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Starting from a microscopic system-baths description, we derive the general conditions for a time-local
quantum master equation (QME) to satisfy the first and second laws of thermodynamics at the fluctuating level.
Using counting statistics, we show that the fluctuating second law can be rephrased as a generalized quantum
detailed balance condition (GQDB), i.e., a symmetry of the time-local generators which ensures the validity
of the fluctuation theorem. When requiring in addition a strict system-bath energy conservation, the GQDB
reduces to the usual notion of detailed balance which characterizes QMEs with Gibbsian steady states. However,
if energy conservation is only required on average, QMEs with non-Gibbsian steady states can still maintain
a certain level of thermodynamic consistency. Applying our theory to commonly used QMEs, we show that
the Redfield equation breaks the GQDB, and that some recently derived approximation schemes based on the
Redfield equation (which hold beyond the secular approximation and allow one to derive a QME of Lindblad
form) satisfy the GQDB and the average first law. We find that performing the secular approximation is the only
way to ensure the first and second laws at the fluctuating level.
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I. INTRODUCTION

Quantum master equations (QMEs) are widely used to
describe the dynamics of open quantum systems. The issue
of their thermodynamic consistency has been raised early on,
and has in general been tackled by assuming the validity of de-
tailed balance conditions, which impose strict constraints on
the generator of the QME and on the associated steady-state
density matrix [1–7]. The rapid development of quantum and
stochastic thermodynamics [8,9] in recent years has created a
renewed interest in this topic [10–12]. In particular, many ef-
forts have been devoted to identifying conditions under which
QMEs satisfy quantum analogs of classical fluctuation theo-
rems (FT) [13–18]. For systems in contact with one or more
environments initialized at equilibrium, FTs emerge as ex-
act symmetries governing the fluctuations of thermodynamic
quantities (such as work and heat currents) at the level of
the unitary evolution [19,20]. A thermodynamically consistent
QME, obtained by tracing out the baths, should therefore
preserve such symmetries. In this article, we show that FTs at
the unitary level translate in a condition that the QMEs must
satisfy in order to be thermodynamically consistent, which
we call the generalized quantum detailed balance condition
(GQDB). Combined with a strict energy conservation at the
fluctuating level, the GQDB reduces to the usual detailed bal-
ance. However, this strict condition is not necessary to ensure
the first and second laws at the average level. The criteria
derived here are used to discuss the consistency of usual mi-
croscopic derivations w.r.t. the GQDB. We show that the latter
is violated by the Redfield QME, and discuss whether the

*ariane.soret@gmail.com

approximation schemes used to restore the Lindblad form of
the Redfield ME [12,21–26] allow one to recover the GQDB.
Imposing also a strict energy conservation, that is, requiring
consistency at the fluctuating level, requires to perform the
secular approximation.

II. THERMODYNAMICS AT THE SYSTEM-BATHS
UNITARY LEVEL

Let us consider a system S coupled to N baths, labeled by
α = 1, 2, . . . , N . The total Hamiltonian reads

Ĥ (t ) = ĤS (t ) +
N∑

α=1

Ĥα +
N∑

α=1

V̂α (t ), (1)

where ĤS (t ) is the system Hamiltonian, Ĥα the free Hamil-
tonian of the αth bath and V̂ (t ) = ∑N

α=1 V̂α (t ) the coupling
Hamiltonian between the baths and the system [27]. En-
ergy changes in the system and the baths can be obtained
by measuring the operators ĤS, Ĥα at times 0 and t , using
the two-point measurement technique [14]. The moment-
generating function (MGF), defined here as the Laplace
transform of the probability distribution of such energy varia-
tions, can be written as [14]

G(t,λ) = Tr[ρ̂λ(t )]; ρ̂λ(t ) = Ûλ(t, 0) ¯̂ρ0Û
†
λ (t, 0), (2)

where Ûλ(t, 0) is the tilted evolution operator,

Ûλ(t, 0) = eλ·Ĥ/2Û (t, 0)e−λ·Ĥ/2, (3)

where Û (t, 0) = T←[e−i
∫ t

0 dsĤ (s)] is the unitary time-evolution
operator (with T← being the time ordering), Ĥ =
(ĤS, Ĥ1, . . . , ĤN ) and λ = (λS, λ1, . . . , λN ), respectively,
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denote a vector of system-bath Hamiltonians and a vector
of counting fields, and ¯̂ρ0 is the diagonal part of the initial
density matrix ρ̂0 in the basis diagonalizing (1) in absence of
coupling. Fluctuations of various quantities can be obtained
from the MGF by a suitable choice of the counting field λ.
For the system bare energy changes, �ES , we choose λS = λ

and λα = 0 for all α. For the energy changes leaving bath η,
i.e., the heat Qη, we choose λS = λα = 0 for all α �= η and
λη = −λ. Finally, for the “work,” W = �ES − ∑

η Qη, we
choose λS = λα = λ. We note, however, that the term work
is only justified when additionally requiring that the coupling
is switched on after the initial measurement and switched
off before the final one: V̂α (0) = V̂α (t ) = 0. Otherwise, this
coupling contribution should be included into the system
energy [28]. Detailed FTs are exact symmetries of the MGF,
linking the fluctuating entropy of a given “forward” process
with the one generated in its time-reversed counterpart. For
discussing FTs, we introduce the MGF for the reversed
dynamics as [14]

GR(t,λ) = Tr
[
ρ̂R

λ (t )
] = Tr

[
Û †

−λ(t, 0) ¯̂ρR
0 Û−λ(t, 0)

]
. (4)

If the initial density matrices of the forward and time-reversed
processes are given by Gibbs states, that is,

ρ̂0 = e−βSĤS (0)

ZS (0)

⊗
α

e−βαĤα

Zα

,

ρ̂R
0 = e−βSĤS (t )

ZS (t )

⊗
α

e−βαĤα

Zα

, (5)

with ZS (t ) = TrS[e−βSĤS (t )] and Zα = Trα[e−βαĤα ], the follow-
ing detailed FT can be derived (see Appendix A):

GR(t,−λ − β) = G(t,λ)
ZS (0)

ZS (t )
= G(t,λ)eβS�Feq , (6)

with inverse temperatures β = (βS, β1, . . . , βN ) (kB = 1) and
�Feq = Feq(t ) − Feq(0) where Feq = − 1

βS
ln ZS (t ) is the equi-

librium free energy of the system. A related but in general
different FT can be derived for the entropy production �,
corresponding to changes in the quantity Ŝ(t ) + ∑

α βαĤα ,
where Ŝ(t ) = − ln ρ̂S (t ) is the system entropy. This time, only
the initial density matrices of the baths need to be in a Gibbs
state, and we obtain (see Appendix A)

GR
� (t,−λ� − 1) = G� (t, λ� ). (7)

As such, this relation is rather formal, but setting λ� = −1,
we obtain the integral fluctuation theorem

G� (t,−1) = 〈e−�〉 = 1, (8)

where the brackets denote an ensemble averaging (see also
Appendix A). From (8), using the convexity of the exponential
function, we recover the second law 〈�〉 � 0 [29,30] (see
Appendix A). Notice that, if the system is also prepared in
a Gibbs state, (7) becomes a special case of (4). Finally,
note that when the Hamiltonians (1) are time-independent, the
requirement that fluctuations in W vanish—i.e., that system-
baths energy is conserved at the fluctuating level—implies the
invariance

ρ̂λ+χ1(t ) = ρ̂λ(t ), (9)

for all times, where 1 = (1, 1, . . . , 1) and χ ∈ R. One easily
verifies that this strict energy conservation holds true when
[V̂ , ĤS + ∑

α Ĥα] = 0.

III. THERMODYNAMICS AT THE QME LEVEL

We now proceed to show how the conditions (6), (7), and
(9) translate at the level of effective QMEs after tracing out
the bath degrees of freedom, a procedure we will also refer
to as coarse graining. Decomposing the initial state as ρ̂0 =
ρ̂S (0) ⊗ ∑

ν ην |ν〉〈ν|, where |ν〉 are eigenvectors of the baths,
the tilted density matrix in (2) becomes

ρ̂λ
S (t ) =

∑
μ,ν

Ŵ λ
μ,ν (t, 0)ρ̂S (0)Ŵ λ †

μ,ν (t, 0) ≡ M̂λ(t, 0)ρ̂S (0),

(10)
where Ŵ λ

μ,ν = √
ην〈μ|Ûλ(t, 0)|ν〉 are a set of Kraus opera-

tors acting on the system Hilbert space [31]. The Markov
approximation is enforced by assuming the semigroup hy-
pothesis: M̂λ(t, 0) = M̂λ(t, s)M̂λ(s, 0), leading to a time local
equation of the form

dt ρ̂
λ
S (t ) = lim

δ→δ0

1

δ
(M̂λ(t + δ, t ) − I)ρ̂λ

S (t ) ≡ Lλ(t )ρ̂λ
S (t ),

(11)
with ρ̂λ

S (0) = ρ̂S (0), and where the coarse-graining time δ0

needs to be simultaneously larger than the typical correlation
time of the bath and smaller than the relaxation time of the
system. Throughout this paper, we assume that the limit in
(11) exists and does not explicitly depend on δ0. As shown
in Appendix B, when counting the energy flow to the thermal
baths λB = (λ1, . . . , λN ), the generator assumes the general
form

L0,λB (t )ρ̂0,λB
S = −i

[
Ĥ ′

0,λB
(t ), ρ̂0,λB

S

] + D0,λB (t )ρ̂0,λB
S , (12)

where the notation X̂0,λB corresponds to the choice λ =
(0,λB) for an operator X̂ , and where we dropped the t depen-
dence of ρ̂

0,λB
S (t ) to alleviate the notation. Ĥ ′

0,λB
(t ) is identified

as the sum of the system Hamiltonian ĤS and of a Lamb shift
contribution Ĥ0,λB

LS , and D0,λB (t ) accounts for the dissipation.
The dissipator itself can be decomposed in an anticommutator
and a jump term J ,

D0,λB (t )ρ̂0,λB
S = {

Ĝ0,λB , ρ̂
0,λB
S

} + J0,λB (t )ρ̂0,λB
S . (13)

The analog of (10) for the time-reversed MGF (4) is given
in terms of the Kraus operators Ŵ Rλ

μ,ν = √
ην〈μ|Û †

−λ(t, 0)|ν〉.
As shown in Appendix B, these operators inherit a symmetry
similar to (6),

Ŵ R λ
μ,ν = eλSĤS (0)

(
Ŵ (λS,−λB−βB )

ν,μ

)†
e−λSĤS (t ). (14)

Combined with the semigroup hypothesis, this relation leads
to the following GQDB condition

LR
0,λB

[. . .] = L†
0,−λB−βB

[. . .], (15)

where βB = (β1, . . . , βN ), and where we introduced the
adjoint O† of a superoperator O as the one fulfilling
Tr[[O(X )]†Y ] = Tr[X †O†(Y )] for all operators X,Y . Cru-
cially, (15) is a sufficient condition for the QME to satisfy
the FTs (6) and (7) (see Appendix C).

