
Towards Practical Transciphering for FHE
with Setup Independent of the Plaintext Space

Pierrick Méaux1 , Jeongeun Park2 , and Hilder V. L. Pereira3

1 University of Luxembourg, Luxembourg
2 imec-COSIC, KU Leuven, Leuven, Belgium

3 Universidade Estadual de Campinas, Campinas, Brazil

pierrick.meaux@uni.lu,
jeongeun.park@kuleuven.be,

hilder@unicamp.br

Abstract. Fully Homomorphic Encryption (FHE) is a powerful tool to achieve non-interactive pri-
vacy preserving protocols with optimal computation/communication complexity. However, the main
disadvantage is that the actual communication cost (bandwidth) is high due to the large size of FHE
ciphertexts. As a solution, a technique called transciphering (also known as Hybrid Homomorphic
Encryption) was introduced to achieve almost optimal bandwidth for such protocols. However, all of
existing works require clients to fix a precision for the messages or a mathematical structure for the mes-
sage space beforehand. It results in unwanted constraints on the plaintext size or underlying structure
of FHE based applications.
In this article, we introduce a new approach for transciphering which does not require fixed message
precision decided by the client, for the first time. In more detail, a client uses any kind of FHE-friendly
symmetric cipher for {0, 1} to send its input data encrypted bit-by-bit, then the server can choose a
precision p depending on the application and homomorphically transforms the encrypted bits into FHE
ciphertexts encrypting integers in Zp. To illustrate our new technique, we evaluate a transciphering
using FiLIP cipher and adapt the most practical homomorphic evaluation technique [CCS’22] to keep
the practical latency. As a result, our proof-of-concept implementation for p from 22 to 28 takes only
from 13 ms to 137 ms.

1 Introduction

As fully homomorphic encryption (FHE) allows any computation over encrypted data, it can be
applied to secure outsourced computation where a server which has strong computational resources
do (requested) computation over a client’s data keeping the client’s privacy. It unlocked many real-
world applications recently such as privacy preserving machine learning [10,36,37,17,5,30,35] and
secure outsourced storage [9,16].

Although the latency of such protocol has been considered practical enough, the network cost
is still not desirable due to the large size of FHE ciphertexts. In fact, FHE suffers from a large
ciphertext expansion, the amount of data that a client has to upload to the server is typically huge.
For example, in the worst case, an FHE ciphertext encrypting one single bit costs 2.5KB, if we use
a small TFHE [13] ciphertext achieving 128 bits of security.

To solve this problem, the transciphering (a.k.a. Hybrid Homomorphic Encryption (HHE)) ap-
proach has been proposed [33]: a client encrypts the data using some block or stream cipher Π, and
sends the ciphertexts to the server. Because these ciphers have ciphertext expansion close to one or
exactly one, now the upload size is almost the same as the size of the data itself. The server then
runs the decryption of Π homomorphically, using an FHE scheme, obtains FHE.Enc(m), and can
then proceed with the usual homomorphic computation.

https://orcid.org/0000-0001-5733-4341
https://orcid.org/0000-0002-0557-3540
https://orcid.org/0000-0003-1303-3760

One way of implementing transciphering is by simply asking the client to encrypt the data using
some well-known cipher, like AES. However, it is generally very expensive to evaluate the decryption
of such ciphers using FHE. Hence, multiple works have proposed transciphering strategies by first
constructing FHE-friendly ciphers [2,7,32,19,27,20,31,24,15,25,3,18], whose decryption function can
be evaluated homomorphically using little memory and time. However, all of these FHE-friendly
ciphers fix a plaintext space (denoted byM) to obtain efficiency gains during the FHE evaluation
or to fit with the constraints of the security analysis. For example, most of them [2,19,31,27] are
designed forM = F2. For larger space, PASTA [20] requiresM = Fkp, for a positive integer k and
a prime p such that p− 1 is not divisible by 3, and HERA [15] requiresM = Zt where t ≥ 216.

These natural strategies incur some inconveniences for the versatility of the computations to
evaluate, since each application has its ideal plaintext space, that can also evolve based on the
client requests. For example, if we want to evaluate binary circuits, we setM = F2, if we want to
work with bytes, we setM = Z28 , etc. Thus, to use transciphering without relying on a sole model
of computation, the client would have to be able to implement several different ciphers, depending
on each application. For illustration we consider the following scenario: medical doctors/researchers
handling patients’ private data want to study a relation between certain diseases and a specific
human genome sequence via secure machine learning algorithm, keeping individual patient’s privacy.
Patients’ data is already stored up to certain number of bits (let’s say 32 bits). Depending on which
algorithm the computing party uses and accuracy rate they want to achieve, the input precision
differs. For example, the recent secure neural network instantiation [35] uses 8-bit integer for their
inputs which is enough to achieve over 90% accuracy, and [17,36] uses 11-16 bits for private decision
tree evaluation. We argue why it would be a pain for both the server and client to use different
ciphers for the different computations.

First, it means that the client would have to generate and manage several keys and run the
setup of the transciphering for each plaintext space appropriate for the desired computations. The
setup part of a transciphering is expensive (it is the bottleneck in bandwidth for the HHE protocol
e.g. [20]) and this cost is amortized because the setup is run only once in the full protocol. However,
this is no longer true if the client has to run several different setups. Then, working with multiple
different ciphers is far from optimal from the security point of view, because the security of the full
protocol relies on the security of all these ciphers. The full protocol is secure only if all of them are
secure, alone and combined, since the same data is encrypted with the different schemes. Assuming
the security of multiple ciphers alone and combined is a stronger assumption than relying on the
security of a sole cipher.

Finishing on the downside of fixed plaintext space for transciphering, the aforementioned mes-
sage spaces of existing FHE-friendly ciphers do not always match the most common plaintext spaces
and structures used by applications. Namely, since general purpose CPUs use bytes, 32-bit or 64-bit
integers, we expect to use these data types most of the times in our applications. Thus, the FHE
schemes would have to use the rings Z28 , Z232 , and Z264 as message spaces. Moreover, FHE-friendly
symmetric ciphers are designed to fit the particularities of one FHE scheme, and the best perfor-
mances in terms of latency and throughput of one transciphering are obtained for the transciphering
standing alone. One downside is that getting these best transciphering performances impacts the
choice of parameters of the chosen FHE scheme, which focuses the optimization on the symmetric
cipher rather than on the evaluation of the functions that the server will have to compute later on.

Therefore, it would be ideal if there were an efficient transciphering technique which does not
require FHE scheme’s message space as a parameter on the client’s side, so that the server can

2

transform client’s given data into any FHE ciphertext of which message space fits into various
applications on the fly.

1.1 Our Contributions

In this article, we introduce a possible solution to achieve the aforementioned ideal case for the first
time. Our solution is to “compose” bits into an integer homomorphically. In more detail, a client
encrypts each bit of its input data separately using an FHE-friendly cipher for Z2, then upload those
ciphertexts. The server homomorphically transforms them into FHE ciphertexts encrypting bits
(where by bits we refer to 0 and 1 integer values, without the structure of F2) and homomorphically
composes them into an integer, by taking some of given encrypted bits, depending on the precision
that a target application requires.

Since a client only sends the bit representation of its data, regardless of its original data size,
message space for applications based on FHE is not specified beforehand. Let’s assume that the
client’s input data size is initially set to t bits. If an application which the client targets requires
M = Zp, where log p ≤ t, the server grabs the upper log p bits from given client’s data stored as
FHE-friendly cipher, and transforms them into an FHE ciphertext encrypting message in M via
our transciphering technique.

In our instantiation, we use FiLIP cipher [31] for the client’s side since its homomorphic decryp-
tion is already optimized by [17] for a practical application, which only takes 2.6 milliseconds per
bit. Therefore, their little computational overhead is still preserved in our case. Moreover, we tweak
their approach to directly produce an FHE ciphertext encrypting a bit scaled with a correspond-
ing power of 2, instead of computing 2j · FHE.Enc(bj) = FHE.Enc(2j · bj), where bj ∈ {0, 1}, after
transciphering, to minimize additional computation overhead.

We implement our result as a proof of concept by using FINAL [4] for underlying FHE scheme
and choose message precision log p in the range from 2 to 8 bits. The corresponding running time
of server is in the range from 6.5ms to 18ms per bit by only using single thread. Since we cannot
directly use [17]’s optimization for efficient compositing technique, we have more computational
overhead than their result. Moreover, the choice of parameters differs for different log p to manage
the noise growth, which affects on computation time. Compared to the most recent transciphering
result (Elisabeth-4 [18] which is designed for 4-bit integer only) of which best performance is 371 ms
per bit without parallel computation, our method is faster and easier to adapt to different use-cases.

1.2 Technical Overview

We start with a bit representation of integer data elements. In the client side, an integer µ ∈ Z+
2t is

decomposed into t bits b0, . . . , bt−1 such that
∑t−1

j=0 bj ·2j = µ. Then, each bj is encrypted with FiLIP
cipher, generating a ciphertext cj , which is sent to the server. On the server side, depending on the
target application, a precision log p is chosen, and the log p most significant bits of µ are considered.
The goal is to generate an FHE ciphertext encrypting µ̄ := µ−(µ mod 2t−log p). To do so, we proceed
in two steps: Firstly, we homomorphically evaluate a modified version of FiLIP’s decryption so that
instead of just generating FHE.Enc(bj) for the desired bits, we generate FHE.Enc(2j · bj), where the
message space is Zp. This is the main step. Second, it just remains to homomorphically add all those
ciphertexts, so that we obtain

t−1∑
j=t−log p

FHE.Enc(2j · bj) = FHE.Enc(µ̄).

