
Cost-aware service placement and scheduling in the Edge-Cloud

Continuum

SAMUEL RAC and MATS BRORSSON, University of Luxembourg, Luxembourg

The edge to data center computing continuum is the aggregation of computing resources located anywhere between the

network edge (e.g., close to 5G antennas), and servers in traditional data centers. Kubernetes is the de facto standard for the

orchestration of services in data center environments, where it is very eicient. It, however, fails to give the same performance

when including edge resources. At the edge, resources are more limited, and networking conditions are changing over time.

In this paper, we present a methodology that lowers the costs of running applications in the edge-to-cloud computing

continuum. This methodology can adapt to changing environments, e.g., moving end-users. We are also monitoring some

Key Performance Indicators of the applications to ensure that cost optimizations do not negatively impact their Quality

of Service. In addition, to ensure that performances are optimal even when users are moving, we introduce a background

process that periodically checks if a better location is available for the service and, if so, moves the service. To demonstrate

the performance of our scheduling approach, we evaluate it using a vehicle cooperative perception use case, a representative

5G application. With this use case, we can demonstrate that our scheduling approach can robustly lower the cost in diferent

scenarios, while other approaches that are already available fail in either being adaptive to changing environments or will

have poor cost-efectiveness in some scenarios.

CCS Concepts: · Computer systems organization→ Cloud computing; · Theory of computation→ Scheduling

algorithms; · General and reference→ Performance; · Computing methodologies→ Model development and analysis.

Additional Key Words and Phrases: Cloud computing, Edge computing, Scheduling, Container Orchestration, Resource

allocation, 5G, Kubernetes

1 INTRODUCTION

Edge computing is a paradigm that brings computing capabilities closer to the sources of data. Edge computing

helps to reduce network delays and bandwidth usage, and to improve security and privacy by keeping the data

local. Therefore, to use edge resources, application developers need tools to deploy software efortlessly at the

edge. The current practice is mostly to statically predetermine which services in a distributed application should

execute at the edge and which elsewhere.

The data center to the edge computing continuum has recently become a concept meaning the aggregation of

resources located in both traditional data centers, at the edge of the network, and at any node in between. A

service may be deployed to any node in this computing continuum. However, the geographical location of that

node afects the latency with which the service communicates with end-users and/or with other services. Thus,

an application scheduler for the edge-to-cloud continuum should consider more parameters than what is needed

Extension of Conference Paper : This article extends our IEEE IC2E 2023 [21] conference paper. This journal version presents a new scheduling

approach based on communication patterns. This new approach improves the results of the approach initially presented. In addition to this

new approach, we propose the following contributions as new content: a simulation to motivate our study better and additional experiments

and implementation details.

Authors’ address: Samuel Rac, samuel.rac@uni.lu; Mats Brorsson, mats.brorsson@uni.lu, University of Luxembourg, Luxembourg.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 1544-3566/2024/1-ART

https://doi.org/10.1145/3640823

ACM Trans. Arch. Code Optim.

HTTPS://ORCID.ORG/0000-0002-8357-0070
HTTPS://ORCID.ORG/0000-0002-9637-2065
https://orcid.org/0000-0002-8357-0070
https://orcid.org/0000-0002-9637-2065
https://doi.org/10.1145/3640823
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3640823&domain=pdf&date_stamp=2024-01-16


2 • Rac and Brorsson

for a traditional data center. In a data center, the network topology is horizontal, every node has direct access to

the other nodes with high bandwidth and low latency. Networking conditions with edge nodes are diferent. The

latencies and the available bandwidth vary from node to node. Furthermore, network conditions can evolve over

time; the network is more likely to be congested due to more limited bandwidth, or the latencies can change if

an end-user is moving or the communication pattern changes. Edge nodes should not be chosen only for their

processing capabilities but also for their geographical location; the location of a node modiies the latency with

end users.

Deploying applications in the cloud-to-edge computing continuum should be easy for developers [20]. We

believe that developers should focus on the business logic, and deine requirements (e.g., CPU, memory, latencies,

and other Service Level Objectives) but not need to think about the physical locations of their services. Furthermore,

manual and static placement of services makes it more diicult to scale up the application. Deploying at the edge

should be seamless, as easy as it is when deploying applications in traditional data centers.

Edge computing can help reduce the costs of deploying an application. Cloud providers ofer their resources as

Everything as a Service (XaaS) [3]. Therefore, the customers pay only for the resources they use. E.g. customers

pay an hourly rate for the server they use. In addition, cloud providers also charge for the traic that goes outside

of their data centers. Deploying network-intensive applications at the edge may save the outgoing network costs;

data stays local and traic between the edge and the data center is not charged.

We propose two schedulers to lower the costs of deploying distributed applications in the cloud-to-edge

continuum.We consider applications that consist of several services that need to interoperate. To make application

deployment easy and as close as possible to industrial standards, we implement our methodology as a Kubernetes

scheduler plugin [9] based on network requirements and costs. Any containerized application can be deployed

and make use of our schedulers. To reduce the costs of running applications, we want to leverage local data

processing to save bandwidth costs.

When end-users (e.g. a phone, a vehicle, or a camera connected to an application hosted in the computing

continuum) are moving, the delay to connect or communicate with a service of the application may become

longer. This means that the optimal location of a service may vary over time. We need to be able to move services

automatically when users are moving, otherwise the Quality of Service (QoS) will deteriorate. Therefore, we also

propose a rescheduler to monitor the application and trigger service migration when needed. Our rescheduler is a

background process that periodically checks costs and KPIs to identify better nodes on which a service can be

deployed. If the rescheduler detects an improvement, it will automatically migrate the service pod. Also, when a

cheaper resource becomes available, the rescheduler can detect it and move the associated service to reduce the

costs (provided the QoS is not negatively afected).

We make the following key contributions in this work:

(1) Design and implementation of two cost-aware Kubernetes scheduling plugins. One based on latency

between a service and an end-user (or another service), and the second based on communication patterns.

(2) Design and implementation of a network-aware rescheduler to keep application placement decisions

optimal when end users are moving.

(3) A performance evaluation of our scheduling plugins and the rescheduler methodology using a realistic 5G

use-case of cooperative perception for autonomous vehicles.

From our experiments, we have veriied that our custom schedulers can achieve in most cases about 10% to

25% lower costs than the default Kubernetes scheduler. It is worth to note that this is not a simulation study. We

have made real scheduler plugins demonstrated in a real Kubernetes cluster.

We use the Kubernetes terminology here as they are strictly not schedulers but rather placement algorithms.

A pod is the smallest schedulable unit in Kubernetes, containing at least one container

ACM Trans. Arch. Code Optim.



Cost-aware service placement and scheduling in the Edge-Cloud Continuum • 3

Fig. 1. The Edge-to-Cloud Computing Continuum - Computing resources are in blue and green.

The rest of the article is organized as follows. Section 2 presents the relevant background and outlines our

proposal from a simulation study. Then, we present the relevant related work in section 3. Our scheduling

methodology is exposed in section 4, and in section 5 we present our evaluation methodology which is based on a

vehicular cooperative perception workload running on a Kubernetes cluster. Finally, we present our conclusions

and future work directions in section 6.

2 BACKGROUND AND MOTIVATION

2.1 Background

We deine the edge-to-cloud computing continuum as the aggregation of servers located at the edge of the network

and those in traditional data centers (cloud). The edge nodes are servers located at the edge of the network, outside

of the data centers, e.g., near 5G base stations. Fig. 1 represents such an edge-to-cloud-computing continuum.

The blue servers are the cloud nodes, and the green ones are the edge nodes.

End-users (e.g., vehicles, phones, cameras, or smart sensors) are connected to services hosted in the computing

continuum. The end-users may be connected directly to cloud centers or to an edge node. Some end-users can be

mobile, and in this case, their closest node changes over time.

We are considering distributed applications, made of services, to be deployed on this cloud-to-edge computing

continuum. A service can run on an edge node as well as on a cloud node. A scheduler maps the services to the

nodes. The rescheduler is a background process that can update a service allocation. It can move a service to

another node in the cluster.

