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Abstract
BACKGROUND: With differences apparent in the gut 
microbiome in mild cognitive impairment (MCI) and 
dementia, and risk factors of dementia linked to alterations of 
the gut microbiome, the question remains if gut microbiome 
characteristics may mediate associations of education with MCI.
OBJECTIVES: We sought to examine potential mediation of the 
association of education and MCI by gut microbiome diversity 
or composition.
DESIGN: Cross-sectional study. 
SETTING: Luxembourg, the Greater Region (surrounding areas 
in Belgium, France, Germany).
PARTICIPANTS: Control participants of the Luxembourg 
Parkinson’s Study.
MEASUREMENTS: Gut microbiome composition, ascertained 
with 16S rRNA gene amplicon sequencing. Differential 
abundance, assessed across education groups (0-10, 11-16, 
16+ years of education). Alpha diversity (Chao1, Shannon 
and inverse Simpson indices). Mediation analysis with effect 
decomposition was conducted with education as exposure, MCI 
as outcome and gut microbiome metrics as mediators.
RESULTS: After exclusion of participants below 50, or with 
missing data, n=258 participants (n=58 MCI) were included (M 
[SD] Age=64.6 [8.3] years). Higher education (16+ years) was 
associated with MCI (Odds ratio natural direct effect=0.35 [95% 
CI 0.15-0.81]. Streptococcus and Lachnospiraceae-UCG-001 genera 
were more abundant in higher education.
CONCLUSIONS: Education is associated with gut microbiome 
composition and MCI risk without clear evidence for mediation. 
However, our results suggest signatures of the gut microbiome 
that have been identified previously in AD and MCI to be 
reflected in lower education and suggest education as important 
covariate in microbiome studies.

Key words: Dementia, mild cognitive impairment, gut microbiome, 
education, mediation.

 

Introduction

Modifiable social  and behavioral  r isk 
factors of Alzheimer ’s disease (AD) and 
related dementias convey potential to 

delay or prevent a substantial rate of cases, if targeted 
effectively (1). This entails interventions to be delivered 
early in the disease trajectory, informed by knowledge 
on working mechanisms. With respect to timeliness, 
research on biomarkers suggests AD-related pre-clinical 
pathophysiological changes occurring as early as midlife 
(2). At a later stage, mild cognitive impairment (MCI) 
reflects early, subtle changes in thinking and memory (3). 
While potentially due to a variety of underlying diseases 
or disorders, MCI is a markedly strong risk factor for 
AD. Furthermore, synergies in risk factors of MCI and 
AD exist, i.e., related to education and consequentially 
lifestyle (3).    

Education itself reflects a well-established early-
life risk factor for AD. As such, higher education is 
associated to lower dementia risk in later life (1). Lower 
dementia risk may result from education increasing 
cognitive abilities in early adulthood and consequent 
build-up of cognitive reserve, brain reserve or brain 
maintenance, protecting against neurodegeneration (1, 
4). Moreover, risk factors such as obesity or smoking 
frequently cooccur, and vary in prevalence according 
to socioeconomic status (SES) (3, 5). Higher exposure to 
lifestyle-related risk factors according to education, an 
indicator of SES, may further contribute to a vascular 
pathway linking education to dementia risk. To date, 
there is no consensus about working mechanisms. 
However, recent studies suggest education, which 
influences life histories and in part constitutes SES, to 
be associated with differences in microbial community 
types across multiple body sites, which may be in turn 
associated with MCI risk (6–9). 
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The gut microbiome refers to a collection of microbes 
within the gastrointestinal tract (GIT). The GIT, reflecting 
the largest ecosystem of the human body, is composed 
of bacteria, archaea, eukaryotes, and other microbes. 
Composition of the gut microbiome, for instance 
differential abundance of specific taxa, is subject to 
interindividual variation, e.g., across the life-course 
or geographical locations (10). Factors affecting the 
microbiome over a lifetime are for instance linked to SES 
and early childhood conditions (e.g., mode of delivery, 
breast feeding) resulting in variation in consequent gut 
colonization and microbiome maturation, which may in 
turn continue to affect microbiome composition in later 
life (10–14).

