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A B S T R A C T

Distance-bounding protocols are security protocols with a time measurement phase used to detect relay attacks,
whose security is typically measured against mafia-fraud and distance-fraud attacks. A prominent subclass of
distance-bounding protocols, known as lookup-based protocols, use simple lookup operations to diminish the
impact of the computation time in the distance calculation. Independent results have found theoretical lower
bounds 1

2𝑛

(

𝑛
2
+ 1

)

and 1
2𝑛

, where 𝑛 is the number of time measurement rounds, on the security of lookup-based
protocols against mafia and distance-fraud attacks, respectively. However, it is still an open question whether
there exists a protocol achieving both security bounds. This article closes this question in two ways. First, we
prove that the two lower bounds are mutually exclusive, meaning that there does not exist a lookup-based
protocol that provides optimal protection against both types of attacks. Second, we provide a lookup-based
protocol that approximates those bounds by a small constant factor. Our experiments show that, restricted to a
memory size that linearly grows with 𝑛, our protocol offers strictly better security than previous lookup-based
protocols against both types of fraud.
1. Introduction

Distance-bounding protocols aim to counteract relay attacks against
wireless authentication protocols by ensuring proximity between com-
municating parties. Because the speed of light represents a hard limit
on the speed of radio waves, the distance from a transmitter to a
receiver is (at most) half the round-trip time multiplied by the speed
of light, where round-trip time is the time it takes for a signal to
travel from the transmitter to the receiver and back. This physical law
allows distance-bounding protocols to verify proximity by measuring
the round-trip-time of a message exchange between a prover and a
verifier [2].

Many protocols have suffered relay attacks in the past [3]. Fa-
mously, the EMV standard for contactless payments [4] now offers
some protection against this type of attacks, and NXP’s MIFARE Plus
cards support proximity checks [5]. Both protocols use distance bound-
ing as their main protection mechanism against relay attacks and have
been extensively studied.
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1 For the sake of rigorousness, we should point out that [1] describes the protocol by using two registers of length 𝑛 rather than a single bit-sequence of length
2𝑛.

In general, a distance-bounding protocol consists of several rounds,
in each of which a verifier challenges a prover to answer a query based
on a shared secret key. Each round is timed by the verifier to check
whether the prover is close. As a case in point, consider the protocol
introduced by Hancke and Kuhn [1] depicted in Fig. 1. First, the parties
exchange one nonce each (𝑁𝑣 and 𝑁𝑝). The two nonces and a shared
secret key 𝑘 are used by both parties as input to a pseudo-random
function 𝖯𝖱𝖥, which outputs a 2𝑛-bit sequence 𝑇1 ⋯ 𝑇2𝑛.1 Next, prover
and verifier engage in 𝑛 challenge-response rounds. At the 𝑖-th round,
the verifier generates and sends a random bit-challenge 𝑐𝑖. If 𝑐𝑖 = 0, the
prover replies with 𝑇2𝑖−1, otherwise with 𝑇2𝑖. The protocol succeeds if
all responses are correct and all round-trip times are below a predefined
threshold 𝛥max. If 𝛥max is sufficiently small, then the protocol ensures
proximity of the prover to the verifier, because the correct responses
can only be generated by a nearby prover with the correct key 𝑘.

Hancke and Khun’s protocol has the virtue of relying on a simple
lookup operation by the prover during the time-measurement phase,
minimizing the impact that the prover’s computational cost has on
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Fig. 1. A lookup-based protocol by Hancke and Kuhn.
Fig. 2. The difference between mafia fraud and distance fraud. The encircled area denotes proximity to the verifier.
the round-trip-time measurement. Moreover, it makes a single call
to a keyed pseudo-random function, making it suitable for resource-
constrained devices. Hancke and Khun’s protocol, however, offers sub-
optimal security. That is why distance-bounding protocols improving
upon Hancke and Khun’s design have been extensively studied [1,6–
14], and given the name of lookup-based protocols [11]. These protocols
usually include a precomputation phase and a fast phase. This is differ-
ent from more general distance-bounding protocols that may include a
verification phase. Moreover, during each round of the fast phase the
prover executes a single lookup operation, i.e. the response is already
computed in memory.

The analysis of lookup-based protocols has mainly focused on two
potential threats: mafia fraud and distance fraud [15,16]. The former
is a man-in-the-middle attack aimed at convincing the verifier that an
honest far-away prover is close (see Fig. 2(a)); the latter is an attack
executed by a corrupt prover to pass the protocol from far-away (see
Fig. 2(b)). It was proven in [11] that the optimal resistance against
mafia fraud is 1

2𝑛

(

𝑛
2 + 1

)

, where 𝑛 is the number of round-trip-time
measurements, and in [12] that the optimal resistance against distance
fraud is 1

2𝑛 . It remains an open question, however, whether there exists
a lookup-based protocol achieving both optimal security bounds.
Contributions and structure. This article addresses the open question of
whether lookup-based protocols can achieve optimal resistance against
mafia fraud and distance fraud. We do so by extending the security
70
model used in [11] to model lookup-based protocols with a game-based
definition of security (Section 3). The resulting model is more general,
in the sense that it makes fewer security assumptions, and allows us
to prove that optimal security against mafia fraud and distance fraud
are conflicting goals (Section 4). That is, optimality against one fraud
moves the protocol away from optimality against the other fraud.

The second contribution of this work is the introduction of the
first lookup-based protocol whose security bounds are either optimal
or close to the optimal by a small constant factor (Section 5). More
precisely, our protocol achieves 1

2𝑛 security against distance fraud,
which is optimal, and 1

2𝑛 (𝑛 + 1) security against mafia fraud, which
is less than twice the optimal. By comparing those bounds with the
security offered by existing lookup-based protocols (Section 6), we
show that our protocol represents a significant improvement over the
state-of-the-art.

