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ABSTRACT

In this paper, we will present a new flexible distribution for three-dimensional angular data, or data
on the three-dimensional torus. Our trivariate wrapped Cauchy copula has the following benefits:
(i) simple form of density, (ii) adjustable degree of dependence between every pair of variables,
(iii) interpretable and well-estimable parameters, (iv) well-known conditional distributions, (v) a
simple data generating mechanism, (vi) unimodality. Moreover, our construction allows for linear
marginals, implying that our copula can also model cylindrical data. Parameter estimation via
maximum likelihood is explained, a comparison with the competitors in the existing literature is
given, and two real datasets are considered, one concerning protein dihedral angles and another about
data obtained by a buoy in the Adriatic Sea.

1 Introduction

Angular data occur frequently in domains such as environmental sciences (e.g., wind directions, wave directions),
bioinformatics (dihedral angles in protein backbone structures), zoology (animal movement studies), medicine (circadian
body clock, secretion times of hormones), or political/social sciences (times of crimes during the day), to cite but these
[43]. Dealing with data that are angles requires special care in order to take into account their topology (domain [0, 2π)
where the end points coincide). Classical statistical concepts from the real line no longer hold for such data [22, 48];
in particular, the building blocks of statistical modeling and inference, probability distributions, need to be properly
defined. For data involving a single angle, called circular data, a large body of literature proposing more or less flexible
distributions exists (see [50] and [57]), among which the popular von Mises, wrapped Cauchy, cardioid, Jones–Pewsey
[28] and Kato–Jones [34] models. Though less in number, there also exist several interesting distributions for data
consisting respectively of two angles, called toroidal data, and an angle and a linear part, called cylindrical data. Popular
examples for toroidal distributions are the bivariate von Mises [46], the Sine [61] and Cosine models [51] and the
bivariate wrapped Cauchy [35], while examples for cylindrical models are the Johnson–Wehrly [26], the Mardia–Sutton
[45], the Kato–Shimizu [36] and the Abe–Ley [1] distributions.

The situation is very different when the data consists of either three angles, two angles and one linear component,
or one angle and two linear components. The few existing proposals suffer from problems of tractability, complex
parameter estimation procedures, lack of practically usable random number generation or non-interpretable parameters
(see Section 6 for details). This is all the more unfortunate as various such datasets exist and demand an adequate
statistical treatment. Two important examples are the following:

• Predicting the three-dimensional folding structure of a protein from its known one-dimensional amino acid
structure is among the most important yet hardest scientific challenges, with impacts in drug development,
vaccine design, disease mechanism understanding, human cell injection, and enzyme engineering, to cite but
these. The recent Nature Methods paper [40] concretely stated the need to complement the famous AlphaFold
single point prediction with an adequate statistical uncertainty treatment: “distributions of conformations are

ar
X

iv
:2

40
1.

10
82

4v
1 

 [
st

at
.M

E
] 

 1
9 

Ja
n 

20
24



The trivariate wrapped Cauchy copula A PREPRINT

the future of structural biology” (see our Section 7.1 for details). So far most statistical advances, in particular
on flexible and tractable probability distributions, have considered the dihedral angles ϕ and ψ, and considered
the torsion angle of the side chain ω to be fixed at either 0 or π (which are the only two realistic values for this
angle). However in practice this angle is often measured with some noise, hence a model for ϕ, ψ and ω is
required.

• Many environmental agencies are collecting data on wave heights and directions in order to identify sea
regimes. Such identification is highly relevant in climate-change times for studies of the drift of floating
objects and oil spills, coastal erosion, and the design of off-shore structures, to cite but these. Typically, the
state-of-the-art data analysis procedures use cylindrical distributions (e.g., the Abe–Ley distribution in [39])
to jointly model wave height and direction. An even more informative way to proceed consists in adding
information on the wind direction as it heavily influences waves. Quoting [39],“In wintertime, relevant events
in the Adriatic Sea are typically generated by the southeastern Sirocco wind and the northern Bora wind". This
adds a second angle to the cylindrical data on waves.

Describing a random phenomenon with a probability distribution is not a goal per se but rather inscribes itself in a
bigger picture of statistical uncertainty quantification. Besides easing data analysis by providing information about
aspects such as central tendency, concentration, asymmetry or dependence, it also allows the calculation of relevant
quantities such as risk of exceeding a certain threshold, it forms the basis of statistical methods such as regression,
time series analysis or clustering (via mixture models), and it paves the way for stochastic modeling in situations
where it is too complicated to calculate the probabilities of some events (e.g., in protein folding where simulations
are crucial). All these desirable consequences of fitting a probability distribution to data can only be leveraged if the
model satisfies a number of conditions, as laid out in [41]: versatility (ability to exhibit distinct shapes), tractability,
parameter interpretability, (ideally simple) data generation mechanism, and fast parameter estimation procedure. As we
will describe in Section 6, none of the existing models for trivariate toroidal data satisfies these requirements.

In order to fill this important gap in the literature, we propose in this paper the trivariate wrapped Cauchy copula. By
their very nature, copula-based approaches are tailor-made for versatility as copulas are distributions (with uniform
marginals) which regulate the dependence structure and can be combined with user-chosen marginals to form highly
flexible new models. Indeed, from Sklar’s Theorem [62] we know that any multivariate (on Rd) cumulative distribution
function (cdf) F can be expressed under the form F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) with C a d-dimensional
copula and F1, . . . , Fd marginal univariate cdfs, and conversely any copula C can be combined with marginals to
produce a multivariate distribution. Well-known references on copulas include [23], [55] and [24]. Copula models have
successfully been used in numerous domains such as medicine, finance, actuarial sciences, hydrology or environmental
sciences, see e.g. [14], [44], [7], among many others. In the case of angular data, copulas need to fulfil the additional
condition of 2π-periodicity and its marginals are not uniform on [0, 1] but on the unit circle. Our construction will be
such that linear marginals are also admissible, in order to also cover cylindrical data. We attract the reader’s attention to
the fact that [29] coined the term circulas for copulas on the torus. In this paper we shall consistently use the word
copula since our model also covers linear marginals.

Our trivariate wrapped Cauchy copula has the following further benefits: (i) simple form of density, (ii) adjustable
degree of dependence, (iii) interpretable and well-estimatable parameters, (iv) well-known conditional distributions, (v)
a simple data generating mechanism, and (vi) unimodality. Thus we are proposing a new model that satisfies all the
aforementioned requirements on flexible distributions, plus the agreeable form of conditional distributions is tailor-made
for regression. Since our model allows for linear marginals, it not only covers toroidal data but also cylindrical data,
unlike the toroidal competitor models from the literature. Moreover, it responds to needs from nonparametric approaches
on the torus regarding plug-in rules as expressed in [2] (quotation: “Further research needs to be done as numerically
computing the quantities replaced by a parametric circula may be (too) computationally exhaustive with the current
circulas available in the literature”).

The rest of the paper is organized as follows. In Section 2 we review some well-known and relevant for our construction
bivariate distributions before proposing the trivariate wrapped Cauchy copula. In Section 3, several properties of
the proposed distribution are given, including conditional distributions, random variate generation, unimodality and
moments. Parameter estimation is considered in Section 4 and the use of non-uniform marginal distributions in Section 5.
A thorough comparison with the competitors in the existing literature is given in Section 6 and in Section 7 two real
datasets are investigated by means of our new proposal, the first about protein dihedral angles and the second about data
obtained by a buoy in the Adriatic Sea. Conclusions and final comments can be found in Section 8. In the Appendix,
the proofs for all the Theorems and Propositions are presented, along with the expected Fisher Information matrix.
Further results are included in the Supplementary material.
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2 Construction and definition of the new copula

In order to properly introduce our new copula and clarify its construction, we shall first revisit the most popular bivariate
circular distributions (Section 2.1) before defining the trivariate wrapped Cauchy copula (Section 2.2).

2.1 Bivariate circular probability distributions and copulas

A popular class of toroidal (circular-circular) distributions that allows specifying the marginal distributions has been put
forward by Wehrly and Johnson [64]. Their general families have the probability density functions

f(θ1, θ2) = 2πg[2π{F1(θ1)− F2(θ2)}]f1(θ1)f2(θ2), (1)

f(θ1, θ2) = 2πg[2π{F1(θ1) + F2(θ2)}]f1(θ1)f2(θ2), (2)
where 0 ≤ θ1, θ2 < 2π, f1 and f2 are specified densities on the circle [0, 2π), F1 and F2 are their distribution functions
defined with respect to fixed, arbitrary, origins, and g is also a specified density on the circle. Both families (1) and
(2) have the nice property that their marginal densities are given by f1 and f2. More precisely, let a bivariate circular
random vector (Θ1,Θ2) have the distribution (1) or (2). Then the marginal densities of Θ1 and Θ2 are given by f1 and
f2, respectively (see [64], Theorem). Note that expression (1) with θ2 replaced by x ∈ R (and accordingly f2 and F2

are densities and distribution functions on R) had been proposed by the same authors two years earlier in [26] to build
general circular-linear distributions with specified marginals.

The Wehrly–Johnson construction resembles copulas in multivariate Euclidean spaces. And indeed, the two families (1)
and (2) can be readily transformed into copulas for bivariate circular data. Assume (U1, U2) = (2πF1(Θ1), 2πF2(Θ2)).
Then the density of (U1, U2) is given by

c(u1, u2) =
1

2π
g(u1 − qu2), 0 ≤ u1, u2 < 2π, (3)

where q = 1 if (Θ1,Θ2) has the density (1) and q = −1 if (Θ1,Θ2) has the density (2). Simple integration shows
that c(u1, u2) integrates to 1 and that each marginal is uniform on the circle (see [29] for detailed properties of the
distribution (3)). Therefore the distribution (3) can be viewed as an equivalent of a copula for bivariate circular data,
which is called circula in [29]. As implied by Sklar’s theorem, the distribution with density (3) can be transformed into
a distribution with prespecified marginal distributions. The distributions of Wehrly and Johnson (1) and (2) are such
cases in which the marginal distributions have the continuous distributions with densities f1 and f2.

In practice, it is necessary to take specific densities for f1, f2 and g in the families of [64], or equivalently, the choice of
g and marginal distributions is important for the copula-based version (3). Various proposals have been brought forward
in the literature, many of which are based on the use of the von Mises distribution as discussed, for example, in [64],
[59] and [60]. With a different approach, [8] applied the densities based on non-negative trigonometric sums. We refer
the reader to [42], Section 2.4, for a review of these models. [33] and [35] adopted the wrapped Cauchy density as the
function g in (3). This leads to density (3) being of the form

c(u1, u2) =
1

4π2

|1− ρ2|
1 + ρ2 − 2ρ cos(u1 − u2 − µ)

, 0 ≤ u1, u2 < 2π, (4)

where µ ∈ [0, 2π) controls the location and ρ ∈ R \ {±1} regulates the strength of dependence between the two
variables. [33] showed that this distribution is derived from a problem in Brownian motion and possesses various
tractable properties. [35] transformed this model via the Möbius transformation and showed that the transformed
distribution, known as Kato–Pewsey model, has the wrapped Cauchy marginal and conditional distributions.

2.2 Our proposal: the trivariate wrapped Cauchy copula

Given the nice properties of the bivariate wrapped Cauchy distribution of [35] resulting from the copula (4), we have
extended (4) to a density on the three-dimensional torus below.
Theorem 1. Let

c(u1, u2, u3) = c2

[
c1 + 2 {ρ12 cos(u1 − u2) + ρ13 cos(u1 − u3) + ρ23 cos(u2 − u3)}

]−1

, (5)

0 ≤ u1, u2, u3 < 2π,

where ρ12, ρ13, ρ23 ∈ R \ {0}, ρ12ρ13ρ23 > 0,

c1 =
ρ12ρ13
ρ23

+
ρ12ρ23
ρ13

+
ρ13ρ23
ρ12

, (6)

3
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and

c2 =
1

(2π)3

{(
ρ12ρ13
ρ23

)2

+

(
ρ12ρ23
ρ13

)2

+

(
ρ13ρ23
ρ12

)2

− 2ρ212 − 2ρ213 − 2ρ223

}1/2

. (7)

Suppose that there exists a permutation of (1, 2, 3), (j, k, ℓ), such that |ρkℓ| < |ρjkρjℓ|/(|ρjk|+ |ρjℓ|), where ρkj = ρjk
for 1 ≤ j < k ≤ 3. Then the function (5) is a probability density function on the three-dimensional torus [0, 2π)3.

We refer the reader to Appendix A.2 for a detailed proof. Let (U1, U2, U3) have the density (5). The parameters ρ12, ρ13
and ρ23 regulate both the dependence between the Ui’s as well as the location of the modes, as we shall see in Section 3.
More discussion about the interpretation of the parameters will be given in Section 3.6. It is also straightforward to
incorporate both positive and negative associations by replacing uj with qjuj (qj = 1,−1) and it is possible to extend
the distribution to include location parameters by replacing uj − uk with uj − uk − µjk in (5) (0 ≤ µjk < 2π). A very
appealing aspect from both a tractability and computational viewpoint is the simplicity of the expression of the density
which does not include any integrals or infinite sums, unlike most existing distributions on the three-dimensional torus
(see Section 6).