Gut microbiome alterations have been observed, e.g., 
associated with ageing, or health. As such, ageing-related 
changes may result from the ageing processes (changing 
hormonal levels), changing health conditions (associated 
use of medication) or age-related behavioral changes 
(dietary deficiency) (10). Moreover, recent findings 
suggest a link of the gut microbiome to MCI or AD, 
and lifestyle-related risk factors such as diet or physical 
activity (7, 15–17). Potential working mechanisms along 
the gut-brain-axis likely involve complex pathways, 
e.g. triggering low-grade systemic inflammation by 
altering gut permeability or by synthesis of metabolites 
with neuroendocrine functions (18). Due to the likely 
involvement of specific molecules, the low resolution 
of marker gene-based microbiome analyses precludes 
further specification of molecular pathways.

The association of education to gut microbiome 
alterations and MCI risk motivate the investigation of 
the role of the gut microbiome in the relationship of 
education and MCI. Thus, we sought to examine potential 
mediation of the association of education and MCI by the 
gut microbiome in the present study.

 
Methods

Study Participants and Design

We analyzed data of participants, specifically the 
control subjects, from the Luxembourg Parkinson’s 
Study (LUXPARK) of the National Centre of Excellence 
in Research on Parkinson’s disease (NCER-PD), which 
received approval from the National Ethics Board 
(CNER Ref: 201407/13) and Data Protection Committee 
(CNPD Ref: 446/2017) and was conducted according 
to the Declaration of Helsinki (19). Eligibility criteria 
for analysis were age above 50, absence of Parkinson’s 
disease, celiac disease, and chronic inflammatory bowel 
disease, availability of stool samples and non-missing 
data. All participants provided written informed consent.

16S rRNA Gene Amplicon Sequencing Analysis 

NCER-PD participants collected stool samples 
at home and sent them to the Integrated Biobank of 

Luxembourg (20). Sampling, processing, and sequencing 
of NCER-PD LUXPARK stool samples were done as 
previously described (20, 21). The 16S rRNA gene 
amplicon sequencing data was processed using the 
dadasnake workflow, a Snakemake pipeline to process 
amplicon sequencing data, based on DADA2 (22–24). 
Amplification primers were removed using cutadapt, 
allowing 20% mismatches and no indels (25). Quality 
filtering, amplicon sequence variant (ASV) generation 
and chimera removal were performed in DADA2. Reads 
were truncated at positions with less than 10 Phred 
score quality, or at 240 bp. The quality filtering kept 
only sequences with a maximum expected error of 2 
and 240 bp length. Downsampling was performed to 
25,000 reads using seqtk (https://github.com/lh3/seqtk: 
RRID:SCR_018927) and samples with smaller library 
sizes were removed from the downstream analysis. ASVs 
were generated in pooled mode for the whole study 
using DADA2 default parameters. For merging forward 
and reverse ASVs, a minimum overlap of 12 bp was 
required. Chimeric sequences were removed based on 
the consensus algorithm. Taxonomic classification was 
performed against SILVA v138 using the naïve Bayesian 
classifier implemented in mothur (26, 27). NCER-PD 
clinical and 16S rRNA gene amplicon sequencing data are 
available on request from https://www.parkinson.lu/
research-participation.

Main Exposures and Outcomes

Clinical assessments were conducted by neurologists, 
neuropsychologists, or trained study nurses. MCI 
classification was based on the Montreal Cognitive 
Assessment (MoCA), a brief measure for assessing 
cognitive function (28). MoCA scores below 26 led to MCI 
classification (28).

Education was assessed in years (YEDU). For analysis, 
YEDU were grouped (0-10 [reference], 10-16, 16+ YEDU) 
based on the ISCED classification scheme, group sizes, 
and differences in compulsory schooling duration in 
Luxembourg for participants of different age (29, 30).

Alpha diversity captures the diversity of the 
microbiome within individuals. Alpha diversity will 
be greater in individuals with a greater number of 
different taxa (= richness) and/or similar abundances of 
prevalent taxa (= evenness). Alpha diversity is subject to 
variation over the life-course and higher alpha diversity 
has been related to better health in older age (10, 16). 
Three measures for alpha diversity were computed 
after rarefication: Chao1, Shannon and inverse Simpson  
(Supplementary Material). Beta diversity reflects 
differences of the microbiome between individuals. 
In that, dissimilarity indices reflect pairwise distances 
between individuals based on taxa abundance. In 
a sample-by-sample distance matrix, a greater value 
in a given cell indicates a larger dissimilarity between 
two individuals. This information can be used to 
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compare similarity of variance and composition of the 
gut microbiome between groups of individuals. Two 
measures for beta diversity were computed: Bray-Curtis 
dissimilarity and Jaccard distance (Supplementary 
Material).

