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and the DAX industrial index, where a minor decline in industrial productivity is observed
from recent energy shocks.
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1 Introduction

Systemic risk has received renewed interest in the finance literature since the 2007-2009

financial crisis. Systemic risk is generally defined as the risk of the financial sector as a

whole being threatened and its spillover to the economy at large. The events of 2007-2009

and the recent European sovereign debt crisis have demonstrated that measuring the risk of

an asset seen in isolation is no longer relevant during a crisis. Therefore, new risk measures

have been proposed to capture externalities imposed by one institution on others and on the

system at large, and externalities imposed by the system on institutions.

Contrary to the financial sector, there is no general consensus on the importance of

systemic risk in energy markets, or on its nature. On one hand, regulators believe that energy

trading does not pose similar degree of systemic risk compared to equity markets. On the

other hand, rising energy prices may sometimes surpass leverage as perceived systemic risk

concern for investors. Energy markets are connected (directly or indirectly) to all sectors

through energy production or consumption and financial contracts. Demand for energy

is usually inelastic showing evidence of the strong dependence of the economy on energy

prices. The negative impact of increasing energy prices on the aggregate economic output

was identified in Hamilton (1983) and by many others. The idea to investigate the systemic

risk in energy markets is driven by the analogy between energy and financial liquidity. Both

are essential for all sectors and the scarcity of one of them is susceptible to trigger serious

damages to the real economy.

In this paper, we attempt to understand and measure the systemic risk associated to

an energy crisis. To our knowledge, it is one of the first paper with the paper of Lautier

and Raynaud (2012) that poses the question of systemic risk in the energy sector. We

define the energy systemic risk as the risk of an energy crisis raising the prices of all energy

commodities with negative consequences for the real economy. In our definition, the systemic
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crisis is not caused by the failure of companies in the energy sector but comes from the

price (co-)movements of energy products. Increased integration within energy markets and

increased dependence of the economy on energy may constitute the perfect conditions for

energy systemic risk to appear. If an extreme price shock happens in these conditions, we

expect the consequences for the energy market and the broader economy to be severe.

We provide measures of energy systemic risk that focus on the comovements of the finan-

cial prices of energy products. The Energy Systemic Risk measure (EnSysRISK) represents

the total cost of an energy product to the rest of the economy during an energy crisis. The

goal of this measure is to shed light on the potential costs energy products would impose

to the non-energy sector if an energy crisis had to occur. EnSysRISK is complemented by

a measure of the net impact (�MES) of an energy crisis on the rest of the economy. En-

SysRISK and �MES are a function of the Marginal Expected Shortfall (MES) defined by

Acharya et al. (2010). To measure energy systemic risk, we adapt the conditional MES of

Brownlees and Engle (2011) to describe the dynamic sensitivity of energy assets to energy

crises.

The paper presents some econometric innovations to take account of the comovements

in the means, the variances and the tails of energy assets. Causal relationships in the

conditional means and variances reflect physical relationships through substitution between

primary energies and the merit-order of electricity, financial relationships between energy

contracts and possible spillover effects between markets. The model for the mean of returns

accounts for causality and cointegration through error correction terms. The variance model

is a multiplicative GARCH model where a GARCH component is multiplied by an interaction

component that allows for causality in the variances.

While causality allows modeling the interdependence in the energy market, we also sus-

pect the presence of common drivers of risk. Causal relationships are removed from returns

to concentrate on the pure contagion phenomenon, i.e. an increase in correlations during
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a crisis (Billio and Caporin (2010); Forbes and Rigobon (2002)), whereas causal relation-

ships simply spread the shocks among the products in all states of the world. We present

a methodology to account for latent factors in the conditional MES. The latent factors are

estimated from principal component analyses on the time-varying correlation matrices esti-

mated with the Dynamic Conditional Correlation (DCC) model of Engle (2002). Therefore,

the common factors incorporate conditional information and the tail expectations have a

dynamic exposure to the most important risk factors. Causality and exposure to common

factors are then combined in a single measure writing the conditional MES as a function of

means, variances and tail expectations.

The methodology is applied on energy futures of the European Energy Exchange (EEX)

where the impact of recent energy market events is analyzed. Since EEX futures are related

to the German market area, the DAX industrial index is also included to study the con-

nection between the energy market and the industry. From the conditional MES and final

consumption data, we derive the EnSysRISK of EEX futures and find that energy crises

would impose increasing costs to the economy. However, �MES shows little impact of en-

ergy shocks on the DAX industrial index, suggesting a relatively small decline in industrial

productivity due to extreme increases in energy prices.

The paper is structured as follows: in Section two, we define energy systemic risk and

present the related literature. We introduce the measures of energy systemic risk (EnSys-

RISK and �MES) in Section three. In Section four, the econometric methodology to

estimate the conditional MES of energy assets is presented. We estimate the conditional

MES and derive the EnSysRISK and the �MES of EEX futures in Section five.

2 Systemic risk, comovements and energy crises

There is no consensus on the existence or the importance of systemic risk in the energy

market. At the same time, the systemic risk of energy markets may be a difficult concept
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to apprehend. In this section, we clarify the conditions for systemic risk to appear in energy

markets and its consequences for the rest of the economy. It starts by exposing the related

literature on systemic risk (1), energy price comovements (2), past energy crises and their

impact on the economy (3), and concludes with the definition of energy systemic risk.

At the heart of systemic risk (1), there is the concept of dependence: dependence between

individual financial institutions and dependence between the financial sector and the rest of

the economy. There are mainly two approaches in the systemic risk literature; one part of the

literature sees systemic risk as arising from one or several shock(s) spreading to a network

of financial relationships (Billio et al. (2012); Diebold and Yilmaz (2011); Hautsch et al.

(2011)) while the other part sees systemic risk as arising from an aggregate economy-wide

shock (Acharya et al. (2010); Brownlees and Engle (2011)).

Dependence does not necessarily imply systemic risk; linear dependence actually only

captures the systematic risk component. A measure of systemic risk also needs to be related

to shocks, crises or extreme events. Among the proposed measures of systemic risk we find

measures of the tail dependence between the financial institution and the market like the

CoVaR of Adrian and Brunnermeier (2010) or the Marginal Expected Shortfall (MES) of

Acharya et al. (2010). The MES represents the expected losses of a firm during an aggregate

market shock. By reversing the condition, we find the CoVaR defined as the value-at-risk

of the market conditional on an institution being in distress. Acharya et al. (2012) however

point out a shortcoming of the CoVaR as the measure does not depend on the volatility of

the financial institution but only depends on its correlation with the market. Therefore, two

institutions with the same market correlation will be assigned the same CoVaR even if they

have very different volatilities.

We mentioned dependence as the heart of systemic risk. In energy markets, dependence

may be found along several dimensions; dependence between different regional markets, en-

ergy commodities, maturities or parts of the value chain. Energy market integration and
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comovements in energy prices play a central role in energy systemic risk as they neutralize

the substitution effects that are supposed to bring energy prices to a new viable equilib-

rium for the rest of the economy. Our methodology therefore relates to the literature on

comovements and the modeling of the joint distribution of energy prices (2): comovements

in the mean with cointegration and causality models (Bunn and Fezzi (2008); Escribano

et al. (2011); Haldrup and Nielsen (2006)), comovements in the volatility with multivariate

volatility models (Bauwens et al. (2012); Chevallier (2012)) and comovements in the tails

with copulae (Benth and Kettler (2010); Boerger et al. (2009); Gronwald et al. (2011)).