3

IV

sk
XOR T (X) ·XOR Lift T (X) ·X

XOR

IV

sk
Hamming
Weight

T (X) ·X
XOR+2HWExtract2j · g(v)Combine

cj

2j · bj

Fig. 1: Main pieces of the first step of our homomorphic decryption, where we transform a FiLIP ci-
phertext cj encrypting a bit bj with initialization vector IV and secret key sk into an FHE encryption
of 2j · bj. The red boxes represent values encrypted with FHE.

First of all, notice that FiLIP’s decryption requires evaluating a Boolean function g with a secret
vector v derived4 from the secret key sk. Thus, it would be natural to work with an FHE scheme
whose message space is binary. However, we have to adapt the decryption to work modulo p. More
specifically for the instances of FiLIP we consider g(v) consists of two main sub-functions: one that
computes the XOR operation of the k bits of v, denoted by x := XOR(x1, . . . , xk), and the other is
a Boolean threshold function, denoted by y := Td,s(y), which outputs 1 if the Hamming weight of
y, the last s bits of v, is equal to or greater than d. The results of these two subfunctions are them
xored.

Since the threshold function involves a comparison, it is hard to evaluate it homomorphically.
Thus, our strategy is to use homomorphic look-up-tables to evaluate it. In more detail, we use the
standard technique of mapping an encryption of Xm to an encryption of f(m) by multiplying by
a so-called “test polynomial” T (X) that depends on f . Thus, we define T (X) with respect to the
function g of FiLIP’s decryption and develop an arithmetic gate that computes the XORs already
multiplied by T (X), so that applying it k times, we have FHE.Enc(T (X) · XOR(x1, . . . , xk)), which
we can lift to the exponent of X, obtaining FHE.Enc(T (X) ·XXOR(x1,...,xk)). Then, we multiply this
ciphertext by encryptions of X2yi , for each of the last s bits of v, denoted yi. With this, we obtain
FHE.Enc(T (X) ·XXOR(x1,...,xk)+2·WH(y)). But, due to the way T (X) is defined, this is basically the
same as FHE.Enc(2j · g(v)), thus, we just have to combine this result with the FiLIP ciphertext cj
encrypting the bit bj , to finally produce FHE.Enc(2j · bj). We illustrate this process in Figure 1.

2 Preliminaries

2.1 Vectors, matrices, distributions

Notation: We use lower-case bold letters for vectors and upper-case bold letters for matrices. A
zero vector is denoted by 0. The inner product of two vectors a and b is denoted by a ·b (or 〈a,b〉).
For any vector u, ‖u‖ denotes the infinity norm. We denote the dot product of two vectors v,w
by 〈v,w〉. For a vector x, x[i] or xi denotes the i-th component scalar of x. We use the Euclidean
norm as a default norm for a vector x.
4 The transformation from sk to v is simple homomorphically, with no impact on the error, therefore skipped in the
overview

4

Subgaussian distribution. For the analysis of noise of each homomorphic operation, we need
subgaussian random variables over R.

Definition 1. A random variable V over R is σ-subgaussian if its moment generating function
satisfies

E[exp(t · V)] ≤ 1

2
exp(σ2 · t2)

for all t ∈ R.

From the definition, we can prove that the variance of V , denoted by Var(V) is bounded by σ2,
i.e. Var(V) ≤ σ2. Informally, the tails of V are dominated by a Gaussian function with standard
deviation σ. We use the property that a vector with subgaussian coordinates is also subgaussian for
our noise analysis, which is proved in [29]. Subgaussian random variables have an important property
called Pythagorean additivity. Given two random variables, α-subgaussian X and β-subgaussian Y ,
and a, b ∈ Z, the random variable a ·X + b · Y is

√
a2 · α2 + b2 · β2-subgaussian. It implies that

Var(a ·X) + Var(b · Y) ≤ a2 · Var(X) + b2 · Var(Y) ≤ a2 · α2 + b2 · β2.

For a ∈ R (resp. x ∈ Zn), we denote by Var(a) (resp. Var(x)) the maximum variance of each
coefficient (resp. component) of a (resp. x). The variance of the product of two polynomials a, b ∈ R
is Var(a · b) = n · Var(a) · Var(b). Similarly, Var(X) denotes the maximum variance of each column
of X.

2.2 Fully homomorphic encryption

Roughly speaking, we can divide fully homomorphic encryption (FHE) schemes in two classes:
one with large ciphertexts, packing and slow bootstrapping and the other with small ciphertexts,
no packing, but fast and programmable bootstrapping. The first family contains schemes such as
BGV [6], FV [23], and CKKS [11], while the second one is represented by schemes like FHEW [21],
TFHE [12], FHE over the integers [34], and FINAL [4]. In this work, we are only interested in the
second type of FHE, thus, in this section we present a general and abstract definition of an FHE
scheme that can be instantiated with any of those schemes.

There are three types of ciphertexts:

– Integer ciphertext, which is defined over the set Zq for some q ∈ N. We denote by IntCtxtz(bq/pe ·
m,E) the set of integer ciphertexts encrypting m ∈ Zp, under key z, and with E-subgaussian
noise. They are the output format of our transciphering and the input format of the subsequent
homomorphic computation.

– Ring ciphertext, which is defined as a single element or a pair of elements ofRQ := ZQ[X]/〈XN+
1〉 for some Q,N ∈ N, with N as a power of two. We denote by RingCtxts(bQ/pe ·m,E) the set
of ring ciphertexts encrypting m ∈ Rp, under key s ∈ R, and with E-subgaussian noise.

– Gadget ciphertext, which is defined as a vector or a matrix with entries in RQ. We denote by
GadgetCtxtQ,`s (m,E) the set of gadget ciphertexts encrypting m ∈ R, under key s ∈ R, and with
E-subgaussian noise.

Note that we omit the noise parameter when we define any ciphertext if it is not necessary in the
context.

5

Given the security parameter λ, we typically have q,Q ∈ Õ(λ1.5) and N ∈ O(λ). We assume
that all ciphertexts carry an estimation of their current noise, which increases as we operate homo-
morphically with them.

This abstract scheme can then be defined by the following algorithms:

– FHE.ParamGen(1λ, p): generate parameters params that achieve λ bits of security and allow us
to work with plaintext space Zp. The parameters also include the ring R an integer Bg, called
the decomposition base, and ` := dlogQe, which defines the dimension of the gadget ciphertexts.

– FHE.KeyGen(params): generate the secret key sk := (z, s), a key-switching key ksk from s to z,
where s is the vector of coefficients of s, and the bootstrapping key bk.

– FHE.EncInt(z,m): using params, output c ∈ IntCtxtz(bq/pe ·m,Ein) for some Ein = O(q/(2p)).
– FHE.DecInt(z, c): output the message m ∈ Zp encrypted by c under the secret key z.
– FHE.EncRing(s,m): using params, output c ∈ RingCtxts(bQ/pe · m,Ein) for some Ein =
O(q/(2p)).

– FHE.EncGadget(s,m): using params, output C ∈ GadgetCtxtQ,`s (m,Ein) for some Ein =
O(q/(2p)).

– Trivial-noiseless ciphertext: any FHE ciphertext defined above where all randomness and the
noise are set to 0. We call it a trivial-noiseless ciphertext in this paper.

– FHE.Add: homomorphically add two ciphertexts of the same type, e.g., maps RingCtxts(bQ/pe ·
m0, E0)× RingCtxts(bQ/pe ·m1, E1) to RingCtxts

(
bQ/pe · (m0 +m1),

√
E2

0 + E2
1

)
.

– FHE.AddPlaintext: given a ciphertext of any type, encrypting some message m0, and a plaintext
m1, this operation outputs a ciphertext of the same type encrypting m0 + m1. The noise is
unchanged, i.e., both input and output have the same noise.

– FHE.MultPtxt: given a message m0 ∈ Rp and a ciphertext c1 ∈ RingCtxts(bQ/pe · m1, E1),
outputs c ∈ RingCtxts(bQ/pe · m0 · m1, E). If instead of a ring ciphertext, we have C1 ∈
GadgetCtxtQ,`s (m1, E1), it outputs C ∈ GadgetCtxtQ,`s (m0 ·m1, E). In both cases, E = ‖m0‖2 ·E1.

– FHE.ExtProd: given ciphertexts c0 ∈ RingCtxts(bQ/pe·m0, E0) and C1 ∈ GadgetCtxtQ,`s (m1, E1),

it outputs c ∈ RingCtxts(bQ/pe · m0 · m1, E) where E ≤
√
`N · B2g · E2

1 + ‖m1‖22 · E2
0 ,

where Bg is the decomposition base. For succinctness, we can write c0 �ki=1 Ci to denote
FHE.ExtProd(...(FHE.ExtProd(c0,C1),C2), ...,Ck). In this case, assuming that ‖mi‖2 = 1 for

1 ≤ i ≤ k, the resulting ciphertext has E-gaussian noise with E ≤
√∑k

i=1 ` ·N · B2g · E2
i + E2

0 ,
– FHE.Extract: Given c ∈ RingCtxts(bQ/pe ·m,E) and i ∈ J0, N − 1K, output c ∈ IntCtxts(bQ/pe ·
mi, E), where mi is the i-th coefficient of m. We note that this algorithm is defined as
SampleExtract in [13] and it does not add any noise to the ciphertext. Moreover, it is almost
for free in practice since it only rearranges the order of components of input vector/polynomial,
which is by far much cheaper than the other operations.

