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Theoretical Introduction
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➢ GNSS Reflectometry (GNSS-R) is a remote sensing 
technique that captures geophysical properties of the 
Earth's surface by analyzing GNSS signals reflected from 
it.

➢ The specular point is the point on the Earth's surface
where the reflected GNSS signal is the strongest, where 
incident and reflected angles are equal.

➢ Lies at the center of the glistening zone, the area over 
which the signal is reflected toward the receiver.

➢ All that is needed is a receiver, perfectly suited for 
CubeSat.

GNSS-R Overview

Figure 1: GNSS-R visualization

Image credit: https://en.wikipedia.org/wiki/GNSS_reflectometry#/media/File:GNSS-R_system_diagram.svg
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Theoretical Introduction

CubeSat Symposium

➢ CubeSats deployed in formation would use beamforming, a 
technique that focuses signals from an array of antennas 
towards specific directions.

➢ This creates a main lobe, directly pointing towards the 
Earth's observation point.

➢ A coordinated satellite formation reduces the beamwidth, 
yields a higher resolution.

➢ More efficient, cost-effective, and easier to deploy compared 
to using a single, larger antenna.

CubeSat formation flight: Resolution

Figure 2: Beamforming

Image credit: https://verkotan.com/2021/beamforming-antennas-how-they-work-and-are-tested/
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Theoretical Introduction
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➢ Side lobes are unintentionally generated areas of signal reception from 
directions outside the main lobes. Byproducts of the beamforming process.

➢ Side lobes can cause interferences in the glistening zone, crucial to manage 
their presence effectively.

Beamforming byproducts: Side lobes

➢ To minimize interferences and maintain signal clarity, sidelobes should be kept low enough. This 

ensures that the main beam remains focused and effective for high-resolution observation.

Figure 3: Main lobes and side lobes

Image credit: https://en.wikipedia.org/wiki/Sidelobes#/media/File:Typical_Antenna_Pattern.jpg
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Mission Design
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➢ Project divided in teams, Astrodynamics, Communication Subsystem, Power Subsystem and P/L.

➢ The following mission requirements and constraints were given.

Requirements and constraints

ID Mission Requirements

MR 01 Remote sensing data of at least 1 km resolution 
shall be obtained

MR 02 Measurements shall be between latitudes -80°
and +80°

MR 03 At least 3x8640 data points shall be measured 
over land mass per day

MR 04 Data shall be provided to users within one week

MR 05 Data shall be provided for a duration of 5 years

ID Mission Constraints

MC 01 A 20 satellite formation in a circular geometry 
shall be used

MC 02 Satellite formation shall be a 2U CubeSat with at 
least 2U deployable solar panels

MC 03 Altitude shall be 450 km < altitude < 550 km

MC 04 Orbit shall be: SSO 10:30 LTAN/LTDN

MC 05 Measurement technique shall be GNSS-
reflectometry

Table 2: Mission AssumptionsTable 1: Mission Requirements
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Mission Design
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➢ Astrodynamics model made through 
MATLAB Aerospace toolbox.

➢ Formation is considered as a single 
point, all perturbations are neglected.

➢ Completed with STK to mitigate 
MATLAB limitations: Eclipse Time & 
Solar AER

➢ Overall, model outputs data for 
system and subsystem design

➢ For P/L, need specular point 
positions as a function of the 
inputted orbits

Phases 0/A: Astrodynamics

Formation 

Keplerian 

Elements

GNSS Satellite 
Keplerian 
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Sample 

Time
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MATLAB Model

Figure 4: Astrodynamics Model Overview
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Specular Point Determination Model
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➢ Minimize the sum of distances from the GNSS 
satellite to the specular point and from the specular 
point to the formation.

➢ Ensure the specular point lies on the Earth's surface 
modeled by the WGS84 ellipsoid.

➢ Optimization within the Earth's surface constraint.

➢ Validate physical reality of the specular point through 
geometric checks against the Earth's tangent plane.

➢ See ref [2] for precise derivation.

Phases 0/A: Specular point determination via the Minimum Path Length Method

Figure 5: Specular points over land for 

GSAT0101, altitude 450km.
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CubeSat Main Subsystems
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➢ Subsystems choice based on astrodynamics model outputs, mission requirements and constraints

➢ P/L: 

➢ RHCP antenna for direct signal, zenith pointing , LHCP antenna for reflected signal nadir 
pointing, both GCA01- Compact GNSS Active Patch Antenna

➢ Space GNSS Receiver SGR-Ligo

➢ ISIS On-Board Computer

➢ COM: 

➢ Endurosat S-Band Transceiver

➢ Monopole S-Band Antenna NanoCom AM2150-O

➢ S-Band diplexer DSA-FM made by WiRan

➢ POW: 

➢ Li-ion Batteries

➢ GaAs EXA DMSA/1 Arrays

➢ Spacemanic model SM-PSUAMUN EPS

Phase B1: System preliminary design
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Conclusion
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➢ Mission design aligns with current EO research and is physically feasible

➢ Covers design phases up to early phase B, with subsystem preliminary design

➢ Satellite formation shape and number requires further analysis

Mission 𝜏au Phases 0/A/B1
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Problem Statement
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➢ Resolution and Side Lobes Amplitude are the two main Key Performance Indicators (KPIs) for 
assessing the efficacy of the satellite formation.