Covariates

Additional measures included sociodemographic 
indicators age, sex/gender, first language (French/
Luxembourgish/German versus other), partnership 
status (PS; married/domestic partnership versus 
widowed/never married/divorced/separated), body 
mass index (BMI), mild depressive symptoms based 
on the Beck Depression Inventory I (BDI-I; >9), use of 

antibiotic medication in the last 6 months (ATB; yes 
versus no), and apolipoprotein ε4 status (APOE; at least 
one versus no ε4 allele) (31). 

Statistical Analysis

All analyses were performed in R version 4.2.0 
(Supplementary Material) (32). Analysis code is available 
online (https://github.com/makleelux/edu_biome_mci). 
Differences of descriptive characteristics in presence or 
absence of MCI were tested with Fisher ’s Exact Test 
for categorical and Student’s t-Test for continuous 
characteristics. Differences in beta diversity were 
tested across education groups with betadisper [vegan] 
and adonis2 [vegan] with 999 permutations. In short, 

Table 1. Baseline Characteristics of Participants
NC (n=200) MCI (n=58) P Value Test

Age, years 63.76 ± 7.84 67.6 ± 9 .005 t
BMI 27.04 ± 4.37 29.74 ± 5.91 .002 t
Sex/gender
  Female 87 15 .022 Fisher
  Male 113 43
Years of Education 
  0-10 24 16 .018 Fisher
  11-16 110 24
  16+ 66 18
First Language 
  FR / LU / DE 182 52 .798 Fisher
  Other 18 6
Living With Partner 
  No 61 17 1 Fisher
  Yes 139 41
BDI-I (>9)
  Yes 23 9 .497 Fisher
  No 177 49
APOE
  At least one ε4 54 19 .410 Fisher
  No ε4 146 39
Antibiotics (Last 6 Months)
  No 179 49 .351 Fisher
  Yes 21 9
Alpha Diversity
  Chao1 311.56 ± 64.96 295.05 ± 86.37 .181 t
  Shannon 3.99 ± 0.38 3.93 ± 0.46 .415 t
  Inverse Simpson 27.75 ± 11.46 26.79 ± 11.66 .580 t
Note. T = Student’s t-Test, Fisher = Fisher’s Exact Test. Numbers refer to means ± standard deviations for continuous, n for categorical characteristics. BMI = body mass 
index, BDI-I = Beck Depression Inventory I, APOE = apolipoprotein ε4 status.
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betadisper compares average distances, i.e. the dispersion 
or homogeneity, across groups, while adonis2 tests 
multivariate differences in microbiome compositions (33).

Differential abundance analysis (DAA) was conducted 
across education groups, adjusting for age, sex/
gender, BMI, and ATB. DAA was repeated additionally 
adjusting for first language, PS, BDI-I, and APOE, as 
robustness check. Two commonly used functions 
were employed (ancombc [ANCOMBC]; DESeq 
[DESeq2: RRID:SCR_000154]) (34, 35). Both methods 
identify differentially abundant taxa with estimates of 
statistical significance adjusted for false discovery rates 
(Supplementary Material). For DAA, taxa with nonzero 
counts in less than 25% of samples were not tested.

Mediation analysis was specified with MCI as outcome 
and groups of education as exposure, adjusting for age, 
sex/gender, first language, PS, BDI-I, APOE and ATB. 
For alpha diversity as mediator, a regression-based, 
counterfactual approach to mediation was employed for 
which continuous mediator models (i.e., alpha diversity 
as outcome) and a logistic outcome model (i.e., MCI as 
outcome), including interaction terms for education and 
alpha diversity, were specified (Supplementary Material; 
cmest [CMAverse]) (36). Total effects of education on MCI 
were decomposed into a controlled direct effect (CDE) for 
alpha diversity fixed at the sample mean, a natural direct 
effect (NDE, Supplementary Material), and a natural 
indirect effect (NIE, Supplementary Material) (37–39). 
Proportion eliminated (PE) was calculated, indicating 
the proportion of the effect due to either mediation, 
interaction, or both, that would be eliminated by fixing 
the mediator to a specific level, i.e., the sample mean 
of the z-standardized alpha diversity measures (38). As 
a sensitivity check, mediation analysis was repeated 
without interaction terms in the outcome model.