2. Related work

The earliest distance-bounding protocol was proposed by Brands
and Chaum [17]. This protocol achieves optimal security against mafia
fraud and distance fraud by cryptographically signing the protocol
transcripts after the time-measurement phase. Yet, it is vulnerable
to a distance-hijacking attack [18]. With the years it has been im-
proved [16], extending its security goals to the resistance of terrorist
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fraud [19]. One such improvement is the Swiss-knife protocol [20],
whose main features are reaching optimal security against mafia fraud
and resisting terrorist fraud to some extent. Terrorist fraud is an exotic
ype of fraud whereby a dishonest prover helps an adversary to defeat
distance-bounding protocol without allowing the adversary to imper-

onate him in future sessions of the protocol. The Swiss-knife protocol,
hile computationally more costly, does not offer better resistance to
istance fraud than Hancke and Kuhn’s protocol.

In 2005, Hancke and Kuhn [1] pointed out that using cryptographic
signatures, or other expensive primitives, may cause many false failures
of the protocol in noisy environments. Furthermore, it could hinder
the deployment of distance-bounding on resource-constrained devices,
such as RFID tags. They advocated for simplicity and computational ef-
ficiency when designing distance-bounding protocols and proposed the
design displayed in Fig. 1. Notably, the use of lookup operations during
the time-measurement phase improves the precision of the distance
estimation and prevents attacks in which the adversary overclocks the
prover. Following [11], we refer to protocols adhering to the design
principles outlined by Hancke and Kuhn as lookup-based protocols,
which are the focus of this article. For a comprehensive overview of
terrorist fraud and other classes of distance-bounding protocols, we
refer the interested reader to [16].

Despite the performance virtues of lookup-based protocols, they
have struggled to offer strong security against mafia and distance fraud
attacks. This is a major drawback, as several scenarios exist where
those attacks are of practical significance. For example, Kfir and Wool
documented how relay attacks can be executed with NFC devices [21],
which was later put into practice in [22]. The abuse of proximity claims
through radio channels was first shown by Hancke [23], and later
successfully implemented to attack the remote keyless entry system of
ten car models from eight different manufacturers [24].

The first lookup-based protocol whose security against mafia fraud
is close to the optimum value 1

2𝑛 , when 𝑛 → ∞, was introduced by
Avoine and Tchamkerten in [6]. The protocol starts with an exchange
of nonces between the prover and the verifier. The nonces and a shared
secret key are used to secretly agree on the labels of a binary tree
of depth 𝑛 (see Fig. 3). The labels of such binary tree are encoded
within a sequence 𝑇1𝑇2 ⋯ 𝑇2𝑛+1−1 of size 2𝑛+1 − 1, where 𝑇1 is the label
f the root node and, for every 𝑖 ∈ {1,… , 2𝑛 − 1}, 𝑇𝑖’s left and right
hildren have labels 𝑇2𝑖 and 𝑇2𝑖+1, respectively. To bound its distance
o the prover, the verifier executes 𝑛 time measurements by sending 𝑛
inary challenges. Starting from the root node, each binary challenge
etermines the child node whose label (also binary) is sent as reply to
he challenge. The challenge-response game continues recursively until
leaf node is reached. The verifier authenticates the prover if all the

esponses are correct and arrive on time.
Avoine and Tchamkerten’s protocol has a major drawback, though.

he size of the tree grows exponentially with the number of RTT
easurements. Note that it requires an encoding of size 2𝑛+1 −2, while
ancke and Kuhn’s protocol merely needs a sequence of length 2𝑛. This
roblem has been treated by subsequent works, notably by [11,13],
hich resorted into different graph structures, rather than trees, to

tore the outcome of the precomputation phase. Avoine and Tchamk-
rten themselves offer a trade-off where a linear number trees of
epth 𝑑 < 𝑛 are used at the cost of downgraded security. Kim and
voine proposed a different trade-off [9], one which degrades security
gainst distance fraud to improve resistance to mafia fraud. Lastly,
he SKI protocol [25] traded resistance to mafia fraud in exchange
or some resistance to terrorist fraud. We observe that, while these
orks managed to find interesting trade-offs between memory size and

ecurity, none has solved the problem of finding a lightweight distance-
ounding protocol with resistance to mafia fraud and distance fraud
qual or close to their optimal values. That is the goal of this article. We
how in Table 1 a quick comparison between lookup-based protocols.
he first entry for our protocol is marked with an asterisk (*) because

ts mafia-fraud resistance is optimal, conditional to the optimality of
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Table 1
Comparison of lookup-based protocols with respect to Mafia Fraud resistance optimality,
Distance Fraud resistance optimality, and space requirements.

Mafia fraud Distance fraud Space

HK [1] No No Linear
Tree Based [6] Yes No Exponential
Poulidor [13] No No Linear
Modular [11] No No Linear
Our protocol Yes* Yes Linear

resistance against distance fraud, as will be shown in Sections 4 and 5.

We conclude this section by remarking that many security mod-
els have been proposed to analyse distance-bounding protocols, such
as [25,26]. Notably, in [25], Boureanu and Vaudenay study the impos-
sibility of resisting to all types of fraud efficiently. We are interested in
a different question, though. Rather than merely resisting an attack, we
are interested in optimally resisting an attack. For that, we need a ded-
icated security model particularly tailored to lookup-based protocols,
which we introduce next.

3. The security model

Our security model takes the specification and execution model
of [11], which defines a lookup-based protocol as a set of automata,
but defines the security properties of interest in a more general way.

Lookup-based protocols contain two phases: a precomputation
phase and a fast phase. During the first phase the prover and verifier
exchange messages containing cryptographic information. As a result,
both agents generate the same fresh random automaton, which is then
used during the fast phase by the prover to compute the responses
to the challenges generated randomly by the verifier. Both challenges
and responses are single bits. For the security analysis of this type of
protocol, it is sufficient to analyse the set of all possible automata that
can be generated during the precomputation phase, as in most cases
the probability distribution used is (or is assumed to be) uniform.

3.1. Specification

We use an automata-based representation of lookup-based protocols
as introduced in [11]. An automaton, i.e., a state-labelled deterministic
finite automaton (DFA), is of the form (𝛴, 𝛤 ,𝑄, 𝑞0, 𝛿,𝓁), where 𝛴 is a
set of input symbols, 𝛤 is a set of output symbols, 𝑄 is a set of states,
𝑞0 ∈ 𝑄 is the initial state, 𝛿∶𝑄 × 𝛴 → 𝑄 is a transition function, and
𝓁∶𝑄 → 𝛤 is a labelling function. Given input and output symbol sets
𝛴 and 𝛤 , respectively, we use 𝐔𝛴,𝛤 to denote the universe of all DFAs
over 𝛴 and 𝛤 .

