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Abstract—Pupil dilation has consistently been investigated and
confirmed as a reliable measure of cognitive load. In this study,
we aim to explore the possibility of predicting cognitive failures
in Virtual Reality by monitoring variations in pupil dilation
during cognitive processing. To this end, we collected eye-tracking
data from an individual performing a mental arithmetic task
over two months, totaling 700 minutes. We achieved promising
prediction results by training a neural network on the collected
data, particularly considering the dataset’s imbalanced nature.
The ability to predict impending cognitive failures generally holds
significant implications across various domains, including educa-
tion, delegating decision-making tasks to autonomous systems, or
self-adaptive virtual environments and user interfaces.

Index Terms—cognitive load, pupillometry, neural networks,
virtual reality

I. INTRODUCTION

Estimating cognitive load with pupil dilation has been a

well-established practice over the past half-century, yielding

reliable results. In this project, we initiate a novel investigation,

exploring the potential of pupil dilation as a predictor of

cognitive failure.

The radial and circular muscles in the iris, which are

responsible for pupil dilation and constriction, are controlled

by sympathetic and parasympathetic nervous systems, respec-

tively. Therefore, pupil size varies under the influence of

non-visual stimuli, including emotional arousal and cognitive

efforts [1]. Consequently, in a visually static environment

without emotionally arousing stimuli, an observer can measure

cognitive load robustly by monitoring pupil diameters. This

has been repeatedly confirmed in recent decades, thanks to

advancements in eye-tracking technology facilitating its use in

everyday tasks and activities [2]. Furthermore, various studies

have examined the variation in pupil dilation as a time series,

indicating its validity as an indicator of attention [3], [4] and

decision-making conflicts [5].

On the other hand, Cognitive Load Theory (CLT) [6] sug-

gests that cognitive performance is constrained by the capacity

of working memory, which is spatially and temporally limited.

This implies that individuals have a limited cognitive load

capacity. Based on these two premises, we hypothesize that

there are patterns in pupil dilation variations as an individual

reaches their cognitive load limit. By detecting these patterns,

we can predict when cognitive load exceeds working memory

Fig. 1. Employing AI to instantly and continuously adapt the VR environment
to the user’s cognitive needs in response to pupil variation patterns.

capacity. Whether the working memory is overfilled by rele-

vant information (i.e., an overwhelming cognitive demand) or

irrelevant cognitive input (i.e., a lapse of attention), it causes a

failure. In this project, we use cognitive failure as an umbrella

term covering both cases and investigate potential signatures

of such failures in pupil dilation changes.

The ability to predict cognitive failures would be highly

valuable, with extensive applications spanning across diverse

domains, from tailored learning pace in education to intelligent

user interface design with the capacity to instantly re-strategize

the flow of information communication.

Such predictive power can be especially an invaluable asset

for self-adaptive virtual reality (VR) environments. The VR

community is increasingly interested in self-adaptive tech-

nologies, such as deep learning, for designing environments

capable of sensing data and automatically making adjustments

to meet users evolving needs in a closed-loop design [7]–[11].

These technologies are being researched and implemented

in different domains, such as medical training, commercial

VR, collaborative and remote workspaces, rehabilitation, and

serious games [7]. Cognitive load is one of the most effective

types of data fueling self-adaptive technologies [9], [12]–[16].

This project is built on the same perspective with the feedback
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loop depicted in Fig. 1, schematically illustrating how AI can

adapt the VR environment to the user’s needs in response to

pupil variation patterns, for example, to reduce cognitive load

or focus attention.

II. METHODOLOGY

In this study, over a period of 2 months, we recorded the

eye-tracking data of one of the authors engaging in a mental

arithmetic task during 70 sessions, each lasting 10 minutes.

A. Implementation
The VR-based implementation of the experimental design

allowed us to fully control the environmental parameters

and ensure the scalability of the study for more complex

tasks and settings. In particular, scene brightness remains

constant so that confounding effects of pupil light response

on the cognitive-emotional response can be avoided [17]–[19].

Eye-tracking data were collected with the Tobii eye-tracker1

integrated into the HTC Vive Pro Eye VR headset with a 120

Hz sampling rate2 (Fig. 2). Multiple studies investigated and

confirmed the reliability of pupillometry in VR, particulary

using the HTC Vive Pro Eye VR headset, which was used in

this study [19]–[23]. Furthermore, the experiment environment

was designed to keep the illumination constant and the visual

content at a minimum level to avoid pupil diameter variation

due to irrelevant parameters.
The task in this study is mental arithmetic, specifically

multiplication, as it presents a cognitively demanding yet

straightforward task. We compiled a list of 522 questions and

updated it with more difficult questions when the mistake

rate dropped stably below 5%. Our aim was to list questions

that challenged the participant without being too difficult to

discourage engagement. We sorted the questions into three

levels of difficulty based on the magnitude of the multiplicands

and other considerations, such as the presence of 11 or a

product of 5 as a multiplicand. We gradually introduced more

challenging questions after two consecutive correct answers to

simpler ones or reset the difficulty level after an incorrect re-

sponse. However, given the absence of a standardized grading

system for the difficulty of the questions and the unobservable

nature of individuals’ tailored shortcuts or strategies for mental

calculation, we did not include the difficulty as a parameter in

our dataset features.
Each session consists of a series of trials, beginning with

a question phase followed by an answer phase. During the

question phase, the questions are displayed in large white

font against a backdrop of solid blue. The participant has 15

seconds to provide the answer, and with no response within

the time limit, a new question is shown. In this phase, the

question is masked, and the participant can access a virtual

keypad to enter the answer. The keypad is operated through

hand gestures detected by a Leap Motion controller3 attached

to the headset (cf. Fig. 3).

