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Abstract

Security protocols are commonplace in current digital communications. Achieving secure, pri-
vate and efficient communications has sparked the expansion of many fields in Computer Science
at the intersection between cryptography, formal methods and the theory of computation. His-
tory has shown the first steps to achieve security are to model the problem, state its desired proper-
ties, and prove them correct with mathematical rigour. Several methods have been demonstrated
useful for such tasks, from pen and paper proofs in the standard model, to semi-automated proofs
in the symbolic model.

Recently, protocols that depend on proximity have gained much popularity and importance.
They are used in contactless technologies such as contactless payment, Near Field Communica-
tion (NFC) on smartphones and e-passports. These protocols assume the agents participating in
the protocol are physically close during the execution. When this condition is not enforced, they
become vulnerable to the so-called relay attacks. This type of attack occurs when an attacker re-
lays the communication between agents, thus making them believe that they are communicating
directly. In some cases this is a vulnerability, as direct communication indicates acceptance to exe-
cute a transaction. Distance-bounding protocols are an important class of protocols which aim to
guarantee that the agents executing the protocol are physically close. These have been thoroughly
studied in the last decade. Nevertheless, there are several protocols which are not in this class, but
still use proximity notions in order to achieve security. One example is peer-to-peer key-exchange
protocols where authentication is achieved solely through physical proximity. The first objective
of this thesis is to study these protocols.

First, we develop a symbolic framework to generically analyse protocols that consider attack-
ers far away from the agents executing the protocol. We call this condition the distant-attacker
assumption. These protocols usually utilize time measurements to guarantee that the partner
of communication is nearby, similar to what is done in distance bounding. The key difference
though, is that the security property sought is different, as their aim is to achieve other properties
such as secrecy, authentication or memory-erasure. Using the proposed framework we show how
these properties can be proved semi-automatically using standard tools. Finally, we evaluate the
security of several protocols in the literature that had not been formally verified yet.

Second, we study software-based memory-erasure protocols. These protocols are useful to
guarantee small devices are in a safe state (for example free of malware) without having to physi-
cally access the device. In these protocols the prover aims to convince the verifier that it has erased
its memory. In the literature, software-based erasure protocols have typically assumed that the
prover is isolated during the execution. We show how this restriction can be lifted using distance-
bounding techniques. To this end, we propose new protocols and prove them secure within a
computational model assuming an attacker that is distant rather than absent.

Finally, we solve an open problem related to the probability of success of attackers against
lookup-based distance-bounding protocols. We propose a new protocol and prove it optimal with
respect to mafia-fraud and distance-fraud attacks using probabilistic analysis in a computational
model.
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1 Introduction

Computer networks have changed how people communicate. Internet, the global computer net-
work, is necessarily present in private communications, payments, news distribution, knowledge
dissemination and government services. By their nature, these services require means of communi-
cation that guarantee the secrecy, integrity and authenticity of the data exchanged. But obtaining
certainty about the security of communication methods has not been easily achieved. Further-
more, the ideas necessary for designing these methods were considered military secrets or inex-
istent, making most classical means of communication basically insecure. Scientifically proven
methods came to solve this issue in the XX century through the field of cryptography.

Cryptography has made secure communication systems possible. Its main research methods
are in the intersection between mathematics and computer science. Results from number theory
[136], computational complexity [126], information theory [94] and quantum computing [97]
have been applied (and in many cases discovered) in order to create the so-called cryptographic
primitives. These are functions with characteristics that enable security properties. For example,
encryption functions map strings to strings in such a way that the reverse map cannot be com-
puted in reasonable time unless a secret is known. Likewise, hash functions compress any string
into a fixed size string, and have the property that finding a single collision (two strings with the
same image) is “impossible” with current technology.

In modern applications cryptographic primitives are seldom used in isolation, but as part of
security protocols. These protocols are, in general, interactive algorithms executed between a set
of parties which communicate using a network. These algorithms use cryptographic primitives
to achieve a predefined set of goals. Examples of widely deployed security protocols are: TLS
[118] (used to provide security to the Hypertext Transfer Protocol (HTTP)), Signal [112] (used
by WhatsApp and others), SSH [138] (used to remotely access computers), WireGuard [56] (re-
mote access to networks), InterPlanetary File System [23] and BitTorrent [39] (file sharing), and
Bitcoin [104] (decentralized payments). The security goals of these protocols are quite varied. For
example, TLS aims to provide a communication channel between two parties with confidentiality
(messages sent through the channel are secret), integrity (messages cannot be modified by third-
parties), and authenticity (messages come from the expected party). When these properties are
valid, eavesdropping and tampering are impossible, even when attackers are in full control of the
network.

Showing that a security protocol is secure against all possible attacks is an extremely difficult
task. Case in point, even the omnipresent TLS protocol, after years of scrutiny in dozens of re-
search papers, has been shown to be vulnerable to attacks because of weaknesses at the protocol
level. We refer in particular to the triple handshake attack in [26]. The attack followed from the
unexpected composition of standard features of the protocol: session resumption followed by

1



1 Introduction

client authentication during renegotiation. It affected all major implementations of the protocol,
but luckily was relatively easy to fix.

1.1 Protocols with proximity measurements

In general, there are protocol that are cryptographically secure, but still can be attacked in practice.
The reason is that cryptography usually overlooks variables such as computational resources and
time. For example, many important protocols depend on time for protecting against distributed
denial-of-service (DDoS) attacks. These have caused the downtime of very popular services such
as search engines and social networks. An attack begins when the number of clients starting new
sessions with the server grows too fast in a very short period of time. Without the right measures
in place, the amount of data that needs to be processed goes beyond what the server can handle,
and then it becomes effectively disconnected from the rest of the network. DDoS attacks can be
prevented by using time-aware detection techniques. Another example in which time is necessary
is packet retransmission. Given that networks are usually unreliable, dropping messages is a com-
mon situation for which low level protocols must have an efficient recovery path. In this case, if a
message is not acknowledged after a certain period of time, it must be assumed lost and has to be
retransmitted.

Contactless payments are another example where time is important to achieve some level of
security. When this technology is used to pay in a supermarket, a protocol is executed between the
payment terminal and the user card. Normally, no user interaction is required for the payment
to be successful, but the security of this transaction depends on the proximity between the card
and the terminal. If this condition is not enforced, then so-called relay attacks become feasible:
a card in the pocket of a user could be used to pay on a terminal in another location by using an
attacker’s controlled network to relay messages between them. Relay attacks were mostly a theo-
retical possibility [33] until they were successfully used against contactless systems [66]. Another
application where proximity is required are passive keyless entry and start systems, which allow
cars to be opened and started when its key is nearby [64].

The relay attacks on payment systems described before can be prevented if the terminal ensures
the card is physically close at the time of payment. We call this process proximity verification,
which is an essential part of protocols which depend on the agents locations. The most common
way of proximity verification is to measure the round-trip-time (RTT) of messages to estimate
the distance between agents. In payment systems, for example, a terminal should only accept
a payment from a card if the responses to its challenge messages arrive within a predetermined
time-bound, which corresponds to the card being physically close while executing the protocol.

This thesis focuses on the security analysis of protocols with proximity measurements. These
are two-party protocols (verifier and prover), where the parties are able to measure the time that
passes between sending certain messages (challenges) and receiving a message back from the prover
(responses). Such protocols usually include a fast phase, in which several rounds of challenge-
response messages occur. In each round the verifier sends a challenge and receives a response from
the prover. The verifier measures the RTT of each round, starting when the challenge is sent
and ending when the response is received. The intuition behind these measurements is that if
each response is received very fast, then the entity sending it must be very close (thus preventing

2



1.1 Protocols with proximity measurements

relay attacks), and must not have done much computation in between. This follows from the fact
that communication is constrained by the maximum speed at which information can propagate
(speed of light), and so is the computation speed (although in this case we are still very far from
that limit1).

Protocols with proximity measurements can be classified according to the security property
they aim to achieve. Several examples can be found in the literature: distance bounding [33, 75],
authentication [135], key exchange [123], and software-based memory erasure [129]. Distance-
bounding protocols are a special case deserve special attention because their security goal is prox-
imity verification. Hence, their verification mechanisms and proof techniques serve as inspiration
to other protocols with proximity measures that aim at other security properties, such authenti-
cation, memory-erasure, etc. In the next few paragraphs we introduce these families of protocols
in more detail.

Distance-bounding protocols [25, 33] were the first to include RTT measurements in order to
prevent relay attacks. Pioneer work formally verifying these protocols with tool support did not
appear until two decades later [21]. A distance-bounding protocol is executed between a verifier
and a prover. It consists of three phases in this order: initial phase, fast phase and final phase.
Messages are exchanged normally during the initial and the final phase, while the RTT is measured
during the fast phase.

Depending on the relative positions of agents during the execution of the protocol, the attacks
against distance-bounding protocols have been traditionally classified in: distance fraud (when
the prover is malicious far away from the verifier), mafia fraud (when the prover is honest and far
way from the verifier), distance hijacking (like distance fraud but requiring another nearby honest
prover) and terrorist fraud (a far away dishonest prover convinces the verifier it is nearby with the
help of a nearby attacker without revealing its secret keys). There have been numerous distance-
bounding protocols, each improving upon previous work regarding efficiency or security. These
protocols have been analysed in the computational model by computing the probability of success
of an adversary against each type of attack [96], and in the symbolic model with the help of semi-
automated tools [50, 95].

Distance-bounding protocols achieve authentication by using public key infrastructures or pre-
shared secret keys. This is not possible for some applications, such as peer-to-peer communica-
tions between low-powered Internet of Things (IoT) devices. Protocols aimed for this setting,
such as the authentication protocol from [135] or the key-exchange protocol from [123] must
achieve security through other means. In particular, they assume that agents running the pro-
tocol are close to each other, and that no attacker is near them.

A typical example is the protocol from Singelee [123], shown in Figure 1.1. It follows the tradi-
tional Diffie-Hellman protocol for computing a shared secret key. It is well-known that the orig-
inal protocol is vulnerable to man-in-the-middle attackers. To solve this issue, in the DB-Based-
Diffie-Hellman each party executes RTT measurements to verify the partner of communication
is nearby. This, together with the assumption that attackers are far away, rules out the aforemen-
tioned vulnerability.

Protocols which assume attackers are far away are similar to distance-bounding protocols in
the sense that both use RTT measurements to estimate distance, but at the same time different

1https://www.top500.org/lists/top500/2022/11/

3

https://www.top500.org/lists/top500/2022/11/


1 Introduction

V P

noncesN0V , N1V , xV noncesN0P , N1P , xP

H(0, N0V , N1V , g
xV )

H(1, N0P , N1P , g
xP )

N0V

max ∆ N0V ⊕N0P

N1P

max ∆N1V ⊕N1P

gxV

gxP

k = gxP ·xV k = gxV ·xP

Enc(⟨N0V , N1P ⟩, k)

k is secret k is secret

V is communicating with P P is communicating with V

Figure 1.1: The DB-Based-Diffie-Hellman key-exchange protocol

because the security properties sought for are distinct. While in the former the verifier needs to
check if the prover is close-by, these protocols aim to achieve a standard security property under
the assumption that attackers are far away. Therefore, verifying these protocols requires a different
attacker model, and is currently an open problem.

Remote memory-erasure protocols guarantee that devices are malware free, i.e. not controlled
by an adversary. These are two party protocols where the verifier wants to check if the prover has
erased its memory while running the protocol. Being remote makes them suitable for applications
where physical access is hard or not desirable. These protocols are hard to analyse because the
attacker model considers the device being erased to be fully controlled by the adversary. They are
usually classified into hardware based, hybrid or software-based. While the hardware based ones
require secure hardware such as a Trusted Platform Module (TPM), software-based protocols can
be used in any computing device but offer lower security guarantees, and hybrid protocols sit in the
middle mixing techniques of the previous two. The presence of secure hardware greatly simplifies
the analysis as it weakens the adversary’s control over the device. In the case of low-powered and
legacy IoT devices, only software-based protocols are feasible, given that adding secure hardware
would greatly increase their overall cost and is not desirable for already deployed devices. The main
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shortcoming of existing software-based memory-erasure protocols is the isolation requirement:
during the execution of the protocol the device cannot not receive any external help, which implies
it must make every computation locally. This requirement is hard to guarantee in applications
where devices are connected to the Internet, as is usual in the IoT.

1.2 Formal Analysis

Although most protocols are designed with security in mind, many protocols which remained
secure for a long time have been broken afterwards. A famous example is the authentication pro-
tocol proposed by Needham and Schroeder [105]. 20 years later an attack was found by Lowe
[90]. The attack consisted of a clever selection of the order of messages, without breaking any of
the primitives, and was found using computer programs. This was not a new idea, but one which
had not showed its importance until that moment.

In order to prove that a protocol is “secure”, researchers have traditionally used formal methods
[98]. These require mathematically sound (and preferably realistic) models for how the network
works, what actions can an attacker do, who are the entities participating in the protocol and what
property it is supposed to possess. Coming up with these models is no trivial task. After decades
of research, still today, sometimes a protocol is proved secure (correctly) under one model, but
then becomes insecure as soon as the model is extended to account for more realistic behaviours.
Recent examples of protocols that were once proven secure are the WPA2 authentication protocol
in Wi-Fi, which was broken in [134] and the SSH protocol, broken in [1].

As mentioned before, this thesis focuses on the analysis of security protocols with proximity
measurements through RTT. In the field of protocol analysis, researchers usually use either the
symbolic or the computational approach, both of which are supported by mathematical models
of adversarial behaviour, network communication, cryptographic primitives and protocol’s exe-
cution. Here we use both, by selecting the most appropriate approach to solve each problem we
target.

1.2.1 The symbolic approach

In the last several decades, a large amount of researchers has aimed to create provably secure cryp-
tographic primitives. Today, we are quite certain that the primitives we use for encryption, pseu-
dorandom generators, hash functions, signatures, and many others are secure in the sense that in
order to break them any attacker would need to do an unfeasible amount of computation. Still,
having secure primitives might not be enough for achieving security, as the interactions of these
primitives might result in unforeseeable outcomes. The nature of these interactions made prov-
ing their security a highly non-trivial task, which, if properly done by hand, would take too much
time to prove and almost as much time to verify. The complexity of the task was not that much on
its difficulty, but in the length of the proofs itself. Therefore, the natural idea of using computers
to do the hard work came up, thereby creating the symbolic method.

On the highest level of abstraction, in the symbolic model attackers are modelled as algorithms
which are restricted to use messages that can be represented as elements from a term algebra. The
most common attacker model is the Dolev-Yao model, which assumes the attacker is in full con-
trol of the network [55]. For certain applications the Dolev-Yao model is too general and more
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fine-grained models are required. This is, for example, the case for post-compromise security [41],
where the adversary may obtain private key material that was used at some point during the pro-
tocol. In some cases, it is still possible to achieve some level of security in future sessions, or even
fully recover from the leakage.

In the symbolic model security primitives are considered perfectly secure, which implies that
no attack on the primitives itself is possible. Nevertheless, this assumption makes the problem of
finding attacks (and security proofs) on larger and complex protocols more tractable. The exe-
cution of protocols is usually represented by traces of events, where events might be sending or
receiving messages, and security claims. Most well known security properties can be classified as
reachability properties or equivalence properties. While the former include secrecy and authenti-
cation, the latter comprise anonymity and unlinkability. The security of a protocol is determined
by checking properties of the set of all possible traces. For example, in the case of reachability
properties, a protocol is secure if and only if a certain event never appears in the set of traces. The
concepts mentioned before are the main ingredients of the symbolic method [105]. Using this
approach, it is frequently possible to automatize the search for security proofs, which makes it
feasible to analyse larger protocols.

Our first objective in this thesis is to formally model and verify security properties in proto-
cols which include proximity measures. To this end, we formalize a new attacker model, the
distant-attacker model, where attackers are still in full control of the network, but must act from
a distance. The notion of distant-attacker was recently introduced in [129] within the context
of memory-erasure protocols. Their security model, however, is neither amenable for computer-
aided verification nor extendable to other security properties.

There exist various symbolic models to analyse security protocols that depend on time and lo-
cation, although most of them target distance-bounding protocols [21, 95, 99]. Up to our knowl-
edge, no symbolic model with tool support has been proposed to analyse protocols which aim
to achieve standard properties such as secrecy and authentication under the distant-attacker as-
sumption. Our objective is to verify security properties by framing them as reachability properties
under a symbolic model. This leads us to our first research question:

Research question 1. Can we use automated tools to rigorously analyse the security of protocols
which assume the distant-attacker model?

1.2.2 The computational approach

For some protocols such as memory-erasure, security depends on the computational characteris-
tics of the participants, such as their memory size. Therefore, these protocols are more naturally
analysed using the computational approach. Within the formal methods, this is the lowest level
of abstraction, where attackers are modelled as algorithms (which can be represented by Turing
Machines) and the security bounds are probabilistic. The computational approach [72, 73, 137]
has been popular among cryptographers since the 80s. In this approach, proofs are classical math-
ematical proofs with no computer support; the so-called pen-and-paper proofs.

The first protocol for secure memory-erasure based on cryptographic techniques was intro-
duced by Perito and Tsudik [111]. They proposed a protocol based on computing a (time-optimal)
message authentication code (MAC) over randomly chosen data that occupies the memory of the
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device being erased. This protocol uses a high bandwidth to transmit the random data and can-
not prevent the computation to be delegated to an external attacker without isolating the device.
Later works proposed graph-based protocols to reduce the communication through the network
[58, 81]. These protocols, however, still need to assume that the protocol run in an isolated envi-
ronment to prove their security. Hence, our second objective is to drop this assumption.

The main challenge in this setting is to create an erasure algorithm that remains secure even if
the prover receives external help during the protocol execution. To prove this type of assertion, we
need to model the space on the prover explicitly. Therefore, we attack the problem using the com-
putational approach. To this end, we model the attacker as two algorithms: one with unbounded
computational resources, in particular memory, that acts from a distance, e.g. the Internet, and
the other restricted to use the computational resources available in the device being erased, acting
as prover in the same local network as the verifier. This leads us to our second research question:

Research question 2. Can we design software-based remote memory-erasure protocols that
drop the device isolation assumption and yet achieve good security bounds?

The main challenge in proving the security bound in memory-erasure is how to reason about
the compression power of the adversary, i.e. how much the attacker can compress data to leave
space available for malware. A powerful proof technique often used in the literature is to translate
the adversary behaviour into a combinatorial game, called the pebbling game. The security of the
graph based memory-erasure protocols mentioned above depends on these games and their rela-
tion with the computation of labelling functions. Pebbling games are single player combinatorial
games played on graphs, which are at the core of many time-space tradeoff results [57]. During
each step of the game, a pebble is removed from a node (if it contains a pebble) or added to a node
(if the predecessors are already pebbled). The objective of the game is to put pebbles in certain
nodes called outputs. The maximum amount of pebbles in the graph at any point during a game
is its pebbling complexity. A labelling function assigns a label to each node of the graph, which
is equal to the hash of the concatenation of the labels of its predecessors. Several bounds have
been proven [57, 59] that relate the pebbling complexity of a graph and the amount of memory
required by any algorithm computing a labelling function on the same graph. The tightness of
these bounds is essential to create memory-erasure protocols that can erase the full memory of the
device. This leads us to our third research question:

Research question 3. Are there tight time-space bounds translating pebbling complexity results
to computational adversaries?

In this thesis we go beyond security analyses, as we also aim to understand whether software-
based memory-erasure protocols are feasible in practice. Although several protocols for memory-
erasure have been proposed in the literature [79, 81, 111], they have never been implemented nor
compared in the same practical setting. Having such a comparison is essential for practitioners
willing to deploy these protocols, as they usually offer non-trivial trade-offs between speed and
security. This leads us to our fourth research question:

Research question 4. Are software-based remote memory-erasure protocols practical?

Security-memory trade-offs problems, mentioned before for memory-erasure, are also present
in the class of distance-bounding protocols, the most popular class of protocols with proximity

7



1 Introduction

measures. These protocols have also been widely studied using the computational method. Usu-
ally, the analysis is done with respect to particular attacks that depend on the attacker’s location,
such as mafia fraud and distance fraud. As mentioned before, the former is a man-in-the-middle
attack aimed at convincing the verifier that an honest far-away prover is close; the latter is an attack
executed by a corrupt prover to pass the protocol from far-away. For many protocols, researchers
using computational analysis have obtained upper bounds to the probability of success of these
types of attack.

For the class of lookup-based protocols [96], exact probabilistic analysis is possible. These pro-
tocols have in common that during each round of the fast phase the prover makes a simple lookup
operation to compute the response to the challenge. Therefore, it is possible to represent the pro-
tocol using automata theory, where each execution of the protocol corresponds to a path in an
automaton.

The analysis of lookup-based protocols has mainly focused on the two threats mentioned above
[15, 16]. So far, optimal resistance against mafia fraud has only been achieved at the expense of us-
ing a look-up table of exponential size [20]. Furthermore, it was proven in [96] that the optimal
resistance against mafia fraud is 1

2n

(
n
2 + 1

)
, where n is the number of round-trip-time measure-

ments, and in [128] that the optimal resistance against distance fraud is 1
2n . It remains an open

question, however, whether there exists a lookup-based protocol achieving both optimal security
bounds. Our final research question aims to solve this issue:

Research question 5. Is there a distance-bounding protocol that is optimal with respect to mafia
fraud and distance fraud attackers?

1.3 Overview and contributions

We briefly sketch the organization of the thesis, and summarize the contributions made in each
chapter:

1. In Chapter 2 we review previous works in the main three problems studied in this thesis:
protocols with proximity requirements, memory-erasure and distance-bounding.

2. In Chapter 3 we introduce the symbolic approach and the necessary background knowl-
edge. In Chapter 4 we propose abstract models (with and without time) to enable the
formal verification of protocols with proximity measurements that claim security against
distant attackers. Time constraints are abstracted as precedence relations in an ordered trace
in the timeless model, which makes it possible to verify security properties using tools such
as Tamarin. Furthermore, we show the equivalence on the existence of attacks between
both abstract models, with or without time, for a class of reachability properties. We then
prove that this class includes secrecy, authentication, memory-erasure and distance hijack-
ing. Furthermore, we test our model through case studies, obtaining new results for several
protocols. These results answer Research question 1, and are derived from work published
in [67].

3. In the subsequent chapters, we employ a computational approach. We begin by explaining
its basic theoretical results in Chapter 5 such as the random oracle model (ROM), necessary
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to understand posterior chapters. In Chapter 6 we propose a computational model cover-
ing memory-erasure protocols and the distant-attacker assumption. Furthermore, we de-
sign a simple software-based memory-erasure protocol and prove it secure under our model.
This protocol suffers from high communication cost.

4. In Chapter 7 we introduce the theory of pebble games. Furthermore, we revise the original
bound using the ex post facto argument, a known result related to the translation of com-
binatorial bounds into computational bounds. By finding a counter example, we address
Research question 3.

5. The previous results are necessary background for our graph-based memory-erasure pro-
posal from Chapter 8. The aim of this protocol is to reduce the communication complex-
ity while remaining secure. It is based on the theory pebbling games, and the communi-
cation cost during the initial phase of the protocol is constant. Furthermore, we propose
a lightweight version of the protocol, trading security for efficiency, which might be more
practical in some applications. These results address Research question 2, and are based on
the paper [34].

6. In Chapter 9 we implement previous memory-erasure protocols, as well as the new ones
proposed in this thesis, and compared them within the same practical setting. We conduct
experiments using off-the-shelf low powered IoT devices from Texas Instruments. Further-
more, we highlight the security guarantees offered by each protocol, its theoretical efficiency
and its practical performance. We have open-sourced our experimental artefacts and results
in2. These results address Research question 4.

7. In Chapter 10 we investigate the existence of a lookup-based distance-bounding protocol
optimal against mafia fraud and distant fraud attackers. First we prove that optimality
against both kinds of attackers cannot be achieved at the same time. Then we show that
assuming optimality against distance fraud, there exists a conditionally optimal value for
the resistance against mafia fraud. Finally, we design a new protocol and prove it has the re-
quired optimality characteristics. These results address Research question 5 and are derived
from work published in [68].

2https://gitlab.uni.lu/regil/memory-erasure-experiments
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2 Relatedwork

In this chapter we describe previous works related to the main problems in this thesis: protocols
with proximity requirements, memory-erasure and distance-bounding.

2.1 Protocols with proximity requirements

In the last decades several protocols with proximity requirements have been published [123, 135].
They assume agents executing the protocol are nearby while attackers control the network from
a distance. We refer to this as the distant-attacker assumption. To enforce that communication
partners are nearby, the aforementioned protocols utilize round-trip-time measurements to es-
timate distance. Therefore, modelling such protocols requires the notions of time and agent’s
location. In this section we review symbolic models with these characteristics, and discuss their
applicability for the class of protocols with proximity requirements.

There exist various symbolic models to analyse security protocols that depend on time and
location, most of them specifically targeting distance-bounding protocols. The first one [99] was
proposed in 2007. This model allowed for the analysis of distance-bounding protocols while faith-
fully representing time and location, but lacked support for computer-aided verification. Basin et
al. [21] later addressed that limitation, introducing a security model for distance-bounding proto-
cols with tool support. They made explicit the dependence between the arrival time of a message
and the locations of sender and receiver, and the maximum propagation speed of the communi-
cation channel. This allows their model to formulate distance-bounding security as a statement
on whether a round-trip-time measurement is lower than or equal to twice the distance to the
communicating partner divided by the propagation speed. Our model in Chapter 4 is inspired by
these modelling choices. To assist formal verification, Basin et al. encoded their model in the the-
orem proving assistant Isabelle/HOL. Their approach is not fully automated, though, requiring
end-users to define several protocol-dependent lemmas.

The problem of realizing a fully automated verification framework for distance-bounding pro-
tocols was solved independently in 2018 by Mauw et al. [95], Chothia et al. [38], and Debant et
al. [50, 51]. In [49] a procedure to analyse these protocols is presented and integrated in Akiss1.
Our work intersects with all those seminal works in different ways. Like in [95], we frame time-
based protocol requirements as causal relations of protocol events, and show they can be auto-
matically verified inTamarin. To prove equivalence between a time-based model and a causality-
based model, we use proving techniques similar to the one used in [38, 50, 51] to analyse distance-
hijacking resistance. We generalize these approaches under the assumption of a distant attacker
by supporting other security properties, such as secrecy, agreement and memory-erasure.

1http://people.irisa.fr/Alexandre.Debant/akiss-db.html
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Improvements and extensions of the above verification frameworks have followed. For example,
Boureanu et al. [31] introduce a model that supports moving agents and use it to analyse complex
payment protocols. Alturki et al. [2] propose a timed multiset rewriting model with memory
bounding and timeouts features. Their analyses are of theoretical interest, but their model lacks
tool support.

Outside the domain of distance-bounding protocols, there exist time-aware models [43, 78, 125]
that support the verification of standard authentication properties, as we do in Chapter 4. Their
specification language is richer than ours, allowing for statements on timeouts and the ordering
of protocol events based on timestamps. Their network model, however, neither captures the
location of agents nor the propagation time of a message via the network in terms of the dis-
tance between sender and receiver. Instead, they model the network communication delay as a
range within a discrete space, making these models unsuitable to formalize the notion of distant-
attacker.

Lastly, the notion of distant-attacker was introduced in [129], from which we borrow the ter-
minology, within the context of memory-erasure protocols. Their security model, however, is
neither amenable for computer-aided verification nor extendable to other security properties.

Up to our knowledge, no symbolic model with tool support has been proposed to analyse pro-
tocols in which standard properties such as secrecy and authentication can be analysed under the
distant-attacker assumption. We introduce the first such model in this thesis, and use it to verify
key-exchange and memory-erasure protocols.

2.2 Memory-erasure

In this section we review previous work on software-based memory-erasure (PoSE) protocols.
We also review memory attestation protocols, where the verifier aims to check if the contents of
the prover’s memory equal a predetermined value. The techniques used to solve both problems
have multiple similarities, therefore we will review works attempting to solve each problem. In
particular, we review memory-erasure and attestation protocols for resource-constrained devices
that do not use secure hardware. See [87] for a review of protocols that use it. We will see that the
main limitation of current software-based protocols, as highlighted in a recent survey [10], is the
assumption that there is a secure communication channel between verifier and prover, called the
device isolation assumption.
Memory isolation. Several memory attestation/erasure protocols use software-based memory iso-
lation techniques that continuously monitors the programs running on the device. In this class,
SPEED [9] and SIMPLE [8] perform memory-erasure and attestation, respectively. These proto-
cols could, in theory, achieve our security goals. In practice, they might add a significant overhead
to any program running on the platform, as the software memory protection continuously mon-
itors the platform to ensure memory isolation at all times. Since memory-erasure can start from
any state of the device, we do not need to impose constraints on programs running on it. SPEED
uses distance-bounding to ensure that only a nearby verifier can start the memory-erasure proce-
dure. In our memory-erasure protocols from Chapters 6 and 8 we use distance-bounding in the
opposite direction, where the verifier is the challenger aiming to ensure the prover is near.
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Time-optimal routine. SWATT is an attestation protocol [121] based on computing a checksum
function over the memory of the prover within a prescribed amount of time. The idea is that, had
the prover’s memory been compromised, the prover would take noticeably longer to generate the
correct attestation proof. Several attacks on SWATT were shown in [36], the main problem being
that the checksum function and the timing constraints are rather ad hoc. This problem was later
treated in [12], which proposes a formal model of software-based attestation and a generic protocol
similar to SWATT, but, this time with a formal security proof. The problem here is that, if the local
device is not isolated, the attacker could compute the response on a separate device and return it
in time, so that this is not noticed by the verifier. Another problem is that the global running time
of the erasure procedure is too high in order to detect small changes to the memory. The attacker
could use the available time to optimize procedures and recompute the data that is missing. That is
why [12] suggests the idea of a multi-round protocol, requiring shorter computation time in each
round. This is an idea we develop further in Chapter 6 as part of a distance-bounding mechanism.

The first protocol for secure memory-erasure based on cryptographic techniques is introduced
in [111]. The paper proposes a protocol based on computing a hash-based message authentication
code (HMAC) over randomly generated data that fills the memory of the prover, along with an
informal adversarial model and argument of security. This protocol uses a high bandwidth to
transmit the random data and cannot prevent the computation to be delegated to an external
attacker without isolating the device, like in [12, 121].
Distance-bounding techniques. A PoSE protocol that relies on distance-bounding was proposed
in [129]. It uses a cyclic tree automaton that occupies the full prover’s memory. To obtain the
erasure proof, the verifier asks the prover to transition into a new state of the automaton, based
on random input chosen by the verifier, and to transmit the label of the new state. This round of
exchanges is timed by the verifier to bound its distance to the prover. However, we observe that
the fact that the response comes fast in each round is not sufficient to counter pre-computation
attacks or an adaptive attacker. For example, depending on previous challenges, the adversary
can get rid of states in the automaton that are unreachable by future verifier’s challenges. This
attack was overlooked because the protocol was analysed within a symbolic model, rather than a
computational model as we do in Chapters 6 and 8.

As summarized in Table 2.1, there does not exist in the literature a software-based memory-
erasure/attestation protocol whose security can be formally proven without relying on the device
isolation assumption. Section 6.4 and Section 8.2 in this thesis introduce the first two protocols
of this type. We are also not aware of any freely available implementations of these protocols.
Some works include performance results, such as [111] and [79], but they are hard to generalize
to other environments without further experiments. In Chapter 9 we try to solve these issues by
providing open-source implementations for several previous memory-erasure protocols, and also
for the new ones proposed in this thesis.
Formal security definitions. We briefly review existing security definitions related to the memory-
erasure problem to motivate the need for a new definition in the context of the distant-attacker.
The definition of memory attestation in [12] considers an experiment where a computationally
unbounded adversary A produces a computationally bounded prover P which represents the
state of the device to be attested. The protocol is run between a verifier V and P , where V aims
to ensure that P is in a desired state; it is deemed secure if a cheating prover would be caught
with high probability. This model has built-in the device isolation requirement, since the local
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Protocol No Isol. No Hw. Comm.
[121] ✗ ✓ O(1)
[83] ✓ ✗ O(1)
[111] ✗ ✓ O(n)
[109] ✓ ✗ O(1)
[13] ✗ ✓ O(1)
[81] ✗ ✓ O(1)
[79] ✗ ✓ O(n)
6.4 ✓ ✓ O(n) +O(r)
8.2 ✓ ✓ O(1) +O(r)

Table 2.1: Comparison of erasure and attestation protocols in terms of their communication complexity
(Comm) and their capacity to avoid the use of the device isolation assumption (No Isol.) and
specialized hardware (No Hw.). The value of n refers to the memory size and r is a security
parameter that refers to the number of rounds during the fast phase (see Section 6.2).

prover P does not interact withA throughout the protocol. Since we are interested in memory-
erasure and not attestation, in addition to strengthening the attacker model, we may also relax the
requirement on the state of the prover, requiring only that it should utilize enough memory at
some point in the protocol. The definition of secure memory-erasure in [81] makes this relaxation
on the prover state. However, as in [12], the proverP is assumed computationally bounded, which
amounts to the device isolation assumption. In order to lift this assumption, it is not sufficient to
simply make P computationally unbounded, but we need to consider two adversariesA and P
that can communicate throughout the protocol, and makeA’s memory unbounded.

A symbolic Dolev-Yao style model for secure erasure is proposed in [129]. Their main contri-
bution is a formal proof of the necessity of the distant-attacker assumption in some situations
and a construction of a protocol that can be proven secure symbolically. However, their symbolic
model cannot be used to quantify the size of the adversarial state, or the adversary’s probability of
success. Hence, it cannot be used to faithfully analyse existing PoSE protocols, which use infor-
mation theoretical constructions rather than symbolic ones.

Graph based protocols

In a Proof of Space (PoS) protocol, a prover aims to convince a verifier that it has reserved a non-
trivial amount of memory space, making it a popular alternative to proof of work. This is similar
to memory-erasure, but with the caveat that in PoS the prover may have more memory available,
which is clearly undesirable in memory-erasure. It is, nonetheless, useful to understand how PoS
is formalized given its similarity with memory-erasure. A PoS, as defined in [58], has two phases:
one where the verifier interacts with an attacker A0, which is supposed to compute and store a
stateσ0 of a certain size; another one where a second attackerA1 takesσ0 as input and answers the
verifier challenges. The verifier then accepts or rejects the proof based on the responses received
fromA1. Let σ1 be the state of maximal size used byA1. There are two notions of proof of space
security defined in [58, 114], one lower-bounding the size of σ0 and the other lower-bounding the
size ofσ1. The definition in [13] only lower-bounds the size ofσ1. These notions are close to what
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we need, except that they isolateA1 fromA0 in the second phase, which amounts to the device
isolation assumption.

Leaving aside the isolation issue in the security model, a proof of space [13, 58, 114] could in
theory be applied to erase memory, since the stored space is typically a random looking sequence
of data. However, all current constructions are targeted for a different application scenario, where
the prover is a powerful device (e.g. a cloud server) that has more resources at its disposal in order
to prove that it has stored the claimed amount of memory. They requireO(m log(m)) memory
to prove memory storage of sizem. For a proof of erasure, this gap is too high, as it means a large
proportion of the memory is not guaranteed to be erased. Memory-hardness results [7] cannot be
applied in our case for similar reasons.

A recent series of papers use graph pebbling techniques to achieve time-memory trade-offs in
proofs of secure erasure [60, 81]. The first offers a relatively simple proof of security but has a
quadratic runtime, while the second one is only able to provably erase 1

32 of the prover’s memory.
We should mention, in addition, that [81] also proposes an erasure protocol that is not based on
graphs, but on hard-to-invert hash functions. In addition to assuming device isolation, the secu-
rity of this protocol is proved assuming that, in the memory challenge phase, the adversary cannot
query a hash function. We are not aware how this could be enforced in practice.

2.3 Distance-bounding

The earliest distance-bounding protocol was proposed by Brands and Chaum [33]. This protocol
achieves optimal security against mafia fraud and distance fraud by cryptographically signing the
protocol transcripts after the time-measurement phase. Yet, it is vulnerable to a distance-hijacking
attack [45]. With the years it has been improved [15], extending its security goals to the resistance
of terrorist fraud [24]. One such improvement is the Swiss-knife protocol [85], whose main fea-
tures are reaching optimal security against mafia fraud and resisting terrorist fraud to some extent.
Terrorist fraud is an exotic type of fraud whereby a dishonest prover helps an adversary to defeat
a distance-bounding protocol without allowing the adversary to impersonate him in future ses-
sions of the protocol. The Swiss-knife protocol, while computationally more costly, does not offer
better resistance to distance fraud than previous works.

In 2005, Hancke and Kuhn [76] pointed out that using cryptographic signatures, or other
expensive primitives, may cause many false failures of the protocol in noisy environments. Fur-
thermore, it could hinder the deployment of distance-bounding on resource-constrained devices,
such as RFID tags. They advocated for simplicity and computational efficiency when designing
distance-bounding protocols and proposed the well-known Hancke and Kuhn’s protocol. No-
tably, the use of lookup operations during the time-measurement phase improves the precision
of the distance estimation and prevents attacks in which the adversary overclocks the prover. Fol-
lowing [96], we refer to protocols adhering to the design principles outlined by Hancke and Kuhn
as lookup-based protocols, which are the focus of Chapter 10. For a comprehensive overview of
terrorist fraud and other classes of distance-bounding protocols, we refer the interested reader to
[15].