– FHE.ModSwt: Given ĉ ∈ IntCtxts(bQ/pe ·m, Ê) and q ∈ N, output c ∈ IntCtxts(bq/pe ·m,E),

with E ≤
√

(Ê · (q/Q))2 + (‖s‖2 /2)2.

– FHE.KeySwt: Given ĉ ∈ IntCtxts(bq/pe · m, Ê), and a key-switching key ksk from s ∈ ZN to

z ∈ Zn, output c ∈ IntCtxtz(bq/pe ·m,E), with E ≤
√
Ê2 +N · logBksk

q · B2ksk · E2
k , where Bksk is

the decomposition base used during the key-switching.
– FHE.bootstrap: Given c′ ∈ IntCtxtz(bq/pe · m,E′), and a function f : Zp → Zp̂, output, c ∈

IntCtxtz(bq̂/p̂e · f(m), Ein) where Ein < E′. Notice that the bootstrapping allow us to change

6

the ciphertext modulus from q to q̂ and the plaintext modulus from p to p̂, but in most of the
cases, one chooses q = q̂ and p = p̂.

To analyze the noise growth of a sequence of homomorphic operations, we can iteratively apply
the noise bounds of each operations. For example, to homomorphically compute 3 · (m0 + m1),
we could have c′ = FHE.Add(c0, c1) and the final ciphertext as c = FHE.MultPtxt(c2,C1). Then,
assuming that ci has noise with parameter Ei, the noise of c′ would have parameter Ē =

√
E2

0 + E2
1 ,

and the final noise would be E-subgaussian where E = ‖3‖2 · Ē = 3 ·
√
E2

0 + E2
1 . Most of the time,

deriving the noise like the above is good enough, however, there is a special case, that will be used
to construct our homomorphic XOR gate modulo p presented in Section 3.1, where we can have
better bounds by analyzing the final noise more carefully (See Lemma 1). Notice that the final noise
in the lemma just has E0 itself, while a naive computation would give us noise including 2 ·E0. This
would be problematic because applying this homomorphic computation iteratively k times would
introduce a factor of 2k to the noise, thus, the estimation would be far from the actual noise.

Lemma 1. Let ∆ = bQ/pe, c0 ∈ RingCtxts(∆ · m0, E0), and C1 ∈ GadgetCtxtQ,`s (m1, E1), with
m1 ∈ {0, 1}. Now, consider the following homomorphic computation:

1. c′ = FHE.MultPtxt(c0,−2)
2. ĉ = FHE.ExtProd(c′,C1)
3. c̃ = FHE.Add(c0, ĉ).

Then, it holds that c̃ ∈ RingCtxts(∆ · (m0 − 2 ·m0 ·m1), E) and

E ≤
√
`N · B2g · E2

1 + E2
0

Proof. For any ciphertext c, denote by Err(c) the noise term included in c. Let y be the vector with
the decomposition in base Bg of c′. Then, we have

Err(c̃) = Err(c0) + Err(ĉ)

= Err(c0) + y · Err(C1) +m1 · Err(c′)
= Err(c0) + y · Err(C1)− 2 ·m1 · Err(c0)
= y · Err(C1)± Err(c0)

Thus, assuming that Err(C1) and Err(c0) are independent, we have that y · Err(C1) is
(
√
`N · Bg · E1)-subgaussian, then, by Pythagorean inequality for subgaussians, it gives us E ≤√
`N · B2g · E2

1 + E2
0 .

The correctness of the encrypted message follows directly from the definition of the homomorphic
operations.

Corollary 1. Instead of the homomorphic computation presented in Lemma 1, if we compute

c̃ = c0 + (m2 − 2 · c0)�C1

for any plaintext m2, then E is still bounded as E ≤
√
`N · B2g · E2

1 + E2
0 .

Proof. This follows directly from the fact that FHE.AddPlaintext does not add any noise to the
ciphertexts.

7

2.3 FiLIP cipher

FiLIP is a binary stream cipher based on the improved filter permutator paradigm [31]. The en-
cryption and decryption algorithms work as follows: Let K ∈ {0, 1}Z be the secret key; for each bit
mi of the message, we use a forward secure PRNG to sample
– Si: a subset of z out of Z,
– Pi: a z to z permutation,
– wi: an z-dimensional binary vector called whitening.

Then, for a filter function f : {0, 1}z → {0, 1} fixed beforehand, we compute ci := mi⊕f(Pi(Si(K))⊕
wi) ∈ {0, 1}. The paradigm of FiLIP is recalled in Figure 2.

K

Si

Pi

wi 0 1 1 0 1 0

f

m

c

IV PRNG

Subset

Permutation

Whitening

Fig. 2: FiLIP’s paradigm.

We implemented the variant called FiLIP-144 in [28], which consists in setting Z = 214, z =
144 and f as the XOR-THR function XTHR[81,32,63] described in Definition 2. We note that those
parameters of FiLIP-144 yield 128 bit security, following the analysis in [31]. The cryptographic
parameters of XOR-THR functions are studied in details in [8].

Definition 2 (Threshold Function). Let s ∈ N∗. For any positive integer d ≤ s+1, the Boolean
function Td,s is defined as:

∀x = (x1, . . . , xs) ∈ Fs2,Td,s(x) =

{
1 if WH(x) ≥ d,
0, otherwise

where WH(x) is the Hamming weight of a binary vector x.

Definition 3 (XOR-THR Function (e.g. [28], Definition 11)). For any positive integers k, d,
and s such that d ≤ s+ 1, and for all z = (x1, . . . , xk, y1, . . . , ys) ∈ Fk+s2 , XTHR[k,d,s] is defined as:

XTHR[k,d,s](z) = XORk(x) + Td,s(y) ∈ F2,

where XORk(x) = x1 + · · ·+ xk.

8

XOR XORm0

m1 m2
T (X)

⊗

XOR’ XOR’T (X) ·m0

m1 T (X) m1 T (X)

Fig. 3: Two strategies to compute a sequence of XOR gates multiplied by a polynomial. In both cases,
the output is T (X) ·XOR(m2,XOR(m1,m0)), but the second computation inserts T (X) right in the
beginning and carries it until the end, reducing thus the final noise when evaluated homomorphically.

3 Ad hoc homomorphic building blocks

In this section we define new homomorphic operations that will be used in our transciphering. They
are constructed using the operations defined in Section 2.2, thus, they can also be instantiated with
any FHEW-like scheme.

3.1 Homomorphic XOR modulo p

We start with the simplest scenario where the ciphertexts only encrypt bits, but using Zp as the
message space. Given m0,m1 ∈ {0, 1}, we can see that

XOR(m0,m1) = m0 +m1 − 2 ·m0 ·m1 (mod p)

Thus, we can easily compute an encryption of XOR(m0,m1) given encryptions of m0 and m1, as
we show in Appendix A. And, in fact, one could implement FiLIP modulo p using such simple
homomorphic XOR, however, at the very end of the main loop, after all the external products, one
would obtain an encryption of a power of X and would have to multiply it by the test polynomial
T (X)5 to extract XTHR[k,d,s]. But, multiplying by T (X) introduces an extra factor of

√
N in the

final noise. Thus, as it was done originally in the bootstrapping of TFHE [12], we would like to
start the loop with T (X) already, so that it is always multiplied on the left and does not impact
the noise.

For this, we introduce another homomorphic XOR gate modulo p that outputs an encryption
of u · XOR(m0,m1) for any polynomial u, so that we can carry the test polynomial T (X) from the
beginning of the computation and we do not need to multiply it at the end, thus, reducing the final
noise. This is illustrated in Figure 3.

In more detail, let m0,m1 ∈ {0, 1} and u be a polynomial, let c0 ∈ RingCtxts(∆ · u ·m0, E0),
C1 ∈ GadgetCtxtQ,`s (m1, E1), and c2 ∈ RingCtxts(∆ · u ·m1, E2). We define this gate as follows

FHE.XOR(c0,C1, c2) := c0 + c2 − (2 · c0) �C1.

5 We use two terms, a test polynomial and a test vector, to refer to T (x) interchangeably.

9

Algorithm 1: FHE.XOR
Input: c0 ∈ RingCtxts(∆ · u ·m0, E0), C1 ∈ GadgetCtxtQ,`

s (m1, E1), and c2 ∈ RingCtxts(∆ · u ·m1, E2),
where u ∈ Rt, m0,m1 ∈ {0, 1}, and ∆ = bQ/pe.

Output: c ∈ RingCtxts(∆ · u · XOR(m0,m1), Eout)
Noise growth: Eout ≤

√
`N · B2g · E2

1 + E2
0 + E2

2

1 c′ = FHE.MultPtxt(−2, c0) ; . RingCtxts(−∆ · 2 · u ·m0)
2 c′′ = FHE.ExtProd(c′,C1) ; . RingCtxts(−∆ · 2 · u ·m0 ·m1)

3 ĉ = FHE.Add(c′′, c0) ; . RingCtxts(∆u ·m0(1− 2m1), Ê)
4 c = FHE.Add(c2, ĉ) ; . RingCtxts(∆ · u · XOR(m0,m1)), Eout)
5 return c

We show it in thoroughly in Algorithm 1. From Lemma 1, it holds that Ê ≤
√
`N · B2g · E2

1 + E2
0 .

Then, by the properties of FHE.Add, we have Eout ≤
√
Ê2 + E2

2 ≤
√
`N · B2g · E2

1 + E2
0 + E2

2 .
Moreover, one can see that the output of FHE.XOR is composable as

FHE.XOR(FHE.XOR(c0,C1, c1),C2, c2)).