Dependence in energy markets is complex. The jumps in power spot (day-ahead) prices

have very short-term impacts because of the physical nature of assets and are less susceptible

to spread to other markets. For these very volatile spot markets like electricity and gas,

futures represent a larger market as they represent insurance contracts against spot price

fluctuations. Futures prices are impacted by shocks on physical spot markets, but also react

to news coming from other markets (e.g. 2007-2009 financial crisis) and news that may have

long-term consequences for the energy market (e.g. German government announcement

about their exit from nuclear energy in March 2011). Due to their higher correlations with

other markets, we consider electricity and natural gas futures prices as better candidates

than spot prices to study systemic risk.

All other sectors of the economy are also dependent on energy prices. A large part of

the literature on energy crises and their impact on the economy (3) followed the oil embargo

of 1973-1974 (Barsky and Kilian (2004); Brown and Yücel (2002); Carruth et al. (1998);

Hamilton (1983, 2011); Kilian (2008); Lee (2002); Rotemberg and Woodford (1996); Zaleski

(1992), among others). A direct impact of energy crises on the economy operates through

the price mechanism as energy is an essential production factor. The energy demand has

very low elasticity such that extreme high prices and high volatility produce higher inflation,

reduced growth and increased uncertainty (Tieben et al. (2011)). Hamilton (1983, 2011)
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shows that the historical correlation between energy crises and economic downturns appears

to be too strong to be a coincidence.

Next to the direct impact on the economy, the indirect impact refers to the contagion

channels of energy derivatives to the real economy via energy derivative trade positions of

financial institutions (Tieben et al. (2011); Hamilton (2009)). Benink (1995) also indicates

that the growth of derivatives has increased systemic risk by expanding linkages among mar-

kets and financial institutions. Increasing integration of energy markets with other markets

is also foreseen as the liquidity of energy derivatives grows and attracts investors outside the

energy sector. Lautier and Raynaud (2012) study the links between commodity, energy and

equity derivative markets and show that connections between sectors are insured by energy

products. Tieben et al. (2011) however find a small indirect effect as financial institutions

hold relatively small positions in energy derivative markets.

If the energy market integration and the dependence of the economy on energy prices are

accepted, we also need to understand what type of event leads to systemic risk. External

shocks to the energy market like natural disasters or geopolitical events create large energy

price fluctuations susceptible to generate systemic risk in the energy market. The unsus-

tainable interaction between demand growth and production declines (Hamilton (2011)),

regulatory and technological uncertainty may also constitute important sources of systemic

risk. As dependence on oil is believed to decrease and shift to substitutes in most developed

economies, the energy crisis we consider is not restricted to an oil crisis. All energy com-

modities are considered equally important and causal relationships may go in all directions.

The definition of energy systemic risk also depends on the position of the agent in the

energy value chain. We take the viewpoint of the demand side as we define the systemic risk

for the non-energy sector. Therefore, energy systemic risk is defined by the risk of an energy

crisis raising the prices of all energy commodities with negative consequences for the real

economy. Increased integration within the energy market and increased dependence of the
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economy on energy may pave the way for an energy systemic crisis to occur. If an extreme

energy market shock arises in such conditions, we expect consequences to be severe for the

energy market and the entire economy.

3 Measuring Energy Systemic Risk

In the context of energy markets, the conditional Marginal Expected Shortfall (Acharya et al.

(2010); Brownlees and Engle (2011)) of an energy asset is given by

MESit = Et−1 (rit|energy crisis) . (1)

This quantity represents the expected daily return of energy asset i at time t conditional on

an energy crisis and past information up to time t− 1, with i = 1, 2, ..., n and t = 1, 2, ..., T .

From the conditional MES and past price levels, we derive the Energy Systemic Risk measure

defined by

EnSysRISKit = [pit−1 ∗ exp(MESit)] ∗ wit, (2)

where wit is the quantity exposure of the economy to asset i at time t. For an energy contract

i with maturity τi0 and delivery period ν, the exposure at time t is

wit =
ςi

νi

τi0+νi�

τ=τi0

max [0, Et−1 (finconsτ − invτ )] with t < τi0 ≤ τ,

where finconsτ is the daily final consumption of energy during delivery period νi of contract

i starting at τi0, invτ are the energy stocks available to the non-energy sector during the

same delivery period, and ςi is the proportion of energy delivered during period νi via energy

futures contracts i. Expected inventory levels or stocks are a function of current levels

and a depletion rate during a crisis. The quantity exposure defines the expected amount of

energy physically delivered outside the energy sector with futures contracts i of maturity and

delivery period νi. High dependence of the non-energy sector on energy via final consumption
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and low inventories increases the quantity exposure to systemic risk.

The energy systemic risk measure defined in (2) represents the total cost of energy asset

i to the rest of the economy during an energy crisis. The definition of the systemic condition

(the energy crisis) is however subject to discussion. The energy crisis is defined in this paper

by an abnormal rise in energy prices (i.e. extreme positive returns) as we define energy

systemic risk for the non-energy sector. It has been shown that positive returns on energy

assets create more stress on energy markets than negative returns (Carpantier (2010); Knittel

and Roberts (2005)), and have more (negative) impact on the economy (Hamilton (2003)).

However higher energy prices may also be associated with strong demand growth in the later

stages of a business cycle expansion (Hamilton (2011)). To ensure that energy market shocks

are not associated to business cycles, we only consider energy price increases when the rest of

the economy is slowing down. The MES conditional on an energy crisis is therefore defined

by

MESit(C, D) = Et−1 (rit|rEnM,t > C, rM,t < D) , (3)

where rEnM,t is the energy market return, rM,t is the return of the non-energy sector, C

represents the (1 − α) quantile of rEnM,t, and D is the median of rM,t. Section 4 presents

our methodology for modeling the comovements in the means, the variances and the tails of

energy returns in order to estimate MESit(C, D).

The EnSysRISK measure defined in (2) represents the total cost of an energy crisis to

the non-energy sector. There is however an opportunity cost of not producing using energy

during an energy crisis. Next to EnSysRISK, we define a measure of the net impact of an

energy crisis on the non-energy sector by

∆MESMt(C, D) = MESMt(C, D)−MESMt(qEnMt,0.5, D), (4)

where MESMt(C, D) is the conditional MES of the non-energy return (rM,t) conditional

on an energy crisis and qEnMt,0.5 is the median of the energy market return (rEnMt). This
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measure is inspired by the �CoV aR of Adrian and Brunnermeier (2010) and represents the

difference between the expected return of the non-energy index during an energy crisis and

the expected non-energy return during ’normal’ times. The energy crisis is expected to have

a negative net impact on the economy, i.e. ∆MES is expected to be negative.

4 Econometric methodology

The conditional MES of equation (3) can be decomposed as a function of mean, volatility

and tail expectation

MESit(C, D) = Et−1 (µit + σituit|rEnMt > C, rMt < D) (5)

= µit + σitEt−1 (uit|rEnMt > C, rMt < D) ,

where µit and σit are the conditional mean and volatility of asset i and uit = (rit−µit)/σit is a

standardized shock of zero conditional mean and unit conditional variance. In this section, we

successively describe how to account for causality and cointegration in the means, causality

in variances, and common factors in tail expectations. Common factors are extracted from

ut as Forbes and Rigobon (2002) show that heteroskedasticity present in returns may lead to

an upward bias in the estimation of the contagion risk during a crisis. Causality is removed

from returns in order to concentrate on the pure contagion phenomenon (also called market

integration in this paper), i.e. an increase in correlations during a crisis whereas causal

relationships refer to the interdependence phenomenon, i.e. market linkages that are present

in all states of the world (Billio and Caporin (2010); Forbes and Rigobon (2002)).