Despite the performance virtues of lookup-based protocols, they have struggled to offer strong
security against mafia and distance fraud attacks. This is a major drawback, as several scenarios
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exist where those attacks are of practical significance. For example, Kfir and Wool documented
how relay attacks can be executed with NFC devices [82], which was later put into practice in
[65]. The abuse of proximity claims through radio channels was first shown by Hancke [75], and
later successfully implemented to attack the remote keyless entry system of ten car models from
eight different manufacturers [64].

The first lookup-based protocol whose security against mafia fraud is close to the optimum
value 1

2n , where n is the number of rounds during the fast phase, was introduced by Avoine and
Tchamkerten in [20]. The protocol starts with an exchange of nonces between the prover and
the verifier. The nonces and a shared secret key are used to secretly agree on the labels of a binary
tree of depth n (see Figure 2.1). The labels of such binary tree are encoded within a sequence
T1T2 · · ·T2n+1−1 of size 2n+1 − 1, where T1 is the label of the root node and, for every i ∈
{1, . . . , 2n− 1}, Ti’s left and right children have labels T2i and T2i+1, respectively. To bound its
distance to the prover, the verifier executes n time measurements by sending n binary challenges.
Starting from the root node, each binary challenge determines the child node whose label (also
binary) is sent as reply to the challenge. The challenge-response game continues recursively until a
leaf node is reached. The verifier authenticates the prover if all the responses are correct and arrive
on time.

Avoine and Tchamkerten’s protocol has a major drawback, though. The size of the tree grows
exponentially with the number of RTT measurements. Note that it requires an encoding of size
2n+1 − 2, while Hancke and Kuhn’s protocol merely needs a sequence of length 2 · n. This
problem has been treated by subsequent works, notably by [130] and [96], which resorted into
different graph structures, rather than trees, to store the outcome of the precomputation phase.
Avoine and Tchamkerten themselves offer a trade-off where a linear number trees of depth d < n
are used at the cost of downgraded security. Kim and Avoine proposed a different trade-off [84],
one which degrades security against distance fraud to improve resistance to mafia fraud. Lastly,
the SKI protocol [32] traded resistance to mafia fraud in exchange for some resistance to terrorist
fraud. We observe that, while these works managed to find interesting trade-offs between memory
size and security, none has solved the problem of finding a lightweight distance-bounding protocol
with resistance to mafia fraud and distance fraud equal or close to their optimal values. That is
the goal of chapter Chapter 10. We show in Table 2.2 a quick comparison between lookup-based
protocols. The first entry for our protocol is marked with an asterisk (*) because its mafia-fraud
resistance is optimal, conditional to the optimality of resistance against distance fraud, as will be
shown in Sections 10.3 and 10.4.

Mafia Fraud Distance Fraud Space

HK [76] no no linear
Tree Based [20] yes no exponential
Poulidor [130] no no linear
Modular [96] no no linear
Our protocol yes* yes linear

Table 2.2: Comparison of lookup-based protocols with respect to Mafia Fraud resistance optimality, Dis-
tance Fraud resistance optimality, and space requirements
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V

shared k
P

shared k

nonceNV nonceNP
NV

NP

T2 · · ·T2n+1−1 := PRF(k,NV , NP )T2 · · ·T2n+1−1 := PRF(k,NV , NP )

random c ∈ {0, 1}n j := 1

ci

j = 2j + ci∆i
Tj

Fast phase for i = 1 to n

verify ∀i : ∆i≤∆max

verify correctness of responses

Figure 2.1: The tree-based protocol by Avoine and Tchamkerten. The tree is encoded in the binary sequence
T2 · · ·T2n+1−1.

We conclude by remarking that many security models have been proposed to analyse distance-
bounding protocols, such as [32] and [52]. Notably, in [32], Boureanu and Vaudenay study the
impossibility of resisting to all types of fraud efficiently. We are interested in a different ques-
tion, though. Rather than merely resisting an attack, we are interested in optimally resisting an
attack. For that, we need a dedicated security model particularly tailored to lookup-based proto-
cols, which we introduce in Chapter 10.
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Symbolic models are abstract models that make it easier to build automatic verification tools for
the analysis of security protocols [28]. These models idealize the components of the protocol
being verified, such as the network, the algorithms executed by the attackers and the protocol
participants, and the messages sent. These abstractions have proven successful in practice, as have
been shown by attacks found on several popular protocols in the literature. Nowadays, symbolic
verification is part of the process of designing new protocols, as it is considered a necessary step in
order to achieve strong security guarantees.

In symbolic models, messages are usually modelled as terms from a term algebra. This entails
the assumption that cryptographic primitives are perfectly secure, and is one of the main aspects
in which these models differ from computational models. By removing the possibility of weak
primitives, symbolic models can focus on the interaction between agents executing the protocol.
This assumption has proved to be of huge practical importance, because it enabled the automatic
formal verification of security protocols.

Several tools have been created to automatically analyse security protocols. The most popu-
lar among them, and in chronological order, are FDR [91], Proverif [27], AVISPA [11], Scyther
[47], Tamarin [100]. As it happens in many other research fields most tools are short-lived in
the sense that they stop being used. Although the reasons vary, in most cases researchers lack
the time to maintain the software, or new results/tools appear which make the older ones obso-
lete. In this sense, from the list mentioned above only two remain highly popular today: Proverif
and Tamarin. The first one is already more than two decades old, but has been greatly improved
throughout the years. It supports the modelling of protocols using a variant of the applied pi-
calculus, and translates the problem of proving security properties to Boolean satisfiability prob-
lem (SAT) which then is solved by using custom solutions for the problem. This is a great feature
as it allows to eventually improve the performance of the tool by incorporating advances from
general SAT solvers. The Tamarin tool has been the result of the collaboration between several
groups of researchers during the last ten years. One characteristic that has made Tamarin special
is its ability to interactively “guide” the proof. This is needed for the more complicated protocols,
and does not affect its fully automated capabilities. Protocols are modelled using a term rewriting
formalism, which makes the tool very flexible, although it might feel unnatural for newcomers.
It supports several equational theories such as Diffie-Hellman, symmetric and asymmetric signa-
tures, hashing, XOR, and very recently, natural numbers.

A symbolic security model

In this section we present a simple symbolic model based on [45]. We will use this model to show-
case the components of standard symbolic model and use it to analyse the famous Needham-
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Schroeder protocol and the attack found by Lowe in [90]. The original model includes the main
concepts in modern symbolic analysis of protocols and was used as the base for the tool Scyther.
Furthermore, it served as inspiration for our model in Chapter 4. Therefore, our aim here is to
offer a gentle introduction to readers unfamiliar with the topic.

3.1 Security protocol model

Security protocols models encompass several components: message model, protocol specification,
agent model, communication model, attacker model, protocol execution and security require-
ments. Next we explain each of these components.

The message model determines which messages can be sent or received during the protocol.
Each message is represented by an element of a recursively defined set. Given a set of primitive
messages (constants and fresh values), and a finite set of functions, the set of all possible messages
is determined the composition of the functions and the primitive messages. Constants include
agent names and other publicly known values, while fresh values represent privately generated
random values. Two messages might be equal even if they are not syntactically the same. For
example if Enc,Dec is a pair of encryption and decryption functions, then for every key k and
message m we have Dec(Enc(m, k), k) = m. These “equational properties” allow expressing
algebraic properties of many functions used in common cryptographic protocols.

The protocol specification describes how each agent executing the protocol should behave,
by defining a finite number of roles the agents execute. Roles are defined through a specification
language, which describes which actions are taken by each role in the protocol by a sequence of
events, such as sending or receiving a message, or making a security claim. The protocol specifi-
cation also includes the initial knowledge of each agent, and the declaration of functions, global
constants, variables, and fresh values.

The agent model describes what agents can do while executing the roles of the protocol. Under
the closed world assumption, honest agents strictly follow the behaviour described in the protocol
specification. Nevertheless, an agent may execute any number of sessions of the protocol in par-
allel, acting as potentially different roles. In every session, the agent executes the events described
in a role sequentially.

The communication model and the attacker model are defined by the well-known Dolev-Yao
model [55]. The attacker has complete control over the network, where messages are exchanged
asynchronously. Messages can be intercepted, modified or constructed by the adversary. These
actions are invisible to the agents executing the protocol. When an agent executes a receive event,
exactly one message from the network is selected and received by the agent. Similarly, when an
agent executes a send event, the associated message becomes accessible in the network, and can be
received any number of times by other agents (or attackers).

The execution of a protocol is defined by traces of events. Each event must have been executed
by an agent following a specific role. A trace implicitly creates a total order of events, and provides
a global view of a given protocol execution.

The security requirements of a protocol state the purpose of a security protocol. For sim-
plicity, here we consider to reachability properties such as authentication and secrecy. These type
of properties can be verified by checking that no trace of the protocol can “reach” (i.e. contain)
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certain events. More formally, reachability properties can be defined by predicates on the traces
of the protocol. A protocol satisfies a security property if the corresponding predicate is valid for
every trace of the protocol.

3.2 Needham-Schroeder protocol

We will use the well known Needham-Schroeder protocol to illustrate the components of the
symbolic model more formally. Two parties participate in this protocol: the initiator and the re-
sponder. The objective of the protocol is to achieve mutual authentication. The message sequence
chart (MSC) of the protocol is shown in Figure 3.1.

i

sk(i), pk(i), pk(r)
r

sk(r), pk(r), pk(i)

fresh ni
aenc(⟨i, ni⟩, pk(r))

fresh nr
aenc(⟨ni, nr⟩, pk(i))

aenc(nr, pk(r))

i is communicating with r r is communicating with i

Figure 3.1: Needham-Schroeder public-key authentication protocol

For this example, we consider agent names and fresh values as our set of primitive messages.
Recall that agent names are constants that are globally known, and fresh values are initially se-
cret from everyone except the agent that instantiated them. The set of functions includes aenc
(asymmetric encryption), ⟨, ⟩ (pair), pk (public key) and sk (secret key). Valid terms are:

• Agent names: A,B

• Fresh values, which include nonces and keys: ni, nr, k

• Public keys: pk(A), pk(B)

• Secret keys: sk(A), sk(B)

• Messages: ⟨A,B⟩, aenc(A, pk(B))

As mentioned before, the protocol specification defines each role as a sequence of events. The
roles for the Needham-Schroeder protocol follow:
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PNS = {initiator =sendi(aenc(⟨i, ni⟩, pk(r))) · recvi(aenc(⟨ni, nr⟩, pk(i)))·
sendi(aenc(nr, pk(r))) · claimi(auth, r, aenc(⟨ni, nr⟩, pk(i))),

responder =recvr(aenc(⟨i, ni⟩, pk(r))) · sendr(aenc(⟨ni, nr⟩, pk(i)))·
recvr(aenc(nr, pk(r))) · claimr(auth, i, aenc(nr, pk(r)))}

There are three types of events, send(), recv() and claim(). The first two events state which
agent made the event in the subindex, and which message (represented by a term) was sent or
received. The claim events state which agent made the claim, the type of claim (in this case au-
thentication), and a term related to the validity of the claim. In this protocol, the claim event
claimr(auth, i, aenc(nr, pk(r))) states that the responder r thinks it has run the protocol with
the initiator i. The claim is correct if and only if i sent the message aenc(nr, pk(r)).

3.3 Attack by Lowe

A E B

fresh ni

aenc(⟨A,ni⟩, pk(E))

aenc(⟨A,ni⟩, pk(B))

fresh nr

aenc(⟨ni, nr⟩, pk(A))aenc(⟨ni, nr⟩, pk(A))

aenc(nr, pk(E))

aenc(nr, pk(B))

B is communicating withA

Figure 3.2: An attack on the Needham-Schroeder public-key authentication protocol

Several years after the Needham-Schroeder protocol was published, an attack was found by
Lowe [90]. The adversarial model included the possibility of an attacker executing the role of
initiator, which was not part of the original model. The attack is shown in Figure 3.2 and formally
represented by the following trace:
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sendA(aenc(⟨A,ni⟩, pk(E))) · recvB(aenc(⟨A,ni⟩, pk(B)))·
sendB(aenc(⟨ni, nr⟩, pk(A))) · recvA(aenc(⟨ni, nr⟩, pk(A)))·
sendA(aenc(nr, pk(E))) · recvr(aenc(nr, pk(B)))·
claimB(auth, A, aenc(nr, pk(B)))

In the same article, Lowe proposed a fix, shown in Figure 3.3. Notice that it was as simple as
including the identity of the responder as part of the second message.

i

sk(i), pk(i), pk(r)
r

pk(r), pk(r), pk(i)

fresh ni
aenc(⟨i, ni⟩, pk(r))

fresh nr
aenc(⟨⟨ni, nr⟩, r⟩, pk(i))

aenc(nr, pk(r))

i is communicating with r r is communicating with i

Figure 3.3: Needham-Schroeder-Lowe public-key authentication protocol

While showing the existence of an attack is equivalent to finding a single trace that invalidates
the security property, proving protocols secure requires demonstrating that no such trace exists.
This entails overcoming several sources of infinity: the size of messages and the number of pro-
tocol sessions. Even if these two quantities are bounded by constants, the problem of proving
protocols secure with respect to simple security properties such as secrecy is known to be unde-
cidable [102]. Therefore, tools such as Tamarin try to prove protocols secure by using heuristics
that aim to cover most “interesting” and practical protocols.
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4 Analysing protocols under the
distant-attacker assumption

Various modern protocols tailored to emerging wireless networks, such as body area networks,
rely on the proximity and honesty of devices within the network to achieve their security goals.
However, there does not exist a security framework that supports the formal analysis of such pro-
tocols, leaving the door open to unexpected flaws. In this chapter we introduce such a security
framework, show how it can be implemented in the protocol verification tool Tamarin1, and use
it to find previously unknown vulnerabilities on two recent key-exchange protocols.

4.1 Introduction

In the past few years, we have seen the emergence of a new class of security protocols that have
as a common feature that their security goals are only guaranteed under the assumption that the
adversary is not in the proximity of the proper communication partners. Examples of such proto-
cols are key-exchange protocols for Body Area Networks [117], pairing protocols of smart devices
[123, 135, 139], or protocols for memory-erasure and memory attestation [9, 111].

Assuming that attackers are far or distant, called the distant-attacker assumption, can be moti-
vated in various ways. A local attacker can, for instance, be excluded due to physical protection
or human observation of the environment. Alternatively, attacks by local agents may be consid-
ered infeasible due to the use of out-of-band channels that open to nearby devices only, such as
short-range or low-powered communication. A traceability attack, which occurs when a user can
be traced based on the transcripts of the communication protocol, that requires the attacker to
be close to the victim is arguably ineffective, as the victim is already being physically monitored.
Lastly, memory erasure and attestation protocols have proven unable to resist a standard man-in-
the-middle attacker [129], such as the Dolev-Yao attacker. The state-of-the-practice for this type
of protocol is to isolate the prover and verifier by radio jamming or hardware manipulation.

Most of the protocols that depend on the distant-attacker assumption have not been formally
verified yet and may thus suffer from unexpected vulnerabilities. This lack of verification effort
can mainly be explained by the use of informal, physical or out-of-band techniques that are hard
to formalize in a symbolic security model. Hence, there is a need for a security model that makes
explicit what a distant-attacker can and cannot do, and that is amenable to formal verification.

Because the distant-attacker assumption states that the distance between the adversary and the
proper communication partners is (much) larger than the mutual distance between the commu-
nication partners, this notion appears to have a strong link to the notion of distance-bounding

1https://tamarin-prover.github.io/
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4 Analysing protocols under the distant-attacker assumption

protocols. However, while the goal of distance-bounding protocols is to ensure that the commu-
nication partners are close, protocols from the above-mentioned class aim to ensure some classical
security property, like secrecy or authentication, under the assumption of proximity of the com-
munication partners. Such focus on distance-bounding is reflected on the verification frameworks
[21, 31, 38, 50, 51, 95] developed for the verification of distance-bounding protocols, which ignore
classical security properties.

P V

nonce k, np nonce nv, kvp⟨pk(k), sign(P, k)⟩

nv

max ∆nv ⊕ np

aenc(kvp, pk(k))

senc(⟨np, P ⟩, kvp)

kvp is secret

Figure 4.1: An insecure pairing protocolPex: a running example

Based on our study of the literature, the most common security argument used to analyse this
type of protocol is to assume that some messages are unavailable to the attackers, because they are
far. Case in point, using the example protocol shown in Figure 4.1: if the messages used to measure
RTT can only be received by honest and nearby agents, then the last message senc(⟨np, P, ⟩, kvp)
should have been generated by an honest agent, supposedly P . By using this security argument
one may conclude that this protocol is secure. Yet it is not. The protocol suffers from an attack
known as distance fraud in the distance-bounding literature [15], because it relies on the ability of
an attacker to inject messages from far away.

The attack works as follows. The attacker E executes the protocol with V by sending their
own public key. E does not wait for the second message. Instead, E sends a random value m
soon enough to be received by V right after V sends nv . The same antenna that E uses to in-
ject messages is used to eventually receive the verifier’s challenge nv . This allows E to compute
np = nv ⊕ m and correctly finish the protocol with V . There is another attack on this pro-
tocol, that does not require the attacker to interfere with the RTT measurement. It consists in
hijacking a session between an honest prover P and V similarly to distance-hijacking attacks on
distance-bounding protocols [46]. Without providing further details on the second attack, we
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argue that the intuitive use of a secure or protected channel between nearby devices to formally
model the physical assumptions underlying the protocol, risks missing attacks. Hence, such a
modelling could lead to the conclusion that the protocol is safe, while it is not. Consequently,
there is a need for a verification methodology that augments standard symbolic security protocol
verification with a distant-attacker model and incorporates techniques used for the verification of
protocols with physical properties, such as distance-bounding protocols [95]. This chapter intro-
duces such a methodology.

Our methodology starts from the time-based security model which allows for the analysis of
standard security properties described in Section 4.2. Next, we add the distant-attacker assump-
tion and round-trip-time restrictions (Section 4.3). In order to prepare for efficient verification
with an analysis tool like Tamarin [100], this time-based model is then reduced to a causality-based
model (Section 4.4). The input to our methodology consists of the formalized description of a se-
curity protocol, in which we modelled the distant-attacker assumption as a time-bound challenge-
response loop in the protocol. Using this approach, we formally verified seven protocols for which
we found a number of novel attacks (Section 4.5).

4.2 A security model for timed security properties

This section introduces a security model for protocols with RTT restrictions. Like previous mod-
els for distance-bounding protocols [21, 49], our model uses a timed communication channel
where protocol participants are provided with a spatial location, and the arrival time of messages
is consistent with the propagation speed of the communication channel and the distance between
sender and receiver. Our model, however, is used to analyse general properties of security proto-
cols. Hence, we provide the model with a simple protocol specification language (à la Cremers
and Mauw [45]) and operational semantics that allows us to prove general properties of proto-
cols with RTT measurements in relation to their security goals. We note that although security
models including a notion of time do exist, they are either too expressive (e.g. [21]), making it a
laborious task to prove general properties of protocols, or too specific (e.g. [95]) and constrained
to the analysis of distance-bounding protocols.

4.2.1 Messages

A security protocol defines the way various protocol participants, called agents, exchange crypto-
graphic messages. To model them, we use an order-sorted term algebra (S,≤, TΣ(V, C)) where
Σ is a signature, V a set of variables, C a set of constants, and (S,≤) a partially ordered set (poset)
of sorts [71]. We will often use TΣ(V, C) to refer to our sorted term algebra when the sorts are
clear from context. All terms have a sort. In particular, the sorts agent and nonce are reserved for
agent names and nonces. We also define the sort msg (short for message) to be the supersort or
the greatest element of the poset S , i.e. s ≤ msg for all s ∈ S. We use t : s to denote that term t
is of sort s.

Let Agent = {a ∈ C | a : agent} be the set of agent names and Nonce = {n ∈ C |
n : nonce} be the set of nonces. Given an agent a, we use Noncea to denote the set of nonces
that agent a can produce. We restrict agents to produce unique nonces, hence we require ∀a, b ∈
Agent : a ̸= b =⇒ Noncea ∩ Nonceb = ∅. The set Agent is partitioned into Honest (honest
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agents) and Dishonest (dishonest agents). Finally, we assume that the signature Σ contains the
following function symbols:

• pair(m,m′) denoting the pairing of two terms m and m′. We will often use ⟨m,m′⟩ as
shorthand notation, and write ⟨m1, . . . ,mn⟩ instead of ⟨m1, ⟨m2, . . . ,mn⟩⟩. The func-
tions fst and snd allow us to recover the first and second element of a pair, respectively.

• xor(m,m′), often written as m ⊕ m′, denoting the exclusive or of the terms m and m′.
The constant zero represents the null element with respect to xor.

• k(a, b) denoting the long-term symmetric key shared by agents a and b.

• sk(a) denoting the long-term secret key of an agent a.

• pk(m) denoting the public key associated to a termm. If it does not lead to confusion, we
shall write pk(a) to denote pk(sk(a)) when a ∈ Agent.

• aenc(m1, pk(k)) and adec(m2, k) denoting, respectively, the asymmetric encryption of
m1 with the public key pk(k), and the asymmetric decryption ofm2 with the secret key k.

• senc(m1, k1) and sdec(m2, k2) denoting, respectively, the symmetric encryption of m1
with the key k1, and the symmetric decryption ofm2 with the key k2.

• sign(m, k′) denoting the signature of m with the secret key k′. The function verify and
the constant true are used to verify whether a signature is correct.

• h(m) denoting the hash of the termm.

• x · y and xy denote, respectively, the multiplication and exponentiation of x and y, in a
Diffie-Hellman group. The function inv and the constant 1 denote, respectively, the inverse
function with respect to multiplication and the unit element.

We assume that the sort of all composed terms is the super sort msg.
The semantics of the function symbols above is formalized by an equational theory E that

models perfect cryptography, such as the one supported by Tamarin and ProVerif. We use the
symbol =E to denote equality of two terms moduloE.

Terms with variables will be used in our model to specify the behaviour of protocol participants
(roles), in such a way that their behaviour can be instantiated multiple times by means of variable
substitution. Formally, let vars : TΣ(V, C) → P(V), where P(.) denotes the power set, be an
auxiliary function that, given a term t, gives all variables occurring in t. A term t ∈ TΣ(V, C) is
called ground if and only if vars(t) = ∅. We use TΣ(C) to denote the set of ground terms over
the term algebra. A substitution is a functionσ : V → TΣ(V, C) from variables to terms such that
σ(v) ̸= v for finitely many variables. An instantiation of a term t via a substitution σ, denoted
tσ, is inductively defined by

tσ =


t if t ∈ C
σ(t) if t ∈ V
f(σ(t1), . . . , σ(tn)) if t = f(t1, . . . , tn)
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We say that a substitution σ is type-preserving if for every variable v ∈ V it holds that v : s ∧
σ(v) : s′ =⇒ s′ ≤ s. This means, for example, that a variable of type msg can be substituted by
a term of type nonce, but not the other way around. In our model, we consider type-preserving
substitutions only, and use Γ to denote the universe of such substitutions.

4.2.2 Protocol specification

We partition a protocol into roles. A role is composed of events it uses to communicate with other
roles, security claims, time measurements, etc. An event is a term of the form Ea(t), where E is
a symbol from an unsorted signature E , and t and a are terms in TΣ(V, C) with a : agent. The
application of a substitution σ to an eventEa(t), denotedEa(t)σ, results in the eventEaσ(tσ).
The set of all events is denoted Ev and the set Evg ⊆ Ev denotes the set of ground events, which are
events with only ground terms as arguments. The function actor(·), defined by actor(Ea(t)) =
a, provides the actor executing an event.

We reserve the event symbols send, recv, claim, clock, and equal. The events senda(m)
and recva(m) denote the sending and reception, respectively, of a message m. For the remain-
ing reserved events we impose the following syntactical restrictions: clock events have the form
clocka(i, j), where i and j are integers representing the start and end of a timer. This timer starts
with the execution of the ith event of the role, and stops at the execution of its jth event. Claim
events have the form claima(ψ, t), where ψ is a constant denoting a security property name and
t is an argument of the property, such as an agent’s name or a nonce; equality events have the form
equala(⟨m1,m2⟩) denoting the expectation that m1 =E m2. The impact of these event types
in the behaviour of a protocol will be made precise soon.

As in [45], we consider a role specificationR to be a sequence of events r1 · · · rn establishing a
total order on the execution of the role events. We require every role specification with sequence
of events r1 · · · rn to satisfy that actor(r1) = · · · = actor(rn), i.e. events within a role specifi-
cation are executed by the same agent. We also require ri = clocka(x, y) =⇒ x ≤ y < i for
every i ∈ {1, . . . , n}; i.e. a time measurement is built upon preceding events only, and the event
at which the clock stops does not precede the event at which the clock starts.

A role is a mapping from role names, such as server and client, to role specifications. We use
R = r1 · · · rn to denote the role with nameR and specification r1 · · · rn, and we use R to denote
the universe of roles.

Definition 1 (Protocol specification). A protocol P consists of a set of roles, such that no two
roles share the same role name, built over an order-sorted term algebra (S,≤, TΣ(V, C)).

At the semantic level, we will treat all variables within a role as local variables. This ensures
that agents can only communicate by messaging each other. Given a role R = r1 · · · rn, we use
rolevars(R) to obtain all role variables inR, which is defined as follows.

rolevars(R) = {v ∈ V | ∃i ∈ {1, . . . , n} : ri = senda(m) ∧
v ∈vars(m) ∧ ∀j ∈ {1, . . . , i− 1} : v ̸∈ vars(rj)}

As naming convention for variables, we will use upper case letters when a variable is intended
to be instantiated within a receive event, such asK andNp in the example below, lower case letters
otherwise, such as nv and kvp.
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4 Analysing protocols under the distant-attacker assumption

Example 1. To illustrate our security model, we formalize a simple protocol with proximity re-
quirements. The pairing protocol from the previous section (Figure 4.1), inspired by Move2Auth
[139], is an example of the type of protocols we are referring to: it aims at secure key exchange, relies
on the distant-attacker assumption, and uses the physical properties of the communication chan-
nel to check proximity. The goal is for an agentV to create a shared key kvp with another agentP .
V does not have any previous cryptographic secret shared withP , but it is confident that all agents
in its vicinity are honest. The prover first generates a public/private key pair, denoted pk(k) andk,
respectively. The public key, together with the signature of the prover’s identity P with k, is sent
to V . Upon reception, V generates a fresh symmetric key kvp, executes a round-trip-time (RTT)
measurement with P , and sends kvp encrypted with pk(k). The RTT measurement, illustrated
by dashed arrows, is based on the messagesnv andnv⊕np. OnceP decrypts senc(kvp, pk(k)), it
confirms reception of the key by encrypting the nonce np and its own identityP with kvp. If the
RTT is lower than a time threshold ∆, and ⟨np, P ⟩ is correctly encrypted with kvp, then V con-
cludes that P is nearby and, therefore, honest (based on the distant-attacker assumption). This
allows V to claim that kvp is secret, i.e. unknown to attackers.

The specification within our security model of the prover and verifier roles, denotedP and V ,
respectively, is given below. It assumes that nv , np, kvp, and k are variables of type nonce, while
the variables V and P are of type agent. All the other variables, namely Nv , Np, Kvp, S, PK ,
are of type msg.

Pex = {
V = recvV(⟨PK,S⟩) · sendV(nv) · recvV(nv ⊕Np)·

clockV(2, 3) · sendV(senc(kvp, PK)) · recvV(senc(⟨Np, P ⟩, kvp))·
equalV(⟨verify(S, P, PK), true⟩) · claimV(sec, ⟨P, kvp⟩),

P = sendP(⟨pk(k), sign(P, k)⟩) · recvP(Nv), sendP(Nv ⊕ np)·
recvP(senc(Kvp, pk(k))) · sendP(senc(⟨np, P ⟩,Kvp))
}

The ∆ symbol labelling a dashed arrow that connects the 2nd and 3rd protocol message in
Figure 4.1 represents the round-trip-time measurement of the verifier, and is translated into the
event clockV(2, 3) in the role specification.

4.2.3 Role instantiation.

Protocols are executed by instantiating their roles. Syntactically, the instantiation of a role results
in a sequence of ground events that respect the order of the events established by the role specifi-
cation. Given a roleR = r1 · · · rn, we define all its instantiations, denoted insts(R), as follows.

insts(R) = {e1 · · · ei ∈ Evg
∗ | i ≤ n ∧ ∃σ ∈ Γ: e1 = r1σ, . . . , ei = riσ}

Note that the empty sequence of events ϵ is a valid instantiation of all role specifications.
In the operational semantics provided further below, we restrict role variables of type nonce

to be assigned a fresh value, i.e. a term that has not been used in other role instantiations during
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a ⊢s m m =E m′

a ⊢s m′
I0

m ∈ Agent ∪ Noncea

a ⊢s m
I1

b ∈ Agent
a ⊢s ⟨k(a, b), k(b, a), sk(a), pk(sk(b))⟩ I2

a ⊢s m1 . . . a ⊢s mn f ∈ Σ \ {sk, k}
a ⊢s f(m1, . . . ,mn) I3

(t, recva(m)) ∈ s
a ⊢s m

I4

Figure 4.2: Inference rules

the protocol execution. Therefore, we introduce an auxiliary function to extract the set of nonces
used in an instantiation, for every e1 · · · ei ∈ insts(R),

nonces(e1 · · · ei, R) = {t ∈ Nonce | ∃v ∈ rolevars(R), σ ∈ Γ:
σ(v) = t ∧ v : nonce ∧ e1 = r1σ, . . . , ei = riσ}

4.2.4 Inference

Before establishing how agents exchange messages, we need to define how agents obtain and create
knowledge. We model this by means of an inference relation ⊢ ⊆ Agent × P(Ev) ×Msg. We
use the shorthand notation a ⊢s m to denote (a, s,m) ∈⊢, indicating that agent a can infer
messagem from a set of events s. The relation ⊢ is defined as the least set that is closed under the
inference rules in Figure 4.2. These rules express the following:

(I0) if an agent a can infer a term m, then a can infer all terms within the equivalence class of
m defined by =E

(I1) an agent a can infer agent names and its own set of nonces

(I2) agents can infer their shared secret keys with other agents, long term public keys of any
agent and its own long term secret key

(I3) all function symbols in Σ, except the reserved symbols for secret keys k and sk, can be used
to infer arbitrary terms constructed over already inferable terms

(I4) a receive event recva(m) allows agent a to inferm

4.2.5 Protocol semantics

We model the execution of a protocol P as a Labelled Transition System (LTS) (Q,Λ,→, s0),
whereQ is a set of states, Λ is a set of labels used to annotate the transition of the system from one
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state to another,→ : Q × Λ ×Q is a transition relation, and s0 ∈ Q is the initial state. We will
often use s ℓ−→ s′ as a shorthand notation for (s, ℓ, s′) ∈→.
States. A state in the system is composed of a set of runs, where a run is an instantiation of a role by
an agent. A run contains a possibly partial execution of a role and a run identifier. The latter allows
agents to play multiple roles in parallel. A run also includes the time-stamps at which the events
are executed. This allows us to reason about time properties, such as consistency between the
time-of-flight of a transmitted message with respect to the speed of the communication channel
and the location of sender and receiver.

Definition 2 (Run). Let Id be a countably infinite set of run identifiers. A run is any tuple
(id, (t1, e1) · · · (tn, en), R, a) ∈ Id × (R+ × Evg)∗ × R × Agent satisfying that e1 · · · en ∈
insts(R) is an instantiation of the roleR, a is the actor executing the events e1, . . . , en, i.e. a =
actor(e1) = · · · = actor(en), and t1 ≤ t2 ≤ · · · ≤ tn.

A run is an execution of a role by an actor, containing instantiations of events in the order
imposed by the role specification, and timestamps indicating the time at which each event was
instantiated. The order of the timestamps ≤ is consistent with the order of the events in the
instantiated role. An empty run contains no events.

A state in our LTS is a set of runs. The initial state s0 is the empty set. Given a state s, the func-
tions labels(s) and nonces(s) return, respectively, all timed events and fresh values occurring in
s.

labels(s) ={(t, e) | ∃(id, (t1, e1) · · · (tn, en), R, a) ∈ s :
(t, e) = (ti, ei) for i ∈ {1, . . . , n}}

nonces(s) =
⋃

(id,(t1,e1)···(tn,en),R,a)∈s

nonces(e1 · · · en, R)

Given a state s, a roleR, and a substitution σ mapping the roleR to its instantiation e1 · · · en,
we use e1 · · · en ∈s insts(R) to denote that the instantiation e1 · · · en ofR satisfies:

1. nonces(e1 · · · ei, R) ∩ nonces(s) = ∅

2. for every x, y ∈ rolevars(R) of type nonce, x ̸= y implies σ(x) ̸= σ(y)

That is, no instantiation in s exists sharing fresh values with the instantiation e1 · · · en of R,
and the role variables are instantiated with pairwise distinct nonces.
Labels and execution traces. A transition in our LTS will either add a new empty run to the cur-
rent state or add a timed event to an existing run. Each transition is labelled with a timestamp, a
description of the state update and the id of the run modified in that transition (this will become
clear later). We denote the creation of a new run by createa(R), wherea ∈ Agent is an agent and
R ∈ R is a role. The addition of a protocol event will be labelled by using the events themselves as
labels. Therefore, an execution of the protocol is an interleaved sequence of states and labels of the

type s0
(t1,l1)id1
−−−−−→ s1 · · · sn−1

(tn,ln)idn

−−−−−−→ sn, where s0, . . . , sn are states, t1, . . . , tn timestamps,
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and li is either a protocol event or a label of the type createa(R), for i ∈ {1, . . . , n}. A trace
is the resulting sequence of LTS labels τ = (t1, ℓ1)id1 · · · (tn, ℓn)idn . In this case, we say that τ
has cardinality n, denoted |τ |, and we use τi to denote the ith element of τ , i.e. τi = (ti, ℓi)idi .
When n = 0, we use ϵ to denote the empty trace, while the initial state s0 alone represents the
empty execution. Lastly, we will omit the run ids from traces when they are not necessary.

We write a ⊢τ m to denote a ⊢s mwhere s is the set of events occurring in τ.
Transition relation. The transition relation of the protocol LTS is defined by a set of derivation
rules, similar to the inference rules above. The premise of a rule is a formula with no free variables.

Its conclusion is a transition of the form s
(t,ℓ)id

−−−→ s′. Unless otherwise specified, variables in
our derivation rules are universally quantified. For run identifiers, we use id ∈s Id to denote
that id is chosen from the set Id in such a way that id has not been used in the state s. The
function max_time: Q→ R+ gives the maximum timestamp used by an event in a given state.
If labels(s) = ∅, then max_time(s) = 0, otherwise max_time(s) = max{t | (t, e) ∈
labels(s)}.

Our first rule adds an empty run to a state by instantiating either a protocol role or an adversarial
role.

s ∈ Q, t ≥ max_time(s), R ∈ R, a ∈ Agent,
id ∈s Id, a ∈ Honest =⇒ R ∈ roles(P)

s
(t,createa(P(R)))id

−−−−−−−−−−−−→ s ∪ {(id, ϵ, R, a)}
CreateP

HereP denotes the protocol specification whose behaviour is being modelled. This rule ensures
that honest agents instantiate a protocol role, i.e. that honest agents do not deviate from the pro-
tocol specification. Dishonest agents, on the other hand, can influence the protocol execution by
instantiating arbitrary role specifications, which we refer to as an adversarial role.

The remaining transition rules express how a run of the system state can make progress by
executing a single event. There are three of these rules, which can all be defined as an extension of
the following rule template:

s ∈ Q, t ≥ max_time(s), (id, τ, R, a) ∈ s,
τ = (t1, e1) · · · (ti, ei),

e1 · · · eiei+1 ∈s\(id,τ,R,a) insts(R),
[ ]

s
(t,ei+1)id

−−−−−−→ (s \ {(id, τ, R, a)}) ∪ {(id, τ · (t, ei+1), R, a)}
,

where the bracketed part [ ] is a placeholder to add premises. This rule template triggers the execu-
tion of an event ei+1 at time t if t is greater than or equal to the largest timestamp in s, and there
exists a run (id, (t1, e1) · · · (ti, ei), R, a) in the state satisfying that e1 · · · ei+1 is an instantiation
of R. The condition e1 · · · eiei+1 ∈s\(id,τ,R,a) insts(R) ensures that nonces assigned to role
variables in other runs, i.e. in sminus (id, τ, R, a), are not used in the current run.

We use→ [p1, . . . , pn] to denote the rule obtained from the above rule template by replac-
ing the placeholder [ ] by the set of premises {p1, . . . , pn}. Using this notation, we define the
remaining rules for our LTS in the following.

33



4 Analysing protocols under the distant-attacker assumption

The Send rule:

→
[
ei+1 = senda(m), a ⊢{e1,...,ei} m

]
Send

allows agents to send messages to the network. The Send rule restricts both honest and dishonest
agents to send messages whose content is inferable from their initial knowledge, constants, and the
sequence of events already executed in the run. This is expressed by the premise a ⊢{e1,...,ei} m,
and means that our model does not consider an omnipresent adversary overseeing all events sent
to the network. Instead, our model forces dishonest agents to collaborate by messaging each other.