Next, we show that our model is indeed a copula for trivariate circular data by establishing in Theorem 2 that its
univariate marginals are circular uniform distributions. Prior to this, we will show that the bivariate marginals of our
new model are bivariate wrapped Cauchy-type copulas as they are of the form (4).
Theorem 2. Let a trivariate circular random vector (U1, U2, U3) follow the distribution (5). Then the following hold
for the marginal distributions of (U1, U2, U3):

(i) The marginal distribution of (Uj , Uk) is of the form (4) with density

c(uj , uk) =
1

4π2

|1− δ2jk|
1 + δ2jk − 2δjk cos(uj − uk − ηjk)

, 0 ≤ uj , uk < 2π, (8)

where δjk = |ϕjk|, ηjk = arg(ϕjk) ∈ {0, π}, ϕjk = {ρjℓρkℓ/ρjk−ρjkρjℓ/ρkℓ−ρjkρkℓ/ρjℓ−(2π)3c2}/(2ρjk),
and c2 is as in (7) .

(ii) The marginal distribution of Uj is the uniform distribution on the circle with density

c(uj) =
1

2π
, 0 ≤ uj < 2π.

Therefore the distribution of (U1, U2, U3) is a copula for trivariate circular data.

See Appendix A.3 for a proof. We attract the reader’s attention to the fact that the constant c1 has to be of the form (6)
to show the equality (30) in the proof of Theorem 2(i), which guarantees that the bivariate marginal distribution belongs
to the bivariate wrapped Cauchy-type family.

Finally, note that the density (5) can also be expressed as

c̃(u1, u2, u3) = c̃2

[
c̃1 + 2ρ12ρ13ρ23 {ρ12 cos(u1 − u2) + ρ13 cos(u1 − u3) + ρ23 cos(u2 − u3)}

]−1

, (9)

where c̃1 = (ρ12ρ13)
2 + (ρ12ρ23)

2 + (ρ13ρ23)
2 and

c̃2 =
1

(2π)3
{
(ρ12ρ13)

4 + (ρ12ρ23)
4 + (ρ13ρ23)

4 − 2ρ212ρ
2
13ρ

2
23(ρ

2
12 + ρ213 + ρ223)

}1/2
.

With this expression, the conditions of the parameters ρ12ρ13ρ23 > 0 and ρij ̸= 0 for all i, j can be omitted. The former
follows from the equality c̃(u1, u2, u3; ρ12, ρ13, ρ23) = c̃(u1, u2, u3;−ρ12, −ρ13,−ρ23) for any ρ12ρ13ρ23 > 0 and
the latter is clear from the fact that the denominator of the fraction in the right-hand side of (9) is not zero when one
ρij = 0 while ρik, ρjk ̸= 0 for all i, j, k.

3 Properties of the new copula

We will investigate distinct properties of our new copula distribution (5). In order to do so, it is often convenient to
express its density using complex variables. Let still (U1, U2, U3) have the density (5), and assume that (Z1, Z2, Z3) =
(eiU1 , eiU2 , eiU3). Then some simple manipulations involving trigonometric formulae yield that the density (5) can be
expressed as

c(z1, z2, z3) =
1

(2π)3
{ϕ41 + ϕ42 + ϕ43 − 2ϕ21ϕ

2
2 − 2ϕ21ϕ

2
3 − 2ϕ22ϕ

2
3}1/2

|ϕ1z1 + ϕ2z2 + ϕ3z3|2
, z1, z2, z3 ∈ Ω, (10)
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where Ω = {z ∈ C ; |z| = 1} is the unit circle in the complex plane, ϕ1 = sgn(ρ23)(ρ12ρ13/ρ23)1/2,
ϕ2 = sgn(ρ13)(ρ12ρ23/ρ13)1/2 and ϕ3 = sgn(ρ12)(ρ13ρ23/ρ12)1/2. Note that vice-versa this means that ρ12 = ϕ1ϕ2,
ρ13 = ϕ1ϕ3 and ρ23 = ϕ2ϕ3. The condition on the parameters in Theorem 1 then simplifies to |ϕj | > |ϕk| + |ϕℓ|
for (j, k, ℓ) a certain permutation of (1, 2, 3). Actually this is equivalent to the condition that the denominator of
(10) satisfies ϕ1z1 + ϕ2z2 + ϕ3z3 ̸= 0 for all (z1, z2, z3), see Lemma 1 in Appendix A.1 for a statement and proof.
Equivalently, the condition on the parameter |ρkℓ| < |ρjkρjℓ|/(|ρjk|+ |ρjℓ|) for some (j, k, ℓ) is necessary to guarantee
the boundedness of the density (5) for all (u1, u2, u3).

3.1 Conditional distributions and regression

In this subsection we consider the conditional distributions of the proposed model (5). As we will show, just like
the marginal distributions, all conditional distributions belong to well-known families from the literature, namely to
wrapped Cauchy distributions on the circle and to the Kato–Pewsey distribution on the torus. This is a further testimony
of the excellent tractability of our model. We refer the reader to the proof of these results in Appendix A.4.
Theorem 3. Let (U1, U2, U3) be a trivariate random vector having the distribution (5). Then the conditional distribu-
tions of (U1, U2, U3) are given below.

(i) The conditional distribution of (Uj , Uk) given Uℓ = uℓ is a reparametrized version of the distribution of [35] with
density

c(uj , uk|uℓ)

= 2πc2

[
c1 + 2 {ρjk cos(uj − uk) + ρjℓ cos(uj − uℓ) + ρkℓ cos(uk − uℓ)}

]−1

(11)

= 2πc2

[
c1 + 2{ρjℓ cos(uj − uℓ) + ρkℓ cos(uk − uℓ)

+ ρjk cos(uj − uℓ) cos(uk − uℓ) + ρjk sin(uj − uℓ) sin(uk − uℓ)}
]−1

,
(12)

0 ≤ uj , uk < 2π.

(ii) The conditional distribution of Uj given Uk = uk is the wrapped Cauchy distribution with density

c(uj |uk) =
1

2π

|1− δ2jk|
1 + δ2jk − 2δjk cos{uj − (uk + ηjk)}

, 0 ≤ uj < 2π, (13)

where ηjk and δjk are as in Theorem 2(i).

(iii) The conditional distribution of Uj given (Uk, Uℓ) = (uk, uℓ) is the wrapped Cauchy distribution with density

c(uj |uk, uℓ) =
1

2π

|1− δ2j|kℓ|
1 + δ2j|kℓ − 2δj|kℓ cos(uj − ηj|kℓ)

, 0 ≤ uj < 2π, (14)

where ηj|kℓ = arg(ϕj|kℓ), δj|kℓ = |ϕj|kℓ|, and ϕj|kℓ = −ρkℓ(ρ−1
jℓ e

iuk + ρ−1
jk e

iuℓ).

As this theorem shows, the univariate conditionals in Theorem 3(ii) and (iii) have the wrapped Cauchy distributions.
Note that the univariate conditional given in Theorem 3(ii) does not follow the wrapped Cauchy in general if c1 is not
defined as in (6). The bivariate conditional in Theorem 3(i) has various tractable properties as discussed in [35], also
thanks to the fact that it is proportional to our copula (5) with uℓ fixed.

The well-known form of the conditional distributions paves the way for regression purposes with one or two angular
dependent variables and/or one or two angular regressors. Indeed, if we wish to predict one angular component based
on two angular components, then from Theorem 3(iii) we find that the mean direction and circular variance of (Uj)
given (Uk, Uℓ) are ηj|kℓ and 1− δj|kℓ, respectively. Similarly, if we wish to predict two angular components based on
a third angular component, then from Theorem 3(i) we see that the mean and variance of (Uj , Uk) given Uℓ can be
calculated in a similar fashion as in Section 2.5 of [35]. Note that circular-circular regression can also be obtained in a
straightforward way from Theorem 3(ii).

3.2 Random variate generation

The fact that all the marginal and conditional distributions belong to existing tractable families lays the foundations for
random variate generation. Indeed, random variates from the proposed trivariate model (5) can be efficiently generated
from uniform random variates on (0, 1), as detailed in the following theorem, whose proof is deferred to Appendix A.5.
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Theorem 4. The following algorithm generates random variates from the distribution (5) without rejection.

Step 1. Generate uniform (0, 1) random variates ω1, ω2 and ω3.

Step 2. Compute

u1 = 2πω1, u2 = u1 + η12 + 2arctan

[(
1− δ12
1 + δ12

)
tan {π(ω2 − 0.5)}

]
,

u3 = η3|12 + 2arctan

[(
1− δ3|12

1 + δ3|12

)
tan {π(ω3 − 0.5)}

]
,

where (η12, δ12) and (η3|12, δ3|12) are as in Theorems 2(i) and 3(iii), respectively.

Step 3. Record (u1, u2, u3) as the random variate from the distribution (5).

Note the simplicity and efficiency of the algorithm in which a variate from the proposed distribution can be generated
through a transformation of three uniform random variates without rejection.

3.3 Trigonometric moments

For a trivariate circular random vector (U1, U2, U3), its trigonometric moment is defined by

Φ(p1, p2, p3) = E
[
ei(p1U1+p2U2+p3U3)

]
,

where (p1, p2, p3) ∈ Z3 is the order of the trigonometric moments. The following theorem shows that the trigonometric
moments for the proposed distribution (5) can be expressed in simple form. Its proof can be found in Appendix A.6
Theorem 5. Let (U1, U2, U3) have the distribution (5) with |ρkℓ| < |ρjkρjℓ|/(|ρjk|+ |ρjℓ|). Then, if p1 + p2 + p3 ̸= 0,

Φ(p1, p2, p3) = 0.

If p1 + p2 + p3 = 0 and pj ≥ 0, then

Φ(p1, p2, p3) = (−ρkℓ)pj

pj∑
n=0

(
pj
n

)
ρ−n
jℓ ρ

−pj+n
jk φ

|pk+n|
kℓ ,

where φkℓ = min{|ϕkℓ|, |ϕkℓ|−1}ϕkℓ/|ϕkℓ| and ϕkℓ is as in Theorem 2(i). If p1 + p2 + p3 = 0 and pj < 0, then
Φ(p1, p2, p3) = Φ(−p1,−p2,−p3).
Remark 1. Considering the case p1 + p2 + p3 = 0 and pj ≥ 0 in Theorem 5, if pk ≥ 0, the trigonometric moment
simplifies to

Φ(p1, p2, p3) = φpk

kℓ

{
−ρkℓ

(
φkℓ

ρjℓ
+

1

ρjk

)}pj

,

and if pk ≤ −pj , then

Φ(p1, p2, p3) = φ−pk

kℓ

{
−ρkℓ

(
1

φkℓρjℓ
+

1

ρjk

)}pj

. (15)

Note also that Theorem 5 is valid even when p1 + p2 + p3 = 0 and pj = 0. In this case the trigonometric moment
reduces to Φ(p1, p2, p3) = φ

|pk|
kℓ .

3.4 Correlation coefficients

We consider three well-known correlation coefficients for bivariate circular data. Let (Uj , Uk) be a bivariate circular
random vector. Then the correlation coefficients of Johnson and Wehrly [25], Jupp and Mardia [31] and Fisher and Lee
[12] are respectively defined by

ρJW = λ1/2, ρJM = tr(Σ−1
jj ΣjkΣ

−1
kkΣ

T
jk),

ρFL =
det{E(XjX

T
k )}

[det{E(XjXT
j )}det{E(XkXT

k )}]1/2
,

where λ is the largest eigenvalue of Σ−1
jj ΣjkΣ

−1
kkΣ

T
jk, Σℓm = E(XℓX

T
m) − E(Xℓ)E(Xm)T and Xℓ =

(cosUℓ, sinUℓ)
T (ℓ,m = j, k). The correlation coefficients of our bivariate marginal distributions are given in

the following theorem, whose short proof is deferred to Appendix A.7.

6
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Theorem 6. Let a trivariate random vector (U1, U2, U3) follow the proposed model (5). Then, for any pair of random
variables (Uj , Uk), its correlation coefficients of Johnson and Wehrly [25], Jupp and Mardia [31] and Fisher and Lee
[12] are given by

ρJW = δjk, ρJM = 2δ2jk and ρFL = δ2jk,

respectively, where δjk is as in Theorem 2(i).

Note the simplicity of the expressions for all the three correlation coefficients.

3.5 Modality

In this section we investigate the modes of the density (5).
Theorem 7. For ρjk > 0 and ρjℓ, ρkℓ < 0, the modes of the density (5) are given by

(i) uj = uk = uℓ if |ρjk| < |ρjℓρkℓ|/(|ρjℓ|+ |ρkℓ|),
(ii) uj = uk + π = uℓ + π if |ρjℓ| < |ρjkρkℓ|/(|ρjk|+ |ρkℓ|),
(iii) uj = uk + π = uℓ if |ρkℓ| < |ρjkρjℓ|/(|ρjk|+ |ρjℓ|),

(16)

and the antimodes of the density (5) are given by

uj = uk = uℓ + π. (17)

If ρjk, ρjℓ, ρkℓ > 0, then uℓ in the modes (16) and antimodes (17) is replaced by uℓ + π.