➢ UCLouvain colleagues built a model and compared formations based on a central chief satellite
and deputy satellites. Candidate is a 4 arms spiral formation.

Scope of the project

➢ Based on those KPIs and this model:

➢ Are there opportunities to refine the candidate formations to further improve resolution and to reduce 

side lobes amplitude?

➢ How positional uncertainties affect the resolution and side lobes amplitude?

➢ How frequency changes affect the resolution and side lobes amplitude?
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UCLouvain Model Overview
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Model Assumptions
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➢ The model was built with the following assumptions:

Assumptions

ID Assumption

MA 01 Earth shall be considered as a sphere of radius 6371 km

MA 02 The glistening zone shall be considered as a disk of 5km radius

MA 03 All atmospheric disturbances on electromagnetic waves shall be neglected

MA 04 The specular point position was determined through the Minimum Path Length Method, see ref. [2]

MA 05 The chief body and the GNSS satellite shall be considered in a perfect circular orbit around the Earth

MA 06 All astrodynamics disturbances shall be neglected

Table 3: Model assumptions
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Model Illustration
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➢ In the model, the following orbits have been chosen

➢ From chief satellite, Clohessy-Wiltshire equations used to determine deputy satellites positions, which 
is what induces ellipses

Satellites’ orbit

Keplerian Elements a (m) ε i (°) Ω
(°)

ω (°)

CubeSat Chief Body 6 771 000 (400km altitude) 0 90 0 0

GNSS Satellite 29 593 000 (23 222km altitude) 0 56° 0 0

Table 4: Satellite’s Keplerian Elements
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Model Illustration

CubeSat Symposium

➢ KPIs also vary over the orbit due to 
formation’s static inclination

➢ The KPIs changes will be observed fixed 
in time to ensure the implication of the 
intended changes are the only thing 
seen

➢ Final set-up overview:

Visualization

Figure 6: Model set-up overview
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Satellite distribution changes
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Satellite Distribution Changes
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➢ Model initial satellite distribution: a 4-arm 
spiral formation spread across concentric 
ellipsoids.

➢ Outer semi minor axis radius constrained to 
35m in this configuration.

➢ Inner semi minor axis radii adjusted to meet 
KPI requirements from UCLouvain project  
(R = 1km, side lobes -10dB).

➢ Initial model’s flight formation

Initial model flight formation

Figure 7: Initial Model Configuration

➢ Model’s initial frequency fixed at f = 1498.962 MHz

➢ No position uncertainties 



20

Satellite Distribution Changes
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➢ The previous configuration leads to the following
radiation pattern, with side lobes in the 
glistening zone around -6dB

➢ And a resolution RInitial ≈ 0.92 km.

Initial model flight’s formation KPIs

Figure 8: Initial Radiation Pattern

Figure 9: Initial ground spot

➢ Ground spots visualize the power distribution on Earth's surface.

➢ Aids in assessing the array's directional signal reach.
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Satellite Distribution Changes
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➢ Explore alternative configurations; what if the outer radius is not constrained to 35m?

➢ The large formation configuration leads to side lobes in the glistening zone still around -6dB

➢ And a resolution RLarge ≈ 0.83 km, an enhancement of 9.34% compared to Rinitial.

Outer radius increase impact

Figure 12: Large formation ground spotFigure 11: Large formation radiation patternFigure 10: Large formation configuration
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Satellite Distribution Changes
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➢ Adjusting the formation's outer radius could yield better resolution, room for improvement.

➢ Insights from my University of Luxembourg colleagues at SIGCOM lab indicate that a Gaussian 
distribution of 5G satellites in a linear array can improve resolution.

➢ However those distributions don’t account for positional uncertainties.

➢ Investigate how position uncertainties impact KPIs.

Conclusion
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Position uncertainties
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Position Uncertainties
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➢ Return to the initial formation flight 
configuration

➢ Still at the same f = 1498.962 MHz

Initial model flight formation

Figure 13: Initial Model Configuration
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Position Uncertainties 
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➢ 0.7m the minimum achievable error according to ref [4].

➢ Implies an error shift of Δ = ± 0.35m for each satellite positions

➢ Direct implication on the KPI

➢ Error is randomly generated

➢ KPIs are computed N = 100 times, then averaged

Minimum achievable error implication on the KPIs

➢ Unshifted Resolution: 0.9158229277 km

➢ Averaged shifted resolution: 0.9152861423 km

➢ Relative difference of 0.0586%, negligible!