Thus, if we execute k consecutive compositions of this gate with ci ∈ RingCtxts(∆ · u · mi, Ei)
for 0 ≤ i ≤ k and Cj ∈ GadgetCtxtQ,`s (mj , Êj) for 1 ≤ j ≤ k, we obtain an encryption
XORk(m0,m1, . . . ,mk). Additionally, we can verify that the final noise is E-subgaussian with

E ≤

√√√√ k∑
i=1

`N · B2g · Ê2
i +

k∑
i=0

E2
i . (1)

Homomorphically lifting a bit to the exponent Let u be a polynomial and b ∈ {0, 1}. This
homomorphic operation takes an encryption of u · b and outputs an encryption of u ·Xb. Suppose
we have c ∈ RingCtxts(∆ · u · b, E), we just compute the following

FHE.LiftExp(c, u) := (X − 1) · c + u.

The correctness and noise growth follow directly from the properties of the plaintext-ciphertext
addition and multiplication. We show it in detail in Algorithm 2.

Algorithm 2: FHE.LiftExp
Input: c ∈ RingCtxts(∆ · u · b, E), where u ∈ Rp, b ∈ {0, 1}, and ∆ = bQ/pe.
Output: ĉ ∈ RingCtxts(∆ · u ·Xb, Eout)
Noise growth: Eout = 2 · E

1 c′ = FHE.MultPtxt(X − 1, c) ; . RingCtxts(∆ · (ubX − ub), 2 · E)
2 ĉ = FHE.AddPlaintext(u, c′) ; . RingCtxts(∆ · (ubX + u(1− b)), 2 · E)
3 return ĉ

10

4 Transciphering for Zp from transciphering for {0, 1}

4.1 Setup for homomorphic FiLIP

This phase starts with the client generating the secret keys for FiLIP and for the FHE scheme, then
encrypting FiLIP’s key under the FHE key and sending it to the server. This is called client’s setup
and it is shown in Algorithm 3, where we assume that the noise of fresh ciphertexts is sampled from
a σ-subgaussian distribution.

Algorithm 3: ClientSetup
Input: FHE’s secret key s, FiLIP’s secret key k = (k0, ..., kZ−1) ∈ {0, 1}Z
Output: Ci ∈ GadgetCtxtQ,`

s (ki, σ)
1 for 0 ≤ i < Z do
2 Ci = FHE.EncGadget(s, ki)

3 return (C0, ...,CZ−1)

Then, the server expands the FHE encryptions by running a global setup which is independent of
the FHE plaintext space p. This is shown thoroughly in Algorithm 4.

Algorithm 4: GlobalSetup
Input: For 0 ≤ i < Z, Ci ∈ GadgetCtxtQ,`

s (ki, σ)
Output: Z triples of gadget ciphertexts (C̄i, Ĉi, C̃i)

1 for 0 ≤ i < Z do
2 C̄i = FHE.Add(1,−Ci) ; . GadgetCtxtQ,`

s (NOT(ki), σ)

3 Ĉi = FHE.Add(1, (X2 − 1) ·Ci) ; . GadgetCtxtQ,`
s (X2·ki , 2 · σ)

4 C̃i = FHE.Add(1, (X2 − 1) · C̄i) ; . GadgetCtxtQ,`
s (X2·NOT(ki), 2 · σ)

5 return (C̄i, Ĉi, C̃i)
Z−1
i=0

Moreover, for any given p, the server also has to run, only once, a setup step. We call this
p−Setup and show it in detail in Algorithm 5. It depends on the following function Fd, which is
used to map a value of the form b+ 2 ·w to b+ y mod 2, where y = 1 if w ≥ d and y = 0 otherwise.
That is, we define

Fd(u) :=

{
u+ 1 mod 2 if bu/2c ≥ d
u mod 2 otherwise

(2)

In the online phase, we will compute b as the XOR of some bits of FiLIP’s secret key and w as
the Hamming weight of some other bits, then Fd(b+ 2 · w) is applied to those bits. After that, the
server is ready to apply the transciphering as many times as needed to transform FiLIP’s ciphertexts
into FHE ciphertexts with Zp as the plaintext space.

4.2 Online phase

In this step, the server transforms groups of L := dlog pe FiLIP’s ciphertexts into integer cipher-
texts (e.g., LWE ciphertexts) encrypting integers modulo p. Thus, consider FiLIP’s ciphertexts

11

Algorithm 5: p−Setup
Input: p ∈ N, the function Fd defined in Equation (5), and for 0 ≤ i < Z, Ci ∈ GadgetCtxtQ,`

s (ki, σ) and
C̄i ∈ GadgetCtxtQ,`

s (NOT(ki), σ)
Output: (ci,j , c̄i,j) for 0 ≤ i < Z and 0 ≤ j < dlog2(p)e.
Noise growth: Eout =

√
`N · Bg · σ

1 ∆ := bQ/pe
2 T (X) :=

∑N−1
i=0 Fd(i) ·X2N−i mod XN + 1

3 for 0 ≤ j < dlog2(p)e do
4 uj := 2j · T (X)

5 c(j) := trivial-noiseless ring encryption of ∆ · uj

6 for 0 ≤ i < Z do
7 ci,j = FHE.ExtProd(c(j),Ci) ; . RingCtxts(∆ · uj · ki, Eout)

8 c̄i,j = FHE.ExtProd(c(j), C̄i) ; . RingCtxts(∆ · uj · NOT(ki), Eout)

9 return (ci,j , c̄i,j)

c0, ..., cL−1 ∈ {0, 1} encrypting bits b0, ..., bL−1, respectively. It holds that cj = bj +F(k, IVj) mod 2,
where k is FiLIP’s secret key and F is FiLIP encryption function, as explained in Section 2.3.
Our goal is to describe a method to output c ∈ IntCtxtz(bq/pe · m,E) where m =

∑L−1
j=0 bj · 2j

and E = O(q/(2p)), allowing thus any subsequent homomorphic computation via programmable
bootstrapping.

To do so, we proceed by generating ciphertexts c(j) ∈ RingCtxts(bQ/pe · µj , E/
√
p), such that

the first coefficient of µj is equal to 2j · F(k, IVj).
Then, by using FiLIP’s ciphertexts cj ’s, we can generate encryptions of 2j · bj and add them

together to obtain an encryption of m, as desired. Notice that each c(j) can be computed in parallel.
This first step is described in Algorithm 6 and it is similar to the homomorphic evaluation of
FiLIP presented in [17], but the XOR is not longer computed with homomorphic additions and the
whole computation carries the power of two and the test vector T (X). In Lemma 2, we prove the
correctness of Algorithm 6 and analyze the noise of its output.

Lemma 2. [Correctness and noise analysis of BinaryTranscipher] Let k = (k0, ..., kZ−1) ∈ {0, 1}Z
be the secret key of FiLIP. Fix integers j and IV. Let F be FiLIP encryption function, i.e., FiLIP’s
ciphertexts are of the form c = b+F(k, IV) mod 2. Let uj := 2j ·T (X), where T (X) is the test vector
defined in p−Setup. Let ∆ := bQ/pe. For i ∈ J0, Z − 1K, consider the following input ciphertexts:

– Generated by ClientSetup

• Ci ∈ GadgetCtxtQ,`s (ki, σ)

– Generated by GlobalSetup

• C̄i ∈ GadgetCtxtQ,`s (NOT(ki), σ)

• Ĉi ∈ GadgetCtxtQ,`s (X2·ki , 2 · σ)

• C̃i = GadgetCtxtQ,`s (X2·NOT(ki), 2 · σ)

– Generated by p−Setup

• ci,j ∈ RingCtxts(∆ · uj · ki,
√
`N · Bg · σ)

• c̄i,j ∈ RingCtxts(∆ · uj · NOT(ki),
√
`N · Bg · σ)

12

Algorithm 6: BinaryTranscipher
Input: An integer IV, an integer j, and, for i ∈ J0, Z − 1K, the ciphertexts ci,j and c̄i,j computed in

p−Setup, C̄i, Ĉi, and C̃i computed in GlobalSetup, and Ci generated by ClientSetup.
Output: c ∈ RingCtxts(bQ/pe · µ,Eout) where µ ∈ Rt with µ0 = 2j · F (k, IV), k is FiLIP’s secret key, and

F FiLIP’s encryption.
Noise growth: Eout ≤ 15

√
`N · Bg · σ

1 Sample the subset S := {s1, ..., sz} ⊆ {1, ..., Z}
2 Sample the permutation P : S → S.
3 Sample thewhitening vector w ∈ {0, 1}z
4 for 0 ≤ i < 144 do
5 r ← P [si] if wi = 0 then

. Select encryptions of 2j · T (X) · kr, kr, and X2·kr

6 c(i) := cr,j , C(i) := Cr, Ĉ(i) := Ĉr,

7 else
. Select 2j · T (X) · NOT(kr), NOT(kr), and X2·NOT (kr)

8 c(i) := c̄r,j , C(i) := C̄r, Ĉ(i) := C̃r,

. Now compute XOR(k′1, . . . , k
′
80) where k′i are the permuted and whitened bits of FiLIP’s secret

key
9 cXOR = c(0)

10 for 1 ≤ i < 81 do
11 cXOR = FHE.XOR(cXOR,C

(i), c(i))

12 uj := 2j · T (X) ; . Scaled test vector as in p−Setup
13 c = FHE.LiftExp(cXOR, uj) ; . RingCtxts(∆ · uj ·XXOR(k′

0,...,k
′
80), EXOR)

. Now accumulate 2 · HW(k′81, . . . , k
′
143) in the exponent

14 for 81 ≤ i < 144 do
15 c = FHE.ExtProd(c, Ĉ(i))

16 return c ; . RingCtxts(∆ · uj ·XXOR(k′
0,...,k

′
80)+2·HW(k′

81,...,k
′
143), Eout)

Then, if c is the output of BinaryTranscipher, it holds that c ∈ RingCtxts(bQ/pe · µ,Eout) where
µ ∈ Rt with µ0 = 2j · F(k, IV), and

Eout ≤ 15
√
`N · Bg · σ.