4.1 Causality in mean and variance

Following the methodology of Billio et al. (2012), we apply Granger-causality tests to measure

the degree of interdependence of the energy market. The causal relationships reflect physical

relationships in the energy market based on the supply curve (merit-order) of electricity
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and substitution between primary energy commodities for electricity generation and other

consumption purposes. Causal relationships also reflect substitution between different energy

futures contracts and spillover effects between markets. We test for causal relationships in

returns means and variances using an augmented vector error correction model for the means

and a multiplicative causality GARCH model for the variances.

4.1.1 Augmented Vector Error Correction Model

The prices of (n−1) energy assets and a non-energy sector index are collected in the (n×T )

matrix P, from which the vector of daily returns rt = 100 × (ln(pt) − ln(pt−1)) is derived.

Given the structure of energy returns, a Vector Error Correction Model (VECM) capturing

autocorrelation, cointegration, causality, and seasonality is specified

rit = πiη
�ln(pt−1) +

K�

k=1

δ
�
ikrt−k +

M�

m=1

θ
�
imxt−m + ϕ

�
iqt + �it, (6)

where η are the cointegrating vectors, πi are error-correction parameters, δik is a (n × 1)

vector of autocorrelation and Granger-causal parameters of order k, xt−m are exogenous

variables lagged by m days and qt are deterministic (seasonal) terms. Cointegration vectors

represent long-term equilibrium relationships between energy prices and the error-correction

parameters represent the speed of adjustment of each return variable to the cointegration

vector. The number of cointegration vectors v is selected based on the trace rank test of

Johansen (1991), and the matrices η and π are identified by imposing η = ( Iv B
�)� . This

model is similar to the vector-error correction model of Bunn and Fezzi (2008), except that

all energy products are here considered as endogenous variables (as part of the ’system’).

4.1.2 Multiplicative Causality GARCH Model

From the augmented VECM estimation, we obtain the vector of mean-zero residuals �t. Next

to the causal relationships present in the mean, we suspect the existence of causality at the

variance level. To remove spillover effects present in the conditional variances of �t, we define
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the multiplicative causality GARCH model allowing for non-linear causality

�it = σituit =
�

φitgituit, (7)

where

git = (1− αii − βi −
γii

2
) + αii

�
�
2
it−1

φit−1

�

+ βigit−1 + γii

�
�
2
it−1

φit−1

�

I{�it−1<0}, (8)

φit = f (u1t−1, ..., ui−1,t−1, ui+1,t−1, ..., unt−1) li(t), (9)

I{�it−1<0} is a dummy variable equal to one when the past shock of asset i is negative,

and li(t) is a deterministic function of time. The multiplicative model decomposes the

asset variance into two components. The first component is the usual GARCH equation

(GARCH component) capturing the asset variance ’own’ dynamics. It is augmented to

account for asymmetric effects due to the sign of shocks with the additional term of the GJR

model (Glosten et al. (1993)). The second component captures asset variance dynamics from

interaction with other asset returns (interaction component).

The multiplicative form, by separating own and interaction dynamics, makes the param-

eter estimates of both GARCH and interaction components easier to interpret. The model is

a multivariate model for the variances and requires a joint estimation of all variance processes

since the interaction component is a function of other standardized shocks.1

In our application, the interaction component is specified as

φit = ci exp




n�

j=1,j �=i

(ϑijujt−1 + αij|ujt−1|) + κ
�
idt



 , (10)

where dt are deterministic terms including seasonal dummies. This function has a similar
1Note that, if �2it−1/φit−1 are replaced by �2it−1/li(t − 1) in (8), then a model similar to the exponential

causality GARCH model of Caporin (2007) would be obtained, with additional deterministic factors l(t).
The advantage of standardizing returns by φit rather than li(t) is that the process git becomes a standard
GARCH/GJR process, for which theoretical results are broadly available. This model can also be viewed
as a simplified version of the spline-GARCH model of Engle and Rangel (2008) but the components in the
multiplicative causality model are both low frequency components. When the second component simplifies
to a constant, the equation simplifies to the GARCH or GJR model.
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form as the EGARCH model of Nelson (1991) and allows for asymmetric causality effects

when ϑij �= 0.

4.2 Factor Models and Tail Expectations

The standardized shocks ut may be decomposed as a linear function of common factors and

idiosyncratic terms. In Brownlees and Engle (2011), standardized shocks are decomposed as

a function of an observable market return and idiosyncratic terms using a single-factor model

similar to the capital asset pricing model (CAPM). In the context of energy markets, the

CAPM may present some limitations. For example, one assumption of the CAPM implies

that all agents possess the same information at all times. While this assumption is likely to

hold in major financial markets, it does not hold for energy markets. Additionally, a market

index may not be available or reliable for less liquid markets like energy markets.

An alternative is to consider the common factors as latent. Latent factors may be present

in such markets where certain sources of risk (environmental, political, technological, etc.)

are hidden and hard to quantify. The latent factors can be estimated with orthogonal factor

models by maximum likelihood or by principal component analysis (PCA) (Tsay (2005), p.

428). In the PCA, the factors are estimated from a spectral decomposition of the sample

correlation matrix of ut. However, the probability of an energy crisis will be constant when

the principal components are extracted from the sample correlation matrix, since factors

have constant variances equal to their eigenvalues.

Conditional variances of the principal components can be obtained with the O-GARCH

model of Alexander (2002). In the context of systemic risk, we may also want to measure

the evolution of the exposure of returns to the principal components that are interpreted as

common risk factors. Dynamic eigenvectors are obtained from spectral decompositions of

the daily correlation matrices estimated with the Dynamic Conditional Correlation (DCC)

model of Engle (2002). This approach can be viewed as a multivariate extension of Brownlees
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and Engle (2011) as it is based on the whole correlation matrix of asset returns instead of

the bivariate correlations between the asset and the market.

The DCC process is defined for the n× n symmetric positive-definite matrix Qt by

Qt = (1− a− b)Q̄ + aut−1u
�
t−1 + bQt−1, (11)

where a + b < 1, a, b ≥ 0 and Q̄ is a positive-definite parameter matrix. Then the DCC

correlation matrix is obtained by transforming Qt to

Rt = (In ⊙Qt)
−1/2

Qt(In ⊙Qt)
−1/2

where In is a n × n identity matrix. The covariance matrix of mean zero residuals (�it =

rit − µit) is given by Ht = DtRtDt where Dt = diag(σ1t, σ2t, ..., σnt) is a n × n diagonal

matrix collecting the univariate conditional volatilities of residuals on the diagonal. If the

distribution of zt = H
1/2
t �t is assumed Gaussian, the DCC model is estimated by a two-

stage quasi-maximum likelihood (QML) estimation procedure, where in the first stage the

parameters of the conditional variance process of eq. (7) are estimated. In the second

stage, the parameters of the conditional correlation process are estimated conditionally on

the estimates obtained in the first stage.

Dynamic eigenvectors and dynamic eigenvalues at time t are obtained from the spectral

decomposition of the DCC correlation matrix Rt. Therefore, the covariance Ht is decomposed

in

Ht = DtRtDt = Dt (AtΛtA
�
t + Rζt) Dt, (12)

where At is a matrix of s eigenvectors associated with the s largest eigenvalues that are

contained in the diagonal matrix Λt = diag(λ1t, λ2t, ..., λst) with λ1t ≥ λ2t ≥ ... ≥ λst, s ≤ n

and Rζt is the correlation matrix of idiosyncratic terms ζt.