062209-2



THERMODYNAMIC CONSISTENCY OF QUANTUM MASTER … PHYSICAL REVIEW A 106, 062209 (2022)

We now turn to energy conservation and assume for sim-
plicity that ĤS is time-independent, although the upcoming
discussion could be extended to driven systems, under certain
conditions discussed in the conclusion. From the property of
the Kraus operators Ŵ λ

μν = eλSĤS/2Ŵ 0,λB
μν e−λSĤS/2, we obtain,

after taking the limit in (11), the general form of a tilted
superoperator,

LλS ,λB [. . .] = e
λS
2 ĤSL0,λB

[
e− λS

2 ĤS · · · e− λS
2 ĤS

]
e

λS
2 ĤS . (16)

Furthermore, introducing Lλ ≡ LλS,λB allows us to write the
analog of (9) at the QMEs level, the strict energy balance
condition

Lλ[. . .] = Lλ+χ1[. . .]. (17)

This relation unveils a crucial point: there is a strict connection
between invariance properties and symmetries of the generat-
ing function [32–34]. Notice that (17) can be understood as
imposing (9) only over time intervals δ0, but not at all times.
It is therefore less restrictive than (9).

IV. DETAILED BALANCE AND GQDB

Combining our GQDB condition (15) with the energy con-
servation (17) allows us to connect with the notion of detailed
balance commonly used in the literature [31]. Indeed, starting
from (15) for a single bath, setting λB = 0, we can manipulate
the r.h.s. using (17) to obtain

LR
0,0[. . .] = L†

0,−β1
[. . .] = L†

β1,0
[. . .]. (18)

Using now a counterpart of the relation (16) for the adjoint
generator,

L†
λS,λB

[. . .] = e
−λS

2 ĤSL†
0,λB

[
e

λS
2 ĤS · · · e

λS
2 ĤS

]
e

−λS
2 ĤS , (19)

we recover the usual detailed balance

LR
0,0[. . .] = e− β1

2 ĤSL†
0,0

[
e

β1
2 ĤS · · · e

β1
2 ĤS

]
e− β1

2 ĤS . (20)

Note that quantum detailed balance conditions are often ex-
pressed in reference to a fixed point ρ̂ss, which in the case of a
single bath is Gibbsian. Here, instead, (15) does not depend on
the steady state. However, assuming (17) leads to (20), which
implies that the Gibbs state is a fixed point. This is easily
proven by combining L†[I] = 0 [35]. with (20) to obtain
LR[e−β1ĤS ] = 0, and hence the Gibbs state is a steady state of
L by virtue of the relation LR[. . .] = �L[� . . . �]�, where
� is the time-reversal operator satisfying �2 = I [14] (see
Appendix D for details). The relation to other notions of de-
tailed balance [4,36] is discussed further in Appendix E. The
relation (18) can be trivially extended to multiple baths: since
the coupling term in the Hamiltonian (1) is additive in the
baths, the same holds true for the dissipators (13), which will
individually satisfy (18) with their respective temperatures.

V. THERMODYNAMICS AT THE AVERAGE LEVEL

The first (resp. second) law at the average level follows
naturally from the energy conservation condition (17) [resp.
from the GQDB (15)]. Indeed, setting λ = 0 in (17) implies
that adding the same counting field χ on ĤS and ĤB leaves
the superoperator invariant. Consequently, the work MGF,
G(t, χ1) = Tr[ρ̂χ1

S ], is χ independent. Since, by linearity,

∂χG(t, χ1) = ∂χG(t, λS = χ ) + ∑
α ∂χG(t, λα = χ ), where

the two terms on the r.h.s. are respectively the MGF of the
changes in the system energy ES (t ) = TrS[ĤSρS (t )] and of the
heat exchanges Qα , we obtain the first law

∂χG(t, χ1)|χ=0 = �ES −
∑

α

Qα = 0. (21)

For the second law, since we already showed that the GQDB
(15) guarantees the FT (7), we can follow the same reasoning
as for the unitary case and obtain, at the QME level, that
G� (t,−1) = 1, hence

〈�〉 = �S −
∑

α

βαQα � 0, (22)

where S(t ) = −TrS[ρ̂S (t ) ln ρ̂S (t )]. Using the fact that the
semigroup (or Markov) approximation assumes that the gen-
erator is the same for every time interval, including the initial
one calculated with the factorized initial condition, (22) holds
true at the rate level. For the first and second laws, we thus get

dt ES =
∑

α

Q̇α 〈�̇〉 = dt S −
∑

α

βαQ̇α � 0. (23)

For a single bath, Q̇ = TrS[ĤSdtρS (t )] and thus 〈�̇〉 =
−dt D(ρS (t )||e−βĤS /ZS ) � 0. Here D denotes the relative en-
tropy which is a Lyapunov function of the dynamics since, as
showed under (20), the steady state is of a Gibbs form [3,31].

VI. THERMODYNAMIC CONSISTENCY WHEN
DERIVING QMES

In practice, QMEs of the form (12) are obtained by
applying various approximation schemes to the underlying
system-bath dynamics. We now examine the consequences
of commonly used approximations on the thermodynamic
consistency of QMEs, using (15) and (17) as the main tools
of our investigation. We begin by showing that the Redfield
ME, which describes the open system dynamics under the
Born-Markov approximation [31], violates (15). This can be
seen by computing the associated jump term (13), which is
equal to

J Red
0,λB

(t )ρ̂S

=
∑

mn,m′n′,α

[[�α
+(ωm′n′ , λα )∗ + �α

+(ωmn, λα )]Âmnρ̂SÂ†
m′n′

+ [�α
−(ωm′n′ , λα )∗ + �α

−(ωmn, λα )]Â†
mnρ̂SÂm′n′], (24)

where Âmn = gmnσ̂mn, with gmn ∈ C a complex amplitude and
the operators {σ̂mn} forming a basis of jump operators acting
on the system Hilbert space. By definition, σ̂mn = |En〉〈Em|,
where {|En〉} are eigenvectors of ĤS and ωmn = Em − En

are the corresponding Bohr frequencies. �α
±(ωmn, λα ) are the

one-sided Fourier transforms of the tilted baths correlation
functions. They satisfy the relation �α

±(ωmn,−λα − βα ) =
�α

∓(ωmn, λα )∗, from which we can immediately check that
(24) does not satisfy (15) (see Appendix F for details).
To get a better understanding of the implications that the
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approximations made when deriving tilted QMEs of the form
(12) have on the thermodynamics, we start directly from (11).
In the basis {σ̂mn} introduced earlier, the operator M̂λ takes the
form

∑
dλ

mn,m′n′ (t )σ̂mn[. . .]σ̂m′n′ , where dλ
mn,m′n′ (t ) is

∑
μ,ν

TrS
[
σ̂ †

mnŴ
λ
μ,ν (t + δ, t )

]
TrS

[
σ̂

†
m′n′Ŵ λ

μ,ν (t + δ, t )
]∗

= ηνe
λ
2 [2(ν−μ)−ωnm−ωn′m′ ]〈En|Ŵ 0

μ,ν |Em
〉〈

En′ |Ŵ 0
μ,ν |Em′

〉∗
,

(25)

where Ŵ 0
μ,ν is the Kraus operator for λ = 0 (we dropped the t

dependence to alleviate the notation). Strict energy conserva-
tion (17) is achieved when the above term is λ independent,
which forces the allowed transitions to satisfy 2(ν − μ) =
ωnm + ωn′m′ . This leads to ν − μ = ωnm = ωn′m′ , since the
two transition amplitudes in (25) are independent. Hence,
satisfying (17) requires to perform the secular approximation.
Since this procedure preserves the property (14) of the Kraus
operators, GQDB is preserved. Consequently, performing the
secular approximation is the only way to guarantee both (17)
and (15).

To go further, we relax the energy conservation condition
from the fluctuating level to the average level only. Aver-
age energy conservation only requires the derivative in λ of
(25) to vanish in 0, which in principle allows one to keep
more terms while preserving the symmetry (14). To illustrate
this idea, consider the weak coupling limit, where we can
perturbatively expand the propagator in Ŵ 0

μ,ν , and obtain the
following condition for any ωnm, ωn′m′ and for all α (see details
in Appendix G):∫

dωRα
±(ω)�n′m′

nm (ω)sc

(
(ω − ωnm)δ0

2

)
sc

(
(ω − ωn′m′ )δ0

2

)

= 0, (26)

where Rα
±(ω) = �(�α

±(ω, 0)) are the Fourier transforms of
the baths correlation functions, without counting fields,
�m′n′

mn (ω) = ω − (ωmn + ωm′n′ )/2 and sc is a shorthand for
sinc. This condition is obviously satisfied in the secular
(|ωmn − ωm′n′ | � δ−1

0 ) and degenerate (ωmn = ωm′n′ ) cases.
But it also holds when the frequencies are nearly degen-
erate, 0 < |ωmn − ωm′n′ | < δ−1

0 . In this case, the product
of sinc functions is peaked around (ωmn + ωm′n′ )/2 (see
Fig. 1), hence, if Rα (ω) is sufficiently smooth, the pref-
actor �m′n′

mn (ω) nullifies. One can then, for example, re-
place

∫
dωRα

±(ω)sc( (ω−ωnm )δ0
2 )sc( (ω−ωn′m′ )δ0

2 ) by Rα
±[(ωnm +

ωn′m′ )/2] in M̂λ(t + δ, t ) whenever |ωnm − ωn′m′ | < δ−1
0 . One

then obtains a QME satisfying the GQDB and (26), hence
the average first law (21), but not (17), as explained in
Appendix G.

Several approximation schemes can be applied to the Red-
field QME to produce QMEs in the Lindblad form that capture
coherent effects beyond the secular approximation [12,21–
25,37]. Counting statistics in these models is studied by per-
forming the same approximation schemes on the Redfield
QME with counting fields. In some cases, the resulting tilted
QME falls into the class of QMEs which satisfy the GQDB
and the first and second laws of thermodynamics at the

FIG. 1. The product of the sinc functions of (26) is represented
in green (full line), with �1,2 = (ω1,2 − ω)δ0/2 and ω2 = ω1 + 1/δ0.
The black (dotted) curve is the spectral density. See Appendix I for
details on the model and parameters.

average level, (21) and (22), as shown in Appendix H. An
example of this is given by the symmetrized QMEs [22,24]
that are in agreement with (15) and the condition (26). These
approaches become particularly relevant in regimes where the
Bohr frequencies are nearly degenerate and the secular ap-
proximation fails, as we illustrate in Appendix I, by studying
heat transfers between a three-level system and a bath.