Definition 1 (Lookup-based Protocol [11]). A lookup-based protocol with
input set 𝛴 and output set 𝛤 is a finite non-empty subset of 𝐔𝛴,𝛤 .

Given an automaton 𝐺 = (𝛴, 𝛤 ,𝑄, 𝑞0, 𝛿,𝓁) and a current state 𝑞 ∈ 𝑄,
a lookup operation is regarded as a transition to a new state 𝑞′ = 𝛿(𝑞, 𝑐)

here 𝑐 ∈ 𝛴 is a verifier’s challenge. The corresponding response for
uch a challenge 𝑐0 is the output symbol attached to the new state
′, i.e., 𝓁(𝑞′). This specification abstracts away from various protocol
etails that are present, for example, in the graphical descriptions given
n Figs. 1 and 3, such as the precomputation phase and the round-
rip-time measurements. These features of the protocol will be carefully
onsidered when defining the execution model and security properties.
or that, we need to introduce additional notation. For a sequence of
nput symbols 𝑐 = 𝑐1 ⋯ 𝑐𝑖 ∈ 𝛴𝑖:

• 𝛿(𝑐) = 𝛿(𝛿(𝑐1 … 𝑐𝑖−1), 𝑐𝑖) if 𝑖 > 1, otherwise 𝛿(𝑐1) = 𝛿(𝑞0, 𝑐1). In a
nutshell, 𝛿(𝑐) returns the state reached by the input sequence 𝑐.



Computer Communications 210 (2023) 69–78R. Gil-Pons et al.

d
t
(
r
d

D
{

Fig. 3. The tree-based protocol by Avoine and Tchamkerten. The tree is encoded in the binary sequence 𝑇2 ⋯ 𝑇2𝑛+1−1.
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• 𝓁(𝑐) = 𝓁(𝛿(𝑐)), which is the output symbol attached to the state
reached by the sequence 𝑐.

• 𝛺(𝑐) is used to represent the sequence of labels attached to the
states 𝛿(𝑐1), 𝛿(𝑐1𝑐2), … , 𝛿(𝑐1𝑐2 ⋯ 𝑐𝑖) in that order, i.e., 𝛺(𝑐) =
𝑟1 ⋯ 𝑟𝑖 ∈ 𝛤 𝑖, where 𝑟𝑗 = 𝓁(𝑐1 ⋯ 𝑐𝑗 ) for 1 ≤ 𝑗 ≤ 𝑖.

As a running example we model the tree-based protocol [6]
escribed in Fig. 3. In this protocol, each tree (representing the automa-
on) is the full binary tree of depth 𝑛, which contains 2𝑛+1 − 1 nodes
representing the states of the automaton), where each node except the
oot is labelled randomly with either 0 or 1. This gives a total of 22𝑛+1−2
ifferent labelled trees.

efinition 2. The tree-based protocol is the set of automata
𝐺1,… , 𝐺22𝑛+1−2} where each automaton 𝐺𝑖 = (𝛴, 𝛤 ,𝑄, 𝑞0, 𝛿,𝓁) satisfies:

• 𝛴 = 𝛤 = {0, 1},
• 𝑄 = {1,… , 2𝑛+1 − 1} and 𝑞0 = 1,
• For every 𝑗 ∈ 𝑄 and 𝑐 ∈ 𝛴, 𝛿(𝑗, 𝑐) = 2𝑗 + 𝑐
• For every 1 ≤ 𝑗 ≤ 2𝑛+1 − 2, 𝓁(𝑗 + 1) is the 𝑗-th least significant bit

(right-most bit) of the binary representation of the integer number
𝑖, which is the index of the automaton 𝐺𝑖.

Observe that, for 𝑛 = 2, the automaton 𝐺17 corresponds to the tree
displayed in Fig. 4. The labels follow from the binary representation of
17 (010001). Further, observe that the automaton 𝐺17 on input sequence
𝑐 = 01 (represented in dashed arrows in Fig. 4) gives:

• 𝛿(𝑐) = 𝛿(𝛿(1), 1) = 𝛿(𝛿(1, 0), 1) = 𝛿(2, 1) = 5.
• 𝓁(𝑐) = 𝓁(𝛿(01)) = 0.
• 𝛺(𝑐) = 𝓁(0)𝓁(01) = 10.

Remark 1. Like in [11], we argue informally that Definition 2 is a
correct formalization of the protocol depicted in Fig. 3, as the theory
does not allow for a formal proof of equivalence between the two spec-
ifications. Throughout the paper we shall resort to a similar informal
argumentation whenever we describe a protocol in graphical notation,
as in Fig. 3, and formalize it within the automata-based model, as in
Definition 2.
72
Fig. 4. Example of a tree for an execution with two rounds. Dashed arrows indicate
the path traversed on the challenges 0 and 1 (edge labels), resulting in the responses
1 and 0 (node labels), respectively.

Using the above formalism to describe lookup-based protocols, in-
stead of, for example, Fig. 3, makes it possible to formalize properties
of the protocol, such as the following.

Proposition 1. Let 𝑃𝑡𝑟𝑒𝑒 be the tree-based protocol as in Definition 2. For
any input sequence 𝑥, it holds that Pr

[

𝓁(𝑥) = 0
]

= Pr
[

𝓁(𝑥) = 1
]

= 1
2 ,

where the probability is taken over a random automaton sampled from
𝑃𝑡𝑟𝑒𝑒. That is to say, if we look at 𝓁(𝑥) as a random variable, then 𝓁(𝑥)
is uniformly distributed.

We will use this proposition later in our security proofs.

3.2. Execution

The model in [11] abstracts away the precomputation phase in
lookup-based protocols by considering the following execution model.

Definition 3 (Execution Model). A correct execution, up to 𝑛 > 0
rounds, of a lookup-based protocol 𝑃 is a triple (𝐺,𝐶,𝑅), where 𝐺
s an automaton randomly selected from 𝑃 , 𝐶 is an input sequence
andomly selected from 𝛴𝑛 and 𝑅 is an output sequence from 𝛤 𝑛 such

that 𝑅 = 𝛺(𝐶).
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Fig. 5. A security experiment for distance fraud.