Proof. Let k′0, ..., k′143 be the bits of FiLIP’s secret key after taking the subset and applying the
permutation and the whitening. Notice that F(k, IV) = XOR(k′0, ..., k

′
80)+T32,63(k

′
81, ..., k

′
143) mod 2,

as in Definition 3.
Since the whitening corresponds to negating the bit when wi = 1, it holds that at the end of

the first loop of BinaryTranscipher, the ciphertexts ci,j , C(i), and Ĉ(i) encrypt uj · k′i, k′i, and X2·k′i ,
respectively.

Thus, from the correctness of FHE.XOR, at the end of the second for loop, we have cXOR ∈
RingCtxts(∆ · ujXOR(k′0, ..., k

′
80), Ê), for some Ê.

Then, from the correctness of FHE.LiftExp, it holds that c ∈ RingCtxts(∆ · uj ·
XXOR(k′0,...,k

′
80), EXOR), for some EXOR.

Finally, each iteration of the last loop adds 2 ·k′i to the exponent of X encrypted in c. But notice
that since k′i ∈ {0, 1}, it holds that the Hamming weight is equal to the sum, thus, at the end, we
have c ∈ RingCtxts(∆ · uj ·XXOR(k′0,...,k

′
80)+2·HW(k′81,...,k

′
143), Eout), for some Eout. Now, recall that the

test vector T (X) encodes the function Fd from Equation 5, thus, T (X) ·Xk results in a polynomial

13

µ whose constant term is m0 = Fd(k). Hence, c encrypts µ such that

µ0 = 2j · Fd(XOR(k′0, ..., k
′
80) + 2 · HW(k′81, . . . , k

′
143)) = 2j · F(k, IV)

as desired.
Now it remains to analyze the noise. By Inequality 5, it holds that

EXOR ≤
√

80 · `N · B2g · σ2 + 81 · `N · B2g · σ2 =
√

161 · `N · Bg · σ.

Finally, the 63 consecutive external products in the last loop give us

Eout ≤
√

63`N · B2g · σ2 + E2
XOR

≤
√

63`N · B2g · σ2 + (
√

161 · `N · Bg · σ)2

≤
√

63`N · B2g · σ2 + 161 · `N · (Bg · σ)2

≤
√

224`N · B2g · σ2

≤ 15
√
`N · Bg · σ

The full transciphering procedure is shown in Algorithm 7 and it works by calling L times
BinaryTranscipher, then combing the ciphertexts and finally using key- and modulus-switching pro-
cedures to output an integer ciphertext with the right format.

Lemma 3. [Correctness and noise analysis of ZpTranscipher] Consider the same notation and in-
puts used in Lemma 2. Let L := dlog pe. Assume that the key-switching key ksk has σksk-subgaussian
noise for some σksk. For j ∈ J0, L− 1K, let cj = bj + F(k, IVj) mod 2 be a FiLIP ciphertext.

Then, if c is the output of ZpTranscipher, it holds that c ∈ IntCtxtz(bq/pe ·m,Eout) where m =∑L−1
j=0 2j · bj and

Eout ≤
√
N · (152 · log p · ` · (Bg · σ · q/Q)2 + `ksk · (Bksk · σksk)2) + ‖s‖22 /4

where `ksk = logBksk
q.

Proof. From Lemma 2, we know that the constant term of the message encrypted by c(j) is equal
to 2j ·F(k, IV). Notice that if cj = 0, then bj = F(k, IV) ∈ {0, 1}, thus, this constant term is already
equal to 2j · bj . If cj = 1, then bj = 1 − F(k, IV) ∈ {0, 1}, and line 4 turns the constant term into
2j − 2j ·F(k, IV) = 2j · (1−F(k, IV)). Therefore, at the end of the for loop, each c(j) encrypts 2j · bj
in the constant term. It follows that c encrypts m in the constant term.

Hence, from the correctness of FHE.Extract, FHE.ModSwt, and FHE.KeySwt, c ∈ IntCtxtz(bq/pe ·
m,Eout), for some Eout, as desired.

Now it remains to prove the noise bound. Again from Lemma 2 and using the fact that
FHE.AddPlaintext does not change the noise, at the end of the for loop, each c(j) has E-subgaussian
noise with E ≤ 15

√
`N · Bg · σ.

In line 5, we apply log p times FHE.Add, thus, the we obtain (
√

log p · E)-subgaussian noise.

14

Then, FHE.Extract does not change the noise distribution and FHE.ModSwt gives us(√
log p · E2 · (q/Q)2 + (‖s‖2 /2)2

)
-subgaussian noise.

Finally, the after FHE.KeySwt, we have

Eout ≤
√

log p · E2 · (q/Q)2 + ‖s‖22 /4 +N · logBksk
q · (Bksk · σksk)2

≤
√

log p · (15 ·
√
` ·N · Bg · σ)2 · (q/Q)2 + ‖s‖22 /4 +N · logBksk

q · (Bksk · σksk)2

≤
√

152 · log p · ` ·N · (Bg · σ)2 · (q/Q)2 + ‖s‖22 /4 +N · logBksk
q · (Bksk · σksk)2

Algorithm 7: ZpTranscipher
Input: Key-switching key ksk. All the ciphertexts generated by ClientSetup, GlobalSetup, and p−Setup. For

0 ≤ j < L := dlog pe, FiLIP ciphertext cj = bj + F(k, IVj) mod 2 and the initialization vector IVj .
Output: c ∈ IntCtxtz(bq/pe ·m,Eout) where m =

∑L−1
j=0 2j · bj .

Noise growth: Eout ≤
√
N(152 · log p · ` · (Bgσ · q/Q)2 + `ksk(Bksk · σksk)2) + ‖s‖22 /4

1 for 0 ≤ j < L do
2 c(j) = BinaryTranscipher(IVj) ; . Constant term: 2j · F(k, IVj)
3 if cj = 1 then
4 c(j) = FHE.AddPlaintext(2j ,−c(j)) ; . Constant term: 2j · bj

. Now combine the L ciphertexts
5 c =

∑L−1
j=0 c(j)

6 c′ = FHE.Extract(c, 0) ; . IntCtxts(bQ/pe ·m)
7 ĉ = FHE.ModSwt(c′, q) ; . IntCtxts(bq/pe ·m)
8 c = FHE.KeySwt(ĉ, ksk) ; . IntCtxtz(bq/pe ·m)
9 return c

5 Experimental Results and Comparisons

5.1 Instantiation and implementation

We show implementation results of our approach as a proof of concept. One can use different third-
generation FHE schemes to instantiate our transciphering. To obtain our practical results, we used
FINAL [4], as it allows us to represent gadget ciphertexts with a vector of ` := dlogBg Qe elements
of RQ, which tends to be smaller than the GSW ciphertexs used by TFHE, that are 2×2`′ matrices
(although usually `′ < `). Thus, the three ciphertexts types presented in Section 2.2 are shown
in Table 1. The extraction procedure generates a vector that is still encrypted under NTRU, thus,
FINAL offers a NTRU-to-LWE key switching that we use to obtain the output of the transciphering.
When we compare with other algorithms instantiated with TFHE in the later section, the term GSW
ciphertext corresponds to the output of FHE.EncGadget, and RLWE ciphertext corresponds to the
output of FHE.EncRing.

15

Table 1: Actual ciphertext types and parameters when our transciphering is instantiated with FI-
NAL.

Ciphertext type Hard problem Parameters Ciphertext space

Integer LWE n, q, σLWE Zn+1
q

Ring NTRU N,Q, σNTRU RQ

Gadget NTRU N,Q, σNTRU, `, Bg R`
Q

We extended the implementation of homomorphic FiLIP provided in [17] to obtain our proof of
concept. Our source code is publicly available6. For this, we used two sets of parameters, presented
in Table 2, both offering 128 bits of security (LWE from [1], NTRU from [22]).

Table 2: The parameters of NTRU gadget ciphertexts, the decomposition base of the NTRU-to-LWE
key-switching, and the parameters of the LWE ciphertexts. An upper bound to σLWE is presented in
Lemma 3.

N Q σNTRU Bg ` Bksk σksk n q

Set-I 210 912829 ≈ 219.8 1/
√

2 24 5 23 1/
√

2 610 92683 ≈ 216.5

Set-II 211 1073741827 ≈ 230 1/
√

2 24 8 25 1/
√

2 768 9209716 ≈ 221

We ran all our experiments on a single core of an Intel Xeon Gold 6248R CPU at 3.00GHz, in
a machine with 500 GB of RAM memory. We summarize all the practical results in Table 3. Since
the client has to encrypt each bit of the FiLIP’s secret key k ∈ {0, 1}214 into one gadget ciphertext,
the total upload, in bits, is 214 · ` ·N · logQ plus the size of the key-switching key. “On-line phase”
shows the running time of executing ZpTranscipher, and the next column shows this time divided
by the number of bits, i.e., log p. We note that the running times are already very low, although
we have a non-optimized proof of concept (for example, one could speed it up by using a dedicated
FFT library for the cyclotomic rings used in FHE instead of the general library FFTW that we
used). We stress that the first loop of our transciphering is composed by log p independent calls
to BinaryTranscipher, therefore, it can be easily parallelized, which should divide the total time,
and thus, also the amortized time per bit, by almost log p, since the step where the outputs of
BinaryTranscipher are combined is very cheap compared to the running time of BinaryTranscipher
itself.