As a final remark, we note that the first and second laws in
nonsecular Lindblad QMEs are valid within second order in
the interaction, which was to be expected since the starting
point of these procedures (the Redfield QME) is itself ob-
tained from a perturbative development to second order; see
Appendix J. The second law being true only up to corrections
is closely connected to the steady state of the QMEs not being
of strict Gibbs form. This seemingly breaks the second law
(22), but only negligibly within the weak coupling limit.

VII. CONCLUSIONS

Using counting statistics, we identified two independent
conditions which ensure the thermodynamic consistency of
QMEs at the fluctuating level. The GQDB condition (15)
guarantees the validity of the detailed FTs (6) and (7), and thus
of the average second law (22). The condition (17) guarantees
a strict energy conservation at the fluctuating level and thus
the average first law (21). We highlight that obtaining QMEs
satisfying both (15) and (17) requires to perform the secular
approximation. Beyond the secular approximation, a larger
class of QMEs can satisfy FTs as well as the first and second
laws at the averaged level, but energy conservation at the
fluctuating level is lost.

Our work suggests that the only way to achieve thermody-
namic consistency at the fluctuating level beyond the secular
approximation is to go beyond the semigroup hypothesis. In
that respect, it is interesting to note that thermodynamically
consistent quantum maps such as the thermalizing scattering
maps recently derived in [38] or the thermal operations of
Refs. [39–41], display the same features as secular maps, in
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particular the decoupling of the population and coherence
dynamics in the energy eigenbasis.

We focused on time-independent system Hamiltonians, but
a promising future development would be to extend our results
to time-dependent ones. This should be possible provided that
the characteristic timescale of the driving, τd , satisfies either
τd � δ0 or δ0 � τd � τB where τB is the bath characteristic
time. Indeed, in these two cases the coarse graining of the
dynamics over the time scale δ0 [in the sense of (11)] is
well defined, allowing us to derive a time local QME. Indeed
for periodically driven systems, a tilted QME can be derived
in the Floquet basis, and after performing a secular approx-
imation in that basis, the resulting QMEs has been shown
to be thermodynamically consistent at the fluctuating level
[42]. The optical Bloch equation has also been shown to be

thermodynamically consistent at the average level [43] but the
fluctuating level remains to be investigated. The generaliza-
tion of our analysis to time-dependent Hamiltonians inducing
work on the system is left for future work.
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APPENDIX A: FLUCTUATION THEOREMS FOR THE
UNITARY DYNAMICS

To prove the FT (6), we begin by using (2) and (3) to write
the generating function explicitly

G(t,λ) = Tr
[
Û (t, 0)e−λSĤS (0)−∑N

α=1 λαĤα ¯̂ρ0Û
†(t, 0)eλSĤS (t )+∑N

α=1 λαĤα
]
, (A1)

while the generating function in the reverse process reads

GR(t,λ) = Tr
[
Û †(t, 0)e−λSĤS (t )−∑N

α=1 λαĤα ¯̂ρR
0 Û (t, 0)eλSĤS (0)+∑N

α=1 λαĤα
]
, (A2)

as we can derive from (4). Assuming that the initial density matrices of the forward and backward processes are of the form (5),
we have

G(t,λ) = 1

ZS (0)
∏

α Zα

Tr
[
Û (t, 0)e−λSĤS (0)−∑N

α=1 λαĤα e−βSĤS (0)−∑N
α=1 βαĤαÛ †(t, 0)eλSĤS (t )+∑N

α=1 λαĤα
]
, (A3)

GR(t,λ) = 1

ZS (t )
∏

α Zα

Tr
[
Û †(t, 0)e−λSĤS (t )−∑N

α=1 λαĤα e−βSĤS (t )−∑N
α=1 βαĤαÛ (t, 0)eλSĤS (0)+∑N

α=1 λαĤα
]
. (A4)

Consider now the quantity

GR(t,−λ − β) = 1

ZS (t )
∏

α Zα

Tr
[
Û †(t, 0)eλSĤS (t )+∑N

α=1 λαĤαÛ (t, 0)e−λSĤS (0)−∑N
α=1 λαĤα e−βSĤS (0)−∑N

α=1 βαĤα
]
. (A5)

With the help of (5) we recognize the last factor in the trace as the unnormalized initial state of the forward evolution, in such a
way that

GR(t,−λ − β) = ZS (0)

ZS (t )
Tr

[
Û †(t, 0)eλSĤS (t )+∑N

α=1 λαĤαÛ (t, 0)e−λSĤS (0)−∑N
α=1 λαĤα ρ̂0

]
. (A6)

From (A6) and (A1), it is immediate to find the result (6) after applying the cyclic property of trace.
We now turn to the FT (7) for the entropy. Recall that the fluctuating entropy is defined as Ŝ(t ) + ∑

α βαĤα = − ln ρ̂S (t ) +∑
α βαĤα . The corresponding generating function is

G� (t, λ� ) = Tr

[
e−λ� ln ρ̂S (t )

∏
α

eβαλ�ĤαÛ (t, 0)eλ� ln ρ̂S (0)
∏
α

e−βαλ�Ĥα ¯̂ρ0Û
†(t, 0)

]
, (A7)

and the generating function for the reversed process is given by

GR
� (t, λ� ) = Tr

[
e−λ� ln ρ̂S (0)

∏
α

eβαλ�ĤαÛ †(t, 0)eλ� ln ρ̂S (t )
∏
α

e−βαλ�Ĥα ρ̂0Û (t, 0)

]
. (A8)

Assuming that ρ̂(0) = ρ̂S (0) ⊗ ∏
α e−βαĤα /Zα and ρ̂R(0) =

ρ̂S (t ) ⊗ ∏
α e−βαĤα /Zα , we readily check that

GR
� (t,−λ� − 1) = G� (t, λ� ), (A9)

which is the fluctuation theorem (7).
We may now easily deduce the second law of thermody-

namics. Taking λ� = −1 in (A9) leads to G�� (t,−1) = 1.

Expressing now G� (λ�, t ) in terms of the probability distri-
bution P(�) of � [14]:

G� (λ�, t ) =
∫

d�eλ��P(�), (A10)

we obtain the average fluctuation theorem

G� (−1, t ) = 〈e−�〉 = 1, (A11)
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and, using Jensen’s inequality, we recover the second law of
thermodynamics: 〈�〉 � 0.

APPENDIX B: COARSE GRAINING OF THE UNITARY
DYNAMICS UNDER THE SEMIGROUP HYPOTHESIS

WITH COUNTING FIELDS

Starting from (10) we consider the following evolution:

M̂λ(t, 0)ρ̂λ
S (0) =

∑
μ,ν

Ŵ λ
μ,ν (t, 0)ρ̂λ

S (0)Ŵ λ †
μ,ν (t, 0), (B1)

with M̂λ(t, 0) denoting the dynamical map which describes
the system evolution, and satisfying the semigroup hypothesis
M̂λ(t, 0) = M̂λ(t, s)M̂λ(s, 0) for every s ∈ [0, t]. Let us now
follow a strategy similar to the one presented in [31] to derive
a tilted superoperator, which assumes a Lindblad form when
the counting fields are set to zero.

First, we identify a set of operators F̂i, with i = 1, . . . , N2,
as a basis of the Hilbert space of the system, such that Tr[F̂i] =
0 for i �= N2 and F̂N2 = I√

N
. Decomposing the M̂λ operator in

this basis, we have

M̂λ(t1, t2)ρ̂S (t2) =
∑
i, j

cλ
i j (t2, t1)F̂iρ̂(t1)F̂ †

j ,

cλ
i j (t2, t1) =

∑
μ,ν

Tr
[
F̂ †

i Ŵ λ
μ,ν (t2, t1)

]
Tr

[
F̂ †

j Ŵ λ
μ,ν (t2, t1)

]∗
.

(B2)

Now we consider an infinitesimal expansion of the evolution
operator M̂λ(t + δ, t ) such that

M̂λ(t + δ, t )ρ̂S = cλ
N2N2 (t + δ, t )

N
ρ̂S

+ 1√
N

N2−1∑
i=1

(
cλ

iN2 (t + δ, t
)
F̂iρ̂S

+ cλ
N2i(t + δ, t )ρ̂SF̂ †

i )

+
N2−1∑
i, j=1

cλ
i j (t + δ, t )F̂iρ̂SF̂ †

j . (B3)

In the limit δ → δ0, we obtain the tilted generator of the
dynamics Lλ(t )ρ̂λ

S (t ) = limδ→δ0

M̂λ(t+δ,t )−I

δ
ρ̂λ

S (t ) as defined in
(11). To obtain a generator of the form (12), we begin by
defining

F̂λ(t ) = lim
δ→δ0

1

δ

N2−1∑
i=1

cλ
iN2 (t + δ, t )F̂i;

Ĝλ(t ) = 1

2
[F̂λ(t ) + F̂ †

λ (t )] + 1

2N
kλ(t );

H ′
λ(t ) = 1

2i
[−F̂λ(t ) + F̂ †

λ (t )], (B4)

where kλ(t ) = limδ→δ0

cλ

N2N2 (t+δ,t )−N

δ
with kλ(t ) = kλ ∗(t ).

Using the definitions above we obtain a tilted generator

Lλ(t )ρ̂λ
S (t ) = −i

[
Ĥ ′

λ(t ), ρ̂λ
S (t )

] + {
Ĝλ(t ), ρ̂λ

S (t )
}

+
N2−1∑
i, j=1

aλ
i j (t )F̂iρ̂

λ
S (t )F̂ †

j , (B5)

with aλ
i j (t ) = limδ→δ0

1
δ
cλ

i j (t + δ, t ). Setting the system count-
ing field to zero, λS = 0, we obtain a tilted generator in the
form (12),

L0,λB (t )ρ̂0,λB
S (t ) = −i

[
Ĥ ′

0,λB
(t ), ρ̂0,λB

S (t )
] + D0,λB (t )ρ̂0,λB

S (t ),

(B6)

with D0,λB (t )ρ̂0,λB
S (t ) = {Ĝ0,λB (t ), ρ̂0,λB

S (t )} + J0,λB (t )ρ̂0,λB
S

(t ) and

J0,λB (t )ρ̂0,λB
S (t ) =

N2−1∑
i, j=1

a0,λB
i j (t )F̂iρ̂

0,λB
S (t )F̂ †

j . (B7)

When all the counting fields are set to zero, (B6) is the
so-called first standard form of the generator [31]. Note
that, since, when the counting fields are set to zero, the
matrix of coefficients [ai j] is positive, we may diagonalize
the dissipator D0(t ) in order to obtain a QME of Lindblad
form [31].