The outcome of the precomputation phase is considered to be a
random automaton 𝐺 ∈𝑅 𝑃 within the set of automata defining the
lookup-based protocol 𝑃 . The input sequence 𝐶 = 𝑐1 ⋯ 𝑐𝑛 corresponds
to the verifier’s challenges, and the correct replies 𝑅 = 𝑟1 ⋯ 𝑟𝑛 must
satisfy that 𝓁(𝑐1) = 𝑟1,𝓁(𝑐1𝑐2) = 𝑟2,… ,𝓁(𝑐1 ⋯ 𝑐𝑛) = 𝑟𝑛.

Up to this point, the model has not established the role of the round-
trip time of the exchanged messages and the location of prover and
verifier. These features will be made part of the security properties by
not allowing far-away participants to receive a verifier’s challenge in
time.

3.3. Security properties

In this article, we focus on the two most common and suc-
cessful attack-strategies against lookup-based protocols: mafia fraud
and distance fraud. Our focus on these two properties is be-
cause previous work [15,16] have shown that terrorist fraud and
distance-hijacking [18] pose no threat to lookup-based protocols.

3.3.1. Distance-fraud attack
A distance-fraud attack consists of a corrupt prover trying to pass

the protocol with a far-away verifier. To be successful, the corrupt
prover cannot wait for the verifier’s challenge to produce a response.
Instead, the prover has to send its responses sufficiently in advance so
that it passes the round-trip time condition.

Fig. 5 shows the security experiment we use to define distance
fraud, where we use .𝑅𝑒𝑠𝑝 to denote the attacker’s response algorithm
(which in general may be randomized) and ←$ to uniformly sample
from a set. The experiment gives the adversary white-box access to an
automaton 𝐺, representing the outcome of the precomputation phase of
the protocol, and to the challenges of the verifier 𝑐1,… , 𝑐𝑛 in sequential
order. At round 𝑖, the attacker knows all challenges sent by the verifier
up to round 𝑖−1, but not the challenge at the current round. This makes
our model more conservative than previous models, such as [11], which
assumes the corrupt prover is unaware of all the verifier’s challenges.

Observe that the restriction of not letting the attacker receive the
current challenge 𝑐𝑖, follows from the assumption that the corrupt
prover (i.e. the attacker) is far away.

Definition 4 (Distance-fraud Resistance). The security of a lookup-based
protocol 𝑃 against a distance-fraud attacker , denoted 𝖠𝖽𝗏dist,𝑃 (𝑛), is
efined by,

r𝐺 ←$𝑃 ,𝑐1⋯𝑐𝑛 ←$ {0,1}𝑛
[

Dist𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

]

where the probability is over the coins (random source) of the ad-
ersary and the random choices of the automaton 𝐺 and the verifier’s
hallenges 𝑐1 ⋯ 𝑐𝑛.

In our security definition we do not let the attacker influence
he choice of the automaton 𝐺. This may seem counter-intuitive, as
he corrupt prover could, in practice, halt the precomputation phase
arious times looking for an automaton 𝐺 with good properties for

the attack. However, here we are being consistent with previous work
on distance fraud [1,7,11,12,15,16,27], which considers an idealized
precomputation phase whose outcome cannot be influenced by the
attacker. We will informally discuss in our security analyses whether
influencing the choice of 𝐺 increases the adversary’s probability of
success.
73
Fig. 6. A security experiment for mafia fraud.

.3.2. Mafia fraud attack
A mafia fraud attack is a man-in-the-middle attack in which the

dversary, who is close to the verifier, interacts with a far-away prover
o improve the odds on passing the time measurement phase with a
egitimate verifier. This attack is fully defined by the choice of the
dversary’s challenges sent to the prover and the response function
sed by the adversary when trying to pass the time measurement phase.
herefore, we model the adversary  by two algorithms: .𝐶ℎ𝑎𝑙𝑙 and
.𝑅𝑒𝑠𝑝. The former chooses the challenges the adversary sends to the
rover, the latter chooses the responses the adversary provides to the
erifier’s challenges.

Fig. 6 shows the security experiment we use to define mafia fraud.
he experiment gives the adversary black-box access to an automa-
on 𝐺, representing the outcome of the precomputation phase of the
rotocol, and to the challenges of the verifier 𝑐1,… , 𝑐𝑛 in sequential
rder. At each round 𝑖, the adversary is let to choose a challenge 𝑦

for the prover executing the protocol with automaton 𝐺 by calling
the algorithm .𝐶ℎ𝑎𝑙𝑙 on input all previous challenges sent by the
attacker, denoted 𝑥, the correct responses from the prover to those
challenges, denoted 𝛺(𝑥), and all challenges sent by the verifier in
previous rounds. Note that both 𝑥 and 𝑦 can be empty sequences.
The only restriction in this step is that the adversary cannot query
the prover having knowledge about 𝑐𝑖, the verifier’s challenge in the
current round, because the prover is far-away. Lastly, the adversary
produces the response 𝑟𝑖 at round 𝑖 by seeing the challenge 𝑐𝑖 and
the pair (𝑥,𝛺(𝑥)) collected during the pre-ask step. The output of the
experiment is the sequence of responses from the adversary.

Definition 5 (Mafia Fraud Resistance). The security of a lookup-based
protocol 𝑃 against a mafia fraud attacker , denoted 𝖠𝖽𝗏maf ia

,𝑃 (𝑛), is
defined by,

Pr𝐺 ←$𝑃 ,𝑐1⋯𝑐𝑛 ←$ {0,1}𝑛
[

Mafia𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

]

where the probability is over the coins of the adversary and the random
choices of the automaton 𝐺 and the verifier’s challenges 𝑐1 ⋯ 𝑐𝑛.

Unlike in distance fraud, where the attacker has white-box access
to the prover, in mafia fraud both prover and verifier are assumed
to be honest. Hence the attacker has no influence on the prover’s
choice with respect to the automaton. At best, the adversary could
desynchronize prover and verifier in such a way that the prover’s
automaton is different from the verifier’s automaton. Such a strategy,
however, does not give the attacker an advantage and, therefore, is not
considered in Definition 5.