For beta diversity as mediator, a previously described 
inverse-regression-based approach to mediation was 
employed at genus level (40, 41). In short, this approach 
specifies regressions for potentially mediating taxa 
at genus level on education, and MCI adjusted for 
education, in turn utilizing resulting p values to test 
mediation. Two functions were used, allowing to 
estimate mediation by abundance of specific taxa or 
by the overall composition of the microbiome (ldm 
[LDM]; permanovaFL [LDM]), while controlling for 
false discovery rates (40–42). Ldm suggests mediation 
if education affects the microbiome and consequentially 
the outcome. This can be tested globally (community 
contains any mediating taxa) and locally (mediation 
by specific taxa). PermanovaFL is a distance-based 
procedure, and suggests mediation if education affects 
some part of the community and some potentially 
different part of the community proceeds to affect MCI, 
thus being less conservative. For ldm an omnibus test was 
conducted combining analysis at three scales (i.e., relative 
abundance, arcsin-root transformed relative-abundance, 
presence-absence) (43). For permanovaFL individual and 

omnibus tests were conducted combining analysis at two 
scales (i.e., relative abundance, presence-absence) (43).

Note. Panels show alpha diversity stratified by age and education groups with 
0-10, 11-16 and 16+ years of education. Reported P values refer to Student’s t-Tests. 
InvSimpson = Inverse Simpson. Author MK.

Results

Participant Characteristics

From n=524 participants of the LUXPARK study 
without Parkinson’s disease or Parkinsonism diagnosis, 
n=258 participants were eligible for analysis (M [SD] 
Age=64.6 [8.3] years) after exclusion of participants 
below age 50 (n=93), with celiac disease (n=6) or chronic 
inflammatory bowel disease (n=5), missing data (n=11) or 
without stool samples and microbiome data (n=149, and 
n=2 after pruning of samples with library size <10,000). 

Figure 1. Alpha Diversity Across Age and Education 
Groups
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Participants with MCI (n=58) were older, more likely 
male, had fewer YEDU and a higher BMI (Table 1). A total 
of 1,150 taxa at seven taxonomic ranks were identified 
after trimming of ASVs occurring in <10% of samples and 
pruning of samples with library size <10,000. 

Alpha diversity as per Chao1 was lower in but not 
significantly associated with MCI (Table 1). Education 
groups did not differ significantly in beta dispersion, 
tested with anova (p=.17), thus meeting the assumption 
of homogeneity of variances for adonis2. Education 
groups did not differ significantly regarding multivariate 
analyses with adonis2 (p=.20; adjusting for sex/
gender, age, ATB, BDI-I, first language, PS, and APOE), 
suggesting similar composition of the microbiome. 
However, alpha diversity was lower in lower education 
(Supplementary Figure 1) and was significantly lower in 
older age but only in lower education (Figure 1). 

Beta diversity differed significantly across education 
groups (betadisper: p=.048; adonis2: p=.04; Figure 2), 
when restricting to age 65 and older. 

There were no significant differences in beta diversity 
between MCI or age groups (Supplementary Figure 2). 
As Chao1 likely reflects an underestimate of richness with 
ASVs based on DADA2, analyses were repeated with 
observed richness as measure of alpha diversity. These 
analyses yielded analogous findings (results not shown).

Differential Abundance Analysis

DAA suggested higher relative abundance of Bacilli 
(class), Actinobacteria (class), Lactobacillales (order), 
Streptococcaceae (family), Streptococcus (genus), with 
DESeq2 and Lachnospiraceae UCG 001 (genus) and two 
ASVs with ancombc in higher compared to lower (0-10 
YEDU) education, adjusting for age, sex/gender, BMI, 
and ATB (Table 2). 

Sensitivity analysis with additional adjustments 
for BDI-I, first language, PS, and/or APOE replicated 
findings, except for Actinobacteria and Streptococcus 

with DESeq2, and the two ASVs with ancombc. There 
was no overlap between DESeq2 and ancombc (of note, 
padj=0.07 for Lachnospiraceae UCG 001 with DESeq2). 
Visual inspection of relative abundance plots suggests 
dose-response relationships of increasing YEDU and 
increasing relative abundance Lachnospiraceae UCG 001 
(Supplementary Figure 3).