We now turn to the time-reversed process, and study the
relation between the forward and reversed Kraus operators.
The Kraus operators of the reversed process are defined as

Ŵ R λ
μ,ν = √

ην〈μ|Û †
−λ(t, 0)|ν〉. (B8)

Assuming that the baths’ Hamiltonians commute, we may
write |ν〉 = |ν1〉 ⊗ ... ⊗ |νN 〉, where {|να〉} denote the eigen-
states of Ĥα , with eigenvalues {να}, s.t. ν = ∑

α να . By
explicitly expanding the definitions, we obtain

Ŵ R λ
μ,ν = √

ηνe
λS
2 ĤS (0)〈μ|Û †(t, 0)|ν〉e− λS

2 ĤS (t )e
∑N

α=1
λα
2 (μα−να ),

(B9)

Ŵ λ
μ,ν = √

ηνe
λS
2 ĤS (t )〈μ|Û (t, 0)|ν〉e− λS

2 ĤS (0)e
∑N

α=1
λα
2 (μα−να ).

(B10)

We can easily verify that

(
Ŵ λ

ν,μ

)† = √
ημe− λS

2 ĤS (0)〈ν|Û (t, 0)|μ〉†e
λS
2 ĤS (t )e− ∑N

α=1
λα
2 (μα−να ).

(B11)
After replacing

√
ημ = √

ηνe− ∑N
α=1

βα
2 (μα−να ) and

〈ν|Û (t, 0)|μ〉† = 〈μ|Û †(t, 0)|ν〉 in the equation above,
we are left with(

Ŵ λ
ν,μ

)† = √
ηνe− λS

2 ĤS (0)

× 〈μ|Û †(t, 0)|ν〉e λS
2 ĤS (t )e− ∑N

α=1
λα+βα

2 (μα−να ).

(B12)

By comparing (B9) and (B12) we finally obtain (14)

Ŵ R λ
μ,ν = (

Ŵ (−λS ,−λB−βB )
ν,μ

)† = eλSĤS (0)
(
Ŵ (λS,−λB−βB )

ν,μ

)†
e−λSĤS (t ).

(B13)
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APPENDIX C: QUANTUM FLUCTUATION THEOREMS FOR QMES

In order to prove that the FTs (6) and (7) hold for open systems under the GQDB condition (15), we begin by noticing that the
property Ŵ λ

μν (t, 0) = eλSĤS (t )/2Ŵ 0,λB
μν (t, 0)e−λSĤS (0)/2 of the Kraus operator results, by replacing in (10), in a tilted density matrix

of the form

ρ̂λ
S (t ) = e

λS
2 ĤS (t )T

{
e
∫ t

0 L0,λB (τ )dτ
}[

e− λS
2 ĤS (0) ¯̂ρS (0)e− λS

2 ĤS (0)
]
e

λS
2 ĤS (t ). (C1)

We start by proving (6). We assume that ρ̂S (0) = e−βSĤS (0)/ZS (0) and ρ̂R
S (0) = e−βSĤS (t )/ZS (t ). Then using (C1) we have

Tr
[
eλSĤS (t )etL0,λB

[
e− λS

2 ĤS (0)ρ̂S (0)e− λS
2 ĤS (0)

]] = Tr
[(

etL†
0,λB

[
eλSĤS (t )

])†
e− λS

2 ĤS (0)ρ̂S (0)e− λS
2 ĤS (0)]

= Tr
[(

etLR
0,−λB−βB

[
eλSĤS (t )

])†
e−(λS+βS )ĤS (0)]/ZS (0). (C2)

Since etLR
0,−λB−βB [eλSĤS ] is self-adjoint, we can remove the dagger in the second line and obtain

Tr
[(

etLR
0,−λB−βB

[
eλSĤS (t )

])†
e−(λS+βS )ĤS (0)

]
/ZS (0) = TrS

[
etLR

0,−λB−βB
[
eλSĤS (t )

]
e−(λS+βS )ĤS (0)]/ZS (0)

= ZS (t )

ZS (0)
TrS

[
etLR

0,−λB−βB
[
ρ̂R

S (0)e(λS+βS )ĤS (t )
]
e−(λS+βS )ĤS (0)]. (C3)

Thus, we have

Tr[ρ̂S,λ(t )] = Tr
[
ρ̂R

S,−λ−β(t )
] ZS (t )

ZS (0)
, (C4)

which completes the proof.
The proof of the FT for the entropy production follows the same steps. This time, the only assumption required is ρ̂S (0) =

ρ̂R
S (t ) and ρ̂R

S (0) = ρ̂S (t ). The MGF is given by

TrS
[
ρ̂

λ�

S (t )
] = Tr

[
e−λ� ln ρ̂S (t )etL0,λ�βB [e

λ�
2 ln ρ̂S (0)ρ̂S (0)e

λ�
2 ln ρ̂S (0)

]]
= Tr

[
(etL†

0,λ�βB
[
e−λ� ln ρ̂S (t )

])†
eλ� ln ρ̂S (0)ρ̂S (0)

]
= Tr

[
(etLR

0,−(λ�+1)βB
[
e−λ� ln ρ̂S (t )])†

eλ� ln ρ̂S (0)ρ̂S (0)]

= Tr
[[

etLR
0,−(λ�+1)βB

[
e−(λ�+1) ln ρ̂S (t )ρ̂S (t )

]]†
e(λ�+1) ln ρ̂S (0)

]
= TrS

[
ρ̂R

S,−λ�−1(t )
]
, (C5)

which completes the proof.

APPENDIX D: RELAXATION TO A GIBBS STATE

The relation between the forward and time-reversed gener-
ators L and LR is obtained from the unitary dynamics, where
the time-reversed process is given by [14]

ρ̂R(t ) = Û †(t, 0)ρ̂R(0)Û (t, 0), (D1)

from which we obtain the equation

d ρ̂R(t )

dt
= i[Ĥ (t ), ρ̂R(t )]. (D2)

To derive the equation above is not necessary to assume that
the Hamiltonian is time-reversal invariant. Indeed, as dis-
cussed in [14], the property (D1) is still valid even in presence
of non invariant components of Ĥ , provided that we suitably
invert these components when discussing time-reversed pro-
cesses. Let us use the short-hand notation B̂ to denote the
non time-reversal invariant components of Ĥ , e.g., magnetic
fields or spins. Writing the dependence in B̂ explicitly in the
Hamiltonian, Ĥ (B̂), we have the relation

�Ĥ (B̂, t )� = Ĥ (−B̂, t ). (D3)

Using the properties �2 = I, �i� = −i [14] and limiting
ourselves to the time-independent case Ĥ (B̂, t ) = Ĥ (B̂), we
may rewrite (D2) as

d ρ̂R(t )

dt
= �(−i[�Ĥ (B̂)�,�ρ̂R(t )�])�

= �(−i[Ĥ (−B̂),�ρ̂R(t )�])�, (D4)

from which, after tracing out the degrees of freedom of the
bath, we obtain

LR
B̂(. . .) = �L−B̂(� . . .�)�, (D5)

where the subscript B̂ allows us to keep track of the depen-
dence of the generator in B̂. It is then immediate to check that,
if the Gibbs state is a fixed point of LR

B̂
, then it is also a fixed

point of LB̂, using that, under time reversal, the Gibbs state
becomes

�
e−βĤS (B̂)

ZS
� = e−βĤS (−B̂)

ZS
, (D6)

with ZS = TrS[e−βĤS (B̂)].
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APPENDIX E: ALTERNATIVE DEFINITION
OF DETAILED BALANCE

An alternative definition of detailed balance, often used in
the literature [4,36], is given by

LR[. . .] =
√

ρ̂ssL†
[√

ρ̂−1
ss . . .

√
ρ̂−1

ss

]√
ρ̂ss, (E1)

where ρ̂ss is a fixed point of the dynamics, L(ρ̂ss) = 0. The
detailed balance condition (E1) can formally be interpreted as
imposing the following translation symmetry,

L(�ss )
λss

[. . .] = L(�ss )
λss+χ [. . .], (E2)

where L(�ss )
λss

is the superoperator obtained by putting a
counting field on �̂ss = − ln(ρ̂ss) + ∑

α βαĤα . Hence (E2) is
different from (17).

To see the connection between (E1) and (E2), we start from
(15) with λB = 0, and use the fact that

L(�ss )
λss

= e−λss ln ρ̂ss/2L0,λssβB [eλss ln ρ̂ss/2 ˆ̄ρ0eλss ln ρ̂ss/2]e−λss ln ρ̂ss/2.

Setting λss = 1, we obtain

LR
0,0[. . .] =L†

0,βB
[. . .] =

√
ρ̂ssL(�ss )†

λss=1

[√
ρ̂ss

−1
. . .

√
ρ̂ss

−1]√
ρ̂ss.

(E3)

Finally, using (E2), we may replace L(�ss )†
λss=1 = L(�ss )†

λss=0 = L†,
and we obtain (E1).

