managed to progress toward effective usability. This success was at least partly due 

to mitigating dynamics that resulted from the growth of conceptual understanding gained by 

conducting the experiments. Better conceptual understanding helped to decrease inscrutability 

and counteracted the negative feedback loop behind the anxiety mechanism. Interviewee 1 

describes the effects the experiments had within their organization, saying these experiments 

helped them to better understand how the algorithms predict errors: 

 

“Our organization must be able to rely on the recommendations of the predictive 

maintenance system […] In this regard, experimenting with the error sensitivity issue 

helped us. These experiments showed that there is no single solution, but rather that you 

need to make specific adjustments depending on the use case. These adjustments helped 

us better understand and build trust in the solution, which contributed to the internal 

acceptance of the algorithmic solution.” [I1, ProdAI] 

 

In our cases, we observe that the AI-enabled PdM projects benefited when organizations 

promoted employee curiosity. That is, employees were given the freedom to run PdM 

experiments without the constraints of strict boundaries, nor the requirement to provide a 

complete business case. This observation was particularly present in the ProdAI case study, 

where the parameters of the applied research project featured conditions that allowed 

experimentation. In this open environment, participating employees ran several projects with 

AI-enabled PdM. As interviewees 2 and 6 emphasize: 

 

“We were conducting research on different tracks together with analytics experts. We 

set up a server and fed it with various data from our machine interface. After a while, 

we tested an algorithmic solution to analyze the data. At the same time, we discussed 

and compared our solution with other companies to have a benchmark.”  

[I2, ProdAI] 

 

“It helped that we had the freedom to explore the whole subject area.”  

[I6, ProdAI] 
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Based on these looser conditions, the employees were able to develop a deeper 

understanding of the application of AI-enabled PdM to their specific business context, which 

stimulated the dynamics of the experimentation mechanism (B1). These dynamics helped the 

organization to progress toward effective usability of AI-enabled PdM. Communicating the 

experiences gained through experimentation, as well as the benefits of AI-enabled PdM, 

subsequently enabled employees in the two cases to generate interest in their projects. This 

inspired others to follow their example, and reduced resistance to AI-enabled PdM. We refer to 

the process by which positive results from experimentation provide the respective actors with 

the inspiration to reduce both inscrutability and resistance, and thus to progress toward effective 

usability as the inspiration mechanism (R3). Nevertheless, communicating those benefits was 

again a cumbersome process, which resulted in delays to the process of reducing resistance. 

Interviewees 7 and 19 stress how they were required to persevere: 

 

“An infinite number of internal meetings and presentations. I perform something like 

internal customer acquisition, where the customer is my own colleague. This is a very 

strenuous and time-consuming work.” [I7, ProdAI] 

 

“For instance, we had a project where we predicted the time to a possible breakdown 

of the cutters. I think the success of this project helped us increase the sensitivity for this 

topic [AI-enabled PdM] because people recognized the benefits. […] The next step is to 

get everybody together. You must get these pilot projects over the finish line first. You 

must show people that it provides benefits, and you must take the fear away from 

people.” [I19, CarAI] 

 

However, organizations need to exit the experimentation phase at some point. As the 

organizations – particularly in the CarAI case – progressed toward being able to effectively use 

AI-enabled PdM, they reduced the freedom to experiment and decided for a more focused 

approach to effectively use AI-enabled PdM. For instance, interviewee 15 describes this need 

to exit experimentation at some point: 

 

“I think it is good to start with pilot projects. Just get started and try to overcome the 

first hurdles. To continue, we meticulously document processes and contact persons. 

[…] The employees are typically doing that in parallel to their regular tasks. At the 
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beginning, it is always very time-consuming until you get to the people who can help 

you and be more efficient. […] At some point, we need to decide to prioritize the topic 

and choose a more focused approach.” [I15, CarAI]  

 

Fig. 5 displays the complete topology of the described generative mechanisms of AI-

enabled PdM 

5. Discussion and implications 

We began our study with the observation that many – especially more traditional - 

organizations struggle to realize business value from their AI initiatives and projects. We then 

hypothesized that many of these struggles may be rooted in a high degree of uncertainty 

regarding the socio-technical dynamics of AI implementation (Keller, Stohr, Fridgen, Lockl, & 

Rieger, 2019; Roy et al., 2016; Wuest, Weimer, Irgens, & Thoben, 2016). To reduce this 

uncertainty, we drew on the example of AI-enabled PdM and unpacked five major generative 

mechanisms that describe how these dynamics play out, and how certain techno-organizational 

context factors shape the implementation of AI-enabled PdM (Bygstad et al., 2016). 