The standardized shocks are then written as a function of the first s principal components
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and idiosyncratic terms

uit =
s�

j=1

aijtyjt + ζit, (13)

where aijt is the element of the eigenvector associated with asset i and principal component

yjt extracted from the estimated correlation matrix at time t, and ζit = uit −
�s

j=1 aijtyjt.

The energy crisis condition of the tail expectation in (5) is defined by two factors: the

energy market return (rEnMt) and the return on the non-energy sector (rMt). The non-

energy return will be approximated by the return on the observable non-energy index. The

orthogonality of the other factors to the non-energy factor is ensured by imposing restrictions

on the eigenvector elements as in the restricted PCA used in Ng et al. (1992). The first

principal component y1t (yMt) is restricted to be the standardized non-energy return (uMt),

where all elements of its eigenvector associated to energy returns are restricted to be null

maxa1t a�1tRta1t

s.t. a�1ta1t = 1, ai1t = 0 ∀t,∀i �= M.

The other factors are obtained by

maxajt a�jtRtajt

s.t. a�jtajt = 1, a�jtalt = 0 ∀t,∀l �= j, j > 1,

and are mutually orthogonal and orthogonal to the non-energy factor.

The second principal component y2t is positively correlated to all energy assets and is

interpreted as the energy market factor (yEnMt); a variable that explains the majority of

comovements in the energy market after removing causal relationships. The factors in (13)

have time-varying variances λjt and the second dynamic eigenvalue λ2t (λEnMt) is interpreted

as the energy market variance.
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Tail expectations are then approximated by

Et−1 (uit|rEnMt > C, rMt < D) �
s�

j=1

�
aijtEt−1

�
yjt|yEnMt > C̃, yMt < D̃

��
(14)

+ Et−1

�
ζit|yEnMt > C̃, yMt < D̃

�
,

where C̃ is the (1-α) quantile of the energy market factor and D̃ is the median of the non-

energy factor.

In this definition of tail expectations, the idiosyncratic terms and the factors are uncorre-

lated but are not independent. Extreme shocks are expected to happen simultaneously in all

asset prices during a crisis. To capture the sensitivity to extreme events in the energy market,

the next step is to estimate the tail expectations of eq. (14). Nonparametric estimation of

tail expectations is an alternative to copula functions where the joint distribution of factors

and idiosyncratic terms is left unspecified. Brownlees and Engle (2011) propose a kernel

estimator of tail expectations based on the literature on the nonparametric estimation of the

expected shortfall (Scaillet (2004)) and the conditional expected shortfall (Scaillet (2005);

Kato (2012)). The proposed nonparametric estimator of tail expectations is

Ê
�
yjt|yEnMt > C̃, yMt < D̃

�
=

�T
τ=1 yjτΦ

��
yEnMτ√
λEnMτ

− C̃√
λEnMt

�
h
−1

�
I(yMτ < D̃)

�T
τ=1 Φ

��
yEnMτ√
λEnMτ

− C̃√
λEnMt

�
h−1

�
I(yMτ < D̃)

, (15)

where Φ(·) is the Gaussian c.d.f., h is a positive bandwidth parameter, and I(yMτ < D̃) is

an indicator function equal to one when the the non-energy factor is below the threshold D̃.

The same estimation procedure applies to E
�
ζit|yEnMt > C̃, yMt < D̃

�
.

This estimator assigns higher weights to observations that are close to the threshold C̃

and zero weight when the non-energy factor is above D̃. The threshold C̃ divided by the

market volatility replaces the conditional quantile in Scaillet (2005) and Kato (2012). As

a result, observations will be assigned higher weights when the energy market volatility is

high.
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5 Application to the EEX market

The European Energy Exchange (EEX) is the leading energy exchange in continental Europe.

The study of systemic risk in the EEX market is motivated by the size and the central

location of the exchange. In the following subsection, we describe the products selected in

our application. Causality in energy markets is explored by analyzing the links between

products through their conditional means and variances in Subsections 5.2 and 5.3. In

Subsection 5.4, we measure the evolution of energy market integration. The estimation of

the conditional MES of energy assets is the subject of Subsection 5.5, the EnSysRISK and

the ∆MES measures are derived in Subsection 5.6.

5.1 Data description

We consider the daily price series of ten EEX energy futures, three energy spot indices and the

DAX industrial index.2 The portfolio of EEX futures contains futures on electricity (Phelix),

natural gas (Gaspool), coal (ARA) and carbon emission rights (EUA). Electricity futures

are financial futures written on the German Physical Electricity index (Phelix). Natural

gas futures are physical futures for the German market area operated by Gaspool Balancing

Services GmbH. Coal ARA (Amsterdam-Rotterdam-Antwerp) futures are financial futures

written on the API#2 (ARA coal) index published in the Argus/McCloskey’s Coal Price

Index Report. For EUA futures, the delivery of EU emission allowances (EUA) for the

second EU Emission Trading Scheme (ETS) period constitutes the underlying.3

The EEX futures we consider have monthly, quarterly and yearly maturities and corre-

sponding delivery periods, except for EUA futures, which have yearly maturity and delivery

during the second EU ETS period (five-year period starting on January 1, 2008). The fu-
2Source: Datastream. Series codes: EBMCS00, EBQCS00, EBYCS00, EGMCS00, EGQCS00, EGYCS00,

ECMCS00, ECQCS00, ECYCS00, ECBCS00, MLCXEUS, OILBRNP, MLCXECS, PRIMIND. Prices in US
dollars are converted in Euros (using US $ TO EURO (WMR&DS) - EXCHANGE RATE).

3One EU emission allowance confers the right to emit one ton of carbon dioxide or one ton of carbon
dioxide equivalent. EEX Product Brochure : EU Emission Allowances, 2011
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tures price series are composed of successive nearest contracts over the period 07.03.2007

until 06.01.2011 and returns are adjusted for contract switches. We also include in the anal-

ysis the Brent crude oil price per barrel and the Merrill Lynch Commodity index (MLCX)

for EUA and European coal spot markets, based on their high correlations with EEX fu-

tures (the sample correlation matrix can be found in Table 3 in the Appendix). The DAX

industrial index is mainly composed of energy consuming companies and is taken as a proxy

for the non-energy sector index.

The descriptive statistics of the returns of the fourteen series are presented in Table 1.

The table reveals the DAX industrial, Brent crude oil and short-term contracts on natural

gas to be the most volatile series. Short-term electricity futures have the largest kurtosis

caused by the extreme returns of mid-March 2011 when Germany announced its exit from

nuclear energy following the Japanese tsunami and the accident at Fukushima power plant.

Name Underlying Maturity/ Mean Std. Skewness Excess

Delivery Dev. kurtosis

MPhelix Phelix (Physical 1/1 month -0.098 2.063 0.214 9.087

QPhelix Electricity index) 1/1 quarter -0.036 1.454 0.895 11.123

YPhelix 1/1 year -0.015 1.253 0.094 3.081

MGaspool Natural Gas delivery 1/1 month -0.100 2.733 -0.236 2.875

QGaspool in Gaspool area 1/1 quarter -0.071 2.307 0.212 2.308

YGaspool 1/1 year -0.023 1.774 0.289 2.316

MARA API#2 ARA 1/1 month 0.044 2.138 -0.617 3.461

QARA coal index 1/1 quarter 0.016 2.104 -0.588 2.563

YARA 1/1 year 0.036 1.815 -0.494 3.046

YEUA Delivery of EU carbon 1 year/ -0.034 2.222 -0.276 3.005

emission allowances 2nd EU ETS

EUA spot EUA spot index - -0.022 2.266 -0.048 2.860

Brent Brent crude oil index - 0.042 2.329 -0.030 4.322

Coal spot European coal spot index - 0.042 1.916 -0.494 2.243

DAX industrial DAX industrial index - -0.013 2.322 -0.090 6.782

Table 1: Descriptive statistics of returns. Sample period: 07.03.2007 - 06.01.2011 (989 observa-

tions).