APPENDIX F: REDFIELD ME FOR COUNTING STATISTICS

To derive the Redfield ME with counting fields on the bath, we adapt the textbook derivation [31]. For simplicity, we assume
that Ĥ is time independent. Starting from

ρ̂0,λB (t ) = Û0,λB (t, 0)ρ̂(0)Û †
0,λB

(t, 0), (F1)

we go to the interaction picture ρ̂
0,λB
I (t ) = Û0(t, 0)†ρ̂0,λB (t )Û0(t, 0), with

Û0(t, 0) = e−iĤ0t ; Ĥ0 = ĤS +
N∑

α=1

Ĥα, (F2)

which leads to

d ρ̂
0,λB
I (t )

dt
= −iV̂ 0,λB (t )ρ̂0,λB

I (t ) + iρ̂0,λB
I (t )V̂ 0,λB (t ), (F3)

where

V̂ 0,λB (t ) = −Ĥ0 + Û †
0 (t, 0)e

∑
α λαĤα/2Ĥ (t )e− ∑

α λαĤα/2Û0(t, 0)

=
∑
α′

Û †
0 (t, 0)e

∑
α λαĤα/2V̂α′ (t )e−∑

α λαĤα/2Û0(t, 0). (F4)

with Ĥ (t ) given by (1). Integrating Eq. (F3) gives an integral form for ρ̂
0,λB
I (t ), which we then reinject in (F3). Assuming

that ρ̂(t ) = ρ̂S (t ) ⊗ ρ̂B at all times, and tracing out the bath degrees of freedom, we obtain, still in the interaction picture, the
following equation for the system density matrix ρ̂

0,λB
S,I :

d ρ̂
0,λB
S,I (t )

dt
= −

∫ t

0
ds TrB

[
V̂ 0,λB (t )V̂ 0,λB (s)ρ̂0,λB

S,I (s) ⊗ ρ̂B
] + TrB

[
ρ̂

0,λB
S,I (s) ⊗ ρ̂BV̂ 0,λB †(s)V̂ 0,λB †(t )

]

+
∫ t

0
dsTrB

[
V̂ 0,λB (t )ρ̂0,λB

S,I (s) ⊗ ρ̂BV̂ 0,λB †(s)
] + TrB

[
V̂ 0,λB (s)ρ̂0,λB

S,I (s) ⊗ ρ̂BV̂ 0,λB †(t )
]
, (F5)

where we assumed that TrB([V̂ λB (t ), ρ̂(0)]) = 0. We then perform the Markov approximation, which amounts to replacing ρ̂S,I (s)
by ρ̂S,I (t ) in the integral above. Finally, we do a change of variable s = t − s and take the upper bound of the integral to infinity
in order to obtain a time-local Markovian QME with counting fields:

d ρ̂
0,λB
S,I (t )

dt
= −

∫ +∞

0
dsTrB

[
V̂ 0,λB (t )V̂ 0,λB (t − s)ρ̂0,λB

S,I (t ) ⊗ ρ̂B
] + TrB

[
ρ̂

0,λB
S,I (t ) ⊗ ρ̂BV̂ 0,λB †(t − s)V̂ 0,λB †(t )

]

+
∫ +∞

0
dsTrB

[
V̂ 0,λB (t )ρ̂0,λB

S,I (t ) ⊗ ρ̂BV̂ 0,λB †(t − s)
] + TrB

[
V̂ 0,λB (t − s)ρ̂0,λB

S,I (t ) ⊗ ρ̂BV̂ 0,λB †(t )
]
. (F6)

Notice that setting λB = 0 in the equation above gives the standard Redfield equation. To pursue the derivation, we write the
interaction Hamiltonians in the general form V̂α = Â ⊗ B̂†

α + Â† ⊗ B̂α , where Â, B̂α act on the system and bath Hilbert spaces,
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respectively. We then introduce the operators

Âmn =
∑

Em−En=ωmn

�(Em)Â�(En), (F7)

where �(E ) denotes the projector on the eigenspace of eigenvalue E of the system. The operators Âmn satisfy the relation
[ĤS, Âmn] = −ωmnÂmn, which implies eiĤSt Âmne−iĤSt = e−iωmnt Âmn. To make the connection with the notation of the main text,
note that when the eigenspace of the eigenvalue {En} is one dimensional, we may write P(En) = |En〉〈En|, where {|En〉} is the
eigenstate of eigenvalue En. If the eigenspace is of dimension d > 1, we may write P(En) = ∑d

j=1 |E ( j)
n 〉〈E ( j)

n | where {E ( j)
n }

form an orthonormal basis of the eigenspace. Up to a relabeling, and allowing different operators Âmn to have the same ωmn, we
can then write the operators Âmn in the form Âmn = gmn|En〉〈Em|, where gmn ∈ C is a complex amplitude, ωmn = Em − En, and
where we introduced the jump operators σ̂mn = |En〉〈Em|, where {|En〉} form an eigenbasis of ĤS .

Similarly, if the bath is composed by a collection of harmonic oscillators linearly coupled with the system, we may decompose
B̂α = ∑

k jα,kb̂α (ωα,k ), s.t. [ĤB, b̂α (ωα,k )] = −ωα,kb̂α (ωα,k ) and [Ĥα, b̂†
α (ωα,k )] = ωα,kb̂†

α (ωα,k ) with jα,k ∈ C.
With counting fields λB on the baths, these operators become

V̂α (λα ) = Â ⊗ B̂†
α (−λα ) + Â† ⊗ B̂α (λα ), (F8)

with

B̂α (λα ) = eλαĤα/2B̂αe−λαĤα/2 =
∑

k

jα,kb̂α (ωk )e−λαωα,k ,

B̂†
α (−λα ) = eλαĤα/2B̂†

αe−λαĤα/2 =
∑

k

jα,kb̂†
α (ωk )eλαωα,k . (F9)

Replacing in (F6), and going back to the Schrödinger picture, we obtain

d ρ̂
0,λB
S (t )

dt
= −i

[
ĤS + ĤLS, ρ̂

0,λB
S (t )

] + DRed
0,λB

(t )ρ̂0,λB
S (t ), (F10)

where in the equation above ĤLS and DRed
0,λB

denote the Lamb shift and the tilted dissipator, which respectively read

ĤLS =
∑

mn,m′n′,α

[Iα
−(ωm′n′ , 0)ÂmnÂ†

m′n′ + Iα
+(ωm′n′ , 0)Â†

mnÂm′n′] (F11)

and

DRed
0,λB

(t )ρ̂0,λB
S (t ) = −

∑
mn,m′n′,α

Rα
−(ωm′n′ , 0)ÂmnÂ†

m′n′ ρ̂
0,λB
S + Rα

−(ωmn, 0)ρ̂0,λB
S ÂmnÂ†

m′n′

−
∑

mn,m′n′,α

Rα
+(ωm′n′ , 0)Â†

mnÂm′n′ ρ̂
0,λB
S + Rα

+(ωmn, 0)ρ̂0,λB
S Â†

mnÂm′n′

+
∑

mn,m′n′,α

[�α
+(ωm′n′ , λα )∗ + �α

+(ωmn, λα )]Âmnρ̂
0,λB
S Â†

m′n′

(F12)
+

∑
mn,m′n′,α

[�α
−(ωm′n′ , λα )∗ + �α

−(ωmn, λα )]Â†
mnρ̂

0,λB
S Âm′n′ ,

with Rα
± and Iα

± being, respectively, the real and imaginary parts of �α
±(ωmn, λα ), defined as

�α
+(ωmn, λα ) =

∫ +∞

0
ds Trα[B̂(s,−λα )B̂†(0,−λα )ρ̂α]eiωmns,

(F13)

�α
−(ωmn, λα ) =

∫ +∞

0
ds Trα[B̂†(s, λα )B̂(0, λα )ρ̂α]e−iωmns,

and Trα[. . .] denotes the partial trace over the bath α. Since the baths are initialized in the Gibbs state, the coefficients �α
± satisfy

the symmetry

�α
±(ωmn,−λα − βα ) = �α

∓(ωmn, λα )∗. (F14)

Following the same method, we obtain for the reversed process

d ρ̂R
S (t )

dt
=LRed,R

0,λB
(t )ρ̂R

S , (F15)
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where, to alleviate the notations, we dropped the subscript 0,λB, and where

LRed,R
0,λB

(. . .) = i[ĤS + ĤLS, . . .] + DRed
0,λB

(. . .)∗. (F16)

One can readily check that the above operator is not equal to i[ĤS + ĤLS, . . .] + DRed,†
0,−λB−βB

(. . .).

APPENDIX G: CONSISTENT PERTURBATIVE DERIVATION OF A QME

We provide here details on the derivation of (26) and give an example of a QME satisfying the GQDB (15) and the average
energy conservation (21), but not the strict energy conservation (17). For ease of calculation but without loss of generality, we
consider the case of a single bath, so that the counting field has two components λ = (λS, λB). Recall that, in the interaction
picture, the Kraus operators are of the form

Ŵ λ
μ,ν (t, 0) = √

ην〈μ|T {
e−i

∫ t
0 dsV̂ λ(s)

}|ν〉 = √
ηνeλ(μ−ν)/2eλĤS/2〈μ|T {

e−i
∫ t

0 dsV̂ (s)
}|ν〉e−λĤS/2, (G1)

where here we have chosen λ = (λ, λ). We now decompose the operators Ŵ λ
μ,ν in the basis formed by jump operators σ̂mn used in

the main text and introduced in the Appendix F. Recall that different σ̂mn can have the same ωmn. We then perform the semigroup
hypothesis to obtain the superoperator,

Lλ(t )ρ̂λ
S (t ) = lim

δ→δ0

1

δ

⎛
⎝ ∑

mn,m′n′
dλ

mn,m′n′ (t )σ̂mn[. . .]σ̂ †
m′n′ − 1

⎞
⎠ρ̂λ

S (t ), (G2)

where

dλ
mn,m′n′ (t ) =

∑
μ,ν

ηνTrS
[
σ̂ †

mnŴ
λ
μ,ν (t + δ, t )

]
TrS

[
σ̂m′n′Ŵ λ†

μ,ν (t + δ, t )
]

=
∑
μ,ν

ην〈En, μ|T←
{
e−i

∫ t+δ

t dsV̂ λ(s)
}|Em, ν〉〈Em′ , ν|T→

{
ei

∫ t+δ

t dsV̂ λ†(s)
}|En′ , μ〉. (G3)

We now perform a perturbative expansion to second order in V̂ ,

〈En, μ|T←
{
e−i

∫ t+δ

t dsV̂ λ(s)
}|Em, ν〉 = 〈En, μ|I − i

∫ t+δ

t
dsV̂ λ(s) − 1

2

∫ t+δ

t
ds

∫ s

t
ds′V̂ λ(s)V̂ λ(s′)|Em, ν〉 + O(V̂ 3),

〈En, μ|T→
{
ei

∫ t+δ

t dsV̂ λ†(s)
}|Em, ν〉 = 〈En, μ|I + i

∫ t+δ

t
dsV̂ λ†(s) − 1

2

∫ t+δ

t
ds

∫ t+δ

s
ds′V̂ λ†(s)V̂ λ†(s′)|Em, ν〉 + O(V̂ 3). (G4)

Reinjecting in (G2), and recalling that the bath density matrix is ρ̂B = ∑
ν ην |ν〉〈ν| we obtain

Lλ(t )ρ̂λ
S (t ) = lim

δ→δ0

1

δ

⎛
⎝∑

n,n′
σ̂nnρ̂S (t )σ̂ †

n′n′ − ρ̂λ
S (t )

⎞
⎠

+ lim
δ→δ0

1

δ

∑
mn,m′n′

Tr

[∫ t+δ

t
ds σ̂ †

mnV̂
λ(s)ρ̂B

∫ t+δ

t
ds σ̂m′n′V̂ λ†(s)