There are two kinds of costs in our edge to data center computing continuum: instance cost (price paid by

hours and number of CPU used), and communication costs (per GB). It is possible to deine additional costs like

storage (per GB), but these are outside of the scope of this study.

Communication costs represent the price to pay to transfer data from the edge to a data center. We are not

counting the transfer price between an edge node and its end-user (e.g., through 5G). This parameter can be

optimized by the choice of an internet provider or a telco operator and is outside of the scope of this study. Also, if

two data-center nodes are part of one data-center, we are not counting communication costs. But, communication

costs apply for transfers between two edge nodes.

ACM Trans. Arch. Code Optim.



4 • Rac and Brorsson

Fig. 2. Results of the simulation - Costs are detailed in two parts: computing and networking

Diferent kinds of nodes could be added to this computing continuum. The scheduling decisions are based on

node characteristics such as available resources, bandwidth, latency, or costs. We use static node types like edge

and data center nodes to understand the computing continuum behaviors better.

2.2 Motivation

Our service initial placement method and our rescheduler can help reduce the total costs of running an application

in the edge to data center computing continuum. We can illustrate how to perform cost optimization with the

following example. We have a car connected to a video processing service that detects other vehicles. There are

three main conigurations for placing this service: on a data center node (paying the data center instance price

and the communication), on the edge node close to the car (paying only the instance price), or on a diferent edge

node (paying the edge node instance price and the communication). Video processing is a bandwidth-intensive

application, it is cheaper to choose the edge node where there are no communication costs (because the data

stays local). We need the service initial placement method to ind a tradeof between paying instance costs

and communication costs. However, when the car is moving, the previously selected edge node is not optimal

anymore; it stops processing local data. We need a background process (rescheduler) to watch the cluster state

and migrate the services when necessary; e.g., when a car is moving, we need to move the service to the edge

node close to the car.

In order to understand the room for improvement of distributed applications in a cloud-to-edge computing con-

tinuum, we designed a simulation experiment using our scheduling methodology. This simulation demonstrates

the beneits of our scheduling methodology on a larger cluster (around 50 nodes).

The simulator is a C++ program that can generate random graphs with data center and edge nodes. We

use a synthetic workload which is a simple application with an end-user client located at the edge (e.g., a car)

communicating with a server (e.g., a video processing service). The server service can be deployed anywhere in

the simulated edge-to-cloud computing continuum. The clients are randomly moving between diferent edge

nodes, and new clients are randomly arriving following a Poisson distribution.

We ran an experiment with graphs containing 20 data center nodes and 30 edge nodes on which we deployed

10 to 20 services. In this scenario, we are considering the edge nodes to be more expensive (i.e., higher price per

CPU and per hour) due to their limited resources. We are comparing three diferent approaches in this simulation:

i) a greedy approach (choosing the cheapest node at each time step), ii) a latency-based initial placement (LIP)

described in section 4.2 iii) the latency-based initial placement, and the rescheduler (LIP+RS) described in section

4.3. The LIP approach minimizes the latency between the client and the server.

Given that the simulation is a randomized process, we ran each experiment ten times and reported the average.

Fig. 2 presents the results showing the cost of running the workload for diferent approaches. The lower the cost,

the better. Using the latency-based initial placement without or with the rescheduler outperforms the greedy

strategy. Greedy is taking the best decision at each time step; however, this does not lead to a globally optimal

ACM Trans. Arch. Code Optim.



Cost-aware service placement and scheduling in the Edge-Cloud Continuum • 5

solution. Using our methodology, we can ind a better global solution. The rescheduler is choosing more expensive

nodes to save data transfer costs, this explains why it gets better results than the initial placement approach only.

This simulation shows that our methodology outperforms a greedy strategy on a large graph (50 nodes) with a

simple workload. It is possible to lower the costs of running applications by using servers at the edge to save

networking costs. This encouraged us to make a real implementation suitable for Kubernetes integration.

2.3 Proposed solution

We think that Kubernetes is one of the best candidates for orchestrating applications over the whole cloud-to-edge

computing continuum. Kubernetes is the de facto industrial standard for container orchestration. It is not only

limited to Docker containers [2], but it can manage any artifact following the Open Container Initiative (OCI)

speciication [5]. Using standard containers is important to ensure compatibility with most of the diferent

hardware (e.g., with diferent CPU architectures) we can ind in this computing continuum. Also, it is easier for

the industry to adopt this technology if they can continue using the same containers they already have.

However, Kubernetes is not yet ready to orchestrate resources over the whole cloud-to-edge continuum. The

default scheduling approach of Kubernetes is to spread the containers over the cloud, choosing the least allocated

server. This is good practice in a traditional data center as it avoids server overload. But, this is not applicable to

edge nodes. It is important to consider the geographical location of the servers in order to achieve low latency to

access the services. Therefore, it is not possible to place services in the whole computing continuum eiciently

without considering the networking resources.

We propose to use and extend Kubernetes to orchestrate applications deployed in the cloud-to-edge computing

continuum. With a network-aware scheduling approach, we think it is a good candidate for orchestrating

heterogeneous resources. Using the Kubernetes self-healing mechanism also helps improve the reliability of the

system. If an edge node fails or if it has networking issues, its pods can be redeployed on another available node.

In this heterogeneous Kubernetes cluster, we deine a cost policy based on two values: CPU and network usage.

Instance price is based on the time and the number of CPUs used. Networking costs are charged based on the

amount of data transferred. If data stays in the same geographical location, networking costs do not apply. They

only apply when data is transferred from one region to another, e.g., from one edge location to a central data

center. This cost policy is in line with what public cloud providers use.

We use the Kubernetes scheduler framework [9] to implement our scheduling methodology for the edge-to-

cloud computing continuum. The Kubernetes scheduling framework is easy to extend. Every scheduling stage is

deined as a plugin; we can write new plugins to replace the default ones.

There are four main scheduling stages in the kube-scheduler: ilter, score, normalize score, and reserve. The

scheduling pipeline irst selects an unallocated pod (i.e., a set of containers, the atomic schedulable unit in

Kubernetes) from the scheduling queue. Then, un-schedulable nodes (e.g., reserved nodes, control plane only, out

of resources, etc.) are iltered and removed from the possible nodes. After the iltering stage, the remaining nodes

are scored, and the scores are normalized to between 0 and 100. Normalization is necessary to get an average

score when using many scoring plugins. The node with the highest score is selected and reserved for the pod. If

two nodes get the same score, one of them is randomly selected.

In order to extend the Kubernetes scheduler for the edge-to-cloud computing continuum, we propose a twofold

solution: a service initial placement method and a rescheduler (RS). The service initial placement assigns a node

to every service. The rescheduler watches the existing services and migrates those that are not in an optimal

location. When the optimal solution changes over time, a rescheduling process is necessary to adapt the service

locations. E.g., when end-users are moving, the optimal solution changes over time.

We propose two methods for the service initial placement: One based on latency and the other based on

communication patterns.

ACM Trans. Arch. Code Optim.



6 • Rac and Brorsson

Fig. 3. Architecture overview of the system. Our scheduling components are running on control plane nodes. Applications

can run anywhere in the cloud-to-edge computing continuum.

The latency-based initial placement method assigns unscheduled services to nodes. To select which node will

host a service, we rank the nodes using both their costs and their latencies to other nodes. In the scope of this

study, the cost is the money paid to a cloud provider to run a service. Other quantities, such as energy (to power

the servers and the network equipment), can also be considered and minimized using this methodology, which

we will do in future work. Checking the delays with other nodes helps to reduce the end-to-end latency of an

application and ensure the quality of service.

The communication-based initial placement method also assigns unscheduled services to nodes. However, it

chooses to host services using a diferent approach. Instead of using latency, this scheduler uses the communication

patterns between services (inter-service traic) and their end-users. The scheduler uses the communication

patterns of previously deployed services to predict the behavior of the new services. It assumes that new services

with the same code will have similar behavior.