The Recvd rule:

→
[
ei+1 = recva(m), (t′, sendb(m′)) ∈ labels(s),

d(a, b) ≤ c(t− t′),m =E m′

]
Recvd

models how agents receive messages from other agents, enforcing that the time of flight of a mes-
sage exchange is consistent with the distance between sender and receiver. The rule is parametrized
on the function d: Agent×Agent→ R+ which defines a metric space (Agent, d), and assumes
a constant propagation speed c of the communication channel.

The rule Recvd triggers the execution of a receive event recva(m) at time t ifei+1 = recva(m)
and there exists a timed send event (t′, sendb(m′)), where m =E m′, in some run in the state
such that the distance between the sender and receiver is smaller than or equal to c(t− t′).

It is worth pointing out that the Recvd rule does not consider that messages may fade away
as they travel, implying that secrets revealed to nearby agents leak to the entire network. This
is a deliberate choice made with the goal of making no assumptions about signal strength, nor
about the distance at which a message can be eavesdropped. For example, RFID eavesdropping
on messages at a range of 20 m or more has proven feasible, depending on the power of the devices
[113].

The Equal rule

→
[
ei+1 = equala(⟨m1,m2⟩),m1 =E m2,

a ⊢{e1,...,ei} m1, a ⊢{e1,...,ei} m2

]
Equal

states that an event equala(⟨m1,m2⟩) only executes when m1 and m2 are equal modulo the
equational theoryE. This type of event is used, e.g., to model the verification of signatures.

The Signal rule

→ [ei+1 ∈ SignalEvent] Signal

models the execution of signal events. Signal events are useful for instrumenting security proper-
ties, which often rely on expectations announced by agents by means of signal events, such as claim
events. Formally, the set of signal events is defined by SignalEvent = {e ∈ Evg | ∄a,m : e ∈
{senda(m), recva(m), equala(m)}}.

Definition 3 (Protocol semantics). The semantics of a protocol P with respect to a distance
function d is the LTS (Q,Λ,→, s0) where,
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• Q = P(Id× (R+ × Evg)∗ × R× Agent)

• Λ = R+ × (Evg ∪ {createa(R) | a ∈ Agent, R ∈ R})× Id

• →= CreateP ∪ Send ∪ Recvd ∪ Equal ∪ Signal.

• s0 = ∅

We use [[P]]d to denote the set of traces obtained fromP ’s semantics with respect to the distance
function d.

Example 2. LetE be an adversarial role specification with all role variables of type nonce:

E = sende(⟨pk(ke), sign(P, ke)⟩) · recve(Nv)·
sende(Nv ⊕ ne) · recve(aenc(Kvp, pk(ke))) · sende(senc(⟨ne, P ⟩,Kvp))

Assuming that the pairwise distance between the agents a, b and c is 100 · c (a hundred times the
speed of light), and that s = sign(b, k′), an execution trace of our running example protocolPex

is the following:

s0
(0,createa(id1,Pex(V )))−−−−−−−−−−−−−−→ s1

(0,createb(id2,Pex(P )))−−−−−−−−−−−−−−→ s2

(0,createe(id3,E))−−−−−−−−−−−→ s3
(0,sende(⟨pk(k′),s⟩))
−−−−−−−−−−−−−→ s4

(100,recva(⟨pk(k′),s⟩))
−−−−−−−−−−−−−−→ s5

(100,senda(n′))−−−−−−−−−−→ s6
(200,recve(n′))−−−−−−−−−→ s7

(200,sende(n′⊕ n))−−−−−−−−−−−−→ s8
(300,recva(n′⊕ n))−−−−−−−−−−−−→ s9

(300,clocka(2,3))−−−−−−−−−−→ s10

(300,senda(aenc(k′′,pk(k′))))−−−−−−−−−−−−−−−−−−→ s11
(400,recve(aenc(k′′,pk(k′))))−−−−−−−−−−−−−−−−−→ s12

(400,sende(senc(⟨n,b⟩,k′′)))−−−−−−−−−−−−−−−−−→ s13
(500,recva(senc(⟨n,b⟩,k′′)))−−−−−−−−−−−−−−−−−→ s14

(500,equala(⟨verify(s,b,pk(k′)),true⟩))
−−−−−−−−−−−−−−−−−−−−−−−→ s15

(500,claima(sec,⟨b,k′′⟩))−−−−−−−−−−−−−−−→ s16

4.2.6 Security properties, claims, and protocol correctness

We define a security propertyψ as a predicate on traces and integers such thatψ(τ, i) means that
ψ is satisfied at step i of the trace τ . For illustration purposes, we define next the secrecy property
used in our running example, whereby an agent expects the adversary to not know a given term.

sec((t1, e1), . . . , (tn, en), i) ⇐⇒(
ei = claima(sec, ⟨b,m⟩) ∧ b ∈ Honest =⇒ ∄c ∈ Dishonest : c ⊢{e1,...,en} m

)
As in this example, we consider properties instrumented by claim events. A security claim denotes
a belief about the protocol execution that led to the claim, e.g. claima(sec, ⟨b,m⟩) denotes a’s
belief that as long as its communicating partner is honest, no adversary knows the secret termm.
Note the slight abuse of notation in the definition of secrecy: sec is used as a claim identifier and
a predicate symbol. We shall keep this convention from now on to make the connection between
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claims and their intended meaning explicit. That is, for every claim event claima(ψ,m), we con-
sider ψ to be the predicate giving ψ its meaning. Hence, the following definition of protocol
correctness with respect to a security claim follows.

Definition 4 (Claim correctness). A claim event claima(ψ,m) is said to be correct in a protocol
P , denotedP ▷ ψ, if for every distance function d, trace τ ∈ [[P]]d, and index i ∈ {1, . . . , |τ |},
ψ(τ, i) holds.

In the next section we extend the definition of claim correctness with time restrictions and
assumptions about the honesty of agents in relation to their distance to another agent, making it
possible forPex, and several other modern protocols, to formalize their security goals.

4.3 Modelling security requirements based on the
distant-attacker assumption

The formal model introduced in the previous section can be used to specify the structure and
behaviour of a security protocol with time measurements. This section introduces a new class
of security requirements that captures the intended security goals of a relatively recent wave of
protocols based on proximity [9, 35, 117, 124, 129, 135, 139]. Such protocols aim at classical security
properties, such as secrecy and authentication, but rely on a particular trust assumption that has
not been captured within a formal security model. We are referring to trust assumptions that are
based on the honesty of agents in the neighbourhood of another agent, usually a verifier. We call
this assumption the distant-attacker assumption, as it considers the neighbourhood of a verifier to
be free of attackers.

The goal of this section is to formalize the distant-attacker assumption and instrument it within
classical security properties. The result is a class of security requirements expressed as a premise-
conclusion formula, where the premise is a proximity check in conjunction with a distant-attacker
claim, and the conclusion is a standard trace-based property. In the subsequent sections, we show
such a class of security requirements to be sufficient for the verification of many security protocols
based on proximity which currently lack formal correctness proofs.

4.3.1 The distant-attacker assumption

The security goals of many modern protocols are contingent upon the assumption that no at-
tacker is in the vicinity of the verifier. When formalizing this assumption, we shall allow the veri-
fier’s communicating partner (the prover) to be both malicious and close, as it allows us to model
memory attestation and erasure properties [129] for free. Hence, our task next is to formalize the
following statement: agents making a security claim are aware of what attackers (if any) are in
their vicinity.

We define the vicinity of an agent as the locus of a circle with radius δ centred in the agent’s
location. We also use the auxiliary function dishonest_agents(claima(ψ,m)) which gives the
set of dishonest agents that a allows to be close when claiming the property ψ. For the case of
secrecy, for example, it follows that dishonest_agents(claima(sec, ⟨b,m⟩)) = ∅ for every b
and m. This is, indeed, the case for authentication properties, as the verifier does not expect to
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authenticate a corrupt prover. In remote memory-erasure and attestation protocols, however, the
prover is considered dishonest, implying that the function dishonest_agents(·) should return
the prover agent for erasure and attestation claims. This leads to the following formalization of
the distant-attacker assumption as a predicate with domain T × Z+, where T is the universe of
traces. For every τ = (t1, e1) · · · (tn, en), distance threshold δ and index i,

dist_attackerδ(τ, i) ⇐⇒ ei = claima(ψ,m)∧
∀c ∈ (actors(τ) ∩ Dishonest) : (d(a, c) > δ ∨ c ∈ dishonest_agents(ei))

The distant-attacker assumption holds for a claim ei = claima(ψ,m) in a trace

τ = (t1, e1) · · · (tn, en)

if all dishonest agents in the trace are either far from a, i.e. at a distance larger than δ, or are part
of a list of expected dishonest agents dishonest_agents(ei).

4.3.2 Round-trip-time restrictions

Intuitively, for a protocol to use the distant-attacker assumption effectively, it needs to provide
agents with the ability to measure distance to other agents. Our security model allows protocols to
accomplish this by means of clock events, syntactically establishing the calculation of the time dif-
ference between two events. Semantically, time measurements are local to protocol runs. That is,
any two events involved in the calculation of a time measurement should be part of the same pro-
tocol session or run. We thus need a mechanism to extract runs from traces, which we obtain by ex-
ploiting the run identifiers present in protocol traces. Given a trace τ = (t1, e1)id1 · · · (tn, en)idn

and run identifier id, we use run(τ, id) to denote the subtrace (ti1 , ei1)id · · · (tik
, eik

)id of max-
imum cardinality, i.e. run(τ, id) denotes the full run in τ with run identifier id.

Here we formalize an interpretation of time measurements in relation to a security claim and
the distant-attacker assumption, leading to a definition of correctness that we show is applicable
to a large class of protocols. Clock events are used to measure the round-trip-time of a message
exchange with a communicating partner, with the expectation that the communicating partner is
within a δ radius, for some distance parameter δ. If a time measurement is below 2δ

c where c is the
speed of the communication medium, then we say that such measurement is correct with respect
to the distance bound δ. If all clock events in a given protocol run are correct, then we say that
such a run has correct time measurements. Formally, the correctness of the time measurements of
the run run(τ, idi) = (ti1 , ei1) · · · (tik

, eik
) in the trace τ = (t1, e1)id1 · · · (tn, en)idn , where

ei is a claim event by agent a is defined by:

correct_timeδ(τ, i) ⇐⇒ ∀j ∈ {i1, . . . , ik} :

(ej = clocka(x, y) ∧ j < i) =⇒ tiy − tix <
2δ
c

Note that in the definition of correct_timeδ(τ, i) we only consider clock events that precede the
event ei. The predicate ensures that for every possible run of the protocol resulting in the trace
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τ , the time measurements performed by the agent that produced the event ei are all below the
threshold 2δ

c .
Now we are ready to define a class of security requirements that extend classical security proper-

ties by making them conditional to round-trip-time restrictions and the distant-attacker assump-
tion.

Definition 5 (Claim correctness under the distant-attacker assumption). Let P be a protocol
and δ a distance value. A claim event claima(ψ,m) is said to be correct in P under the distant-
attacker assumption, denotedP ▷δ ψ, if for every distance function d, trace τ ∈ [[P]]d, and index
i ∈ {1, . . . , |τ |},

correct_timeδ(τ, i) ∧ dist_attackerδ(τ, i) =⇒ ψ(τ, i)

As a security requirement, correctness with respect to▷δ is weaker than correctness with respect
to ▷ (see Definition 4), i.e. for every protocol P , every claim claima(ψ,m), and every δ > 0, it
follows thatP ▷ ψ =⇒ P ▷δ ψ. That said, we argue that the relation ▷δ better captures the in-
tended goal of many other modern protocols, including the running example used in this section.
Therefore, we dedicate the remainder of this section to introducing a verification framework for
proving the correctness of protocols with respect to ▷δ .

4.4 A causality-based interpretation of locality

A security model that explicitly carries the notion of time and location, as introduced in the pre-
vious chapter, is useful to reach consensus on the formal definition of the distant-attacker as-
sumption and how to instrument it as a security requirement. However, it defies computer-aided
reasoning since modern protocol verification tools, such as Tamarin and ProVerif, do not cope
well with temporal and spatial information.

Our goal in this section is to provide a timeless protocol semantics, denoted [[·]]π , and a correct-
ness relation of protocols with respect to a security propertyψ, denoted [[P]]π ▷∼ψwhere∼ is an
equivalence relation on the set of agents that encodes proximity, such that ∀ d: [[P]]d ▷δ ψ ⇐⇒
∀ ∼ : [[P]]π ▷∼ ψ is valid. This will allow us to analyse the property ψ on the timeless semantics
by considering ▷∼ to be the security goal, rather than ▷δ .

4.4.1 Properties of the timed semantics

We start by proving properties of the time-based semantics introduced in Section 4.2.
The relation defined in the following definition is essential for determining when a trace can

be generated by our timed semantics, as it represents a precedence relation between events in the
trace.

Definition 6. Given a trace τ = (t1, e1) · · · (tn, en) ∈ [[P]]d, let⇝τ be the relation defined as
follows:

(ti, ei)⇝τ (tj , ej) if and only if i < j and either:

• actor(ei) = actor(ej) or
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4.4 A causality-based interpretation of locality

• ei = senda(mi) ∧ ej = recvb(mj) ∧ a ̸= b ∧mi =E mj ∧ d(a, b) ≤ (tj − ti) · c∧
¬(∃k ∈ {1, . . . , n}, ∃mk : k < i ∧ ek = sendc(mk) ∧ mi =E mk ∧ d(c, b) ≤
(tj − tk) · c).

We denote the transitive closure of⇝τ by⇝∗τ .

When timed events are related by⇝∗τ , there are constraints on the times at which they can
occur, as shown by the next two lemmas.

Lemma 1. Let τ ∈ [[P]]d be a trace. Then for each pair of timed events such that (ti, ei) ⇝∗τ
(tj , ej) we have:

tj − ti ≥
d(actor(ei), actor(ej))

c

Proof. From the definition of⇝τ we deduce that if (tx, ex)⇝τ (ty, ey) we have:

ty − tx ≥
d(actor(ex), actor(ey))

c

Let us assume (ti, ei) = (ti1 , ei1) ⇝τ . . . ⇝τ (tik
, eik

) = (tj , ej). The property above and
the triangle inequality lead to the required result:

tj − ti = tik
− ti1 =

k−1∑
j=1

tij+1 − tij ≥
k−1∑
j=1

d(actor(eij ), actor(eij+1))
c

≥ d(actor(ei1), actor(eik
))

c = d(actor(ei), actor(ej))
c

Lemma 2. Let τ = (t1, e1) · · · (tn, en) ∈ [[P]]d be a trace, i, j ∈ {1, . . . , n} such that
actor(ei) = actor(ej) = a, and δ ∈ R+ a constant. If tj−ti ≤ 2δ

c , then for allk ∈ {i, . . . , j}
such that (ti, ei)⇝∗τ (tk, ek)⇝∗τ (tj , ej) we have d(a, actor(ek)) ≤ δ.

Proof. By the previous lemma, we have that:

2δ
c ≥ tj − ti = (tj − tk) + (tk − ti) ≥

d(a, actor(ek)) + d(actor(ek), a)
c = 2 · d(a, actor(ek))

c
=⇒ d(a, actor(ek)) ≤ δ

The following definition states the minimal necessary condition that needs to be satisfied by a
sequence of timed events in order for it to be a valid trace of some protocol: for each recv event
there is a corresponding send event.
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4 Analysing protocols under the distant-attacker assumption

Definition 7. A sequence of timed events (t1, e1) · · · (tn, en) is time valid if t1 ≤ · · · ≤ tn
and:

∀i ∈ {1, . . . n}, ∀m : ei = recva(m)
=⇒ ∃j ∈ {1, . . . n},∃m′ : (tj , ej)⇝τ (ti, ei)∧

ej = sendb(m′) ∧m =E m′.

The following definition introduces a notation for the local view of a trace by an agent.

Definition 8. Given a trace τ = (t1, e1) · · · (tn, en) ∈ [[P]]d, and an agent a ∈ Agent, we
define τa to be the sequence of timed events in τ executed by a. The timeless projection of τ ,
denoted by π(τ) is the list e1 · · · en.

At this point, we state a general result that relates two traces given by the semantics of a protocol.

Lemma 3. Let τ = (t1, e1) · · · (tn, en) and τ ′ = (t′1, e′1) · · · (t′n, e′n) be two time valid se-
quences of events, and P a protocol. If ∀a ∈ Agent : π(τa) = π(τ ′a) then τ ∈ [[P]]d ⇐⇒
τ ′ ∈ [[P]]d.

Proof. By symmetry, it is only necessary to prove that τ ∈ [[P]]d =⇒ τ ′ ∈ [[P]]d.
Notice that as τ ∈ [[P]]d, then τ can be generated inductively by applying the rules defined in

the semantics in [[P]]d. Furthermore, in this semantics, all time constraints in τ are generated by
the application of the Recvd rule.

We prove that each prefix of τ ′ can be generated by applying the rules in the semantics. The
proof follows by induction in the size of the prefixes. The base case is the empty trace, which
by definition is a valid trace of any protocol. For the induction step, assume for some i that
(t′1, e′1) · · · (t′i, e′i) ∈ [[P]]d and thata = actor(e′i+1). We prove that (t′1, e′1) · · · (t′i+1, e

′
i+1) ∈

[[P]]d by case analysis:

• e′i+1 is a receive event: as τ ′ is a time valid sequence of timed events, it can be generated by
applying the Recvd rule at time t′i+1.

• e′i+1 is not a receive event: notice that

π(τa) = π(τ ′a) =⇒ ∃j ∈ {1, . . . , n} :
π(((t′1, e′1) · · · (t′i+1, e

′
i+1))

a
) = π(((t1, e1) · · · (tj , ej))a)

∧ e′i+1 = ej

The same rule that was used to generate (tj , ej) can also be used to generate (t′i+1, e
′
i+1),

given that this rule only depends on the sequence of previous events by agent a.

We conclude all events in τ ′ can be generated inductively by the rules, as was needed.

The next lemma proves the existence of a trace in a protocol which will be useful for the main
result in this section. Given a trace, for each pair of events by the same actor, it is possible to
construct another trace for which all the events in between the pair are executed by close agents.
In the new trace some events are postponed and others are anticipated with respect to the pair.
This result relies heavily on Lemmas 2 and 3.
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4.4 A causality-based interpretation of locality

Lemma 4. LetP be a protocol and a ∈ Agent. Let τ = (t1, e1) · · · (tn, en) ∈ [[P]]d be a trace
such that there exist two timed events (tu, eu), (tv, ev) ∈ τ with u < v, tv − tu ≤ 2·δ

c and
actor(eu) = actor(ev) = a. Then there exists a trace τ ′ = (t′1, e′1) · · · (t′n, e′n) ∈ [[P]]d and a
bijection f from {1, . . . , n} to {1, . . . , n} such that:

• ∀i ∈ {1, . . . , n} : e′f(i) = ei; the events of τ ′ are a permutation of the events in τ

• ∀a ∈ Agent : π(τa) = π(τ ′a); the permutation preserves the local order of events for each
agent

• t′f(v)− t
′
f(u) ≤

2·δ
c and f(u) < f(v); the time restriction in τ translates to a correspond-

ing time restriction in τ ′

• ∀k ∈ {f(u), . . . , f(v)} : d(a, actor(e′k)) ≤ δ; agents executing events between f(u)
and f(v) have a bounded distance to a

Proof. For any trace τ∗ = (t∗1, e∗1) · · · (t∗n, e∗n), let Kτ∗ ⊆ {1, . . . , n} : k ∈ Kτ∗ ⇐⇒
d(a, actor(e∗k)) > δ ∧ u < k < v. The set Kτ∗ thus contains the indices of all timed events
between u and v that are executed by an agent outside the vicinity of a.

Let τ0 = (t01, e0
1) · · · (t0n, e0

n) = τ and r = |Kτ |. If r = 0 then all the necessary con-
ditions are fulfilled for τ ′ = τ and f the identity. Otherwise, there exist τ1, . . . , τ r, where
∀i ∈ {1, . . . , r} : τ i = (ti1, ei

1) · · · (tin, ei
n), and a sequence of bijections f1, . . . , fr such that:

• ∀i ∈ {1, . . . , r} : fi is a bijection between {1, . . . , n} and {1, . . . , n} such that ∀j ∈
{1, . . . , n} : ei−1

j = ei
fi(j)

• ∀i ∈ {1, . . . , r},∀a ∈ Agent : π(τ i
a) = π(τ i−1

a )

• ∀i ∈ {1, . . . , r},∃k ∈ Kτ i−1 : Kτ i = Kτ i−1 \ {k}

• t1f1(u) = t0u = tu ∧ t1f1(v) = t0v = tv

• ∀i ∈ {2, . . . , r} : tif1◦...◦fi(u) = ti−1
f1◦...◦fi−1(u) ∧ t

i
f1◦...◦fi(v) = ti−1

f1◦...◦fi−1(v)

• ∀i ∈ {1, . . . , r} : τ i is a time valid sequence.

Notice τ ′ = τ r and f = f1 ◦ . . . ◦ fr fulfil the required conditions in the lemma:

• ∀a ∈ Agent : π(τa) = π(τ ′a) and ∀i ∈ {1, . . . , n} : e′f(i) = ei are true by definition of
f , given it is the composition of functions that possess the same properties.

• Kτ ′ = ∅ =⇒ ∀k ∈ {f(u), . . . , f(v)} : d(a, actor(e′k)) ≤ δ

• t′f(u) = tu∧ t′f(v) = tv , as t′f(u) = trf1◦...◦fr(u) = tr−1
f1◦...◦fr−1(u) = . . . = t1f1(u) = t0u =

tu and the same can be deduced for v. Then t′f(v) − t
′
f(u) = tv − tu ≤ 2·δ

c
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4 Analysing protocols under the distant-attacker assumption

τ ′ ∈ [[P]]d follows from Lemma 3, as we have τ ′ = τ r is a time valid sequence by definition,
and that ∀a ∈ Agent : π(τa) = π(τ ′a) as mentioned above. We complete the proof by showing
how to construct the trace τ i and the bijection fi from τ i−1, for any index i.

To simplify notation, in what follows we will refer to traces τ , τ ′ (instead of τ i, τ i+1), bijection
f (instead of fi), integers x and y (instead of f1 ◦ . . . ◦ fi−1(u) and f1 ◦ . . . ◦ fi−1(v)).

Let k ∈ Kτ , then by Lemma 2 (tx, ex) ⇝∗τ (tk, ek) ∧ (tk, ek) ⇝∗τ (ty, ey) is false. We
analyse two cases:

• (tk, ek)⇝∗τ (ty, ey) is false

• (tx, ex)⇝∗τ (tk, ek) is false

We will focus on the first case, the other one can be analysed in an analogous way. Let ω be a
constant greater than ty − tk and τ ′′ = (t′′1, e′′1) · · · (t′′n, e′′n) a sequence of timed events defined
as follows:

1. for each timed event (ti, ei) ∈ τ such that i > y, let (t′′i , e′′i ) = (ti + ω, ei)

2. for each timed event (ti, ei) ∈ τ such that i < y and (tk, ek) ⇝∗τ (ti, ei), let (t′′i , e′′i ) =
(ti + ω, ei). In this case clearly i ≥ k

3. for every other timed event (ti, ei) ∈ τ , let (t′′i , e′′i ) = (ti, ei)

Next, we define a bijection f from {1, . . . , n} to {1, . . . , n} according to the following prop-
erty:

• ∀i, j ∈ {1, . . . , n} : (t′′i < t′′j ) ∨ (t′′i = t′′j ∧ i < j) ⇐⇒ f(i) < f(j)

Notice that f exists and is unique as it defines a stable order for the values of t′′1, . . . , t′′n.
At this point we are ready to define the trace τ ′ = (t′1, e′1) · · · (t′n, e′n). For all i ∈ {1, . . . , n}

let (t′i, e′i) = (t′′f−1(i), e
′′
f−1(i)). Then we deduce ∀i ∈ {1, . . . , n} : e′f(i) = ei ∧ (t′f(i) =

ti ∨ t′f(i) = ti + ω)
Notice this f and τ ′ fulfil the required conditions:

• By construction ∀i ∈ {1, . . . , n} : ei = e′f(i)

• Assume i, j ∈ {1, . . . , n} such that i < j ∧ actor(ei) = actor(ej). Then (ti, ei) ⇝∗τ
(tj , ej) is true, and t′f(j) = tj + ω =⇒ t′f(i) = ti + ω. We conclude that ∀a ∈
Agent : π(τa) = π(τ ′a)

• By construction t′f(x) = tx ∧ t′f(y) = ty

• t′f(k) = tk + ω > ty = t′f(y) =⇒ f(k) > f(y) =⇒ ¬(f(x) < f(k) < f(y))

• τ ′ is a time valid sequence given that by construction:

∀i, j ∈ {1, . . . , n} : (ti, ei)⇝∗τ (tj , ej) ⇐⇒ (t′f(i), e
′
f(i))⇝

∗
τ (t′f(j), e

′
f(j))
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4.4 A causality-based interpretation of locality

The following example shows how the transformation of the previous lemma works for a simple
trace.

Example 3. Let τ be the following execution ofPex:

s0
(0,createa(id1,Pex(V )))−−−−−−−−−−−−−−−→ s1

(0,createb(id2,Pex(P )))−−−−−−−−−−−−−−−→ s2
(0,createe(id3,E))−−−−−−−−−−−→ s3

(0,sendb(⟨pk(k),sign(n,k)⟩))−−−−−−−−−−−−−−−−−→ s4
(100,recva(⟨pk(k),sign(n,k)⟩))−−−−−−−−−−−−−−−−−−→ s5

(100,senda(n′))−−−−−−−−−−→ s6

(200,recvb(n′))−−−−−−−−−→ s7
(200,sendb(n′⊕ n))−−−−−−−−−−−−→ s8

(250,recve(n′))−−−−−−−−−→ s9
(250,sende(n′⊕m′))−−−−−−−−−−−−→ s10

(300,recva(n′⊕ n))−−−−−−−−−−−−→ s11
(300,clocka(2,3))−−−−−−−−−−→ s12

(300,senda(aenc(k′,pk(k))))−−−−−−−−−−−−−−−−−→ s13

(400,recvb(aenc(k′,pk(k))))−−−−−−−−−−−−−−−−−→ s14
(400,sendb(senc(⟨n,b⟩,k′)))−−−−−−−−−−−−−−−−→ s15

(500,recva(senc(⟨n,b⟩,k′)))−−−−−−−−−−−−−−−−→ s16
(500,equala(⟨verify(sign(n,k),b,pk(k)),true⟩))−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s17

(500,claima(sec,⟨b,k′⟩))−−−−−−−−−−−−−−−→ s18

Then according to Lemma 4 with δ = c·200
2 , d(a, b) = 0, d(a, e) > δ, u = 6, v = 11, one possible τ ′

is:

s0
(0,createa(id1,Pex(V )))−−−−−−−−−−−−−−−→ s1

(0,createb(id2,Pex(P )))−−−−−−−−−−−−−−−→ s2

(0,createe(id3,E))−−−−−−−−−−−→ s3
(0,sendb(⟨pk(k),sign(n,k)⟩))−−−−−−−−−−−−−−−−−→ s4

(100,recva(⟨pk(k),sign(n,k)⟩))−−−−−−−−−−−−−−−−−−→ s5
(100,senda(n′))−−−−−−−−−−→ s6

(200,recvb(n′))−−−−−−−−−→ s7

(200,sendb(n′⊕ n))−−−−−−−−−−−−→ s8
(300,recva(n′⊕ n))−−−−−−−−−−−−→ s9

(300,clocka(2,3))−−−−−−−−−−→ s10

(300,senda(aenc(k′,pk(k))))−−−−−−−−−−−−−−−−−→ s11
(301,recve(n′))−−−−−−−−−→ s12

(301,sende(n′⊕m))−−−−−−−−−−−−→ s13

(400,recvb(aenc(k′,pk(k))))−−−−−−−−−−−−−−−−−→ s14
(400,sendb(senc(⟨n,b⟩,k′)))−−−−−−−−−−−−−−−−→ s15

(500,recva(senc(⟨n,b⟩,k′)))−−−−−−−−−−−−−−−−→ s16
(500,equala(⟨verify(sign(n,k),b,pk(k)),true⟩))−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s17

(500,claima(sec,⟨b,k′⟩))−−−−−−−−−−−−−−−→ s18

4.4.2 Security properties

The following corollary applies Lemma 4 to a protocol trace and to the events defined inside a
clock event of interest.

Corollary 1. Let τ ∈ [[P]]d be an execution trace. If ei = claima(ψ,m) is a claim in τ and
correct_timeδ(τ, i) is true, then there exists a trace τ ′ ∈ [[P]]d such that the following conditions
hold:

1. ∀c ∈ Agent : π(τc) = π(τ ′c).

2. e′i = ei

3. {e1, e2, . . . , ei} = {e′1, e′2, . . . , e′i}
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4 Analysing protocols under the distant-attacker assumption

4. If run(τ ′, idi) = (t′i1 , e
′
i1)idi · · · (t′ik

, e′ik
)idi then ∀j ∈ {i1, . . . , ik} :

e′j = clocka(x, y) =⇒
(
∀z : (ix < z < iy =⇒ d(actor(e′z), a) ≤ δ)

)
Proof. This is a direct application of the Lemma 4 to the events mentioned in the clock events in
the same run as the claim.

Notice that as the predicate correct_time is true, for all clock events clocka(x, y) in the run
corresponding to ei, we get that tiy−tix ≤ 2·δ

c . As such, we can apply Lemma 4 and obtain a new
trace in which all actors executing an event between ix and iy are near a. Doing this procedure for
each clock event, we get the desired trace. This is possible given that the segments events referenced
in clock events do not intersect.

Before introducing the main result in this section, we need to restrict the security properties in
our model, specified in the next definition, so that the previous lemma is applicable.

Definition 9. LetP a protocol and ψ a security property. We say ψ is a robust security property
if and only if for all τ, τ ′ ∈ [[P]]d such that ei = claima(ψ,m), and the first three conditions in
Corollary 1 hold, we also have

dist_attackerδ(τ, i) ∧ correct_timeδ(τ, i) =⇒ ψ(τ, i)
⇐⇒

dist_attackerδ(τ ′, i) ∧ correct_timeδ(τ ′, i) =⇒ ψ(τ ′, i)

The next lemma enables the use of any robust security property in our main equivalence result.

Lemma 5. Letψ be a robust security property. Then ∀τ ∈ [[P]]d, such that ei = claima(ψ,m),
and τ ′ is a trace as defined in Corollary 1 with respect to τ , then:

dist_attackerδ(τ, i) ∧ correct_timeδ(τ, i) =⇒ ψ(τ, i)
⇐⇒

dist_attackerδ(τ ′, i) ∧ correct_timeδ(τ ′, i) =⇒ ψ(τ ′, i)

Next, we define formally the main security properties our model supports, which we employ
in the case studies later.

Definition 10 (Secrecy).

∀τ ∈ [[P]]d, τi = (ti, claima(sec, ⟨b, k⟩)) :
dist_attackerδ(τ, i) ∧ correct_timeδ(τ, i) =⇒
(∄c ∈ Dishonest : c ⊢τ k) ∨ b ∈ Dishonest

For some protocols the communication partner is not known. The next definition covers this
case, which we call anonymous secrecy.
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Definition 11 (Anonymous Secrecy).

∀τ ∈ [[P]]d, τi = (ti, claima(a_sec, k)) :
dist_attackerδ(τ, i) ∧ correct_timeδ(τ, i) =⇒
(∄c ∈ Dishonest : c ⊢τ k)

In our case studies we use the non-injective agreement property [89], its anonymous variant and
the secure remote erasure [129]. In what follows we define these properties formally.

Definition 12 (Non injective agreement).

∀τ ∈ [[P]]dτi = (ti, claima(non_in_agree, ⟨b,m⟩)) :
dist_attackerδ(τ, i) ∧ correct_timeδ(τ, i)
=⇒ (∃j < i : ej = runningb(⟨roleB, a,m⟩))
∨ b ∈ Dishonest

Definition 13 (Anonymous non injective agreement).

∀τ ∈ [[P]]d, τi = (ti, claima(a_non_in_agree,m)) :
dist_attackerδ(τ, i) ∧ correct_timeδ(τ, i)
=⇒ (∃b ∈ Agent, j < i : ej = runningb(⟨roleB,m⟩))

Definition 14 (Remote Memory-erasure).

∀τ ∈ [[P]]d, τi = (ti, claima(erasure, ⟨b,m⟩)), :
dist_attackerδ(τ, i) ∧ correct_timeδ(τ, i) =⇒
∃j < i : (tj , sendb(m)) ∈ τ ∨ (tj , recvb(m)) ∈ τ

The next proposition shows that all the security properties defined in this section are robust.

Proposition 1. sec, a_sec, non_in_agree, a_non_in_agree, and erasure are robust security
properties.

Proof. Let τ, τ ′ ∈ [[P]]d such that the first three conditions in Corollary 1 hold. Then the condi-
tion∀c ∈ Agent : π(τc) = π(τ ′c) implies that in both traces the knowledge deduced by dishonest
agents is the same, so sec and a_sec are robust.

The properties non_in_agree, a_non_in_agree and erasure are robust given that all of
them depend on the existence of events before ei, and by definition ei = e′i and:

{e1, e2, . . . , ei} = {e′1, e′2, . . . , e′i}
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4.4.3 A timeless protocol semantics

Now we simplify the security model by eliminating the notion of time from the original model,
and provide a causality-based characterization of the dist_attacker predicate. We do so by remov-
ing all occurrences of the time variables in the rules CreateP , Send, Recvd, Equal and Signal,
producing their timeless equivalent CreatePπ , Sendπ , Recvπ , Equalπ and Signalπ . For refer-
ence, the modified rules follow.

The timeless semantics is obtained by removing the timestamps from the rules used in the time-
based model. This means that traces obtained from this semantics are just a sequence of events.
The resulting rules are as follows.

s ∈ Q,R ∈ R, a ∈ Agent, id ∈s Id,
a ∈ Honest =⇒ R ∈ roles(P)

s
(createa(R))id

−−−−−−−−−→ s ∪ {(id, ϵ, R, a)}
CreatePπ ,

The template rule for the timeless semantics, and its corresponding instantiations follow:

s ∈ Q, (id, τ, R, a) ∈ s, τ = e1 · · · ei,
e1 · · · eiei+1 ∈s\(id,τ,R,a) insts(R),

[ ]

s
(ei+1)id

−−−−−→ (s \ {(id, τ, R, a)}) ∪ {(id, τ · ei+1, R, a)}
,

→
[
ei+1 = senda(m), a ⊢{e1,...,ei} m

]
Sendπ

→
[
ei+1 = recva(m), sendb(m′) ∈ labels(s),

m =E m′

]
Recvπ

→ [ei+1 = equala(⟨m1,m2⟩),m1 =E m2] Equalπ

→ [ei+1 ∈ SignalEvent] Signalπ

The timeless protocol semantics associated with these rules produces a sequence of events,
rather than a sequence of timed events.

Definition 15 (Timeless protocol semantics). The timeless semantics of a protocolP is the LTS
(Q,Λ,→, s0) where,

• Q = P(Id× Evg
∗ × R× Agent)

• Λ = Evg × Id ∪ {createa(id,R)id|a ∈ Agent, id ∈ Id, R ∈ R}

• →= CreatePπ ∪ Sendπ ∪ Recvπ ∪ Equalπ ∪ Signalπ .
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• s0 = ∅

We use [[P]]π to denote the set of traces obtained fromP ’s timeless semantics.

4.4.4 A causality-based interpretation of the distant-attacker
assumption

In the previous section, we introduced the notion of a distant-attacker. This notion depended on
a distance parameter δ that defines the vicinity of the actor in question. Here we provide a similar
definition adapted to the timeless case. Let∼ be an equivalence relation on the set of actors with
two equivalence classes. Intuitively, actors in the same class (a ∼ b) are near, and those in different
classes are far. The dist_attackerπ predicate is defined by:

dist_attackerπ(τ, i) ⇐⇒ ∀c ∈ (actors(τ) ∩ Dishonest) :
¬(a ∼ c) ∨ c ∈ dishonest_agents(ei)

Our definition of correct_time for the timeless case is inspired by the causal characterization
of distance-bounding given in [95]. Our main result later shows how this definition exactly fits
our objective. For every trace τ = eid1

1 · · · eidn
n and every index i such that ei is a claim event by

agent a and run(τ, idi) = ei1 · · · eik
we have:

correct_timeπ(τ, i) ⇐⇒ ∀j ∈ {i1, . . . , ik} ∀b ∈ Agent :
(ej = clocka(x, y) ∧ j < i ∧ ¬(a ∼ b))
=⇒ ∄k : (ix ≤ k ≤ iy ∧ actor(ek) = b)

A protocol P satisfies ψ conditional to the trust assumption dist_attackerπ and the proximity
check correct_timeπ within the timeless semantics if, for every trace τ ∈ [[P]]π and every i ∈
{1, . . . , |τ |}, where ei is a claim event with security property ψ, it holds that

dist_attackerπ(τ, i) ∧ correct_timeπ(τ, i) =⇒ ψ(τ, i)

We denote this property by [[P]]π ▷∼ ψ.

4.4.5 Equivalence between the timed and the timeless semantics

Finally, we prove that, for every robust security property ψ defined as a first-order statement on
sequence of events, ψ is correct in the timeless protocol semantics if and only if it is secure in the
timed protocol semantics.

Lemma 6. Let τ ∈ [[P]]d and π(τ) be the timeless projection of τ . Then π(τ) ∈ [[P]]π .