Failure probabilities As it is done in virtually all FHE schemes that use subgaussian noise
analysis [21,12,4], we use the central limit heuristic to model as a Gaussian the final error in the
LWE ciphertexts output by ZpTranscipher. Moreover, based on Lemma 3, we assume the following
variance:

σ2LWE := 152 · log p · ˆ̀·N · (B′g · σ)2 · (q/Q)2 + ‖s‖22 /4 +N · ˆ̀ksk · (B′ksk · σksk)2

where ˆ̀ := logBg(Q/2) and `ksk := logBksk
(q/2), since in practice before decomposing the values, we

can put them in the centered representation, e.g., in J−q/2, ..., q/2K, instead of in J0, ..., q−1K. Also,
6 The Github repository with our source code will be made public in the final version of the paper, after acceptance.

16

Table 3: Running times and upload depending on different parameter sets
Client’s
upload

Client’s
setup

Global
setup p p−Setup On-line

phase Per bit

Set-I 215 MB 3.4 s 2 s
22 2.6 s 13 ms 6.5 ms

23 3.74 s 18.8 ms 6.3 ms

24 5.26 s 25.2 ms 6.3 ms

Set-II 1 GB 11 s 6.5 s

22 7.4 s 36 ms 18 ms

23 11 s 54 ms 18 ms

24 14.7 s 71 ms 17.7 ms

25 17.7 s 84.6 ms 17 ms

26 21.2 s 101 ms 16.8 ms

27 24.8 s 117 ms 16.7 ms

28 29.7 s 137 ms 17.1 ms

Table 4: Failure probability of output of ZpTranscipher.
p log(σLWE) Upper bound on failure probability

Set-I
22 ≈ 10 2−150

23 ≈ 10.5 2−30

24 ≈ 11 2−8

Set-II

22 ≈ 11.03 2−215347

23 ≈ 11.04 2−53842

24 ≈ 11.04 2−13382

25 ≈ 11.05 2−3329

26 ≈ 11.05 2−831

27 ≈ 11.06 2−209

28 ≈ 11.05 2−54

B′g := Bg − 1 and B′ksk := Bksk − 1, since when we decompose integers in some base B, we actually
obtain values less than or equal to B− 1. And since we used ternary keys for the NTRU secret, the
value ‖s‖2 was replaced by

√
N .

Notice that σLWE grows very slowly as we increase p (assuming other parameters fixed), as it is
just proportional to

√
log p. However, the failure probability is computed as 1−erf(q/(2·p·σLWE·

√
2)),

thus, increasing p increases the probability exponentially (this is the case for any FHE scheme). In
Table 4, we present all the values σLWE and the corresponding probabilities. We stress that this is
the probability that an LWE ciphertext output by ZpTranscipher does not encrypt the correct value,
but the failure probability of the programmable bootstrapping executed afterwards is independent
of this and can be chosen by setting accordingly the parameters of the FHE scheme used to the
computation — which is not necessarily the same scheme and parameters used for the transciphering.

17

5.2 General comparisons

Since our transciphering is adapted for so-called third generation schemes, we do comparisons with
the other transcipherings performed with this type of schemes. Namely, we compare our perfor-
mances to the transcipherings with FiLIP performed with TFHE in [28,18] and FINAL in [17],
and Elisabeth with TFHE in [18]. For a further extension to other types of schemes which require
batched ciphertexts, we discuss the possibility and the limitation in Section 6.1.

Table 5: Comparison of running time of transcipherings with FiLIP.
Work Cipher Scheme Latency(ms) Time per bit(ms)

FiLIP-1280 TFHE 2200 2200

[28] FiLIP-1216 TFHE 1900 1900

FiLIP-144 TFHE 2500 2500

FiLIP-1280 TFHE 627 627

[18] FiLIP-1216 TFHE 586 586

FiLIP-144 TFHE 134 134

[17] FiLIP-144 FINAL 2.62 2.62

This work, Set-I, p = 23 FiLIP-144 FINAL 18.8 6.3

This work, Set-II, p = 27 FiLIP-144 FINAL 117 16.7

In Table 5, we compare the timings of the different methods proposed with FiLIP in the lit-
erature. The latency is extracted form each paper, corresponding to the time of on-line compu-
tation required to obtain an homomorphic ciphertext by the sever. All the timings correspond to
monothreaded computations. We defer the comparison with Elisabeth to the next subsection, since
each ciphertext contains 4 bits of information, which makes it comparable with ours for p with 4
bits.

We can observe that ours is highly competitive with the other evaluations with FiLIP. Even for
larger message precision (running log p times of BinaryTranscipher), we have better computation time
than the other transciphering producing an LWE ciphertext of a bit. More precisely, the latency
is always lower than the one obtained in former works except [17], and the time per bit is greatly
improved, of 1 or 2 orders of magnitude.

Compared to [17], the time per bit is slower but in the same order (2.4 and 6.4) whereas the
latency is 7 and 44 times slower for these parameters. It is because each BinaryTranscipher requires
144 external products per bit, whereas [17] runs less than half of it. This difference comes from the
instantiation of homomorphic XOR part (over Zp in our case, over Z2 in [17]). Therefore, we use
different parameters for FINAL to manage noise as well. All of these factors incur the overhead.
Nevertheless, the slightly slower time per bit is acceptable since we aim for larger message precision.
In other words, our transciphering will be preferable than the one of [17] when non-binary circuits
are necessarily evaluated.

5.3 Comparison with Elisabeth-4

In [18], an HHE scheme is presented combining the symmetric cipher Elisabeth-4 and TFHE as
FHE scheme. Elisabeth-4 works with plaintext over Z16, therefore in the transciphering presented

18

Table 6: TFHE parameters for Elisabeth-4.
Mode n log(σLWE) k N log(σGLWE) PBS log(B) PBS `

2 KS 784 13.3342 3 512 25.5003 19 1

Single KS 863 11.2506 3 512 25.5003 19 1

in the same paper the homomorphic ciphertexts obtained contain plaintext with values modulo 16,
which allows a direct comparison with our method when we fix p = 24.

Their algorithm uses homomorphic additions modulo 16 and evaluations of Negacyclic Look up
Tables (NLUT) from Z16 to Z16 using the Programmable Bootstrapping (PBS). To produce each
ciphertext, their evaluation requires 96 PBS corresponding to 96 ·n external products where n is the
size of the LWE key and 203 LWE ciphertext additions. The error constraints to enter in the PBS
require to use key switching during the evaluations, therefore the authors present two evaluations
with different sets of parameters, with one or two key switchings. The parameters for these two
modes are shown in Table 6, where their evaluation corresponds to 75264 external products for the
mode with 2 key switchings and 82848 for the mode with a single key switching.

Table 7: Timings comparison between the evaluation of Elisabeth-4 with TFHE from [18], and
FiLIP recombining 4 bits with our transciphering. Multithreaded versions of Elisabeth-4 were probably
executed on 12, or 48, or 64 threads, but this information is not explicitly written in [18].

Evaluation Mode Latency (ms) Time per bit (ms)

Elisabeth-4 2 KS, multithreaded 91.143 22.786

Elisabeth-4 Single KS, multithreaded 103.810 25.953

Elisabeth-4 2 KS, monothreaded 1485.0 371.25

Elisabeth-4 Single KS, monothreaded 1648.6 412.15

Ours Set-I, monothreaded 25.2 6.3

Ours Set-II, monothreaded 71 17.7

The comparison of the running time of Elisabeth-4 in [18] and ours when setting p = 24 is given
in Table 7, from which we can conclude that our transciphering (for 4 bits) is much faster than the
one with Elisabeth-4. Comparing to monothreaded computations, our implementations is more than
20 times faster, for the different sets of parameters. The latency we obtain is smaller but of the same
order of the timings of the multithreaded evaluation of Elisabeth-47), since most of the operations
in our transciphering are performed independently on the 4 bits we could expect a latency close to
the current time per bit with 4 threads. The main reason for such efficiency for our transciphering
is that we have far smaller number of external products, namely, executing a single PBS requires
more external products than transciphering one bit with our method.

On the downside, in our method, each bit of the FiLIP’s secret key is encrypted into one gadget
ciphertext, while in Elisabeth-4, the client sends LWE ciphertexts to the server, which can be
compressed with standard techniques. Namely, each LWE ciphertext is composed by n+ 1 elements

7 Elisabeth-4 has been designed to take advantage of the multiple PBS evaluable in parallel with Concrete, ideally
running on 48 threads.

19

of Zq, but n of them are uniformly distributed and only one of them depends on the secret key.
Thus, instead of sending those n + 1 elements, the client can send the seed used to generate the
n random elements together with one single element of Zq, hence, drastically reducing the upload.
In [18], it is reported that the client just has to upload 8 KB or 20 KB, depending on the mode,
to send the symmetric key encrypted with compressed LWE ciphertexts. However, to evaluate
Elisabeth-4, the server also needs the bootstrapping keys, which corresponds to more than 12 MB.
Thus, depending on whether one considers that the bootstrapping keys are part of the setup step
of Elisabeth-4 or not, the client’s upload is estimated as a few kilobytes or a few megabytes. While
in our case, the client’s upload ranges from megabytes to one gigabyte. We stress that if the client
wants to use applications with different values of plaintext modulus p, then extra costly conversions
of homomorphic ciphertexts and more uploads are needed, since Elisabeth-4 is bent to use p = 24

only.