]
σ̂mnρ̂

λ
S (t )σ̂ †

m′n′

− 1

2
lim
δ→δ0

1

δ

∑
mn,m′n′

TrS[σ̂m′n′ ]Tr[σ̂ †
mn

∫ t+δ

t
dsV̂ λ(s)

∫ s

t
ds′V̂ λ(s′)ρ̂B]σ̂mnρ̂

λ
S (t )σ̂ †

m′n′

− 1

2
lim
δ→δ0

1

δ

∑
mn,m′n′

TrS[σ̂ †
mn]Tr[σ̂m′n′

∫ t+δ

t
dsV̂ λ†(s)

∫ t+δ

s
ds′V̂ λ†(s′)ρ̂B]σ̂mnρ̂

λ
S (t )σ̂ †

m′n′ . (G5)

The r.h.s. term of the first line cancels out since the σ̂nnρ̂
λ
S (t )σ̂ †

n′n′ = (ρ̂λ
S (t ))nn′ |En〉〈En′ | and {|En〉}n is a basis of the system. To

compute the other terms, we write, as in the Appendix F, the interaction Hamiltonian in the general form V̂ (t ) = Â(t ) ⊗ B̂†(t ) +
Â†(t ) ⊗ B̂(t ), where Â(t ) = ∑

mn gmnσ̂mne−iωmnt (gmn ∈ C) acts on the system Hilbert space and B̂(t ) on the bath. The coupling
Hamiltonian with counting fields reads [see also (F4)]

V̂ λ(t ) =
∑
mn

gmnσ̂mne−λωmn B̂†
−λ(t )e−iωmnt + g∗

mnσ̂
†
mneλωmn B̂λ(t )eiωmnt , (G6)
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where B̂λ(t ) = eλĤB/2B̂(t )e−λĤB/2. Using the above decomposition, and using the fact that {σ̂mn} form an orthogonal basis, and∑
mn TrS[σ̂mn]σ̂mn = I, we can rewrite (G5) as

Lλ(ρ̂s(t )) = 1

δ0

∑
mn,m′n′

∫ t+δ0

t
ds

∫ t+δ0

t
ds′TrB[B̂†

−λ(s)ρ̂BB̂−λ(s′)]e−λ(ωmn+ωm′n′ )/2e−i(ωmns−ωm′n′ s′ )gmng∗
m′n′ σ̂mnρ̂S (t )σ̂ †

m′n′

+ 1

δ0

∑
mn,m′n′

∫ t+δ0

t
ds

∫ t+δ0

t
ds′TrB[B̂λ(s)ρ̂BB̂†

λ(s′)]eλ(ωmn+ωm′n′ )/2ei(ωmns−ωm′n′ s′ )g∗
mngm′n′ σ̂ †

mnρ̂S (t )σ̂m′n′

− 1

2

1

δ0

∑
mn,m′n′

∫ t+δ

t
ds

∫ s

t
ds′TrB[B̂†

−λ(s)B̂λ(s′)ρ̂B]e−λ(ωmn−ωm′n′ )/2e−i(ωmns−ωm′n′ s′ )gmng∗
m′n′ σ̂mnσ̂

†
m′n′ ρ̂S (t )

− 1

2

1

δ0

∑
mn,m′n′

∫ t+δ

t
ds

∫ s

t
ds′TrB[B̂λ(s)B̂†

−λ(s′)ρ̂B]eλ(ωmn−ωm′n′ )/2ei(ωmns−ωm′n′ s′ )g∗
mngm′n′ σ̂ †

mnσ̂m′n′ ρ̂S (t )

− 1

2

1

δ0

∑
mn,m′n′

∫ t+δ

t
ds

∫ t+δ0

s
ds′TrB[B̂†

λ(s)B̂−λ(s′)ρ̂B]eλ(ωmn−ωm′n′ )/2e−i(ωmns−ωm′n′ s′ )gmng∗
m′n′ ρ̂S (t )σ̂mnσ̂

†
m′n′

− 1

2

1

δ0

∑
mn,m′n′

∫ t+δ0

t
ds

∫ t+δ0

s
ds′TrB[B̂−λ(s)B̂†

λ(s′)ρ̂B]e−λ(ωmn−ωm′n′ )/2ei(ωmns−ωm′n′ s′ )g∗
mngm′n′ ρ̂S (t )σ̂ †

mnσ̂m′n′ . (G7)

For the last two lines, we used the orthogonality property: TrS[σ̂ †
mnσ̂pqσ̂

†
p′q′ ] �= 0 iff σ̂mn = σ̂pqσ̂

†
p′q′ , and relabeled σ̂pqσ̂

†
p′q′ by

σ̂mnσ̂
†
m′n′ . Notice that the tilted bath correlation functions in the last four lines are in fact λ independent. This follows from the

fact that [ρ̂B, ĤB] = 0 and the definition B̂λ(t ) = eλĤB/2B̂(t )e−λĤB/2.
Let’s now examine when the average energy conservation is satisfied, i.e., when do we have ∂λTrS[Lλ(ρ̂λ

S (t ))] = 0. To do so,
we compute directly the trace of the r.h.s. of (G7) and take the derivative in λ. We begin by noticing that the last four lines in
(G7) cancel out. Indeed, since δ0 is much larger than the correlation time of the bath, the time integrals of the last four lines can
be approximated by

1

δ0

∫ t+δ0

t
ds

∫ s

t
ds′TrB[B̂†(s)B̂(s′)ρ̂B]e−i(ωmns−ωm′n′ s′ ) = e−i(ωmn−ωm′n′ )(t+δ0/2)sc

(
(ωmn − ωm′n′ )δ0

2

)
�−(ωm′n′ ),

(G8)
1

δ0

∫ t+δ0

t
ds

∫ t+δ0

s
ds′TrB[B̂†(s)B̂(s′)ρ̂B]e−i(ωmns−ωm′n′ s′ ) = e−i(ωmn−ωm′n′ )(t+δ0/2)sc

(
(ωmn − ωm′n′ )δ0

2

)
�−(ωm′n′ ),

where �−(ω) = ∫ +∞
0 TrB[B̂†(t )B̂(0)]eiωt dt and sc is a short hand notation for sinc. The integrals with TrB[B̂(s)B̂†(s′)ρ̂B] have

the same form with �−(ω) being replaced by �+(ω) = ∫ +∞
0 TrB[B̂(t )B̂(0)†]eiωt dt . Hence, the coefficients of lines 3 and 5 in

(G7) are identical, as well as the coefficients of lines 4 and 6. Since the sign of λ alternates, the last four lines cancel out when
we take the trace and the derivative in λ. We are left with the first two lines. It is convenient at this point to take the continuous
limit for the baths, which is justified since we assume the heat baths to be at equilibrium. We therefore write B̂ in the form

B̂(t ) =
∫ �

0
dω

√
J (ω)b̂(ω)e−iωt , (G9)

with b̂, b̂† bosonic annihilation and creation operators obeying the Bose-Einstein statistics (TrB[b̂(ω)†b̂(ω)ρ̂B] = 1/(eβω − 1) =
nB(ω), TrB[b̂(ω)b̂†(ω)ρ̂B] = nB(ω) + 1), J the spectral density and � a cutoff frequency. Writing explicitly

TrS[B̂†
−λ(s)ρ̂BB̂−λ(s′)] =

∫ �

0
dωJ (ω)(nB(ω) + 1)eλωeiω(s−s′ ),

(G10)

TrS[B̂λ(s)ρ̂BB̂†
λ(s′)] =

∫ �

0
dωJ (ω)nB(ω)e−λωe−iω(s−s′ ),
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we obtain, after reinjecting the above expression in (G7) and taking the derivative in λ of the trace, the condition∑
mn,m′n′

TrS[σ̂ †
m′n′ σ̂mnρ̂S (t )]

∫ �

0

2ω − (ωmn + ωm′n′ )

2
dωJ (ω)(nB(ω) + 1)e−i(ωmn−ωm′n′ )δ0/2δ2

0sc

(
ω − ωmn

2
δ0

)
sc

(
ω − ωm′n′

2
δ0

)

+
∑

mn,m′n′
TrS[σ̂m′n′ σ̂ †

mnρ̂S (t )]
∫ �

0

2ω − (ωmn + ωm′n′ )

2
dωJ (ω)nB(ω)ei(ωmn−ωm′n′ )δ0/2δ2

0sc

(
ω − ωmn

2
δ0

)
sc

(
ω − ωm′n′

2
δ0

)
= 0.

(G11)

Since the above equality must hold for every β, the two sums must individually vanish, and since it must hold for every ρ̂S , each
coefficient must vanish. Hence, the condition ∂λTrS[Lλ(ρ̂λ

S (t )]|λ=0 = 0 boils down to the condition (26),∫
dω R±(ω) 2ω−ωnm−ωn′m′

2 sc
( (ω−ωnm )δ0

2

)
sc

( (ω−ωn′m′ )δ0

2

) = 0, (G12)

where here R±(ω) = J (ω)(nB(ω) + 1
2 ± 1

2 ). In the case of multiple, additive baths, the above condition needs to be satisfied for
each bath.