Proof sketch. Notice that if τ is generated according to the rules in the timed semantics ofP , then
π(τ) can also be generated by the corresponding rules in the timeless semantics, as the latter is less
restrictive than the former.

Now we are ready to formulate the main result.
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Theorem 1. Given a protocol P and a robust security property ψ. Then ∀ d: [[P]]d ▷δ ψ ⇐⇒
∀ ∼ : [[P]]π ▷∼ ψ.

Proof. We prove the left right implication first:

∀ d: [[P]]d ▷δ ψ =⇒ ∀ ∼ : [[P]]π ▷∼ ψ

We will formally prove the contrapositive.
Assuming ∀ ∼ : [[P]]π ▷∼ ψ is false, we deduce

∃ ∼, a ∈ Agent, p ∈ {1, . . . , n}, τ ∈ [[P]]π :
ep = claima(ψ,m) ∧ dist_attackerπ(τ, p)∧
correct_timeπ(τ, p) ∧ ¬ψ(τ, p)

We will construct a trace τ ′ = (t′1, e′1) · · · (t′n, e′n) ∈ [[P]]d, for some distance function d,
such that τ = π(τ ′). To achieve this, we will assign locations to actors such that the feasible
values of t′i exist.

For simplicity, we assume the run corresponding to ep contains only one clock event. Let
run(τ, idp) = (ep1)idp · · · (epk

)idp , epi = clocka(x, y), u = px and v = py . We assign
locations to actors such that b ∼ c =⇒ d(b, c) = 0 and ¬(b ∼ c) =⇒ d(b, c) > δ. As
correct_timeπ(τ, p) is true, we have ∀k ∈ {u, . . . , v} : d(actor(ek), a) = 0. We also deduce
that dist_attackerπ(τ, p) =⇒ dist_attackerδ(τ ′, p).

Let γ > 0 be an arbitrarily large constant. Then we are ready to define the values of t′i:

• t′1 = 0

• 1 < i ≤ u =⇒ t′i = (i− 1) · γ

• u < i < v =⇒ t′i = (i− u) · 2·ϵ
c + t′u

• t′v = t′u + 2·δ
c

• v < i ≤ n =⇒ t′i = (i− v) · γ + t′v

Notice for sufficiently large γ and sufficiently small ϵ, all necessary conditions are fulfilled (the
time stamps are ordered, no message travels faster than the speed of light, and t′v−t′u ≤ 2·δ

c which
implies correct_timeδ(τ ′, p) is true). Then, we deduce τ ′ can be generated inductively with the
rules defined within [[P]]d. On the other hand, as ψ(τ, p) doesn’t depend on time, then τ ′ also
represents an attack in [[P]]d, as needed.

In what follows we prove the other implication also using the contrapositive:

∀ ∼ : [[P]]π ▷∼ ψ =⇒ ∀ d: [[P]]d ▷δ ψ

Let τ = (t1, e1) · · · (tn, en) ∈ [[P]]d, p ∈ {1, . . . , n} such that τ is an attack trace:

ep = claima(ψ,m) ∧ dist_attackerδ(τ, p)∧
correct_timeδ(τ, p) ∧ ¬ψ(τ, p)
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By Corollary 1, a trace τ ′ = (t′1, e′1)id′
1 · · · (t′n, e′n)id′

n ∈ [[P]]d exists such that:

• ∀c ∈ Agent : π(τc) = π(τ ′c).

• e′p = ep and {e1, e2, . . . , ep} = {e′1, e′2, . . . , e′p}

• run(τ ′, id′p) = (t′p1 , e
′
p1)id′

p · · · (t′pk
, e′pk

)id′
p ∧

∀j ∈ {p1, . . . , pk} : e′j = clocka(x, y) ∧ ∀z : px < z < py

=⇒ d(actor(e′z), a) ≤ δ

Let∼ be an equivalence relation such that d(c, a) ≤ δ ⇐⇒ c ∼ a. We deduce that

dist_attackerπ(π(τ ′), p) ∧ correct_timeπ(π(τ ′), p)

is true by definition, and that ¬ψ(π(τ ′), p) is also true given that ψ is robust. So π(τ ′) ∈ [[P]]π
is an attack trace, as was needed.

4.5 Automated verification: Case Studies

This section demonstrates how the theoretical development of previous sections can be used to
analyse the security of protocols that rely on the distant-attacker assumption. The section starts
by introducing a verification methodology, which we showcase using three recent protocols. Then
we report on the security analysis of a number of protocols which, to the best of our knowledge,
were lacking a formal analysis. This analysis was aided by the Tamarin prover. The models of each
protocol, together with their security lemmas, can be accessed online at2.

4.5.1 Methodology

Our methodology consists of six steps, whose implementation are showcased by carrying on the
analysis of three recent protocols: Move2Auth [139], Amigo [135] and SPEED [9].

1. Description of the original protocol, security requirements and assumptions.

2. Abstraction of the original protocol into a symbolic model.

3. Definition of the security property to be verified as a member of the property class given in
Definition 5, i.e. as a timeless security property conditional to the distant-attacker assump-
tion.

4. Prove that the underlying timeless property satisfies Definition 9.

5. Replacement of proximity checks, such as signal strength or visual inspection, by distance-
bounding based on round-trip-time measurements. This is a workaround intended to fit
into our framework proximity-checking protocols that are not based on round-trip-time.

2https://gitlab.uni.lu/regil/distant-attacker-tamarin
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4 Analysing protocols under the distant-attacker assumption

P (IoT) V (Smartphone)

nonce k nonce nv, kvp⟨P, pk(k)⟩

nv

max ∆sign(nv, k)

aenc(kvp, pk(k))

senc(nv, kvp)

kvp is secretkvp is secret

V is communicating with P

Figure 4.3: A symbolic specification of Move2Auth-RTT

6. Use of a protocol verification tool, such as Tamarin, to implement and verify the resulting
protocol within the symbolic model introduced in Section 4.4.

7. If attacks are found, map them back to the original setting of the protocol to ensure they
are not a result of the abstraction step.

Steps 2 and 5 above may impose a risk of losing accuracy with respect to the original protocol.
The former is standard in symbolic verification, the latter a choice made to analyse several similar
protocols within our framework. We acknowledge Step 5 to be a workaround and not a proper so-
lution to the problem of analysing protocols based on signal-strength. The workaround is useful,
though, since some attacks found in a protocol modelled with round-trip-time are explainable in
a context where signal strength is used (see attacks on Amigo [135] and Move2Auth [139] below).
Because radio waves travel very close to the speed of light, it is harder for an attacker to manipulate
their distance to honest participants by increasing the propagation speed of the communication
channel, compared to manipulating signal strength (which can be amplified). The last step of
the methodology is used to tackle the risk of over-abstracting or miss-representing a protocol, by
ensuring that attacks found in the abstracted model apply to the original protocol.
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4.5.2 AnalysingMove2Auth

The protocol Move2Auth [139] aims to provide a secure communication channel between an IoT
device and a smartphone. This protocol uses variations in the Received Signal Strength (RSS) per-
ceived by a single antenna to detect proximity. The protocol starts when the smartphone connects
to the Wi-Fi network of the device, identified by its SSID. Then the IoT device sends a public key
to the smartphone. Immediately after that, the IoT device uses the corresponding private key to
encrypt information about its MAC address and its identity. This encrypted data is sent several
times to the smartphone, which uses variations on the signal strength of the received packets to
determine proximity to the IoT device. The smartphone also verifies that the received packets are
correct with respect to the public key received at the start of the protocol. If both signatures and
signal strength measurements are correct, the smartphone sends the freshly generated key kvp en-
crypted with the public key, and concludes that it has correctly exchanged the secret key kvp with
the IoT device.

To analyse Move2Auth, we substitute RSS measurements by round-trip-time measurements
using a technique established in the literature [15]. This technique consists of a verifier sending
a nonce to a prover, expecting to receive as a response a message containing the nonce and a se-
cret key identifying the prover. We added an extra message at the end to let the prover use the
exchanged key, as it would in a real scenario. The resulting protocol is displayed in Figure 4.3.

In our abstraction of Move2Auth (Move2Auth-RTT), the device (P ) sends its identity (which
could represent the SSID of the Wi-Fi network) and a fresh public key pk(k). Then the smart-
phone (V ) sends a nonce nv to be used during the fast phase, and expects a message consisting of
the signature of nv with key k, which could only be constructed by the device. Then V generates
a fresh key kvp and sends it encrypted to P . Finally, P replies with the nonce nv encrypted by
kvp, showing V that it received the shared key.

We modelled the authentication property from the smartphone’s point of view as non-injective
agreement on the key kvp. We found this property to be false. The attack consists of an attacker
that modifies the identity in the first message. We modelled the secrecy claim by the device as
(anonymous) secrecy and found this property to be false, as expected, given that the P does not
execute a proximity check on the verifier. The secrecy claim made by the smartphone, on the other
hand, is proven correct by Tamarin.

Attacks

The attack on secrecy byP is realized in a trace in which a distant attacker impersonates an honest
agent in the verifier role. In the original setting the same attacks applies, as the last message can
be sent by the attacker itself. This vulnerability can be potentially exploited because it allows the
attacker to control the IoT device by sending encrypted commands, which the IoT device will
accept as correct. Regarding the authentication claim by V , the vulnerability derives from the
fact that the identity in the first message is not tied to the rest of the messages of the protocol, and
it is not protected cryptographically, so the attacker can easily modify it. In the original protocol,
this attack would correspond to a situation in which the attacker sets up a fake Wi-Fi network.
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4 Analysing protocols under the distant-attacker assumption

4.5.3 Analysing Amigo

Amigo [135] is another protocol for mobile device authentication that depends on proximity. Sim-
ilar to Move2Auth, each device computes a signature based on the radio environment, and uses it
to detect if the other device is near. This is coupled with a key-exchange based on Diffie-Hellman.
As in Move2Auth-RTT, we modified the protocol to rely on round trip time rather than signal
strength.

A B

nonce a, na, ka nonce b, nb, kb⟨A, ga⟩〈
B, gb

〉

k = (gb)a
k = (ga)b

na

max ∆ na ⊕ senc(h(B, k), kb)

nb

max ∆nb ⊕ senc(h(A, k), ka)

ka

kb

k is secretk is secret

B is communicating withAA is communicating withB

Figure 4.4: A representation of the Amigo-RTT protocol

The modified protocol Amigo-RTT starts by a traditional Diffie-Hellman exchange, then a fast
phase is executed by each agent. The rapid phase uses a commitment scheme by encrypting the
hash of the agent’s identity (A or B) and the common key (k). The encryption key (ka or kb) is
revealed at the end of the protocol. The abstracted protocol is shown in Figure 4.4.
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Attacks

We modelled non-injective agreement and secrecy claims with respect to key k for each role. All
claims are invalid. The attack on secrecy for roleAworks as follows. Two nearby honest agentsA
andB execute the protocol. The attackerE captures the first two messages, and modifies them so
that the new messages are ⟨A, 1⟩ and ⟨A, 1⟩where 1 is the unit value in the multiplication group.
The protocol continues without any intervention fromE, resulting in an exchanged key equal to
1, which is known toE. We note that this attack can be prevented by following a Diffie-Hellman
public key validation3. Such validation is optional in the specification, but our analysis shows it
to be necessary in Amigo-RTT. We found this attack by using the Tamarin extension developed
in [44].

The attack on the roleA’s authentication claim is as follows. Two nearby honest agentsX , Y
execute the protocol. The attackerE manipulates the messages so thatX finishes the execution in
roleAwithY , whileY was also executing the roleA rather thanB. BothX andY send messages
⟨X, gx⟩ and ⟨Y, gy⟩, which the attacker delays such that both are received by the other agent as
the second message. When Y starts the proximity check by sending ny , the attacker responds
with a random message m. Notice Y cannot check whether this message is correct until later,
so it continues executing the protocol. ThenX starts the proximity check by sending nx, and Y
sends the correct responsenx⊕senc(h(Y, k), ky), even though forY this is the second proximity
check, while forX it is still the first. Y continues the protocol by sending ky . At this point,E has
enough information to complete the protocol with X , by executing the final proximity check in
roleB.

We finish the analysis of Amigo-RTT by noting that attacks on the claims made by roleB are
similar to those shown above for roleA.

4.5.4 Analysing SPEED

SPEED [9] aims to guarantee that an IoT device has erased its memory. By using a combination
of software memory isolation techniques and distance-bounding based on round trip time mea-
surements, the protocol enables a device acting as verifier to erase the memory of another device,
of low computational power, acting as prover, only when the verifier is nearby the prover. The
protocol starts with a distance-bounding phase based on [33], which allows the prover to check the
verifier is nearby. The information exchange in this phase is then used by the prover to compute
a fresh key k and a MAC on its memory. The abstraction of the protocol is shown in Figure 4.5.
For our security analysis we used the memory erasure property from [129]. The analysis revealed
that the security claim made by the verifier is invalid. This is not a surprise given that the verifier
does not check its proximity to the prover. Given that prover and verifier do not share crypto-
graphic information before the protocol execution, a trivial impersonation attack can be executed
by a distant attacker.

4.5.5 Summary of analysis results

We extended the analysis methodology described above to four more protocols [9, 123, 124, 135]
(see Table 4.1). The analysed protocols include (anonymous) secrecy, (anonymous) authentica-

32.1.5. Public Key Validation https://tools.ietf.org/html/rfc2631
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V (Verifier) P (Prover)

nonce anoncem
h(m)

a

max ∆a⊕m

k = h(a⊕m)k = h(a⊕m)

H = MAC(MeM, k)

⟨H,MAC(H, k)⟩

claimV (erasure, P )

Figure 4.5: A representation of the SPEED protocol
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tion and memory-erasure properties. All of these properties can be defined without the notion of
time, and, as proved in the previous section, they are compatible with our equivalence results. All
of them have the common characteristic of using proximity checks to (hopefully) assure that the
communication partner is in the vicinity.

Most protocols that consider the distant-attacker assumption are key-exchange protocols. Two
close agents without any previously shared data nor public key infrastructure need to communi-
cate securely using a network that may be controlled by distant attackers. These protocols neces-
sarily use some kind of asymmetric cryptography, given that the adversary will receive (with some
delay) all the transmitted messages, and from that it should be impossible to deduce the secret
shared keys.

Protocol Secrecy Auth. MemE
P V P V

DB-Based-Diffie-Hellman [123] ✓ ✓ ✓ ✓ —
MedicalDB [117] ✓ ✓ ✓ ✓ —
BluetoothJW-RTT [124] ✓ ✓ ✓ ✓ —
Move2Auth-RTT [139] ✗ ✓ — ✗ —
Amigo-RTT [135] ✗ ✗ ✗ ✗ —
SPEED [9] — — — — ✗

DB-Based-Erasure-Protocol [129] — — — — ✓

Table 4.1: Analysis results

Table 4.1 shows that three out of five of the key exchange protocols analysed are correct. The
other two, namely Move2Auth and Amigo, fail to ensure secrecy of the key-exchanged. Our analy-
sis results on memory-erasure protocols coincide with those provided in [129], including the proof
of correctness for the memory erasure protocol introduced there. We note, however, that [129]
provides manual proofs, while our proofs are computer-generated.

4.5.6 Comments on the Tamarin encoding

Our Tamarin models need to mark adversary actions in the trace, as they are part of our security
properties. We do so by creating rules representing a channel that can be used by honest agents
and adversaries alike. When modelling all the network interactions using this channel, we faced
non-termination issues. For this reason, we decided to restrict this channel usage to the messages
directly related to the time measurement. This resulted in an over-approximation, in the sense
that with this encoding some false attacks could appear, given that not all actions by adversaries
are marked. That said, we manually checked this was not the case for any of the protocols analysed.

The use of the XOR operator made it difficult to analyse the security of several of the protocols,
leading to non-termination for several proofs of our Tamarin models. Therefore, we decided to
use a simplified user-defined XOR operator without the commutativity property, instead of the
built-in one. This is not the first time this modelling decision is taken, as it was also previously
used in the Tamarin models for distance-bounding protocols from [95]. The reason why proto-
cols using proximity measurements through RTT containing the XOR operator face this non-
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termination issue is not known as far as we know. Nevertheless, we believe it could be solved, at
least for these very specific cases, by some clever modelling or small improvements in the Tamarin
prover, and leave it as future work.

4.6 Conclusions

In this chapter we identified and formalized the distant-attacker assumption, which has so far
been used informally to establish the security requirements of various communication protocols
for, e.g., IoT devices. We did so by introducing a time-based security model where round-trip-
time measurements and the location of agents is used to determine whether the neighbourhood
of an agent is free of attackers. To enable computer-aided verification of protocols written in
our specification language, we provided a reduction of the time-based model by eliminating the
notions of time and location, and defining proximity checks and the distant-attacker assumption
as causal relations on the protocol events. We also introduced a class of security requirements
that we proved hold in both the time-based and the causality-based model. Because the causality-
based model is translatable to Tamarin, we were able to formally verify, for the first time, the
security of five key-exchange protocols and two memory-erasure protocols, finding unreported
vulnerabilities on three of them.

The results presented in this chapter can be extended in various ways. For example, the proto-
col specification language we use does not allow for conditionals and non-determinism, and only
supports basic round-trip-time calculations. Hence, extending our results to richer specification
languages would contribute to capturing a larger class of protocols. It is also worth generalizing
our proofs to a causality-based specification model that is a subset of the model supported by a
state-of-the-art protocol verification tool, such as Tamarin, since it would reduce the gap be-
tween theory and practice. Lastly, like previous verification frameworks for distance-bounding
protocols, our methodology assumes that agents do not move. Dropping that assumption is of
interest for both classes of protocols.
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5.1 Computational analysis

The computational analysis (also called computational complexity approach) of security proto-
cols started in the 1980s with the seminal work of Goldwasser and Micali [72] on probabilistic en-
cryption. It was later popularized by Bellare and Rogaway [22], which analysed key establishment
protocols and provided the first formal model of the adversary capacities. These works provided
strong assurances on the security properties of the protocols by using pen-and-paper proofs. Time
has shown that it is often difficult to obtain correct security proofs even for relatively small pro-
tocols [37]. Still, for some protocols they have been achieved with great success. When protocols
employ new cryptographic primitives, the symbolic analysis cannot, by definition, obtain security
guarantees, as soundness proofs (in the computational model) are still needed.

Every major Internet application nowadays is secured by some form of cryptographic protocol.
The usual path to the creation of new protocols is as follows. A group of researchers/practitioners
creates a protocol aimed at solving a particular problem. For a certain period of time, the proto-
col is analysed by security researchers and practically implemented as prototypes. If the proto-
col uses new cryptographic primitives, several years are spent proving these primitives posses the
strongest possible security properties in the computational model. In this period, cryptographers
look for weaknesses by using cryptanalytic techniques. If the properties are valid and no attacks
are found, the protocol gets standardized by international bodies such as Internet Engineering
Task Force (IETF). Only at this point the protocol is considered secure and becomes widely avail-
able in applications. Unfortunately, most protocols turn out to be insecure, a fact that stresses the
importance of provable security in the computational model.

Contrary to the symbolic model where the cryptographic primitives are considered secure, in
the computational model their security is a central issue. In this model, messages are finite bit-
strings, cryptographic primitives are functions from bitstrings to bitstrings, and attackers are in-
teractive probabilistic Turing Machines. In general, the adversary is only limited by the amount
of time and computational power available. This gives the model the highest flexibility from the
mathematical standpoint. Still, it does not take into account implementation details (a provably
secure protocol might be insecure against side-channel attacks), nor is capable of naturally model
physical properties such as time, locations and machine failures.

Since the inception of computers in the last century, there have been thousands of crypto-
graphic primitives proposed in the literature. The most well-known of these functions can be
classified as encryption schemes (symmetric and asymmetric), one-way hash functions, digital sig-
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natures, mix networks, private information retrieval, commitments, pseudorandom generators,
and many others1.

To prove the primitives secure, researchers use mathematical properties of functions which
guarantee the intuitive notion of security sought in applications. The properties are usually de-
fined through the so-called cryptographic games, in which an attacker can interact with the prim-
itive in a formally specified manner, and to win the game it must compute some value with a
certain probability (for example discover the secret key). The probability usually depends on the
security parameter of the game, which is usually the same as the length of the secret keys involved.
A primitive is secure when it is proved that for any attacker the probability of winning the game
is very small as a function of the security parameter.

One famous security property of encryption schemes is indistinguishability under adaptive
chosen ciphertext attack (IND-CCA2), which is currently considered a basic requirement for this
type of primitive. An encryption function takes as input a plaintext and a secret key, and outputs a
ciphertext. Computing the plaintext from the ciphertext should not be computationally possible
unless the secret key is known. The IND-CCA2 property basically states that an adversary does
not distinguish a pair of ciphertexts, even if they can get the ciphertexts of as many plaintexts as
they want in an adaptative fashion. There exists several functions which have been proved to pos-
sess this property. Unfortunately, this is not the case for other properties such as one-way, needed
in the construction of cryptographic hash functions.

One-way functions have been the target of much research, but its existence is still an open con-
jecture. Intuitively, a one-way function is easy to compute on any input, but hard to invert given
the image of a random input [122]. Cryptographic hash functions are usually approximated as
one-way functions, as an important step to achieve proofs of higher level primitives which utilize
one-way functions as building blocks. This approximation is formalized in the ROM [22]. In this
thesis we aim to design a higher level primitive (secure erasure) using hash functions as building
blocks. Therefore, we make our proofs in the ROM model which we formally introduce later in
the chapter.

In this chapter we introduce the theoretical background needed to understand our new secure
erasure protocols. This includes basic notions in the computational model such as security games
and negligible functions. Then we introduce the ROM and show how it can be used.

5.2 Notation and basic definitions

We denote by [n] the set {1, . . . , n}, by a ←$ A the uniformly random sampling of a from the
set A and by o ← F (x, . . .) the output of an algorithm F running on given inputs. For two
bitstrings a, b ∈ {0, 1}∗, we denote by a∥b their concatenation. An adversary is a probabilis-
tic polynomial time Turing machines, generally denoted byA. Protocols usually posses security
parameters, whose size intuitively determine the level of security of the primitives used.

1https://en.wikipedia.org/wiki/Category:Cryptographic_primitives
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Definition 16 (negligible function). A function µ : N → R is negligible if for every positive
polynomial of finite degree P there exists an integerNP > 0 such that:

∀x > NP : |µ(x)| < 1
P (x)

We use negl(·) to denote any single negligible function.

Definition 17 (secure protocol). A protocol with security parameterλ is considered secure if and
only if for every attackerA, the probability thatA breaks the protocol is a negligible function in
λ.

We formalize security properties as a game against an adversary. During the game, the adversary
can interact with the functions defined in the protocol in a predefined way. Each game has a
winning condition, such as computing a secret key for secrecy properties. If the attacker is only
able to win the game with negligible probability, then the security property is valid.

Next we show how to model the indistinguishability under chosen plaintext attack (CPA)
property of an encryption scheme as a game:

Example 4 (Indistinguishability game). Let (Gen,Enc,Dec) be a symmetric encryption scheme
andλ a security parameter. Consider the following experiment CPAA(λ) against an adversaryA:

1. a key k ← Gen(1λ) is generated

2. A chooses a polynomial number of messages{m1, . . . ,mn} and receives their encryptions
{Enc(m1, k), . . . ,Enc(mn, k)}

3. A chooses two challenge messages c0, c1 of the same length

4. a bit b←$ {0, 1} is sampled and a challenge ciphertext ct← Enc(cb, k) is computed

5. A is given ct

6. A chooses a polynomial number of messages{m′1, . . . ,m′n} and receives their encryptions
{Enc(m′1, k), . . . ,Enc(m′n, k)}

7. A outputs a guess b′

8. if b = b′ the experiment returns 1, else it returns 0

The experiment above is restricted in the sense that c0 and c1 must be distinct and also must not
belong to {m1 . . . ,mn} ∪ {m′1 . . . ,m′n}. The encryption scheme is indistinguishable under
CPA if for allA:

Pr[CPAA(λ) = 1] ≤ 1
2 + negl(λ)
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5 Background on computational analysis

Introduction to the ROM

The ROM, formalized by Bellare and Rogaway in [22], aimed to solve an issue with many cryp-
tographic schemes that used hash functions as building blocks. For years cryptographers had
found proofs of security that depended on the assumptions related to using hash functions as
a black-box. This assumption was not generally well justified, and seen as trickery by some re-
searchers. The objective of [22] was to solve this issues and push forward the idea that the ROM
provided a bridge between the cryptographic theory and practice. Furthermore, they showed how
the paradigm yields more efficient protocols while retaining the advantages of provable security.

Assume that a protocol uses a public hash functionh as one of its primitives. Under the ROM,
h is modelled as an oracle O, which for each input replies a perfectly random bitstring, and if
the same input is asked twice, the answer is the same. This means that the oracle implements a
perfectly random function. It also implies that attackers cannot compute any (partial) value of
h unless they ask the corresponding value toO. Essentially, the hash function h is modelled as a
perfectly random function that is accessible to protocol participants as a black-box.

A simple protocol that can be shown secure in the ROM is the following:

Example 5. Alice wants to show Bob that she knows the solution to a problem, without revealing
the solution itself, as it will be officially published at a later time. To achieve this with certainty,
they use a cryptographic protocol. The protocol starts when Bob sends Alice a random nonce n.
Then Alice replies with h(n∥s) where s is the solution and h is a cryptographic hash function.
Later, when the solution s is published, Bob can check that indeed Alice knew the solution by
checking that the value sent by Alice was indeed h(n∥s). An attackerA would like to convince
Bob that it also knows the solution swhile it does not. The following game describes the intended
security property. Let λ be a security parameter. Consider the following experiment ExpOA(λ):

1. random bitstrings n, s, n′ of length λ are generated

2. A receives n, n′ andO(n∥s)

3. A interacts withO a polynomial number of times

4. A outputs a guess o

5. The experiment returns 1 if o = O(n′∥s), else returns 0

The protocol is secure if and only if∀A : Pr
[
ExpOA(λ) = 1

]
< negl(λ). The protocol above

can be proved secure in the ROM as follows.

sketch. Assume P (λ) is the number of queries thatAmakes to the oracle, where P is a polyno-
mial. Consider the case where one of these queries equals n∥s, which happens with probability
at most P (λ)

2λ . In this case, the attacker deduces s and computes the correct guess. If none of the
queries equals n∥s, then the attacker basically has no information about s, in which case the best
it can do is to output a random guess o which would lead to a successful attack with probability
1

2λ . Applying the union bound to the probabilities in each cases above, the probability of success
of the attacker is bounded by P (λ)+1

2λ , which is a negligible function in λ, as was needed.
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6 A provable secure memory-erasure
protocol against distant attackers

A proof of secure erasure (PoSE) is a communication protocol where a verifier seeks evidence
that a prover has erased its memory within the timeframe of the protocol execution. Designers
of PoSE protocols have long been aware that, if a prover can outsource the computation of the
memory-erasure proof to another device, then their protocols are trivially defeated. As a result,
most software-based PoSE protocols in the literature assume that provers are isolated during the
protocol execution, that is, provers cannot receive help from a network adversary. Our main con-
tribution in this chapter is to show that this assumption is not necessary. We introduce formal
models for PoSE protocols playing against provers aided by external conspirators and a PoSE pro-
tocol that we prove secure in this context. We reduce the requirement of isolation to the more re-
alistic requirement that the external conspirator is further away from the verifier than the prover.
Software-based protocols with relaxed isolation assumptions are especially pertinent for low-end
devices, where it is too costly to deploy sophisticated protection methods.

6.1 Introduction

Internet of Things (IoT) devices are specially vulnerable to malware infection due to their ubiq-
uity, connectivity and limited computational resources [106]. Once infected, an IoT device be-
comes both a victim and a useful weapon to launch further attacks on more advanced infrastruc-
ture and services. Detecting whether an IoT device is infected with malware is thus essential to
maintaining a secure computer network. The challenge for the defender is operating within the
resource constraints of IoT devices, which make them ill-suited for active security defences and
health monitoring [101].

A pragmatic approach to ensure the absence of malware is secure erasure, consisting of putting a
device back into a clean state by wiping out its memory. This approach was first introduced in [111]
as a prerequisite for secure software update. Although memory-erasure can be achieved via direct
hardware manipulation, here we are interested in Secure Erasure protocols (PoSE), whereby a
verifier instructs a resource-constrained device, called the prover, to erase its memory and to prove
that it indeed has done so.

A PoSE protocol is not a data erasure tool [74], despite both being aimed at erasing memory.
The latter is meant to erase sensitive data from memory in an irreversible manner, i.e., in a way that
is unrecoverable by advanced forensics techniques. The former is a lightweight communication
protocol whereby a verifier attests whether a (possibly) compromised prover has filled its memory
with random data.
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6 A provable secure memory-erasure protocol against distant attackers

Because provers are potentially infected with malware, PoSE protocols in general cannot rely
on cryptographic secrets stored in the prover. The exception are protocols that rely on secure
hardware [10], such as a Trusted Platform Module. Not all devices are manufactured with se-
cure hardware, though. Examples are those designed for low price and low energy consumption.
Hence, in this thesis, we don’t assume secure hardware on provers and we seek a software-based
solution.

In the absence of cryptographic secrets, software-based PoSE protocols have historically relied
on the assumption that provers are isolated during the protocol execution, that is, provers can-
not receive external help. The isolation assumption has been deemed necessary so far to prevent a
malicious prover from outsourcing the erasure proof to another device. Ensuring isolation is cum-
bersome, though. It requires closing all communication channels between provers and potential
conspirators, for example, by jamming or using a Faraday cage.

One of the goals of this thesis is to reduce the requirement of isolation to the more realistic
requirement that the external conspirator (distant-attacker) is further away from the verifier than
the prover (see Figure 6.1 for an illustration). That is, we do not restrict the communication ca-
pabilities of the (possibly corrupt) prover with the external adversary, but their position relative
to each other. In practice, this can be accomplished relying on round-trip-time measurements,
to ensure that the responses received to a sequence of challenges come from the device whose
memory we aim to erase. Such measurements are used for example in distance-bounding proto-
cols, whose goal is to ensure the authenticity of communication with a nearby device [67]. For
ensuring our distant-attacker assumption, we can therefore build upon the principles of design
in distance-bounding protocols, of which there exist already various proof-of-concepts and real-
life implementations. While the messages exchanged in classic distance-bounding protocols typ-
ically consist of single bits [116], recent progress in the communication infrastructure allows fast
exchange of longer messages. This was proved feasible in [31], assuming for example that attack-
ers are using only commercial off-the shelf hardware. Furthermore, the relay resistant protection
mechanism in the EMV protocol [62] and later improvements [115] measure the round-trip-time
of 32-bit packets in order to bound distance. In the context of electric vehicle charging systems,
[42] also considers a bigger than binary alphabet for their messages. In our proposed protocols, we
will exploit this feature in order to challenge random blocks of the device’s memory, rather than
bits.

DeviceVerifier DeviceVerifier

Attacker

Figure 6.1: The isolation assumption (on the left) assumes no interference in the prover-verifier communi-
cation. The distant attacker assumption (on the right) lets the attacker interfere from far away.

To demonstrate that secure memory erasure is possible without assuming isolation, we in-
troduce and formalize a class of PoSE protocols that employs a distance-bounding mechanism,
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6.2 A Formal Model for PoSE-DB protocols

which we callPoSE-DB, and put forward two protocols in this class together with formal security
proofs against a corrupt prover that communicates with an external attacker. PoSE-DB protocols
will have an interactive phase consisting of several challenge-response rounds. For each round,
they will measure the round-trip-time between the challenge and response, and verify that the re-
sponse is correct, aiming for two security goals. First, the prover cannot relay its communication
with the verifier to the distant attacker without failing the distance-bounding check, compelling
the prover to compute the responses locally. Second, if the prover locally computes the responses
to the verifier’s challenges, then it must have erased its memory even if aided by an external at-
tacker. The first contribution of this part is a formalization of those security requirements (Sec-
tion 6.2). The second one is the development of aPoSE-DB protocol with formal security proofs.
The protocol (Section 6.4) is based on a straightforward idea, already used in the first secure era-
sure protocol proposed by Perito and Tsudik [111]: the verifier sends a random sequence of bits to
the prover, who should store it in its memory; then the verifier queries random memory blocks
to check that they are stored. We adapt this idea into a PoSE-DB protocol, where we query one
random block per round, checking that the reply is correct and is received within the specified
time bound. Our main contribution in this case is a formal security proof without resorting to
the device isolation assumption. Although the protocol is simple, the proof is not trivial, and we
introduce general proof methods in Section 6.3 that help the analysis by allowing to focus on a
single challenge-response round.

6.2 A FormalModel for PoSE-DB protocols

In this section, we introduce a class of memory-erasure protocols that aim to resist collusion be-
tween a corrupt prover and a distant-attacker, and a formal model that allows to prove their secu-
rity. We call this class of protocols Proofs of Secure Erasure with Distance-Bounding (PoSE-DB).

6.2.1 Proof of Secure Erasure with Distance-Bounding

The key feature of a PoSE-DB protocol is the use of a distance-bounding mechanism over sev-
eral challenge-response rounds to prevent the prover from outsourcing the erasure proof to the
distant attacker. Figure 6.2 depicts the generic scheme of a PoSE-DB protocol. We consider the
following protocol parameters as global constants: block size (w), size of memory in blocks (m),
number of rounds (r) and time threshold (∆). The size of the memory to be erased is therefore
m ·w. The time threshold is chosen at deployment so that the distant-attacker assumption holds
within round-trip-time bounded by ∆. In a setup phase which happens once before the protocol
sessions, the verifier is instantiated with certain additional parameters necessary to run the proto-
col: the space used to draw initialization parameters for each session (I , which could be a set of
bitstrings or hash functions) and some auxiliary data (ρ) common for all sessions. Each PoSE-DB
session then runs in three phases:

• Initialization phase: the local device (playing the role of the prover) has to perform a pre-
scribed sequence of computation steps and store its result σ in its internal memory. Such
a value is meant to fill the prover’s memory, leaving no room for data previously stored in
the device.
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6 A provable secure memory-erasure protocol against distant attackers

• Interactive phase: verifier and prover interact over a number of challenge/response rounds;
the verifier measures the round-trip-time of those exchanges and stores all the challenges
and their corresponding responses.

• Verification phase: the verifier accepts the proof if all challenge/response pairs from the in-
teractive phase satisfy a prescribed verification test, and if the round-trip-times are below
the time threshold ∆.

Prover[ρ] Verifier[ρ, I]

. . . . . . . . . . . . . . . . . . . . . Initialisation phase . . . . . . . . . . . . . . . . . . . . .

σ ← Precmp(ρ,Υ) Υ Υ←$ I

. . . . . . . . . . . . . . . . . . . . . . Interactive phase . . . . . . . . . . . . . . . . . . . . . .

for i := 1 to r xi ← Chal(ρ)

xi tbi ← clock()

yi ← Resp(ρ, σ, xi) yi tei ← clock()

. . . . . . . . . . . . . . . . . . . . . Verification phase . . . . . . . . . . . . . . . . . . . . .

∀i : Vrfy(ρ,Υ, xi, yi) = true

∀i : tei − tbi < ∆

Figure 6.2: PoSE-DB protocol session

Notice that there are no identities exchanged during the protocol, nor pre-shared cryptographic
material. Like in existing software-based memory attestation and erasure protocols, we assume the
existence of an out-of-the-band authentication channel, such as visual inspection, that allows the
verifier to identify the prover. In Definition 18, we formally specify PoSE-DB protocols as a set
of algorithms to be executed by the prover and the verifier. We do not specify the way in which
messages are exchanged or the time verification step. These are handled by the security definition
as described below, considering a Dolev-Yao model with a distant attacker that cannot act within
the challenge-response round.

Definition 18. A proof of secure erasure with distance-bounding (PoSE-DB) protocol is defined
by a tuple of algorithms (Setup,Precmp,Chal,Resp,Vrfy) and parameters (m,w, r,∆) as il-
lustrated in Figure 6.2. We have:
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6.2 A Formal Model for PoSE-DB protocols

• (ρ, I) ← Setup(m,w): computes some data ρ necessary to run the protocol and a pa-
rameter space I to be used for instantiating protocol sessions;

• Υ ←$ I: sample data uniformly from I for each protocol session; some protocols may
instantiate a hash function at this step;

• σ ← Precmp(ρ,Υ): computes a value of sizem · w, to be stored in memory;

• x← Chal(ρ): generates a uniformly random challenge;

• y ← Resp(ρ, σ, x): computes the response to the challenge. This should be a very-
lightweight operation consistent with the design principles of distance-bounding, such as
a lookup operation.

• Vrfy(ρ,Υ, x, y): determines if y is the correct response to challenge x

Consider the simple idea (similar to Perito and Tsudik’s protocol [111]) of filling the memory
of the device with random data, then challenging it to return randomly chosen blocks of that
data during the interactive phase. We call this the unconditional PoSE-DB protocol, as its security
proof, in Section 6.4, does not rely on cryptographic assumptions. For such a protocol, the param-
eter space I is set to {0, 1}m·w. This means that every protocol session will start with a random
sequence of length {0, 1}m·w, which is equal to the memory size of the prover. The complete
specification of this protocol is as follows.

Definition 19 (The unconditional PoSE-DB protocol).