The rescheduler is a background process that re-evaluates the initial placement decision of the services and

moves the services to diferent nodes if it inds a better solution. The optimal solution changes over time, users

can be moving, or new resources may become available. Using the rescheduler ensures keeping the costs low by

taking new placement decisions; moving the services to a cheaper node if it is possible.

We include a monitoring system in our placement methodology to support the scheduler and the rescheduler.

The monitoring system collects metrics about the cluster state and the applications running in the cluster. Also,

it stores the metrics and serves them to the scheduling components. The monitoring system can serve raw data

or aggregated data, e.g., using basic statistical functions such as an average or a median. The implementation of

the monitoring system relies on open-source components. It is described in section 4.4.4.

Fig. 3 presents a high-level view of our system. We run a custom scheduler to deploy applications in the

edge to cloud computing continuum. There are two versions of this custom scheduler: one implementing the

latency-based approach and the other implementing the communication-based approach. We use the custom

scheduler to orchestrate workloads, but the default scheduler is still usable to deploy the control plane and

the monitoring functions. In the cluster, we reserve nodes for the control plane (in a traditional data center)

and nodes for deploying workloads (at the edge or in traditional data centers). The custom scheduler and the

rescheduler are running on the control plane nodes of the cluster. These nodes are located in a traditional data

center. Applications can run on nodes located either at the edge of the network or in traditional data centers.

ACM Trans. Arch. Code Optim.



Cost-aware service placement and scheduling in the Edge-Cloud Continuum • 7

3 RELATED WORK

In this section, we present some research related to the scheduling of services in the edge-to-cloud continuum.

In this study, we deine the scheduling of services as the mapping of a service to a server where it can run. We

organize the diferent scheduling methodologies into three categories: cost-aware, network-aware, and QoS-aware

scheduling.

Cost-aware scheduling. Lai et al. present a cost-aware scheduler in [11]. They use a heuristic approach (most

capacity irst) to maximize the number of allocated edge users while minimizing the number of necessary servers

at the edge. This work has no mechanism to move applications when end-users are moving. In addition, scheduling

on edge nodes is outside of the scope of this study.

The authors of articles: [12, 26] present approaches to reduce costs by improving the Kubernetes scheduler.

However, their main interest is in cloud computing and cannot be extended over the whole continuum without

additional work. Li et al. [12] present a meta-heuristic-based scheduler that minimizes the energy costs of CPU,

RAM, and network usage in addition to the networking costs of ofsite nodes. They also propose a rescheduler to

monitor changes in business requirements. This study only focuses on the cloud environment, where computing

resources and resources are mostly homogeneous (e.g., same kind of server hardware, same latency between

the nodes). Also, the scheduling decision does not consider any latency requirements. Zhong et al. [26] propose

a scheduling methodology that reduces the number of allocated Virtual Machines when using the Kubernetes

Autoscaler to lower the instance costs. To save costs, they propose to use a background process that checks if it is

possible to shut down a server and migrate its pods to another node. They try to maximize resource utilization

to save costs. This approach would have a limited impact on the scope of edge computing, node geographical

location is an important parameter to consider in order to lower latency or reduce backhaul networking costs. In

addition, this work does not consider the costs of the traic going outside of data centers. Outgoing traic is

expensive when a network-intensive application is not deployed in the same location as its end users.

Network-aware scheduling. Kaur et al. [7] present a scheduling algorithm that minimizes inter-service commu-

nication delays. It relies on two heuristic approaches: a greedy and a genetic algorithm. This study makes the

assumption that data traic between the services of the application is known. It is not the case in practice with

most applications. It would require additional work to specify or learn the data-traic pattern. This limitation

makes their approach diicult to use with real applications. Also, this study does not use any background process

to monitor the movements of the end-users at the edge. Marchese et al. have proposed using a rescheduling

mechanism [13, 14]. In [14], they present a network-aware scheduler plugin and a descheduler that checks if

a node with a better score can be found. The proposed scoring method is not efective for initial placement. It

relies on the input from previous data traic that is null at the initialization. It is worth mentioning that our

scheduling approach is not based on this work; we independently built similar experimental setups (based on

common open-source software).

In [13], the authors present a network-aware scheduler plugin to extend the InterPodAinity module from

their previous work. Their approach automatically updates the static Kubernetes manifest with real-time data

collected from the cluster. In addition, they are using a Kubernetes controller that updates the manifests and

triggers rolling updates if an improvement can be found. However, initial placement is not as good as the default

approach in some cases. They need a few iterations or a larger workload to be better than the default approach.

Wojciechowski et al. [24] present a data traic-aware scheduler that minimizes inter-node communications.

This study does not handle the case of moving user equipment. Also, it does not consider latencies between the

nodes.

ACM Trans. Arch. Code Optim.



8 • Rac and Brorsson

In [23], Toka presents a latency-aware scheduler that maximizes resource utilization at the edge. He also

introduces a rescheduler that can improve application placement over time. However, the inter-service data traic

is not considered in this work.

QoS-aware scheduling. Mattia and Beraldi [15] present a reinforcement learning based scheduling approach

that improves the stability of the frame rate of AR/VR applications. The experimental results are limited to a

simulation; applying this methodology on a real Kubernetes would require a large dataset for the training stage.

The Polaris scheduler is presented in [19]. It is an SLO-aware (Service Level Objective) scheduler that considers

many network metrics. The authors extend many Kubernetes scheduler plugins (pre-ilter, ilter, and score) to

consider the topology of the cluster, the dependencies of the services, and the SLOs. However, no rescheduling

mechanism is presented in this study. Also, the long computing time for placement is a problem in a dynamic

environment where application placement needs to be often reevaluated. In [16], Orive et al. present a scheduling

approach to minimize the application end-to-end (E2E) latency and maximize E2E reliability. They propose an

architecture to deine the application requirements. Their Kubernetes scheduler plugin uses these requirements

to score the nodes. Nautilus [6] is a run-time system that maps micro-services to nodes based on communication

overhead, resource utilization, and IO pressure.

Table 1 summarizes the diferent scheduling methodologies described in this section.

4 SCHEDULING METHODOLOGY

In this section, we are presenting an overview of the optimization problem we are solving. Then, we present the

algorithms for i) the scheduler scoring plugins, and ii) the rescheduler. Finally, we expose how we implement this

scheduling methodology in a Kubernetes cluster.

4.1 Optimization problem overview

This study presents a scheduling methodology that minimizes the cost of deploying applications in the cloud-to-

edge computing continuum. We are considering two diferent kinds of costs: i) computing costs and ii) networking

costs.

Computing cost is the price to pay to use a server from a cloud provider. It is usually charged by hour or month

and depends on the characteristics of the machine. In this study, we make the assumption that every node in the

computing continuum is using the same pricing policy: an hourly rate that depends only on the characteristics of

the instance. Note that we are not labeling the edge nodes as special nodes; all the nodes are the same for the

scheduler. Only the instance characteristics (e.g., processors, memory, geographical location) and its networking

capabilities (e.g., latencies with other machines, available bandwidth) matter for the scheduling decision.

Table 1. Related work summary

Approach Cost-aware Network-aware QoS-aware Rescheduling mechanism Using Kubernetes

Kubernetes [9] - - - - ✓

[11] ✓ - - - -

[12, 26] ✓ - - ✓ ✓

[7] - ✓ - - -

[13, 14, 23, 24] - ✓ - ✓ ✓

[15] - - ✓ - -

[6, 16, 19] - - ✓ - ✓

Our approach ✓ ✓ - ✓ ✓

ACM Trans. Arch. Code Optim.



Cost-aware service placement and scheduling in the Edge-Cloud Continuum • 9

Networking cost is the price to pay to send data over the network. This price depends on the quantity of data

sent and its destination. Data traic is not charged for machines in the same data center. However, if data goes

outside of the data center to the edge, then, traic is charged. Also, no additional network cost is charged if edge

data is processed locally. However, if data traic is sent to a data center, then network traic is charged.

Our optimization objective is to ind a tradeof between paying computing capabilities and networking costs.

