Enhancing GNSS-reflectometry Earth Observation through a CubeSat Formation

by J. Thoemel¹, M. Drouguet², S. Tabibi³, D. Lederer⁴, S. Lambot⁴, C. Craye²

¹SpaySys Research Group, University of Luxembourg, Interdisciplinary Centre for Security, Reliability and Trust, Luxembourg
²Antenna Group, UCLouvain, Belgium
³Geophysics Laboratory, University of Luxembourg, Faculty of Science, Technology and Medicine, Luxembourg
⁴Georadar Research Centre, UCLouvain, Belgium

13th European CubeSat Symposium, Leuven, Belgium

University of Luxembourg Interdisciplinary Centre for Security, Reliability and Trust

- Space Research & Space Labs
 - 1. LunaLab analogue facility
 - 2. Concurrent Design Facility
 - 3. ZeroG Lab
 - 4. CubeSatLab CubeSat integration facility
 - 5. SatComLab testbed for satellite communication
 - 6. 5G Space Lab project

- Interdisciplinary Space Master, courses on
 - technical competences:
 - mission design
 - system engineering
 - satellite communication
 - robotics
 - navigation
 - business competences:
 - entrepreneurship
 - space project management
 - legal aspects

LunaLab & ZeroG Lab

- simulates surface of the Moon:
 - material: regolith/basalt
 - topology: craters
 - lighting: sun, crater shadows
- interaction of two objects in orbit
 - rendezvous
 - space debris grabbing
 - computer vision

CubeSatLab

- course:
 - basics of low earth orbit space flight and CubeSats
 - design of a CubeSat mission
 - experimenting with the EduSat
- facility:
 - satellite integration room
 - observatory

Students designed CubeSat Mission: GoldCrest

determination of soil moisture with:

- 1U CubeSat mission featuring 1 solar panel
- orbit: 6 am SSO
- on-board processing for data reduction
- measurement method GNSS-reflectometry
- investigation into business potential ongoing

DCR

CO.

Friday 26 November 2021, 14:15 – 14:30, Session 10: Cubesat Missions Global land dampness characterization using reflectometry by students (GOLDCREST): mission and CubeSat design (ID 70)

5G-SpaceLab (Earth-orbiting Scenario) Objectives and Challenges

Objective:

• Emulation of LEO CubeSat-based Over-The-Air (OTA) 5G Non-Terrestrial Network (NTN) communication

To address the challenges:

- 1. Doppler Shift
- 2. Latency
- 3. Seamless hand-over

Through the following test scenarios

- 1. bent-pipe
- 2. node-relaying
- 3. coherent distributed communications

5G-SpaceLab (Earth-orbiting Scenario)

7

Challenge: Satellite Flight

- Problem 1: Requirement on a defined distance between the satellites
- Solution:

Formation Flight, i.e. Multiple satellites with closed-loop control on-board provide a coordinated motion control on basis of relative positions to preserve an appropriate topology for observations¹.

Problem 2: Control and Control Forces

Solution: Aerodynamic and solar-radiation forces combined with an control algorithm

¹adapted from: K. Schilling, "Mission Analysis for Low-Earth-Observation Missions with Spacecraft Formations," RTO-EN SCI-231 - Small Satell. Form. Distrib. Surveill. Syst. Des. Optim. Control Considerations, pp. 1–24, 2011.

Challenges: communication

9

dimensions in km and deg

-> In trailing formation: experiment duration is ~90 s/day

Formation Flight Experimentation Solution

Side by Side flight with roll/one-axis target pointing

Simulation Results

SNT

Next: Project Sailor

- Objective:
 - prove formation flight algorithm in-situ
 - 5G use case as reference
- Means:

٠

- ESA Opssat
- combination real satellite-virtual satellite
- Status:
 - Experiment approved
 - ESA OSIP Idea accepted
 - cosmos code in upgrading
 - Opssat payload computer engineering model established

Concluding Remarks

1. Uni.lu researches formation flight

Thank you! Do you have any questions?

Speaker: Jan Thoemel University of Luxembourg Interdisciplinary Center for Security Reliability and Trust

Derivation Formation Flight Physics I

- from Kepler body problem
- given a local coordinate system (figure)
- the following equations can be derived for each formation member

$$\ddot{x} - 2\omega \dot{z} = 0$$

$$\ddot{y} + \omega^2 y = 0$$

$$\ddot{z} - 2\omega \dot{x} - 3\omega^2 z = 0$$

- Hill-Clohessy-Wiltshire equation
- set of ordinary differential equation for
 - three spatial coordinates: x,y,z
 - each formation flight member satellite

right-hand-side is zero -> no forces/propulsion applied

Derivation Formation Flight Physics II

analytical solution for Hill-Clohessy-Wiltshire equation, deputy satellite:

$$\begin{aligned} x(t) &= -3C_1\omega t + C_2\cos(\omega t) + C_3\sin(\omega t) + C_4\\ y(t) &= C_5\sin(\omega t) + C_6\cos(\omega t)\\ z(t) &= 2C_1 + C_2\sin(\omega t) + C_3\cos(\omega t) \end{aligned}$$

Formation

Mega-Constellation: Definition

IIII SNT

Flock/Swarm/Cluster

State-of-the-Art

- 1. aerodynamics are only rudimentarily used for orbit control, e.g. for Mars Express' aero-breaking and Planet Inc.'s constellation maintenance
- 2. full 3-axes aerodynamic control is investigated only theoretically by Leonard[2], Sedwick[3], Ivanov[4], Traub[5], and others
- 3. solar radiation pressure, known to be of similar magnitude as aerodynamic forces, is only considered as disturbance not as control force

100

Definitions¹

- Distributed system of similar spacecraft cooperating to achieve a joint goal without fixed absolute or relative positions: **Flock, e.g. QB50**
- Several satellites flying in similar orbits without control of relative position organized in time and space to coordinate ground coverage: Constellation, e.g. PlanetLabs
- Multiple satellites with closed-loop control on-board provide a coordinated motion control on basis of relative positions to preserve an appropriate topology for observations: **Formation/Swarm/Cluster, e.g. NetSat**
- Autonomy: a technical system reacts to disturbances without human intervention
- **Solar-Aerodynamic Flight:** the use solar radiation pressure and ram pressure of the residual atmosphere to control the orbit

¹adapted from: K. Schilling, "Mission Analysis for Low-Earth-Observation Missions with Spacecraft Formations," *RTO-EN SCI-231 - Small Satell. Form. Distrib. Surveill. Syst. Des. Optim. Control Considerations*, pp. 1–24, 2011.

Governing Equations

- from Kepler body problem
- given a local coordinate system (figure)
- the following equations can be derived for each formation member

$$\ddot{x} - 2\omega \dot{z} = 0$$

$$\ddot{y} + \omega^2 y = 0$$

$$\ddot{z} - 2\omega \dot{x} - 3\omega^2 z = 0$$

- Hill-Clohessy-Wiltshire equation
- set of ordinary differential equation for
 - three spatial coordinates: x, y, z
 - each formation flight member satellite

right-hand-side is zero -> no forces/propulsion applied

Solar-aerodynamic Forces

- from Kepler body problem
- given a local coordinate system (figure)
- the following equations can be derived for each formation member

angle with normal [deg]

Formation Flight Modes

Deployment

- satellites are co-located after launch and move to their formation location
- addressed in: J. Thoemel and T. van Dam, "Autonomous formation flight using solar radiation pressure," CEAS Sp. J., 2021.

Maintenance

- maintain location in formation under influence of disturbances
- subject of this research

Reconfiguration

- formation geometry changes for instance to change observation characteristics
- coming soon