• Setup(m,w): return ρ = ∅, I = {0, 1}m·w

• ψ ←$ {0, 1}m·w

• Precmp(ρ, ψ): parse ψ as t1∥ . . . ∥tm with ti ∈ {0, 1}w, return σ = t1∥ . . . ∥tm

• Chal(ρ): return x←$ [m]

• Resp(ρ, σ, x): return tx, which was stored in σ

• Vrfy(ρ, ψ, x, y): return true if and only if y = tx

Note that the erasure procedure itself running on the local device cannot be overwritten by σ.
Hence, in practice, the device should allocate memory to store and execute the erasure procedure,
and the goal should be for this procedure to introduce minimal memory overhead. This is a nec-
essary condition in any memory erasure protocol. The erasure procedure for the unconditionally
secure protocol consists in simply storing and fetching blocks from the memory. We expect its
memory overhead to be minimal.
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V A1 A0
Υ Υ

σ1x1
x1∆ y1

σ2x2
x2∆ y2 σ3

Figure 6.3: The y-axis denotes a timeline. BecauseA0 is far,A1 cannot relay the verifier’s challenge toA0
and wait for a response. A0 does helpA1 in the other phases of the protocol execution.

6.2.2 Formalizing Secure Erasure Against Distant Attackers

To define secure erasure, we formally split the adversary in two: we useA0 to denote the distant-
attacker, and A1 to denote the local (possibly corrupt) device. Like in a Dolev-Yao model, our
adversary A = (A0,A1) is in full control of the network and can corrupt agents. It can eaves-
drop, inject and modify messages sent to the network. One limitation for the pair of attackers
is given by the physical constraints of the communication medium, which are leveraged by the
distance-bounding mechanism, and the assumption that A0 is distant, i.e. sufficiently far from
the device. In our security definition we abstract away from the distance-bounding check by not
lettingA0 act between the sending of the challenge and the receipt of the corresponding response
in each round. The intuition of this abstraction is illustrated in Figure 6.3: becauseA0 is far and
the function Resp should be computed fast, A0 does not have time to respond to the verifier’s
challenge in time. We do allowA0, before each round of the fast phase, to precompute some state
σi to be used byA1 during the ith round of the fast phase. Assuming that σi is computed byA0
is without loss of generality, since A0 is unbounded and has at least as much knowledge as A1,
which forwards all information toA0. Therefore, we assume that right before the challenge xi,
the attacker’s available memory on the device is filled by σi and this is the only information that
A1 can use to compute the response in the ith round of the fast phase.

(ρ, I)← Setup(m,w); Υ←$ I
for i := 1 to r do :

σi ← A0(1w, ρ,Υ, {xj |j < i})
xi ← Chal(ρ); yi ← A1(1w, ρ, σi, xi)

return ∀i : Vrfy(ρ,Υ, xi, yi) = true

Figure 6.4: Security experiment Expm,r,w
A0,A1

.

Figure 6.4 formalizes the environment described above in the form of a security experiment.
The attacker’s restriction is formalized in Definition 20. The parameter M bounds the size of
the memory used byA on the device throughout the protocol, i.e. the maximum value of σi in
the security experiment. We consider an attacker successful if it passes the protocol while not
erasing a significant proportion of the m · w bits of memory on the device. Assume the portion
of memory that is needed by the adversary to store malware or any other information is y. If the
adversary needs to use more than m · w − y bits to successfully execute the protocol, then the
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device becomes “clean”, as the memory required by the attacker is erased. Therefore, the goal of
the attacker is to use at mostM = m · w − y bits of space during the protocol execution.

Definition 20. An adversaryA = (A0,A1) against the memory challenge game isM -bounded
if and only if in any execution of Expm,r,w

A0,A1
and any round iwe have that |σi| ≤M .

To evaluate the security of a givenPoSE-DBprotocol, we will consider the class ofM -bounded
adversaries and determine the probability of any adversary from this class to win the security game.

Definition 21 (PoSE-DB security). Assume some fixed parameters (m, r, w) for the experiment
from Figure 6.4. An adversary (A0,A1) wins the memory-challenge game with probability ζ if and
only if Pr

[
Expm,r,w

A0,A1
= true

]
= ζ , where probability is taken over the randomness used by the

experiment.

There are similarities between our security definition presented above and the definition of
secure proof of space [58, 114], the main difference being that in proofs of space A1 is isolated
fromA0 in the interactive challenge phase.

6.3 Initial results

Before specifying and analysing our two PoSE-DB protocols, we provide useful initial results on
the security of PoSE-DB protocols in general. Concretely, we show that PoSE-DB security in-
creases proportionally to the number of rounds. This will allow us to simplify the security analysis
by proving a level of security for the protocol executed in a single round, and then generically de-
riving the corresponding security guarantees over multiple rounds. Throughout all our proofs
we consider deterministic adversariesA. This is without loss of generality: since our security def-
inition upper-bounds the success probability of A, we can always consider that A is initialized
with its best random tape. In this setting, by fixing its best-case random-tape, we can consider
A deterministic. This idea is well known and has been applied elsewhere [133]. Note that we
still have randomness left in the security experiment, coming from probabilistic choices in honest
algorithms.

Let Υ be an element from the initialization space I of a PoSE-DB protocol. For an adver-
sary A = (A0,A1), denote by Pr

Υ←$I
[Ar] the probability that A wins the memory game with

r rounds. For a fixed Υ, let the corresponding winning conditional probability be Pr[Ar |Υ].
We say that an adversaryA = (A0,A1) playing the memory challenge game with fixed Υ ∈ I
is uniform if, for any sequence of challenges (x1, . . . , xr), A0 returns the same state σi in each
round, i.e. σ1 = · · · = σr. The following lemma allows us to focus on uniform adversaries when
proving the security of a PoSE-DB protocol. The main idea of the proof is that, since the chal-
lenge in each round is chosen independently, the best thatA0 can do in any round is to choose a
state σµ that maximizes the success probability ofA1 for a random challenge.

Lemma 7. For anyM -bounded adversaryA against the PoSE-DB security experiment, there is
a uniform M -bounded adversary Ā that wins the experiment with at least the same probability:
Pr

Υ←$I
[Ar] ≤ Pr

Υ←$I
[Ār].
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Proof. It is sufficient to prove that, for any fixed Υ ∈ I , we have Pr[Ar |Υ] ≤ Pr
[
Ār
∣∣∣Υ]. In

this case, sinceA = (A0,A1) is deterministic and Υ is fixed, for every i the stateσi+1 returned by
A0 is uniquely determined by the sequence of challengesx1, . . . , xi in the experiment Expm,r,w

A0,A1
.

Let Σ be the set of all possible states σi that can be output in any round byA0 over all possible
sequences of challenges. We denote by Pr[A1 |Υ, σ ] the probability that A1 answers a single
challenge correctly when given the state σ as input:

Pr[A1 |Υ, σ ] = Pr[Vrfy(ρ,Υ, x, y) |x← Chal(ρ), y ← A1(1w, ρ, σ, x) ]

where the probability is taken over the randomness used by the challenge generation algorithm.
We define σµ to be the state in Σ for which the probability of winning given a random challenge
is maximal σµ = arg maxσ∈Σ Pr[A1 |Υ, σ ]. Let Ā = (Ā0,A1), where Ā0 always returns σµ,
independent of the set of challenges it obtains as input. Note that Ā is (M0, q)-bounded, since
the state returned by Ā0 is among the possible states returned byA0, and the adversaryA1 is the
same. We will now show that Ā achieves at least the same probability of success asA. If x̄k is a
sequence of challenges {x1, x2, . . . , xk}we denote by:

• Pr
[
Ak
∣∣∣Υ, x̄k

]
the probability that the adversary A gets a correct answer in the first k

rounds given that the first k challenges are x̄k. As A is deterministic, this probability is
either 0 or 1.

• Pr
[
At(x̄k)

∣∣Υ, x̄k

]
the probability that the adversaryA gets a correct answer in t succes-

sive rounds starting from round k + 1 given that the challenges in the first k rounds are
x̄k.

• Pr[x̄k |Υ] the probability, taken over the randomness used by the challenge algorithm,
that the first k challenges are x̄k.

For a vector of challenges x̄k we have Pr
[
A1(x̄k)

∣∣Υ, x̄k

]
= Pr[A1 |Υ, σ, x̄k ] where σ ←

A0(x̄k) and:
Pr[A1 |Υ, σ, x̄k ] = Pr[A1 |Υ, σ ] ≤ Pr[A1 |Υ, σµ ]

where the equality comes from the independence between A1 and x̄k given Υ, σ; the inequality
follows by definition ofσµ. Using the inequality above, we prove by induction that, for anyk ≥ 0,
we have Pr

[
Ak+1

∣∣∣Υ] ≤ Pr
[
Āk+1

∣∣∣Υ]. The case k = 0 is trivial. For k > 1, we apply the
induction hypothesis to obtain:

Pr
[
Ak+1

∣∣∣Υ]
=
∑
x̄k

Pr[x̄k |Υ] · Pr
[
Ak
∣∣∣Υ, x̄k

]
· Pr

[
A1(x̄k)

∣∣∣Υ, x̄k

]
≤
∑
x̄k

Pr[x̄k |Υ] · Pr
[
Ak
∣∣∣Υ, x̄k

]
· Pr[A1 |Υ, σµ ]

= Pr
[
Ak
∣∣∣Υ] · Pr[A1 |Υ, σµ ]

≤ Pr
[
Āk
∣∣∣Υ] · Pr[A1 |Υ, σµ ] = Pr

[
Āk+1

∣∣∣Υ]
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Next, we show that there is a direct relationship between the winning probability of an adver-
sary in one round and the winning probability in multiple rounds. The analysis is simplified by
the fact that we can focus on uniform adversaries, according to Lemma 7. If the initialization pa-
rameters are fixed, it follows immediately that running the experiment for r rounds exponentially
decreases the cheating ability of the adversary.

Lemma 8. For any uniform adversaryA and any Υ ∈ I , we have Pr[Ar |Υ] = Pr
[
A1 ∣∣Υ]r.

Proof.
Pr[Ar |Υ] = Pr[Ar |Υ, σ ← A0 ] = Pr[A |Υ]r

When lifting this lemma to uniformly chosen parameters fromI , it will be necessary to account
for the fact that the (one-round) adversary may be lucky on a small proportion of those random
choices. The following definition and proposition tolerate this, by bounding the success proba-
bility of the adversary only for a subset of good parameters, and showing the effect after r rounds.

Definition 22. For a set Igood ⊆ I and a value ζ < 1, we say thatA’s winning probability is
bounded by ζ within Igood if and only if ∀Υ ∈ Igood : Pr

[
A1 ∣∣Υ] ≤ ζ .

If the proportion of cases I \Igood in which the adversary is lucky is negligible, then for a large
enough number of rounds the success probability of the adversary is also negligible, as shown by
the next proposition.

Proposition 2. Given ζ < 1, Igood ⊆ I and a uniform adversaryAwhose winning probability
is bounded to ζ within Igood, we have Pr

Υ←$I
[Ar] ≤ ζr + |I\Igood|

|I| .

Proof. From Lemma 8, we have:

Pr
Υ←$I

[Ar] = 1
|I|

∑
Υ∈I

Pr[Ar |Υ] = 1
|I|

∑
Υ∈I

Pr[A |Υ]r

To reduce notation in what follows, we let pΥ = Pr[A |Υ] and omit Υ ∈ I when we sum
over all Υ in I . We have:∑

Υ
Pr[A |Υ]r =

∑
Υ
pr

Υ =
∑

Υ,pΥ>ζ

pr
Υ +

∑
Υ,pΥ≤ζ

pr
Υ

≤
∑

Υ, pΥ>ζ

1 +
∑
Υ
ζr ≤

∑
Υ, pΥ>ζ
Υ∈Igood

1 +
∑

Υ, pΥ>ζ
Υ/∈/Igood

1 +
∑
Υ
ζr

≤ 0 + |I \ Igood|+ |I| · ζr

where for the last inequality we use that A’s winning probability is bounded to ζ within Igood
to deduce that the first sum is empty and that the second one has at most |H \ Hgood| terms.
Combining the two results above, we deduce Pr

Υ←$I
[Ar] ≤ ζr + |I\Igood|

|I| as claimed.
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6.4 The unconditional PoSE-DB protocol

This section provides the security analysis for the unconditional PoSE-DB protocol presented in
Section 6.2, Definition 19. Notice that the adversary A1 is memory bounded, but may do any
amount of computation. Recall that the value y = m · w −M is the amount of memory that
the adversary cannot erase (where it may store malware).

Before proving Theorem 2, we need some preliminary definitions and results. Let

Sc =
c∑

j=0

(
m

j

)
(2w − 1)j

for c ≥ 0. This coincides with the cardinality of a Hamming sphere over an alphabet of size 2w

as defined in [40].

Lemma 9. If 0 ≤ c < m and 2w ≥ m+ 3 thenm(m+ 1)
(m

c

)
(2w − 1)c ≥ 2w · Sc−1.

Proof. By induction on c. The base case c = 0 follows directly. We need to prove the induction
step: m · (m+ 1) ·

( m
c+1
)
· (2w − 1)c+1 ≥ 2w · Sc. First we prove:

m(m+ 1)
(

m

c+ 1

)
(2w − 1)c+1

≥ m(m+ 1)
(
m

c

)
(2w − 1)c + 2w

(
m

c

)
(2w − 1)c

⇐⇒ m · (m+ 1)
c+ 1 · (2w − 1) ≥ m · (m+ 1)

m− c
+ 2w

m− c

⇐⇒ m · (m+ 1) · (m− c)
c+ 1 · (2w − 1) ≥ m · (m+ 1) + 2w

which follows from m·(m+1)·(m−c)
c+1 · (2w − 1) ≥ m · (m+ 1) + 2w. We conclude:

m · (m+ 1) ·
(

m

c+ 1

)
· (2w − 1)c+1

≥ m · (m+ 1) ·
(
m

c

)
· (2w − 1)c + 2w ·

(
m

c

)
· (2w − 1)c

≥ 2w · Sc−1 · (2w − 1)c−1 + 2w ·
(
m

c

)
· (2w − 1)c

= 2w · Sc

Lemma 10. If y ≥ m+ w and c is maximal s.t. Sc ≤ 2y , then c ≥
⌈

y−m−w+1
w

⌉
.

Proof. Assume the contrary, c <
⌈

y−m−w+1
w

⌉
=⇒ (c+ 1) · w +m ≤ y. Then:
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Sc+1 =
c+1∑
j=0

(
m

j

)
· (2w − 1)j ≤

c+1∑
j=0

(
m

j

)
· (2w − 1)c+1

≤ 2m · (2w − 1)c+1 < 2m+w·(c+1) ≤ 2y

which is a contradiction, as cwas the largest integer with this condition.

Denote by d(ψ,ψ′) the number of blocks in which two bitstrings of sizem ·w differ. For a set
R ⊆ {0, 1}n·w, let dc(R,ψ′) the number of ψ ∈ R s.t. d(ψ,ψ′) ≥ c.

Lemma 11. If c ≥ 1, ψ′ ∈ {0, 1}m·w,R ⊆ {0, 1}m·w then dc(R,ψ′) ≥ |R| − Sc−1.

Proof. If |R| ≤ Sc−1 the claim is trivial. Assume |R| > Sc−1. Notice that there are ex-
actly

(m
j

)
(2w − 1)j bitstrings r of size m · w such that d(ψ,ψ′) = j. Then, there are at most∑c−1

j=0
(m

j

)
(2w − 1)j = Sc−1 bitstrings in R such that they differ from ψ′ in less than c blocks.

Lemma 12. If c ≥ 1, y ≥ 0 are integers, ∪k
i=1Ri is a partition of {0, 1}m·w with k ≤ 2m·w−y ,

and ψ′i ∈ {0, 1}m·w, then
∑k

i=0 dc(Ri, ψ
′
i) ≥ 2m·w−y · (2y − Sc−1).

Proof. Without loss of generality assume k = 2m·w−y (we can always add empty sets to the
partition). By Lemma 11, dc(Ri, ψ

′
i) ≥ |Ri| − Sc−1. Adding for allRi:

k∑
i=0

dc(Ri, ψ
′
i) ≥

k∑
i=0

(|Ri| − Sc−1) = 2m·w − k · Sc−1 = 2m·w−y · (2y − Sc−1)

Theorem 2. Assume that the unconditional PoSE-DB protocol is instantiated with parameters
(m, 1, w). LetA be any adversary with measure (M,∞). Then, there exists a setI1

good ⊆ I such
thatA’s winning probability is bounded to 1−m−1 withinI1

good and
∣∣∣I1

good

∣∣∣ ≥ 2m·w·(1−2−y).
Furthermore, if y ≥ m+w, then there exists a set I2

good ⊆ I such thatA’s winning probability
is bounded to 1−

⌈
y−m−w+1

w

⌉
m−1 within I2

good and
∣∣∣I2

good

∣∣∣ ≥ 2m·w · (1− (m2 +m) ·2−w).

Proof. Let σ be a bitstring of size M . Let Rσ = {ψ1, . . . ψk} be the set of all bitstrings such
that A0(1w, ρ, ψi) = σ. We will lower-bound the number of queries related to elements in
Rσ for which A1 gives an incorrect answer. To prove the first result, we count for how many
bitstrings there is at least one error. Call this set I1

good. Let ψ′ be the concatenation of the blocks
in {A1(1w, ρ, σ, 1), . . . ,A1(1w, ρ, σ,m)}, i.e. a bitstring of sizem ·w. Sinceψ′ can be equal to
at most one string inRσ ,A1 is wrong for at least one input q ∈ {1, . . . ,m} for at least |Rσ| − 1
of the bitstrings inRσ . Summing up for all possible setsR and for all possible σ, we deduce that
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6 A provable secure memory-erasure protocol against distant attackers

A1 is wrong for at least one query with respect to at least 2m·w − 2m·w−y bitstrings (as there are
at most 2m·w−y different setsRσ). We obtain

∣∣∣I1
good

∣∣∣ ≥ 2m·w · (1− 2−y) and:

∀r ∈ I1
good : Pr

q←$[n]
[A1(1w, ρ, σ, q) is correct |σ ] ≤ 1−m−1

where σ ← A0(1w, ρ, ψ).
Next we prove the second result. Assume that y ≥ m+ w and 2w ≥ m+ 3. For eachRσ as

in the proof for the first result, we will be interested in lower-bounding the number of errors that
A1 makes while answering the queries of a challenger using some ψ ∈ Rσ . Notice this is exactly
d(Rσ, ψ

′) defined above. Clearly the set of all possible R is a partition of {0, 1}m·w with size at
most 2m·w−y . Let c be the largest integer such that Sc ≤ 2y holds. By Lemma 10, we have that
c ≥

⌈
y−m−w+1

w

⌉
. Let I2

good be the set of all substrings ψ such that A1 makes at least c errors

while answering queries about ψ. From Lemma 12 we deduce that
∣∣∣I2

good

∣∣∣ ≥ 2m·w−y · s, where
s = 2y − Sc−1. By Lemma 9:

2m·w = 2m·w−y(Sc−1 + s) ≤ 2m·w−y

(
m(m+ 1) · 2−w

(
m

c

)
· (2w − 1)c + s

)
≤ 2m·w−y · (m(m+ 1) · 2−w + 1) · s =⇒

∣∣∣I2
good

∣∣∣ ≥ 2m·w(1−m(m+ 1)2−w)
ThenA1 makes

⌈
y−m−w+1

w

⌉
errors for 2m·w ·

(
1− (m2 +m) · 2−w

)
bitstrings.

From Proposition 2 and Theorem 2, we obtain:
Corollary 2. If we execute the unconditional PoSE-DB protocol for r rounds in presence of any
M -bounded adversary, then Pr

[
Expm,r,w

A0,A1
= true

]
≤ (1−m−1)r + 2M−m·w. Furthermore,

ifM ≤ m ·w−m−w the bound improves to (1−
⌈

m·w−m−w−M+1
w

⌉
·m−1)

r
+m · (m+

1) · 2−w.
For example, if we would like to erase a malware of size at least 6 KB from a device with total

memory 100 KB, then the parameters would be w = 256,m = 100 · 213/256 = 3200,M =
(100− 6) · 213 = 770048. If we wanted to be certain of erasure with probability 10−3, the first
bound tells us we need to execute the protocol for 22102 rounds, while the second bound for 121
rounds. In general, the second bound is better, but it can only be applied when the size of the
malware is big enough. For example, on this device, we have m + w = 3456, which is less than
0.5 KB; so we can apply the bound to erase any malware of greater size.

6.5 Conclusions

In this chapter we proposed a secure memory-erasure protocol based on distance bounding tech-
niques, and proved it secure against distant attackers. Furthermore, we showed how to reduce
the security analysis of this type of protocol to the case of a single round in the interactive phase.
These results will also be useful in Chapter 8, where we propose another PoSE-DB that reduces
the communication complexity during the initialization phase.
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7 The ex post facto argument
revisited

In this chapter we introduce the pebbling games and the ex post facto argument, which are the
core of our new erasure protocol in Chapter 8. First we define pebbling games, a combinatorial
problem which is played on graphs and has found numerous applications in computational com-
plexity. Then, we explain the ex post facto argument, a technique has been used to translate lower
bounds on pebbling games into more general computational bounds. Finally, we review a well
known result in this setting and prove that the originally stated bound is not accurate.

7.1 Pebbling games

Pebbling games are combinatorial games where a single player puts pebbles in the nodes of a di-
rected graph. In this thesis we focus on the original version of these games, the black pebbling
game, in which there is just one type of pebbles. Next, we introduce some graph definitions and
notations that will be necessary to understand these games.

A graphG contains a set of nodes V (G) (also called vertices) and a set of pair of nodes E(G)
(also called edges). If the edges are directed (which means that (a, b) ̸= (b, a)), then the graph
is directed. A cycle in a graph is a sequence of nodes and edges (v1, e1 . . . , vk, ek) such that for
each i ∈ {1, . . . , k − 1} we have ei = (vi, vi+1), and ek = (vk, v1). A graph is acyclic if it
contains no cycles. The successors of a node a are all vertices b such that the edge (a, b) exists.
Similarly, the predecessors of a are all vertices b such that the edge (b, a) exists. Given a directed
acyclic graph (DAG)G, the list of successors and predecessors of the node v inG are respectively
Γ+(v) and Γ−(v). If Γ−(v) = ∅ then v is an input node, and Γ+(v) = ∅ then v is an output
node. Next we define the black pebbling game as in [70].

Definition 23 (Black pebbling game). The black pebbling game is played on a degree-bounded
directed acyclic graph (DAG) G by placing a number of tokens (a.k.a. black pebbles) on the ver-
tices ofG according to the following rules:

• At each time step, a pebble may be added to an unpebbled vertex, or removed from a peb-
bled vertex.

• A pebble can be placed on a vertex only if all its predecessors are pebbled. Thus, a pebble
can be placed in a vertex without incoming edges at any time.

• A pebble can be removed from a vertex at any time.

The game starts with all nodes without pebbles and ends when a given output vertex inG is peb-
bled. The maximum amount of pebbles used at any point during the game P is called pebbling
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7 The ex post facto argument revisited

complexity and denoted by peb(P). A game with n steps is represented by a sequence of subsets
of nodes in the graph (P0, · · · ,Pn), where the index represents time steps,P0 = ∅ andPn con-
tains the output vertex. The pebbling complexity of this game is thus equal to max0≤i≤n |Pi|
and its length |P| equals the number of time steps n.

We say that subset of nodes S was pebbled during the game when ∀v ∈ S ∃i ∈ [n] : v ∈ Pi,
i.e. each node in S was pebbled at least once during the game. A conditional pebbling game is a
game for which the starting set of pebbled nodes is arbitrary and at the end the output node does
not need to be pebbled.

Pebbling games have been widely studied, and many ground-breaking results have been ob-
tained as a result. It is known that the pebbling complexity of any graph with n vertices is at most
O( n

log(n)) [77]. The relation between the pebbling complexity and the length of the game may
have sharp changes [119]: there exist graphs and games with minimum length for a given pebbling
complexityP0,P1 with peb(P0) = s, peb(P1) = s+ 1, |P1| = poly(n) and |P0| = O(2n).
Computing the pebbling complexity of a graph is known to be a PSPACE-complete problem
[69].

Pebbling results depend on properties of the graphs where the game is played. Superconcentra-
tor graphs are a family of graphs with many applications in this area.

Definition 24. [Superconcentrator [110]] A directed acyclic graph with bounded indegree, n
inputs, and n outputs is an n-superconcentrator if for any 1 ≤ k ≤ n and any set {s1, . . . , sk}
of inputs and {t1, . . . , tk} of outputs there are k vertex-disjoint paths connecting the si to the ti.

The superconcentrator property has led to many interesting pebbling results. A few classic
pebbling results that can be easily proved for graphs with this property follow:

Lemma 13 ( [110]). Suppose thatG is anN -superconcentrator,P is a subset of nodes with peb-
bles and |P| ≤ s, andZ is a set of strictly more than s outputs inG. Then at leastN − s inputs
inG have completely pebble-free paths to nodes inZ .

Lemma 14 (basic lower bound argument (BLBA) [88]). Suppose that a ≤ b are two indices and
P = (Pa,Pa+1, · · · ,Pb) is a conditional pebbling game on an N -superconcentrator G such
that |Pa| ≤ sa, |Pb| ≤ sb, and P pebbles at least sa + sb + 1 output nodes from G. Then P
pebbles and unpebbles at leastN − sa − sb different input nodes.

For an in-depth survey of pebbling results and applications in Proof Complexity see the excel-
lent survey by Nordström in [107].

7.2 The ex post facto argument revisited

In this section we revise a lemma relating pebbling games with computational bounds from [57].
First we show that the result is not valid as originally stated. Then we explore one possible fix for
the lemma, which enforces a more realistic adversary. For this case we also find a counter example,
but this one required an exponential number of operations. We leave as an open problem if the
modified lemma is valid if adversaries are polynomially bounded.
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Dwork et al. proposed in [57] a very influential technique that allows to translate computational
bounds from a graph-based game to a computational model, referred to as the ex post facto argu-
ment. The original application was the creation of easy-to-check proofs of computational effort,
which is essential to secure decentralizing payment systems and thwart denial of service attacks,
such as spamming. Their observation was that functions whose computational time is dominated
by the number of memory accesses (memory-bound functions) are not affected by the progress
in computational power as much as functions whose computational time is dominated by CPU
access (CPU-bound functions). The reason being that CPU speed has grown at a faster rate than
access speed to memory.

Memory-bound functions, and their analysis via the ex post facto argument, have seen applica-
tions in proofs of space [13, 58], proofs of sequential work [92], memory hardness [7] and secure
erasure [81]. Notably, these works focus on functions built over a labelled directed graph whose
input is the set of vertices with in-degree zero and whose output is the label of the output node
(with out-degree zero).

Definition 25 (graph labelling function). Given a hash function h and a DAG G with set of
vertices V (G) and set of edgesE(G), a labelling function ℓ : V (G)→ {0, 1}w is defined by,

ℓ(v) := h(v∥l(v1)∥ . . . ∥ℓ(vd))

where Γ−(v) = (v1, . . . , vd). If v has no predecessor, then ℓ(v) = h(v). We let ℓ−(v) :=
v∥ℓ(v1)∥ . . . ∥ℓ(vd).

To analyse the complexity of an algorithm wishing to compute a labelling function, the ex post
facto argument considers a computational model where algorithms are memory bounded and have
access to a hash function modelled as a random oracle. The latter means that an algorithm cannot
compute the output of the hash function, unless it calls the random oracle [22].

The ex post facto argument establishes a relation between the time, measured in terms of the
number of calls to the random oracle, and memory, required when computing a labelling function
and the strategy used to play the black pebbling game on the same graph, which was defined in
Definition 23. Next we define the ex post facto argument, following [57].

Definition 26 (The ex post facto argument). Given the execution of an algorithmA with access
to an oracle, the ex post facto pebbling game associated with this execution is defined as follows:

• Placing initial pebbles: At the beginning, some nodes in the graph may contain a pebble,
as part of the initial configuration. Which are these nodes is determined by the following.
If the label of node v is used as part of a call to the oracle to compute another label, but the
label of v was not computed before, then there is a pebble in v in the initial configuration.

• Placing a pebble: IfA asks the oracle the label of a node, then place a pebble on the node.

• Removing a pebble: A pebble is removed as soon as it is not needed any more. Here we use
our clairvoyant capabilities (i.e. the whole execution of the algorithm is known) to minimize
the number of pebbles used during the game.
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We say that the algorithm asks (the oracle) for the label of node v when it calls the oracle on
input ℓ−(v). If v has a predecessor v′, then we say the label of node v′ was used in the call to the
oracle (notice that by construction ℓ(v′) is part of ℓ−(v)).

In the original article the adversary’s architecture consists of a cache with s words of size w
and a memory of size z. Our results are independent of such division. Hence, for simplicity, we
consider algorithms with s ·w bits of memory. The output of the hash function is also of sizew.

Lemma 15 (Lemma 1 in [57], simplified). Consider an algorithm that operates for a certain num-
ber of steps and uses at most s ·w bits of memory. Then, with probability 1−2−w, the maximum
number of pebbles at any given point in the corresponding ex post facto pebbling game is bounded
by s.

A counter example

Remark 1. Lemma 15 does not hold.

Proof. Our counterexample is an algorithm for which with probability 1 the number of pebbles
in the ex post facto pebbling game is greater than s. Let k > 1 be a positive integer such that
s > k ·w. Consider the graphGwith n disjoint copies of a directed edge, where n = s− 1 + k,
and an algorithm that computes the labels of the output nodes ofG as follows:

1. Compute the labels of the input nodes inG one by one, but for each label do not store the
last bit. This leaves w bits unused out of the s · w bits of memory available, which can be
calculated as follows.

n · (w − 1) + w = (s− 1 + k) · (w − 1) + w

= s · w + k · w − (s+ k − 1) ≤ s · w − k < s · w

2. Compute the labels of the output nodes in G one by one, where for each label two oracle
calls are needed, as we need to try the two possible values because we did not store the last
bit of the label of the predecessor. These labels are stored in the w bits that were unused
(the computation overwrites the previous value each time a new label is computed).

In the ex post fact pebbling game, Step 1 of the algorithm corresponds to putting pebbles in all
input nodes, none of which is removed until the start of Step 2. During Step 2, the output nodes
are pebbles in order, and pebbles from the output node and its predecessor input node are erased
(as they are not needed afterwards). Therefore, the algorithm above satisfies that its ex post facto
pebbling game uses at least n pebbles right before Step 2. We finish the proof by noticing that
n = s− 1 + k > s, so the pebbling uses more pebbles that words of memory, as claimed.

Notice that the above counter example uses the fact that the algorithm, as stated, does not have
a target value, i.e. it does not need to compute a specific value of the labelling function correctly.
We could try to make the previous lemma valid by restricting the algorithm as follows. Let A
be an algorithm that aims to compute the label of the output node of a graph. The algorithm is
successful when it computes the label of the output node correctly, and outputs this value right
before finishing its execution.
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Remark 2. Lemma 15 is incorrect even if we demand that the algorithm is successful with prob-
ability 1, i.e. always computes correctly the label of the output node.

Proof. Assume that s ≥ k · w for some k > 4. Consider the graph G with n disjoint copies
of a directed edge ai → bi for 11 ≤ i ≤ n, where n = s − 4 + k, and edges bi → bi+1 for
1 ≤ i ≤ n+ 1 and an algorithm that pebbles the output node bn+2 ofG as follows:

1. Compute the label of node bn+1 by using 3 words of memory, and store this value.

2. Compute the labels of the input nodes inG one by one, but for each label do not store the
last bit. This fits in the remaining memory and leaves 3 · w bits unused, because:

n · (w − 1) + w + 3 · w = (s− 4 + k) · (w − 1) + w

= s · w + k · w − (s+ k − 4) < s · w

3. Using the partial labels computed in the previous step, and the 3·w bits of space that remain
unused, we will try all possible combinations of the missing bits (exactly 2n) and compute
the label of bn+1 according to that combination.

4. Finally, from the stored value of bn+1 in step 1, compute the label of bn+2.

For the previous algorithm, the maximum number of pebbles in the ex post facto pebbling is at least
n, with probability 1, which happens after step 2 is finished. The reason is that all these pebbles
will be used later to put other pebbles during step 3 (bi for 1 ≤ i ≤ n), but none of these labels
is recomputed, so they cannot be removed by the “removing pebble” rule. We finish the proof by
noticing that n = s − 4 + k > s, so the pebbling uses more pebbles that words of memory, as
claimed.

The counter example above uses an exponential number of calls to the random oracle. We
believe that if the algorithm is restricted to a polynomial number of oracle calls, similar examples
may not exist. Still, the specific bound in Lemma 15 may still be inaccurate.

An extension of Lemma 1 in [57] was stated in [60], although the actual proof of this extension
appears in Theorem 4.2 in [59]. In particular, this extension also adds a logarithmic loss, which
makes sense given that this result is more general than the original one. Still, to the best of our
knowledge the following lemma, which is a specialization of Theorem 4.2 in [59], is the best result
that has been obtained in line with Lemma 1 in [57]. The interested reader may derive its proof
from its generalization mentioned before.

Lemma 16. Consider an algorithm A that makes at most q oracle queries and has s · w bits of
memory, and a DAGG. Then the ex post facto pebbling ofG corresponding to an execution ofA
uses at most s·w+w

w−log(q) pebbles with probability 1− 2−w (over the choice of the random oracle).

Similar results in the literature, where a pebbling bound is translated into a computational
bound using the ex post facto argument, are Proposition 2.31 in [81] and Lemma 1 in [13]. The
bounds in these results are tight, and their proofs use similar arguments to Dwork’s in [57]. There-
fore, although we have not proved them incorrect, we believe they could be, and leave the verifi-
cation of these results as future work.
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7.3 Conclusions

In this chapter we showed a counterexample to a known result on the relation between pebbling
games and computational bounds. We offered two possible paths for fixing the issue, although
none of them seems conclusive. As far as we are aware, a tight reduction between pebbling com-
plexity and computation complexity is still an open problem. The issue found with the original re-
sult does not affect greatly most of its applications, given that a corrected version exists, Lemma 16,
and it incurs only in a logarithmic loss. Nevertheless, for applications where tightness is necessary
(for example, memory-erasure), the counter-example found does affect its feasibility.

In the next chapter, we propose a new memory-erasure protocol based on graphs. To prove
the protocol secure, we show computational bounds of adversaries aiming to compute labelling
functions on graphs similar to the ones discussed in this chapter. For the reasons explained above,
in particular the lack of tight bounds such as the one in Lemma 15, we used proofs techniques
more inline with Lemma 16, even though they incur in a logarithmic loss.
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In this chapter we propose a software-based memory-erasure protocol based on graphs. Similar
to the protocol introduced in Chapter 6, it aims to be secure against distant attackers. Its main
objective is to reduce the communication complexity by avoiding the need to send a random value
of the size of the prover’s memory at the beginning of the protocol.

8.1 Introduction

Memory-erasure protocols such as the one by Perito [111] and the one in Chapter 6 require that
the verifier sends a sequence of bits as large as the prover’s memory. This may be undesirable in
some contexts, e.g. when the communication channels have limited capacity. Therefore, several
works [60, 81] have tried solving this issue with varying degree of success. In these protocols the
verifier sends a small seed to the prover, which uses it to compute the labelling of a suitably chosen
graph and respond with the label of an output node. If executing this computation requires the
prover to erasure its memory, then the verifier can confirm this by checking if the label received
is correct. Unfortunately, these works are either inefficient [60] (require quadratic time) or are
not able to erase but a relatively small fraction of the prover’s memory [81]. Furthermore, both of
them depend on the assumption that the prover is isolated during the execution of the protocol.

In this chapter we aim to solve these issues. To this end, we propose a graph based memory-
erasure protocol with the same structure of the protocol in Chapter 6. During the first phase the
verifier sends a seed which is used to compute the labelling of a graph by the prover. In this case
the graph does not contain a single output node, but as many output nodes as are required so that
its labels fill the prover’s memory. In the second phase (interactive phase), we run several time-
bound rounds to verify that those labels are stored. To prove our protocol secure, we identify a
depth-robustness property for the graph that ensures its security: we show that a cheating prover
needs to spend significant time to recompute any missing labels, so it will be caught by the verifier
during the interactive phase.

We therefore propose a new class of graphs that allows our protocol to proceed in two phases,
first compute and store the labels, and then reply to several rounds of challenges, thus proving
that labels are stored. Then we prove that the resulting protocol can securely erase all but a small
proportion of the prover’s memory. Furthermore, our protocol provides its security guarantees
in the presence of a distant-attacker, without resorting to device isolation or protected memory
assumptions. The graphs we propose (Section 8.3) satisfy a classic property of depth-robustness
and can be labelled in-place, i.e. by using only a constant memory overhead for the prover. Finally,
in Section 8.4 we propose a lightweight variant of our graph, which achieves more performance
with slightly less security requirements.
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8.2 PoSE based on depth-robust graphs

This section proposes a protocol where the prover computes the labelling of a graph in its memory,
starting from a small random seed transmitted by the verifier which is used to instantiate a hash
function. We use the random oracle methodology to model and reason about the access of the
adversary to this hash function [22].

Graph labelling (Definition 25) is a well established technique used in protocols for proofs of
space [13, 58, 114], memory hardness [3, 4, 5, 6, 7] and classic secure erasure [60, 81]. The typical
structure of these protocols is as follows:

• the verifier sends a nonce to the prover, which is used as a seed to determine the hash func-
tion h;

• the prover uses h to compute the labelling of an agreed-upon graph G, and stores the re-
sulting labels of a subset of nodes, denotedO(G);

• the verifier challenges the prover to reply with the labels of several randomly chosen vertices
in the graph, and accepts the proof if these labels are correct.