Mediation by Alpha Diversity
With 0-10 YEDU as reference, higher education was 

associated with higher Chao1 (11-16 years=0.42 [95% 
CI 0.07, 0.77]; 16+ years=0.38 [95% CI 0.00, 0.76]; 
Supplementary Table 1). With an interaction term for 
education and Chao1 in the outcome model, higher 
education was associated to lower likelihood of MCI 
(11-16 years=-1.24 [95% CI -2.12, -0.35]; 16+ years=-1.26 
[95% CI -2.22, -0.30]) whereas greater Chao1 was not 
significantly associated with MCI (coefficient=-0.14, [95% 
CI -0.76, 0.44]). Interaction terms were not significant 
(11-16 YEDU:Chao1=-0.02 [95% CI -0.80, 0.79]; 16+ 
YEDU:Chao1=-0.20 [95% CI -1.00, 0.62]). With Chao1 
as mediator, NDE (16+ YEDU) was 0.35 ([95% CI 0.15, 
0.81], p=.02, Table 3) and NIE (16+ YEDU) was 0.89 
([95% CI 0.68, 1.14], p=.33) suggesting an association of 
education to lower MCI risk, not mediated by Chao1 
(total effect=0.31 [95% CI 0.14, 0.72], p=.008; CDE=0.33 
[95% CI 0.14, 0.78], p=.02). The proportion eliminated, 
PE=0.22 ([95% CI 0.00, 0.59], p=.049), suggests most of the 
association of education on MCI risk being due to a direct 
effect of education but also a significant amount due to 
interaction, mediation, or both.  

Given the moderately rare outcome (~22.5% MCI), 
CDE, NDE and NIE reported on the odds-ratio scale may 
be overestimated. As a sensitivity analysis, estimation 
was repeated on the risk-ratio scale using a multinomial 
log-linear link for the outcome model, resulting in a 
similar pattern of findings but without significant PE 
(results not shown) (37).

Table 2. Taxonomic Analysis Across Groups of Education
DESeq2 ancombc

Level Taxon 11-16 16+ 11-16 16+

Class Bacilli†‡§ **
Actinobacteria† *

Order Lactobacillales†‡§ **
Family Streptococcaceae†‡§ *
Genus Streptococcus† *

Lachnospiraceae UCG 001†‡§ **
ASV ASV 000053† *

ASV 000508† *
Note. * P Value < .05, ** P Value < .01, *** P Value < .001 (lowest P value of three adjustment sets). Orange indicates higher relative abundance in higher education com-
pared with lower education (0-10 years). † Adjusted for age, sex/gender, BMI, and use of antibiotic medication in the last 6 months. ‡ Adjusted for age, sex/gender, BMI, 
use of antibiotic medication in the last 6 months, BDI-I, first language, and partnership status. § Adjusted for age, sex/gender, BMI, use of antibiotic medication in the last 
6 months, BDI-I, first language, partnership status and APOE. 
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Analyses without interaction terms led to similar result 
patterns in regression models (Supplementary Table 
1). Comparison of 0-10 to 11-16 YEDU led to similar 
result patterns in effect decomposition (Table 3). BMI 
was hypothesized as a potential mediator of education 
and MCI, or microbiome diversity and MCI, and thus 
not included in the main analyses but considered for 
robustness checks. Inclusion of BMI led to attenuated 
associations of education with Chao1 in the mediator, and 
of Chao1 with MCI in the outcome model. This in turn led 
to attenuated NIE and a similar, but no longer significant 
estimate of PE (results not shown). 

Analyses with Shannon or inverse Simpson as 
mediator suggested similar findings but no significant 
PE. Analyses with inverse Simpson as mediator suggested 
similar findings except for no significant association of 
education with alpha diversity in the mediator model and 
a significant proportion of the total effect of education 
due to (additive) interaction, when comparing 0-10 to 
11-16 YEDU (regression models: Supplementary Tables 2, 
3, effect decomposition: Supplementary Tables 4, 5). 

Mediation by Beta Diversity

Ldm suggested no significant mediation by individual 
taxa or by the composition of the microbiome (p=.99 
for n=48,000 completed permutations with ldm.omni3). 
Likewise, permanovaFL suggested no significant 
mediation by the composition of the microbiome, on the 
relative abundance (Bray-Curtis dissimilarity, p=.70), or 
presence-absence scale (Jaccard dissimilarity, p=.35), or 
overall (p=.54 for n=600 completed permutations with 
permanovaFL.omni). Robustness checks (with BMI) 
yielded a similar pattern of findings (results not shown).

 
Discussion

Higher education was associated with a lower risk 
of MCI, with most of this association not being due to 
mediation by the gut microbiome. Despite differences in 
taxonomic signatures and gut microbiome composition 
between education groups, our findings suggest no 
significant mediation of the association of education 
with MCI by measures of alpha diversity or individual 
taxa. However, effect decomposition indicated potential 
additive interaction between education and alpha 
diversity. 