➢ Side lobes are approximately around -6dB

➢ No notable variations 

Figure 14: Shifted and Non-Shifted Radiation Pattern
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Position Uncertainties 
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Minimum achievable error implication on the ground spots

➢ No notable changes

Figure 16: Shifted Ground SpotFigure 15: Non-shifted Ground Spot
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Position Uncertainties 
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➢ One can be skeptical about the 
achievability of .7m precision.

➢ Precision within a few meters is more 
realistic.

➢ Same as before with Δ growing from  
± 1 to ± 5m. 

➢ Above ± 5m, the formation will be 
considered broken.

Growing error implication on the KPIs

Figure 17: Increasing error shift animation
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Position Uncertainties 
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➢ As the error increase:

➢ Direct side lobes are being slightly 
shifted

➢ Outer side lobes are being strongly 
shifted

Growing error implication on the KPIs

Error (m) Resolution (km) Relative 
Difference (%)

Δ = 0 0.9158229277 0

Δ = 1 0.9143847773 0.16

Δ = 2 0.8830666090 3.64

Δ = 3 0.9195090607 0.40

Δ = 4 0.8947533265 2.33

Δ = 5 0.9092744566 0.72

➢ No visible trend on the resolution, in fact, 
resolution look random

➢ Room for improvement 

Figure 18: Increasing error shift animation impact on Radiation Pattern

Table 5: Resolution as a function of the error
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Position Uncertainties 
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➢ As the error Δ increases:

➢ No notable trend on the 
central spot

➢ Surroundings get blurry

Growing error implication on the ground spot

Figure 19: Increasing error shift animation impact on Ground spot
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Position Uncertainties 
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➢ Uncertainty has been randomly generated and KPI’s are computed N = 100 times, then averaged. 
Probably not enough iterations.

➢ The initial minimum achievable uncertainty of .7m implies no notable changes on the KPI’s.

➢ While growing the randomly generated uncertainty;

➢ Direct side lobes amplitude were slightly altered with no particular trend.

➢ Outer side lobes amplitude were strongly altered with no particular trend.

➢ Resolution variation and associated relative difference were showing no particular trend, 
however random positioning increased resolution, again room for formation enhancement

➢ However here, no phase shift error but only positional chaos added with beamforming still in phase.

➢ Next step: check what would imply roughly known position within the beamforming process itself.

➢ Position in space known, but no possibility to have them in their intended position.

Conclusion
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Frequency changes
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Frequency changes
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➢ No uncertainty, following distribution;

➢ Changes in frequency, tests with L1, L2 L5 
GPS frequencies

Initial model flight formation

Figure 20: Initial Model Configuration



33

Frequency changes
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➢ GPS set of frequencies

➢ L1, 1575.42 MHz

➢ L2, 1227.60 MHz

➢ L5, 1176.45 MHz

➢ Impact of frequency changes on the KPI is 
the following: 

GPS frequencies

Frequency Resolution (km) Relative 
Difference (%)

Initial; 1498.962 MHz 0.9158229277 0

L1 0.8718546206 4.92%

L2 1.1218274626 20.22%

L5 1.1685743131 24.25%

➢ As frequency decreases, resolution gets 
worse

➢ As frequency decreases, the overall 
radiation pattern spreads out

➢ Main lobe AND side lobes

Table 6: Resolution as a function of the frequency

Figure 21: Frequency changes impact on the Radiation Pattern
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Frequency changes

CubeSat Symposium

➢ As frequency decreases, ground spot is spread out/zoomed-in

GPS frequencies

Figure 22: Frequency changes impact on the Ground Spot
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Frequency changes
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➢ As frequency changes, KPI’s are critically altered

➢ Resolution gets worse (increases) as frequency decreases, and gets better (decreases) as frequency 
increases

➢ Overall radiation pattern spreads out:

➢ Main lobe spreading is what implies the changes in resolution

➢ Side lobes spreading is an interesting phenomenon as it could be looked for. 

➢ Ideally, sidelobes could be moved out of the glistering zone for a certain frequency range.

Conclusion
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General Conclusion
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Conclusion
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➢ Feasibility and preliminary design has been assessed for a GNSS-R Mission

➢ Room for formation flight improvements although the work performed by UCLouvain is an 
incredible step further in the domain

➢ Strategies must be developed to mitigate uncertainties that surpass an established accuracy 
threshold, implementation of a dynamic flight system could be an option

➢ Potential to enhance EO area through cost-effective mission multiplication, based on CubeSats 
formation flights

➢ Potential for broad applications and advantages in diverse sectors

General conclusion
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Future work
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➢ Improve the model to consider additional external factors, especially the ones affecting 
electromagnetic waves.

➢ Aim for an ideal tool that would be modulable through mission requirements (observation points, 
resolution, frequency).

➢ Such a tool would help to transition from observed trends to actionable engineering data.

CubeSats formation flight future
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