The proof is given in Appendix A.8. Since the conditions in (16) are the same as the constraints in Theorem 1, one of
them is always satisfied, which makes the result very strong as it shows that our trivariate copula is actually unimodal.
Moreover, the modes of the density (5) have the most natural form in the case (i) of equation (16), and very simple forms
in the other cases. Having a unimodal distribution on a complicated support such as the three-dimensional torus is a
very rare feature and lends itself very naturally for mixture models when dealing with multimodal distributions. Indeed,
unimodal distributions are likely to lead to fewer mixture components and better interpretability of the individually
detected modes.

3.6 Other properties of the density (5) and contour plots

Here we present some more properties as well as contour plots of the density (5), which allows us to discuss the
interpretation of the parameters.
Proposition 1. Let c(u1, u2, u3; ρ12, ρ13, ρ23) be the density (5). Then it is straightforward to see that it has the
following properties:

(i) c(u1, u2, u3;αρ12, αρ13, αρ23) = c(u1, u2, u3; ρ12, ρ13, ρ23) for any α > 0,

(ii) c(u1, u2, u3; ρ12, ρ13, ρ23) = c(u1 + π, u2, u3;−ρ12,−ρ13, ρ23)
= c(u1, u2 + π, u3;−ρ12, ρ13,−ρ23)
= c(u1, u2, u3 + π; ρ12,−ρ13,−ρ23),

(iii) c(u1, u2, u3; ρ12, ρ13, ρ23) = −c(u1, u2, u3;−ρ12,−ρ13,−ρ23),

(iv) c(−u1,−u2,−u3; ρ12, ρ13, ρ23) = c(u1, u2, u3; ρ12, ρ13, ρ23).

The property (i) implies that the additional condition ρ12 ρ13 ρ23 = β (β > 0) could be imposed upon the parameter
space of our family (5). While the choice of β affects the range of the parameter space, the flexibility of our
model remains the same. This can be seen by combining property (i) with the observation that the conditions
|ρkℓ| < |ρjkρjℓ|/(|ρjk|+|ρjℓ|) and ρ12ρ13ρ23 = β are equivalent to |ρ̃kℓ| < |ρ̃jkρ̃jℓ|/(|ρ̃jk|+|ρ̃jℓ|) and ρ̃12ρ̃13ρ̃23 = 1,
where (ρ̃jk, ρ̃jℓ, ρ̃kℓ) = (ρjk, ρjℓ, ρkℓ)/β

1/3. Under the condition ρ12ρ13ρ23 = β, the condition of the parameters of
the density (5), namely, |ρkℓ| < |ρjkρjℓ|/(|ρjk| + |ρjℓ|), reduces to ρ2jkρ

2
jℓ > β(|ρjk| + |ρjℓ|). Then the following

holds for the model with this restriction, see Appendix A.10 for the proof.
Proposition 2. Assume that the parameter space of the family (5) is constrained to the condition ρ12ρ13ρ23 = β(> 0).
With this restriction, the family of distributions (5) is identifiable.

The property (ii) of Proposition 1 implies that changing the signs of two parameters corresponds to the location shift of a
variable. Property (iii) shows how crucial the condition ρ12ρ13ρ23 > 0 actually is as it prevents from negative densities
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for other parameter combinations. Note that for the alternative expression (9), it holds that c(u1, u2, u3; ρ12, ρ13, ρ23) =
c(u1, u2, u3;−ρ12,−ρ13,−ρ23). Finally property (iv) implies that our proposed density is symmetric about its center.

Figure 1 plots the density (5) for fixed values of the third component u3 and selected values of the parameters. The
frames (a)–(d) imply that the values of u3 control the location of (u1, u2) when the density (5) is viewed as function
of (u1, u2). Also, as visual confirmation of Theorem 7, the modes and antimodes of the density (5) are given at
u1 = u2 = u3 and u1 + π = u2 = u3, respectively. The comparison among the frames (a) and (e)–(g) suggests that
the dependence between U1 and U2 becomes strong when the parameter ρ12 is close to the non-zero or non-infinite
boundary of its parameter space. With the fixed values of ρ13 and ρ23 in the frames (a) and (e)–(g), the range of ρ12
is about |ρ12| ∈ (0, 0.083] ∪ [0.124,∞). It can be seen that the closer the value of |ρ12| to 0.124, the greater the
dependence between U1 and U2. In turn, with the fixed values of ρ12 and ρ23 in the frames (a) and (h)–(j), the range of
ρ13 is about |ρ13| ∈ (0, 0.09] ∪ [0.11,∞). Although ρ13 controls the dependence between U1 and U3, it can be seen
that this parameter indirectly influences the dependence between U1 and U2. The frames (a) and (h)–(j) suggest that the
dependence between U1 and U2 becomes strong as |ρ13| goes to 0.11.

4 Parameter Estimation

In this section we consider methods of moments estimation and maximum likelihood estimation. Throughout this
section, let {(U1m, U2m, U3m)}nm=1 be a random sample from the distribution (5).

4.1 Method of moments estimation

Method of moments estimators can be obtained by equating theoretical and empirical trigonometric moments

E
{
ei(p1U1+p2U2+p3U3)

}
=

1

n

n∑
m=1

ei(p1U1m+p2U2m+p3U3m)

for some selected values of (p1, p2, p3) ∈ Z3. In order to estimate the parameters of the original distribution (5),
possible choices of (p1, p2, p3) are (pj , pk, pℓ) = (1,−1, 0) with j < k. In this case, equations (15) and (33) imply
that (following lengthy but simple calculations for the second equality)

E
{
ei(Uj−Uk)

}
= −ρkℓ

(
φkℓ

ρjk
+

1

ρjℓ

)
= φjk.

It follows that the parameters can be estimated as the solution of the following equations:

φ̂jk =
1

n

n∑
m=1

ei(ujm−ukm), 1 ≤ j < k ≤ 3,

where φ̂jk is the estimate of φjk defined in Theorem 2(i). Although there is no closed expression for {ρ̂jk}, it is
straightforward to find these estimates numerically thanks to the simple expressions for {φ̂jk}.

4.2 Maximum likelihood estimation (MLE)

For the original model (5), the likelihood function for {(um1, um2, um3)}nm=1 is given by

logL(ρ12, ρ13, ρ23) = log

n∏
m=1

c(um1, um2, um3)

= n log c2 −
n∑

m=1

logFm. (18)

where Fm = c1 + 2{ρ12 cos(um1 − um2) + ρ13 cos(um1 − um3) + ρ23 cos(um2 − um3)}. Its score function is

∂

∂ρjk
logL(ρ12, ρ13, ρ23) = n

∂c2
∂ρjk

c2
−

n∑
m=1

∂c1
∂ρjk

+ 2 cos(umj − umk)

Fm

where
∂c1
∂ρjk

=
ρjℓ
ρkℓ

+
ρkℓ
ρjℓ

− ρkℓρjℓ
ρ2jk

,

∂c2
∂ρjk

=
1

(2π)3

{
ρjk

((
ρjℓ
ρkℓ

)2

+

(
ρkℓ
ρjℓ

)2
)

− (ρkℓρjℓ)
2

ρ3jk
− 2ρjk

}(
(2π)3c2

)−1
.
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The maximum likelihood estimates ρ̂12, ρ̂13, ρ̂23 are obtained by equating the score function to zero and numerically
solving the system of three equations, see below. For the reader’s convenience, we provide in Appendix B the associated
expected Fisher information matrix.

Although the proposed density (5) has a simple and closed form, one should be careful about the parameter constraint,
namely, |ρkℓ| < |ρjkρjℓ|/(|ρjk|+ |ρjℓ|) for some (j, k, ℓ). In order to simplify this parameter constraint for numerical
optimization, we use the condition for identifiability given in Proposition 2. Assuming that ρ12ρ13ρ23 = 1, the
parameter constraint reduces to |ρjk|+ |ρjℓ| < |ρjk|2|ρjℓ|2 or, solving an inequality of the second order,

|ρjk| >
1 + {1 + 4|ρjℓ|3}1/2

2|ρjℓ|2
.

Using the expression

ρjk =
1 + {1 + 4|ρjℓ|3}1/2

2|ρjℓ|2
1

ζjk
, ζjk ∈ (−1, 0) ∪ (0, 1) ,

it is straightforward to see that the parameters of the proposed model (5) can be expressed in terms of ρjℓ and ζjk
alone (remember that this holds for one choice of j, k, ℓ). The parameter space of this reparametrized model under the
constraint |ρkℓ| < |ρjkρjℓ|/(|ρjk|+ |ρjℓ|) and ρ12ρ13ρ23 = 1 is thus

Ω̃ = {(ζjk, ρjℓ) ; ζjk ∈ (−1, 0) ∪ (0, 1) , ρjℓ ∈ R \ {0}} .

For notational convenience, write logL(ρ12, ρ13, ρ23) = logL(ζjk, ρjℓ) if the log-likelihood function (18) is repre-
sented in terms of (ζjk, ρjℓ). Then the maximum likelihood estimation for the proposed model can be carried out as
follows:

Step 1: For (k, ℓ) successively being equal to (1, 2), (2, 3), (3, 1), obtain the following estimates

(ζ̃jk, ρ̃jℓ) = arg max
(ζjk,ρjℓ)∈Ω̃

logL(ζjk, ρjℓ).

Step 2: Among the three obtained maximized quantities, calculate

(ζ̂j∗k∗ , ρ̂j∗ℓ∗) = arg max
(ζ̃jk,ρ̃jℓ)

logL(ζ̃jk, ρ̃jℓ).

Step 3: Record the maximum likelihood estimate (ρ̂12, ρ̂13, ρ̂23) as

ρ̂j∗ℓ∗ = ρ̂j∗ℓ∗ , ρ̂j∗k∗ =
1 + {1 + 4|ρ̂j∗ℓ∗ |3}1/2

2|ρ̂j∗ℓ∗ |2
(2ζ̂j∗k∗ − 1), ρ̂k∗ℓ∗ =

1

ρ̂j∗k∗ ρ̂j∗ℓ∗
,

where j∗ ̸= k∗ ̸= ℓ∗.

The algorithm is repeated with different initial values, to make sure that the global maximum is achieved. The initial
values for the parameters ζjk and ρjℓ are uniformly chosen from the intervals they are allowed to take values (where of
course the infinite intervals for ρjℓ are limited to a large maximal value). The function for calculating the ML estimates
was written in the programming language R, using the optimizer solnp from the library Rsolnp [17] and is available in
the GitHub repository https://github.com/Sophia-Loizidou/Trivariate-wrapped-Cauchy-copula. The consistency of this
approach is shown and its finite-sample performance is investigated by means of Monte Carlo simulations, which we
provide in Supplementary material A and B.

5 Adding specified angular and/or linear marginals to the trivariate wrapped Cauchy copula

Let (U1, U2, U3) be a random vector which follows the trivariate wrapped Cauchy copula (5). Assume that either

- fj is a density on the circle [0, 2π) (j = 1, 2, 3) and Fj its distribution function with fixed and arbitrary origin,
namely, Fj(θ) =

∫ θ

cj
fj(x)dx with cj ∈ [0, 2π);

- fj is a density on (a subset of) the real line R (j = 1, 2, 3) and Fj its distribution function.

Define

(Θ1,Θ2,Θ3) =

(
F−1
1

(
U1

2π

)
, F−1

2

(
U2

2π

)
, F−1

3

(
U3

2π

))
.

9
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Then it follows that (Θ1,Θ2,Θ3) has the joint density

f(θ1, θ2, θ3) = (2π)3c2

(
c1 + 2

∑
1≤j<k≤3

ρjk cos[2π{Fj(θj)− Fk(θk)}]
)−1 ∏

1≤ℓ≤3

fℓ(θℓ), (19)

where each θj either belongs to [0, 2π) or to (a subset of) R. As is clear from the definition, the univariate marginal
density of Θj is given by fj (j = 1, 2, 3). This yields a very flexible class of distributions with either 3 angular
components, 2 angular and 1 linear components, 1 angular and 2 linear components, or even 3 linear components. The
reason why there is no distinction between the type of marginal lies in the simple fact that the uniform distribution on
[0, 2π) bears by nature a double role as being linear as well as circular (since all points, and in particular the endpoints,
share the same value). This unified viewpoint was strangely enough not taken up by the two papers [26] and [64], nor
in [29] where the concept of copulas for circular data has been discussed in general. To the best of our knowledge, only
[38] combines copulas for angular data with linear marginals.

From the properties of the trivariate wrapped Cauchy copula, we can then derive the following general results (whose
proof is omitted).