The sample correlation matrix (Table 3 in the Appendix) constitutes a first simple way
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to study the links between products and markets. The highest correlations are observed

between groups of products with the same underlying commodity (electricity, natural gas,

coal, carbon dioxide). DAX industrial and crude oil returns are the least correlated with

other returns; the correlation between the month Phelix future and the DAX industrial index

is not significant at 1%. On the opposite, the year Phelix future is the most correlated with

all asset returns and seems to act as a transmission asset between physical and financial

markets, as well as between short-term and long-term futures.

5.2 Cointegration and causality in the mean

We test the parameters of the VECM model (eq. (6)) where the endogenous variables are the

thirteen energy asset returns and the DAX industrial returns. The trace rank test of Johansen

(1991) indicates the presence of nine cointegration vectors among the fourteen price series.4

Cointegration vectors estimates are reported in Table 4 in the Appendix. The matrices η

and π are identified by imposing η = ( I9 B
�)� . Other restrictions on η are tested. The

parameters of equation (6) are then estimated by maximum likelihood conditionally on the

estimated matrix η̂. The high number of cointegration vectors makes the interpretation of

the parameter estimates difficult but the strong significance5 of estimates indicates that all

prices (including the DAX industrial index) contribute to the long-term price equilibrium.

In order to account for short-memory autocorrelation and causality up to the weekly

lag (as in Billio and Caporin (2010)), we chose K and M of eq. (6) equal to five. The

estimated coefficients and robust standard errors6 of significant relationships at the 5% level

are presented in Table 5 in the Appendix.

The table of estimation results shows that the EUA spot index returns are not subject to

error-correction. This result is in line with the results of Bunn and Fezzi (2008); Fezzi and
4The estimation results of this section are obtained using the PcGive module of OxMetrics version 6.10

(see Doornik and Hendry (2009)).
5All estimates have t-values above 5 in absolute value.
6Newey-West heteroskedasticity- and autocorrelation-consistent standard errors (HACSE).
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Bunn (2009) showing that carbon prices are weakly exogenous in the long run. Bunn and

Fezzi (2008) explain this finding by the geographical scope of products; carbon allowances

are traded at the European level while other products in the sample (electricity and natural

gas futures) are exclusively traded in the German market area.

Granger-causality relationships reflect the merit-order of electricity in Germany. The

daily log demand for electricity is an exogenous variable that explains the returns on the

European coal spot index. Coal is the marginal fuel for electricity generation during off-peak

hours in Germany and it is significant to explain returns of long-term electricity futures.

Similarly, natural gas is the marginal fuel for peak load hours and it is significant to explain

returns of short-term Phelix futures.

Brent crude oil returns are not caused by any variable but are causal for many other

energy products (long-term Gaspool futures, coal spot, coal quarter futures and EUA spot

and futures returns). As for the relationship between energy and industrial returns, only

the quarter Phelix future explains industrial returns and the estimate is negative; increasing

electricity futures prices have a negative impact on the DAX industrial return.

5.3 Causality in variances

The estimated coefficients and standard errors of significant relationships at the 5% level

of the Multiplicative Causality GARCH model (eq. (7)) are reported in Table 6 in the

Appendix.7

In the GARCH(-GJR) component of eq. (8), we find a positive estimate of the asymmet-

ric parameter γ for the DAX industrial index and EUA products and a negative estimate

for month Phelix futures. The negative estimate of γ for the month Phelix future is con-

sistent with the findings of Knittel and Roberts (2005) and Bauwens et al. (2012). Knittel

and Roberts (2005) attribute this effect in electricity returns to the convexity of the sup-
7These results and the results of the next sections are generated using Ox version 6.10 (see Doornik

(2009)).
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ply function, since positive demand shocks have a larger impact on prices than negative

demand shocks. For DAX and EUA returns, the asymmetric parameter is so strong that

the ARCH parameters are not significant and only the negative news affect the volatility of

these products.

The interaction component defined in (10) incorporates seasonal effects and causal re-

lationships. The EEX futures market closes during weekend days and consequently, higher

volatility is found at the beginning of the week (positive Monday effect). The seasonality in

the volatility of coal spot and futures returns is different where we find monthly effects.

Most causal relationships in the variances come from the year EUA future through the

multiplicative interaction component. The year EUA future is causal for electricity and

short-term natural gas futures. We find that higher Brent crude oil returns increase the

volatility of long-term natural gas futures. Causal relationships also take place between

futures contracts with the same underlying commodity but different maturities and delivery

periods, as it is the case for electricity and coal.

The gain in terms of likelihood of the Multiplicative Causality GARCH model compared

to the standard GARCH model is small (the log-likelihood is -27335 for the GARCH, -

27059 for the Multiplicative Causality GARCH), and the estimated variances are very close

in both models. For modeling univariate variances, standard GARCH models are more

parsimonious and more convenient to estimate (allowing for separate estimations of the

univariate variances). The Multiplicative Causality GARCH however identifies potential

interactions in variances and allows separating interdependence from the pure contagion

phenomenon as described in Forbes and Rigobon (2002) and Billio and Caporin (2010).

5.4 Energy Market Integration

After removing heteroskedasticity and causality from returns, we concentrate on the in-

tegration of energy markets due to the presence of common factors. Contagion or mar-
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ket integration refers to an increase of commonality and is measured by the percentage

of variance of estimated standardized residuals ut explained by the energy market factor

(λEnMt/
�n

j=1 λjt).8 The eigenvalue ratio (also used in Billio et al. (2012); Kritzman et al.

(2011)) can be interpreted as an aggregate measure of correlations between energy returns.

The non-energy market factor yMt, approximated by the standardized DAX industrial

return, has a constant eigenvalue ratio (7%) due to the restriction on its eigenvector. From

a restricted PCA on the sample correlation matrix of standardized residuals ut, four energy

factors have unconditional eigenvalue ratios larger than 7%; the energy market factor (47.3%)

positively correlated to all energy commodities, the second energy factor (12.6%) opposing

coal to emission rights, the third energy factor (10.9%) opposing natural gas to emission

rights, and the fourth energy factor (7.8%) highly correlated to electricity futures.

Figure 1 presents the dynamic ratios of the first four energy factors obtained from a

restricted PCA on DCC correlations as described in Subsection 4.2. All dynamic ratios tend

to fluctuate around their unconditional levels and the ratio of the energy market factor is

the most volatile, with values between 40% and 54%. The sign of dynamic eigenvectors is

stabilized using a sign function9 and the resulting dynamic conditional eigenvector elements

also fluctuate around their unconditional levels.

From Figure 1, we identify several events of market integration due to increasing correla-

tions. The first event is consequent to the energy price bubble of 2007-2008. The 2007-2008

energy shock is attributed in Hamilton (2009) to an extremely low elasticity and a strong

growth of the energy demand confronting a stagnating oil production. Market integration

increased further when the energy bubble burst after the highest crude oil price of all times
8Next to the aggregate measure of market integration, a dynamic measure of systematic risk associated

to the energy market is given by the correlation of the standardized residuals uit with the energy market
factor

√
λEnMtai,EnMt.