Depending on the workload characteristic it can be cheaper to deploy the application in a data center or at the

edge. For instance, it is cheaper to deploy a network-intensive workload at the edge where data is produced

rather than in a data center since data stays local.

To ind an approximate solution to the problem deined above, we are using heuristic optimization as shown in

Fig. 4 which presents a high-level view of the scheduling worklow. The irst part details the initial placement

stage where the scheduler assigns an unallocated pod to a node. Then, the rescheduler periodically checks in the

background if a better node can be found for this pod.

4.2 Service initial placement

The objective of service initial placement is to associate the unallocated pods from the scheduling queue with a

node in the edge-to-cloud computing continuum. The irst step is to build a list of nodes where the pod can run.

We remove from that list the nodes that cannot host the pod (e.g., reserved for the control plane, not enough

resources). Then, the nodes are scored, and the best one is selected to host the pod.

We propose two Service Initial Placement algorithms that share the objective of minimizing the total costs. To

reach the objective, the methods are inding an initial location for deploying a service.

4.2.1 Latency-based Initial Placement. Algorithm 1 describes the node scoring method of the Latency-based

Initial Placement (LIP) approach. The LIP scheduler runs the corresponding scoring method for each schedulable

node. The scoring method sorts the nodes using the networking delays and their price (i.e., the hourly price paid

to use a server). We choose a node close to the connected services to improve the end-to-end latency and lower

the networking costs (saving bandwidth).

Nodes that are close to connected services get a higher score. To reduce the distance between a pod and the

connected services, we deined a list of these services for each pod: pod.dependencies. Then, we get a list of the

nodes where these services are deployed. We do not add the server to the list if the service is not deployed yet.

Fig. 4. Scheduling workflow: Initial Placement (yellow), Rescheduler (orange)

ACM Trans. Arch. Code Optim.



10 • Rac and Brorsson

Algorithm 1 Latency-based Initial Placement (LIP) Scheduler: Scoring

Require: � > 0, � > 0, Pod, Node

�� ← 0 ⊲ Node score

for service in Pod.dependencies do

� ← ���������� (����, �������)

if � < � then

�� ← �� + �

end if

end for

�� ← �� +
1

����.�����

return ��

Once the server list is built, we evaluate the latencies between these servers and the evaluated node. If the latency

is lower than � , we add � to the inal score (� is a latency distance in ms, and � is a score modiier.). The more

connected services in a radius of � , the higher the score.

To lower the deployment costs, we add the inverse of the node price to the inal score. The lower the node

price, the higher the score.

The values of � and � should be chosen regarding the cluster characteristics. � should be chosen relative to

the values of the latencies between the nodes. � should be chosen relative to the values of the inverse of the node

price.

In every case, this algorithm selects a node for the pod to deploy. If two nodes get the same score, one is

randomly selected by the scheduler.

4.2.2 Communication-based Initial Placement. This approach uses the knowledge from the communication

patterns of already deployed pods to get an accurate estimation of the networking costs. Using this information,

the Communication-based Initial Placement (CIP) scheduler can choose the cheapest node. I.e., with the lowest

sum of instance and networking costs.

The details about how to collect the communication patterns and how to implement them are detailed in

section 4.4.2. The main component of this implementation is the traic exporter. It provides the information

necessary for the networking cost estimation to the scheduler.

The traic exporter needs to access previous communication patterns to provide accurate estimations. The

irst service is placed using only the instance price. Then, the following ones can use the estimation of the traic

exporter.

4.2.3 Initial placement methods comparison. The CIP approach presents many beneits over the LIP approach.

CIP does not require a manual setting of its parameters, while we need to set LIP parameters: connected services,

� , and � , which are not always trivial to decide. Also, using an estimation of the networking costs (in the CIP

approach) leads to better performance.

However, the CIP approach needs to collect some data before it can be efective. The CIP scheduler starts

collecting data when the irst pod is deployed. In practice, this startup time is not an issue, according to experi-

mental results presented in section 5.3.2. Future work may however investigate a hybrid approach: using the LIP

scheduler while the CIP is collecting the initial data, and then using the CIP scheduler. The LIP scheduler could

be used to deploy the irst instance of each pod, and the CIP scheduler could be used to deploy the following

instances.

ACM Trans. Arch. Code Optim.



Cost-aware service placement and scheduling in the Edge-Cloud Continuum • 11

4.3 Service rescheduling

The rescheduler is a background process that periodically checks if a better node is available to host a pod. We

build the service rescheduler for two main reasons: i) the best location for a service varies over time (e.g., node

availability changes depending on the current load, end-users are moving), ii) we can use data collected when the

service is running to improve the scheduling decision. If the rescheduler inds a better node for a pod, it will

migrate the pod to the better node.

Algorithm 2 describes the rescheduling process. This function is called periodically. The algorithm iterates over

every workload pod in the cluster. The irst step of this algorithm is to estimate the current cost of the evaluated

pod. This evaluation includes the computing and networking costs. Then, all of the other schedulable nodes are

evaluated in the same way, we keep the node with the best score. If it is the same as the original one there is

nothing to do, if it is a diferent node, the rescheduler will migrate the pod toward this node.

Estimation of networking costs is key in this algorithm. Computing costs are easy to evaluate, they are static

and known. However, networking costs depend on each service behavior and are not known a priori. Using

the monitoring setup described in 4.4, we can consult how much data was sent to which destination. Using this

information, we can estimate future data usage and networking costs.

Algorithm 2 Rescheduler: Background routine

for pod in WorkloadPods do

����_���� ← ������× pod.node.Price

����_���� ← ���������������������(���.����)

��������� ← ����_���� + ����_����
�������� ← pod.node

for node in SchedulableNodes do

����_���� ← ������×node.Price

����_���� ← ���������������������(����)

��������� ← ����_���� + ����_����
if ��������� < ��������� then

��������� ← ���������
�������� ← node

end if

end for

if pod.node ≠ �������� then

pod.MigrateTo(�������� )

end if

end for

4.4 Implementation on Kubernetes

In this section, we describe how we implemented the above-described methodology to make it usable on a

Kubernetes cluster with any containerized workload.

We are using the default Kubernetes plugins for the Filter and Reserve Node phases. The default Filter plugin

removes nodes with a taint that the pod does not tolerate (e. g. the master mode has the taint "master" to

prevent workload pods from running with the control plane node) from the list of the schedulable nodes. It also

removes nodes with not enough resources to host the pod. The default Reserve Node phase updates ETCD [4],

ACM Trans. Arch. Code Optim.



12 • Rac and Brorsson

the Kubernetes internal database. Then, the selected node will start the pod deployment based on the information

in this database.

4.4.1 Latency-based initial placement. For the latency-based initial placement (LIP) we use the scheduler plugin

framework, [9], which we have extended with our scoring plugin for latency-based initial placement. We collect

the necessary latencies using the open source tools described in section 4.4.4.

4.4.2 Communication-based Initial Placement. The Communication-based Initial Placement method scores nodes

based on an estimation of the cost of deploying a pod on that node. This estimation includes both networking

and instance costs. Knowing how much data will be transmitted is essential to estimate the networking costs.

The traic exporter is a component that provides an estimation of the network traic that the pod will generate

and send it to the scoring plugin. The network traic estimation includes communication with the other pods

and communication with the end-users.

In order to estimate the communication patterns, we are looking at the previous communication. Based on the

previous data, we try to predict the next ones, assuming a similar communication pattern in the future. The traic

exporter relies on two graphs: an abstract graph and a real communication graph. The abstract graph contains the

communication pattern prediction. The choice of the estimator depends on the nature of the workload and the

characteristics of its communication patterns. The real communication graph represents all the volume of data

exchanged between two pods or between a pod and its user. The vertices are the pods, and the edges contain the

volume of data exchanged. We use the real communication graph to build the abstract graph. Once the abstract

graph is generated, we can use it to get estimations of data traic. That estimation is important to estimate the

networking costs and therefore the total cost of using a node. Using the cost estimation of each node, we can

rank the nodes and choose the cheapest one. If two nodes have the same cost, we choose one randomly.