Theorem 8. Let (Θ1,Θ2,Θ3) have the density (19). Then the following hold for (θ1, θ2, θ3) each either belonging to
[0, 2π) or to (a subset of) R:

(i) The univariate marginal distribution of Θj is fj(θj).

(ii) The bivariate marginal distribution of (Θj ,Θk) is

f(θj , θk) = 4π2c(2πFj(θj), 2πFk(θk))fj(θj)fk(θk),

where c(·, ·) is the density (8).

(iii) The bivariate conditional distribution of (Θj ,Θk) given Θℓ = θℓ is

f(θj , θk|θℓ) = 4π2c(2πFj(θj), 2πFk(θk)|2πFℓ(θℓ))fj(θj)fk(θk),

where c(·, ·|·) is the density (11).

(iv) The univariate conditional distribution of Θj given Θk = θk is

f(θj |θk) = 2πc(2πFj(θj)|2πFk(θk))fj(θj),

where c(·|·) is the density (13).

(v) The univariate conditional distribution of Θj given (Θk,Θℓ) = (θk, θℓ) is

f(θj |θk, θℓ) = 2πc(2πFj(θj)|2πFk(θk), 2πFℓ(θℓ))fj(θj),

where c(·|·, ·) is the density (14).

These results demonstrate that with our new model all forms of regression analysis involving up to three angular and/or
linear components are straightforward, which in a single swift covers the needs mentioned in the Introduction. Random
number generation from the general model is also immediate by adding just the step

Θj = F−1
j

(
Uj

2π

)
, j = 1, 2, 3,

to the algorithm presented in Section 3.2.

We conclude this section by briefly discussing one particular choice of marginals, namely when each fj is the wrapped
Cauchy density

fj(θ) =
1

2π

1− ξ2j
1 + ξ2j − 2ξj cos(θ − µj)

, 0 ≤ θ < 2π, (20)

where µj is the location parameter and ξj ∈ (−1, 1) the concentration parameter. Assume that the origin of the
distribution function Fj is cj = µj . In this case Fj has the closed-form expression

Fj(θj) =
1

π
arctan

(
1 + ξj
1− ξj

tan
θj − µj

2

)
+ I(θj > µj + π), µj < θj < µj + 2π.

10
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Then, noting that cos(2 arctanx) = (1− x2)/(1 + x2) and sin(2 arctanx) = 2x/(1 + x2), x ∈ R, it is a tedious but
straightforward exercise to show that the density of (19) can be expressed as

f(θ1, θ2, θ3) = c2

3∏
j=1

(1− ξ2j )

[
c1

3∏
j=1

gj(θj) + 2
∑

1≤k<ℓ≤3
j ̸=k,ℓ

ρjkgℓ(θℓ)hjk(θj , θk)

]−1

, (21)

where gj(θj) = 1 + ξ2j − 2ξj cos(θj − µj) and

hjk(θj , θk) = (1 + ξ2j )(1 + ξ2k) cos(θj − µj) cos(θk − µk)

+ (1− ξ2j )(1− ξ2k) sin(θj − µj) sin(θk − µk)− 2ξk(1 + ξ2j ) cos(θj − µj)

− 2ξj(1 + ξ2k) cos(θk − µk) + 4ξjξk.

Note that the density (21) does not involve any integrals. As further nice properties derived from Theorem 8, the
wrapped Cauchy copula with wrapped Cauchy marginals also has wrapped Cauchy conditionals for Θj given Θk = θk
and for Θj given (Θk,Θℓ) = (θk, θℓ). Moreover, the bivariate marginal distribution of (Θj ,Θk) is the distribution of
[35] with density

f(θj , θk) = c̃ {c̃0 − c̃1 cos(θj − µj)− c̃2 cos(θk − µk)− c̃3 cos(θj − µj) cos(θk − µk)

−c̃4 sin(θj − µj) sin(θk − µk)}−1,

where c̃ = (1 − ρ2jk)(1 − ξ2j )(1 − ξ2k)/(4π
2), c̃0 = (1 + ρ2jk)(1 + ξ2j )(1 + ξ2k) − 8ρjkξjξk, c̃1 = 2(1 + ρ2jk)ξj(1 +

ξ2k)− 4ρjk(1 + ξ2j )ξk, c̃2 = 2(1 + ρ2jk)(1 + ξ2j )ξk − 4ρjkξj(1 + ξ2k), c̃3 = −4(1 + ρ2jk)ξjξk + 2ρjk(1 + ξ2j )(1 + ξ2k),
and c̃4 = 2ρjk(1 − ξ2j )(1 − ξ2k). Random number generation from the distribution (21) is based upon the Möbius
transformation

Θj = F−1
j

(
Uj

2π

)
= µj + 2arctan

[
1− ξj
1 + ξj

tan

(
Uj

2

)]
.

6 Comparison with existing models from the literature

After having discussed the main properties of our new copula, we can now proceed to a comparison with respect to the
competitors from the literature.

The arguably best-known model is the multivariate von Mises distribution of [47]. Unlike our proposal, the multivariate
von Mises has a complicated normalizing constant which is “unknown in any explicit form for p > 2” (where p is the
dimension in their paper), hence in particular in the trivariate case. Quoting [49] on the multivariate sine distribution
(a special case of the multivariate von Mises): “However, the use is somewhat hampered beyond the bivariate case
as the normalizing constant is intractable”. While the trivariate von Mises has von Mises conditional distributions,
the authors say that it does not appear possible to obtain an analytic expression for the univariate marginals, but
numerical experiments suggest that the shape is either unimodal or bimodal symmetric, hence less flexible than our
model. Parameter estimation is not obvious, and the authors suggest a pseudo-likelihood approach. [58] introduces a
computationally optimized version of the full pseudo-likelihood as well as a circular distance to address the problems of
the multivariate von Mises distribution. Sampling from the multivariate von Mises distribution can be done with rejection
sampling for small dimension and with Gibbs sampler for higher dimensions, implying that it is computationally
expensive to obtain samples. In [49] a concentrated multivariate sine model is introduced as a special case of the
multivariate von Mises. The main idea is to approximate the normalizing constant when the sine distribution is
concentrated. However, certain conditions need to be satisfied for the approximation to be good and the approximation
is compared to the true normalising constant only in the univariate and bivariate cases.

[54] introduced the multivariate Generalised von Mises (mGvM) distribution which is a maximum entropy distribution
just like its von Mises counterpart. It also shares the fact of not admitting an analytic expression for its normalizing
constant, which is a major drawback as it forces the use of approximate inference techniques. Its univariate conditionals
are Generalised von Mises, but no form is available for marginals. Furthermore a Gibbs sampler is required for
simulating from the distribution.

The multivariate wrapped normal distribution dates back to [4]. Its log-likelihood involves (multiple) infinite sums
due to an intractable normalizing constant, so alternative methods are required for estimating its parameters. [56]
proposes two estimation procedures based on Expectation-Maximisation and Classification Expectation-Maximisation
algorithms for estimating the parameters of a multivariate wrapped normal distribution. The two proposed methods can
also be used for estimating parameters in the case of joint circular and linear variables, with the circular part being
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wrapped normal and the linear part normal. Unsurprisingly, the model thus inherits tractability issues from the univariate
wrapped normal, which is therefore sometimes approximated by a von Mises. On a related note, [27] formulates a
wrapped Gaussian spatial process model where Markov Chain Monte Carlo is required for fitting the model.

[52] proposes the joint projected and skew normal distribution which is a multivariate circular-linear distribution. The
distribution models dependence among the components, has mostly interpretable parameters and a random number
generation mechanism. However, it inherits from the projected normal distribution the impossibility to express the
density in closed form as soon as the circular dimension is larger than 1. Moreover, a non-identifiability issue forces a
Bayesian framework and implementation of Markov Chain Monte Carlo Gibbs sampler for obtaining posterior samples.
In the paper, 30.000 observations are used as the burn-in period, which indicates that the sampler is computationally
expensive.

A d-dimensional copula for toroidal data has been proposed in [37] by directly extending the copula construction (2) to

f(θ1, θ2, . . . , θk) = (2π)m
m∏
j=1

g
2π k∑

i=j

Fi(θi)


k∏

i=1

fi(θi)

where 1 ≤ m ≤ k− 1 and the fi and Fi, i = 1, . . . , k, are respectively circular density and distribution functions. Their
suggested three-dimensional copula corresponds to k = 3 and m = 1. Being a copula, this model comes closest to ours
in terms of flexibility. The authors investigate various inferential properties and show that the conditional distributions
are of the same form as the general copula. Their model lacks symmetry concerning the permutation of variables
when m > 1; specifically, f(θi, θj , θk) and f(θk, θi, θj) represent essentially different models. Further properties such
as moments, modality, identifiability, bivariate marginal distributions, random number generation, ease of parameter
estimation, parameter interpretability are not discussed and hence difficult to evaluate. The authors also do not provide
suggestions as to which combinations of marginals and copula g are viable. A real data comparison from [37] reveals
that, in terms of AIC, the model chosen by the authors provided a less good fit than the MNNTS which we describe last.

[9] proposes the multivariate nonnegative trigonometric sums (MNNTS) models. The properties of the MNNTS models
are studied in [11], who state that the main drawback of the models is the high number of parameters. Marginal and
conditional distributions as well as moment expressions are available. Maximum likelihood estimates of the parameters
can be calculated using a Newton-like algorithm on the surface of a hypersphere, and a rejection algorithm allows
simulating data.

Based on this discussion, the MNNTS model comes closest to our proposal in terms of properties and practical
applicability, which is why we consider it as competitor in a real data analysis for trivariate circular data in the following
section. Note that besides the very short Section 3.3 in [56] no paper discusses both trivariate angular and angular-linear
models.

7 Application on real world datasets

7.1 Protein data

Predicting the 3D structure of proteins is a critical area of research in bioinformatics and computational biology. A
groundbreaking advance has been made by Google DeepMind’s AlphaFold [30] which can very accurately predict this
folding by means of well-trained deep neural networks. Consequently, in September 2023, two researchers from this
team were awarded the prestigious Lasker science prize1, which raises the prospect of their team winning potentially
also a Nobel prize. Their approach thus solves, in a sense, the single structure point prediction, but it does not allow for
uncertainty quantification. As mentioned in the recent Nature Methods paper [40], “distributions of conformations are
the future of structural biology” because single-structure views are not able to capture all protein functions. The main
body of statistical research in this direction has so far concentrated on the two dihedral angles of amino acids, which
has already led to various contributions in the protein structure prediction problem, see for instance [5], [20], [13], or
the monograph [19] and Chapters 1 and 4 of [43]. With our trivariate wrapped Cauchy copula, we can contribute to
this essential issue and hence complement the AI developments by modelling the dihedral angles as well as the torsion
angle of the side chain ω.

The building blocks of proteins are the amino acids, which consist of the backbone and the sidechains. The backbone
consists of the chemical bonds NH-Cα and Cα-CO, where Cα denotes the central Carbon atom. The aforementioned
bonds can rotate around their axes, with ϕ denoting the NH-Cα torsion angle and ψ the Cα-CO angle. These angles
need to be studied as specific combinations of them allow the favourable hydrogen bonding patterns, while others can

1https://laskerfoundation.org/winners/alphafold-a-technology-for-predicting-protein-structures/
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‘result in clashes within the backbone or between adjacent sidechains’ [21]. The ω angle denotes the N-C torsion angle,
where C is the non-central carbon atom. The angle ω can only take the values 0 and π, and for previous works this
angle was considered to be fixed at one of the two values [3, 20]. However, in practice this angle is often measured with
some noise and using our distribution (5), we shall model all three angles.

For the present data analysis, we consider position 55 at 2000 randomly selected times in the molecular dynamic
trajectory of the SARS-CoV-2 spike domain from [16]. The position occurs in α-helix throughout the trajectory. DPPS
[32] is used to compute the secondary structure and [6] to verify the chains. As can be seen from Figure 2, the marginal
distributions of the data cannot be modelled by the uniform distribution on the circle, so other distributions need to
be explored. Conveniently, our trivariate wrapped Cauchy copula allows us to choose different marginals, which is
why we combined it respectively with wrapped Cauchy, cardioid, von Mises and Kato–Jones marginals. Of course,
many other choices are possible, and one can also combine distinct marginals. Alternatively, it is also viable to estimate
the marginals in a non-parametric way and then combine the estimated marginals with our copula (see [15] for such a
procedure in Rd).

The parameters of our models are estimated using MLE. In the case that the marginal distributions are not uniform, the
maximum likelihood estimates of the parameters are calculated in a two-step approach. Let {(θm1, θm2, θm3)}2000m=1
denote the sequence of toroidal observations. In the first step, the ML estimates of the parameters of the marginals are
calculated, followed in the second step by estimating the parameters of the copula using {u1m, u2m, u3m}2000m=1 for

(u1m, u2m, u3m) =
(
2πF1(θ1m; ϑ̂1), 2πF2(θ2m; ϑ̂2), 2πF3(θ3m; ϑ̂3)

)
,

where, for i ∈ {1, 2, 3}, Fi represents the marginal density function of θi and ϑ̂i the parameters obtained from the first
step of the maximization. [23] refers to this as the method of inference functions for margins or IFM method. Efficiency
and consistency of the estimates obtained with IFM compared to the estimates that can be obtained by performing one
maximisation of the likelihood function can be found in Chapter 10 of [23] and Chapter 5 of [24].