Table 3. Mediation Analysis with Chao1 as Mediator
Comparing 0-10 to 11-16 Years of Education Comparing 0-10 to 16+ Years of EducationC

With Interaction Without Interaction With Interaction Without Interaction

Estimate [95% CI] P Value Estimate [95% CI] P Value Estimate [95% CI] P Value Estimate [95% CI] P Value

Rcde 0.33 [ 0.15 to 0.76] .012* 0.34 [ 0.16 to 0.74] .010* 0.33 [ 0.14 to 0.78] .018* 0.33 [ 0.15 to 0.76] .015*

Rpnde 0.33 [ 0.15 to 0.73] .012* 0.34 [ 0.16 to 0.74] .010* 0.35 [ 0.15 to 0.81] .016* 0.34 [ 0.15 to 0.76] .015*

Rtnde 0.33 [ 0.15 to 0.77] .011* 0.34 [ 0.16 to 0.74] .010* 0.33 [ 0.15 to 0.79] .016* 0.34 [ 0.15 to 0.76] .015*

Rpnie 0.95 [ 0.70 to 1.19] .647 0.92 [ 0.77 to 1.07] .284 0.95 [ 0.71 to 1.17] .662 0.93 [ 0.78 to 1.06] .316

Rtnie 0.94 [ 0.71 to 1.33] .693 0.92 [ 0.76 to 1.07] .284 0.89 [ 0.68 to 1.14] .334 0.93 [ 0.77 to 1.07] .316

Rte 0.31 [ 0.15 to 0.68] .006** 0.32 [ 0.15 to 0.68] .006** 0.31 [ 0.14 to 0.72] .008** 0.31 [ 0.14 to 0.71] .008**

Ercde -0.53 [-0.74 to -0.17] .012* - - -0.53 [-0.76 to -0.14] .018* - -

Erintref -0.14 [-0.32 to 0.05] .114 - - -0.11 [-0.28 to 0.10] .218 - -

Erintmed 0.03 [-0.23 to 0.31] .792 - - 0.01 [-0.25 to 0.25] .966 - -

Erpnie -0.05 [-0.30 to 0.19] .647 - - -0.05 [-0.29 to 0.17] .662 - -

Ercde(P) 0.77 [ 0.42 to 0.99] .008** - - 0.78 [ 0.41 to 1.00] .010* - -

Erintref(P) 0.20 [-0.09 to 0.56] .115 - - 0.17 [-0.20 to 0.49] .216 - -

Erintmed(P) -0.04 [-0.52 to 0.41] .796 - - -0.01 [-0.41 to 0.45] .964 - -

Erpnie(P) 0.07 [-0.32 to 0.53] .651 - - 0.07 [-0.29 to 0.52] .668 - -

pm 0.03 [-0.15 to 0.28] .694 0.04 [-0.04 to 0.25] .288 0.06 [-0.06 to 0.38] .340 0.03 [-0.04 to 0.24] .321

int 0.16 [-0.05 to 0.40] .104 - - 0.16 [-0.02 to 0.38] .082 - -

pe 0.23 [ 0.01 to 0.58] .043* - - 0.22 [ 0.00 to 0.59] .049* - -
Note. Results of mediation analyses. Standard errors were estimated with 5000 bootstraps. * P Value < .05, ** P Value < .01, *** P Value < .001. Rcde: controlled direct effect 
odds ratio (referring to CDE); Rpnde: pure natural direct effect odds ratio (referring to NDE); Rtnde: total natural direct effect odds ratio; Rpnie: pure natural indirect 
effect odds ratio; Rtnie: total natural indirect effect odds ratio (referring to NIE); Rte: total effect odds ratio; Ercde: excess relative risk due to controlled direct effect; 
Erintref: excess relative risk due to reference interaction; Erintmed: excess relative risk due to mediated interaction; Erpnie: excess relative risk due to pure natural indirect 
effect; Ercde(P): proportion Ercde; Erintref(P): proportion Erintref; Erintmed(P): proportion Erintmed; Erpnie(P): proportion Erpnie; pm: overall proportion mediated; int: 
overall proportion attributable to interaction; pe: overall proportion eliminated. Cells with – indicate n/a.
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Note. Ordination using Non-metric Multidimensional Scaling based on Bray-
Curtis dissimilarity. P value (adonis2) adjusted for sex/gender, age, ATB, BDI-I, 
first language, PS, and APOE. A Full sample. B Restricted sample age 65 and older. 
Authors MK and VTEA.