5.1. A model of interrelated generative mechanisms connected to AI-enabled PdM 

Our five mechanisms stress that organizations need to be aware of various socio-

technical dynamics when they explore and engage with new and emerging technologies such 

as AI-enabled PdM. These dynamics can support or constrain emerging IT endeavors, 

particularly in the field of AI (see Table 3). Their underlying cause-effect relationships are 

closely connected, and they mutually influence and shape outcomes of the individual 

mechanisms. 

Table 3 

Generative context mechanisms connected to the implementation of AI-enabled PdM. 

Mechanism Definition 

Experimentation 

A process by which the pursuit of being able to effectively use AI-enabled PdM 
leads to investments in resources for experimentation, with the experiments 
eventually helping the organizations to mitigate constraints and prepare the 
technology for effective use (B1). 

Knowledge 
building and 
integration 

A process by which resources for experimentation are invested in training and 
hiring to foster interdisciplinary and interdepartmental collaboration and 
cooperation (R1). This building and integration of organizational knowledge 
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The nexus of interdependencies between the five mechanisms emphasizes an important 

characteristic of generative mechanisms: their transfactuality, which means that their effects 

are contingent on other mechanisms (Fleetwood, 2009; Henfridsson & Bygstad, 2013). Some 

mechanisms can counteract each other, such as the inspiration and the anxiety mechanisms or 

the anxiety and the experimentation mechanisms. Others may reinforce each other, such as the 

knowledge building and integration and the experimentation mechanisms or the knowledge 

building and integration and the data mechanisms. It is thus important to establish a 

comprehensive view of an organization’s techno-organizational context, as well as its 

propensity to generate counteracting and reinforcing mechanisms. Moreover, time is an 

important factor when considering the mutual effects of different mechanisms and the initiation 

of short- or longer-terms vicious and virtuous cycles. For instance, the dynamics of the anxiety 

mechanism will typically set in quickly, but it will take some time before the knowledge 

building and integration and inspiration mechanisms can balance insecurity dynamics. 

Fortunately, system dynamics and generative mechanisms lenses offer powerful tools to unpack 

both the interdependencies between mechanisms and their temporal contingencies to provide a 

more comprehensive view on the socio-technical dynamics that shape the implementation of 

AI-enabled systems (see Fig. 5). 

These two lenses may often reveal experimentation as an essential (re-)starting point. 

As we saw in the ProdAI case, experimental activities can be very important – especially when 

a new AI-enabled system lacks established use cases, and an organization does not have 

previous experiences with the technology. Experimentation can help to iteratively resolve 

technical and organizational challenges that may emerge during the implementation process 

and to develop organizational AI capabilities (Keller et al., 2019; M. C. Lee et al., 2023; Shollo 

paves the way for experiments with AI-enabled PdM (B1) and further 
knowledge generation.  However, the investments in training and hiring will 
decrease as the gap in knowledge required for AI-enabled PdM narrows (B2). 

Data 

A process by which the engagement with previously collected data and quality-
control measures generates fresh insights and encourages further data collection 
(R2). This enrichment loop is mitigated by the effect of saturation (i.e., a 
reduction of additional data requirements for a growing set of usable data) (B3). 

Anxiety A process by which the inscrutability of AI gradually nurtures feelings of 
insecurity in users that can lead to resistance to current and future projects (B4). 

Inspiration 
A process by which the granting of freedom to innovate helps employees to 
generate positive results from experimentation and encourages others to follow 
suit when these results are effectively communicated (R3). 



 

25 

 

et al., 2022). However, it is important that organizations approach experimentation from a 

business perspective and with the goal to effectively use the new AI-enabled system. Otherwise, 

they may get trapped in a continuous state of experimentation, the “pilot purgatory” 

(Abbatemarco, Gaur, & Meregalli, 2022). Thus, striking the ”right” balance between 

exploration and exploitation is also important at such an early stage (Andriopoulos & Lewis, 

2009; Tushman & O'Reilly, 1996). 