4. Impossibility result towards optimal protocols

The goal of this section is to prove that no lookup-based protocol
exists that can simultaneously achieve optimal resistance to mafia
fraud and distance fraud. We do so in three steps. First, we prove
that 1

2𝑛

(

𝑛
2 + 1

)

is a tight lower bound on the security of lookup-
based protocols against mafia fraud. Second, we provide sufficient and
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necessary conditions for a lookup-based protocol to resist distance fraud
with probability 1

2𝑛 , which is trivially optimal. Third, we prove that
eeting the optimal bound with respect to one attack-strategy moves

he protocol away from the optimal bound with respect to the other
ttack-strategy.

heorem 1. Let 𝑃𝑡𝑟𝑒𝑒 be the tree-based protocol given in Definition 2. Then
for all attackers  we have 𝖠𝖽𝗏maf ia

,𝑃𝑡𝑟𝑒𝑒
(𝑛) ≤ 1

2𝑛

(

𝑛
2 + 1

)

. Moreover, the
ound is tight.

roof. We start proving tightness of the bound. Consider the attacker
defined as follows, for every 𝑖 ∈ {1,… , 𝑛}, 𝑐1 ⋯ 𝑐𝑖, and an arbitrary

sequence 𝑥 (determined by ),

.𝑅𝑒𝑠𝑝(𝑥,𝛺(𝑥), 𝑐1 ⋯ 𝑐𝑖) =

{

𝓁(𝑥1 ⋯ 𝑥𝑖) if 𝑥1 ⋯ 𝑥𝑖 = 𝑐1 ⋯ 𝑐𝑖
random otherwise.

This attacker succeeds with certainty in round 𝑖 as long as
1 ⋯ 𝑥𝑖 = 𝑐1 ⋯ 𝑐𝑖, otherwise he succeeds with probability 1∕2.
et 𝑋 be the random variable giving the round number 𝑖 where
he attacker does not correctly guess 𝑐𝑖. That is, Pr [𝑋 = 𝑖] =
r
[

𝑥1 ⋯ 𝑥𝑖−1 = 𝑐1 ⋯ 𝑐𝑖−1 ∧ 𝑥𝑖 ≠ 𝑐𝑖
]

= 1
2𝑖 , where the last equality follows

rom 𝑐1 ⋯ 𝑐𝑖 being a random sequence independently generated. Then,

Pr
[

Mafia𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

]

=
𝑖=𝑛
∑

𝑖=1
Pr

[

Mafia𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

|

|

|

𝑋 = 𝑖
]

Pr [𝑋 = 𝑖] + 1
2𝑛

The last term in the sum 1
2𝑛 accounts for the case where 𝑥1 ⋯ 𝑥𝑛 =

𝑐1 ⋯ 𝑐𝑛.
Now, Pr

[

Mafia𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

|

|

|

𝑋 = 𝑖
]

= 1
2𝑛−𝑖+1 . This gives,

Pr
[

Mafia𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

]

=
𝑖=𝑛
∑

𝑖=1

1
2𝑛−𝑖+1

× 1
2𝑖

+ 1
2𝑛

= 1
2𝑛

( 𝑛
2
+ 1

)

Observe that the above advantage is the same for every automaton
, which finishes this part of the proof. To prove that this is an
ptimal bound, consider the random variable 𝓁(𝑐1 ⋯ 𝑐𝑖). According

to Proposition 1, 𝓁(𝑐1 ⋯ 𝑐𝑖) is uniform and, unless .𝐶ℎ𝑎𝑙𝑙 outputs
𝑥1 ⋯ 𝑥𝑖 = 𝑐1 ⋯ 𝑐𝑖, then the adversary cannot guess 𝓁(𝑐1 ⋯ 𝑐𝑖) with
probability better than 1

2 . As we established earlier, the advantage in
his case for the adversary is 1

2𝑛

(

𝑛
2 + 1

)

. □

Once we have established that the tree-based protocol optimally
esists mafia fraud with probability 1

2𝑛

(

𝑛
2 + 1

)

, we move our attention
o the analysis of distance fraud.

heorem 2. A lookup-based protocol 𝑃 satisfies 𝖠𝖽𝗏dist,𝑃 (𝑛) ≤ 1
2𝑛 for all

attackers  if and only if for every 𝐺 ∈ 𝑃 and every (possibly empty)
sequence 𝑥 of size lower than 𝑛 it holds that 𝓁(𝑥‖0) ≠ 𝓁(𝑥‖1).

Proof. If for every 𝐺 ∈ 𝑃 and every (possibly empty) sequence 𝑥 of size
lower than 𝑛 it holds that 𝓁(𝑥‖0) ≠ 𝓁(𝑥‖1), then,

Pr𝑐 ←$ {0,1}

[

𝓁(𝑥‖𝑐) = 0
]

= Pr𝑐 ←$ {0,1}

[

𝓁(𝑥‖𝑐) = 1
]

= 1
2

This means 𝑟𝑖 ← .𝑅𝑒𝑠𝑝(𝐺, 𝑐1 ⋯ 𝑐𝑖−1) has probability 1∕2 to be equal
o 𝓁(𝑐1 ⋯ 𝑐𝑖−1, 𝑐𝑖), because the adversary does not have 𝑐𝑖. This proves
ne direction of the double implication. To prove the other direction
e proceed via contradiction.

Assume there exists 𝐺 ∈ 𝑃 and a (possibly empty) sequence 𝑥 such
that 𝓁(𝑥‖0) = 𝓁(𝑥‖1). We build the following adversary, for every 𝐺′,

.𝑅𝑒𝑠𝑝(𝐺′, 𝑐1 ⋯ 𝑐𝑖−1) =

{

𝓁(𝑥‖0) if 𝐺 = 𝐺′ and 𝑥 = 𝑐1 ⋯ 𝑐𝑖−1
74

random otherwise.
Note that such an adversary can be built because the adversary has
white-box access to 𝐺′. Further note that we are considering syntactical
equality between 𝐺 and 𝐺′, although the proof works with equality
modulo isomorphism too.