We now give an example of a QME satisfying the GQDB and the average energy conservation, but not the strict energy
conservation (17). Starting from the general form of the tilted map in (11), with λ = (λS, λB) we consider the weak coupling
case, and follow the same steps as above. When computing the time integrals, we make the following approximation:

1

δ0

∫
dωR±(ω)δ2

0sc

(
(ω − ωnm)δ0

2

)
sc

(
(ω − ωn′m′ )δ0

2

)
≈

∫
dωR±(ω)δ0sc

(
(2ω − ωnm − ωn′m′ )δ0

2

)

≈
{

R±
(

ωmn+ωm′n′
2

)
if |ωmn − ωm′n′ | < δ−1

0
0 if |ωmn − ωm′n′ | > δ−1

0
(G13)

and, for the terms in (G8),

e±i(ωmn−ωm′n′ )δ0/2sc

(
(ωmn − ωm′n′ )δ0

2

)
�±(ωm′n′ ) ≈

{
�±

(
ωmn+ωm′n′

2

)
if |ωmn − ωm′n′ | < δ−1

0
0 if |ωmn − ωm′n′ | > δ−1

0
. (G14)

The imaginary parts of �±( ωmn+ωm′n′
2 ) are regrouped to form a Lamb shift term Ĥλ

LS while the real parts constitute the
anticommutator Ĝλ of the dissipator. As explained earlier, the bath counting field λB vanishes in these two terms, and only
λS remains. Going back to the Schrödinger picture, this finally leads to the following tilted superoperator:

Lλ

(
ρ̂λ

S (t )
) = −i

[
ĤλS ,0

LS ρ̂λ
S (t ) − ρ̂λ

S (t )Ĥ−λS ,0
LS

] + [
ĜλS,0ρ̂

λ
S (t ) − ρ̂λ

S (t )Ĝ−λS,0
] + Jλρ̂

λ
S (t ), (G15)

with

ĤλS ,0
LS = 1

2

∑
mn,m′n′

Im′n′
+,mne−λS (ωmn−ωm′n′ )Â†

mnÂm′n′ + Im′n′
−,mneλS (ωmn−ωm′n′ )ÂmnÂ†

m′n′ ,

(G16)

ĜλS,0 = −1

2

∑
mn,m′n′

Rm′n′
+,mne−λS (ωmn−ωm′n′ )Â†

mnÂm′n′ + Rm′n′
−,mneλS (ωmn−ωm′n′ )ÂmnÂ†

m′n′ ,

Jλρ̂
λ
S (t ) =

∑
mn,m′n′

Rm′n′
+,mne− (λS−λB )(ωmn+ωm′n′ )

2 Âmnρ̂
λ
S (t )Â†

m′n′ + Rm′n′
−,mne

(λS−λB )(ωmn+ωm′n′ )

2 Â†
mnρ̂

λ
S (t )Âm′n′ ,

where Âmn = gmnσ̂mn, and where Rm′n′
±,mn is a short hand notation for R±( ωmn+ωm′n′

2 ). Since the matrix of coefficients [Rm′n′
±,mn] is

positive, we can symmetrize the superoperator and write it in a Lindblad form. One can readily check that (G15) satisfies the
GQDB (15) and the average energy conservation (26), hence (21), but not the strict energy conservation (17).

APPENDIX H: RESTORING THE GQDB USING APPROXIMATIONS OF THE REDFIELD ME

Let us go back to the tilted Redfield ME (F10). To obtain a tilted QME, of Lindblad form when the counting fields are set
to zero, we may extend the procedures developed in [12,21–25]—which consist in performing approximations to the Redfield
ME in order to restore its positivity—to the tilted Redfield ME (F10). When the counting fields are set to zero, these different
procedures use the idea that, if the functions �α

± are smooth enough, we may replace the terms [�α
±(ωm′n′ , 0)∗ + �α

±(ωmn, 0)]
by a function symmetric in ωmn, ωm′n′ . This “symmetrization” procedure can be also done at the level of the real and imaginary
parts of �α

±, that is Rα
±(ωmn, 0) and Iα

±(ωmn, 0). This allows one to transform (F10) (when λB = 0) in a QME that preserves
the positivity of the dynamics. Extending these symmetrization procedures to the tilted generator (F10), one would replace the
terms [�α

±(ωm′n′ , λα )∗ + �α
±(ωmn, λα )] by symmetric functions in ωmn, ωm′n′ . Provided that the symmetry (F14) is maintained,

one would obtain a tilted QME, positive when λS = 0 and λB = 0, and satisfying the GQDB.
To give an example, let’s consider the following procedure, inspired by [24]. Without loss of generality, we consider the

case of a single bath. We drop the index α, and note λB the counting field on the bath. Assuming that the Lamb shift terms
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I±(ωmn, 0) are larger than the damping rates R±(ωmn, 0) (the reasoning is similar in the opposite case), let us define the parameter
ε = minmn,m′n′ {√I±(ωmn, 0)I±(ωm′n′ , 0)} where the minimum is taken over the frequencies associated to the couple of jump
operators in ĤLS. We then perform the substitution, for any ωmn, ωm′n′ in (F11),

R±(ωmn, λB) ≈
⎧⎨
⎩

√
R±(ωmn, λB)R±(ωm′n′ , λB) if |ωmn − ωm′n′ | < ε

0 otherwise,

I±(ωmn, λB) ≈
⎧⎨
⎩

sgn[I±(ωmn, λB)]
√|I±(ωmn, λB)Iα±(ωm′n′ , λB)| if |ωmn − ωm′n′ | < ε

0 otherwise.
(H1)

The substitution (H1) is valid provided that �α
± varies smoothly over intervals of width ε, and induces a correction of order

|Rα′
±/Rα

±|ε, |Iα′
± /Iα

±|ε. Finally, in order to identify ĤLS with a Lamb shift term which commutes with ĤS , we perform the secular
approximation on ĤLS. Adding the counting field λS on the system, we obtain

Lsym
λS ,λB

(ρ̂S (t )) = −i[ĤS + ĤLS, ρ̂S (t )]

+
∑

mn,m′n′

√
R+(ωmn)R+(ωm′n′ )e−(λS−λB )(ωmn+ωm′n′ )/2Âmnρ̂S (t )Â†

m′n′

− 1

2

∑
mn,m′n′

√
R+(ωmn)R+(ωm′n′ )(eλS (ωmn−ωm′n′ )/2Â†

mnÂm′n′ ρ̂S (t ) + e−λS (ωmn−ωm′n′ )/2ρ̂S (t )Â†
mnÂm′n′ )

+
∑

mn,m′n′

√
R−(ωmn)R−(ωm′n′ )e(λS−λB )(ωmn+ωm′n′ )/2Â†

mnρ̂S (t )Âm′n′

− 1

2

∑
mn,m′n′

√
R−(ωmn)R−(ωm′n′ )(e−λS (ωmn−ωm′n′ )/2ÂmnÂ†

m′n′ ρ̂S (t ) + e−λS (ωmn−ωm′n′ )/2ρ̂S (t )ÂmnÂ†
m′n′ ), (H2)

where, to alleviate the notation, we wrote R(ωmn) = R(ωmn, 0). As announced, the resulting Lsym
0,λB

satisfies the GQDB. In
addition, the average energy conservation is also satisfied, i.e., ∂λTrS[Lsym

λ,λ (ρ̂S )] = 0 for all ρ̂S . However, since Lsym
λ,λ is still λ

dependent, the strict energy conservation (17) is not satisfied. We will use this procedure to compute the heat flow between a
three-level system and a heat bath and compare it with an exact numerical simulation at the end of this supplemental material.

APPENDIX I: NUMERICAL STUDY OF A THREE-LEVEL
SYSTEM

Consider the three-level system sketched in Fig. 2,
where (h̄ = 1): ĤB = ∫ �

0 dω ω b̂†(ω)b̂(ω), V̂ = γ (Â ⊗ B̂† +
Â† ⊗ B̂), Â = ∑2

j=1 g j σ̂ j , B̂ = ∫ �

0 dω
√

J (ω)b̂(ω). Here

b̂†(ω), b̂(ω) are bosonic creation and annihilation operators,
� a frequency cutoff, γ a dimensionless coupling constant,
and σ̂ j jump operators between the excited eigenstates of
the system and the ground state: σ̂1 = |0〉〈1|, σ̂2 = |0〉〈2|.

FIG. 2. Schematic representation of the setup analyzed numeri-
cally. A three-level system is weakly coupled to a thermal bath at
temperature β−1

B . The only jumps allowed are between the ground
state |E1〉 and the excited states |E1〉, |E2〉.

Following the method presented in the Appendix H, we
derive a tilted superoperator of the form (H2), which we
solve numerically in order to compute the heat exchanges
with the bath. The parameters are set to γ = 0.2, βB = 5/�,
g1 = g2 = √

�, E2 = 0.1� − 1/2δ0, E3 = 0.1� + 1/2δ0,
where δ0 is chosen as the geometric average of the bath and
system relaxation times. The system is initially in the state
ρ̂S (0) = (|E2〉 + √

3|E3〉)(〈E2| + √
3〈E3|)/4. The steady state

for the model, ρ̂ss, is not a Gibbs state (ρ̂G), and has small
surviving coherences between the two excited states; we find
that the mismatch between the steady-state populations and
the Gibbs distribution is of the same order as the steady-state
coherences, 〈 j|ρ̂ss − ρG| j〉 ∼ 〈1|ρ̂ss|2〉 ∼ 10−4. Despite that,
FT (6) is satisfied for this model while it breaks if we adopt a
description based on the Redfield ME’ see Fig. 3(a).

We also check that energy conservation is satisfied on av-
erage, namely that Q = TrS[ĤS (ρ̂S (t ) − ρ̂S (0)]; see Fig. 3(b).
Finally, we compare the accuracy of the symmetrized Lind-
blad ME (H2) with that of the secular Lindblad equation, by
computing the heat flow predicted by these two equations and
comparing it to the exact heat flow; see Fig. 3(b). In order to
compute the exact heat flow numerically, we model the bath
Hamiltonian ĤB by a diagonal matrix with N = 1500 equally
spaced eigenvalues distributed between 0.5 and 0.5. The
interaction Hamiltonian V̂ is chosen of the form V̂ = γ (Â +
Â†) ⊗ R̂, where R̂ = X̂/4

√
N with X̂ a Gaussian orthogonal
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FIG. 3. (a) Natural logarithm of the MGF for the QME of Linblad form (GLin) and for the Redfield ME (GRed) describing the a three-level
system (see Fig. 2) coupled to a thermal bath, with λ = (λ,−λ). The MGFs are evaluated at fixed time t in the transient regime (since t is fixed,
we drop it in the legend to alleviate the notations). The fluctuation theorem is satisfied for the QME of Lindblad form, but not for the Redfield
ME. (b) Heat Q leaked from the bath to the system in the setup Fig. 2. The red (full) line represents the system energy variations, which, if the
first law is satisfied, should correspond to the heat, Q = TrS[ĤS[ρ̂S (t ) − ρ̂S (0)]], while the blue line (with triangles) shows the heat computed
from the MGF, ∂λB G(t,−λB )|λB=0. The black (dotted) line gives the heat computed with the secular approximation, and the green line (with
crosses) is the heat computed from an exact simulation.

random matrix of size N with probability density proportional
to exp[−Tr(X̂ 2)/4] [44]. The exact heat flow is then obtained
from the heat MGF for the exact dynamics. As seen from
Fig. 3(b), in the present case where the energy differences of
the system are nearly degenerate, the symmetrized Lindblad
QME is more accurate than the secular Lindblad QME.

APPENDIX J: CONSISTENCY IN THE WEAK COUPLING
LIMIT

As opposed to secular QMEs, the QMEs of Lindblad form
obtained from perturbative developments of (11) or from ap-
proximations of the Redfield ME do not necessarily admit
the Gibbs state as a steady state when the system is coupled
to a single bath. This results from the fact that these QMEs
couple the dynamics of the diagonal terms of the density

matrix (populations) and the dynamics of the off diagonal
terms (coherences), unlike the secular QMEs. The fact that
the Gibbs state is not a steady state seemingly leads to a
breakdown of the second law (22). Indeed, if we initiate the
system in a Gibbs state ρ̂S (0) = ρ̂G, and using (21), we obtain
〈�〉 = −D(ρ̂S (t )||ρ̂G), which is negative if ρ̂S (t ) �= ρ̂G. Let
us now show that D(ρ̂S (t )||ρ̂G) is then negligible w.r.t. the
approximations made to derive the symmetrized QME from
the exact dynamics, i.e., that the second law holds.