The traic exporter is doing three independent tasks:

1) Record the traic. the traic exporter gets the traic between the pods and stores it as the Real Communication

Graph.

Each pod is a vertice in this graph. The edges represent the amount of data exchanged between two pods or

between a pod and its end user. On each vertice, it stores the hash of the container images of the pod. It uses this

hash as an identiier (a pod type). Two pods running the same software have the same type. The traic exporter

also attributes a type for each end-user.

2) Generate communication patterns. The traic exporter builds an abstract representation of the traic to

summarize the information in the measured communication graph.

The traic exporter constructs an abstract graph using the type of pods. The objective is to extract a common

data traic pattern from pods of the same type. The abstract graph uses the types of nodes as vertices and the

traic as edges. To build this graph the traic exporter aggregates the traic using an aggregation function (e.g.,

the average).

The CIP training process corresponds to the steps of recording the real traic and building the abstract. The

training starts as soon as one pod is deployed. Then, the following pods with the same type can beneit from that

learning.

3) Serve the communication patterns. The traic exporter provides communication patterns for a given type

when the CIP scoring plugin requests it. The scoring plugin requests communication patterns based on the type

of the evaluated pod.

Fig. 5 illustrates the CIP mechanisms. The traic exporter extracts communication patterns from running

pods and serves them to the CIP scheduler. We store the graphs of the communication patterns in a graph

database. Then, we expose them using Prometheus API. The Prometheus server collects them periodically, and the

ACM Trans. Arch. Code Optim.



Cost-aware service placement and scheduling in the Edge-Cloud Continuum • 13

Fig. 5. Illustration of the CIP scheduler mechanism. The node colors represent the types.

Fig. 6. Monitoring architecture

scheduler can request the Prometheus server. We provide more details on the monitoring setup and Prometheus

in section 4.4.4.

4.4.3 Rescheduler. The Rescheduler is a Go application running in a dedicated pod. We use the Kubernetes and

Prometheus libraries to collect all the necessary information. The traic estimation is using linear regression.

Future work can investigate more complex prediction methods to address diferent workloads.

To migrate a pod, the rescheduler updates its deployment manifest. This automatically triggers a rolling update

with no downtime to the service. A new pod is deployed on the best node, and the old pod is deleted when it is up.

The duration of the rescheduling routine depends on the time to evaluate each pod coniguration and the

time to complete all pod migrations. Although we can manually set the rescheduling frequency, how often the

rescheduler calls the rescheduling routine. This frequency can be low if the cluster state does not evolve quickly

or higher if necessary. However, the rescheduling period cannot be lower than the duration of the rescheduling

routine.

4.4.4 Monitoring setup. We are using open-source tools to collect data about the cluster and the workload state,

and we make it available for scheduling decisions.

Fig. 6 presents the monitoring worklow, how data are collected and made available for taking scheduling

decisions. This methodology can support any containerized workload.

ACM Trans. Arch. Code Optim.



14 • Rac and Brorsson

Prometheus [17] is the main monitoring component. It periodically pulls many metrics about the cluster state

(about the nodes, the pods, and the containers). Then, this data can be requested from the scheduling modules or

a monitoring dashboard.

In addition, to the standard Prometheus metrics, we collect speciic metrics about our workload and the network

state. We can expose Key Performance Indicators such as the End-to-End latency. To ensure that the metrics are

collected even if the pod is killed, we use the Prometheus PushGateway [18]. Data is pushed from the pods of the

workload to this component. Then, the PushGateway can be periodically pulled by Prometheus like any other

module.

We have built a module: CostExporter to compute and export the costs. It is a Go application that exposes

metrics that are accessible through Prometheus. It exports the costs of using a server and networking traic.

The cluster latency matrix (i.e., a matrix that summarizes the latency between every node in the cluster) is a

key metric in our methodology. To collect this metric, we are using a DaemonSet (i.e., a Kubernetes tool that

ensures that every node in the cluster runs a copy of a pod) that deploys a pod that pings all other nodes in the

cluster. These latency probes [1] make the latency matrix directly available through Prometheus.

This monitoring system is designed to have limited overhead on the workload execution. Most of the mon-

itoring services are running outside of the workload application. Cluster state sensors run in dedicated pods.

Communication probes run in side-car containers. A side-car container has access to the same network as the

containers of the workload application. It can export networking metrics to Prometheus. However, the QoS

probe runs inside the workload application. A dedicated thread (to avoid interruptions) pushes the QoS to the

Prometheus push gateway.

5 EVALUATION

In order to demonstrate the potential and efectiveness of our approach, we have devised a workload that mimics

the computational need and communication of a real vehicular cooperative perception application. This workload

is a distributed application consisting of multiple services that are deployed in a real Kubernetes cluster in a

public cloud. We control the latencies between nodes to emulate a cloud-edge continuum infrastructure. We have

then done some experiments to evaluate the latency-based initial placement (LIP), communication-based initial

placement (CIP), and rescheduling (RS) algorithms in a realistic environment.

5.1 Experimental Methodology

We build an experimental cluster using public cloud resources. We use Virtual Machines (VMs) to have cluster

nodes with diferent characteristics (e.g., diferent number of processors and amount of memory), and we add

artiicial delays between them to simulate the physical distances between the nodes. The details on how this

is done can be found in our previous work [22]. We deploy a Kubernetes cluster using all these nodes. In this

infrastructure, only the latencies are emulated, we deploy the Kubernetes cluster on real nodes.

Fig. 7 shows the infrastructure graph of the experimental cluster with all nodes and latencies between them.

Our experimental cluster includes one node for the control plane and one for the monitoring tools. A workload

cannot be deployed on these two nodes. The edge and data center (DC) nodes are hosting the services of the

workload. End-user nodes host the end-user application workload. In a real-life environment, end-user nodes

would be replaced by dedicated equipment such as a smartphone or a car.

The physical distances between the edge nodes induce networking delays. These delays are not represented as

direct links on the graph to improve readability. The graph summarizes the delays as they are experienced by the

diferent nodes. E.g., there is a delay of 25ms between the nodes E1 and E3.

a container running in the same pod as an application

ACM Trans. Arch. Code Optim.



Cost-aware service placement and scheduling in the Edge-Cloud Continuum • 15

Fig. 7. Experimental cluster infrastructure graph (not all physical links between nodes are represented)

The diference between edge and DC nodes is the geographical location and the available resources. The nodes

are AWS instances. The edge nodes have 4 CPUs and 16 GiB of memory. Other nodes have 8 CPUs and 32 GiB of

memory.

5.2 Workload: Vehicular cooperative perception

The vehicular cooperative perception workload leverages computer vision to help detect nearby vehicles. As

described by Xu et al. in [25], vehicles are sharing videos they record with their cameras to improve global

knowledge of the positions of all nearby vehicles. Knowing the positions of close vehicles is helpful for drivers who

cannot see others in their blind spots. Also, this technology is important for self-driving vehicle implementation

where perception is a major challenge. Getting accurate positions of surrounding vehicles helps to reduce the

collision risk.

We implement a synthetic workload that mimics the behavior of the above-described application. The originally

described application is a monolith. We break it into three services that we can deploy anywhere in the computing

continuum. By splitting the application we can include vehicles with limited computing resources; the services

that cannot run on these vehicles can be hosted on a server at the edge or in a data center. Also, we can place the

component that aggregates the data from multiple vehicles in a central location.

Three services compose the workload application. The vehicles generate a video stream and send it to a feature

extractor (FE). The FE extracts the features from the video stream and sends it to a feature fusion (FF). FF merges

the features to get accurate positions of the vehicles. Finally, the FF broadcasts the positions to nearby vehicles.

ACM Trans. Arch. Code Optim.



16 • Rac and Brorsson

In our experiments, we have two kinds of vehicles: the ones with embedded computing capabilities (e.g., GPU)

and the ones without them. The vehicles without computing capabilities send video-stream to the FE. The vehicle

with computing capabilities sends features (already extracted) directly to the FF.

Fig. 8 shows the interactions between the Vehicle, Feature-Extractor (FE), and Feature-Fusion (FF) services.