9The eigenvector element aijt is multiplied for all i by -1 when the sign of ai�,jt is different from the sign
of ai�,jt−1 and i� is the asset return that has the highest unconditional correlation with component j. The
sign identification is actually not a problem for j = 1, 2 as the first eigenvector is a restricted constant vector
and the sign of the elements of the second eigenvector does not change over time for our set of variables.
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was reached on July 3, 2008. A peak of market integration appears in October 2008 when

the trend of all energy prices reverted due to the adverse economic news of fall 2008 and the

shift in the energy demand elasticity (Hamilton (2009)).
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Figure 1: Percentage of variance (eigenvalue ratio) explained by energy factors:

λjt/
�n

j=1 λjt for j = 2, 3, 4, 5.

Winter 2009 was characterized by an extended period of cold weather, the spreading out

of the effects of the financial crisis to the real economy and a disruption in natural gas supply

from Russia (Kovacevic (2009)). The disruption arose from a commercial dispute between

Russia and Ukraine. As a result, from January 6, 2009, all natural gas supplies from Russia

flowing via Ukraine were cut off. Countries in Central and South Eastern Europe were the

most affected. There was no substantial price increase on German natural gas markets but

the volatility of prices increased as reserves were depleting at alarming speeds.10

Market integration also increased in April 2010 and coincides with an increase in prices
10Quarterly Report on European Gas Markets, QREGaM, Volume 2, Issue 1, January 2009 – March 2009.
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and volatilities of all EEX futures. Market integration increased further at the end of April

following the explosion of BP’s offshore oil-drilling platform, Deepwater Horizon, in the Gulf

of Mexico on April 20, 2010. This event mostly affected natural gas futures; BP’s oil spill

indicated the possibility of tighter European regulation of shale gas drilling projects leading

to project delays and the consequent weakening of the natural gas industry.11 Gaspool

returns surged on April 26, corresponding to the first trading day after April 23 where the

complete information about BP’s oil leak had been transmitted to energy markets (Jin et al.

(2012)).

The last event of the sample happens in mid-March 2011 after the Japanese tsunami

and the nuclear disaster of Fukushima on March 12. On March 14, German Chancellor A.

Merkel announced a three-month moratorium on the extension of the lifetimes of 17 German

nuclear power plants. The next day, month and quarter Phelix futures returns reached their

maximum and most extreme values of 16% and 15% respectively.

5.5 The conditional MES of EEX futures

We turn to the estimation of the conditional MES of EEX futures. For its estimation, the

conditional MES is decomposed in mean, variance and tail expectation components. The

estimated conditional means µit and conditional variances σ
2
it incorporate the causal rela-

tionships identified in Subsections 5.2 and 5.3. Tail expectations of eq. (14) include the

first five principal components (s = 5) so that 86% of the unconditional variance of ut is

explained by common risk factors. The tail expectations are estimated with the nonpara-

metric estimator of eq. (15) where the bandwidth is set to correspond to a six-month time

window (h = 0.132).

In-sample fit of the conditional MES is measured with the root mean square error (RMSE)

on the subsample of observations satisfying the condition yEnMt > C and yMt < D.12 There
11BP’s Gulf of Mexico oil spill to affect EU shale gas projects, Energy Risk, May 2010.
12For ease of notation, C (resp. D) replaces C̃ (resp. D̃) of Section 4.
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are 19 observations satisfying the systemic condition where C is the sample VaR at 95%

of the energy market factor (C = 4.169) and D is the sample median of the non-energy

factor (D = 0.042). The cross-sectional average RMSE for the 14 variables is 1.656 and

only increases to 1.669 when the idiosyncratic component is ignored in (14). The conditional

MES is therefore estimated assuming no idiosyncratic terms. Table 2 shows relatively low

average RMSE for different values of C and D.

Quantiles C(.5) D(.75) C(.5) D(.5) C(.75) D(.5) C(.95) D(.75) C(.95) D(.5)

# obs. 348 219 98 31 19

Average RMSE (%) 1.458 1.396 1.471 1.627 1.669

Table 2: In-sample fit of the conditional MES. Average RMSE (in percentage) =

1
n

�n
i=1

�
1
T

�T
t=1 (MESit(C, D)− [rit ∗ I(yEnMt > C, yMt < D)])2, where T = 988, n = 14. Quan-

tiles: C(α) (resp. D(α)) is the (1-α) quantile of the sample distribution of the energy market factor

(resp. non-energy factor). # obs. =
�T

t=1 I(yEnMt > C, yMt < D).

The cross-sectional average of the conditional MES of electricity, natural gas and coal

futures is shown in Figure 2 (left part). The MES increases for all EEX futures after the

financial crisis due to high volatility of energy markets when oil prices started to plummet.

Most futures reach record MES levels in winter 2008-2009 when returns became highly

positive due to the combination of several adverse events (economic downturn, unusual cold

winter, and gas supply disruptions in Europe). The release of the information about BP’s

oil leak in April 2010 had an impact on the MES of all futures and this impact seems to

be slightly more important for natural gas futures. The German political reaction following

Fukushima events had a major impact on short-term electricity futures. Not shown here,

the conditional MES is also larger for short-term futures because of their high volatility and

high sensitivity to extreme market events.
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5.6 Measuring systemic risk of the EEX market

In a final step, the estimated conditional MES is used to derive energy systemic risk measures

associated to the EEX market. EnSysRISK represents the total cost in million Euros of each

energy commodity to the German non-energy sector during a potential energy crisis. The

EnSysRISK measure defined in (2) is a conditional measure and evolves dynamically based

on past information about quantities and prices.

The quantity exposure is approximated by the final consumption due to the lack of reliable

data on energy stocks. The assumption of the absence of stocks available to the non-energy

sector will therefore produce conservative estimates for storable energy commodities. The

expected final consumption is the daily average final consumption of the last month and

it is assumed that the energy products presented in Table 1 are the only energy products

available to the non-energy sector.13

The total EnSysRISK of EEX futures on electricity, natural gas and coal are illustrated

in Figure 2 (right part). The systemic risk of electricity futures is higher due to their

higher prices per MWh compared to other energy futures. Coal has the lowest systemic risk

according to this measure as final consumption and prices are lower. All energy products seem

to be characterized by an increasing trend of systemic risk as energy prices are increasing.

The systemic risk of natural gas has a seasonal pattern where systemic risk increases during

winter, as natural gas is an important heating fuel in Germany. The systemic risk of natural

gas is high in winter 2009 with the disruption in European gas supply, but is even higher

in winter 2011. There is a peak in the systemic risk of electricity in March 2011 but the

measure reverts to its pre-Fukushima level in May 2011. The increase of systemic risk after

the Fukushima accident is also present in all other energy commodities.

Next to EnSysRISK, we estimate the ∆MES of the non-energy factor defined in (4).
13Monthly energy consumption data are downloaded from Eurostat (natural gas, coal, crude oil) and

Entso-e (electricity), and converted in the adequate quantity units (corresponding to the price definitions)
using the conversion factors of the BP Statistical Review (2011).
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This measure is the difference in non-energy returns between energy crisis times and normal

times and represents the net impact of energy crises on the economy. As the non-energy

factor is restricted to the DAX industrial returns, a negative ∆MES is associated to a

decline in industrial productivity. The ∆MES of the DAX industrial index is illustrated in

Figure 3. The ∆MES is negative as expected but is relatively small, suggesting that energy

market events identified earlier had little impact on the productivity of the companies in the

DAX industrial index.