Let m be the size of O(G). The general goal of this technique is to ensure that any cheating
prover that uses less thanmwords of memory to compute the responses can only do so correctly
by paying a noticeable amount of computational time. This has been achieved by using depth-
robust graphs [63, 114], which are graphs that contain at least one long path, even if a significant
proportion of nodes have been removed. Intuitively, in the corresponding protocol, this means
that the label for at least one of the verifier challenges will be hard to compute if the prover has
cheated.

LetH be the set of all functions from {0, 1}κ to {0, 1}w, for a suitably largeκ. Elements from
the setH are also called random oracles, since we will make the random oracle assumption for h
drawn from this set. We useAO to denote that the adversary has access to oracleO.

Given a DAG Gm, a hash function h ∈ H (which we model as a random oracle) and a list of
nodesO(Gm) ⊆ V (Gm) of sizem, we define our remote memory-erasure protocol as follows:

• Setup(m,w): return ρ = (Gm, O(Gm)), I = H

• h←$ H

• Precmp(ρ, h): compute the labels of the nodes inO(Gm), and output the concatenation
of these labels σ = l(o1)∥ . . . ∥l(om) where (o1, . . . , om) = O(Gm)

• Chal(ρ): return a random vertex inO(Gm)

• Resp(ρ, σ, x): responds with l(x), which was stored in σ

• Vrfy(ρ, h, x, y): return true if and only if y = l(x)

The protocol defined above cannot be secure if the attacker is allowed to do an unbounded
number of operations during each round of the interactive phase, as in the simple protocol in
Chapter 6. Therefore, taking into account that during each round of the fast phase the attacker
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8.2 PoSE based on depth-robust graphs

can only do a small amount of computation, we will restrict the number of operations done by
A1. In the new security definition, given thatA1 has utilizes a hash function, we will restrict its
use through an oracle and count the number of callsA1 makes to it. This restriction is formalized
by the parameter q in Definition 27 that bounds resources for an adversary.

Definition 27. An adversary A = (A0,A1) against the memory challenge game is (M, q)-
bounded if and only if in any execution of Expm,r,w

A0,A1
and any round iwe have that |σi| ≤M and

A1 makes at most q queries toO.

We also slightly modify the security game to include the attacker’s access to the random oracle,
as shown in Figure 8.1. Notice that the results from Section 6.3, which reduce the analysis of
PoSE-DB protocols with several rounds in the interactive phase to a single round, can be easily
extended to this new setting (only Lemma 7 needs adjusting).

(ρ, I)← Setup(m,w); h←$ H

for i := 1 to r do :
σi ← A0(1w, ρ, h, {xj |j < i})
xi ← Chal(ρ); yi ← AO

1 (1w, ρ, σi, xi)
return ∀i : Vrfy(ρ, h, xi, yi) = true

Figure 8.1: Security experiment Expm,r,w
A0,A1

.

In order to prove our graph-based PoSE-DB secure, there are several issues we need to address.
First, as we need fast responses, our verifier can query only one random challenge node per round.
This means that it is not sufficient to have a single long path in the graph in order to catch a
cheating prover; we will thus strengthen the depth-robustness property to require at least a certain
number of long paths to be present. Another constraint, particularly relevant to memory-erasure,
is that we should be able to compute the graph labelling with minimal memory overhead, so that
as much memory as possible can be erased from the device. We call this property in-place, since
intuitively it means that the set of labels to be stored should be computed in almost the same
amount of space as their total size. To our knowledge, no graph in the literature exists that satisfies
these two properties. We design one in Section 8.3.

Definition 28. A graphG can be labelled in-place with respect to a list of nodesO(G) ⊆ V (G)
if and only if there is an algorithm that outputs the list of labels for all nodes in O(G) using at
most |O(G)| · w +O(w) bits of memory.

A second issue that we address lies in the tightness of the security bound, i.e. how big is the gap
between the memory erased by a cheating prover and the memory it is supposed to erase. In our
case study, this gap could be used to store malware, so it should be as small as possible. We improve
upon previous security bounds for protocols based on graph labelling, first by performing a fine-
grained and formal security analysis, and second by identifying a restricted class of adversaries,
that simplifies the proofs while also further improving the security bound. We relate this class to
previous restrictions in this area and argue that it is a strictly more general notion, resulting in
weaker restrictions for the adversary and therefore stronger security guarantees.
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8 Graph based memory-erasure

8.2.1 Depth-robustness is sufficient for security

We show that a variation of the classic graph depth-robustness property [63, 114] is sufficient to
prove security for the PoSE scheme from Section 8.2. As explained above, while depth-robustness
in all previous works requires the existence of one single long path after some nodes have been
removed, we require the existence of several long paths. The computation required by a cheating
prover in this context is proportional to the depth of the longest remaining paths. While in most
previous works the length is linear in the size of the graph, we will tolerate graphs with slightly
shorter paths, i.e. of sublinear size. On the one hand, this is useful in practice, since it will allow
us to construct a class of depth-robust graphs that can be labelled in-place efficiently. On the
other hand, we show that this does not affect security, as long as the computational power of the
adversary during the interactive phase is constrained in proportion to the prescribed path length,
which can be done by the time measurements we described in Section 6.2.

IfG is a graph and v ofG, we let llp(v,G) be the length of the longest path inG that ends in
v. IfR ⊆ V (G) is a subset of nodes, we denote byG \R the graph obtained after removing the
nodes inR and keeping all edges between the remaining nodes.

Definition 29. LetG be a DAG and letO(G) ⊆ V (G) with |O(G)| = µ. We sayG is (µ, γ)-
depth-robust with respect to O(G) if and only if for every set R ⊂ V (G) s.t. |R| < µ there
exists a subset of nodesO′ ⊆ O(G) with |O′| ≥ µ− |R| such that for every node v ∈ O′ there
is a path inG \R of length at least γ that ends in v, i.e. llp(v,G \R) ≥ γ.

The security bounds obtained using a depth-robust graph in the graph-based PoSE scheme
are presented in Corollary 3, which can be deduced from a direct application of Theorem 3 and
Proposition 2. For this protocol, the oracleO in Figure 8.1 gives toA1 oracle access to the hash
function h resulting from the initialization phase. The first part of Corollary 3 shows that we
obtain better security bounds if we consider a notion of graph-restricted adversaries, which will
be discussed in the next subsection. Note that the parameterm for the number of memory blocks
in the experiment and the bound q < γ on the number of oracle calls by A1 are related to the
pair (m, γ) determined by the depth-robustness of the graph.

Corollary 3. Assume the graph-based PoSE scheme is instantiated with parameters (m, r, w)
and an (m, γ)-depth-robust graphG. Then, for any (M, q)-bounded adversary (A0,A1), with
q < γ, we have:

Pr
h

[Expm,r,w
A0,A1

= true] ≤
(
M ′/m

)r + 2−w0 where:

• ifA is graph-restricted: w0 = w andM ′ = ⌈M/w⌉

• else: w0 = w − log(m)− log(q) andM ′ = ⌈M/w0⌉

Notice that this result is not tight for the case of general adversaries. Although not explicit here,
the proof of this result follows a similar approach as the ex post facto argument from Chapter 7. As
discussed there, we believe obtaining a tight bound for this type of result relating combinatorial
bounds on pebbling games and computational bounds in the ROM is currently an open problem.

Intuitively, the result from Corollary 3, with respect to graph-restricted adversaries, shows that
the attacker’s success probability is proportional to M : the smaller the state it uses to reply to

82



8.2 PoSE based on depth-robust graphs

our challenges, the higher the probability that it will fail to pass the verification test. This result is
not far from optimal, as this bound can actually be achieved by an adversary that stores M

w of the
labels inO(G). For example, if we would like to erase a malware of size at least 5 KB from a device
with total memory 100 KB, then the parameters would be w = 256,m = 100 · 213/256 =
3200,M = (100 − 5) · 213 = 778240. If we wanted to be certain that any graph-restricted
attacker can pass the protocol without erasing malware with probability at most 10−3, then we
need to execute the protocol with 112 rounds.

8.2.2 Graph-restricted adversary

Several works studying protocols based on graph labelling related to ours consider restricted classes
of adversaries in order to obtain tight security bounds and reductions to graph pebbling [6, 57, 58].
In all these notions, the adversary can only make oracle calls corresponding to valid labels in the
graph and, in addition, the adversary is restricted in the type of computation that it can apply to
get a state to be stored in memory, e.g. it can only store labels [57, 58] or so-called entangles labels
[6]. The notion that we consider in Definition 30 is more general, considering the full class of
graph-restricted adversaries that can perform any computation to obtain the state to be stored.

Definition 30. We say thatA = (A0,A1) is graph-restricted to G if and only if all oracle calls
done byA1 correspond to valid labels (equal to ℓ−(v) for some node v), and its responses to the
verifier challenges are always correct.

A graph-restricted adversary may compute arbitrary functions (for example compression, cut
labels into pieces, entangle them with new algorithms, etc), but it doesn’t do any guessing while
making oracle queries nor when responding challenges. The assumption is that the adversary
knows what it is doing, i.e. knows that an oracle query would be useless or that a particular re-
sponse to the challenge would be wrong. The notable difference with respect to the previous
classes of graph-playing adversaries, e.g. the pebbling adversary from [58] or the entangled peb-
bling adversary from [6], is that we have no a priori restriction on how the labels of values are
processed and stored. Next, we discuss these notions in more detail.
Pebbling adversary: The use of graph-labelling in security protocols can be traced back to the work
of Dwork et al. [57], who proposed its use for proofs of work. Proofs of work don’t require pre-
computation and storage of a prescribed state; the adversary in [57] simply has to compute and
return the challenged label. Since guessing a previously unseen label can happen only with negli-
gible probability, the security analysis for such an adversary can be reduced to the classic notion of
graph-pebbling complexity [110], where the adversary is restricted to playing a game on the graph
(applying the hash function corresponds to placing a pebble).
Adversary with pre-stored pebbles: The pebbling technique cannot be applied directly to proofs
of space [58], since the adversary is supposed to perform some pre-computation. Then it could
use the available space to encode information about the labels of the graph. When challenged, it
will attempt to make the minimal number of oracle calls that, combined with information stored
in the state, allows it to obtain the needed responses. For their security proof, Dziembowski et
al. [58] make the simplifying assumption that the best the adversary can do is to choose a set of
labels on the graph, not necessarily corresponding to the challenge nodes, and store them in the
memory, i.e. the adversary cannot compress or combine labels. This fixed set of labels is then used
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8 Graph based memory-erasure

to reply to any of the given challenges. Relying on this assumption, the security analysis can then
be reduced to a pebbling game on the graph where the power of A is slightly increased, i.e. it is
allowed to pre-store pebbles.

Adversary with algebraically entangled pebbles. Alwen et al. [6] have further relaxed this re-
striction, allowing the adversary to store several labels in one block of memory. However, these
pebbles are not directly accessible toA, but are entangled in an algebraic relation that allows to
derive a subset of pebbles once another subset is available. They show that this is possible in prac-
tice: the simplest example is storing the exclusive or of several labels, but more complex encodings
are possible, e.g. based on polynomials. Interestingly, under some conjectures, they have shown
that the general computational adversary can be reduced with minimal security loss to a graph-
restricted adversary with entangled pebbles. However, these conjectures have been later disproved
in [93].

8.2.3 Security proof: first step

The following theorem will be the main ingredient for proving Corollary 3. We split its proof
in two steps. The first step is presented in this subsection and is independent of the adversarial
class (graph-restricted or general). The second step is simpler for graph-restricted adversaries. We
present the proof for that case and for the case of general adversaries in the next subsection. Our
proof strategy builds upon the proofs from [6] and [114]. We combine ideas from both proofs,
improve on their security bounds, adapt them to graph-restricted adversaries and to the case where
we only ask one challenge from the prover, relying on our new notion of depth-robustness.

Theorem 3. Assume the graph-based PoSE scheme is instantiated with parameters (m, 1, w)
and with a (m, γ)-depth-robust graphG. LetA be any (M, q)-bounded adversary, with q < γ.
There exists a set of random oracles Hgood ⊆ H such thatA’s winning probability is bounded
by M ′

m withinHgood, where:

• M ′ =
⌈

M
w

⌉
and |Hgood| ≥ |H| · (1− 2−w) ifA is graph-restricted

• else: M ′ =
⌈

M
w0

⌉
and |Hgood| ≥ |H| · (1− 2−w0), wherew0 = w − log(m)− log(q).

Using the reductions from Section 6.2, we can extend this result to any number of rounds,
where we decrease the winning probability of a malicious prover by increasing the number of
rounds. From Proposition 2 and Theorem 3, we then obtain the main result Corollary 3.

Consider an adversary A = (A0,A1) against the memory challenge game for our PoSE in-
stantiated with a graph G. Let σ = A0(1w, ρ, h). Let O(G) = {o1, . . . , om} be the set of
all challenge vertices that can be given toA1 during the experiment. For this protocol the adver-
saryA1 has access to the hash function h through the random oracleO, which we make clear in
the notation onwards by calling the oracle function Oh. A query Q from A1 to Oh is good if
∃v : Q = ℓ−(v). For every i ∈ {1, . . . ,m}, considering the execution ofAOh

1 (1w, ρ, σ, oi), we
let:

• Qi,j be the input to the j-th oracle call made toOh byA1 in this execution;

• ti be the total number of oracle calls made byA1 in this execution;
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8.2 PoSE based on depth-robust graphs

• Qi,ti+1 be the output ofA1 on this execution.

Definition 31 (Blue node). We say that a node v ∈ V (G) is blue if and only if there exists
v′ ∈ V (G), i ∈ {1, . . . ,m} and j ≥ 1 such that:

1. v ∈ Γ−(v′) andQi,j = ℓ−(v′)

2. ∀i′ ∈ {1, . . . ,m}∀j′ < j. Qi′,j′ ̸= ℓ−(v)

We say that v is a blue node from iteration j, and that Qi,j is the query associated to v. Denote
by Bj all blue nodes in iteration j, and by B the set of all blue nodes. A bitstring is a pre-label if
it is equal to ℓ−(v) for some v, and a possible pre-label if it is the concatenation of a node v and
w · |Γ−(v)| bits.

The first point above implies ℓ−(v′) = v′∥y1∥ . . . ∥ym and ℓ(v) ∈ {y1, . . . , ym}. The sec-
ond point will ensure that we can extract the labels of blue nodes for free, i.e. without querying
them to the random oracle, by running A1 in parallel for all possible challenges on the state σ
computed by A0. Let Ti = ti if the response to the challenge oi by A1 is correct, or infinite
otherwise. The strategy for the proof of Theorem 3 will be the following:

• First step: prove that the success probability of the adversary is smaller than the fraction
between the number of blue nodes, whose label it has stored, and the total number of labels
it is supposed to store.

• Second step: prove an upper bound on the number of blue nodes; for graph-restricted ad-
versaries, this will be

⌈
M
w

⌉
, matching the valueM ′ from Theorem 3.

First, we show that to answer a challenge correctly, A1 needs to recompute the labels of the
longest path to any node that is not blue:

Lemma 17. ∀i ∈ {1, . . . ,m} : Ti ≥ llp(oi, G \ B), i.e. the time it takes to compute the label
of oi is at least the length of the longest path llp(oi, G \B).

Proof. Fix i. If the response to the challenge oi is not correct, then the claim is trivial (Ti is in-
finite). The case oi ∈ B is also trivial. Assume oi /∈ B and that the answer to the challenge oi

is correct. Consider the longest path ending in oi, let it be (v1, v2, . . . , vk−1, vk = oi), where
k = llp(oi, G \ B). As none of the nodes in this path are blue, all their labels were com-
puted by asking the oracle for the corresponding value. Let fj be the smallest index such that
Qx,fj

= ℓ−(vj) for some x. As vk = oi, then ti ≥ fk.
We prove that ∀j : 1 ≤ j < k we have fj < fj+1. Each inequality can be proved using the

same argument, so we prove only f1 < f2. As v1 is not blue and v2 is a successor of v1, then the
query ℓ−(v2) in round f2 (which contains the label of v1) must have happened after the query
ℓ−(v1) in round f1. This implies f2 > f1, as needed.

As ∀i : fi ≥ 1 then fk ≥ k =⇒ Ti ≥ k as was needed.

If the graph is (m, γ)-depth-robust, such paths are with high probability longer than γ ifM
is significantly smaller thanm · w.
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Lemma 18. If the graphG is (m, γ)-depth-robust, then:

Pr
i←$[m]

[Ti ≥ γ] ≥ 1− |B|m−1

Proof. We can assume |B| < m, since the result trivially holds otherwise. Therefore, from the
definition of depth-robustness, there exist a set O′ ⊆ {oi} \ B with |O′| ≥ m − |B| s.t.
∀oi ∈ O′ : llp(oi, G \ B) ≥ γ. From Lemma 17, we deduce ∀oi ∈ O′ : Ti ≥ γ. Therefore, we
deduce

Pr
i←$[m]

[Ti ≥ γ] ≥ Pr
i←$[m]

[oi ∈ O′] ≥ 1− |B|m−1

as required.

Given the previous results, we can bound the probability of success of the adversary in propor-
tion to the number of blue nodes, as shown in the following lemma. This way we conclude the
first step of the proof of Theorem 3.

Lemma 19. Given an (M, q)-bounded adversary A, with q < γ, and a random oracle h ∈ H
such that |B| ≤ B̄, then its probability of success is bounded by B̄ ·m−1.

Proof. From Lemma 18 we deduce that the probability that Ti ≥ γ is at least 1 − |B|m−1 ≥
1 − B̄m−1. But given that q < γ, it follows that the adversary cannot reply to these challenges
on time, which implies that its probability of success is bounded by B̄m−1, as claimed.

8.2.4 Security proof: second step for graph-restricted adversaries

Next we show that, with high probability over the choice of the random oracle, we obtain the
desired upper bound on the number of blue nodes. That is, for a big proportion of (good) random
oracles, |B| is smaller than the number of blocks stored byA0 in σ. This will help us bound the
prediction ability of a cheating adversary that did not store enough memory.

Definition 32 (Good oracle). We say that h ∈ H is a good oracle for a graph-restricted A if
|B| ≤

⌈
M
w

⌉
.

Intuitively, relying on the adversaryA and its set of blue nodes, we will construct an encoder
and a decoder to which we will be able to apply Lemma 20 to derive the desired bounds. Recall
that H is the set of all random oracles from {0, 1}κ to {0, 1}w. We will rely on the following
well-known result.

Lemma 20 (adapted from Fact 8.1 in [48]). If there are deterministic encoding and decoding
procedures

Enc : H → {0, 1}s

and Dec : {0, 1}s → H such that Pr
x←$H

[Dec(Enc(x)) = x] ≥ δ, then s ≥ log|H|+ log δ.

Let S be the oracle machine in Figure 8.2. It executesA1 in parallel for all possible challenges.
Notice that S executes basically the same operations as A1 and does not make repeated queries
to the oracle. S terminates when it has finished processing all parallel executions ofA1. In each
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round, S processes the respective oracle calls of each instance of A, and outputs all calls to the
environment at the end of the round. In the next lemmaS will be used by the encoder and decoder
that we construct, which will observe its outputs and process all the oracle calls ofS . The encoder
will answer the oracle calls by looking directly ath, while the decoder will obtain the desired values
from the encoded state. The fact that A1 is graph-restricted helps the decoder determine blue
nodes directly.

runAOh
1 (1w, ρ, σ, o1), . . . ,AOh

1 (1w, ρ, σ, om) in parallel :
for j = 1 to max {t1, . . . , tn}+ 1 : LetL be an empty list
for i = 1 tom :
if AOh

1 (1w, ρ, σ, oi) has not finished :
runAOh

1 (1w, ρ, σ, oi)until the j-th query (or output)Qij

- ifQij is an output, add (0, i, Qij) toL
- ifQij is repeated, answer with the previous response
- ifQij is a possible pre-label of v, add (1, v,Qij) toL
- else askOh(Qij), relay the answer toA1 and store it

for each (t, v, q) inL : (ordered in inverse topological order with respect toG)
output (t, v, q)
if t = 1 askOh(q), relay the answer toA1 and store it

Figure 8.2: Procedure for SOh

A (1w, ρ, σ)

Lemma 21. LetA be an attacker with parameters (m, 1, w) andHgood ⊆ H be the correspond-
ing set of good oracles. Then |Hgood| ≥ (1− 2−w) · |H|.

Proof. We show there exist an encoder and a decoder algorithm that usingA are able to compress
a random function from H , as long as the size of B is greater than

⌈
M
w

⌉
, i.e. the function is not

inHgood. Then we apply Lemma 20 to obtain an upper bound for the number of functions for
which this is possible.

The encoder works as follows: for a function h, first runA0 to obtain σ. Second, run S with
input σ and keep track of its outputs. As the adversary is graph-restricted, all these outputs are
either tuples that correspond to labels of challenge nodes, or pre-labels. In both cases, store the
blue nodes in order. OnceS finishes, if the number of blue nodes stored is less than or equal

⌈
M
w

⌉
,

output nothing. Else, output σ, the responses c to all oracles calls made by S in order (except the
ones associated with blue nodes), and all the remaining oracle values c′ (not asked byS, nor labels
of blue nodes) in lexicographic order. Note that the labels of blue nodes are not stored explicitly
but encoded in σ.

The decoder works as follows: given σ, c, c′, it will output the whole function table for h.
First, it executes S with input σ. When S makes an output, as the adversary is graph-restricted,
the decoder can deduce the labels of the blue nodes associated to it (if any), and store these values.
When S makes an oracle call, if the response to the oracle call is known (because it is the label of
a node that was stored before, or is a repeated call), then respond with that value. Else respond
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with the next value from c. When S finishes, read all the remaining values in the input c′. At this
point the decoder knows the whole table for h, and outputs it.

The size of the encoding is exactly M + log|H| − |B| · w, and it is correct with probability
δ, which is the proportion of functions h such as the number of blue nodes is more than

⌈
M
w

⌉
(oracles not inHgood). From Lemma 20 we deduceM + log|H| − |B| ·w ≥ log|H|+ log(δ)
which, together with |B| >

⌈
M
w

⌉
, implies δ ≤ 2−w. We conclude that |Hgood| = (1−δ)·|H| ≥

(1− 2−w) · |H|.

Putting together Lemma 21, Definition 32 for good oracles and Lemma 18, we obtain imme-
diately the statement of Theorem 3 for graph-restricted adversaries.

8.2.5 Security proof: second step for general adversaries

The proof for general adversaries is similar to the one in the previous subsection. The main dif-
ference is that the decoder will need some additional advice to detect where the blue nodes are,
which will imply worse bounds when applying Lemma 20. The next definition and lemma hold
for general adversaries.

Definition 33 (Good oracle). We say thath ∈ H is a good oracle for an adversaryA = (A0,A1)
if we have |B| ≤

⌈
M

w−log(m·q)

⌉
.

Lemma 22. IfA has parameters (m, 1, w) and Hgood ⊆ H be the corresponding set of good
oracles. Then |Hgood| ≥ |H| · (1− 2−w+log(m·q)).

Proof. The proof follows closely the one of Lemma 21, but must be extended for general adver-
saries.

As before, the encoder will output 0 ifh ∈ Hgood. Else, it will outputσ, p, c, c′, where the new
value p is a list of indices, where each index ai corresponds to the i-th output of S , and indicates
that it contains the first appearance of the label of a blue node. Each of these pairs can be encoded
using log(m · q) bits.

The decoder will also execute S as before. The difference is that when S outputs a value, only
if the corresponding index is in p, it will extract and store the labels of the blue nodes associated
with that output. At the end of execution, the decoder will have stored all labels of blue nodes.

As the size of p is at most the number of blue nodes, the size of the encoding is at most M +
|B| · log(m · q) + log|H| − |B| · w, and it is correct with probability δ = 1 − |Hgood|/|H|.
From Lemma 20 we deduce:

M + log|H| − |B| · (w − log(m · q)) ≥ log|H|+ log(δ)

=⇒ δ ≤ 2−w+log(m·q) from |B| >
⌈

M

w − log(m · q)

⌉
We conclude that |Hgood| = (1− δ) · |H| ≥ (1− 2−w+log(m·q)) · |H|, as claimed.
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8.3 Depth-robust graphs that can be labelled in-place

In this section we look for a family of depth-robust graphs with respect to a subset of nodes
that can be labelled in-place with respect to the same subset of nodes. Although some classes
of graphs from previous works, e.g. [13, 81], satisfy pebbling-hardness notions related to depth-
robustness and can be labelled in place, they don’t satisfy the strong depth-robustness property
that we require. We therefore propose a new construction. Our construction is based on the
graph in [120], where a simple and recursively constructible depth-robust graph with respect to
edge deletions was proposed. The recent results in [29] showed that it is possible in general to
transform an edge depth-robust graph into a vertex depth-robust graph where only one single
long path is guaranteed to exist after node deletions, but not several as required by our notion.
Inspired by these results, although using a different (and ad-hoc) transformation on the graph
from [120], we designed a new class of graphs with the properties by the protocol in Section 8.2.
The main result of this section is the following:

Theorem 4. There exists a family of DAG {Gn}whereGn+1 hasO(2n ·n2) nodes and a subset
of nodesO(Gn+1) ⊂ V (Gn+1) of size 2n such that:

1. Gn+1 is (2n, 2n)-depth-robust with respect toO(Gn+1);

2. Gn+1 can be labelled in-place with respect toO(Gn+1).

If Γ is a graph, we say that a graph G is a fresh copy of Γ if it is isomorphic and disjoint, and
denote it byG ∼= Γ. LetLn be a list of 2n nodes. For any DAGG, let In(G), Out(G) be its input
and output nodes respectively. If Y andZ are two disjoint lists of nodes of the same size, denote
byX = Y : Z the concatenation of both lists. IfX = (x1, . . . , xn) and Y = (y1, . . . , yn) are
lists of nodes of size n, thenX → Y = {(xi, yi) | 1 ≤ i ≤ n}.

In our construction we use graph with high connectivity, so-called connectors.

Definition 34. [connector] A directed acyclic graph with bounded indegree, n inputs, and n
outputs is an n-connector if for any 1 ≤ k ≤ n and any sequences (s′1, . . . , s′k) of inputs and
(t′1, . . . , t′k) of outputs there are k vertex-disjoint paths connecting each s′i to the corresponding
t′i.

Next, we introduce notation for connecting two lists of nodes using a connector graph. Let
Hn be a 2n-connector. Given two lists of nodes I and O of size 2n, and a fresh copy of Hn

namedC , we denote by I H→ O the graph with nodes I ∪ O ∪ V (C) and edgesE(C) ∪ (I →
In(C)) ∪ (Out(C)→ O).

Now we are ready to construct our graph family. For each graph Gn from our family, we also
define a list of so-called base nodes, which will serve for connectingGn with other graphs in order
to construct the graph Gn+1. We define G0 to be the graph formed of a single node. Then,
Gn+1 is constructed from two copies of Gn and a copy of Hn, which we connect with a set of
additional edges. First, every base node in the first copy of Gn is connected through an edge to a
corresponding input node in the copy ofHn. Second, the copy ofHn is connected to the second
copy of Gn through a recursive edge construction described below and illustrated in Figure 8.3.
Formally, we have:
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8 Graph based memory-erasure

• G0: V (G0) = {v},E(G0) = ∅ and Base(G0) = (v).

• Gn contains three components (L,C,R), denoted by

Left(Gn),Center(Gn),Right(Gn)

where L ∼= R ∼= Gn−1, and C ∼= Hn−1. We let Base(Gn) = Base(L) : Base(R)
denote the base vertices.

• The operator ▷ denotes a recursively defined subgraph,X ▷ G0 = X → Base(G0), and:

(X1 : X2) ▷ Y = (X1 ▷ Left(Y )) ∪ (X2
H→ In(Center(Y )))

The vertices ofGn are:

V (Gn) = V (L) ∪ V (C) ∪ V (R) ∪ V (Out(C) ▷ R)

The edges ofGn include the edges in the componentsL,C,R, plus two new sets of edges:
the first from Base(L) to In(C), and the second from Out(C) toR:

E(X) = E(L) ∪ E(C) ∪ E(R) ∪ (Base(L)→ In(C)) ∪ E(Out(C) ▷ R)

Gn

Hn

Hn−1

Gn−1 Gn−1
Gn+1

H

Figure 8.3:Gn+1, continuous arrows represent simple edges→,H arrows represent connector subgraphs
H→ and dashed arrows represent the operator ▷.

The next result is essential for our construction. It states that if some nodes are removed from
a connector with the objective of disconnecting input/output pairs, then it is always possible to
do so by just removing inputs or outputs. For a set of nodes R, let Con(R) be all pairs of nodes
(v, w), where v is an input and w is an output, such that all paths from v to w contain at least
one node inR.

Lemma 23. LetCn be an n-connector andR ⊂ V (Cn) be a subset of its nodes with |R| < n.
Then there exists a subset of nodesR′ containing only input and output nodes, such that |R′| ≤
|R| and Con(R) ⊆ Con(R′).

Proof. Consider a bipartite graph BR with n nodes on each side such that two nodes are con-
nected if and only if the corresponding pair is in Con(R). Consider a maximum matching M
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8.3 Depth-robust graphs that can be labelled in-place

and the minimum vertex cover V C in this graph. From König’s theorem [86] we deduce that
|M | = |V C|. Moreover, from the connector property of Cn we deduce that |M | ≤ |R|: oth-
erwise, using the connector property between the sets of nodes in the matching, we would find
|R|+ 1 disjoint paths from the input to the output, and those cannot be covered by the nodes in
R. Then, |V C| ≤ |R|. Consider the set R′ = V C . If these nodes are removed from Cn, con-
sider the bipartite graph BR′ (analogous to BR). Clearly BR is a subgraph of BR′ by the vertex
cover property. This implies that Con(R) ⊆ Con(R′), as claimed.

To prove the depth-robustness of Gn, we will prove first that after removing some nodes,
there remains a long path containing nodes from Base(Gn).

Theorem 5. ConsiderGn and any subset of nodesR ⊂ V (Gn), with |R| < 2n. There is a path
L inGn \R such that |V (L) ∩ Base(Gn)| ≥ 2n − |R|.

proof sketch. First, by using Lemma 23 we reduce the problem by showing that if there is a coun-
terexample set R, then there is also a counterexample set R′, but for which no node removed is
strictly inside any connector graph, i.e. they must be part of the input or output. To conclude, we
prove by induction a stronger statement, in which not only the pathL exists, but the nodes in

(V (L) ∩ Base(Right(Leftk(Gn)))

also must be reachable from the nodes in In(Center(Leftk(Gn))) for 0 ≤ k ≤ n. This property
makes possible to glue together paths while proving the induction hypothesis.

Proof. Assume the contrary, there exists a set R such that there is no path containing 2n − |R|
nodes from Base(Gn). Consider the partitionB ∪R1 ∪ . . .∪Rk of the vertices inR such that
the nodes in each partition Ri belong to exactly one subgraph Hi (defined by some H→, or the
Center of some component) and B = R ∩ Base(Gn). If R′i is the set of nodes guaranteed to
exist by Lemma 23, then removing R′i instead of Ri doesn’t increase the connectivity between
nodes in Base(Gn). We deduce that if the result is true forR′, then after removing the nodes in
R′ = B ∪R′1 ∪ . . .∪R′k fromGn, there is a path containing 2n− |R′| ≥ 2n− |R| nodes from
Base(Gn). The vertices inR′ are either in the input or output of someHi, or in Base(Gn).

It remains to prove that if the nodes inR′ are removed, there is a path with the required features.
We prove this by induction in a stronger statement: in Gn \ R′ there exists a path L with the
required properties such that the nodes in V (L)∩Base(Right(Leftk(Gn))) are reachable from
In(Center(Leftk(Gn))) for 0 ≤ k < n.

The base cases of the induction G0 and G1 can be checked manually. For the induction step
assume inR′ there are l, r, c nodes from Left(Gn+1), Right(Gn+1) and

Center(Gn+1) ∪ (Out(Center(Gn+1)) ▷ Right(Gn+1) \ Right(Gn+1))

respectively. By the induction hypothesis, there is a path Ll in Left(Gn+1) with the required
properties, i.e. |V (Ll) ∩ Base(Left(Gn+1))| ≥ 2n − l. There is alsoLr in Right(Gn+1).

We will finish the proof by case analysis. If r+c ≥ 2n, then 2n− l ≥ 2n+1−|R′| andL = Ll

has the required properties. Else, r + c < 2n. Let ci = |R′ ∩ In(Center(Gn+1))|.
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8 Graph based memory-erasure

Next we prove that there is a list of nodesF ⊆ V (Lr)∩Base(Right(Gn+1)) such that |F | ≥
2n− r− c+ ci and all nodes inF are reachable from at least one node in Out(Center(Gn+1)).

Consider a node v ∈ V (Lr) ∩ Base(Right(Gn+1)). Let k be the largest such that v ∈
Leftk(Right(Gn+1)), and Gv = Leftk(Right(Gn+1)). If k = n, then the only way that
this node is not reachable from Out(Center(Gn+1)) is if its predecessor in that set belongs to
R′. If k < n, then by the induction hypothesis, given that v ∈ Base(Right(Gv)), then v is
reachable from a node in In(Center(Gv)), call this nodew. The only way that v is not reachable
from Out(Center(Gn+1)) throughw is if all paths in the connector H̄ (which is isomorphic to
Hn−k−1) from this set tow are covered by nodes inR′. Asw is not covered, this is only possible
if all nodes from Out(Center(Gn+1)) connected to In(H̄) are in R′, which are exactly 2n−k−1

nodes. But there are at most 2n−k−1 nodes in Base(Right(Gv)). Applying the previous de-
duction for all v, we deduce that the number of nodes in V (Lr) ∩ Base(Right(Gn+1)) not
reachable from Out(Center(Gn+1)) is at most the number of nodes that were removed from
Out(Center(Gn+1)). As this number is at most c− ci, the claim follows.

Consider now the path PF determined by the list of nodes F . All these nodes are reachable
from Out(Center(Gn+1)). Furthermore, as ci ≤ c + r < 2n, these nodes are also reach-
able from some node in In(Center(Gn+1)). We will concatenate this path with a suitable sub-
set of Ll. Let D ⊆ Ll ∩ Base(Left(Gn+1)) be the set of nodes that are connected to a node
in In(Center(Gn+1)). Then |D| ≥ 2n − l − ci. Consider the path PD determined by the
list of nodes D. This path can be extended with PF and the resulting path contains at least
2n − l − ci + 2n − r − c+ ci = 2n+1 − |R′| nodes in Base(Gn+1), as was needed.

Corollary 4. Gn+1 is (2n, 2n)-depth-robust with respect to Base(Right(Gn+1)).

Proof. Consider a set R of size less than 2n and the path L given by the previous theorem (the
theorem would be applicable even if 2n ≤ |R| < 2n+1, but we are only using a restricted result).
Then V (L) ∩ Base(Gn+1) ≥ 2n+1 − |R|. Let M = V (L) ∩ Base(Right(Gn+1)). Then
|M | ≥ 2n − |R| given:

2n + |M | = |Base(Left(Gn+1))|+ |M |
≥ |V (L) ∩ Base(Gn+1)| ≥ 2n+1 − |R|

We conclude that the 2n− |R| rightmost elements (with respect toL) inM contain each at least
2n+1 − |R| − (2n − |R|) = 2n predecessors inL, as claimed.

As connectors, we use the butterfly family of graphs [29]. To formally describe these graphs,
we need the operator ▷◁, defined next.

Definition 35. For two lists of nodes G1, G2 such that |G1| = |G2| and G2 = L : R, where
|L| = |R|, we let G1 ▷◁ G2 = (G1 → G2) ∪ (G1 → L : R) be the set of edges obtained by
takingG′ = G1 → G2 and then adding toG′ an edge from each node inG1 to the corresponding
node inR : L.

Butterfly graphs can be defined recursively as follows:

• V (H0) = {v0, v1},E(H0) = {(v0, v1)}: H0 is a single edge
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8.3 Depth-robust graphs that can be labelled in-place

• The graphHn contains 4 components (L,R, I,O), where:

– I andO are two lists of 2n nodes each

– L andR are fresh copies ofHn−1

The vertices ofHn are V (Hn) = I ∪O ∪ V (L) ∪ V (R) and the edges are:

E(Hn) = E(L) ∪ E(R) ∪ I ▷◁ (In(L) : In(R)) ∪ (Out(L) : Out(R)) ▷◁ O

We let In(Hn) = I and Out(Hn) = O. A pair of examples are shown in Figure 8.4.

Figure 8.4: Butterfly graphsH2 andH3

Butterfly graphs can be easily labelled in-place, and allow the next result to hold:

Lemma 24. Gn+1 can be labelled in-place with respect to Base(Gn+1), and also with respect
to Base(Right(Gn+1)), inO(2n+1 · (n+ 1)2) time.

proof sketch. We apply induction on both statements at the same time. For the induction step
of the first statement, notice that in order to label Gn+1 with respect to its Base, we can first
label Left(Gn+1) using 2n ·w+O(w) memory. Then, while keeping the previous labels stored,
compute the labels of In(Center(Gn+1)) using 2n · w + O(w) extra memory. From these we
can compute in-place the labels of the nodes in Center(Gn+1) and later Out(Center(Gn+1)) ▷
Right(Gn+1), as these subgraphs only contain copies of butterfly graphs, which can be easily
labelled in-place. Then, by the induction hypothesis, compute the labels of Base(Right(Gn+1))
using the same memory as before. The proof for the induction step for the second statement is the
same, except that the labels of Base(Left(Gn+1)) are not stored, so this memory is overwritten
afterwards.