As plotting all three angles at the same time is not possible, Figure 3 shows the plots of the data of two of the angles
given the third one. The values of the fixed angles are chosen to be the mode of the data, and only points that are within
0.1 radians of chosen value of the fixed angle are plotted. In order to make the plots clearer, the range of values on
each axis is not between 0 and 2π, like the traditional Ramachandran plot, but it is chosen such that both the contour
plots and the points are visible. For the values of ω, most observations were around 0 and so the plot is translated from
[0, 2π) to [−π, π) such that making the range of values on the axis smaller is possible. The contour plots correspond to
our copula density (5) with the marginal distributions being the von Mises distribution, whose density is given by

f(θ) =
1

2πI0(κ)
expκ cos(θ−µ), θ ∈ [0, 2π), (22)

where I0(κ) denotes the modified Bessel function of the first kind and order 0. The von Mises marginals with their
lighter tails lead to the best fit for this concentrated dataset, as measured by both Akaike and Bayesian Information
Criteria, see Table 1 (a force of our flexible model is that other marginals will be more adapted to less concentrated
data). The observed data points are plotted on top of the contours. This gives a visual idea of how good our estimated
model fits the protein data. The inherent tractability of our model allows biologists and bioinformaticians to quantify
uncertainties, compute quantities of interest, and in particular our straightforward random number generation process
enables them to quickly simulate data from our model, which is essential in their pipelines [63].

We conclude this section by a comparison of our model with the trivariate non-negative trigonometric sums (MNNTS)
distribution of [9]. Table 1 presents the fit of various models. The maximised log-likelihood, AIC and BIC are reported
for each model, along with the number of free parameters, denoted by p. The algorithms for fitting the MNNTS
distribution are taken from the R package CircNNTS [10]. Besides the reasons mentioned in Section 6 to compare
our model to the MNNTS, it is also the only competitor for which we could find implemented and working code. The
number of free parameters for MNNTS(M1,M2,M3) is calculated as 2

(∏3
i=1(Mi + 1)− 1

)
. Various combinations

of the values M1,M2,M3 are shown in Table 1, with the number of free parameters increasing rapidly. The MNNTS is
not able to match the fit of our copula (not only in terms of AIC/BIC but even in terms of log-likelihood), even for a
very large number of parameters. The best model for all three measures of fit, the trivariate wrapped Cauchy copula
with von Mises marginals, is shown in bold.

7.2 Wave data

For the second real data application, we use a time series of 1326 observations of semi-hourly wave directions and
heights, recorded in the period 15/02/2010–16/03/2010 by the buoy of Ancona, located in the Adriatic Sea at about 30

13
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Figure 1: Contour plots of density (5) with ρ23 = 0.1 and: (a)–(d) (−ρ12,−ρ13) = (1, 0.5) and (a) u3 = 0, (b)
u3 = π/2, (c) u3 = π and (d) u3 = 3π/2, (e)–(g) (−ρ13, u3) = (0.5, 0) and (e) −ρ12 = 0.15, (f) −ρ12 = 0.6 and
(g) −ρ12 = 2.5, and (h)–(j) (−ρ12, u3) = (1, 0) and (h) −ρ13 = 0.25, (i) −ρ13 = 2 and (j) −ρ13 = 5. The x-axis
represents the value of u1, while the y-axis denotes the value of u2.

0

π
2

π

3π
2

+

φ

0

π
2

π

3π
2

+

ψ

0

π
2

π

3π
2

+

ω

Figure 2: Rose plots of the protein data. The marginals are not uniformly distributed on the circle.

14



The trivariate wrapped Cauchy copula A PREPRINT

ω = 0

φ

ψ

π/4 π/2 3π/4 π 5π/4

3π/4

π

vonMises marginals
ψ = 2.8

φ

ω

π/4 π/2 3π/4 π 5π/4

−π/4

0

π/4

vonMises marginals

φ = 1.93

ψ

ω

π/2 3π/4 π 5π/4

−π/4

0

π/4

vonMises marginals

Figure 3: Contour plots of density (5) with von Mises marginals, with parameter values estimated by maximum
likelihood. The parameters of the marginals are µ̂1 = 1.93, κ̂1 = 27.6, µ̂2 = 2.82, κ̂2 = 17.3, µ̂3 = 6.23, κ̂3 = 84.4,
where µ̂i and κ̂i denote the estimated value for µ and κ of density (22) corresponding to the marginal distribution of θi
for i ∈ {1, 2, 3}, and the copula parameters are ρ̂12 = 9.18, ρ̂13 = −1.17, ρ̂12 = −0.09.

km from the coast. The data points are collected far spaced enough from each other to be considered independent. In
order to address the problem mentioned in the Introduction and to consider a more complete picture than just wave
height (linear) and direction (circular), we also add the wind direction (circular). The data thus is hyper-cylindrical,
which we can perfectly analyze with our copula. We choose as circular marginals the wrapped Cauchy distribution and
the Weibull distribution for the linear marginal. Of course, many other combinations could be considered, but this goes
beyond the scope of the present paper. Due to the multimodality of the data, a mixture model is required, leading to
densities of the form

f(θ1, θ2, x) =

K∑
i=1

πifi(θ1, θ2, x),

K∑
i=1

πi = 1, (23)

where K is the number of components of the mixture model, πi is the weight of each class and fi(θ1, θ2, x) is the
density of component i and is the copula as defined in (19), with marginals as already explained. In order to estimate
the parameters, we use a variant of the Expectation-Maximization (EM) algorithm to find the values of the parameters
for each component of the mixture model. As with maximum likelihood estimation with non-uniform marginals,
the maximisation is done as a first step for the parameters of the marginal distributions and then, using the obtained
parameters, estimates of the parameters of the copula are obtained. The M-step of our algorithm thus adopts the

15
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Table 1: Maximized log-likelihood, AIC, BIC, and the number of free parameters (denoted by p) for each model for the
protein dataset.

Model Marginals log-likelihood AIC BIC p
uniform -7920 15845 15862 2

trivariate wrapped wrapped Cauchy 1131 -2245 -2194 8
Cauchy copula cardioid -3495 7007 7058 8

von Mises 2046 -4074 -4023 8
Kato–Jones 1404 -2778 -2694 14

(M1,M2,M3)
(0,0,0) -11027 22055 22055 0
(1,1,1) -6923 13874 13953 14
(2,2,2) -4582 9268 9559 52
(3,3,3) -2984 6220 6926 126

MNNTS (4,4,4) -1811 4118 5507 248
(5,5,5) -921 2702 5111 430
(6,6,6) -231 1829 5660 684
(7,7,7) 315 1414 7138 1022
(8,8,8) 746 1421 9575 1456
(9,9,9) 1091 1815 13005 1998

(10,10,10) 1370 2579 17478 2660

IFM method, which is why we speak of a variant of the EM algorithm, which for the rest works exactly like an EM
algorithm. The initial values for the parameters were randomly chosen. This was repeated 10 times and the parameters
that maximised the log-likelihood were chosen. To find the number of mixture components, we considered the values
K = 2, 3, 4, 5 and used the BIC to determine the best-fitting model.

We found that K = 4 components fit best the data, as the BIC values are 16045, 15850, 15611 and 15655, for
K = 2, 3, 4, 5 respectively. The parameter estimates for this mixture model are given in Table 2. For visualization
of the results, the bivariate marginal distribution is plotted in Figure 4, as given in Theorem 8. The plots on the left
hand side are scatter plots of the data, coloured according to their cluster as given by our variant of the EM algorithm
with 4 components. The same colour is used for each cluster to plot the bivariate marginal distribution for each of the
components. This fitted model then allows building regression models within each cluster and expressing, for instance,
how wave height and direction are influenced by the wind direction or how the wave height depends on both wind and
wave direction. The simplicity of our copula is tailor-made for this type of investigations and can provide environmental
agencies with a user-friendly tool.

Table 2: Parameter estimates as obtained from our variant of the EM algorithm for 4 components. The marginal
distributions for wind and wave directions are wrapped Cauchy, and the estimates of the parameters are denoted by
ρ̂1, µ̂1 and ρ̂2, µ̂2, respectively. For the Weibull distribution, λ̂3 is the scale parameter and κ̂3 is the shape parameter.
Finally π̂i denotes the estimate of the weight of class i.

Parameters Cluster 1 Cluster 2 Cluster 3 Cluster 4
ρ̂12 -0.001 -0.090 -495 0.004
ρ̂13 0.010 -0.004 -0.113 3720
ρ̂23 -120898 3176 0.018 -0.066
ρ̂1 3.866 4.443 5.186 2.572
µ̂1 0.829 0.883 0.804 0.599
ρ̂2 3.759 4.463 5.693 2.233
µ̂2 0.723 0.892 0.434 0.768
λ̂3 3.044 3.380 1.521 1.438
κ̂3 1.768 3.425 0.941 0.773
π̂i 0.187 0.053 0.532 0.227

8 Final comments and outlook on future research

In this paper we have proposed a new distribution on the three-dimensional torus, the trivariate wrapped Cauchy copula.
The marginal and conditional distributions of the copula are known distributions and random variate generation is
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Figure 4: Contour plots of the bivariate marginal distributions for the four different clusters as detected by our variant
of the EM algorithm. Each cluster is presented in a different colour.
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simple and efficient through a transformation of uniform random variates without rejection. The proposed distribution
is unimodal for any value of the parameters ρ12, ρ13 and ρ23, a very important and rare property in hypertoroidal
distributions. Parameter estimation can be performed via maximum likelihood estimation. As the distribution is a
copula, the marginal distributions of the components can be chosen as any univariate angular or linear distributions.
Choosing marginal distributions that are defined on the real line allows the copula to also model data that do not have
all three components as angular variables. This was done for the second real data example, where mixture models were
fitted to data that include one linear and two angular variables.

The trivariate wrapped Cauchy copula can be extended in various directions, of which we shall briefly outline three.
First, we might wish to introduce asymmetry into our copula (5). Of course, asymmetry can be handled at the level
of the marginals via suitably choosing skew marginal distributions, but this does not allow altering the symmetry of
the dependence structure, hence the copula itself. This can be done by adopting the approach of [3] which consists
in multiplying (5) with the skewing function (1 + λ1 sin(u1) + λ2 sin(u2) + λ3 sin(u3)) for λ1, λ2, λ3 ∈ (−1, 1)
satisfying |λ1 + λ2 + λ3| < 1. When all three skewness parameters are 0, we retrieve the original copula, and as
soon as one parameter deviates from zero, we obtain an asymmetric version of (5). It will be interesting to see in how
far asymmetry in the copula can add flexibility on top of asymmetry in the marginals, and how both can be ideally
combined.

Second, in a similar manner as in [64], the extended model (19) can be applied to presenting an AR(2) process on the
circle. Let Θ0,Θ1, . . . ,Θt be [0, 2π)-valued random variables on the circle such that

p(θ0, θ1) = f(θ0, θ1),

p(θt|θt−1, . . . , θ0) = p(θt|θt−1, θt−2) =
|1− δ2t |

1 + δ2t − 2δt cos(2πF (θt)− ηt)
f(θt), (24)

where f(θ0, θ1) is a density on the torus [0, 2π)2, f(θ) is a density on the circle [0, 2π) and F (θ) =
∫ θ

c
f(x)dx for some

arbitrary origin c on the circle. Also, ηt = arg(ϕt), δt = |ϕt|, ϕt = −ρt−1,t−2{ρ−1
t,t−1e

2πiF (θt−1)+ρ−1
t,t−2e

2πiF (θt−2)}.
The parameters satisfy ρt,t−1, ρt,t−2, ρt−1,t−2 ∈ R, ρt,t−1 · ρt,t−2 · ρt−1,t−2 > 0, and |ρkℓ| < |ρjkρjℓ|/(|ρjk|+ |ρjℓ|)
for (j, k, ℓ) a permutation of (t, t − 1, t − 2). Then p(θ0, θ1) is the initial distribution and p(θt|θt−1, θt−2) is the
stationary transition density, inherited from our trivariate construction. If f is the wrapped Cauchy density (20),
then the transition density (24) can also be expressed in closed form without integrals. The nice properties of our
model, especially its high tractability, shall make the AR(2) process very appealing and important for time-dependent
directional data.

Third and finally, it is natural albeit highly challenging to extend the model presented here to any d-dimensional torus.
A potential model could be of the form

c(u1, . . . , ud) ∝

c4 + 2
∑

1≤j<k≤d

ρjk cos(uj − uk)


−1

(25)

where the parameters ρjk ∈ R need to satisfy certain conditions and c4 depends on them. To make this a valid density,
c4 has at least to be equal to 2

∑
1≤j<k≤d |ρjk|, and we need to find the normalizing constant. The proposal (25) is

not only a logical extension of our trivariate copula, but it is also based on the following nice theoretical result (see
Appendix A.9 for the proof).