If 𝐺′ = 𝐺 and 𝑥 = 𝑐1 ⋯ 𝑐𝑖−1, then the probability of success of
this adversary is 1 at round 𝑖, because 𝓁(𝑥‖0) = 𝓁(𝑥‖1). In any other
situation, the adversary wins with probability 1∕2. Because the event
𝐺′ = 𝐺 and 𝑥 = 𝑐1 ⋯ 𝑐𝑖−1 has non-zero probability, it follows that the
probability of success of the adversary is strictly larger than 1

2𝑛 . □

It is worth noting that the result above holds even if the adversary
s allowed to choose the automaton 𝐺. The reason is that the necessary

and sufficient condition stated in Theorem 2 has to be satisfied by all
automata in the protocol, thereby giving the adversary the same success
probability for all automata.

We now proceed to prove the main result of this section.

Theorem 3. For every lookup-based protocol 𝑃 there exists a pair of adver-
saries (𝑚,𝑑 ) such that either 𝖠𝖽𝗏maf ia

𝑚 ,𝑃
(𝑛) > 1

2𝑛 (𝑛 + 1) or 𝖠𝖽𝗏dist𝑑 ,𝑃
(𝑛) >

1
2𝑛 .

Proof. As established earlier, optimality in terms of distance fraud
implies that, for every 𝐺 ∈ 𝑃 and every (possibly empty) sequence 𝑥 of
size lower than 𝑛 it holds that 𝓁(𝑥‖0) ≠ 𝓁(𝑥‖1). This allows us to build
the following mafia fraud adversary, for every 𝑖 ∈ {1,… , 𝑛}, 𝑐1 ⋯ 𝑐𝑖,
and sequence 𝑥,

.𝑅𝑒𝑠𝑝(𝑥,𝛺(𝑥), 𝑐1 ⋯ 𝑐𝑖)

=

⎧

⎪

⎨

⎪

⎩

𝓁(𝑥1 ⋯ 𝑥𝑖) if 𝑥1 ⋯ 𝑥𝑖 = 𝑐1 ⋯ 𝑐𝑖
1 − 𝓁(𝑥1 ⋯ 𝑥𝑖) if 𝑥1 ⋯ 𝑥𝑖−1 = 𝑐1 ⋯ 𝑐𝑖−1 ∧ 𝑥𝑖 ≠ 𝑐𝑖
random otherwise.

Because 𝓁(𝑐1 ⋯ 𝑐𝑖−1‖0) ≠ 𝓁(𝑐1 ⋯ 𝑐𝑖−1‖1), it follows that the attacker
succeeds with certainty if 𝑥1 ⋯ 𝑥𝑖−1 = 𝑐1 ⋯ 𝑐𝑖−1, otherwise he succeeds
with probability 1

2 . The rest of this proof is similar to the proof of
heorem 1. Let 𝑋 be the random variable giving the round number
where the attacker does not correctly guess 𝑐𝑖. Then,

Pr
[

Mafia𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

]

=
𝑖=𝑛
∑

𝑖=1
Pr

[

Mafia𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

|

|

|

𝑋 = 𝑖
]

Pr [𝑋 = 𝑖] + 1
2𝑛

Now, Pr
[

Mafia𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

|

|

|

𝑋 = 𝑖
]

= 1
2𝑛−𝑖 . This gives,

Pr
[

Mafia𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

]

=
𝑖=𝑛
∑

𝑖=1

1
2𝑛−𝑖

× 1
2𝑖

+ 1
2𝑛

= 1
2𝑛

(𝑛 + 1) □

In addition to the impossibility result above, we obtain two main
insights from the theoretical results in this section. First, there is a
simple strategy to achieve optimality in terms of distance fraud resis-
tance (see Theorem 2). Second, the variant of the tree-based protocol
implementing such strategy seems to achieve a 1

2𝑛 (𝑛+ 1) security value
against mafia fraud, which approximates the optimal value by a small
constant factor lower than 2. Thus, our next step is to build a memory-
efficient protocol with resistance to mafia fraud and distance fraud,
respectively, equal to 1

2𝑛 (𝑛 + 1) and 1
2𝑛 .

5. A lookup-based protocol with nearly optimal security bounds

This section provides a protocol design that is memory efficient and
nearly optimal in terms of mafia fraud and distance fraud.
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Fig. 7. Our nearly optimal protocol. The parameter 𝑑 determines the output length of the pseudo-random function.
5.1. Protocol specification in graphical notation

To specify our protocol in graphical notation we will use explicit
lookup tables with domain the naturals and co-domain {0, 1}. We write
𝑇𝑖 instead of 𝑇 (𝑖) to denote the output of 𝑇 on index 𝑖, with 𝑖 a natural
number, and 𝑇𝑖 = 𝑏 to denote the update of 𝑇 with the value 𝑏 on input
the index 𝑖. Given a sequence of bits 𝑏1 ⋯ 𝑏𝑛 and an ordered set of keys
𝛹 = {𝑖1,… , 𝑖𝑛}, we use 𝑇𝛹 = 𝑏1 ⋯ 𝑏𝑛 to denote the sequence of updates
𝑇𝑖1 = 𝑏1,… , 𝑇𝑖𝑛 = 𝑏𝑛.

Our protocol (depicted in Fig. 7) relies on a parameter 𝑑, which
determines the maximum depth of the tree used throughout the pro-
tocol. Its most prominent feature is that it keeps a lookup table
𝑇2,… , 𝑇2𝑑+1−1 of size 2𝑑+1 − 2, which exponentially decreases with 𝑑.
All bits 𝑇2, 𝑇4,… , 𝑇2𝑑+1−2 are randomly sampled, while 𝑇𝑖 = 1 − 𝑇𝑖−1
for every odd index 𝑖 ∈ [3, 2𝑑+1 − 1]. During the fast phase, rounds are
divided in blocks of exactly 𝑑 rounds each. Throughout the protocol,
the variable 𝑠𝑒𝑒𝑑 stores the index of the current node in the tree, which
corresponds to the number whose binary representation is 𝑐1 ⋯ 𝑐𝑖,
where 𝑖 is the round number and 𝑐1 ⋯ 𝑐𝑖 the challenges sent by the
verifier up to the current round. When the depth of 𝑠𝑒𝑒𝑑 is a multiple of
𝑑, which coincides with the condition 𝑖 ≡ 1 mod 𝑑, i.e. the first round in
each block, the PRF is used to compute the 2𝑑−1 random bits necessary
to run the protocol for the next 𝑑 rounds. These bits will be assigned to
the left child of each non-leaf node in the subtree of depth 𝑑 rooted in
the node 𝑠𝑒𝑒𝑑. The right child will get the opposite value. Inside each
block, the variable 𝑗 represents the relative index of the current node
with respect to the root node of the subtree rooted in 𝑠𝑒𝑒𝑑.