5.4 Comparison for neural networks evaluation

Our method can shine in neural network evaluation. The versatility of our non binary transciphering
allows to adapt the precision on the plaintexts, which fits well with Convolutional Neural Networks
(CNN) working on quantized data. For example, the transciphering of [18] is followed by a CNN
evaluating the classification of Fashion MNIST pictures homomorphically. The Fashion MNIST
picture database consists of images of 784 gray pixels, each one of 8 bits of information. For a faster
evaluation (taking advantage of the 4-bits PBS implemented in Concrete), the evaluation of [18]
restrict the gray-scale to only 3 bits of information and homomorphically evaluate the quantized
CNN. The advantage of ours is that from the encrypted data of the client, the server could choose
rather to evaluate a cheap CNN with data quantized over t bits with potentially relatively low
accuracy or a more costly CNN with data quantized over t′ > t bits with high accuracy, depending
on computing environment. The CNN choice does not requires the client to re-encrypt data, and
choosing the precision after client’s query allows the server to adapt the cost and the precision for
each functionality asked by the client.

For the particular CNN used in [18], the transciphering is considered with parameters already
compatible with the PBS used for the CNN, rather than the optimal ones we recalled in Table 6.
Moreover, only 3 of the 4 bits of each plaintext of Elisabeth-4 are used in the ciphertext with
plaintext space Z16, since the CNN takes bootstrapped LWE ciphertexts, that allow PBS on 3 bits
of data, one bit being used for padding. In [18] the transciphering with Elisabeth-4 and homomorphic
inference takes 427 seconds, compared to 6 seconds without the transciphering. Using the optimal
parameters for Elisabeth-4 evaluation recalled in Table 6, it reduces the total time to 77 seconds,
without considering a keyswitching before entering the CNN. If we use our technique which outputs
LWE ciphertexts encrypting 3 bits of integer, in the same setting, we would expect the total running
time to be reduced to 15 seconds8 (with parameter Set-I), and 43 seconds with parameter Set-II).

6 Discussion and Conclusion

6.1 Discussion

Our idea which homomorphically composes {0, 1} elements into an integer can be naturally extended
to any FHE scheme which uses batching methods [6,23,11]. The naive approach for server is to
8 With Set-I it leads to a transciphering with homomorphic inference in 28 ∗ 28 ∗ 18.8 ∗ 10−3 + 6 = 15 seconds

20

run our transciphering per coefficient, and homomorphically moves the coefficient message into
the corresponding slot by computing a linear transformation [26]. However, the complexity of this
process is O(N), where N is the number of slots, which would require more optimizations for
practical uses.

Additionally, one might argue that the same property for general message precision can be
achieved by functional bootstrapping [14]. However, our approach is much cheaper than running
one bootstrapping since our transciphering only requires 144 times of external products (using
log p-threads), whereas one bootstrapping requires at least 630 up to around 900 external products
depending on the desired precision.

6.2 Conclusion

In this article, we have presented a new transciphering method which can be used for any message
precision for the first time. In other words, the client does not need to set message precision before
sending its data to the server. Therefore, the server can reuse the given data for several application
algorithms by taking only necessary upper bits of data, depending on the target application, without
running different setups with the client. This approach gives more freedom to clients in cloud-based
service, in terms of parameter setting and communications with the server. Hence, a service provider
can offer a more user-friendly environment to the clients.

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. Journal of Mathematical
Cryptology 9(3), 169–203 (2015). https://doi.org/doi:10.1515/jmc-2015-0016, https://doi.org/10.1515/
jmc-2015-0016

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald,
E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015, Part I. Lecture Notes in Computer Science,
vol. 9056, pp. 430–454. Springer, Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30, 2015). https://doi.org/10.
1007/978-3-662-46800-5_17

3. Ashur, T., Mahzoun, M., Toprakhisar, D.: Chaghri - a fhe-friendly block cipher. In: Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security. p. 139–150. CCS ’22, Association for
Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3548606.3559364, https://
doi.org/10.1145/3548606.3559364

4. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V.L., Smart, N.P.: Final: Faster fhe instantiated with ntru and lwe.
In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASIACRYPT 2022. pp. 188–215. Springer Nature
Switzerland, Cham (2022)

5. Brabant, M., Pereira, O., Méaux, P.: Homomorphic encryption for privacy-friendly augmented democracy. In:
2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON). pp. 18–23 (2022). https://doi.org/
10.1109/MELECON53508.2022.9843009

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping.
In: Goldwasser, S. (ed.) ITCS 2012: 3rd Innovations in Theoretical Computer Science. pp. 309–325. Association
for Computing Machinery, Cambridge, MA, USA (Jan 8–10, 2012). https://doi.org/10.1145/2090236.2090262

7. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier, P., Sirdey, R.: Stream ciphers: A
practical solution for efficient homomorphic-ciphertext compression. In: Peyrin, T. (ed.) Fast Software Encryption
– FSE 2016. Lecture Notes in Computer Science, vol. 9783, pp. 313–333. Springer, Heidelberg, Germany, Bochum,
Germany (Mar 20–23, 2016). https://doi.org/10.1007/978-3-662-52993-5_16

8. Carlet, C., Méaux, P.: A complete study of two classes of boolean functions: Direct sums of monomials and
threshold functions. IEEE Trans. Inf. Theory 68(5), 3404–3425 (2022). https://doi.org/10.1109/TIT.2021.
3139804, https://doi.org/10.1109/TIT.2021.3139804

9. Chen, H., Chillotti, I., Ren, L.: Onion ring ORAM: Efficient constant bandwidth oblivious RAM from (leveled)
TFHE. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019: 26th Conference on Computer
and Communications Security. pp. 345–360. ACM Press, London, UK (Nov 11–15, 2019). https://doi.org/10.
1145/3319535.3354226

21

https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1145/3548606.3559364
https://doi.org/10.1145/3548606.3559364
https://doi.org/10.1145/3548606.3559364
https://doi.org/10.1145/3548606.3559364
https://doi.org/10.1109/MELECON53508.2022.9843009
https://doi.org/10.1109/MELECON53508.2022.9843009
https://doi.org/10.1109/MELECON53508.2022.9843009
https://doi.org/10.1109/MELECON53508.2022.9843009
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-662-52993-5_16
https://doi.org/10.1007/978-3-662-52993-5_16
https://doi.org/10.1109/TIT.2021.3139804
https://doi.org/10.1109/TIT.2021.3139804
https://doi.org/10.1109/TIT.2021.3139804
https://doi.org/10.1109/TIT.2021.3139804
https://doi.org/10.1109/TIT.2021.3139804
https://doi.org/10.1145/3319535.3354226
https://doi.org/10.1145/3319535.3354226
https://doi.org/10.1145/3319535.3354226
https://doi.org/10.1145/3319535.3354226

10. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts with
application to oblivious neural network inference. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM
CCS 2019: 26th Conference on Computer and Communications Security. pp. 395–412. ACM Press, London, UK
(Nov 11–15, 2019). https://doi.org/10.1145/3319535.3363207

11. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arithmetic of approximate numbers. In:
Takagi, T., Peyrin, T. (eds.) Advances in Cryptology – ASIACRYPT 2017, Part I. Lecture Notes in Computer
Science, vol. 10624, pp. 409–437. Springer, Heidelberg, Germany, Hong Kong, China (Dec 3–7, 2017). https:
//doi.org/10.1007/978-3-319-70694-8_15

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: Bootstrapping in
less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology – ASIACRYPT 2016, Part I.
Lecture Notes in Computer Science, vol. 10031, pp. 3–33. Springer, Heidelberg, Germany, Hanoi, Vietnam (Dec 4–
8, 2016). https://doi.org/10.1007/978-3-662-53887-6_1

13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homomorphic encryption over the torus.
Journal of Cryptology 33(1), 34–91 (Jan 2020). https://doi.org/10.1007/s00145-019-09319-x

14. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient homomorphic inference of deep
neural networks. In: Dolev, S., Margalit, O., Pinkas, B., Schwarzmann, A. (eds.) Cyber Security Cryptography
and Machine Learning. pp. 1–19. Springer International Publishing, Cham (2021)

15. Cho, J., Ha, J., Kim, S., Lee, B., Lee, J., Lee, J., Moon, D., Yoon, H.: Transciphering framework for approximate
homomorphic encryption. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2021,
Part III. Lecture Notes in Computer Science, vol. 13092, pp. 640–669. Springer, Heidelberg, Germany, Singapore
(Dec 6–10, 2021). https://doi.org/10.1007/978-3-030-92078-4_22

16. Cong, K., Das, D., Nicolas, G., Park, J.: Panacea: Non-interactive and stateless oblivious ram. Cryptology ePrint
Archive, Paper 2023/274 (2023), https://eprint.iacr.org/2023/274, https://eprint.iacr.org/2023/274

17. Cong, K., Das, D., Park, J., Pereira, H.V.: Sortinghat: Efficient private decision tree evaluation via homomorphic
encryption and transciphering. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security. p. 563–577. CCS ’22, Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3548606.3560702, https://doi.org/10.1145/3548606.3560702