The proposed protocol for memory-erasure depends on a graph and a subset of its nodesO(G).
In particular, the memory size in words needs to be the same as the O(G). Thus, the graphs
constructed previously can only be used if the memory size is a power of two, which may not
be true in practice. The next results solve this issue: they show how to construct depth-robust
graphs that can be labelled in-place with respect to a subset of nodes of arbitrary size.
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Lemma 25. Let G1 be (a1, b)-depth-robust with respect to O(G1) and G2 be (a2, b)-depth-
robust with respect to O(G2). Then the graph G defined by the disjoint union G1 and G2 is
(a1 + a2, b)-depth-robust with respect toO(G) = O(G1) ∪O(G2).

Proof. Let R be a set of nodes in G with |R| < a1 + a2. Let r1 = |R ∩ V (G1)| and r2 =
|R ∩ V (G2)|. Notice that, if r1 < a1 then by the depth-robustness of G1 there are at least
a1− r1 nodes v inG1 \Rwith llp(v) ≥ b, and the analogous result is true forG2. We conclude
by case analysis:

• if r2 ≥ a2 =⇒ r1 < a1, from which the result follows given that a1− r1 ≥ a1 + a2−
r1 − r2.

• if r1 ≥ a1 the result follows by symmetry with the previous case.

• else r2 < a2 ∧ r1 < a1, which means that we can find a − r2 paths in G2 and a − r1
paths inG1 with length greater than b, ending in different vertices inO(G1) ∪O(G2).

Lemma 26. Let G be (a, b)-depth-robust with respect to O(G). Let O′ be a subset of O(G)
of size a′. ThenG is (a′, b)-depth-robust with respect toO′.

Proof. LetR′ be a set of nodes with |R′| < a′. LetR = R′∪(O(G)\O′). Notice that |R| < a.
Then the nodes with longs paths guaranteed by the depth robustness of G in G \ R will also be
nodes with long paths in G \ R′. Moreover, by definition of R these nodes are in O′ and there
are at least a− |R| = a′ − |R′| such nodes, as needed.

Lemma 27. Let G be a graph that can be labelled in-place with respect to O(G), and G′ the
graph defined by the disjoint union of two copies of G, G1 and G2. If O′ is a subset of O(G2),
thenG′ can be labelled in-place with respect toO(G1) ∪O′.

Proof. First compute the labels of O(G2) in-place. Then keep storing only the labels from O′.
With the space left, compute the labels ofO(G1) in-place. The result follows.

Theorem 6. Let m be any memory size, and let n be the smallest integer such that 2n+1 ≥ m.
Then there exists a (m, 2n)-depth-robust graph G with respect to O(G) that can be labelled
in-place with respect toO(G).

Proof. Take G = C1 ∪ C2 where C1 ∼= C2 ∼= Gn+1 (as defined in our construction). By
Corollary 4 and Lemma 25,G is (2n+1, 2n)-depth-robust with respect toO(C1)∪O(C2). Let
O′ be a subset of O(C2) with size m − 2n, and let O(G) = O(C1) ∪ O′. Then by Lemma 26
G is (m, 2n)-depth-robust with respect to O(G). Furthermore, by Lemma 24 and Lemma 27
G can be labelled in-place with respect toO(G), as claimed.
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8.4 Lightweight protocol

In this section we focus on improving our graph-based memory-erasure protocol. To this end, we
construct new graphs with relaxed depth-robustness properties, which will help boost the perfor-
mance of the protocol by a polylogarithmic factor. This will have the cost of offering slightly less
security. Hence, we suggest this lightweight version is used when more performance is needed,
and the original one when the highest level of security is required.

An insight into why a more efficient protocol is possible comes up by analysing the trade-off be-
tween depth of the graph and protocol security in Corollary 3, which we reproduce to the reader’s
advantage.

Corollary 3. Assume the graph-based PoSE scheme is instantiated with parameters (m, r,w)
and an (m, γ)-depth-robust graphG. Then, for any (M, q)-bounded adversary (A0,A1), with
q < γ, we have:

Pr
h

[Expm,r,w
A0,A1

= true] ≤
(
M ′/m

)r + 2−w0 where:

• ifA is graph-restricted: w0 = w andM ′ = ⌈M/w⌉

• else: w0 = w − log(m)− log(q) andM ′ = ⌈M/w0⌉

Notice that the parameter γ (which represents the depth of paths) in the depth-robustness
property must be greater than the number of queries the adversary can do within a fast phase
round. This is the only restriction this parameter has. For the family of graphs constructed in
Section 8.3, γ is at leastm, the number of output nodes in the graph. Note that this is quite high,
considering that a realistic attacker may at most do a small constant amount of operations during
the fast phase, and that the operations we bound are hash computations. Therefore, for κ a small
constant and each m, we construct a (m,κ)-depth-robust graph G′m. Applying Corollary 3 to
G′m we obtain a secure protocol against (M,κ − 1)-bounded adversaries with exactly the same
security bounds.

For the sake of simplicity, assume κ is fixed in a small power of 2, for example 16. Then, the
graph G4 from the previous section is a (16, κ)-depth-robust graph with respect to O(G4) =
{o1, o2, . . . , o16}.

Definition 36. Let Qi for 1 ≤ i ≤ 16 be the subgraph of G4 that contains all nodes which
belong to some path ending in a node from {o1, . . . , oi}, andO(Qi) = (o1, . . . , oi).

Lemma 28. Qi is (i, κ)-depth-robust with respect toO(Qi).

Proof. Notice that, by definition, Qi is a subgraph of G4 (which is (16, κ)-depth-robust) and
O(Qi) ⊆ O(G4) ∧ |O(Qi)| = i. Then, the result follows from Lemma 26.

Definition 37. Let G′m be a graph and O(G′m) a subset of nodes defined as follows. Let m =
16 · k + i be the result of the Euclidean division lemma.

• If i = 0 ∧ k = 0: G′m is the empty graph

• If i = 0 then: G′m is the disjoint union of k graphs isomorphic withG4, andO(G′m) the
union of the corresponding nodes in each copy ofO(G4).
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• If i > 0: G′m is the disjoint union of k copies of G′16 and Qi, and O(G′m) the union of
the corresponding nodes in each copy ofO(G′16) andO(Qi).

Lemma 29. The graphG′m is (m,κ)-depth-robust with respect toO(G′m).

Proof. By definition, if m = 16 · k + i, G′m is the disjoint union of k copies of G4, which
is (16, κ)-depth-robust, and a copy of Qi which is (i, κ)-depth-robust. The result follows by
applying Lemma 25 to these disjoint graphs which formG′m.

Lemma 30. Ifm ≥ 16, the graphG′m can be labelled in-place with respect toO(G′m).

sketch. We label the output nodes of each component of G′m independently. First, we compute
and store the labels the nodes inQi, which can be done using at most 16 words (because this is a
subgraph of G4). For this to hold the condition m ≥ 16 is necessary. The remaining space can
be used to compute and store the output labels in each copy ofG4, using the in-place properties
of these graphs.

By the previous lemmas, we conclude that the graph G′m has the required properties to serve
as the base of our secure memory-erasure protocol. It remains to compute how many hash com-
putations are done by a prover using our protocol instantiated with G′m, in comparison to the
original proposal. For simplicity, we analyse the case wherem = 2k with k > 3.

Lemma 31. If m = 2k, labelling Gk requires exactly (k2 + k + 3) · 2k+1 − 2 hash computa-
tions and labellingG′m requires exactly 367 ·2k−3 hash computations. Therefore, the lightweight
protocol is approximately k2+k+3

23 times more efficient.

Proof. Both graphs can be labelled optimally by the results shown in the previous section (Lem-
mas 24 and 27 and theorem 6). Therefore, it remains to count the exact number of nodes inGk,
from which we can easily obtain the exact amount forG′m.

By the recursive definition ofGk, we have that its number of nodes is equal to:

2 · |Gk−1|+
k∑

i=0
|Hi|

The butterfly graphHi has exactly 2 · (i+ 1) · 2i nodes. Therefore, we can derive the recurrent
equation:

|Gk| = 7 · |Gk−1| − 18 · |Gk−2|+ 20 · |Gk−3| − 8 · |Gk−4|

with initial conditions |G0| = 4, |G1| = 18, |G2| = 70, |G3| = 238. The exact solution to this
recurrence is |Gk| = (k2 + k + 3) · 2k+1 − 2. From there we obtain that |G4| = 23 · 32 − 2
and |G′m| = 2k−4 · (23 · 32 − 2). Therefore, by removing the small additive terms, we deduce
that the lightweight protocol is approximately k2+k+3

23 times more efficient, as claimed.

8.5 Conclusions

We presented a graph-based provable secure PoSE protocol capable of deterring provers from
outsourcing the erasure proof to an external conspirator. The protocol asks the prover to label
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a depth-robust graph from a random seed. Because the labelling algorithm is implemented by a
resource-constrained device, we introduced a class of graphs with depth-robust properties that
can be labelled in-place using hash functions. The protocol was proven secure within a formal
model, guaranteeing that all the prover’s memory, except for a small part, is erased. The security
bounds are tighter against a restricted, yet plausible, adversary. Hence, future work directed to
closing such gap is needed. Finally, we proposed a lightweight version of the protocol based on a
smaller graph by trading security for performance.
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memory-erasure protocols

Although several memory-erasure protocols have been proposed in the literature during the last
decade, we are not aware of any deployment of these protocols in the real world. Given that the
protocols are not very hard to implement, we believe the reasons for this lack of popularity are the
following: first, there are no available proof-of-concept implementations of the protocols, and
second, it is not straightforward to compare their performance, feasibility, or security guarantees.
This chapter aims to fill such gap. First we compare the most prominent memory-erasure proto-
cols from the literature with respect to security assumptions and guarantees. Then we implement
and deploy them in 3 different IoT devices. Finally, we compare their performance with respect
to execution time and memory footprint.

9.1 Memory-erasure protocols

We selected 4 protocols from the literature and 3 protocols proposed in this thesis:

• PT [111]: This was the first PoSE protocol, proposed by Perito and Tsudik. At the begin-
ning, the verifier sends a fresh random value of the same size as the prover’s memory. The
prover computes the HMAC of this value, using as key the last bits received. The security
proof of this protocol relies on the fact that to start the computation of the HMAC of a
random value the prover needs to first receive the key. Its main drawback being that the
verifier needs to send a message as big as the prover’s memory. Furthermore, the proof of
security is informal, and does not specify which assumptions must the HMAC function
fulfil to make the protocol secure.

• DFKP [60]: This is the first memory-erasure protocol based on pebbling games, by Dziem-
bowski et al. Its main contribution is the reduction of the communication complexity from
linear to constant. It uses the pyramid graph to construct the labelling function used to
erase memory. Its proof of security is relatively straightforward, but the size of the con-
structed graph is quadratic in the prover’s size, which might be too inefficient.

• KK [81]: This is another protocol based on pebbling games, by Karvelas and Kiayias. Its
main contribution is the construction of a new graph with quasilinear size which leads to a
more efficient protocol. The proof of security is complicated, as the authors prove that the
pebbling complexity of a certain graph is a fraction of the size of the graph itself. Its main
drawback is that it can only provable erase 1

32 of the prover’s memory.
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• KL [79]: This protocol, by Karame and Li, is an improvement of the Perito’s protocol that
uses the all or nothing transform (AONT), a novel cryptographic primitive, to make the
erasure procedure more efficient. Its main drawbacks remain the same though, as it requires
linear communication complexity and does not include a formal proof of security.

• PoSErandom: The simple protocol proposed in Chapter 6.

• PoSEgraph: The graph-based protocol proposed in Chapter 8.

• PoSElight: The lightweight version of the graph-based protocol proposed in Section 8.4.

We focused our selection in software-based memory-erasure protocols only, but did not include
protocols such as SPEED [9], based on memory isolation techniques. Comparing against this type
of protocol would require implementing the memory isolation components, which is more device
dependent, thus considered out of the scope.

No Isolation Proof Prob Pebble Erasure Time Comm
DFKP ✗ ✓ ✗ ✓ 1 O

(
n2) O(1)

KL ✗ ✗ ✗ ✗ 1 O(n) O(n)
KK ✗ ✓ ✗ ✓ 1

32 Õ(n) O(1)
PT ✗ ✗ ✗ ✗ 1 O(n) O(n)
PoSEgraph ✓ ✓ ✓ ✓ 1 Õ(n+ r) O(r)
PoSElight ✓ ✓ ✓ ✓ 1 O(n+ r) O(r)
PoSErandom ✓ ✓ ✓ ✗ 1 O(n+ r) O(n+ r)

Table 9.1: Characteristics of the implemented memory erasure protocols. We measure the complexity of
the execution time and communication using parametersn, the memory size, and r, the number
of rounds

On Table 9.1 we compare the protocols with respect to:

• isolation: whether the protocol assumes that the device is isolated during the execution of
the protocol

• proof: whether the proof of security is formal

• prob: whether there are upper bounds to the probability of success of the attacker

• pebble: whether the protocol is based on pebble games

• erasure: the proportion of the device’s memory that can be erased

• time: the time complexity of running a single session of the protocol

• comm: the communication complexity of running a single session of the protocol

Notice that all protocols with less than linear communication complexity are based on pebble
games.
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9.2 Experiments

Hash functions

In our experiments we tested each protocol with different hash functions. We selected these func-
tions according to popularity, amenability to software-based implementations, and applicability
to the IoT space. All of them output 256 bits of digest. The following hash functions were used:

• ascon [54]: a sponge based hash function selected in the Lightweight Cryptography Stan-
dardization Process by NIST1.

• blake2 [14]: a widely deployed and highly efficient hash function. It was designed to be
especially performant in software implementations.

• blake32: a recent improvement on the blake2 hash function which is claimed to be much
faster while offering similar security guarantees. This is the fastest (in software implemen-
tations) cryptographic hash function we could find.

• sha256 [61]: a well known and widely used hash function based on the Merkle-Damgård
construction proposed by NIST. Up to this day, it is still considered secure, although is
prone to length extension attacks [131].

• aeshash3: an unpublished hash function whose core utilizes AES instructions. It was se-
lected mainly to check how much speed up could be achieved in a device with only an AES
accelerator (FR5994). As far as we are aware it has not been thoroughly analysed, so it does
not offer any security guarantees and is only used here for the purpose mentioned before.

9.2 Experiments

For our experiments we considered 3 IoT microcontrollers produced by Texas Instruments with
different characteristics: FR5994, F5529, CC2652. These devices acted as provers in the memory-
erasure protocol. All prover implementations were done in Portable C, making them usable in any
platform or architecture. To create the binaries, we configured the compiler to optimize for code
size. A personal Dell laptop acted as verifier, running Python 3 implementations of each protocol.
The Bluetooth protocol was used as communication channel between the verifier and the prover.
The distance from the device (prover) to the laptop (verifier) was approximately 1 meter. Each run
of the protocol was done separately, as the main objective was to compare the protocols against
each other in the simplest possible setting.

9.2.1 Device characteristics

In Table 9.2 we compare each device with respect to Memory (code size + data size), maximum
clock speed, on device crypto accelerators, Bluetooth version, architecture, microcontroller unit
family (MCU), and IoT class [30]. Notice that some devices have hardware accelerators. For these,
we also experimented using a hardware accelerated version of the hash function.

1https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
2https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
3https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf
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Device Memory Clock Crypto BT Arch MCU IoT
F5529 (128 + 10)KB 25MHz — 2 RISC-16 MSP430 Class 1
FR5994 (256 + 8)KB 16MHz AES 2 RISC-16 MSP430 Class 1-2
CC2652 (352 + 88)KB 48MHz AES,SHA2 5.2 RISC-32 Arm Cortex-M Class 2

Table 9.2: Microcontroller characteristics

Amount of memory erased

To be able to run all protocols in reasonable time, while erasing the same amount of memory with
each, and avoid the need for device specific engineering, in our experiments we erase only a portion
of the memory of each device. In particular for the devices F5529 and FR5994 we erase exactly
26 words, which is equivalent to 2 KB, and for CC2652 we erase exactly 8 KB. We acknowledge
this is a limitation of our results, and something that needs to be solved before these protocols are
deployed in a real setting.

Number of rounds

As seen before, the protocols proposed in this thesis use a parameter r, the number of rounds
during the fast phase. This parameter, as shown in previous chapters, is directly related to the
security guarantees of the protocol: the more rounds the lower the probability of success of the
adversary. For our experiments we selected a very conservative number of rounds in order to test
our protocols in worst case conditions, and set the number of rounds equal to the number of
words in the prover’s memory.

9.2.2 Memory footprint results

In this section we show the memory footprint of each combination of protocol, hash function and
device. It is worth mentioned that the sizes vary between devices because their architectures are
different. Another reason is that we used the best available implementation for each hash function
and architecture.

aeshash ascon blake2 blake3 sha256 sha256hw
DFKP 1249 5858 6363 21180 1040 1397
KL 1242 5882 6362 21221 1041 1396
KK 1255 5866 6364 21158 1043 1391
PT — — — — 3779 —
PoSEgraph 1259 5878 6374 21181 1050 1408
PoSElight 1250 5866 6365 21193 1041 1400
PoSErandom — — — — — —

Table 9.3: Memory footprint of the hash function in device CC2652

Table 9.3 shows the memory footprint of the hash in the CC2652 device for each combination
of hash and each protocol. It can be observed that the memory occupied by each hash function
is the same for each protocol, as expected, except sha256 and the PT protocol. The reason is
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that this protocol uses a HMAC, with sha256 as underlying hash, which requires more space
than the plain sha256 implementation. One surprising result is that the memory footprint of the
sha256hw function, which uses the hardware accelerator, actually occupies more space than the
software-based implementation sha256. This must be the result of the extra code necessary to
access the hardware module.

aeshash ascon blake2 blake3 sha256
DFKP 634 2110 14022 24720 2292
KL 634 2128 13960 24656 2168
KK 634 2128 13960 24657 2230
PT — — — — 2189
PoSEgraph 634 2110 14022 24720 2292
PoSElight 634 2110 14022 24721 2292
PoSErandom — — — — —

Table 9.4: Memory footprint of the hash function in device FR5994

ascon blake2 blake3 sha256
DFKP 2110 14022 22821 2292
KL 2128 13960 22760 2168
KK 2128 13960 22758 2230
PT — — — 2197
PoSEgraph 2110 14022 22822 2292
PoSElight 2110 14022 22823 2292
PoSErandom — — — —

Table 9.5: Memory footprint of the hash function in device F5529

Tables 9.4 and 9.5 show similar results for devices FR5994 and F5529. One noticeable excep-
tion is that on these devices the blake2 memory footprint is much higher with respect to the other
hash functions. This must be due to the use of a different C implementation, as the one used for
the CC2652 is optimized for the 32 bit architecture, which is not suitable for the others. Tak-
ing into account the three devices, sha256 is the hash function with a lower memory footprint,
followed by ascon and aeshash.

Table 9.6 shows the memory footprint of each algorithm on the CC2652 device. In this case
the memory used by each algorithm does not change when a different hash function is used, as
expected.

Similar results for devices FR5994 and F5529 are shown in Tables 9.7 and 9.8. In general, the
CC2652 implementations take more space than the F5529 or FR5994 ones. This is probably due
to the use of byte size variables throughout the implementations, which can be more efficiently
represented in the 16 bits architecture than in the 32 bits architecture. Taking into account the
three devices, the protocols with smaller memory footprint were PT, PoSErandom and DFKP.

103



9 Practical implementations of memory-erasure protocols

aeshash ascon blake2 blake3 none sha256 sha256hw
DFKP 593 578 581 598 — 586 587
KL 1021 1037 1015 1074 — 1022 1021
KK 1357 1344 1340 1334 — 1347 1339
PT — — — — — 281 —
PoSEgraph 1197 1192 1186 1193 — 1190 1192
PoSElight 1190 1182 1179 1207 — 1183 1186
PoSErandom — — — — 320 — —

Table 9.6: Memory footprint of the protocol implementation in device CC2652

aeshash ascon blake2 blake3 none sha256
DFKP 776 800 776 777 — 776
KL 1395 1437 1333 1332 — 1271
KK 1905 1947 1843 1843 — 1843
PT — — — — — 357
PoSEgraph 1605 1629 1605 1606 — 1605
PoSElight 1639 1663 1639 1641 — 1639
PoSErandom — — — — 416 —

Table 9.7: Memory footprint of the protocol implementation in device FR5994

ascon blake2 blake3 none sha256
DFKP 795 771 772 — 771
KL 1436 1332 1334 — 1270
KK 1946 1842 1842 — 1842
PT — — — — 356
PoSEgraph 1628 1604 1606 — 1604
PoSElight 1662 1638 1641 — 1638
PoSErandom — — — 415 —

Table 9.8: Memory footprint of the protocol implementation in device F5529

9.2.3 Execution time results

For each protocol execution, the total time is composed by the computation time and the query
time. Query time exists only for the protocols in this thesis, and measures the average time in each
round of the interactive phase. The computation time is the time spent by the prover to erase the
memory, as measured from the verifier’s perspective.

The query time values are shown in Tables 9.9 to 9.11. Notice that these measurements do not
depend on the hash function used, as expected. The difference in speed between the CC2652 de-
vice and the others can be explained by the version of the Bluetooth protocol used. The CC2652
device has a Bluetooth module included, able to run version 5.2, which means in each challenge-
response round the message needs to go through the whole Bluetooth stack. On the other hand,
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for the FR5994 and F5529 devices a simple HC-05 module was used, which makes the Bluetooth
protocol overhead much smaller, as it does not support as many features.

aeshash ascon blake2 blake3 none sha256 sha256hw
PoSEgraph 0.090 0.090 0.090 0.090 — 0.094 0.090
PoSElight 0.091 0.103 0.101 0.091 — 0.090 0.090
PoSErandom — — — — 0.090 — —

Table 9.9: Average query time in seconds on device CC2652

aeshash ascon blake2 blake3 none sha256
PoSEgraph 0.068 0.069 0.068 0.067 — 0.069
PoSElight 0.070 0.070 0.069 0.070 — 0.068
PoSErandom — — — — 0.065 —

Table 9.10: Average query time in seconds on device FR5994

ascon blake2 blake3 none sha256
PoSEgraph 0.068 0.066 0.067 — 0.068
PoSElight 0.069 0.068 0.070 — 0.069
PoSErandom — — — 0.066 —

Table 9.11: Average query time in seconds on device F5529

The compute time values for every combination of protocol and hash function are shown in
Tables 9.12 to 9.14. Notice that for the protocol PoSErandom there is no compute time because
this protocol does not process any value during the initial phase.

aeshash ascon blake2 blake3 sha256 sha256hw
DFKP 11.0 31.6 5.2 3.9 7.4 1.8
KL 0.1 0.1 0.1 0.1 0.1 0.1
KK 7.5 21.0 3.7 2.8 5.2 1.3
PT — — — — 0.1 —
PoSEgraph 12.5 35.6 6.1 4.6 8.8 2.1
PoSElight 3.8 10.7 1.9 1.4 2.8 0.7
PoSErandom — — — — — —

Table 9.12: Compute time in seconds on device CC2652

In general, the protocols with faster compute time were PT and KL. It is notable faster to erase
memory when the device has a higher clock frequency, as can be seen when comparing perfor-
mance in the CC2652 with respect to the FF5529 and the FR5994 devices. Among the hash func-
tions, sha265hw was the fastest, which was expected as it uses the hardware accelerator present in
the CC2652 device. One surprising result is that ascon, which is meant to be used in lightweight
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aeshash ascon blake2 blake3 sha256
DFKP 3.2 80.7 20.2 15.7 27.9
KL 1.5 1.8 1.6 1.7 1.7
KK 5.1 131.0 34.6 27.1 48.2
PT — — — — 1.6
PoSEgraph 8.4 215.5 56.7 44.0 78.9
PoSElight 4.3 106.9 28.7 22.5 39.8
PoSErandom — — — — —

Table 9.13: Compute time in seconds on device FR5994

ascon blake2 blake3 sha256
DFKP 47.6 12.7 10.0 17.7
KL 2.2 2.1 2.0 2.1
KK 76.4 21.3 16.7 29.9
PT — — — 2.1
PoSEgraph 125.5 34.4 26.6 48.4
PoSElight 63.2 17.8 13.9 25.1
PoSErandom — — — —

Table 9.14: Compute time in seconds on device F5529

cryptography, had a consistently worst performance. In every device blake3 was faster than blake2,
although the difference is around 25 percent only. Aeshash was much faster than other hash func-
tions in the FR5994 device, as expected by the usage of the AES hardware module present on this
device. On the contrary, it performed worse that blake2, blake3 and even sha256 in the CC2652
device. Therefore, we deduce that if the device is fast enough, pure software implementations
might be more performant than hybrid implementations such as the one used in aeshash.

Tables 9.15 to 9.17 show the total execution time for every combination of protocol and hash
function.

aeshash ascon blake2 blake3 none sha256 sha256hw
DFKP 11.1 31.7 5.3 4.0 — 7.5 1.9
KL 23.4 23.4 23.3 23.3 — 23.4 23.3
KK 7.6 21.1 3.8 2.9 — 5.3 1.3
PT — — — — — 23.2 —
PoSEgraph 37.5 82.0 29.3 27.8 — 32.9 25.2
PoSElight 27.7 44.1 27.9 24.9 — 25.9 23.8
PoSErandom — — — — 46.2 — —

Table 9.15: Total execution time in seconds on device CC2652

With respect to the total time and the CC2652 device, the most performant protocol was
DFKP, despite being the one with worst time complexity. This is only possible because the con-
stants hidden in the asymptotic notation are very small for this protocol, and somewhat larger for
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aeshash ascon blake2 blake3 none sha256
DFKP 3.2 80.7 20.2 15.7 — 27.9
KL 2.4 2.6 2.5 2.4 — 2.5
KK 5.1 131.0 34.6 27.1 — 48.2
PT — — — — — 2.4
PoSEgraph 13.0 223.4 61.0 48.4 — 83.4
PoSElight 9.0 113.1 33.1 27.1 — 44.2
PoSErandom — — — — 6.4 —

Table 9.16: Total execution time in seconds on device FR5994

ascon blake2 blake3 none sha256
DFKP 47.6 12.7 10.0 — 17.7
KL 3.0 2.9 2.9 — 2.9
KK 76.4 21.3 16.7 — 29.9
PT — — — — 2.9
PoSEgraph 133.2 38.6 30.9 — 52.8
PoSElight 69.2 22.2 18.4 — 29.5
PoSErandom — — — 6.5 —

Table 9.17: Total execution time in seconds on device F5529

the others, and the amount of memory erased is not too big. The total time of KL and PT was
consistently slower than KK and DFKP, possibly due to the fact that on this device communica-
tion complexity played a larger role. Our protocols were consistently slower than previous ones,
as a result of using numerous of rounds during the fast phase.

9.3 Analysis

Our results have not revealed a clear winner with respect to security guarantees and performance.
Therefore, we deduce that the use of a certain protocol depends on the specific conditions in
which it will operate. In particular, clock speed, network cost, memory size, and security guaran-
tees determine which protocol is more suitable.

To reach our conclusions, we considered the following facts:

• Protocols KL, KK and PT offer a low level of security

• Protocols PoSErandom, PoSEgraph, PoSElight and DFKP offer a high level of security. Note,
though, that the DFKP protocol is less secure than the others given that it is not resistant
against distant attackers.

• Protocols PoSErandom, PT or KL require sending the full memory of the device through
the network

• DFKP has quadratic complexity, therefore its performance is worse when the amount of
memory is relatively large
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Network cost
High Low

Clock speed Clock speed
High Low High Low

Memory size
Large Security High PoSElight PoSElight PoSErandom PoSErandom

Low KK KK PT PT

Small Security High DFKP DFKP DFKP PoSErandom
Low DFKP DFKP KK PT

Table 9.18: Summary of results

Next, we provide a granular analysis of the results, by projecting them into specific use-cases.
These results are summarized in Table 9.18. They were obtained by extrapolating the behaviour
of the protocols in each device.

• When the network cost is high, communication needs to be minimized, therefore protocols
such as PoSErandom, PT or KL are impractical.

– When memory is small, protocol DFKP is the clear winner (see for example Ta-
ble 9.17). Even if it has quadratic complexity, its very low constant factor makes it
faster than the rest of the protocols. We are considering that this protocol has high
security even though it assumes the isolation assumption. If security against distant
attackers is necessary, the winner for this category is the PoSElight protocol.

– When memory is large, the most performant protocols are PoSElight and KK, for
high security and low security respectively.

• When the network cost is low, the most performant protocols are PoSErandom and PT, for
high security and low security respectively. A surprising result in this setting is that KL had
a very similar performance as PT, which should have not been the case as it was specifically
designed to improve its performance. If the device in question has hardware accelerators,
then for the high security case it is possible that DFKP is faster, as shown for example in
Table 9.15.

It is noteworthy that the clock speed only changed the selection of the winner when the network
cost is low and memory is small. In this scenario, the DFKP protocol outperforms PoSErandom
and KK outperforms PT (see for example Table 9.15).

9.4 Conclusions

In this chapter we presented the outcome of our memory-erasure experiments. We implemented4

7 protocols, each with several variants depending on the hash function used, and tested them
on 3 modern IoT devices. Furthermore, we compared the security guarantees provided by each
protocol, and contrasted them with their performance in a practical setting.

Our results revealed that current memory-erasure protocols are practical, although erasing the
full memory securely could take several minutes for the slower devices. Network speed might be

4https://gitlab.uni.lu/regil/memory-erasure-experiments
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faster than local computation, therefore reducing the communication complexity in the proto-
col is not always the best choice. For protocols where hash functions are used, this choice may
influence dramatically the protocol performance and memory footprint. Finally, the most perfor-
mant protocol might not be the best according to the asymptotic complexity analysis, as for small
memory sizes the hidden constants may play a determinant role.
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In previous chapters we analysed and designed memory-erasure protocols. This required study-
ing trade-offs between time, memory and security. These type of computational results are also
useful in other classes of protocols which also depend on time, such as the well-known distance-
bounding protocols.

As mentioned in the introduction, distance-bounding protocols are security protocols with a
time measurement phase used to detect relay attacks, whose security is typically measured against
mafia-fraud and distance-fraud attacks. A prominent subclass of distance-bounding protocols,
known as lookup-based protocols, use simple lookup operations to reduce the impact of the compu-
tation time in the distance calculation. Independent results have found theoretical lower bounds
1

2n

(
n
2 + 1

)
and 1

2n , where n is the number of time measurement rounds, on the security of
lookup-based protocols against mafia and distance-fraud attacks, respectively. However, it is still
an open question whether there exists a protocol achieving both security bounds. This chapter
closes this question in two ways. First, we prove that the two lower bounds are mutually exclu-
sive, meaning that there does not exist a lookup-based protocol that provides optimal protection
against both types of attacks. Second, we provide a lookup-based protocol that approximates those
bounds by a small constant factor. Our experiments show that, restricted to a memory size that
linearly grows with n, our protocol offers strictly better security than previous lookup-based pro-
tocols against both types of fraud.

10.1 Introduction

Distance-bounding protocols aim to counteract relay attacks against wireless authentication pro-
tocols by ensuring proximity between communicating parties. Because the speed of light repre-
sents a hard limit on the speed of radio waves, the distance from a transmitter to a receiver is (at
most) half the round-trip-time multiplied by the speed of light, where round-trip-time is the time
it takes for a signal to travel from the transmitter to the receiver and back. This physical law allows
distance-bounding protocols to verify proximity by measuring the round-trip-time of a message
exchange between a prover and a verifier [53].

Many protocols have suffered relay attacks in the past [17]. Famously, the EMV standard for
contactless payments [62] now offers some protection against this type of attacks, and NXP’s
MIFARE Plus cards support proximity checks [127]. Both protocols use distance-bounding as
their main protection mechanism against relay attacks and have been extensively studied.

In general, a distance-bounding protocol consists of several rounds, in each of which a veri-
fier challenges a prover to answer a query based on a shared secret key. Each round is timed by
the verifier to check whether the prover is close. As a case in point, consider the protocol intro-
duced by Hancke and Kuhn [76] depicted in Figure 10.1. First, the parties exchange one nonce
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each (Nv and Np). The two nonces and a shared secret key k are used by both parties as input
to a pseudo-random function PRF, which outputs a 2n-bit sequence T1 · · ·T2n

1. Next, prover
and verifier engage in n challenge-response rounds. At the i-th round, the verifier generates and
sends a random bit-challenge ci. If ci = 0, the prover replies with T2i−1, otherwise with T2i.
The protocol succeeds if all responses are correct and all round-trip-times are below a predefined
threshold ∆max. If ∆max is sufficiently small, then the protocol ensures proximity of the prover
to the verifier, because the correct responses can only be generated by a nearby prover with the
correct key k.

V

shared k
P

shared k

nonceNV nonceNP

NV

NP

T1 · · ·T2n := PRF(k,NV , NP )T1 · · ·T2n := PRF(k,NV , NP )

random c ∈ {0, 1}n

ci

∆i T2i+ci−1

Fast phase for i = 1 to n

verify ∀i : ∆i≤∆max

verify correctness of responses

Figure 10.1: A lookup-based protocol by Hancke and Kuhn.

Hancke and Khun’s protocol has the virtue of relying on a simple lookup operation by the
prover during the time-measurement phase, minimizing the impact that the prover’s computa-
tional cost has on the round-trip-time measurement. Moreover, it makes a single call to a keyed
pseudo-random function, making it suitable for resource-constrained devices.

1For the sake of rigorousness, we should point out that [76] describes the protocol by using two registers of length n
rather than a single bit-sequence of length 2n.
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ProverVerifier

Attacker

(a) Mafia fraud: the verifier believes the prover is
close.

Corrupt proverVerifier

(b) Distance fraud: the verifier believes the corrupt
prover is close.

Figure 10.2: The difference between mafia fraud and distance fraud. The encircled area denotes proximity
to the verifier.

Hancke and Khun’s protocol, however, offers suboptimal security. Hence, distance bound-
ing protocols improving upon Hancke and Khun’s design have been extensively studied [20, 76,
80, 84, 96, 103, 108, 128, 130, 132], and given the name of lookup-based protocols [96]. These proto-
cols usually include a precomputation phase and a fast phase. This is different from more general
distance-bounding protocols that may include a verification phase. Moreover, during each round
of the fast phase the prover executes a single lookup operation, i.e. the response is already com-
puted in memory.

The analysis of lookup-based protocols has mainly focused on two potential threats: mafia
fraud and distance fraud [15, 16]. The former is a man-in-the-middle attack aimed at convincing
the verifier that an honest far-away prover is close (see Figure 10.2a); the latter is an attack executed
by a corrupt prover to pass the protocol from far-away (see Figure 10.2b). It was proven in [96]
that the optimal resistance against mafia fraud is 1

2n

(
n
2 + 1

)
, where n is the number of round-

trip-time measurements, and in [128] that the optimal resistance against distance fraud is 1
2n . It

remains an open question, however, whether there exists a lookup-based protocol achieving both
optimal security bounds.

Contributions and structure. This chapter addresses the open question of whether lookup-based
protocols can achieve optimal resistance against mafia fraud and distance fraud. We do so by ex-
tending the security model used in [96] to model lookup-based protocols with a game-based def-
inition of security (Section 10.2). The resulting model is more general, in the sense that it makes
fewer security assumptions, and allows us to prove that optimal security against mafia fraud and
distance fraud are conflicting goals (Section 10.3). That is, optimality against one fraud moves the
protocol away from optimality against the other fraud.

The second contribution of this work is the introduction of the first lookup-based protocol
whose security bounds are either optimal or close to the optimal by a small constant factor (Sec-
tion 10.4). More precisely, our protocol achieves 1

2n security against distance fraud, which is op-
timal, and 1

2n (n+ 1) security against mafia fraud, which is less than twice the optimal.

By comparing those bounds with the security offered by existing lookup-based protocols (Sec-
tion 10.5), we show that our protocol represents a significant improvement over the state-of-the-
art.
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10.2 The security model

Our security model takes the specification and execution model of [96], which defines a lookup-
based protocol as a set of automata, but defines the security properties of interest in a more general
way.

Lookup-based protocols contain two phases: a precomputation phase and a fast phase. During
the first phase the prover and verifier exchange messages containing cryptographic information.
As a result, both agents generate the same fresh random automaton, which is then used during
the fast phase by the prover to compute the responses to the challenges generated randomly by
the verifier. Both challenges and responses are single bits. For the security analysis of this type of
protocol, it is sufficient to analyse the set of all possible automata that can be generated during the
precomputation phase, as in most cases the probability distribution used is (or is assumed to be)
uniform.

10.2.1 Specification

We use an automata-based representation of lookup-based protocols as introduced in [96]. An au-
tomaton, i.e., a state-labelled deterministic finite automaton (DFA), is a tuple (Σ,Γ, Q, q0, δ, ℓ),
where Σ is a set of input symbols, Γ is a set of output symbols, Q is a set of states, q0 ∈ Q is
the initial state, δ : Q × Σ → Q is a transition function, and ℓ : Q → Γ is a labelling function.
Given input and output symbol sets Σ and Γ, respectively, we use UΣ,Γ to denote the universe of
all DFAs over Σ and Γ.