Observe that, for 𝑛 = 4, 𝑑 = 3, the automaton used by our
protocol corresponds to the tree displayed (partially) in Fig. 8. The
input sequence 𝑐 = 0101 is represented in dashed arrows. The outputs
of the pseudorandom function are: 𝖯𝖱𝖥(𝑠𝑘, 1) = 𝑇2𝑇4𝑇6 = 110 and
𝖯𝖱𝖥(𝑠𝑘, 5) = 𝑇 𝑇 𝑇 = 011.
75

2 4 6
Fig. 8. Example tree for an execution with 4 rounds. Dashed arrows indicate the path
traversed on the challenges 0101 (edge labels), resulting in the responses 1000 (node
labels), respectively.

At first sight, the way bits are sampled in the protocol might look
unnecessarily complex in comparison to the way bits are sampled in
the tree-based protocol shown in Fig. 3. While the tree-based protocol
uses a single call to a pseudo-random function with output length
2𝑛+1−1, ours uses several calls to a pseudo-random function with output
length 2𝑑+1 − 1, where 𝑑 is a protocol parameter and divisor of 𝑛.



Computer Communications 210 (2023) 69–78R. Gil-Pons et al.
Fig. 9. An alternative specification of our protocol used to analyse its security properties.
Concretely, our protocol makes 𝑛
𝑑 calls to the pseudo-random function.

The advantage of our approach, however, is that we keep a lookup
table of size 2𝑑+1 − 1 as opposed to the lookup-table of size 2𝑛+1 − 1
needed by the tree-based protocol. That is to say, for small values of
𝑑, say 𝑑 = log2 𝑛, our protocol requires little memory to be executed.
Next, we address the question of whether this improvement in terms
of memory size is traded-off by a decrease in resistance to mafia-fraud
and distance-fraud attacks.

5.2. Security analysis

We analyse our protocol by reducing it to the protocol specified in
Fig. 9, which does not optimize memory and it is simpler to analyse.
Rather than calculating trees of depth 2𝑑+1 − 1 every 𝑑 rounds, the
protocol in Fig. 9 calculates the entire tree prior the execution of the
fast phase, just like the original tree-based protocol does. The protocol
identifies a node by a sequence of bits 𝑐1 ⋯ 𝑐𝑖, denoting the path from
the root to the node. Because lookup tables have domain the naturals,
we use the auxiliary function 𝑑𝑒𝑐(.) to obtain the decimal representation
of a binary sequence and identify a node 𝑐1 ⋯ 𝑐𝑖 with its decimal
representation 𝑑𝑒𝑐(1 ∥ 𝑐1 ⋯ 𝑐𝑖) (see Fig. 4 for an example). Based on
this mapping from nodes in the tree to positive integers, the protocol
samples bits from a pseudo-random function of fixed output length
equal to 2𝑑+1−1 bits as follows. For every node 𝑐1 ⋯ 𝑐𝑖 with 𝑖 a multiple
of 𝑑 smaller than 𝑛, the protocol randomly sample half of the labels of
the subtree with depth 𝑑 rooted in 𝑐1 ⋯ 𝑐𝑖. Concretely, it samples the
nodes whose identifiers are even numbers, assigning the opposite value
to their siblings.

Lemma 1. For fixed nonces 𝑁𝑉 and 𝑁𝑃 , the protocols in Figs. 9 and 7
76

gives the same output on any sequence of challenges.
Proof. We proceed with the proof assuming that 𝑑 is a divisor of 𝑛.
Let 𝑐1 ⋯ 𝑐𝑖 be a sequence of challenges and 𝑒 = ⌊

𝑖
𝑑 ⌋. Observe that

the variable 𝑠𝑒𝑒𝑑 is identical in both protocols, in the sense that it
stores the decimal representation of 1 ∥ 𝑐1 ⋯ 𝑐𝑑⋅𝑒+1. This means that the
sequence 𝑇2 ⋯ 𝑇2𝑑+1−2 produced by 𝖯𝖱𝖥(𝑠𝑘, 𝑠𝑒𝑒𝑑) in Fig. 7 is equal to the
sequence 𝑇𝛹𝑥

= 𝑃𝑅𝐹 (𝑠𝑘, 𝑠𝑒𝑒𝑑) produced in Fig. 9, where 𝑥 is the binary
representation of 𝑠𝑒𝑒𝑑 and 𝛹 (𝑥) = {𝑑𝑒𝑐(1‖𝑥‖𝑦)|𝑦 ∈ {0, 1}𝑖 ∧ 1 ≤ 𝑖 ≤
𝑑 ∧ 𝑦𝑖 = 0}. Although not explicitly mentioned earlier, we are assuming
that 𝛹 (𝑥) is sorted in ascending order. This means that the position of
𝑗, as calculated in Fig. 9, within 𝛹 (𝑥) is equal to the position of 𝑗, as
calculated in Fig. 7, within 𝑇2 ⋯ 𝑇2𝑑+1−2, which implies that 𝑇𝑗 stores
the same value in both protocols. □

The lemma above proves that the protocols in Figs. 7 and 9 produce
identical outputs after fixing the nonces 𝑁𝑉 and 𝑁𝑃 . This means that
any adversary advantage when given black-box access to one protocol
becomes an identical advantage when given black-box access to the
other protocol. Therefore, it is sufficient for us to analyse the adversary
advantage over Fig. 9.