But even if organizations find this balance, they may never proceed beyond 

experimentation when they are not able to counteract the anxiety mechanism. When employee 

insecurity is high, experimentation may not be enough. This is commonly the case when AI-

enabled systems are perceived as inscrutable “black boxes” (Asatiani et al., 2021; Berente et 

al., 2021). Insecurity can be especially high when these AI-enabled systems are also perceived 

as being untrustworthy (Thiebes, Lins, & Sunyaev, 2021) or as a challenge to professional roles 

and identities (Strich et al., 2021). In these situations, much attention is required to 

communicating and demonstrating the benefits of AI-enabled systems to counteract the anxiety 

mechanism. Empowering “first-mover” employees and encouraging constructive curiosity can 

be important releasing conditions (Bolino, Thompson, Norris, & Kuo, 2023; Coleman, 2023) 

as can be pilot projects (Hertzum, Bansler, Havn, & Simonsen, 2012; Kim & Kankanhalli, 

2009). However, these projects need to remain focused on creating business value to avoid the 

pitfalls of “pilot purgatory”. Otherwise, pilot projects – particularly those with a strong focus 

on short-term effects – may fail to scale (Gebre-Mariam & Bygstad, 2019). When “first-mover” 

employees and pilot projects are successful at communicating (Barkin & Davenport, 2023) and 

demonstrating the benefits of AI-enabled systems, they may inspire other employees to follow 

their example, initiating what we refer to as the inspiration mechanism.  

In the mid- to long-term, the knowledge building and integration mechanism can help 

organizations mature from experimenting at a smaller scale to effectively using AI-enabled 

PdM. It is important because without it, organizations will likely get stuck at running various 

experiments with the new AI-enabled system. However, the knowledge building and 

integration mechanism requires patience since its positive effects will often be delayed 

(Mitchell, 2006; Repenning & Sterman, 2002; Tiwana, 2004; Walz, Elam, & Curtis, 1993). It 

can thrive when domain experts work alongside traditional data analysts, IT and AI experts in 

interdisciplinary and interdepartmental settings. Organizations interested in AI should thus 

consider hiring AI specialists, while also motivating and training their existing employees to 

engage with AI (Lou & Wu, 2021; Vial, Cameron, Giannelia, & Jiang, 2023; Weber et al., 
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2023). Effective interdisciplinary and interdepartmental teams may sometimes also require 

“connectors” who support effective collaboration (Redman & Davenport, 2023) or designers 

who improve user experience (Roy et al., 2016; Shollo et al., 2022). Such teams foster creativity 

and performance (Krishnan, Miller, & Judge, 1997; Nijstad & Stroebe, 2006; Paulus & Brown, 

2007; Roy et al., 2016) and effectively using AI at scale. Moreover, they can help eliminate the 

insecurities that fuel the anxiety mechanism and instead promote the inspiration mechanism 

This mitigation effect is closely related to the benefits of dialectic organizational learning for 

change management (Robey, Ross, & Boudreau, 2002).  

However, these positive effects will not pe possible if an organization’s data is not ready 

(Caserta, Harreis, Rowshankish, Srinidhi, & Tavakoli, 2023). AI-enabled PdM is not an 

exception (Roy et al., 2016; Vom Brocke et al., 2018). Organizations need to carefully engage 

with their data to fuel the experimentation mechanism and then enable the inspiration and 

knowledge building and integration mechanisms. At the same time, the knowledge building and 

integration mechanism will often be necessary to sustain this engagement. More specifically, a 

broader organizational knowledge base – when properly integrated – can help evaluate the 

organization’s data in terms of quantity and quality (Shollo et al., 2022). Without this 

knowledge base, data can only partly or not at all be translated into business value. Worse still, 

organizations that collect data without a well-defined purpose and knowledge base risk creating 

so-called “data swamps” (Brackenbury et al., 2018). These swamps can even break the data 

mechanism. When AI initiatives and projects fail to demonstrate the benefits from their 

experiments due to not having the “right” data (Hoerl & Redman, 2023), they may increase 

resistance and strand AI-enabled systems at the experimental stage.  