There are three diferent kinds of nodes in our experiment: Data-Centre (DC), Edge (E), and End-User (EU). End-

user nodes are hosting the vehicles only. The vehicles cannot be deployed on diferent nodes. Vehicles without

GPU are sending a video stream to the FE. Vehicles with GPU are sending the features directly to the FF. FE and

FF services can run only on Edge or DC nodes.

Fig. 8. Workload architecture: Workload pods and the nodes where they can run

There is only one instance of FF for the whole experiment, it aggregates the features from all of the vehicles.

There are many vehicles, and each of them without a GPU is connected to one FE. We suppose that the vehicles

are connected to the same network as the other services. However, the network delays depend on the geographic

location of the vehicles.

For this workload, an end-user node represents a neighborhood or a 5G cell area where vehicles can go. In the

experiment, vehicles are moving from one end-user node to another over time. A json coniguration ile deines

all the movements of the vehicles when they are starting up or shutting down when they are moving from one

area to another.

We benchmark the original application to build our synthetic workload. Table 2 summarizes the parameters

we use to conigure our application. This application is using CPU instead of GPU. Future work may adapt this

scheduling approach to consider accelerators such as GPU or FPGA. In this synthetic application, the CPUs are

running a load generated by the stress-ng tool [8]. Services send randomly generated data over the network using

the sizes deined in Table 2.

5.3 Evaluation on a Kubernetes cluster

In this section, we evaluate our scheduling methodology on a Kubernetes cluster. We present the costs and the

end-to-end (E2E) latency of the vehicular cooperative perception workload when using the Kubernetes default

scheduler and our methodology to place the services. Also, we discuss the performances of the CIP approach

when using initial data or not, and the CPU consumption overhead of running our scheduling components.

We deine a scenario where 5 vehicles are embedding a GPU (to extract the features locally) and 5 vehicles use

a feature-extractor (FE) deployed in the computing continuum. There is one feature-fusion (FF) instance for all

the vehicles.

ACM Trans. Arch. Code Optim.



Cost-aware service placement and scheduling in the Edge-Cloud Continuum • 17

Table 2. Cooperative perception workload characteristics

Parameter Value

Processing time (FF) 100 �s

Processing time (FE) 100 �s

Frames size 731kB

Features size 64 kB

Frame rate 35 FPS

We evaluate this scenario using seven scheduling approaches. Baseline: the default Kubernetes scheduler (least

allocated node).Most Allocated node (MA). Balanced allocation (BA): a Kubernetes approach to balance the resource

usage among the nodes [10]. Latency-based Initial Placement (LIP): the initial placement algorithm described

in section 4.2.1. LIP + Rescheduler (LIP+RS): the initial placement algorithm in addition to the rescheduling

methodology described in section 4.3. Communication-based Initial Placement (CIP): the communication-based

initial placement algorithm described in section 4.2.2. CIP + Rescheduler (CIP+RS): the initial placement algorithm

in addition to the rescheduling methodology described in section 4.3.

We compare these seven scheduling approaches to the optimal solution (using pod migration). Vehicle arrival

is deterministic, it is therefore possible to ind the optimal solution for a given scenario. However, we use an

exhaustive search to get the optimal solution. It is not possible to use it as an online scheduling approach since

the complexity is very high and the scenario should be known a priori. We can only search for the best solution

a posteriori and replay it on the same cluster. Our optimization solver only works for clusters with the same

instance price for each node.

We use three diferent cluster conigurations for each approach: i) all nodes have the same instance cost, ii)

data-center nodes are twice as expensive as the edge nodes, and iii) edge nodes are twice as expensive as the

data-center nodes. The instance cost is somewhat arbitrarily chosen to 0.0472 per CPU.h and the communication

cost to 0.01 per GB. The actual values are not so important for the performance evaluation, but they are still

chosen to be in the realistic realm. Since the experiments are run on real machines, there is signiicant variability

between each execution. Therefore, we repeat each experiment ten times and use the average value in the igures

here with error bars representing 95% conidence interval.

For the LIP approach, we set � = 20 and � = 1000. We set � in relation to the observed latencies in the cluster.

It is lower than the average delay between two edge nodes and higher than the average delay between a DC and

an edge node. If the � value is too small, the condition with � will never be satisied, and the LIP will select the

node with the lowest instance cost. Respectively, if � is too big, the condition will always be satisied, and the LIP

will choose the cheapest node. We set � in relation to the instance costs in the cluster. It is signiicantly bigger

than the inverse of the average instance cost. That way, LIP irst ranks the nodes by the number of � constraints

satisied and then selects the cheapest node among those that satisfy the maximum number of constraints.

5.3.1 Results. For every experiment, we measure the total costs of running the workload. The total costs are the

sum of the computing, networking, and rescheduling costs. The rescheduling cost is the price to pay to migrate a

pod from one node to a diferent one.

In addition to the costs, we also record the end-to-end latency (E2E latency) of each experiment. This is a key

performance indicator (KPI) to check if the Quality of Service (QoS) varies when performing cost optimization.

The E2E latency is the duration between the time when a frame is recorded and the time when the vehicle

receives the corresponding positions of the nearby vehicles. This value aggregates the network delays between

ACM Trans. Arch. Code Optim.



18 • Rac and Brorsson

Fig. 9. Average of total costs for each approach: Baseline (default Kubernetes, Least Allocated), Most Allocated, Balanced

Allocation, Latency-based Initial Placement, LIP + Rescheduler, Communication-based Initial Placement, and CIP + Resched-

uler. Costs are normalized to the baseline approach. Data-center and edge nodes share the same price.

Fig. 10. Average of total costs for each approach: Baseline (default Kubernetes, Least Allocated), Most Allocated, Balanced

Allocation, Latency-based Initial Placement, LIP + Rescheduler, Communication-based Initial Placement, and CIP + Resched-

uler. Costs are normalized to the baseline approach. Data-center nodes are twice as expensive as edge nodes.

each service, the duration required to send the video stream and the features, the processing time for extracting

the features, the time to fusion the features, and the time to broadcast the positions.

Fig. 9, 10, and 11 presents the average of the total costs for diferent scenarios: same instance cost for all nodes,

data center nodes twice as expensive as edge nodes and edge nodes twice as expensive as data center nodes. The

total costs are normalized to the optimal approach. Error bars represent the 95% conidence interval. The lower

the costs, the better.

ACM Trans. Arch. Code Optim.



Cost-aware service placement and scheduling in the Edge-Cloud Continuum • 19

Fig. 11. Average of total costs for each approach: Baseline (default Kubernetes, Least Allocated), Most Allocated, Balanced

Allocation, Latency-based Initial Placement, LIP + Rescheduler, Communication-based Initial Placement, and CIP + Resched-

uler. Costs are normalized to the baseline approach. Edge nodes are twice as expensive as data-center nodes.

Fig 12. shows the 95�ℎ percentile of the end-to-end latency for the diferent experiments. We can use this

information to ensure that the Quality of Service remains at the same level.

By analyzing the node allocation of the services over time for all scenarios, we observe that the baseline

approach is choosing data center nodes in most situations. Data center nodes have more computing resources,

they are the least allocated nodes. The LIP, CIP, CIP+RS, and CIP+RS approaches use both edge and data center

nodes (it depends on the cluster coniguration).

For the irst scenario where all nodes have the same instance cost, our approaches have total costs that are 7

to 23% lower than the baseline (the default Kubernetes scheduler). The optimal approach is 30% lower than the

baseline approach. Our best approach is CIP, its total cost is 8% above the optimal. In this scenario, the instance

costs are the same for every approach. It is the expected behavior, the node price is the same for every node.

Only lower networking costs lead to lower total costs. Rescheduling costs are negligible in this experiment. They

correspond to the price to pay to run the two pods during the migration, the old pod is killed only when the new

one is running.