To analyse the security properties of the protocol in Fig. 9, we
provide its formalization in Definition 6 using the automata-based
model defined earlier. The formalization is identical to the tree-based
protocol, except that it removes all automata that do not satisfy 𝓁(𝑠) ≠
𝓁(𝑠+1) for every state 𝑠 in {2, 4,… , 2𝑛+1−2}. That is to say, we make the
labelling function guarantee that for every node in the tree the labels
of its children are different. We argue that Definition 6 is a correct
formalization of the protocol in Fig. 9 by noting that all calls to the
pseudo-random function in Fig. 9 use a different seed. Therefore, the
sequence 𝑇2𝑇4 ⋯ 𝑇2𝑛+1−2 is indistinguishable from a random sequence,

just like in the tree-based protocol.
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Definition 6 (Specification of Our Protocol as a Set of Automata). Our
protocol is modelled by the set of automata {𝐺1,… , 𝐺22𝑛+1−2} where
each automaton 𝐺𝑖 = (𝛴, 𝛤 ,𝑄, 𝑞0, 𝛿,𝓁) satisfies:

• 𝛴 = 𝛤 = {0, 1},
• 𝑄 = {1,… , 2𝑛+1 − 1} and 𝑞0 = 1,
• For every 𝑗 ∈ {1,… , 2𝑛 − 1}, and 𝑐 ∈ 𝛴,

– 𝛿(𝑗, 𝑐) = 2𝑗 + 𝑐
– 𝓁(2 ⋅ 𝑗) is the 𝑗-th least significant digit of the binary

representation of the integer number 𝑖
– 𝓁(2 ⋅ 𝑗 + 1) = 1 − 𝓁(2 ⋅ 𝑗)

It follows directly from Theorem 2 that this protocol is optimal
in terms of distance fraud. Next we prove that the protocol is nearly
optimal in terms of mafia fraud.

Theorem 4. Let 𝑃𝑜𝑝𝑡 be the protocol given in Definition 6. Then for all
attackers  we have 𝖠𝖽𝗏maf ia

,𝑃𝑜𝑝𝑡
(𝑛) ≤ 1

2𝑛 (𝑛 + 1), and 𝖠𝖽𝗏dist,𝑃𝑜𝑝𝑡
(𝑛) ≤ 1

2𝑛 .

Proof. It remains to prove the upper bound for mafia fraud attackers.
The proof follows closely the one from Theorem 1. Consider an attacker
. Let 𝑋 be the random variable giving the round number 𝑖 where the
attacker does not correctly guess 𝑐𝑖. Then,

Pr
[

Mafia𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

]

=
𝑖=𝑛
∑

𝑖=1
Pr

[

Mafia𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

|

|

|

𝑋 = 𝑖
]

Pr [𝑋 = 𝑖] + 1
2𝑛

Now, Pr [𝑋 = 𝑖] = 1
2𝑖 because the challenges chosen

ndependently and uniformly at random. The value
r
[

Mafia𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

|

|

|

𝑋 = 𝑖
]

is upper bounded by 1
2𝑛−𝑖

because if the adversary guesses incorrectly 𝑐𝑖, then from the value
of 𝛺(𝑥1 ⋯ 𝑥𝑛) it gets no information about the labels of the nodes in
the subtree determined by the path 𝑐1 ⋯ 𝑐𝑖+1, so the best it can do is
randomly guess these values, and there are at least 𝑛 − 𝑖 such values.
We conclude:

Pr
[

Mafia𝐺,𝑐1⋯𝑐𝑛
(𝑛) = 𝛺(𝑐1 ⋯ 𝑐𝑛)

]

≤
𝑖=𝑛
∑

𝑖=1

1
2𝑛−𝑖

× 1
2𝑖

+ 1
2𝑛

= 1
2𝑛

(𝑛 + 1) □

. Evaluation

The goal of this section is to compare the security bounds of
ur protocol against previous lookup-based protocols. To make our
omparison comprehensive, yet concise, we only consider the protocols
egarded relevant by the decision-making methodology due to Avoine
t al. [28], while adding the Hancke and Kuhn protocol (HK protocol
or short) as a baseline. Concretely, we consider the protocols HK [1],
ree based [6], Modular [11] and Poulidor [13]. The security of these
rotocols in terms of mafia and distance fraud are taken from the
ramework available at https://github.com/rolandotr/db_comparison.

.1. Evaluation setting

Because most distance-bounding protocols require a memory size
hat linearly grows with 𝑛, we shall restrict protocols to a linear mem-
ry size. This means that, for protocols whose memory requirement
epends on protocol parameters, we set them such that the memory
sage scales linearly with the number of rounds. In particular, for:

• The tree-based protocol: the depth of each tree is set to 6, which
gives a memory size of approximately 21 ⋅ 𝑛 bits.

• The Modular protocol: the width of the graph is set to 𝑢 = 4,
which gives a memory size of 16 ⋅ 𝑛 bits.
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Fig. 10. Mafia fraud success probability.

Fig. 11. Distance fraud success probability.

• Our protocol: the depth of each tree is set to ⌊log(𝑛)⌋, which gives
a memory size of 𝑛 bits.

6.2. Comparison results

In Figs. 10 and 11 we compare the protocols in terms of their
resistance to mafia fraud and distance fraud, respectively. Our protocol
clearly outperforms the rest in terms of both types of fraud, with
Poulidor being its closest competitor. In terms of distance fraud, our
protocol outperforms the others by a somewhat larger margin. This is
not so surprising, as it was specifically designed to be optimal with
respect to this fraud.

7. Conclusions

We presented a novel lookup-based distance-bounding protocol that
provides (close to) optimal protection against distance fraud and mafia
fraud attacks. We demonstrated the impossibility of achieving optimal
protection against both types of fraud, and derived a tight lower bound
for mafia fraud when distance fraud resistance is optimal. Furthermore,
we conducted a comparative analysis of our protocol against previous
lookup-based protocols in terms of their resistance to mafia fraud and
distance fraud. The results show that our protocol outperforms others
in mitigating both types of fraud.

https://github.com/rolandotr/db_comparison
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As a future direction, we intend to implement our proposed protocol
using currently available hardware to obtain real-world measurements
of its speed and energy consumption.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.comcom.2023.07.033. It contains the two
files necessary for generating the graphics in the Evaluation Section.
The file Data-Mafia-Distance-Memory-increment-1.DAT was obtained
by executing the framework available in https://github.com/rolandotr/
db_comparison.
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