2009 2010 2011

2.5

5.0

7.5 MES Electricity (%) 

2009 2010 2011

75

100

125

150 EnSysRISK Electricity (EUR million) 

2009 2010 2011

2.5

5.0

MES Natural Gas (%) 

2009 2010 2011

20

40

60

EnSysRISK Natural Gas (EUR million) 

2009 2010 2011

2.5

5.0

7.5

MES Coal (%) 

2009 2010 2011

2

4

6 EnSysRISK Coal (EUR million) 

Figure 2: The average conditional MES in percentage (left) and the total EnSysRISK in million

Euros (right) of EEX futures on electricity, natural gas and coal.

Extreme energy returns seem to be more harmful when the economy is weak, i.e. during

the toughest period of the financial crisis between September 2008 and January 2009. An

abrupt change of ∆MES also appears in March 2008 when adverse news on financial markets

(Federal Reserve emergency loan, Bear Stearns sale) combined with soaring crude oil prices

indicated the worsening of the credit crisis and the possibility of an economic recession.
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∆MES has a correlation of -0.58 with the monthly crude oil final consumption in Germany,

meaning that the negative impact of an energy crisis increases with oil dependence. The

correlation with the energy market variance (λEnMt) is less important (-0.34) but also indicate

a larger negative impact when energy markets are more volatile.
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Figure 3: MES and ∆MES of the DAX industrial index.

6 Conclusion

The existence of systemic risk in energy markets may be subject to discussions and different

understandings. In this paper, we discuss, define and measure the systemic risk associated

to an energy crisis. The energy systemic risk measure (EnSysRISK) represents the total cost

of an energy product to the non-energy sector during an energy crisis. It is complemented

by a measure of the net impact (∆MES) of an energy crisis on the rest of the economy.

EnSysRISK and ∆MES are derived from the Marginal Expected Shortfall (MES) condi-

tional on an energy crisis. The energy crisis is defined by an extreme positive energy market

shock that is unconnected to business cycles; we are therefore measuring the upper-tail de-

pendence between the asset and the energy market factor when the rest of the economy is
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slowing down.

The MES is decomposed in mean, variance and tail expectation components. Causal

relationships in the conditional means and variances capture the interdependence between

energy returns from market fundamentals and spillover effects present in all states of the

world. Contrastingly, contagion (or market integration) refers to an increase in correlations

due to the presence of common factors. Common latent factors in the energy market are

extracted from time-varying correlation matrices estimated with the DCC model of Engle

(2002). Tail expectations, conditional on an energy crisis, have a dynamic exposure to the

common energy factors with this model.

The methodology is applied to the European Energy Exchange (EEX) where several

energy market events are shown to contribute to market integration (2007-2008 oil shock,

Russia-Ukraine gas dispute, BP’s oil leak, Fukushima power plant outage). We derive the

EnSysRISK of EEX futures from the conditional MES and final consumption data, and find

that energy crises would impose increasing costs to the economy. However, the �MES of

the DAX industrial index shows little impact of energy market events on industrial returns,

suggesting a rather small decline in industrial productivity due to the energy shocks of the

sample.

This analysis of systemic risk in the energy market is a first attempt to understand

how systemic risk may be present in such markets. Further research opportunities are left

open. Forecasting the MES is probably the most important. One-day ahead forecasts are

straightforward to obtain from this methodology. Long-run forecasts are also possible to

obtain from a simulation procedure as described in Brownlees and Engle (2011). The long-

term of the energy sector is however subject to technology and regulatory changes that

are difficult to incorporate into a forecasting exercise. Other dimensions for contagion in

energy markets are also to explore; the most important one being the horizontal (regional)

integration of energy markets.
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Appendix

Table 3: Sample correlation matrix of returns. Sample
period: 07.03.2007 - 06.01.2011 (989 observations)

MPhelix 1

QPhelix 0.79 1

YPhelix 0.53 0.79 1

MGaspool 0.37 0.40 0.37 1

QGaspool 0.39 0.47 0.48 0.81 1

YGaspool 0.36 0.53 0.63 0.63 0.78 1

MARA 0.31 0.48 0.63 0.31 0.37 0.47 1

QARA 0.33 0.52 0.66 0.33 0.40 0.51 0.94 1

YARA 0.31 0.51 0.67 0.32 0.40 0.54 0.88 0.93 1

YEUA 0.27 0.42 0.57 0.23 0.30 0.37 0.27 0.29 0.30 1

EUA spot 0.26 0.39 0.52 0.20 0.28 0.34 0.25 0.27 0.28 0.93 1

Brent 0.12 0.24 0.42 0.14 0.21 0.38 0.33 0.37 0.40 0.30 0.30 1

Coal spot 0.30 0.48 0.61 0.30 0.40 0.50 0.83 0.88 0.85 0.31 0.32 0.44 1

DAX industrial 0.07 0.14 0.28 0.09 0.13 0.19 0.23 0.24 0.23 0.28 0.28 0.36 0.28 1

Table 4: Estimated cointegration vectors (η). Sample
period: 07.03.2007 - 06.01.2011 (989 observations)

η1 η2 η3 η4 η5 η6 η7 η8 η9

MPhelix 1

QPhelix 1

YPhelix 6.640 5.097 2.979 2.503 -0.342 1.734 5.358

MGaspool 1

QGaspool 1

YGaspool 4.588 3.493 -1.799

MARA 1

QARA 1

YARA -12.668 -4.583 -6.121 -6.681 -6.818 -5.380 0.546 -5.049

YEUA -2.091 -2.682 -2.057 -0.292 -0.426 -0.976 -2.106

EUA spot 1

Brent 6.824 2.997 3.945 4.911 3.620 -0.513 3.551

Coal spot 1

DAX industrial 1
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Table 5: Parameter estimates of the augmented Vector
Error Correction Model model (eq. (6)). Sample period:
07.04.2007 - 06.01.2011 (988 observations)

Coefficient HACSE t-value

MPhelix Cst 12.694 4.669 2.72

Wednesday (ϕ) 0.235 0.087 2.71

QPhelixt−1 (δ1) 0.125 0.042 2.97

MGaspoolt−1 (δ1) 0.084 0.020 4.19

η�2yt−1 (π) -0.363 0.142 -2.55

η�9yt−1 (π) -0.937 0.309 -3.04

QPhelix Cst 7.485 2.956 2.53

QPhelixt−1 (δ1) 0.096 0.029 3.29

QGaspoolt−1 (δ1) 0.032 0.011 2.79

Coal spott−1 (δ1) 0.053 0.015 3.46

η�2yt−1 (π) -0.441 0.096 -4.58

η�9yt−1 (π) -0.688 0.192 -3.59

YPhelix Cst 10.802 2.622 4.12

Coal spott−1 (δ1) 0.061 0.015 4.16

EUA spott−1 (δ1) 0.048 0.009 5.27

η�2yt−1 (π) -0.304 0.078 -3.88

η�9yt−1 (π) -0.789 0.167 -4.72

MGaspool Cst 14.673 3.993 3.67

QGaspoolt−1 (δ1) 0.166 0.029 5.83

MA(YARA returns, 5) -0.278 0.061 -4.53

η�1yt−1 (π) 0.403 0.138 2.92

η�3yt−1 (π) -1.438 0.379 -3.79

QGaspool Cst -3.325 3.393 -0.98

MGaspoolt−1 (δ1) 0.088 0.015 6.05

QARAt−3 (δ3) -0.063 0.016 -3.92

Brentt−5 (δ5) -0.053 0.017 -3.19

η�1yt−1 (π) 0.674 0.148 4.56

η�3yt−1 (π) -0.879 0.215 -4.09

η�4yt−1 (π) -0.984 0.296 -3.33

η�9yt−1 (π) 1.162 0.268 4.34

YGaspool Cst 0.994 0.348 2.86

YPhelixt−1 (δ1) 0.080 0.033 2.42

Coal spott−1 (δ1) 0.048 0.022 2.22

Brentt−1 (δ1) 0.043 0.014 3.01

η�4yt−1 (π) -0.887 0.163 -5.43

η�8yt−1 (π) 0.683 0.128 5.33

MARA Cst 10.084 2.196 4.59
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Coefficient HACSE t-value