1https://www.tobii.com/products/integration/xr-headsets/device-
integrations/htc-vive-pro-eye

2https://www.vive.com/sea/product/vive-pro-eye/overview/
3https://www.ultraleap.com/product/

Fig. 2. Experiment setup.

Fig. 3. User interface of the experiment in VR.

B. Data Preprocessing

In the preprocessing stage, we worked with the eye-tracking

data collected during the question phase before the participant

entered her answers. In this initial phase of the study, we

only used the pupil dilation parameters for both eyes and

their corresponding validity values. However, we chose not

to remove invalid readings, as they may indicate blinks or

squeezed eyes, which we hypothesized could be correlated

with the task. Finally, we extracted the 3-second interval (360

eye-tracking readings) before the answer phase and dropped

the data points with less than 3 seconds in the question phase.

Data points with correct answers were labeled 0, and those

with wrong answers 1. To address the data scarcity, we

excluded the third class, which represents instances where

participants did not provide an answer within the given time

limit. Out of the remaining 3055 samples (shape 4 × 360),

only 299 samples were labeled 1.
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C. Training

We randomly assigned 99 samples from each class to our

test set and used the remaining for training. To overcome the

imbalance, we applied the data weighting technique. Using

tf.keras [24], we implemented a sequential model con-

sisting of 3 LSTM layers {8, 32, 128} with Tanh activation,

followed by 3 Dense layers {128, 32, 8} with linear activation,

and a Dense output layer with Softmax activation. The model

was trained using the Adam optimizer with a learning rate of

0.001 for 100 epochs.

III. RESULTS

On the balanced test set with a total number of 198 samples,

we reached an accuracy of 70.71%. The confusion matrix (cf.

Table I) shows a false-positive rate of 42.42% and a true-

positive rate of 85.86%. We achieved 0.669 for the precision,

0.859 for recall, and an overall F1 score of 0.752.

TABLE I
CONFUSION MATRIX

Predicted

Positive Negative

A
ct

ua
l

Positive 85 14

Negative 42 57

IV. DISCUSSION

Artificial neural networks have demonstrated exceptional

predictive power thanks to their ability to find intricate patterns

in data. Primarily, these networks are trained for population-

level applications. However, in this study, we aim to develop

personalized neural networks tailored to predict individual

cognitive patterns. Training individuals for critical jobs, such

as a pilot or a surgeon, is a rigorous and financially demanding

process, typically spanning many years. Compared to such a

training process, collecting tens of hours of an individual’s

data for training a network capable of predicting an impeding

cognitive failure seems a reasonable investment.

Our model’s performance on the evaluation metrics demon-

strates promising results, particularly given the significant

class imbalance and the small size of the dataset. These

findings highlight the potential of our ongoing project in

predicting cognitive failures through pupil dilation patterns.

With adding more ‘wrong answer’ samples, we anticipate

achieving a similar level of accuracy with positive sample

classification since the model showed a substantially lower

level of confidence in classifying these samples compared to

the negative class.

Ongoing work focuses on collecting more data for the

subject. With more data samples, we can include other eye-

tracking features, such as null fixations or saccades, poten-

tially improving the model’s accuracy. Additionally, a larger,

feature-richer dataset allows us to include the third class of

unanswered questions, representing a distinct cognitive event.

The next step involves determining a prediction horizon. In

this phase, we artificially separated the decision-making phase

from cognitive processing by the left-click event. However, in

real-life scenarios, it is crucial to have a horizon that provides

warning of an impending cognitive failure within a specific

time interval. Even a brief horizon, measured in milliseconds,

can significantly enhance the practicality of such technology.

With its limitation to a specific cognitive task and indi-

vidual, this work is preliminary in nature, and the positive

response of deep learning to this case needs to be reinforced

by demonstrating the generalizability of the results to other

individuals and cognitive tasks. Therefore, we plan to continue

this research with different and more complex tasks. Moreover,

achieving comparable results with more participants is critical

to ensure that the predictability observed in our preliminary

findings is not solely attributed to the pupillometry character-

istics of a single subject. By expanding the dataset, recruiting

more participants, and using diverse tasks, we can thoroughly

examine the generalizability of patterns in pupil dilation and

the model’s ability to adapt robustly to individual differences

and task variations.

V. CONCLUSION

Customizing and training a neural network for an individ-

ual may initially seem inefficient due to the challenges of

collecting enough data samples. However, personalized AI

presents a strong argument when the individual in question

is responsible for a critical task involving real-time decision-

making. This work anticipates a promising path for apply-

ing neural networks in detecting cognitive patterns through

pupillometry. With ever-evolving AI and VR technologies,

predicting a cognitive failure even seconds in advance gives

us a wide range of options, from delegating tasks to auto-pilot

systems to re-rendering the virtual environment to modulate

the cognitive load.
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