Theorem 9. Let a [0, 2π)d-valued random vector (U1, . . . , Ud) have the probability density function f(u1, . . . , ud).
Suppose that f is a function of {uj − uk ; 1 ≤ j < k ≤ d}, namely,

f(u1, . . . , ud) = h(u1 − u2, u1 − u3, . . . , ud−1 − ud), 0 ≤ u1, . . . , ud < 2π.

Then the marginal distribution of Uj (1 ≤ j ≤ d) has the uniform distribution on the circle.

This desirable result for a copula motivates researching in the direction of density (25).
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Appendix
A Proofs

A.1 Technical lemmas

Lemma 1. For real-valued variables ϕ1, ϕ2, ϕ3, we have that |ϕj | > |ϕk|+ |ϕℓ| for (j, k, ℓ) a certain permutation of
(1, 2, 3) if and only if ϕ1z1 + ϕ2z2 + ϕ3z3 ̸= 0 for all (z1, z2, z3) ∈ Ω3.

Proof. Let us start with the necessary condition. Without loss of generality, assume that |ϕ1| > |ϕ2|+ |ϕ3|. Then the
(reverse) triangular inequality combined with straightforward calculations yields

|ϕ1z1 + ϕ2z2 + ϕ3z3| ≥ ||ϕ1z1| − |ϕ2z2 + ϕ3z3||
= ||ϕ1| − |ϕ2z2 + ϕ3z3||
= |ϕ1| − |ϕ2z2 + ϕ3z3|
≥ |ϕ1| − (|ϕ2|+ |ϕ3|)
> 0.

The sufficient condition requires some more steps. Without loss of generality assume that min{ϕ1, ϕ2, ϕ3} = ϕ1. Then
z1 ̸= −ϕ2z2+ϕ3z3

ϕ1
and |ϕj/ϕ1| > 1 for j = 2, 3. From the former condition we can deduce that

∣∣∣−ϕ2z2+ϕ3z3
ϕ1

∣∣∣ < 1 or∣∣∣−ϕ2z2+ϕ3z3
ϕ1

∣∣∣ > 1 for all z2, z3 ∈ Ω2. The special choices z2 = sgn(ϕ2/ϕ1) ∈ Ω and z3 = sgn(ϕ3/ϕ1) ∈ Ω lead to∣∣∣∣−ϕ2z2 + ϕ3z3
ϕ1

∣∣∣∣ = ∣∣∣∣ϕ2ϕ1
∣∣∣∣+ ∣∣∣∣ϕ3ϕ1

∣∣∣∣ > 1

by our second deduction above. Therefore
∣∣∣−ϕ2z2+ϕ3z3

ϕ1

∣∣∣ > 1 for all z2, z3 ∈ Ω2. Now choose again z2 =

sgn(ϕ2/ϕ1) ∈ Ω but this time z3 = −sgn(ϕ3/ϕ1) ∈ Ω. From our established inequality we thus know that for
these choices of z2, z3 ∣∣∣∣−ϕ2z2 + ϕ3z3

ϕ1

∣∣∣∣ > 1

⇔
∣∣∣∣∣∣∣∣ϕ2ϕ1

∣∣∣∣− ∣∣∣∣ϕ3ϕ1
∣∣∣∣∣∣∣∣ > 1,

and consequently either |ϕ2| > |ϕ1|+ |ϕ3| or |ϕ3| > |ϕ1|+ |ϕ2|.

A.2 Proof of Theorem 1

Proof. In order to prove the theorem, it suffices to see that the function (5) satisfies: (i) c(u1, u2, u3) ≥ 0 for any
(u1, u2, u3) and (ii)

∫
[0,2π)3

c(u1, u2, u3)du1du2du3 = 1.

Proof of (i): Without loss of generality, assume |ρ12| < |ρ13ρ23|/(|ρ13|+ |ρ23|). We note that

c1 + 2 {ρ12 cos(u1 − u2) + ρ13 cos(u1 − u3) + ρ23 cos(u2 − u3)}

=

∥∥∥∥ϕ1(cosu1sinu1

)
+ ϕ2

(
cosu2
sinu2

)
+ ϕ3

(
cosu3
sinu3

)∥∥∥∥2 ,
where ϕj = sgn(ρkℓ)(ρjkρjℓ/ρkℓ)1/2, 1 ≤ j, k, ℓ ≤ 3, k, ℓ ̸= j, k < ℓ. Then∥∥∥∥ϕ1(cosu1sinu1

)
+ ϕ2

(
cosu2
sinu2

)
+ ϕ3

(
cosu3
sinu3

)∥∥∥∥
≥
∥∥∥∥ϕ3(cosu3sinu3

)∥∥∥∥− ∥∥∥∥ϕ1(cosu1sinu1

)
+ ϕ2

(
cosu2
sinu2

)∥∥∥∥
≥
√
ρ13ρ23
ρ12

−
(√

ρ12ρ13
ρ23

+

√
ρ12ρ23
ρ13

)
> 0. (26)
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The last inequality follows by showing

ρ13ρ23
ρ12

−
(√

ρ12ρ13
ρ23

+

√
ρ12ρ23
ρ13

)2

=
1

ρ12ρ13ρ23

{
ρ213ρ

2
23 − ρ212(|ρ13|+ |ρ23|)2

}
>

1

ρ12ρ13ρ23

{
ρ213ρ

2
23 −

(
|ρ13ρ23|

|ρ13|+ |ρ23|

)2

(|ρ13|+ |ρ23|)2
}

= 0.

Therefore c1 + 2 {ρ12 cos(u1 − u2) + ρ13 cos(u1 − u3) + ρ23 cos(u2 − u3)} > 0 for any (u1, u2, u3).

Next we show that the radicand in c2 is positive. It is straightforward to see that

ρ212ρ
2
13ρ

2
23

((
ρ12ρ13
ρ23

)2

+

(
ρ12ρ23
ρ13

)2

+

(
ρ13ρ23
ρ12

)2

− 2ρ212 − 2ρ213 − 2ρ223

)

= (ρ212 − ρ223)
2

{
ρ213 −

ρ212ρ
2
23(ρ

2
12 + ρ223)

(ρ212 − ρ223)
2

}2

− 4ρ612ρ
6
23

(ρ212 − ρ223)
2
.

(27)

It follows from the assumption |ρ12| < |ρ13ρ23|/(|ρ13|+ |ρ23|) that |ρ13| > |ρ12ρ23|/(|ρ23| − |ρ12|). Also

ρ213 >

(
|ρ12ρ23|

|ρ23| − |ρ12|

)2

.

Then the radicand (27) can be evaluated as

(ρ212 − ρ223)
2

{
ρ213 −

ρ212ρ
2
23(ρ

2
12 + ρ223)

(ρ212 − ρ223)
2

}2

− 4ρ612ρ
6
23

(ρ212 − ρ223)
2

> (ρ212 − ρ223)
2

{(
|ρ12ρ23|

|ρ23| − |ρ12|

)2

− ρ212ρ
2
23(ρ

2
12 + ρ223)

(ρ212 − ρ223)
2

}2

− 4ρ612ρ
6
23

(ρ212 − ρ223)
2

= 0.

Hence c2 > 0. Thus the function (5) satisfies the condition (i) for |ρ12| < |ρ13ρ23|/(|ρ13| + |ρ23|). Due to the
symmetry of the function (5), it immediately follows that the condition (i) holds for the other two cases |ρ13| <
|ρ12ρ23|/(|ρ12|+ |ρ23|) and |ρ23| < |ρ12ρ13|/(|ρ12|+ |ρ13|).

Proof of (ii): In order to see that the function (5) satisfies (ii), we first note the equation (3.613.2.6) of [18], that is,∫ 2π

0

du

1 + b cosu
=

2π

|1− b2|1/2
, |b| < 1. (28)

Using this result, it follows that∫ 2π

0

c(u1, u2, u3)du3

=

∫ 2π

0

c2

[
c1 + 2 {ρ12 cos(u1 − u2) + ρ13 cos(u1 − u3) + ρ23 cos(u2 − u3)}

]−1

du3

=
c2

c1 + 2ρ12 cos(u1 − u2)

∫ 2π

0

[
1 +

2{ρ13 cos(u1 − u3) + ρ23 cos(u2 − u3)}
c1 + 2ρ12 cos(u1 − u2)

]−1

du3

=
c2

c1 + 2ρ12 cos(u1 − u2)

∫ 2π

0

1

1 + b′ cos(u3 − a′)
du3

=
c2

c1 + 2ρ12 cos(u1 − u2)
· 2π

|1− b′2|1/2
, (29)

20



The trivariate wrapped Cauchy copula A PREPRINT

where b′ = 2{ρ213 + ρ223 + 2ρ13ρ23 cos(u1 − u2)}1/2/{c1 + 2ρ12 cos(u1 − u2)} and a′ satisfies tanα′ =
(ρ13 sinu1 + ρ23 sinu2)/(ρ13 cosu1 + ρ23 cosu2). The third equality follows from the formula α cosu3 + β sinu3 =√
α2 + β2 cos(u3 − γ), where γ satisfies tan γ = β/α and the fact that we can write

ρ13 cos(u1 − u3) + ρ23 cos(u2 − u3) = cos(u3)(ρ13 cos(u1) + ρ23 cos(u2)) + sin(u3)(ρ13 sin(u1) + ρ23 sin(u2)).

In order to see |b′| < 1 in the last equality, it suffices to see that

c1 + 2ρ12 cos(u1 − u2)− 2{ρ213 + ρ223 + 2ρ13ρ23 cos(u1 − u2)}1/2

=

∣∣∣∣∥∥∥∥ϕ1(cosu1sinu1

)
+ ϕ2

(
cosu2
sinu2

)∥∥∥∥− ∥∥∥∥ϕ3(cosu3sinu3

)∥∥∥∥∣∣∣∣2
> 0,

holds for any u1, u2, u3 ∈ [0, 2π). If |ρ12| < |ρ13ρ23|/(|ρ13| + |ρ23|), this inequality is already seen in (26). If
|ρ13| < |ρ12ρ23|/(|ρ12|+ |ρ23|) or |ρ23| < |ρ12ρ13|/(|ρ12|+ |ρ13|), we have∥∥∥∥ϕ1(cosu1sinu1

)
+ ϕ2

(
cosu2
sinu2

)∥∥∥∥− ∥∥∥∥ϕ3(cosu3sinu3

)∥∥∥∥ ≥
∣∣∣∣√ρ12ρ13

ρ23
−
√
ρ12ρ23
ρ13

∣∣∣∣−√ρ13ρ23
ρ12

> 0.

The last inequality follows from∣∣∣∣√ρ12ρ13
ρ23

−
√
ρ12ρ23
ρ13

∣∣∣∣2 − ρ13ρ23
ρ12

=
1

ρ12ρ13ρ23

[
ρ212{ρ13 − ρ23}2 − ρ213ρ

2
23

]
≥ 1

ρ12ρ13ρ23

{
ρ212(|ρ13| − |ρ23|)2 − ρ213ρ

2
23

}
>

1

ρ12ρ13ρ23

{(
ρ13ρ23

|ρ13| − |ρ23|

)2

(|ρ13| − |ρ23|)2 − ρ213ρ
2
23

}
= 0.

Thus we have c1 + 2ρ12 cos(u1 − u2)− 2{ρ213 + ρ223 + 2ρ13ρ23 cos(u1 − u2)}1/2 > 0, which implies |b′| < 1.

(29) can be simplified as∫ 2π

0

c(u1, u2, u3)du3 =
2π · c2

|ρ12ρ23/ρ13 + ρ12ρ13/ρ23 − ρ13ρ23/ρ12 + 2ρ12 cos(u1 − u2)|
(30)

≡ c(u1, u2).

Here we show that the denominator of (30) is positive for any (u1, u2). For convenience, write c3 = ρ12ρ23/ρ13 +
ρ12ρ13/ρ23 − ρ13ρ23/ρ12. Let ρ12 > 0, and we have the following:

(a) If |ρ12| < |ρ13ρ23|/(|ρ13|+ |ρ23|), then

c3 + 2ρ12 cos(u1 − u2) ≤ c3 + 2ρ12 =
ρ212(ρ13 + ρ23)

2 − ρ213ρ
2
23

ρ12ρ13ρ23

<
1

ρ12ρ13ρ23

[(
|ρ13||ρ23|

|ρ13|+ |ρ23|

)2

(ρ13 + ρ23)
2 − ρ213ρ

2
23

]

=
ρ213ρ

2
23

ρ12ρ13ρ23

[(
ρ13 + ρ23

|ρ13|+ |ρ23|

)2

− 1

]
≤ 0.