In summary, organizations need to understand the transfactuality of the five generative 

mechanisms with different short- and long-term effects to effectively use AI-enabled systems 

and avoid getting stuck at an experimental stage – or worse, not even reaching an experimental 

stage. While organizations may be able to use experimentation and inspiration in the short-term 

to balance anxiety, they also need to build and integrate knowledge and properly develop their 

data pipeline to sustain and scale their AI efforts in the mid- to long-term. These investments 

in knowledge building and integration as well as in the data pipeline can then also pay off in 

the short term for subsequent AI initiatives and projects.  
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5.2. Theoretical contributions 

Our study provides two theoretical contributions. First, we contribute to the research on 

AI implementation by identifying and unpacking five generative mechanisms that shape the 

implementation process. While there is a growing body of research on guidelines and success 

factors for implementing AI-enabled systems (M. C. Lee et al., 2023; Merhi, 2023), the 

interdependent nature of these guidelines and factors often falls short. Using causal loop 

diagramming (Sterman, 2000), we thus provide a rich description of their interplay and the 

cause-effect relationships that decide about the success or failure of AI initiatives and projects. 

The resulting topology of five generative mechanism offers an in-depth explanation for how 

the pre-existing technological base – in conjunction with organizational factors like 

organizational structure and culture – can affect the implementation process of AI-enabled 

systems (Berente et al., 2021). In this way, our study also addresses calls for more empirical 

research on AI implementation that provides a context-specific perspective with a balanced 

consideration of social and technical factors (Grashoff & Recker, 2023; Jöhnk et al., 2021). 

Our critical realist perspective emphasizes especially the transfactual nature of 

mechanisms (Fleetwood, 2009) and how the actualization of their individual- and 

organizational-level effects is contingent on other mechanisms (Henfridsson & Bygstad, 2013). 

That is, we demonstrate that it is not enough to single out specific guidelines and success factors 

for implementation. Instead, it is necessary to understand the interdependent nature of the 

mechanisms over time and organizational levels. For instance, organizations may well promote 

a culture of experimentation and inspiration that emerges from an individual to an 

organizational level but if their data foundations are not right, they will likely not be able to 

effectively use AI-enabled systems (Hoerl & Redman, 2023). Moreover, they may not be able 

to actualize the other four mechanisms without the data mechanism. These dependencies across 

organizational levels and time could explain why some organizations have positive outcomes 

from the implementation of AI-enabled systems, while others fail to realize business value (M. 

C. Lee et al., 2023).  

Secondly, our study extends the “retroduction” toolkit by demonstrating how causal 

loop diagraming can help to visualize and analyze the transfactuality of generative mechanisms 

(Fleetwood, 2009) as well as their self-referential nature (Henfridsson & Bygstad, 2013). 

Causal loop diagrams require a high level of precision in the modeling of generative 

mechanisms and their interdependencies (Sterman, 2000). This level of precision will often 
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benefit the clarity and explanatory power of the retroduced mechanisms and encourage more 

critical reflection throughout the retroduction process (Bygstad et al., 2016). 

5.3. Practical implications 

This study also offers three important practical implications. First, our topology can help 

practitioners better understand and navigate the challenges of AI initiatives and projects 

(Wagner & Hellingrath, 2019). A generative mechanism perspective can help them to pay 

special attention to their organizations’ various (interrelated) physical and social structures and 

avoid the trap of simply copying the work of pioneering organizations. Moreover, the 

interdependent and transfactual nature of the identified generative mechanisms may sensitize 

them to the need to not just focus on a particular physical or social structure. Instead, they need 

to manage these structures holistically and be mindful of the delayed effects of certain cause-

effect relationships. Although generative mechanisms cannot help to predict outcomes or events 

with certainty, understanding these mechanisms and their interdependencies can nonetheless 

help organizations improve their management of AI initiatives and projects (Mingers, 2004). 