General Discussion

In this study, MCI risk was highest in the group with 
0-10 YEDU. Higher education groups did not differ in 
their association with MCI. This reflects earlier findings 
suggesting that education is related to reserve capacity, 
and thus lower MCI risk, by in particular increasing levels 
of cognitive skills in early life which then persist until old 
age (4).

Critically, more than 16 YEDU likely reflect education 
beyond the end of adolescence, with positive effects 
levelling off and thus, no linear association of education 
with MCI.

Further analyses suggested a dominating direct 
effect of education. While education was associated 
with microbial diversity, no indicator of diversity was 
significantly associated to MCI, although less clear so 
for Chao1, reflecting richness, in models without 
interaction terms. Nonetheless, one fifth of the association 
of education on MCI could be removed (proportion 
eliminated) by intervening to fix Chao1 at the sample 
mean. Four-way decomposition suggests this to be most 
likely attributable to an additive interaction of education 
and Chao1, such that their association with lower MCI 
risk increases with increments in education (38). Of 
note, this finding reinforces most of the association of 
education with MCI to be flowing through a direct causal 
path, which is also supported by sensitivity analysis on 
the risk-ratio scale. 

A potential explanation for the absence of statistically 
significant mediation would be that lower education 
may proxy higher MCI risk due to factors which are not 

associated with the gut microbiome, such as cognitive 
stimulation. In that case, the observed variation in gut 
microbiome diversity and composition across education 
groups would not be causally related to MCI risk.

However, our findings highlight education-related 
gut microbiome diversity and composition reflecting 
those found in MCI and AD. Given MCI as a strong risk 
factor and AD as the most common cause of dementia, 
similarities in the gut microbiota of individuals with 
low education – who are at higher risk of dementia 
– and of people living with AD may indicate further 
mechanisms contributing to the disease. These may 
involve nutritional choices and chronic low-grade 
inflammation or the synthesis of metabolites leading to 
modulation of nerve signaling via the enteric nervous 
system. A previous study found reduced richness as 
well as a distinct composition of the gut microbiome in 
terms of beta diversity in participants with AD compared 
to healthy controls (44). In line with a hypothesized 
neurodegenerative pathway involving education and the 
gut-brain-axis, our findings suggest that lower education 
is associated with reduced richness and a distinct gut 
microbiome composition. Conversely, another study 
found increasing richness with AD progression, which 
may be explained by an apparent gradient of education 
from lowest (in unimpaired cognition) to highest (in 
moderate AD) (45). Considering our findings lower 
education may not only have altered the likelihood of 
belonging to patient or control groups but may also have 
resulted in different taxonomic signatures.

Previous findings suggest similar alterations with 
respect to reduced alpha diversity in lower income and 
area-level SES settings (8, 9). Education is related to 
income and wealth, and consequently with selection 
into areas with fewer socioeconomic resources. As such, 
education may capture community-level or spatial 
exposures affecting gut microbiome composition (9). 

Critically, we found Chao1 to be lower in older age, but 
only in participants with lower education. Additionally, 
compositional differences by education were only 
significant in older age. This extends on earlier reports 
of interindividual variability and reduced biodiversity 
in later life by suggesting education as a key modifier 
(46). Moreover, our finding of lower alpha diversity in 
lower education, suggests a putative association with 
a dysbiotic state. While lower alpha diversity has been 
discussed previously as a possible indicator of AD, to 
date, no concrete link has been established between 
education and dysbiosis and consequently AD or MCI 
(16, 47). This may be due to the relatively limited depth 
and linked resolution of sequencing or the breadth of 
education measures (16).

Extending on mediation results with alpha diversity 
metrics, ldm and permanovaFL did not identify 
mediating taxa or compositional changes translating 
into decreased MCI risk (40–42). However, DAA 
results suggest differential abundance in line with an 
MCI or AD phenotype and consequentially a potential 

Figure 2. Ordination Plots for Education Groups
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communality of lower education and AD pathology. 
Bacilli (class), Actinobacteria (class), Lactobacillales 
(order), Streptococcaceae (family), Streptococcus (genus), 
Lachnospiraceae UCG 001 (genus) and two ASVs were 
depleted in lower education.