Definition 38 (Lookup-based protocol [96]). A lookup-based protocol with input set Σ and out-
put set Γ is a finite non-empty subset of UΣ,Γ.

Given an automatonG = (Σ,Γ, Q, q0, δ, ℓ) and a current state q ∈ Q, a lookup operation is
regarded as a transition to a new state q′ = δ(q, c) where c ∈ Σ is a verifier’s challenge. The cor-
responding response for such a challenge c0 is the output symbol attached to the new state q′, i.e.,
ℓ(q′). This specification abstracts away from various protocol details that are present, for exam-
ple, in the graphical descriptions given in Figure 10.1 and Figure 10.3, such as the precomputation
phase and the round-trip-time measurements. These features of the protocol will be carefully con-
sidered when defining the execution model and security properties. For that, we need to introduce
additional notation. For a sequence of input symbols c = c1 · · · ci ∈ Σi:

• δ̂(c) = δ(δ̂(c1 . . . ci−1), ci) if i > 1, otherwise δ̂(c1) = δ(q0, c1). In a nutshell, δ̂(c)
returns the state reached by the input sequence c.

• ℓ̂(c) = ℓ(δ̂(c)), which is the output symbol attached to the state reached by the sequence
c.

• Ω(c) is used to represent the sequence of labels attached to the states δ̂(c1), δ̂(c1c2), . . .,
δ̂(c1c2 · · · ci) in that order, i.e., Ω(c) = r1 · · · ri ∈ Γi, where rj = ℓ̂(c1 · · · cj) for
1 ≤ j ≤ i.
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V

shared k
P

shared k

nonceNV nonceNP
NV

NP

T2 · · ·T2n+1−1 := PRF(k,NV , NP )T2 · · ·T2n+1−1 := PRF(k,NV , NP )

random c ∈ {0, 1}n j := 1

ci

j = 2j + ci∆i
Tj

Fast phase for i = 1 to n

verify ∀i : ∆i≤∆max

verify correctness of responses

Figure 10.3: The tree-based protocol by Avoine and Tchamkerten. The tree is encoded in the binary se-
quence T2 · · ·T2n+1−1.

As a running example we model the tree-based protocol [20] (previously described in Chapter 2
and shown again in Figure 10.3 for the reader’s advantage). In this protocol, each tree (represent-
ing the automaton) is the full binary tree of depthn, which contains 2n+1−1 nodes (representing
the states of the automaton), where each node except the root is labelled randomly with either 0
or 1. This gives a total of 22n+1−2 different labelled trees.

Definition 39. The tree-based protocol is the set of automata {G1, . . . , G22n+1−2}where each
automatonGi = (Σ,Γ, Q, q0, δ, ℓ) satisfies:

• Σ = Γ = {0, 1},

• Q = {1, . . . , 2n+1 − 1} and q0 = 1,

• For every j ∈ Q and c ∈ Σ, δ(j, c) = 2j + c

• For every 1 ≤ j ≤ 2n+1−2, ℓ(j+1) is the j-th least significant bit (right-most bit) of the
binary representation of the integer number i, which is the index of the automatonGi.
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10 Optimal distance-bounding

Observe that, for n = 2, the automatonG17 corresponds to the tree displayed in Figure 10.4.
The labels follow from the binary representation of 17 (010001). Further, observe that the au-
tomatonG17 on input sequence c = 01 (represented in dashed arrows in Figure 10.4) gives:

• δ̂(c) = δ(δ̂(1), 1) = δ(δ(1, 0), 1) = δ(2, 1) = 5.

• ℓ̂(c) = ℓ(δ̂(01)) = 0.

• Ω(c) = ℓ̂(0)ℓ̂(01) = 10.

ℓ(2) = 1 ℓ(3) = 0

ℓ(4) = 0 ℓ(5) = 0 ℓ(6) = 1 ℓ(7) = 0

0 1

0 1 0 1

Figure 10.4: Example of a tree for an execution with two rounds. Dashed arrows indicate the path traversed
on the challenges 0 and 1 (edge labels), resulting in the responses 1 and 0 (node labels), respec-
tively.

Remark 3. Like in [96], we argue informally that Definition 39 is a correct formalization of the
protocol depicted in Figure 10.3, as the theory does not allow for a formal proof of equivalence
between the two specifications. Throughout the chapter we shall resort to a similar informal argu-
mentation whenever we describe a protocol in graphical notation, as in Figure 10.3, and formalize
it within the automata-based model, as in Definition 39.

Using the above formalism to describe lookup-based protocols, instead of, for example, Fig-
ure 10.3, makes it possible to formalize properties of the protocol, such as the following.

Proposition 3. Let Ptree be the tree-based protocol as in Definition 39. For any input sequence
x, it holds that Pr

[
ℓ̂(x) = 0

]
= Pr

[
ℓ̂(x) = 1

]
= 1

2 , where the probability is taken over a
random automaton sampled from Ptree. That is to say, if we look at ℓ̂(x) as a random variable,
then ℓ̂(x) is uniformly distributed.

We will use this proposition later in our security proofs.

10.2.2 Execution

The model in [96] abstracts away the precomputation phase in lookup-based protocols by consid-
ering the following execution model.
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DistAG,c1···cn
(n)

1 : for i = 1 to n
2 : ri ← A.Resp(G, c1 · · · ci−1)
3 : 11return r1 . . . rn

Figure 10.5: A security experiment for distance fraud.

Definition 40 (Execution model). A correct execution, up to n > 0 rounds, of a lookup-based
protocol P is a triple (G,C,R), where G is an automaton randomly selected from P , C is an
input sequence randomly selected from Σn andR is an output sequence from Γn such thatR =
Ω(C).

The outcome of the precomputation phase is considered to be a random automatonG ∈R P
within the set of automata defining the lookup-based protocol P . The input sequence C =
c1 · · · cn corresponds to the verifier’s challenges, and the correct repliesR = r1 · · · rn must satisfy
that ℓ̂(c1) = r1, ℓ̂(c1c2) = r2, . . . , ℓ̂(c1 · · · cn) = rn.

Up to this point, the model has not established the role of the round-trip time of the exchanged
messages and the location of prover and verifier. These features will be made part of the security
properties by not allowing far-away participants to receive a verifier’s challenge in time.

10.2.3 Security properties

In this chapter, we focus on the two most common and successful attack-strategies against lookup-
based protocols: mafia fraud and distance fraud. Our focus on these two properties is because
previous work [15, 16] have shown that terrorist fraud and distance-hijacking [45] pose no threat
to lookup-based protocols.

Distance-fraud attack.

A distance-fraud attack consists of a corrupt prover trying to pass the protocol with a far-away
verifier. To be successful, the corrupt prover cannot wait for the verifier’s challenge to produce a
response. Instead, the prover has to send its responses sufficiently in advance so that it passes the
round-trip time condition.

Figure 10.5 shows the security experiment that defines distance fraud, where we use A.Resp
to denote the attacker’s response algorithm (which in general may be randomized) and←$ to
uniformly sample from a set. The experiment gives the adversary white-box access to an automaton
G, representing the outcome of the precomputation phase of the protocol, and to the challenges
of the verifier c1, . . . , cn in sequential order. At round i, the attacker knows all challenges sent
by the verifier up to round i − 1, but not the challenge at the current round. This makes our
model more conservative than previous models, such as [96], which assumes the corrupt prover is
unaware of all the verifier’s challenges.

Observe that the restriction of not letting the attacker receive the current challenge ci, follows
from the assumption that the corrupt prover (i.e. the attacker) is far away.
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10 Optimal distance-bounding

Definition 41 (Distance-fraud resistance). The security of a lookup-based protocol P against a
distance-fraud attackerA, denoted Advdist

A,P (n), is defined by,

PrG←$P,c1···cn←${0,1}n

[
DistAG,c1···cn

(n) = Ω(c1 · · · cn)
]

where the probability is over the coins (random source) of the adversary and the random choices
of the automatonG and the verifier’s challenges c1 · · · cn.

In our security definition we do not let the attacker influence the choice of the automatonG.
This may seem counter-intuitive, as the corrupt prover could, in practice, halt the precomputation
phase various times looking for an automaton G with good properties for the attack. However,
here we are being consistent with previous work on distance fraud [15, 16, 18, 76, 96, 108, 128],
which considers an idealized precomputation phase whose outcome cannot be influenced by the
attacker. We will informally discuss in our security analyses whether influencing the choice ofG
increases the adversary’s probability of success.

Mafia fraud attack.

A mafia fraud attack is a man-in-the-middle attack in which the adversary, who is close to the
verifier, interacts with a far-away prover to improve the odds on passing the time measurement
phase with a legitimate verifier. This attack is fully defined by the choice of the adversary’s chal-
lenges sent to the prover and the response function used by the adversary when trying to pass the
time measurement phase. Therefore, we model the adversaryA by two algorithms: A.Chall and
A.Resp. The former chooses the challenges the adversary sends to the prover, the latter chooses
the responses the adversary provides to the verifier’s challenges.

Figure 10.6 shows the security experiment we use to define mafia fraud. The experiment gives
the adversary black-box access to an automaton G, representing the outcome of the precompu-
tation phase of the protocol, and to the challenges of the verifier c1, . . . , cn in sequential order.
At each round i, the adversary is let to choose a challenge y for the prover executing the proto-
col with automaton G by calling the algorithmA.Chall on input all previous challenges sent by
the attacker, denoted x, the correct responses from the prover to those challenges, denoted Ω(x),
and all challenges sent by the verifier in previous rounds. Note that both x and y can be empty
sequences. The only restriction in this step is that the adversary cannot query the prover having
knowledge about ci, the verifier’s challenge in the current round, because the prover is far-away.
Lastly, the adversary produces the response ri at round i by seeing the challenge ci and the pair
(x,Ω(x)) collected during the pre-ask step. The output of the experiment is the sequence of
responses from the adversary.

Definition 42 (Mafia fraud resistance). The security of a lookup-based protocol P against a
mafia fraud attackerA, denoted Advmafia

A,P (n), is defined by:

Pr
G←$P,c1···cn←${0,1}n

[MafiaAG,c1···cn
(n) = Ω(c1 · · · cn)]

where the probability is over the coins of the adversary and the random choices of the automaton
G and the verifier’s challenges c1 · · · cn.
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MafiaAG,c1···cn
(n)

1 : x = ε

2 : for i = 1 to n
3 : y ← A.Chall(x,Ω(x), c1 · · · ci−1)
4 : x = x∥y
5 : ri ← A.Resp(x,Ω(x), c1 · · · ci)
6 : return r1 . . . rn

Figure 10.6: A security experiment for mafia fraud.

Unlike in distance fraud, where the attacker has white-box access to the prover, in mafia fraud
both prover and verifier are assumed to be honest. Hence, the attacker has no influence on the
prover’s choice with respect to the automaton. At best, the adversary could desynchronize prover
and verifier in such a way that the prover’s automaton is different from the verifier’s automaton.
Such a strategy, however, does not give the attacker an advantage and, therefore, is not considered
in Definition 42.

10.3 Impossibility result towards optimal protocols

The goal of this section is to prove that no lookup-based protocol exists that can simultaneously
achieve optimal resistance to mafia fraud and distance fraud. We do so in three steps. First, we
prove that 1

2n

(
n
2 + 1

)
is a tight lower bound on the security of lookup-based protocols against

mafia fraud. Second, we provide sufficient and necessary conditions for a lookup-based proto-
col to resist distance fraud with probability 1

2n , which is trivially optimal. Third, we prove that
meeting the optimal bound with respect to one attack-strategy moves the protocol away from the
optimal bound with respect to the other attack-strategy.

Theorem 7. Let Ptree be the tree-based protocol given in Definition 39. Then for all attackers
Awe have Advmafia

A,Ptree
(n) ≤ 1

2n

(
n
2 + 1

)
. Moreover, the bound is tight.

Proof. We start proving tightness of the bound. Consider the attackerA defined as follows, for
every i ∈ {1, . . . , n}, c1 · · · ci, and an arbitrary sequence x (determined byA),

A.Resp(x,Ω(x), c1 · · · ci) =
{
ℓ̂(x1 · · ·xi) if x1 · · ·xi = c1 · · · ci

random otherwise.

This attacker succeeds with certainty in the i-th round when x1 · · ·xi = c1 · · · ci otherwise he
succeeds with probability 1

2 . LetX be the random variable giving the round number iwhere the
attacker does not correctly guess ci. That is,

Pr[X = i] = Pr[x1 · · ·xi−1 = c1 · · · ci−1 ∧ xi ̸= ci] = 1
2i
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where the last equality follows from c1 · · · ci being a random sequence independently generated.
Then,

Pr
[
MafiaAG,c1···cn

(n) = Ω(c1 · · · cn)
]

=
n∑

i=1
Pr
[
MafiaAG,c1···cn

(n) = Ω(c1 · · · cn)
∣∣∣X = i

]
Pr[X = i] + 1

2n

The last term in the sum 1
2n accounts for the case where x1 · · ·xn = c1 · · · cn.

Now, Pr
[
MafiaAG,c1···cn

(n) = Ω(c1 · · · cn)
∣∣∣X = i

]
= 1

2n−i+1 . This gives,

Pr
[
MafiaAG,c1···cn

(n) = Ω(c1 · · · cn)
]

=
n∑

i=1

1
2n−i+1 ·

1
2i

+ 1
2n

= 1
2n

(
n

2 + 1
)

Observe that the above advantage is the same for every automaton G, which finishes this part
of the proof. To prove that this is an optimal bound, consider the random variable ℓ̂(c1 · · · ci).
According to Proposition 3, ℓ̂(c1 · · · ci) is uniform and, unless A.Chall outputs x1 · · ·xi =
c1 · · · ci, then the adversary cannot guess ℓ̂(c1 · · · ci) with probability better than 1

2 . As we estab-
lished earlier, the advantage in this case for the adversary is 1

2n

(
n
2 + 1

)
.

Once we have established that the tree-based protocol optimally resists mafia fraud with prob-
ability 1

2n

(
n
2 + 1

)
, we move our attention to the analysis of distance fraud.

Theorem 8. A lookup-based protocol P satisfies Advdist
A,P (n) ≤ 1

2n for all attackers A if and
only if for everyG ∈ P and every (possibly empty) sequence x of size lower than n it holds that
ℓ̂(x∥0) ̸= ℓ̂(x∥1).

Proof. If for every G ∈ P and every (possibly empty) sequence x of size lower than n it holds
that ℓ̂(x∥0) ̸= ℓ̂(x∥1), then,

Pr
c←${0,1}

[ℓ̂(x∥c) = 0] = Pr
c←${0,1}

[ℓ̂(x∥c) = 1] = 1
2

This means ri ← A.Resp(G, c1 · · · ci−1) has probability 1
2 to be equal to ℓ̂(c1 · · · ci−1, ci),

because the adversary does not have ci. This proves one direction of the double implication. To
prove the other direction we proceed via contradiction.

Assume there exists G ∈ P and a (possibly empty) sequence x such that ℓ̂(x∥0) = ℓ̂(x∥1).
We build the following adversary, for everyG′,

A.Resp(G′, c1 · · · ci−1) =
{
ℓ̂(x∥0) ifG = G′ and x = c1 · · · ci−1

random otherwise.

Note that such an adversary can be built because the adversary has white-box access toG′. Fur-
ther note that we are considering syntactical equality betweenG andG′, although the proof works
with equality modulo isomorphism too.
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IfG′ = G andx = c1 · · · ci−1, then the probability of success of this adversary is 1 at round i,
because ℓ̂(x∥0) = ℓ̂(x∥1). In any other situation, the adversary wins with probability 1

2 . Because
the eventG′ = G and x = c1 · · · ci−1 has non-zero probability, it follows that the probability of
success of the adversary is strictly larger than 1

2n .

It is worth noting that the result above holds even if the adversary is allowed to choose the au-
tomatonG. The reason is that the necessary and sufficient condition stated in Theorem 8 has to be
satisfied by all automata in the protocol, thereby giving the adversary the same success probability
for all automata.

We now proceed to prove the main result of this section.

Theorem 9. For every lookup-based protocolP there exists a pair of adversaries (Am,Ad) such
that either Advmafia

Am,P (n) ≥ 1
2n (n+ 1) or Advdist

Ad,P (n) > 1
2n .

Proof. As established earlier, optimality in terms of distance fraud implies that, for everyG ∈ P
and every (possibly empty) sequence x of size lower than n it holds that ℓ̂(x∥0) ̸= ℓ̂(x∥1). This
allows us to build the following mafia fraud adversary, for every i ∈ {1, . . . , n}, c1 · · · ci, and
sequence x,

A.Resp(x,Ω(x), c1 · · · ci) =


ℓ̂(x1 · · ·xi) if x1 · · ·xi = c1 · · · ci

1− ℓ̂(x1 · · ·xi) if x1 · · ·xi−1 = c1 · · · ci−1 ∧ xi ̸= ci

random otherwise.

Because ℓ̂(c1 · · · ci−1∥0) ̸= ℓ̂(c1 · · · ci−1∥1), it follows that the attacker succeeds with cer-
tainty if x1 · · ·xi−1 = c1 · · · ci−1, otherwise he succeeds with probability 1

2 . The rest of this
proof is similar to the proof of Theorem 7. LetX be the random variable giving the round num-
ber iwhere the attacker does not correctly guess ci. Then:

Pr
[
MafiaAG,c1···cn

(n) = Ω(c1 · · · cn)
]

=
n∑

i=1
Pr
[
MafiaAG,c1···cn

(n) = Ω(c1 · · · cn)
∣∣∣X = i

]
Pr[X = i] + 1

2n

From Pr
[
MafiaAG,c1···cn

(n) = Ω(c1 · · · cn)
∣∣∣X = i

]
= 1

2n−i we deduce that

Pr
[
MafiaAG,c1···cn

(n) = Ω(c1 · · · cn)
]

=
n∑

i=1

1
2n−i

· 1
2i

+ 1
2n

= 1
2n

(n+ 1)

In addition to the impossibility result above, we obtain two main insights from the theoretical
results in this section. First, there is a simple strategy to achieve optimality in terms of distance
fraud resistance (see Theorem 8). Second, the variant of the tree-based protocol implementing
such strategy seems to achieve a 1

2n (n+1) security value against mafia fraud, which approximates
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the optimal value by a small constant factor lower than 2. Thus, our next step is to build a memory-
efficient protocol with resistance to mafia fraud and distance fraud, respectively, equal to 1

2n (n+
1) and 1

2n .

10.4 A lookup-based protocolwith nearly optimal security
bounds

This section provides a protocol design that is memory efficient and nearly optimal in terms of
mafia fraud and distance fraud.

10.4.1 Protocol specification in graphical notation

To specify our protocol in graphical notation we will use explicit lookup tables with domain the
naturals and co-domain {0, 1}. We write Ti instead of T (i) to denote the output of T on index
i, with i a natural number, and Ti = b to denote the update of T with the value b on input the
index i. Given a sequence of bits b1 · · · bn and an ordered set of keys Ψ = {i1, . . . , in}, we use
TΨ = b1 · · · bn to denote the sequence of updates Ti1 = b1, . . . , Tin = bn.

Our protocol (depicted in Figure 10.7) relies on a parameter d, which determines the max-
imum depth of the tree used throughout the protocol. Its most prominent feature is that it
keeps a lookup table T2, . . . , T2d+1−1 of size 2d+1 − 2, which exponentially increases with d.
All bits T2, T4, . . . , T2d+1−2 are randomly sampled, while Ti = 1 − Ti−1 for every odd index
i ∈ [3, 2d+1 − 1]. During the fast phase, rounds are divided in blocks of exactly d rounds each.
Throughout the protocol, the variable seed stores the index of the current node in the tree, which
corresponds to the number whose binary representation is c1 · · · ci, where i is the round number
and c1 · · · ci the challenges sent by the verifier up to the current round. When the depth of seed
is a multiple of d, which coincides with the condition i ≡ 1 mod d, i.e. the first round in each
block, the PRF is used to compute the 2d − 1 random bits necessary to run the protocol for the
next d rounds. These bits will be assigned to the left child of each non-leaf node in the subtree of
depth d rooted in the node seed. The right child will get the opposite value. Inside each block,
the variable j represents the relative index of the current node with respect to the root node of the
subtree rooted in seed.

Observe that, for n = 4, d = 3, the automaton used by our protocol corresponds to the
tree displayed (partially) in Figure 10.8. The input sequence c = 0101 is represented in dashed
arrows. The outputs of the pseudorandom function are: PRF(sk, 1) = T2T4T6 = 110 and
PRF(sk, 5) = T2T4T6 = 011.

At first sight, the way bits are sampled in the protocol might look unnecessarily complex in
comparison to the way bits are sampled in the tree-based protocol shown in Figure 10.3. While the
tree-based protocol uses a single call to a pseudo-random function with output length 2n+1 − 1,
ours uses several calls to a pseudo-random function with output length 2d+1 − 1, where d is
a protocol parameter and divisor of n. Concretely, our protocol makes n

d calls to the pseudo-
random function. The advantage of our approach, however, is that we keep a lookup table of size
2d+1−1 as opposed to the lookup-table of size 2n+1−1 needed by the tree-based protocol. That
is to say, for small values of d, say d = log2 n, our protocol requires little memory to be executed.
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V

shared k
P

shared k

nonceNV nonceNP
NV

NP

sk := (k,NV , NP )

random c ∈ {0, 1}n seed := 1

If i≡1 mod d:

T2T4···T2d+1−2:=PRF(sk,seed)

∀j∈{2,4,...,2d+1−2} : Tj+1:=1−Tj

j=1
ci

j = 2 · j + ci∆i
Tj

seed=2·seed+ci

Fast phase for i = 1 to n

verify ∀i : ∆i≤∆max

verify correctness of responses

Figure 10.7: Our nearly optimal protocol. The parameter d determines the output length of the pseudo-
random function.

Next, we address whether this improvement in terms of memory size is traded-off by a decrease in
resistance to mafia-fraud and distance-fraud attacks.

10.4.2 Security analysis

We analyse our protocol by reducing it to the protocol specified in Figure 10.9, which does not
optimize memory, and it is simpler to analyse. Rather than calculating trees of depth 2d+1 − 1
every d rounds, the protocol in Figure 10.9 calculates the entire tree prior the execution of the
fast phase, just like the original tree-based protocol does. The protocol identifies a node by a se-
quence of bits c1 · · · ci, denoting the path from the root to the node. Because lookup tables have
domain the naturals, we use the auxiliary function dec(.) to obtain the decimal representation of
a binary sequence and identify a node c1 · · · ci with its decimal representation dec(1∥c1 · · · ci)
(see Figure 10.4 for an example). Based on this mapping from nodes in the tree to positive in-
tegers, the protocol samples bits from a pseudo-random function of fixed output length equal
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ℓ(2) = 1 ℓ(3) = 0

ℓ(4) = 1 ℓ(5) = 0 ℓ(6) = 0 ℓ(7) = 1

ℓ(10) = 0 ℓ(11) = 1

ℓ(20) = 1 ℓ(21) = 0 ℓ(22) = 1 ℓ(23) = 0

0 1

0 1 0 1

0 1

0 1 0 1

Figure 10.8: Example tree for an execution with 4 rounds. Dashed arrows indicate the path traversed on the
challenges 0101 (edge labels), resulting in the responses 1000 (node labels), respectively.

to 2d+1 − 1 bits as follows. For every node c1 · · · ci with i a multiple of d smaller than n, the
protocol randomly sample half of the labels of the subtree with depth d rooted in c1 · · · ci. Con-
cretely, it samples the nodes whose identifiers are even numbers, assigning the opposite value to
their siblings.

Lemma 32. For fixed noncesNV andNP , the protocols in Figure 10.9 and Figure 10.7 gives the
same output on any sequence of challenges.

Proof. We proceed assuming that d is a divisor of n. Let c1 · · · ci be a sequence of challenges and
e = ⌊ i

d⌋. Observe that the variable seed is identical in both protocols, in the sense that it stores
the decimal representation of 1∥c1 · · · cd·e+1. This means that the sequence T2 · · ·T2d+1−2 pro-
duced by PRF(sk, seed) in Figure 10.7 is equal to the sequence TΨx = PRF (sk, seed) pro-
duced in Figure 10.9, where x is the binary representation of seed and

Ψ(x) = {dec(1∥x∥y)|y ∈ {0, 1}i ∧ 1 ≤ i ≤ d ∧ yi = 0}

Although not explicitly mentioned earlier, we are assuming that Ψ(x) is sorted in ascending order.
This means that the position of j, as calculated in Figure 10.9, within Ψ(x) is equal to the position
of j, as calculated in Figure 10.7, within T2 · · ·T2d+1−2, which implies that Tj stores the same
value in both protocols.

The lemma above proves that the protocols in Figure 10.7 and Figure 10.9 produce identical
outputs after fixing the noncesNV andNP . This means that any adversary advantage when given
black-box access to one protocol becomes an identical advantage when given black-box access to
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V

shared k, n
P

shared k, n

nonceNV nonceNP
NV

NP

sk := (k,NV , NP )

for x=2 to x=2(e−1)d+1 step x+=2d+1−2:

TxTx+2Tx+4···Tx+2d+1−4:=PRF(sk,x)

∀y∈{x,x+2,x+4,...,x+2d+1−4} : Ty+1=1−Ty

j := 1

ci

j = 2 · j + ci∆i
Tj

Fast phase for i = 1 to n

verify ∀i : ∆i≤∆max

verify correctness of responses

Figure 10.9: An alternative specification of our protocol used to analyse its security properties.

the other protocol. Therefore, it is sufficient for us to analyse the adversary advantage over Fig-
ure 10.9.

To analyse the security properties of the protocol in Figure 10.9, we provide its formalization
in Definition 43 using the automata-based model defined earlier. The formalization is identical
to the tree-based protocol, except that it removes all automata that do not satisfy ℓ(s) ̸= ℓ(s+ 1)
for every state s in {2, 4, . . . , 2n+1−2}. That is to say, we make the labelling function guarantee
that for every node in the tree the labels of its children are different. We argue that Definition 43
is a correct formalization of the protocol in Figure 10.9 by noting that all calls to the pseudo-
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random function in Figure 10.9 use a different seed. Therefore, the sequence T2T4 · · ·T2n+1−2
is indistinguishable from a random sequence, just like in the tree-based protocol.

Definition 43 (Specification of our protocol as a set of automata). Our protocol is modelled
by the set of automata {G1, . . . , G22n+1−2} where each automaton Gi = (Σ,Γ, Q, q0, δ, ℓ)
satisfies:

• Σ = Γ = {0, 1},

• Q = {1, . . . , 2n+1 − 1} and q0 = 1,

• For every j ∈ {1, . . . , 2n − 1}, and c ∈ Σ,

– δ(j, c) = 2j + c

– ℓ(2 · j) is the j-th least significant digit of the binary representation of the integer
number i

– ℓ(2 · j + 1) = 1− ℓ(2 · j)

It follows directly from Theorem 8 that this protocol is optimal in terms of distance fraud.
Next we prove that the protocol is nearly optimal in terms of mafia fraud.

Theorem 10. Let Popt be the protocol given in Definition 43. Then for all attackersA we have
Advmafia

A,Popt
(n) ≤ 1

2n (n+ 1), and Advdist
A,Popt

(n) ≤ 1
2n .

Proof. It remains to prove the upper bound for mafia fraud attackers. The proof follows closely
the one from Theorem 7. Consider an attackerA. LetX be the random variable giving the round
number iwhere the attacker does not correctly guess ci. Then,

Pr
[
MafiaAG,c1···cn

(n) = Ω(c1 · · · cn)
]

=
n∑

i=1
Pr
[
MafiaAG,c1···cn

(n) = Ω(c1 · · · cn)
∣∣∣X = i

]
Pr[X = i] + 1

2n

Now, Pr[X = i] = 1
2i because the challenges chosen independently and uniformly at ran-

dom. The value Pr
[
MafiaAG,c1···cn

(n) = Ω(c1 · · · cn)
∣∣∣X = i

]
is upper bounded by 1

2n−i be-
cause if the adversary guesses incorrectly ci, then from the value of Ω(x1 · · ·xn) it gets no infor-
mation about the labels of the nodes in the subtree determined by the path c1 · · · ci+1, so the best
it can do is randomly guess these values, and there are at least n− i such values. We conclude:

Pr
[
MafiaAG,c1···cn

(n) = Ω(c1 · · · cn)
]
≤

n∑
i=1

1
2n−i

· 1
2i

+ 1
2n

= 1
2n

(n+ 1)
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10.5 Evaluation

10.5 Evaluation

The goal of this section is to compare the security bounds of our protocol against previous lookup-
based protocols. To make our comparison comprehensive, yet concise, we only consider the pro-
tocols regarded relevant by the decision-making methodology due to Avoine et al. [19], while
adding the Hancke and Kuhn protocol (HK protocol for short) as a baseline. Concretely, we con-
sider the protocols HK [76], Tree based [20], Modular [96] and Poulidor [130]. The security of
these protocols in terms of mafia and distance fraud are taken from the framework available at
https://github.com/rolandotr/db_comparison.

10.5.1 Evaluation setting

Because most distance-bounding protocols require a memory size that linearly grows with n, we
shall restrict protocols to a linear memory size. This means that, for protocols whose memory
requirement depends on protocol parameters, we set them such that the memory usage scales
linearly with the number of rounds. In particular, for:

• The tree-based protocol: the depth of each tree is set to 6, which gives a memory size of
approximately 21 · n bits.

• The Modular protocol: the width of the graph is set to u = 4, which gives a memory size
of 16 · n bits.

• Our protocol: the depth of each tree is set to ⌊log(n)⌋, which gives a memory size ofn bits.
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Figure 10.10: Mafia fraud success probability.
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Figure 10.11: Distance fraud success probability.

10.5.2 Comparison results

In Figure 10.10 and Figure 10.11 we compare the protocols in terms of their resistance to mafia
fraud and distance fraud, respectively. Our protocol clearly outperforms the rest in terms of both
types of fraud, with Poulidor being its closest competitor. In terms of distance fraud, our protocol
outperforms the others by a somewhat larger margin. This is not so surprising, as it was specifically
designed to be optimal with respect to this fraud.

10.6 Conclusions

We presented a novel lookup-based distance-bounding protocol that provides (close to) optimal
protection against distance fraud and mafia fraud attacks. We demonstrated the impossibility of
achieving optimal protection against both types of fraud, and derived a tight lower bound for
mafia fraud when distance fraud resistance is optimal. Furthermore, we conducted a comparative
analysis of our protocol against previous lookup-based protocols in terms of their resistance to
mafia fraud and distance fraud. The results show that our protocol outperforms others in miti-
gating both types of fraud.
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In this thesis we addressed questions related to the security of protocols that depend on proxim-
ity and use round-trip-time measurements, such as key-exchange, memory-erasure and distance-
bounding protocols. To provide security guarantees with mathematical rigour, we used formal
analysis within symbolic and computational security models. In this regard, we reported on a
number of flaws and shortcomings found by our analyses, and proposed novel memory-erasure
and distance-bounding protocols with improved security.

Using the symbolic approach in the context of protocols with proximity assumptions, we iden-
tified and formalized the distant-attacker assumption. We also introduced a time-based secu-
rity model where round-trip-time measurements and the location of agents is used to determine
whether the neighbourhood of an agent is free of attackers. To enable computer-aided verification
of protocols written in our specification language, we provided a reduction from the time-based
to a causality-based model, which eliminates the notions of time and location, by defining prox-
imity checks and the distant-attacker assumption as causal relations on the protocol events. We
also introduced a class of security requirements for which the previous reduction is valid. Us-
ing Tamarin, we formally verified the security of five key-exchange protocols and two memory-
erasure protocols, finding unreported vulnerabilities on three of them.

Using the computational approach in the context of software based memory-erasure protocols,
we proposed protocols based on distance-bounding techniques, and proved them secure against
distant attackers. Furthermore, we showed how to reduce the security analysis of this type of
protocol to the case of a single round in the interactive phase. Our first protocol requires sending
a random bitstring of the size of the prover’s memory. The second one is a graph-based PoSE
protocol with similar security guarantees that reduces the communication complexity during the
initialization phase from linear to constant. The protocol asks the prover to label a depth-robust
graph from a random seed. We introduced a class of graphs with depth-robust properties that can
be labelled in-place using hash functions, a necessary condition to be usable in this context. The
protocol was proven secure within a formal model, guaranteeing that all the prover’s memory,
except for a small part, is erased. Our third and final protocol is a lightweight version of the graph-
based protocol based on a smaller graph that relaxes slightly the security requirements to achieve
better performance.

In the search for tight security proofs for the graph-based PoSE protocols, we proved that a
previous result on the relation between pebbling games and computational bounds is invalid [57],
and showed a counterexample. We also found a correct variant that incurs only in a logarithmic
loss [60]. We concluded that for applications where tightness is necessary (for example, memory-
erasure), there is no satisfactory translation result without some loss in security.

Given the inexistence of freely available implementations of software-based memory-erasure
protocols, we implemented the most prominent ones in a common framework. Our implementa-
tions provide necessary common ground to compare future protocols with respect to performance
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and security guarantees. We chose 7 protocols, each with several variants depending on the hash
function used, and tested them on 3 modern IoT devices. Furthermore, we compared the security
guarantees provided by each protocol, and contrasted them with their performance in a practical
setting. Our results revealed that current memory-erasure protocols are practical, although eras-
ing the full memory securely could take several minutes for the slower devices. Network speed
might be faster than local computation, therefore reducing the communication complexity in the
protocol is not always the best choice. For protocols where hash functions are used, this choice
may influence dramatically the protocol performance and memory footprint. Finally, the most
performant protocol might not be the best according to the asymptotic complexity analysis, as
for small memory sizes the hidden constants may play a determinant role.

Although distance-bounding protocols have been widely studied, there are still some open
questions regarding the existence of protocols with optimal security guarantees. We presented a
new lookup-based distance-bounding protocol that provides (close to) optimal protection against
distance fraud and mafia fraud attacks. We demonstrated the impossibility of achieving optimal
protection against both types of fraud, and derived a tight lower bound for mafia fraud when
distance fraud resistance is optimal. Furthermore, we conducted a comparative analysis of our
protocol against previous lookup-based protocols in terms of their resistance to mafia fraud and
distance fraud. The results shown that our protocol outperforms others in mitigating both types
of fraud.

FutureWork

During the development of this thesis we identified several issues for which we could not find
solutions. Here we mention a few of them which might be of interest for future research.

In the symbolic analysis of protocols with round-trip-time measurements, the verifier checks
whether all measurements were below a given threshold only after the protocol is finished and a
security claim is made. If this decision is taken as soon as the fast phase finishes, our results are
not applicable. In particular, in this case it is much harder to prove the equivalence between the
model with time and the timeless model. The same has been the case with previous works on
the symbolic analysis of distance-bounding protocols. Another improvement is generalizing our
reduction proofs to a causality-based specification model that is a subset of the model supported
by a state-of-the-art protocol verification tool, such as Tamarin, which would reduce the gap
between theory and practice. Lastly, like previous verification frameworks for distance-bounding
protocols, our methodology assumes that agents do not move. Dropping that assumption is of
interest for both classes of protocols.

Our memory-erasure protocols cannot guarantee erasing the full memory of the device, because
our proofs are not tight. In particular, for the general adversary and if the malware is small enough,
our results do not guarantee the verifier will detect it, no matter how many rounds are executed
during the fast phase. Nevertheless, we were not able not find any attack that would allow an
adversary to save any non-constant amount of malware. Therefore, we believe that our protocols
offer more security than what we can currently guarantee, and proving so is an interesting problem
to solve. Such a result would find applications in related problems such as memory-hardness,
proof of space and proof of work.
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In our experiments on memory-erasure protocols we aimed to test the performance of several
devices and protocols in a common setting. This made it unfeasible to erase all memory from the
device, as erasure protocols aim by default. A more realistic experiment would be to focus on a
single device, and try to erase as much memory as possible with every protocol. We believe multiple
device specific optimizations might be needed to execute such experiment. Our experiments could
also be enhanced by measuring the energy consumption of each protocol execution, a quantity
that is important in some IoT applications.

Our new distance-bounding protocol has better security guarantees than previous works, but
that might be at the expense of worse performance. Therefore, it would be interesting to imple-
ment it a practical setting to determine how much overhead in terms of time and energy it has with
respect to previous proposals, in particular simpler protocols such as Hancke and Kuhn’s. This
would show for which applications the gain in security is worth the potential loss in performance.
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Acronyms

AONT all or nothing transform
BLBA basic lower bound argument
CPA chosen plaintext attack
DAG directed acyclic graph
DDoS distributed denial-of-service
DFA deterministic finite automaton
HMAC hash-based message authentication code
HTTP Hypertext Transfer Protocol
IETF Internet Engineering Task Force
IND-CCA2 indistinguishability under adaptive chosen ciphertext attack
IoT Internet of Things
LTS Labelled Transition System
MAC message authentication code
MSC message sequence chart
NFC Near Field Communication
PoS Proof of Space
PoSE Proof of Secure Erasure
PoSE-DB Proofs of Secure Erasure with Distance-Bounding
poset partially ordered set
PoW Proof of Work
PRF Pseudorandom Function
ROM Random Oracle Model
RTT Time elapsed from sending a challenge and receiving a response
SAT Boolean satisfiability problem
TPM Trusted Platform Module
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