Second, the five generative mechanisms can give practitioners a practical sense of 

particularly relevant techno-organizational context factors. Equipped with this understanding, 

they can, for instance, assess whether their teams have an appropriate mix of skills and 

backgrounds. Organizations interested in AI may also want to invest in an actionable data 

strategy that ensures that the “right” data is captured (i.e., data of good quality and a proper 

focus). Furthermore, they may want to establish a culture that promotes innovation and grants 

their employees the “right” degree of freedom to experiment, while at the same time creating 

the proper conditions to channel these experiments into longer-term pilot projects and 

productive systems. 

Finally, practitioners should consider investing sufficient time and effort into building 

and integrating knowledge and competencies regarding AI, as well as communicating 

achievements with AI-enabled systems. Ideally, they would ensure these competencies are 

acquired by a substantial share of their workforce, while addressing the anxieties that some 

employees may experience regarding the potential impact of the technology on their roles and 

professional identities (Strich et al., 2021). 
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6. Conclusion 

In this paper, we adopt a critical realist perspective to explore the socio-technical 

dynamics that shape the early stages of engagement with AI-enabled PdM. Based on a study of 

two AI-enabled PdM cases and using causal loop diagramming, we provide a detailed 

description theses socio-technical dynamics by way of five interdependent generative 

mechanisms. Understanding these mechanisms and their interrelated vicious and virtuous 

effects can help organizations in their endeavors to effectively use AI-enabled PdM and avoid 

getting stuck in an experimental stage – or worse, not even reaching an experimental stage. 

Importantly, it does not suffice to only focus on one mechanism, but organization need a 

balanced approach to both short- and long-term effects of different mechanisms. It is this 

transfactuality, the interdependence of effects, that makes studying generative mechanisms 

interesting to better understand the socio-technical dynamics that shape the implementation of 

AI-enabled PdM. We hope that our work will clear some of the uncertainties and concerns 

related to engagement with AI-enabled PdM and encourage a broader uptake of generative 

mechanism research. 

As with all research, our study is subject to certain limitations that would be fruitful 

grounds for further analysis. First, our analysis may not paint a complete picture of all the 

generative mechanisms at work during the implementation of AI-enabled PdM and their 

contingent effects. Generative mechanism research is inherently limited by observed events and 

the outcomes it builds upon, as well as the judgement of researchers in the retroduction of 

mechanisms from these events and outcomes. While we are confident that the five mechanisms 

we have identified best explain our empirical evidence (cross-case), we do not claim to provide 

an exhaustive list of all mechanisms at work. For instance, the ProdAI case suggests that open 

innovation may also play an important role for certain AI initiatives and projects. Moreover, 

we have found weak evidence for the presence of what could be characterized as an “over-

expectation mechanism” that would have employees idolizing AI and believing that it can be 

readily applied to their PdM use case. The cumbersome implementation of PdM, however, 

resulted in disappointment among these advocates and a reduction of their interest in AI. To 

better understand these (or other) effects, it may be worthwhile to conduct further research on 

the adoption of AI for different AI technologies and in different contexts. 

Second, our research may be limited in its generalizability to follow-up or rather mature 

implementations of AI-enabled PdM. While we are confident that many of the identified cause-

effect relationships will also be relevant for these later implementations, it may be worthwhile 
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to explore how things change during follow-up implementations and effective use of AI-

enabled PdM over a longer period and contrast these insights with organizations that got stuck 

in experimentation. This exploration would offer a comprehensive picture and support far-

sighted management of AI implementation for the increasing number of AI initiatives and 

projects. 

Third, our research may be limited in its generalizability to other AI-enabled PdM 

initiatives and projects, as well as to other AI technologies. While we attempt to mediate the 

first concern with a multiple-case design, the organizations involved were all established 

German firms. This raises legitimate questions about the transferability of our findings to more 

early-stage organizations and organizations in other countries. Moreover, AI-enabled PdM may 

be an edge case in that it is not fraught with many of the privacy and ethical concerns associated 

with other AI technologies. Future research could benefit from an exploration spanning 

different types of organizations and different geographical regions to paint a broader picture of 

socio-technical dynamics that influence the implementation of AI-enabled PdM. 

Appendix A. Case study information 

 
Fig. A. 1. Timeline of ProdAI. 

 
Fig. A. 2. Timeline of CarAI.
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