Contrary to our findings given a hypothesized link of 
education to MCI via the gut, previous studies showed 
an increased ratio of Firmicutes to Bacteroidetes (F/B), 
and an increased relative abundance of Lactobacillales in 
AD, and of Firmicutes in MCI (17, 48). However, earlier 
findings were likely driven by depleted Bacteroides; 
increases in Firmicutes were not statistically significant 
(17, 48). Other studies found increased Bacteroidetes in 
MCI without AD and, in line with our findings, depletion 
of Firmicutes in AD and amnestic MCI (7, 44, 49). 
Increased Bacteroides may relate to impaired cognition 
potentially through cerebral small vessel disease and 
resulting white matter hyperintensities and, in line with 
our findings, education may alter brain reserve to such 
damage via increased node degree (7, 50). 

Lachnospiraceae UCG 001 were earlier found to be 
depleted in participants with more severe depressive 
symptoms, implying impaired synthesis of short-chain 
fatty-acids, such as butyrate and other depression-related 
neurotransmitters (51). Recent findings further suggest 
lower cognitive performance due to decreased levels 
of butyrate following stool transplantation of sleep 
deprived to control mice (52). Depletion of Lachnospiraceae 
UCG 001 in lower education may be associated to 
lower cognitive performance and MCI classification in 
line with a phenotype related to depressive symptom 
severity. Since we adjusted for BDI-I, education and 
depressive symptom severity may share a common 
neuroendocrinal pathway to impaired cognition, i.e., via 
nutritional choices, involving Lachnospiraceae UCG 001 
and metabolites synthesized by gut microbiota. 

Moreover, two differentially abundant ASV were 
identified, one classified as Lachnospiraceae UCG 001, the 
other as NK4A214 group, albeit classification comes with 
some uncertainty (Species unidentified, Supplementary 
Table 6).

One study found Actinobacteria and Streptococcus 
enriched in mild and moderate AD, potentially explained 
by higher educational attainment in AD-groups compared 
to controls, given our findings of higher abundance of 
Actinobacteria and Streptococcus in higher education 
(45). Consequently, both depleted Actinobacteria and 
Streptococcus in lower education may reflect an AD 
phenotype but the alternative explanation that their 
alteration reflects educational differences cannot be ruled 
out. Of note, Actinobacteria was earlier found depleted 
in AD compared to healthy controls suggesting e.g., 
detriments to intestinal barrier integrity in both AD and 
lower education (44).

Limitations and Future Directions

In this study, we extensively triangulated potential 
mediation in a large cohort and point to potential 
interaction of education and gut microbiome diversity 
regarding MCI risk. Despite careful adjustment, residual 
confounding may bias results. Effect decomposition 
assumes no unmeasured (i)  exposure-outcome, 
(ii) mediator-outcome, or (iii) exposure-mediator 
confounding, and (iv) that (ii)-confounders are not 
affected by the exposure. However, PE and CDE do not 
require (iii) or (iv), and NDE is robust to (iv), assuming 
monotone associations (53, 54). MCI classification was 
based on a screening instrument. Differences in causes 
underlying MCI classification may bias DAA, which 
we could not formally assess (3). Moreover, SES was 
not formally addressed in the present analyses and may 
reflect a common cause of or indirect causal path variable 
of educational differences and MCI risk. However, DAA 
was carefully adjusted for different confounder sets, 
including lifestyle-related variables and risk factors of 
impaired cognition, such as BMI, depressive symptoms, 
or partnership status. Grouping of education may bias 
estimates, although the associations of YEDU with MCI 
is likely non-linear. Further, compulsory schooling years 
vary across birthyears (29). Grouping by less than 10 
YEDU selects older participants or those that immigrated. 
However, analysis was adjusted for age and first 
language as proxy for immigration. Limited diversity and 
sample size in this cohort prevented subgroup analysis 
and hampers generalizability (Supplementary Table 7). 
Further analysis regarding functional categories and 
diversity are necessary to fully elucidate implications of 
distinct taxonomic signatures (55).

Conclusion

Our results suggest signatures of the gut microbiome 
that have been identified previously in AD and MCI 
to be reflected in lower education. We show that most 
of the association of education with MCI is of a direct 
nature and stress the importance of considering social 
determinants of health, specifically education, as key 
modifiers in microbiome studies. Our findings underline 
the potential of the gut microbiome as a biomarker and 
intervention target regarding MCI, which is promising, 
considering its modifiability until later life. Future 
research with longitudinal survey designs is required 
to further investigate potential interaction of education 
and the gut microbiome and their implication for 
neurodegenerative diseases.
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