18. Cosseron, O., Hoffmann, C., Méaux, P., Standaert, F.X.: Towards case-optimized hybrid homomorphic encryp-
tion - featuring the elisabeth stream cipher. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASI-
ACRYPT 2022, Part III. Lecture Notes in Computer Science, vol. 13793, pp. 32–67. Springer, Heidelberg, Ger-
many, Taipei, Taiwan (Dec 5–9, 2022). https://doi.org/10.1007/978-3-031-22969-5_2

19. Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E., Mendel, F., Rechberger, C.: Rasta:
A cipher with low ANDdepth and few ANDs per bit. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology
– CRYPTO 2018, Part I. Lecture Notes in Computer Science, vol. 10991, pp. 662–692. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 19–23, 2018). https://doi.org/10.1007/978-3-319-96884-1_22

20. Dobraunig, C., Grassi, L., Helminger, L., Rechberger, C., Schofnegger, M., Walch, R.: Pasta: A case for hybrid
homomorphic encryption. Cryptology ePrint Archive, Report 2021/731 (2021), https://eprint.iacr.org/2021/
731

21. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less than a second. In: Oswald, E.,
Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015, Part I. Lecture Notes in Computer Science,
vol. 9056, pp. 617–640. Springer, Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30, 2015). https://doi.org/10.
1007/978-3-662-46800-5_24

22. Ducas, L., van Woerden, W.: Ntru fatigue: How stretched is overstretched? In: Tibouchi, M., Wang, H. (eds.)
Advances in Cryptology – ASIACRYPT 2021. pp. 3–32. Springer International Publishing, Cham (2021)

23. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report
2012/144 (2012), https://eprint.iacr.org/2012/144

24. Ha, J., Kim, S., Choi, W., Lee, J., Moon, D., Yoon, H., Cho, J.: Masta: An he-friendly cipher using modular
arithmetic. IEEE Access 8, 194741–194751 (2020). https://doi.org/10.1109/ACCESS.2020.3033564

25. Ha, J., Kim, S., Lee, B., Lee, J., Son, M.: Rubato: Noisy ciphers for approximate homomorphic encryption. In:
Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT 2022, Part I. Lecture Notes in
Computer Science, vol. 13275, pp. 581–610. Springer, Heidelberg, Germany, Trondheim, Norway (May 30 – Jun 3,
2022). https://doi.org/10.1007/978-3-031-06944-4_20

26. Halevi, S., Shoup, V.: Bootstrapping for HElib. Journal of Cryptology 34(1), 7 (Jan 2021). https://doi.org/
10.1007/s00145-020-09368-7

27. Hebborn, P., Leander, G.: Dasta – alternative linear layer for rasta. IACR Transactions on Symmetric Cryptol-
ogy 2020(3), 46–86 (Sep 2020). https://doi.org/10.13154/tosc.v2020.i3.46-86, https://tosc.iacr.org/
index.php/ToSC/article/view/8696

22

https://doi.org/10.1145/3319535.3363207
https://doi.org/10.1145/3319535.3363207
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-92078-4_22
https://doi.org/10.1007/978-3-030-92078-4_22
https://eprint.iacr.org/2023/274
https://eprint.iacr.org/2023/274
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1007/978-3-031-22969-5_2
https://doi.org/10.1007/978-3-031-22969-5_2
https://doi.org/10.1007/978-3-319-96884-1_22
https://doi.org/10.1007/978-3-319-96884-1_22
https://eprint.iacr.org/2021/731
https://eprint.iacr.org/2021/731
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://doi.org/10.1109/ACCESS.2020.3033564
https://doi.org/10.1109/ACCESS.2020.3033564
https://doi.org/10.1007/978-3-031-06944-4_20
https://doi.org/10.1007/978-3-031-06944-4_20
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.13154/tosc.v2020.i3.46-86
https://doi.org/10.13154/tosc.v2020.i3.46-86
https://tosc.iacr.org/index.php/ToSC/article/view/8696
https://tosc.iacr.org/index.php/ToSC/article/view/8696

28. Hoffmann, C., Méaux, P., Ricosset, T.: Transciphering, using FiLIP and TFHE for an efficient delega-
tion of computation. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) Progress in Cryptology - IN-
DOCRYPT 2020: 21st International Conference in Cryptology in India. Lecture Notes in Computer Science,
vol. 12578, pp. 39–61. Springer, Heidelberg, Germany, Bangalore, India (Dec 13–16, 2020). https://doi.org/
10.1007/978-3-030-65277-7_3

29. Jeon, S., Lee, H.S., Park, J.: Practical randomized lattice gadget decomposition with application to fhe. Cryptol-
ogy ePrint Archive, Paper 2023/535 (2023), https://eprint.iacr.org/2023/535, https://eprint.iacr.org/
2023/535

30. Kim, M., Jiang, X., Lauter, K., Ismayilzada, E., Shams, S.: Secure human action recognition by encrypted neural
network inference. Nature Communications 13 (08 2022). https://doi.org/10.1038/s41467-022-32168-5

31. Méaux, P., Carlet, C., Journault, A., Standaert, F.X.: Improved filter permutators for efficient FHE: Bet-
ter instances and implementations. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) Progress in Cryptology - IN-
DOCRYPT 2019: 20th International Conference in Cryptology in India. Lecture Notes in Computer Sci-
ence, vol. 11898, pp. 68–91. Springer, Heidelberg, Germany, Hyderabad, India (Dec 15–18, 2019). https:
//doi.org/10.1007/978-3-030-35423-7_4

32. Méaux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards stream ciphers for efficient FHE with low-noise
ciphertexts. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016, Part I. Lecture
Notes in Computer Science, vol. 9665, pp. 311–343. Springer, Heidelberg, Germany, Vienna, Austria (May 8–12,
2016). https://doi.org/10.1007/978-3-662-49890-3_13

33. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Cachin, C.,
Ristenpart, T. (eds.) Proceedings of the 3rd ACM Cloud Computing Security Workshop, CCSW 2011, Chicago,
IL, USA, October 21, 2011. pp. 113–124. ACM (2011)

34. Pereira, H.V.L.: Bootstrapping fully homomorphic encryption over the integers in less than one second. In: Garay,
J. (ed.) PKC 2021: 24th International Conference on Theory and Practice of Public Key Cryptography, Part I.
Lecture Notes in Computer Science, vol. 12710, pp. 331–359. Springer, Heidelberg, Germany, Virtual Event
(May 10–13, 2021). https://doi.org/10.1007/978-3-030-75245-3_13

35. Stoian, A., Frery, J., Bredehoft, R., Montero, L., Kherfallah, C., Chevallier-Mames, B.: Deep neural networks for
encrypted inference with tfhe. Cryptology ePrint Archive, Paper 2023/257 (2023), https://eprint.iacr.org/
2023/257, https://eprint.iacr.org/2023/257

36. Tueno, A., Boev, Y., Kerschbaum, F.: Non-interactive private decision tree evaluation. In: IFIP Annual Conference
on Data and Applications Security and Privacy. pp. 174–194. Springer (2020)

37. Zuber, M., Sirdey, R.: Efficient homomorphic evaluation of k-nn classifiers. Proceedings on Privacy Enhancing
Technologies 2021, 111 – 129 (2021)

A Homomorphic XOR modulo p

We start with the simplest scenario where the ciphertexts only encrypt bits, but using Zp as the
message space. Given m0,m1 ∈ {0, 1}, we can see that

XOR(m0,m1) = m0 +m1 − 2 ·m0 ·m1 (mod p)

Thus, let c0 ∈ RingCtxts(bQ/pe ·m0, E0) and C1 ∈ GadgetCtxtQ,`s (m1, E1). Then, as shown in
Algorithm 8, on can compute the homomorphic XOR as

FHE.XOR(c0,C1) := c0 + (1− 2 · c0) �C1

By Corollary 1, it follows that FHE.XOR(c0,C1) ∈ RingCtxts(∆ · XOR(m0,m1), E) where E ≤√
`N · Bg · E1 + E0.

23

https://doi.org/10.1007/978-3-030-65277-7_3
https://doi.org/10.1007/978-3-030-65277-7_3
https://doi.org/10.1007/978-3-030-65277-7_3
https://doi.org/10.1007/978-3-030-65277-7_3
https://eprint.iacr.org/2023/535
https://eprint.iacr.org/2023/535
https://eprint.iacr.org/2023/535
https://doi.org/10.1038/s41467-022-32168-5
https://doi.org/10.1038/s41467-022-32168-5
https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-030-75245-3_13
https://doi.org/10.1007/978-3-030-75245-3_13
https://eprint.iacr.org/2023/257
https://eprint.iacr.org/2023/257
https://eprint.iacr.org/2023/257

Algorithm 8: FHE.XORSimple

Input: c0 ∈ RingCtxts(∆ ·m0, E0) and C1 ∈ GadgetCtxtQ,`
s (m1, E1) where m0,m1 ∈ {0, 1} and ∆ = bQ/pe.

Output: c ∈ RingCtxts(∆ · XOR(m0,m1), Eout)
Noise growth: Eout ≤

√
`N · Bg · E1 + E0

1 c′ = FHE.MultPtxt(−2, c0) ; . RingCtxts(−2 ·∆ ·m0)
2 c′′ = FHE.AddPlaintext(1, c′) ; . RingCtxts(∆(1− 2 ·m0))
3 c = FHE.ExtProd(c′′,C1) ; . RingCtxts(∆(m1 − 2 ·m0 ·m1))
4 return c

24

	Towards Practical Transciphering for FHE with Setup Independent of the Plaintext Space