For the second scenario where the data center nodes are twice as expensive as edge nodes, our approaches

have a total cost of 19 to 29% lower than the baseline. The baseline chooses the least allocated nodes, which

are the data center nodes. The baseline chooses only expensive nodes in this scenario, this leaves a lot of room

for improvements. CIP and CIP+RS have similar performances using two diferent placement strategies. In this

situation, the CIP approach uses more DC nodes (that are more expensive) than the CIP+RS. The rescheduler is

using more edge nodes to save both computing and networking costs. However, the un-optimal rescheduling

routine duration (described in section 5.4.2) leads to higher networking costs. CIP uses DC nodes for the feature

fusion, it is more expensive than CIP+RS which uses Edge nodes.

In the last scenario, where edge nodes are twice as expensive as the data center nodes, there is less room for

improvement. The baseline chooses data center nodes because they are the less allocated nodes, and it gets results

similar to the LIP and LIP+RS approaches. However, the CIP approach manages to ind 9% lower total costs. But,

these cost improvements imply an impact on the end-to-end latency. CIP+RS performs better than the baseline

with a limited impact on the QoS.

ACM Trans. Arch. Code Optim.



20 • Rac and Brorsson

Fig. 12. 95�ℎ percentile of the end-to-end latency for each approach (ms)

The Balanced Allocation approach is not appropriate for the edge-to-cloud computing continuum. It provides

higher total costs and lower QoS than the baseline in every scenario. Using Balanced Allocation on heterogeneous

resources is ineicient.

The Most Allocated node approach can have lower total costs than the baseline in two scenarios. The QoS of

the MA approach is lower than the baseline in every scenario. The major issue of this approach is that it does

not adapt to diferent cluster conigurations. It always chooses the edge nodes (which are the most allocated

nodes), even if they are not close to the end users. A irst edge node is picked randomly and then illed at its

maximum capacity, then the next one is selected. If the irst edge node picked is close to the end users, the overall

results will be better than the baseline. This approach will be even less performant if we add more edge nodes in

the cluster. This method has a lot of variability due to randomly picked edge nodes. It makes that approach less

reliable than our methodology.

The End-to-End latency is similar for most of the approaches, except for the above-mentioned case. Overall

cost improvement does not negatively impact the Quality of Service.

ACM Trans. Arch. Code Optim.



Cost-aware service placement and scheduling in the Edge-Cloud Continuum • 21

Table 3. Normalized total costs for diferent approaches

Approach Optimal LIP CIP (without initial data) CIP (with initial data)

Normalized cost 1 1.32 1.22 1.10

Fig. 13. CPU time overhead of the scheduling components

The CIP approach is the best of our approaches to minimizing the total costs. However, there is one scenario

(when edge nodes are twice as expensive as data-center nodes) where the QoS is impacted by cost optimization.

The LIP approach performs less aggressive cost optimizations, and results are lower than CIP but never negatively

impacts the QoS. The rescheduler helps reduce the costs or improve the QoS. But, to propose the best performances

possible, the rescheduling routine needs to be shorter than the systems evolve.

5.3.2 CIP performances and initial data. The performances of the CIP scheduler vary according to the available

data. To quantify this variation, we run an experiment where we use the CIP with and without initial data. Table 3

presents the normalized total costs for diferent approaches. When the CIP scheduler can access initial data, the

total cost is 12% lower than it is without initial data. However, the CIP approach outperforms the LIP approach in

all cases, with and without initial data.

The CIP approach has better performance when it already has data about the application it is deploying.

5.3.3 Custom scheduler and rescheduler overhead. We measure the overhead of using our custom scheduling

methodologies. It is important to ensure that the cost of running our approaches is lower than the savings they

can achieve.

Fig. 13 presents the execution time of the scheduling components relative to the experiment duration for each

approach studied. Using our scheduling approaches has a limited impact on CPU consumption. The CPU time of

the additional scheduling components is below 4% of the experiment duration. The scheduling components are

idle most of the time. Our custom schedulers consume around 1.5 times more CPU than the default Kubernetes

scheduler.

ACM Trans. Arch. Code Optim.



22 • Rac and Brorsson

Overall, saving 10 to 25% of the costs of running the experiment is worth the expense of 4% of a CPU core for

the duration of the experiment.

It is worth noting that the overhead of scheduling does not impact any applications in any negative way as it

executes on a separate node.

5.4 Limitations

5.4.1 Workload. In this set of experiments, we consider that Edge and Cloud have the same processing speed

(but with diferent numbers of CPUs). The workload consists of handling a video stream in real time; more

computing capabilities cannot make it faster, but it can improve the accuracy. Further studies may investigate

diferent framerate and resolutions, or test other workloads.

5.4.2 Rescheduling. The rescheduling routine sometimes is too long for optimal performance. It could be counter-

intuitive that a static approach (CIP) outperforms the dynamic one (CIP+RS). The explanation is that the system

evolves faster than the rescheduler can react.

For example, when a pod is placed on node E3 to be close to a vehicle located on E-U4, this solution is optimal

at this given time. But, if the vehicle moves to E-U6, the solution is no longer optimal. If the rescheduler takes

a minute to move the pod to E5, the pod stays in an inadequate location for one minute, and the costs grow

higher very fast. If the rescheduler cannot react fast enough, it can be better to have a static approach without a

rescheduler or to improve the reactivity of the rescheduler. To avoid these situations, the period of rescheduling

should be signiicantly lower compared to the changes that occur in the clusters (vehicle movement or new node

availability).

The minimum duration of the rescheduling routine is ixed by execution and migration time. Section 4.4.3

provides more details about the rescheduling duration. Future works may investigate ways to improve the

rescheduling speed.

5.4.3 uality of Service. Even if our proposed methodology has similar or better QoS than the baseline, there is

no mechanism to ensure that Service Level Objectives (SLOs) are met.

The LIP approach minimizes inter-service latency to lower communication costs. It reduces the end-to-end

latency and improves the QoS. However, there are no hard requirements to avoid choosing nodes with high

latency if it is the only choice possible.

The CIP approach minimizes the total costs. If the nodes of the cluster have similar prices, this approach will

minimize the data traic. Otherwise, it will choose a tradeof between the instance and the communication costs.

Reducing data traic by processing data locally reduces the end-to-end latency, and improves the QoS.

The CIP approach can reach lower total costs than the LIP approach, even if the QoS is lower. The LIP approach

performs less aggressive optimizations, it can get higher QoS.

Future work can investigate adding a node ilter in the scheduler and the rescheduler to remove the nodes that

do not meet SLOs from the list of schedulable nodes.

6 CONCLUSION

We propose a cost-efective scheduling methodology that simpliies the deployment of distributed applications

in the cloud-to-edge computing continuum as it does not need manual placement of edge services. Doing that

robustly lowers the costs of running the applications while keeping the same Quality of Service. This scheduling

methodology works for clusters that aggregate resources from traditional data centers and the servers located at

the edge of the network. We implement our scheduling methodology on a Kubernetes cluster, and we demonstrate

its beneits using a realistic workload: a vehicular cooperative perception. Experiments on this workload show

ACM Trans. Arch. Code Optim.



Cost-aware service placement and scheduling in the Edge-Cloud Continuum • 23

that using our approach reduces costs by 10% to 25% compared to the default Kubernetes scheduler for the same

quality of service. Also, it is possible to use our methodology with any containerized workload.

Although we use monetary cost as our optimization target, any measurable metric could be used, e.g., energy

consumption can be minimized instead.

ACKNOWLEDGMENTS

This research has been partly funded by the Luxembourg National Research Fund (FNR) under contract number

16327771 and has been supported by Proximus Luxembourg SA. For the purpose of open access, and in fulillment

of the obligations arising from the grant agreement, the author has applied a Creative Commons Attribution 4.0

International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission.

REFERENCES

[1] Bloomberg. 2023. https://github.com/bloomberg/goldpinger

[2] Docker. 2023. https://www.docker.com

[3] Yucong Duan, Guohua Fu, Nianjun Zhou, Xiaobing Sun, Nanjangud C. Narendra, and Bo Hu. 2015. Everything as a Service (XaaS)

on the Cloud: Origins, Current and Future Trends. In 2015 IEEE 8th International Conference on Cloud Computing. 621ś628. https:

//doi.org/10.1109/CLOUD.2015.88 ISSN: 2159-6190.

