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LunalLab — analogue facility

Concurrent Design Facility

ZeroG Lab

CubeSatLab — CubeSat integration facility
SatComLab — testbed for satellite communication
5G Space Lab project

Interdisciplinary Space Master, courses on

technical competences:
mission design
system engineering
satellite communication
robotics
navigation

business competences:
entrepreneurship
space project management
legal aspects
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LunaLab & ZeroG Lab

» simulates surface of the Moon:
« material: regolith/basalt
» topology: craters
« lighting: sun, crater shadows

* interaction of two objects in orbit
* rendezvous
» space debris grabbing
e computer vision
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CubeSatLab

* course:
« basics of low earth orbit space flight and CubeSats
» design of a CubeSat mission
« experimenting with the EduSat

« facility:
« satellite integration room
» Observatory




Students designed CubeSat Mission: GoldCrest

determination of soil moisture with:

* 1U CubeSat mission featuring 1 solar panel
« orbit: 6 am SSO

* on-board processing for data reduction

* measurement method GNSS-reflectometry
investigation into business potential ongoing
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5G-Spacelab (Earth-orbiting Scenario)
Objectives and Challenges

Objective:
Emulation of LEO CubeSat-based Over-The-Air (OTA) 5G Non-Terrestrial Network (NTN) communication

To address the challenges:
1. Doppler Shift
2. Latency

3. Seamless hand-over

Through the following test scenarios
1. bent-pipe
2. node-relaying

3. coherent distributed communications
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5G-Spacelab (Earth-orbiting Scenario)

Conceptual Diagram
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Challenge: Satellite Flight

 Problem 1:
Requirement on a defined distance between the satellites

«  Solution:
Formation Flight, i.e. Multiple satellites with closed-loop control on-board provide a coordinated motion control on
basis of relative positions to preserve an appropriate topology for observations?.

*  Problem 2: Z, YaW
Control and Control Forces

z’, roll |\

«  Solution: solar
Aerodynamic and solar-radiation forces combined with an control algorithm k- 1itch
radiation Y, P
pressure .
X
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ladapted from: K. Schilling, “Mission Analysis for Low-Earth-Observation Missions with Spacecraft Formations,” RTO-EN SCI-231 - Small Satell. Form. Distrib. Survelill. Syst. Des. Optim. Control Considerations, pp. 1-24, 2011.



Challenges: communication

flight direction
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Formation Flight Experimentation Solution

+ Side by Side flight with roll/one-axis target pointing

flight direction

-> experiment duration ~15 min/day
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Simulation Results
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Next: Project Sailor

*  Objective:
* prove formation flight algorithm in-situ
* 5G use case as reference

* ESA Opssat
e combination real satellite-virtual satellite

« Status:
* Experiment approved
* ESA OSIP Idea accepted
* cosmos code in upgrading
* Opssat payload computer engineering model established
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Concluding Remarks

1. Uni.lu researches formation flight

uni.ln | SAT



Thank you! -
Do you have any questlons’?

Speaker: Jan Thoe?el

University of Luxembour
Interdisciplinary Center for Securlty Rellabll\y ar‘él V/ust

- . » S 2 .‘
. .:, '._ 2 ‘- " . < '-“ »
4 - P . . L

» . - . »

- ' . |I||| Il
- 3 . . ¢ 3

N UNIVERSITY OF
" LUXEMBOURG
e A



15

Derivation Formation Flight Physics |

from Kepler body problem
given a local coordinate system (figure)

X—2wz =0
y+ w?y =0
7—2wx —3w?z=0

* Hill-Clohessy-Wiltshire equation
* set of ordinary differential equation for
* three spatial coordinates: x,y,z
* each formation flight member satellite
* . right-hand-side is zero -> no forces/propulsion applied

the following equations can be derived for each formation member

1.5.
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Derivation Formation Flight Physics Il

analytical solution for Hill-Clohessy-Wiltshire equation, deputy satellite:

x(t) = —3C,wt + C,cos(wt) + C3sin(wt) + C,

y(t) = Cssin(wt) + C4cos(wt)

z(t) = 2C; + C,sin(wt) + C3cos(wt) o
1.
constants: initial conditions: 05 .
u(0) .
Cl = T + ZZ(O) X(O) =1 _Dz
_w) y(0) =0 1
27w z(0) =0 h
- 2v(0) u(0) =0 18
G = =32(0) = W v(0) =0
C, = x(0) — ZWaEO) w(0) = w/2
0!
W
Ce =y(0)
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Formation

Earth Inertial Axes
14 Jul 2021 10:90: 30.900

Time Step: 306.90 sec
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Mega-Constellation: Definition

5 Koy 2020 11:00:05.000
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Flock/Swarm/Cluster

Earth Inertial Axes
14 Jul 2021 10:90: 30.9000 Time Step: 30.99 sec
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State-of-the-Art

1. aerodynamics are only rudimentarily

aero-breaking and Planet Inc.’s constellation maintenance
2. full 3-axes aerodynamic control is investigated only theoretically by Leonard[2],

Sedwick][3], Ivanov[4], Traub[5], and others
3. solar radiation
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Definitions!?

« Distributed system of similar spacecraft cooperating to achieve a joint goal without fixed absolute or relative
positions: Flock, e.g. QB50

«  Several satellites flying in similar orbits without control of relative position organized in time and space to coordinate
ground coverage: Constellation, e.g. PlanetLabs

«  Multiple satellites with closed-loop control on-board provide a coordinated motion control on basis of relative
positions to preserve an appropriate topology for observations: Formation/Swarm/Cluster, e.g. NetSat

« Autonomy: a technical system reacts to disturbances without human intervention

« Solar-Aerodynamic Flight: the use solar radiation pressure and ram pressure of the residual atmosphere to control
the orbit

ladapted from: K. Schilling, “Mission Analysis for Low-Earth-Observation Missions with Spacecraft Formations,” RTO-EN
SCI-231 - Small Satell. Form. Distrib. Surveill. Syst. Des. Optim. Control Considerations, pp. 1-24, 2011.
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Governing Equations

from Kepler body problem
given a local coordinate system (figure)

X—2wzZ =20
4+ w?y =0
7 —2wx —3w?z=0

* Hill-Clohessy-Wiltshire equation
* set of ordinary differential equation for
* three spatial coordinates: x, y, z
* each formation flight member satellite
* . right-hand-side is zero -> no forces/propulsion applied

the following equations can be derived for each formation member

1.5.
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Solar-aerodynamic Forces
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* from Kepler body problem
* given a local coordinate system (figure)
* the following equations can be derived for each formation member
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Formation Flight Modes

* Deployment
* satellites are co-located after launch and move to their formation location
* addressedin: ). Thoemel and T. van Dam, “Autonomous formation flight using solar radiation pressure,” CEAS Sp. J., 2021.

¢ Maintenance
* maintain location in formation under influence of disturbances
* subject of this research

 Reconfiguration
* formation geometry changes for instance to change observation characteristics
* coming soon
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