MARA YARAt−1 (δ1) -0.165 0.052 -3.17

Coal spott−1 (δ1) 0.378 0.058 6.52

η�3yt−1 (π) -0.332 0.095 -3.51

η�7yt−1 (π) -2.871 0.766 -3.75

η�9yt−1 (π) -0.269 0.092 -2.94

QARA Cst 1.250 0.469 2.67

YARAt−1 (δ1) -0.189 0.043 -4.41

Coal spott−1 (δ1) 0.393 0.050 7.87

Brentt−1 (δ1) -0.026 0.008 -3.42

η�5yt−1 (π) 5.729 0.884 6.45

η�6yt−1 (π) -7.674 1.203 -6.38

YARA Cst -0.458 0.340 -1.35

YARAt−1 (δ1) -0.132 0.050 -2.63

Coal spott−1 (δ1) 0.269 0.052 5.21

η�4yt−1 (π) -0.429 0.104 -4.11

η�8yt−1 (π) 0.539 0.117 4.60

YEUA Cst -8.357 2.541 -3.29

Brentt−1 (δ1) -0.136 0.031 -4.34

EUA spott−1 (δ1) 0.622 0.041 15.1

YEUAt−1 (δ1) -0.449 0.054 -8.32

η�7yt−1 (π) 5.193 1.605 3.24

η�8yt−1 (π) 0.752 0.225 3.34

EUA spot Cst -0.002 0.068 -0.032

YEUAt−1 (δ1) 0.144 0.0410 3.57

Brentt−1 (δ1) -0.132 0.031 -4.23

YEUAt−2 (δ2) 0.388 0.045 8.59

YEUAt−3 (δ3) 0.207 0.038 5.44

EUA spott−2 (δ2) -0.397 0.049 -8.18

EUA spott−3 (δ3) -0.208 0.037 -5.68

Brent Cst 6.124 1.610 3.80

η�3yt−1 (π) -0.786 0.206 -3.82

Coal spot Cst 20.909 6.072 3.44

Coal spott−1 (δ1) -0.124 0.043 -2.89

Coal spott−2 (δ2) -0.193 0.034 -5.65

Brentt−1 (δ1) -0.054 0.013 -4.08

QARAt−1 (δ1) 0.321 0.036 9.01

QARAt−2 (δ2) 0.181 0.032 5.68

Electricity daily demandt−1 (θ1) -1.224 0.402 -3.04

η�5yt−1 (π) 10.764 1.899 5.67

η�6yt−1 (π) -9.155 1.724 -5.31

η�8yt−1 (π) -5.329 1.365 -3.90
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Coefficient HACSE t-value

DAX industrial Cst 48.802 8.972 5.44

QPhelixt−1 (δ1) -0.140 0.051 -2.75

η�1yt−1 (π) -2.581 0.559 -4.62

η�2yt−1 (π) 1.632 0.486 3.36

η�5yt−1 (π) 12.2098 3.048 4.01

η�8yt−1 (π) -11.238 3.590 -3.13

η�9yt−1 (π) -4.065 0.703 -5.78

Table 6: Parameter estimates of the multiplicative
Causality GARCH model (eq. (7)). Sample period:
07.04.2007 - 06.01.2011 (988 observations)

Coefficient Std. error t-value

MPhelix Cst (c) 2.935 1.435 2.046

ARCH (α) 0.175 0.033 5.256

GARCH (β) 0.845 0.028 30.341

GJR (γ) -0.073 0.034 -2.159

Monday (κ) 0.815 0.102 8.004

YEUA (α) 0.283 0.059 4.774

YPhelix (ϑ) 0.156 0.044 3.564

QPhelix Cst (c) 1.208 0.375 3.224

ARCH (α) 0.122 0.023 5.428

GARCH (β) 0.856 0.024 36.061

Monday (κ) 0.711 0.103 6.922

YEUA (α) 0.270 0.066 4.062

MPhelix (α) 0.152 0.070 2.178

YPhelix (ϑ) 0.156 0.045 3.490

YPhelix Cst (c) 1.175 0.336 3.501

ARCH (α) 0.121 0.023 5.324

GARCH (β) 0.859 0.025 34.238

Monday (κ) 0.418 0.101 4.148

YEUA (ϑ) 0.209 0.041 5.150

MGaspool Cst (c) 10.054 4.965 2.025

ARCH (α) 0.104 0.015 6.992

GARCH (β) 0.891 0.016 57.003

Monday (κ) 0.658 0.104 6.333

April (κ) 0.589 0.225 2.617

MARA (ϑ) 0.169 0.045 3.715

YEUA (α) 0.169 0.072 2.339
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Coefficient Std. error t-value

QGaspool Cst (c) 5.177 0.980 5.283

ARCH (α) 0.139 0.031 4.507

GARCH (β) 0.803 0.039 20.412

Monday (κ) 0.441 0.105 4.205

May (κ) -0.594 0.230 -2.577

Brent (ϑ) 0.123 0.044 2.814

YGaspool Cst (c) 2.686 0.380 7.066

ARCH (α) 0.063 0.015 4.077

GARCH (β) 0.907 0.021 42.397

Monday (κ) 0.385 0.108 3.553

Brent (ϑ) 0.152 0.042 3.588

MARA Cst (c) 3.834 0.954 4.019

ARCH (α) 0.111 0.022 5.152

GARCH (β) 0.865 0.026 33.205

Thursday (κ) -0.386 0.105 -3.655

January (κ) 0.888 0.233 3.813

August (κ) -0.882 0.234 -3.775

Coal spot (ϑ) 0.140 0.044 3.215

QARA Cst (c) 3.379 0.750 4.508

ARCH (α) 0.097 0.022 4.453

GARCH (β) 0.880 0.027 32.585

January (κ) 0.794 0.232 3.426

August (κ) -0.754 0.225 -3.359

MARA (ϑ) 0.146 0.043 3.426

YARA Cst (c) 2.148 0.486 4.424

ARCH (α) 0.088 0.020 4.415

GARCH (β) 0.893 0.025 36.374

MPhelix (α) 0.159 0.065 2.439

YEUA Cst (c) 3.845 0.775 4.960

ARCH (α) 0.031 0.017 1.832

GARCH (β) 0.898 0.023 38.240

GJR (γ) 0.093 0.027 3.378

Monday (κ) 0.214 0.102 2.107

YARA (ϑ) 0.151 0.042 3.582

EUA spot Cst (c) 4.509 0.857 5.260

ARCH (α) 0.037 0.018 2.045

GARCH (β) 0.901 0.026 35.162

GJR (γ) 0.072 0.026 2.814

Brent Cst (c) 3.988 0.762 5.236

ARCH (α) 0.042 0.009 4.782

GARCH (β) 0.947 0.011 85.526
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Coefficient Std. error t-value

Coal spot Cst (c) 3.045 0.776 3.926

ARCH (α) 0.114 0.021 5.374

GARCH (β) 0.862 0.025 34.357

January (κ) 0.767 0.240 3.195

DAX industrial Cst (c) 4.912 1.558 3.152
ARCH (α) 0.022 0.016 1.369

GARCH (β) 0.909 0.017 52.986
GJR (γ) 0.109 0.035 3.139

YGaspool (ϑ) 0.134 0.047 2.869
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