To see this, we consider a system coupled to a single bath
at temperature β−1. We assume that the total density matrix
is factorized at time t , ρ̂(t ) = ρ̂S (t ) ⊗ ρ̂B(t ) with ρ̂B(t ) =
e−βĤB/ZB. The dynamics of the total system is governed by
a unitary operator, leading, after a time δ0, to the density
matrix ρ̂(t + δ0). Following the steps of [28], we then decom-
pose the relative entropy between the total density matrix and
ρ̂S (t + δ0) ⊗ ρ̂B, where ρ̂S (t + δ0) = TrB[ρ̂(t + δ0)] as

D(ρ̂(t + δ0)||ρ̂S (t + δ0) ⊗ ρ̂B) = −Stot (t + δ0) + S(t + δ0) − TrB[ρ̂B(t + δ0) ln ρ̂B(t )]

= −S(t ) + TrB[ρ̂B(t ) ln ρ̂B(t )] + S(t + δ0) − TrB[ρ̂B(t + δ0) ln ρ̂B(t )]

= S(t + δ0) − S(t ) + βTr[ĤB[ρ(t + δ0) − ρ(t )]], (J1)

where Stot is the total entropy, which is preserved, Stot (t +
δ0) = Stot (t ), and where as in the main text S(t ) =
−TrS[ρ̂S (t ) ln ρ̂S (t )]. Since a relative entropy is always pos-
itive, we have

S(t + δ0) − S(t ) + βTr[ĤB(ρ(t + δ0) − ρ(t )] � 0. (J2)

Note that Tr[ĤB[ρ̂(t + δ0) − ρ̂(t )]] = −Q where Q is the heat
leaked from the bath. When an average energy conservation
is satisfied, the bath energy variations translate exactly into

variations of the system energy,

Tr[ĤB[ρ̂(t + δ0) − ρ̂(t )]] = −TrS[ĤS[ρ̂S (t + δ0) − ρ̂S (t )]],
(J3)

and, after replacing in (J2), we obtain

S(t + δ0) − S(t ) − βQ � 0, (J4)

where now Q = TrS[ĤS[ρ̂S (t + δ0) − ρ̂S (t )]]. To make a con-
nection with (22) from the main text, notice that the system
density matrix is here formally defined as ρ̂S (t ) = TrB[ρ̂(t )].
Since the QME is obtained from the unitary dynamics
by tracing out the bath degrees of freedom and making
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additional approximations, we can write TrB[ρ̂(t )] = ρ̂
QME
S +

ε̂, where ρ̂
QME
S denotes the density matrix obtained by solving

the QME, and ε̂ accounts for the approximations. Replac-
ing in (J4), and using the subscript QME to distinguish the
quantities derived using ρ̂

QME
S rather that the exact solution

ρ̂S (t ) = TrB[ρ̂(t )], we obtain

SQME(t + δ0) − SQME(t ) − βQQME + O(ε̂) � 0. (J5)

By virtue of the semigroup hypothesis, we can repeat the same
reasoning for any time interval larger than δ0, and obtain

�SQME − βQQME + O(ε̂) � 0. (J6)

The quantity �SQME − βQQME, which is the entropy produc-
tion computed using the QME, is therefore positive up to
fluctuations of order ε̂.

To make the argument more concrete, let’s show that
D(ρ̂ss||ρ̂G) is in fact of the order V̂ 3, hence negligible, in the
context of QMEs derived weak coupling limit using a per-
turbative development to second order in V̂ . Without loss of
generality, we assume that the system Hamiltonian ĤS is time
independent. Recall that we pointed out, at the beginning of
the article, that in order to write the first law as W = �ES − Q
with �ES = TrS[ĤS[ρ̂S (t ) − ρ̂S (0)]] and Q the heat leaving
the bath, we need to require that the coupling is switched
on after the initial measurement and switched off before the
final one. Otherwise, we need to include the contribution of
the coupling to the system energy variation. When we require
the average energy conservation for the QME, we should also
require the coupling to be switched on or off at the begin-
ning and end of each time interval [t, t + δ0], starting with
[0, δ0]; instead, we are assuming the coupling to stay constant
between the initial and final switched on or off and are ne-
glecting its contribution. Therefore, the exact system energy
variations are given by �ES = Tr[(ĤS + V̂ )[ρ̂(t ) − ρ̂(0)]].
Since we assumed ĤS and V̂ to be time independent, W = 0
and hence the heat leaked from the bath is Q = Tr[(ĤS +
V̂ )[ρ̂(t ) − ρ̂(0)]]. Reinjecting in (J1), we obtain

�S − βTr[(ĤS + V̂ )[ρ̂(t ) − ρ̂(0)]]

= 〈�QME〉 − βTr[V̂ [ρ̂(t ) − ρ̂(0)]] � 0, (J7)

where

〈�QME〉 = �SQME − βTrS
[
ĤS

[
ρ̂

QME
S (t ) − ρ̂

QME
S (0)

]]
(J8)

is the entropy production predicted by the QME. Let’s now
show that Tr[V̂ [ρ̂(t ) − ρ̂(0)]] is negligible in the weak cou-
pling limit. Consider Tr[V̂ [ρ̂(t + δ0) − ρ̂(t )]]. The semigroup
hypothesis allows us to write

Tr[V̂ [ρ̂(t + δ0) − ρ̂(t )]] = Tr[V̂ [M̂(t + δ0, t ) − I]ρ̂S (t )],
(J9)

where M̂ = M̂λ as defined in (10) with λ = 0. As showed
in the Appendix G, in the weak coupling limit, [M̂(t +
δ0, t ) − I] consists of terms of order O(V̂ 2), hence Tr[V̂ [ρ̂(t +
δ0) − ρ̂(t )]] = O(V̂ 3). We can apply the same reasoning
for the Redfield ME, by considering dt Tr[V̂ [ρ̂(t ) − ρ̂(0)]] =
Tr[V̂ [ ˙̂ρ(t )]] and, following the textbook derivation of the Red-
field equation [31], replace

˙̂ρ(t ) = −
∫ t

0
ds[V̂ (t ), [V̂ (s), ρ̂(s)]]

≈ −
∫ t

0
ds[V̂ (t ), [V̂ (s), ρ̂S (s) ⊗ ρ̂B]], (J10)

where we use the weak coupling approximation to write
ρ̂(t ) ≈ ρ̂S (t ) ⊗ ρ̂B. Hence, once again Tr[V̂ [ρ̂(t + δ0) −
ρ̂(t )]] = O(V̂ 3).

Finally, let us point out that, if a QME satisfies an average
energy conservation, then the first law is expressed as

�EQME
S = QQME. (J11)

As a sanity check, let us prove the identity (J11) explicitly for
the symmetrized Lindblad QME derived in the Appendix F,
without resorting to counting fields. More precisely, we prove
that

−dt Tr[ĤB(ρ̂(t )] = dt Tr[ĤS (ρ̂(t )], (J12)

when dt TB[ρ̂(t )] is computed using the QME. Without loss of
generality, we assume that the system is coupled to a single
bath. Let us begin with the l.h.s. term. As in Appendix F, we
begin with deriving the Redfield ME, but keeping ĤB:

−dt Tr[ĤB(ρ̂(t )] = TrS

[ ∫ +∞

0
dsTrB[ĤB[Â(t ) ⊗ B̂†(t ), [Â†(t − s) ⊗ B̂(t − s), ρ̂S (t ) ⊗ ρ̂B]]]

]
+ H.c.

=
∫ +∞

0
dsTrS[Â(t )Â†(t − s)ρ̂S (t )]TrB[ĤBB̂†(t )B̂(t − s)ρ̂B − ĤBB̂(t − s)ρ̂BB̂†(t )]

+
∫ +∞

0
dsTrS[Â†(t − s)Â(t )ρ̂S (t )]TrB[ĤBρ̂BB̂(t − s)B̂†(t ) − ĤBB̂†(t )ρ̂BB̂(t − s)] + H.c.

=
∫ +∞

0
dsTrS[Â(t )Â†(t − s)ρ̂S (t )]TrB[B̂†(t )[B̂(t − s), ĤB]ρ̂B]

+
∫ +∞

0
dsTrS[Â†(t − s)Â(t )ρ̂S (t )]TrB[B̂(t − s)[B̂†(t ), ĤB]ρ̂B] + H.c. (J13)
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On the other hand,

dt Tr[ĤS (ρ̂(t )] = TrS

[ ∫ +∞

0
dsTrB[ĤS[Â(t ) ⊗ B̂†(t ), [Â†(t − s) ⊗ B̂(t − s), ρ̂S (t ) ⊗ ρ̂B]]]

]
+ H.c.

= −
∫ +∞

0
dsTrS[Â(t )[Â†(t − s), ĤS]ρ̂S]TrB[B̂†(t )B̂(t − s)ρ̂B]

−
∫ +∞

0
dsTrS[Â†(t − s)[Â(t ), ĤS]ρ̂S]TrB[B̂(t − s)B̂†(t )ρ̂B]. (J14)

Assuming, as in the Appendix F, that the bath is a collection of harmonic oscillators linearly coupled with the system: B̂α =∑
k jα,kb̂α (ωα,k ), s.t. [ĤB, b̂α (ωα,k )] = −ωα,k b̂α (ωk ) and [Ĥα, b̂†

α (ωα,k )] = ωα,kb̂†
α (ωα,k ), we have∫ +∞

0
dse−iωmnsTrB[B̂†(t )[B̂(t − s), ĤB]ρ̂B] = ωmn

∫ +∞

0
dse−iωmnsTrB[B̂†(t )B̂(t − s)ρ̂B],

∫ +∞

0
dse−iωmnsTrB[B̂(t − s)[B̂†(t ), ĤB]ρ̂B] = −ωmn

∫ +∞

0
dse−iωmnsTrB[B̂(t − s)B̂†(t )ρ̂B]. (J15)

Replacing in (J13), and recalling that Â = ∑
mn gmnσ̂mn with [σ̂mn, ĤS] = ωmnσmn, we find that the terms on the l.h.s. of (J13)

and (J14) are equal. Applying the symmetrization of the coefficients, we obtain (J11), which we wanted to prove.
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