21



The trivariate wrapped Cauchy copula A PREPRINT

(b) If |ρ13| < |ρ12ρ23|/(|ρ12|+ |ρ23|) or |ρ23| < |ρ12ρ13|/(|ρ12|+ |ρ13|), we have

c3 + 2ρ12 cos(u1 − u2) ≥ c3 − 2ρ12 =
ρ212(ρ23 − ρ13)

2 − ρ213ρ
2
23

ρ12ρ13ρ23

>
1

ρ12ρ13ρ23

[(
|ρ13||ρ23|

|ρ23| − |ρ13|

)2

(ρ23 − ρ13)
2 − ρ213ρ

2
23

]

=
ρ213ρ

2
23

ρ12ρ13ρ23

[(
ρ23 − ρ13

|ρ23| − |ρ13|

)2

− 1

]
≥ 0.

Next, consider ρ12 < 0. In this case, if |ρ12| < |ρ13ρ23|/(|ρ13 + ρ23|), it is straightforward to show c3 +2ρ12 cos(u1 −
u2) < 0 in a similar manner as in the case (a) except using |ρ13| + |ρ23| = |ρ13 − ρ23|, which holds as ρ12 < 0
means that ρ13ρ23 < 0. If |ρ13| < |ρ12ρ23|/(|ρ12| + |ρ23|) or |ρ23| < |ρ12ρ13|/(|ρ12| + |ρ13|), then we can see that
c3 +2ρ12 cos(u1 −u2) > 0 in a similar manner as in the case (b) apart from the use of (ρ13 + ρ23)

2 = (|ρ13| − |ρ23|)2.
Thus the denominator of (30) is positive for any (u1, u2).

Note that the discussion above implies |2ρ12/c3| < 1. Then it follows from the equation (3.613.2.6) of [18] that, for the
parameters satisfying c3 + 2ρ12 cos(u1 − u2) > 0,∫ 2π

0

c(u1, u2)du2 =

∫ 2π

0

2πc2
c3 + 2ρ12 cos(u1 − u2)

du2 =

∫ 2π

0

2πc2
c3{1 + 2 (ρ12/c3) cos(u1 − u2)}

du2

=
(2π)2c2

c3|1− (2ρ12/c3)2|1/2
=

(2π)2c2
|c23 − 4ρ212|1/2

=
1

2π
.

(31)

Similarly, we can also show
∫ 2π

0
c(u1, u2)du2 = 1/(2π) for the parameters which satisfy c3 + 2ρ12 cos(u1 − u2) < 0.

Finally, ∫ 2π

0

c(u1)du1 =

∫ 2π

0

1

2π
du1 = 1.

Thus the proposed density (5) satisfies the condition (ii) as required.

Since the function (5) satisfies both conditions (i) and (ii), this function is a probability density function on [0, 2π)3.

A.3 Proof of Theorem 2

Proof. Without loss of generality, we prove the case (j, k) = (1, 2). The other cases can be shown in a similar manner.

(i) It follows from the equation (30) in Appendix A.2 that the marginal density of (U1, U2) can be expressed as

c(u1, u2) =

∫ 2π

0

c(u1, u2, u3)du3

=
2π · c2

|ρ12ρ23/ρ13 + ρ12ρ13/ρ23 − ρ13ρ23/ρ12 + 2ρ12 cos(u1 − u2)|
.

This marginal density can be rewritten as

c(u1, u2) =
1

(2π)2
|1− δ212|

1 + δ212 − 2δ12 cos(u1 − u2 − η12)
.

The values of δ12 > 0 and η12 ∈ {0, π} can be obtained as a solution to the equations 1+δ212 = C · (ρ12ρ23/ρ13+
ρ12ρ13/ρ23 − ρ13ρ23/ρ12) and −2δ12 cos η12 = 2Cρ12 for some C ̸= 0. Specifically, since these equations
imply

− 1 + δ212
2δ12 cos η12

=
c3
2ρ12

, (32)

22



The trivariate wrapped Cauchy copula A PREPRINT

where c3 = ρ12ρ23/ρ13 + ρ12ρ13/ρ23 − ρ13ρ23/ρ12, it follows that

δ̃12 =
−c3 ± {c23 − 4ρ212}1/2

2ρ12

=
ρ13ρ23/ρ12 − ρ12ρ23/ρ13 − ρ12ρ13/ρ23 ± (2π)3c2

2ρ12
,

where δ̃12 = δ12 cos η12. Denote these solutions by δ̃+12 = {−c3 + {c23 − 4ρ212}1/2}/(2ρ12) and δ̃−12 = {−c3 −
{c23 − 4ρ212}1/2}/(2ρ12). Then by definition of ϕ12 it is straightforward to see δ̃−12 = ϕ12, δ̃+12δ̃

−
12 = 1 and

δ̃+12 = 1/ϕ12. Since c(uj , uk) in equation (8) with the parameters δ12(̸= 0) and η12 satisfies c(u1, u2; δ12, η12) =
c(u1, u2; 1/δ12,−η12) for any (u1, u2), we have

c(u1, u2; |ϕ12|, arg(ϕ12)) = c(u1, u2; |1/ϕ12|, arg(1/ϕ12)), ≤ u1, u2 < 2π, (33)

by putting δ12 = |ϕ12| and η12 = arg(ϕ12). Note that cos(η12) is essentially the sign of ϕ12. The expression (33)
implies that the two solutions of (32), i.e., δ̃+12 and δ̃−12, correspond to the parameters of the same distribution.
Using the parameters derived from the solution δ̃−12, we have

c(u1, u2) ∝
{
1 + δ212 − 2δ12 cos(u1 − u2 − η12)

}−1
.

Since the functional form of this marginal density is essentially the same as that of (4), it follows that the marginal
density is given by (8) with (j, k) = (1, 2).

(ii) It immediately follows from equation (31) in Appendix A.2 that the marginal distribution of U1 is the uniform
distribution on the circle.

A.4 Proof of Theorem 3

Proof. Without loss of generality, we consider the case (j, k, ℓ) = (1, 2, 3).

(i) It is straightforward to derive the first expression of the conditional density (11) from the equation c(u1, u2|u3) =
c(u1, u2, u3)/c(u3), where c(u1, u2, u3) is the trivariate density (5) and c(u3) is the density of U3, namely, the
circular uniform density (see Theorem 2(ii)). The second expression of the conditional density (12) is available by
using the equation

cos(u1 − u2) = cos{u1 − u3 − (u2 − u3)}
= cos(u1 − u3) cos(u2 − u3) + sin(u1 − u3) sin(u2 − u3).

It follows from equation (2) of [35] that the second expression of the conditional density (12) has the same
functional form apart from parametrization.

(ii) Theorem 2 implies that the density of (U1, U2) is given by (8) and the density of U2 is the circular uniform density.
Then it follows from the expression c(u1|u2) = c(u1, u2)/c(u2) that the conditional density of U1 given U2 = u2
is the wrapped Cauchy density (13).

(iii) Using the complex expression of the density (10), the conditional density of Z1 given (Z2, Z3) = (z2, z3) is of
the form

c(z1|z2, z3) ∝
∣∣∣∣z1 + ϕ2z2 + ϕ3z3

ϕ1

∣∣∣∣−2

, z1 ∈ Ω.

Note that the density of the wrapped Cauchy distribution can be expressed as

f(z) =
1

2π

|1− δ2|
|z − δeiη|2

, z ∈ Ω,

where η ∈ Ω is the location parameter and δ ≥ 0 is the concentration parameter (see [53]). It follows that the
conditional of Z1 given (Z2, Z3) = (z2, z3) is the wrapped Cauchy distribution with the location parameter
arg(ϕ1|23) and concentration parameter |ϕ1|23|, where ϕ1|23 = −ϕ−1

1 (ϕ2z2+ϕ3z3) = −ρ23(ρ−1
13 e

iu2+ρ−1
12 e

iu3).
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A.5 Proof of Theorem 4

Proof. The trivariate density (5) can be decomposed as
c(u1, u2, u3) = c(u3|u1, u2)c(u2|u1)c(u1).

Theorems 2 and 3 imply that c(u3|u1, u2) is the wrapped Cauchy density (14), c(u2|u1) is also the wrapped Cauchy
density (13), and c(u1) is the circular uniform density. This expression implies that the random variate generation from
the proposed trivariate distribution (5) is equivalent to that from the circular uniform and wrapped Cauchy distributions.

It is straightforward to see that u1 computed in Step 2 is a random variate from the circular uniform distribution. In
order to generate random variates u2 and u3 from the conditional wrapped Cauchy distributions, we apply the following
result: if a random variable U follows the circular uniform distribution on (−π, π), then the random variable defined by

Θ = η + 2arctan

{(
1− δ

1 + δ

)
tan

(
U

2

)}
has the wrapped Cauchy distribution with location parameter η ∈ [0, 2π) and concentration parameter δ ∈ R \ {±1}
with density

f(θ) =
1

2π

|1− δ2|
1 + δ2 − 2δ cos(θ − η)

, 0 ≤ θ < 2π.

See [53] and [35] for details. Using this result, it is straightforward to see that u2 and u3 computed in Step 2 are variates
from the conditional wrapped Cauchy distributions with location parameters u1 + η12 and η3|12 and concentration
parameters δ12 and δ3|12, respectively.

A.6 Proof of Theorem 5

Proof. Without loss of generality, assume that (j, k, ℓ) = (1, 2, 3), namely, |ρ23| < |ρ12ρ13|/(|ρ12| + |ρ13|). For
convenience, transform the random vector (U1, U2, U3) into complex form (Z1, Z2, Z3) = (eiU1 , eiU2 , eiU3) which has
the density (10). It follows from Theorems 2(i) and 3(iii) that the density of (Z1, Z2, Z3) can be expressed as

f(z1, z2, z3) = f(z2, z3)f(z1|z2, z3) =
1

(2π)3
|1− |ϕ23|2|
|z2z3 − ϕ23|2

∣∣1− |(ϕ2z2 + ϕ3z3)/ϕ1|2
∣∣

|z1 + (ϕ2z2 + ϕ3z3)/ϕ1|2
.

Then the trigonometric moments can be calculated as

Φ(p1, p2, p3) =

∫
Ω2

zp2

2 z
p3

3

(2π)2

∣∣1− |ϕ23|2
∣∣

|z2z3 − ϕ23|2

∫
Ω

zp1

1

1

2π

∣∣1− |(ϕ2z2 + ϕ3z3)/ϕ1|2
∣∣

|z1 + (ϕ2z2 + ϕ3z3)/ϕ1|2
dz1dz2dz3

=

∫
Ω2

zp2

2 z
p3

3

(2π)2

∣∣1− |ϕ23|2
∣∣

|z2z3 − ϕ23|2

(
−ϕ2z2 + ϕ3z3

ϕ1

)p1

dz2dz3

=
1

(2π)2

p1∑
n=0

(
p1
n

)(
−ϕ2
ϕ1

)n(
−ϕ3
ϕ1

)p1−n

×
∫
Ω

zp2+n
2 zp3+p1−n

3

∣∣1− |ϕ23|2
∣∣

|z2z3 − ϕ23|2
dz2dz3.

(34)

The second equality follows from Section 1.4 of [53] and∣∣∣∣−(ϕ2z2 + ϕ3z3)

ϕ1

∣∣∣∣ ≤ |ϕ2|+ |ϕ3|
|ϕ1|

= |ρ23|
|ρ12|+ |ρ13|
|ρ12ρ13|

< 1.

The integration in (34) can be calculated using equation (4.3) of [33] and equation (33) of Appendix A.3 as

1

(2π)2

∫
Ω

zp2+n
2 zp3+p1−n

3

∣∣1− |ϕ23|2
∣∣

|z2z3 − ϕ23|2
dz2dz3 =

{
φ
|p2+n|
23 , p1 + p2 + p3 = 0,

0, p1 + p2 + p3 ̸= 0,

where φ23 = min{|ϕ23|, |ϕ23|−1}ϕ23/|ϕ23|. Then it follows that Φ(p1, p2, p3) = 0 if p1 + p2 + p3 ̸= 0. If
p1 + p2 + p3 = 0, we have

Φ(p1, p2, p3) =

p1∑
n=0

(
p1
n

)(
−ϕ2
ϕ1

)n(
−ϕ3
ϕ1

)p1−n

φ
|p2+n|
23

= (−ρ23)p1

p1∑
n=0

(
p1
n

)
ρ−n
13 ρ

−p1+n
12 φ

|p2+n|
23
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as required. The second equality follows from the equation −ϕj/ϕ1 = −sgn(ρ1k)|ρ23| /{sgn(ρ23)|ρ1k|} = −ρ23/ρ1k,
where j, k = 2, 3, j ̸= k. Finally, the last statement of the theorem holds because

Φ(−p1,−p2,−p3) = E[e−i(p1U1+p2U2+p3U3)] = E[ei(p1U1+p2U2+p3U3)]

= E[ei(p1U1+p2U2+p3U3)] = Φ(p1, p2, p3).

A.7 Proof of Theorem 6

Proof. If follows from Theorem 2(i) that (Uj , Uk) has the density (8). This density is equivalent to a special case of the
distribution of [35] with circular uniform marginals. Then the three correlation coefficients ρJW, ρJM and ρFL of our
model can be immediately calculated from those of the distribution of [35] given in Section 2.6 of their paper.