[4] ETCD. 2023. https://etcd.io

[5] Linux Fondation. 2023. https://opencontainers.org

[6] Kaihua Fu,Wei Zhang, Quan Chen, Deze Zeng, andMinyi Guo. 2022. Adaptive Resource EicientMicroservice Deployment in Cloud-Edge

Continuum. IEEE Transactions on Parallel andDistributed Systems 33, 8 (Aug. 2022), 1825ś1840. https://doi.org/10.1109/TPDS.2021.3128037

Conference Name: IEEE Transactions on Parallel and Distributed Systems.

[7] Kiranpreet Kaur, Fabrice Guillemin, Veronica Quintuna Rodriguez, and Francoise Sailhan. 2022. Latency and network aware placement

for cloud-native 5G/6G services. In 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). 114ś119.

https://doi.org/10.1109/CCNC49033.2022.9700582 ISSN: 2331-9860.

[8] Colin Ian King. 2023. https://github.com/ColinIanKing/stress-ng

[9] Kubernetes. 2023. https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

[10] Kubernetes. 2023. https://kubernetes.io/docs/reference/scheduling/conig/#scheduling-plugins

[11] Phu Lai, Qiang He, John Grundy, Feifei Chen, Mohamed Abdelrazek, John G Hosking, and Yun Yang. 2020. Cost-Efective App User

Allocation in an Edge Computing Environment. IEEE Transactions on Cloud Computing (2020), 1ś1. https://doi.org/10.1109/TCC.2020.

3001570 Conference Name: IEEE Transactions on Cloud Computing.

[12] Hongjian Li, Jie Shen, Lei Zheng, YuzhengCui, and ZhiMao. 2023. Cost-eicient scheduling algorithms based on beetle antennae search for

containerized applications in Kubernetes clouds. The Journal of Supercomputing (Feb. 2023). https://doi.org/10.1007/s11227-023-05077-7

[13] Angelo Marchese and Orazio Tomarchio. 2022. Extending the Kubernetes Platform with Network-Aware Scheduling Capabilities.

In Service-Oriented Computing (Lecture Notes in Computer Science), Javier Troya, Brahim Medjahed, Mario Piattini, Lina Yao, Pablo

Fernández, and Antonio Ruiz-Cortés (Eds.). Springer Nature Switzerland, Cham, 465ś480. https://doi.org/10.1007/978-3-031-20984-0_33

[14] Angelo Marchese and Orazio Tomarchio. 2022. Network-Aware Container Placement in Cloud-Edge Kubernetes Clusters. In 2022 22nd

IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). 859ś865. https://doi.org/10.1109/CCGrid54584.2022.

00102

[15] Gabriele Proietti Mattia and Roberto Beraldi. 2021. Leveraging Reinforcement Learning for online scheduling of real-time tasks in the

Edge/Fog-to-Cloud computing continuum. In 2021 IEEE 20th International Symposium on Network Computing and Applications (NCA).

1ś9. https://doi.org/10.1109/NCA53618.2021.9685413 ISSN: 2643-7929.

[16] Adrián Orive, Aitor Agirre, Hong-Linh Truong, Isabel Sarachaga, and Marga Marcos. 2022. Quality of Service Aware Orchestration

for CloudśEdge Continuum Applications. Sensors 22, 5 (Jan. 2022), 1755. https://doi.org/10.3390/s22051755 Number: 5 Publisher:

Multidisciplinary Digital Publishing Institute.

[17] Prometheus. 2023. https://prometheus.io/

[18] Prometheus. 2023. https://github.com/prometheus/pushgateway/

[19] Thomas Pusztai, Stefan Nastic, Andrea Morichetta, Víctor Casamayor Pujol, Philipp Raith, Schahram Dustdar, Deepak Vij, Ying Xiong,

and Zhaobo Zhang. 2022. Polaris Scheduler: SLO- and Topology-aware Microservices Scheduling at the Edge. In 2022 IEEE/ACM 15th

International Conference on Utility and Cloud Computing (UCC). 61ś70. https://doi.org/10.1109/UCC56403.2022.00017

[20] Samuel Rac and Mats Brorsson. 2021. At the Edge of a Seamless Cloud Experience. arXiv preprint arXiv:2111.06157 (2021).

ACM Trans. Arch. Code Optim.

https://github.com/bloomberg/goldpinger
https://www.docker.com
https://doi.org/10.1109/CLOUD.2015.88
https://doi.org/10.1109/CLOUD.2015.88
https://etcd.io
https://opencontainers.org
https://doi.org/10.1109/TPDS.2021.3128037
https://doi.org/10.1109/CCNC49033.2022.9700582
https://github.com/ColinIanKing/stress-ng
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/reference/scheduling/config/#scheduling-plugins
https://doi.org/10.1109/TCC.2020.3001570
https://doi.org/10.1109/TCC.2020.3001570
https://doi.org/10.1007/s11227-023-05077-7
https://doi.org/10.1007/978-3-031-20984-0_33
https://doi.org/10.1109/CCGrid54584.2022.00102
https://doi.org/10.1109/CCGrid54584.2022.00102
https://doi.org/10.1109/NCA53618.2021.9685413
https://doi.org/10.3390/s22051755
https://prometheus.io/
https://github.com/prometheus/pushgateway/
https://doi.org/10.1109/UCC56403.2022.00017


24 • Rac and Brorsson

[21] Samuel Rac and Mats Brorsson. 2023. Cost-Efective Scheduling for Kubernetes in the Edge-to-Cloud Continuum. In 2023 IEEE

International Conference on Cloud Engineering (IC2E). IEEE, 153ś160.

[22] Samuel Rac, Rajarshi Sanyal, and Mats Brorsson. 2023. A Cloud-Edge Continuum Experimental Methodology Applied to a 5G Core

Study. arXiv preprint arXiv:2301.11128 (2023).

[23] László Toka. 2021. Ultra-Reliable and Low-Latency Computing in the Edge with Kubernetes. Journal of Grid Computing 19, 3 (July 2021),

31. https://doi.org/10.1007/s10723-021-09573-z

[24] Lukasz Wojciechowski, Krzysztof Opasiak, Jakub Latusek, Maciej Wereski, Victor Morales, Taewan Kim, and Moonki Hong. 2021.

NetMARKS: Network Metrics-AwaRe Kubernetes Scheduler Powered by Service Mesh. In IEEE INFOCOM 2021 - IEEE Conference on

Computer Communications. 1ś9. https://doi.org/10.1109/INFOCOM42981.2021.9488670 ISSN: 2641-9874.

[25] Runsheng Xu, Zhengzhong Tu, Hao Xiang, Wei Shao, Bolei Zhou, and Jiaqi Ma. 2022. CoBEVT: Cooperative Bird’s Eye View Semantic

Segmentation with Sparse Transformers. https://doi.org/10.48550/arXiv.2207.02202

[26] Zhiheng Zhong and Rajkumar Buyya. 2020. A Cost-Eicient Container Orchestration Strategy in Kubernetes-Based Cloud Computing

Infrastructures with Heterogeneous Resources. ACM Transactions on Internet Technology 20, 2 (April 2020), 15:1ś15:24. https:

//doi.org/10.1145/3378447

ACM Trans. Arch. Code Optim.

https://doi.org/10.1007/s10723-021-09573-z
https://doi.org/10.1109/INFOCOM42981.2021.9488670
https://doi.org/10.48550/arXiv.2207.02202
https://doi.org/10.1145/3378447
https://doi.org/10.1145/3378447

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Background
	2.2 Motivation
	2.3 Proposed solution

	3 Related work
	4 Scheduling methodology
	4.1 Optimization problem overview
	4.2 Service initial placement
	4.3 Service rescheduling
	4.4 Implementation on Kubernetes

	5 Evaluation
	5.1 Experimental Methodology
	5.2 Workload: Vehicular cooperative perception
	5.3 Evaluation on a Kubernetes cluster
	5.4 Limitations

	6 Conclusion
	Acknowledgments
	References