A.8 Proof of Theorem 7

Proof. Without loss of generality, assume (j, k, ℓ) = (1, 2, 3). First we consider the case ρ12, ρ13, ρ23 > 0. In this case,
it is clear that the antimodes of the density (5) are u1 = u2 = u3 because cos(uj − uk) (1 ≤ j < k ≤ 3) is maximized
at uj = uk. In order to derive the modes of the density (5), we first note that the density (5) can be expressed as

c(u1, u2, u3) ∝
[
c1 + 2ρ23 cos(u2 − u3) + 2{ρ212 + ρ213 + 2ρ12ρ13 cos(u2 − u3)}1/2 cos(u1 − η̃1|23)

]−1

,

where η̃1|23 = arg{ρ12 cosu2 + ρ13 cosu3 + i(ρ12 sinu2 + ρ13 sinu3)}. It immediately follows from this expression
that the density (5) is maximized at u1 = η̃1|23+π. Then the maximization of the density (5) reduces to the minimization
of its functional part

B(x) = ρ23x− {ρ212 + ρ213 + 2ρ12ρ13x}1/2,
where x = cos(u2 − u3) ∈ [−1, 1]. The first derivative of this function is

d

dx
B(x) = ρ23 − ρ12ρ13(ρ

2
12 + ρ213 + 2ρ12ρ13x)

−1/2. (35)

Now it is straightforward to see that this derivative can be upper bounded by ρ23 − ρ12ρ13

|ρ12+ρ13| (by replacing x with
1 in (35)), and that the derivative is thus negative if ρ23 < ρ12ρ13

|ρ12+ρ13| , leading to a minimization of B(x) at x = 1

if ρ23 < ρ12ρ13/|ρ12 + ρ13|. By using similar arguments, one can show that B(x) is minimized at x = −1 if
ρ23 > ρ12ρ13/|ρ12 − ρ13|. It then follows that the modes of the density (5) are given at u2 = u3 for ρ23 <
ρ12ρ13/|ρ12+ρ13| and at u2 = u3+π for ρ23 > ρ12ρ13/|ρ12−ρ13|. Finally, u1 = η̃1|23+π implies that u1 = u2+π
if ρ23 < ρ12ρ13/|ρ12 + ρ13|. If ρ23 > ρ12ρ13/|ρ12 − ρ13|, then we have u1 = u2 + π for ρ12 − ρ13 > 0 and u1 = u2
for ρ12 − ρ13 < 0.

The modes and antimodes of the density (5) for the case ρ12 > 0 and ρ13, ρ23 < 0 can be obtained in the same manner
by applying Proposition 1(ii).

A.9 Proof of Theorem 9

Proof. Without loss of generality, we calculate the marginal distribution of Ud. The marginal density of Ud can be
expressed as

f(ud) =

∫
[0,2π)d−1

h(u1 − u2, u1 − u3, . . . , ud−1 − ud)du1 · · · dud−1. (36)

Putting vj = uj − ud (j = 1, . . . , d − 1), it follows that uj − uk = vj − vk for k = 1, . . . , d − 1 and therefore
{uj − uk ; 1 ≤ j < k ≤ d} can be expressed using d− 1 variables v1, . . . , vd−1. Thus the marginal density (36) can
be expressed as

f(ud) =

∫
[0,2π)d−1

h(v1 − v2, v1 − v3, . . . , vd−1)dv1 · · · dvd−1 = C.

Since f(ud) is a constant which does not depend on ud, it follows that the marginal distribution of Ud is the uniform
distribution on the circle.
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A.10 Proof of Proposition 2

Proof. Let (ρ12, ρ13, ρ23) and (ρ̃12, ρ̃13, ρ̃23) be two different points in the constrained parameter space of the proposed
family (5) with ρ12ρ13ρ23 = ρ̃12ρ̃13ρ̃23 = β. Assume that (ρ12, ρ13, ρ23) and (ρ̃12, ρ̃13, ρ̃23) represent the same
distribution, namely, c(u1, u2, u3; ρ12, ρ13, ρ23) = c(u1, u2, u3; ρ̃12, ρ̃13, ρ̃23) for any (u1, u2, u3) ∈ [0, 2π)3, where c
is the density (5). This implies that there exist real-valued constants C and D such that, for any (u1, u2, u3) ∈ [0, 2π)3,

ρ12 cos(u1 − u2) + ρ13 cos(u1 − u3) + ρ23 cos(u2 − u3)

= D + C {ρ̃12 cos(u1 − u2) + ρ̃13 cos(u1 − u3) + ρ̃23 cos(u2 − u3)} .

Choosing (u1, u2, u3) equal to (0, π/2, π/2), (π/2, 0, π/2) and (π/2, π/2, 0), respectively, yields, ρij = D+Cρ̃ij for
each couple (i, j) ∈ {(1, 2), (1, 3), (2, 3)}. Moreover, (u1, u2, u3) = (0, 0, 0) gives ρ12 + ρ13 + ρ23 = D + C(ρ̃12 +
ρ̃13 + ρ̃23). Summing the first two equalities and subtracting the last entails 0 = 2D and hence D = 0, leading to

ρ12 cos(u1 − u2) + ρ13 cos(u1 − u3) + ρ23 cos(u2 − u3)

= C {ρ̃12 cos(u1 − u2) + ρ̃13 cos(u1 − u3) + ρ̃23 cos(u2 − u3)} .

Then it follows that, for any (u1, u2, u3),

(ρ12 − Cρ̃12) cos(u1 − u2) + (ρ13 − Cρ̃13) cos(u1 − u3) + (ρ23 − Cρ̃23) cos(u2 − u3) = 0.

Thus

ρ12 = Cρ̃12, ρ13 = Cρ̃13, ρ23 = Cρ̃23.

Using this equation and the assumption ρ12ρ13ρ23 = ρ̃12ρ̃13ρ̃23 = β, we have

β = ρ12ρ13ρ23 = C3ρ̃12ρ̃13ρ̃23 = C3β.

Thus we have C = 1. This implies (ρ12, ρ13, ρ23) = (ρ̃12, ρ̃13, ρ̃23), which is contradictory to the assumption
(ρ12, ρ13, ρ23) and (ρ̃12, ρ̃13, ρ̃23) are two different points.

B Fisher Information

For ease of presentation, denote c2 = 1
(2π)3 c

1/2
4 . Then the expected Fisher Information matrix of the density (5) is

given by

I(ρ12, ρ13, ρ23) = n

(
Iρ12ρ12

Iρ12ρ13
Iρ12ρ23

Iρ12ρ13
Iρ13ρ13

Iρ13ρ23

Iρ12ρ23
Iρ13ρ23

Iρ23ρ23

)

where, denoting (j, k, ℓ) a permutation of (1, 2, 3),

Iρjkρjk
=

∫
[0,2π)3

− ∂2

∂ρ2jk
log (c(u1, u2, u3)) du1du2du3,

Iρjkρjℓ
=

∫
[0,2π)3

− ∂

∂ρjk
log (c(u1, u2, u3))

∂

∂ρjℓ
log (c(u1, u2, u3)) du1du2du3,

and

∂2 log (c(u1, u2, u3))

∂ρ2jk
=

∂2c2
∂ρ2

jk
c2 −

(
∂c2
∂ρjk

)2
c22

−
∂2c1
∂ρ2

jk
F −

(
∂c1
∂ρjk

+ 2 cos(uj − uk)
)2

F 2
,

∂2 log (c(u1, u2, u3))

∂ρjk∂ρjℓ
=

∂2c2
∂ρjk∂ρjℓ

c2 − ∂c2
∂ρjk

∂c2
∂ρjℓ

c22
,

−
∂2c1

∂ρjk∂ρjℓ
F −

(
∂c1
∂ρjk

+ 2 cos(uj − uk)
)(

∂c1
∂ρjℓ

+ 2 cos(uj − uℓ)
)

F 2
.
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Let us now write out these expressions in detail:
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= 2
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ρ3jk

,
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2
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= 4
ρjkρjℓ
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− 4ρjℓ
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.

Supplementary material
A Simulations

In order to confirm that our MLE algorithm for the trivariate wrapped Cauchy copula from Section 4.2 retrieves the
true values of the parameters as the sample size increases, we have conducted a Monte Carlo simulation study. To
this end, data has been generated from the copula in (5) using the algorithm described in Theorem 4. The sample
sizes considered were 50, 100, 150, 200, 250, 300, 350, 500, 750, 1000, 1250, 1500, 1750, 2000, 3000, 4000, 5000 and
for each sample size we made 5000 replications. The median of the results for the different lengths is presented in
Figure 5. The true values of the parameters of the copula are ρ12 = 1, ρ13 = 0.25 and ρ23 = 4 and they are each plotted
with dotted lines. For each different sample, the MLE algorithm was repeated with 50 different initial values. The two
smaller values converge faster to the truth compared to the larger one. However, the median of the values obtained for
all three is close to the true value starting from sample size 500.
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Figure 5: Plots of median values of maximum likelihood estimates for each of the parameters ρ12, ρ13, ρ23 from
5000 replications for each sample size. The true parameters, which are plotted with horizontal dotted lines, are
ρ12 = 1, ρ13 = 0.25 and ρ23 = 4.

Confidence intervals (CIs) for the estimates can be obtained by means of bootstrap. Three different simulation studies
were performed, with B = 200 bootstrap samples being obtained from a sample of size n = 100, n = 500 and
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n = 1000, generated by the distribution with density (5), for parameter values ρ12 = 1, ρ13 = −4 and ρ23 = −0.25.
The estimates of the parameters are obtained by repeating the procedure described in Section 4.2 200 times. The median
of the values and the 95% CI for the estimated parameter values are shown in Table 3. The true values of the parameter
are included in all bootstrap CIs. For all values of the sample size, the true value is included in the bootstrap CI.

Table 3: The true value of the parameters is reported along with the median and 95% bootstrap confidence interval of
the ML estimates of the parameters for 200 bootstrap samples and sample size n = 100, n = 500 and n = 1000.

Parameter True value Median (95% bootstrap CI)
n = 100 n = 500 n = 1000

ρ12 1 1.83 (-0.27, 3.96) 0.99 (-0.19, 1.32) 1.06 (0.50, 1.31)
ρ13 -4 -1.92 (-5.26, 0.31) -3.92 (-8.97, 2.71) -3.74 (-6.26, -2.63)
ρ23 -0.25 -0.24 (-2.36, 2.33) -0.26 (-1.12, 0.74) -0.25 (-0.29, -0.18)

B Further results for the protein dataset of Section 7.1

For the protein dataset, many marginal distributions were tested as shown in Table 1. The contour plots obtained for the
different marginals are presented in Figures 6 to 9.
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Figure 6: Contour plots of density (5) with uniform marginals, with parameter values estimated by maximum likelihood.
The estimates of the copula parameters are ρ̂12 = −0.746, ρ̂13 = −0.516, ρ̂12 = 2.59.
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Figure 7: Contour plots of density (5) with wrapped Cauchy marginals, with parameter values estimated by maximum
likelihood. The parameters of the marginals are ρ̂1 = 0.89, µ̂1 = 1.94, ρ̂2 = 0.86, µ̂2 = 2.80, ρ̂3 = 0.94, µ̂3 = 6.22,
where ρ̂i and µ̂i denote the estimated values for ρ and µ of density (20) corresponding to the density of the marginal
distribution of θi for i ∈ {1, 2, 3}, and the copula parameters are ρ̂12 = 13, ρ̂13 = −0.68, ρ̂12 = −0.11.
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Figure 8: Contour plots of density (5) with cardioid marginals, with parameter values estimated by maximum likelihood.
The parameters of the marginals are ρ̂1 = 0.5, µ̂1 = 1.93, ρ̂2 = 0.5, µ̂2 = 2.81, ρ̂3 = 0.5, µ̂3 = 0, where ρ̂i and µ̂i

denote the estimated values for ρ and µ of density f(θ; ρ, µ) = 1
2π (1 + ρ cos(θ − µ)) corresponding to the density of

the marginal distribution of θi for i ∈ {1, 2, 3}, and the copula parameters are ρ̂12 = 0.59, ρ̂13 = 1.31, ρ̂12 = 1.30.
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Figure 9: Contour plots of density (5) with Kato–Jones marginals, with parameter values estimated by maximum
likelihood. The parameters of the marginals are µ̂1 = 1.93, γ̂1 = 0.94, ρ̂1 = 0.88, λ̂1 = 0.004, µ̂2 = 2.81, γ̂2 =

0.92, ρ̂2 = 0.85, λ̂2 = −0.018, µ̂3 = 6.23, γ̂3 = 0.97, ρ̂1 = 0.93, λ̂1 = −0.004, where ρ̂i, µ̂i, γ̂i and λ̂i denote the
estimated values for ρ, µ, γ and λ of the Kato–Jones density as given in [34] corresponding to the density of the marginal
distribution of θi for i ∈ {1, 2, 3}, and the copula parameters are ρ̂12 = 3.24, ρ̂13 = 1.49, ρ̂12 = 0.21.
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